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Stellingen
behorend bij het proefschrift
Added Resistance due to waves of Surface Effect Ships
van

Joost Moulijn

. Het is niet mogelijk om de toegevoegde weerstand door golven van een “Sur-

face Effect Ship” te voorspellen op basis van louter potentiaaltheorie, dit in
tegenstelling tot het voorspellen van de toegevoegde weerstand door golven
van conventionele schepen.

De resultaten van berekeningen suggereren doorgaans een veel grotere nauw-
keurigheid, dan op grond van de aannames, die aan de berekeningen ten
grondslag liggen, redelijk is.

. “Meten is weten”, maar de kunst is te weten wat je meet, zodat je weet wat je

weet.

“Even snel” leidt zelden tot het gewenste resultaat.

. Zelfs een kussen van lucht kan hard zijn.

De armste kinderen op deze wereld zijn niet zondermeer gebaat bij een verbod
op kinderarbeid.

. Het verwerpen van abortus en euthanasie en tegelijkertijd steunen van de

doodstraf getuigd van een sterke dubbele moraal.

. Het leren bespelen van een muziekinstrument bestaat voor een groot deel uit

afleren.
Bij goede muziek is het geheel altijd meer dan de som der delen.

Het bedenken en formuleren van stellingen is er sinds het verschijnen van het
boekje “De beste stellingen zijn van hout” niet eenvoudiger op geworden.
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Summary

In recent years there is an increasing interest in large sea-going Surface Effect Ships
(SESs). The design of these vessels requires an accurate method for the prediction
of their behavior in waves. SESs are found to have a large loss of speed when they
are sailing in waves, which threatens the economical feasibility of these vessels.
The speed-loss is caused by an increase of the resistance due to the ambient waves
that is called added resistance due to waves (or briefly added resistance). The goal
of the research project that lies at the root of this thesis is to develop and to validate
a computational method for the prediction of the added resistance of Surface Effect
Ships.

The computational method for motions and added resistance is based on the fol-
lowing assumptions. The hydromechanical problem and the equations of motions
can be linearized. That the excess pressure in the air cushion is constant in space.
Furthermore the computational method only computes the part of the added resis-
tance that is caused by the air cushion, because this part was expected to be the most
important contribution to the added resistance.

The hydromechanic problem is solved by means of a three-dimensional Rank-
ine panel method. The boundary conditions on the hull and the free surface are
linearized around the undisturbed flow. The panel method computes the hydrody-
namic forces on the hulls, the wave height inside the air cushion and the wave height
and slope at the bow and stern seal. The problem is solved in the frequency domain.

Subsequently the motions of the SES and the excess pressures in the air cush-
ion and the stern seal plenum are solved by means of a non-linear time simulation
method. The equations of motion are linearized, but the non-linear form of the dy-
namics of the air cushion and the seals is retained. Especially the leakage of air
under the seals is a highly non-linear phenomenon that cannot be linearized. The
simulation method also includes a non-linear model for the bag-type stern seal.

The added resistance of the air cushion follows from the difference of the resis-
tance of the air cushion in waves and the resistance of the air cushion in calm water.
The resistance of the air cushion follows basically from the cushion excess pressure
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times the difference of the wave height at the bow and stern seal times the cushion
width. In addition to this there are some terms that account for the momentum of
the air flows into and out of the air cushion.

The results of the computational method are compared to experimental results
of MARIN. The agreement is good as far as the motions and cushion pressure are
concerned. There is however a large discrepancy between computed and the mea-
sured added resistance. The computed added resistance of the air cushion is only
small and in many cases even negative, while the measured added resistance is gen-
erally very large.

In order to find an explanation for the discrepancy between the computed and the
measured added resistance an extensive series of experiments that was carried out at
the Ship Hydromechanics Laboratory of Delft University of Technology The main
goal of these experiments was to find the origin of the (large) added resistance of
Surface Effect Ships. Two versions of a model were subjected to three types of
experiments: forced oscillation experiments, wave force measurements and exper-
iments were the model was free in heave and pitch. The contribution of the air
cushion to the added resistance was measured separately in addition to the total
added resistance. The difference yields the added resistance of the hulls. The out-
come of the experiments is that the contribution of the hulls to the added resistance
is large, while the contribution of the air cushion is only small. The large added
resistance of the hulls is mainly caused by sinkage as a consequence of a drop of
the cushion pressure caused by a larger amount of air leakage when the vessel sails
in waves.

Finally the computational method is validated by means of a comparison of the
results of the experiments with the results of the computational method. The cor-
relation of the experimental and computational results is generally good, which
subscribes the validity of the method. The prediction of the total added resistance
however requires a calculation of the added resistance of the hulls. The added re-
sistance of the hulls is mainly caused by sinkage due to a decrease of the cushion
pressure. The computational method predicts the drop of the cushion pressure and
the consequent sinkage and trim with good accuracy. It is therefore expected that
the method can be very useful in the calculation of the added resistance of the hulls.
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wave amplitude

deck area

added mas coefficients

leakage gap area

displacement vector of a point on the hull
wetted hull surface; beam

mean wetted part of the hull surface
width of the air cushion

damping coefficient

2D base function

1D base function

block coefficient

midship section coefficient

restoring coefficient

orifice leakage coefficient

specific heat (constant pressure)
specific heat (constant volume/density)
wave pumping coefficient

forcein j** direction

force due to the air cushion in j** direction
gravitational force in j™ direction
hydromechanic force in j** direction
propulsive force in j** direction

seal force in j** direction
Froude number: F'n = U/+/Lg
longitudinal bow seal force
vertical bow seal force
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longitudinal stern seal force

vertical stern seal force

Green function

gravitational acceleration

panel dimension; height of the air cushion

longitudinal panel dimension

transverse panel dimension

imaginary unit

normal vector

wave number

pitch radius of gyration

ship length

k*» element of the j** row of the generalized mass matrix
linear momentum in longitudinal direction

m-terms, k= 1,...,6

k** component of the generalized normal vector, k = 1,...,6
(n1,n9,n3)T = 7t and (ng, ns,n6)T = TR 7

excess pressure

design pressure in a plenum

ambient pressure;

excess pressure measured in the aft part of the air cushion
excess pressure in the air cushion plenum

excess pressure measured in the fore part of the air cushion
excess pressure in the stern seal plenum

steady cushion pressure

unsteady cushion pressure

volume flux into a plenum

volume flux out of a plenum

design flux through a fan

resistance

resistance of the air cushion

added resistance (due to waves)

added resistance of the air cushion

added resistance of the hulls

added resistance of the hulls due to sinkage

boundary surface (of {2); control surface

part of the control surface that is adjacent to the vessel
part of the control surface that is adjacent to the wave surface
thrust; draft
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iX

210
220

on-cushion draft at station (
on-cushion draft at station 20
off-cushion draft at station 0
off-cushion draft at station 20

time

forward velocity

air escape velocity

volume of a plenum

extra cushion volume due to the bow seal
volume of the air cushion plenum

air cushion volume

volume of the diaphragm

design volume of a plenum

the part of the cushion that is taken up by the stern seal
volume of the stern seal plenum
wave pumping volume

wave exiting force in j™ direction
position of a point on the hull

weight factor of the k™ base function
vertical acceleration at station 0
vertical acceleration at station 10
vertical acceleration at station 20

Greek and other symbols

¢
)
Cs
n

n
Nk

Mk
Tl

scale factor

pressure difference across a leakage gap

kronecker delta

wave height

mean wave height at the bow seal

mean wave height at the stern seal

local non-orthogonal coordinate

displacement vector: (1, 72, 73)7

diplacement in k" direction,

k =1,...,6 being surge, sway, heave, roll, pitch and yaw

complex harmonic amplitude of the variationof n, (k = 1,...,7)

non-dimensional unsteady cushion pressure
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P

D

skew angle of a panel; on-cushion trim angle (calm water)
mean wave slope at the bow seal

mean wave slope at the stern seal

ratio of specific heats of air: k = ¢,/c, ~ 1.4

wave length

local non-orthogonal coordinate

density (sometimes of water, sometimes of air)

density at the design pressure (p)

strouhal number: 7 = Uw/g

base flow potential

steady perturbation potential

potential in collocation point [

unsteady perturbation potential

diffracted wave potential

incident wave potential

wave potential due to harmonic motion in k** direction
total velocity potential

computational domain

rotation vector: (74, 75, 76)”

frequency of oscillation/encounter

Helmbholtz resonance frequency

wave frequency with respect to an earth fixed coordinate system
nabala operator: V = V = (8/0z,8/dy,8/0z)T;
volume of the displaced water

real part of

imaginary part of

P
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Coordinate systems

The following right-handed carthesian coordinate systems are used:
e an earth fixed coordinate system,
e adirectionally fixed coordinate system,
e a ship bound coordinate system.

The origin of earth fixed coordinate system is located in the calm water surface.
The mean water velocity with respect to this origin is zero. The z-axis points in
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the same direction as the (mean) forward velocity of the SES. The z-axis point
vertically upwards.

The axes of the directionally fixed coordinate system are parallel to the axes of
the earth fixed system. The origin is also located in the calm water surface. This
system travels with a constant velocity U in positive x-direction with respect to the
earth fixed system. This velocity is the (mean) forward velocity of the SES. The
hydromechanic problem is solved in this coordinate system.

The ship bound coordinate system is bound to the SES. The z-axis points in
forward direction, the y-axis point to port and the z-axis points upwards. This
coordinate system is used to define the geommetry of the SES. When the SES is
in its (on-cushion) mean position the directionally fixed system and the ship bound
system coincide. The difference between the systems are the displacement vector 7/
and the rotation vector €.



xii

NOMENCLATURE




Chapter 1

Introduction

1.1 Motivation

During the last decades there has been an increasing interest in fast sea-going Ships.
This interest is due to the large speed-wise gap between aircraft and ships. An air-
craft can transport light cargo at a high speed, while a ship can transport heavy cargo
at a low speed. An intermediate transport facility does not really exist. Therefore
several new concepts are being developed and tested on their technical and eco-
nomical feasibility. One of these concepts is that of the Surface Effect Ship (SES).
Section 1.2 presents a description of the SES-concept. Other concepts for fast sea
transportation are that of the planing mono-hull, the catamaran, the hovercraft, the
hydrofoil and the wing in ground effect vehicle. An SES is basically a hybrid of a
catamaran and a hovercraft.

The behavior of a ship in waves is of great importance for its technical and eco-
nomical success. When the motions and accelerations of a ship become too large,
the passengers and the crew become sea-sick. In more severe conditions the cargo
and even the ship itself might be damaged. Therefore the captain will reduce speed
and/or change heading in order to reduce the motions and the probability of the
occurrence of slamming. This speed reduction is called a voluntary loss of speed.
Ships also suffer from an involuntary loss of speed. An involuntary speed loss is
directly caused by the environmental conditions in which the vessel is sailing. The
actual amount of involuntary speed loss depends on the increase of the resistance of
the vessel, the propulsion characteristics of the vessel, and also the (calm water) re-
sistance characteristics of the vessel. Figure 1.1 shows an example of the resistance
and propulsion characteristics of a ship. The velocity of the ship follows from the
intersection point of the thrust curve and the resistance curve. When the resistance

1
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Figure 1.1: Resistance and propulsion characteristics of a ship

(R) increases the forward velocity (U) decreases. The velocity decrease depends on
the increase of the resistance and on the slope of the resistance and thrust curves. A
decrease of the thrust (1") can also result in a loss of speed. However the effect of
waves and motions on the thrust is generally considered to be small. Therefore the
involuntary speed loss of a ship is primarily caused by an increase of the resistance.
There are several phenomena such as fouling, wind and ambient waves that can
cause an increase of the resistance of a ship while it is sailing at sea. The extra
resistance due to the ambient of SESs waves is the subject of this thesis. This extra
resistance is called added resistance due to waves, or briefly added resistance.

The high speed is of course one of the major features of a fast ship. Therefore the
speed loss in waves of a fast ship should not be too large. However, the motions of
fast ships are generally greater than the motions of conventional ships. This results
in a large voluntary loss of speed. Usually the involuntary speed loss of fast ships
is large too.

Surface Effect Ships are found to have a particularly great involuntary loss of speed
when they are sailing in a seaway. This is partially due to their very flat resistance
curve which enables them to attain such a high speed. On the other hand their added
resistance due to waves is very large too. Kapsenberg et al.[1] measured a very
large added resistance during experiments with a free sailing model. The amount
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of speed loss in a seaway is of great importance for the economical feasibility of
SESs. The design of SESs therefore requires an accurate prediction method for the
added resistance due to waves. The development and validation of such a method
was the goal of the research project that lies at the root of the present thesis.

1.2 The SES-concept

The previous section presented the motivation for the research project on added
resistance of Surface Effect Ships. This section describes the SES concept. There-
after the following section carries on with a survey of the literature on the subjects
of motions and added resistance of SESs.

A Surface Effect Ship is a hybrid of a catamaran and a hovercraft. Figure 1.2 shows
a sketch of an SES. An air cushion is enclosed between the side-hulls, the wet
deck, the water surface and flexible seals at the bow and stern. The largest part
of the vessel’s weight is carried by the excess pressure inside the air cushion. The
remainder is carried by the buoyancy of the hulls. Air leaks out from the cushion
under the seals. Fans pump air into the cushion in order to compensate this leakage
flow and to maintain an excess pressure.

Most SESs have a finger-type bow seal, which consists of a row of vertical loops
of thin flexible material. Each loop represents a finger. The loops are open to the
cushion side. The excess pressure automatically maintains the shape of the fingers.

The stern seal of SESs is usually of the bag-type. The bag consists of a horizon-
tal loop of thin flexible material. The bag is open to the sides, where it is closed by
the inner side of the hulls. Internal webs restrain the aft side of the bag and divide
the bag in two or three lobes. The bag is pressurized by a fan at a slightly higher
pressure than the air cushion. In the early days of SES-development the bow and
stern seals were usually of the non-flexible planing type.

The development of the SES concept started just after the development of the hov-
ercraft concept in the 1950s in Britain. The first SES was build as a solution to the
large amount of air leakage that occurs with ACVs sailing in waves. In the early
sixties the U.S. Navy started an extensive SES program as a step towards their goal
of a “100 knots Navy”. Eggington and Kobitz[2] and McGhee[3] presented details
of this research program. After a relatively quiet period the interest in the SES
concept reappeared at the end of the 1980s. The Japanese TSL-A project (see for
instance the paper by Ozawa et al.[4]) and the European HYDROSES project (see
for instance the paper by Kapsenberg and Blume [5]) are recent examples of this
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Figure 1.2: Sketch of a Surface Effect Ship

interest.

Finally this section compares the SES with its ancestors, the catamaran and the hov-
ercraft. Compared to a catamaran an SES has a low resistance. An SES can achieve
a higher speed than a similarly sized catamaran by means of a smaller amount of
power, also when the additional power for the fans is taken into account. The be-
havior of an SES in waves is quite different from the behavior of a catamaran in
waves. In the normal frequency range the motions of an SES are much smaller than
the motions of a comparably sized catamaran, but in the very high frequency range
SESs suffer from the so called cobblestone effect. The cobblestone effect is a reso-
nant phenomenon of the air cushion that causes a high level of vertical acceleration
and therewith a poor ride quality. A major disadvantage of an SES in comparison
with a catamaran is the much higher level of complexity of the vessel.

A major advantage of SESs over hovercraft is that the side-hulls result in a
much smaller amount of air leakage, thus reducing the power that is needed for
pressurizing the air cushion. Another advantage of SESs is that the side-hulls allow
water-borne propulsion like water jets or surface piercing propellers. This results in
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a significant reduction of the noise production and in a higher propulsion efficiency.
The side-hulls also result in very different maneuvering characteristics: an SES has
a much greater course stability than a comparable hovercraft. Furthermore SESs
only have seals (skirts) at the bow and stern, while hovercraft have skirts all around
and also internal skirts that divide the cushion into several compartment. This is
necessary for the transverse and longitudinal stability of hovercraft. In the case of
SESs the stability is supplied by the hulls. The maintenance of the skirts is very
expensive, which is an important drawback of the hovercraft concept. The behavior
of SESs in waves also differs from the behavior of hovercraft in waves. This is
mainly due the fact that the air cushion of an SES is not divided into compartments,
which results in a smaller amount of pitch excitation. On the other hand the internal
skirts of a hovercraft reduce acoustic resonances of the air inside the cushion to a
large extent. A major advantage of hovercraft over SESs is of course that they have
amphibious capabilities.

1.3 Overview of the literature

This section presents an overview of the literature on seakeeping of Surface Effect
Ships. There exists only a very small amount of literature on the subject of added
resistance of SESs. There is however much literature to be found on the topic of
motions of SESs. The prediction of the added resistance of a vessel first requires an
accurate prediction of the motions of this vessel. Therefore this section starts with
a discussion of the literature on motions of Surface Effect Ships. Thereafter it goes
into the literature on the subject of added resistance due to waves.

Many authors presented studies on motions of Surface Effect Ships. Kaplan and
Davis[6] presented one of the first papers on the modeling of the behavior of SESs in
waves. Kaplan et al.[7] developed a non-linear six degrees of freedom motion pro-
gram. Doctors[8] presented an extensive overview of the literature on the dynamics
of hovercraft and SESs, which contains a large amount of valuable references.

From this literature it appears that there are many aspects that are important for
the seakeeping of SESs. This section subsequently pays attention to the following
aspects: the cobblestone effect, the leakage of air out of the cushion, the stern and
bow seal, the air supply system (fans), the interaction of the air cushion with the
wave surface, and the effects of scaling.

The cobblestone effect is the collective name for high frequent oscillations of SESs
due to resonant phenomena of the air inside the air cushion. The cobblestone effect
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results in a high level of vertical acceleration of the SES, and therewith in a poor ride
quality for the passengers and crew. At the lowest cobblestone resonance frequency
the inertia of the SES is balanced by the force due to the compressibility of the
air inside the cushion (Helmholtz resonance). In this case the pressure is spatially
constant. The higher cobblestone frequencies are caused by acoustic resonance
of the air inside the cushion. At these resonance frequencies the pressure is not
spatially constant anymore.

Nakos et al.[9] were the first who addressed the importance of the spatial pres-
sure variations. Sgrensen[10], Steen[11] and Ulstein[12] presented extensive stud-
ies of the cobblestone effect. Sgrensen[10] mainly concentrated on the the active
control of the cobblestone oscillations by means of a ride control system. Steen[11]
focused on the mathematical modeling of the cobblestone effect. He found that the
bag-type stern seal and air leakage are important for the cobblestone oscillations.
Ulstein[12] mainly concentrated on the (non-linear) dynamical behavior of the flex-
ible stern seal bag.

Many authors consider air leakage out of the cushion to be very important and
highly non-linear (see for instance Nakos et al.[9], McHenry et al.[13] or Mas-
set et al.[14]). When the relative wave height at for instance the bow seal is small
the seal will leave a leakage gap above the wave surface. When the relative wave
height becomes larger, the leakage area decreases linearly with the relative wave
height until the gap closes. A further increase of the relative wave height does
of course not result in a negative leakage area. The sudden opening and closure
of the seals and the consequent sudden occurrence of air leakage cannot be cap-
tured by some linear approximation. Nevertheless air leakage is often linearized
or even neglected. ([9], [13]). Steen[11] showed the importance of air leakage in
connection with the cobblestone effect. Ulstein[12] studied the air leakage flow by
means of computations with a non-linear panel method. He found that a simple
one-dimensional approach yields good results as long as the contraction of the es-
cape air jet is taken into account.

The seals are also considered to have an important effect on the motions of SESs.
The bag-type stern seal is expected to have an important effect on pitch motions
in particular. Lee[15] developed a two-dimensional model for bag-type stern seals.
He neglected gravitational and inertial forces as well as the dynamic pressure dis-
tribution due to air leakage under the seal. Steen[16],[11] also presented a two-
dimensional bag stern seal model in which the the gravitational and inertial forces
were neglected. He did however take the dynamic pressure distribution due to air
leakage into account. Steen showed the importance of the stern seal where the cob-
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blestone effect is concerned. Masset and Morel[17],[14] developed a very similar
model. They also carried out an experimental validation of their model. Ulstein[12]
developed a model that includes the inertia of the bag structure. He showed that
the first eigen mode of the bag of a 28 m SES occurred at a frequency of 1.97 Hz.
Therefore the inertial effects are only important for high frequency motions, i.e. the
cobblestone effect.

There is not much literature to be found on finger-type bow seals. According
to Masset and Morel[17] the shape of a finger-type bow seal does not deform due
to pressure or air gap variations. When the seal intersects with the wave surface
the part of the seal that would be located below the water surface is simply bent
backwards.

The air supply system (fans) is another important aspect of SESs. All existing meth-
ods, including the method that is presented by this thesis, use steady fan characteris-
tics to describe the behavior of the fans. Durkin and Luehr[18], Sullivan et al.[19],
Masset et al.[17] and Witt[20] concluded however that fans respond in a dynam-
ical way to oscillating pressure in the cushion plenum. Sullivan et al.[19] deter-
mined the dynamical response of a model scale air cushion lift fan. They found
that the response of the fan was quite linear, but at higher frequencies the response
appeared to have a considerable phase lag with respect to the varying pressure. Sul-
livan et al.[19] also showed that the dynamic response of the fan has a large effect
on the heave response of a hovering box.

There appears to exist some difference of opinion about the importance of the inter-
action between the air cushion and the water surface. Waves inside the air cushion
modulate the volume of the air cushion, which leads to cushion pressure variations.
The cushion pressure variations cause waves again. These waves again modulate
the air cushion, so it is a matter of interaction.

Kaplan et al.[6],[7] only took account of the incident waves in the air cush-
ion. Kaplan[21] claimed that the waves induced by the vessel are small and only
have a minor effect on the overall motions. Doctors{22] and Kim and Tsakonas[23]
found however that the vessel-induced waves have a significant effect on the mo-
tions. McHenry et al.[13] reported only a small effect of cushion induced waves, but
Nakos et al.[9] showed that including cushion induced waves damps the Helmholtz
resonance of the air cushion and also shifts the Helmholtz resonance to a higher
frequency. Moran[24], Kapsenberg[25] and Masset et al.[14] found from model
tests that the amplitude of the incident waves is affected by the air cushion. This
interaction therefore still deserves much attention.
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Scale effects are very important when it comes to model testing of SESs (see for in-
stance Lavis et al.[26]). When no special measures are taken the compressibility of
the air inside the cushion is scaled erroneously, which leads to a stiffness of the air
cushion that is far to great. There are several ways to reduce the stiffness of the air
cushion. One is to scale the ambient pressure by the scale factor. Kapsenberg[27]
carried out oscillation experiments with an SES model in the depressurized towing
tank at MARIN. He found that the ambient pressure had an important effect on the
added mass and damping coefficients. Another way to reduce the air cushion stiff-
ness is to mount a flexible membrane, called diaphragm, on top of the air cushion.
Kapsenberg and Blume[5] carried out model experiments for the same vessel at dif-
ferent scales. Both models were equipped with diaphragms that provided a correct
stiffness of the air cushion. They found good agreement and concluded that the di-
aphragm technique is a valid way of scaling cushion dynamics. There exist, as far
as the author knows, no literature on the subject of the scaling of air leakage.

Now we come to the subject of added resistance due to waves. There is only a small
amount of literature to be found on the subject of added resistance due to waves of
Surface Effect Ships.

Faltinsen et al.[28] presented a comparative study of the speed loss and oper-
ability of an SES and a catamaran. Their computations include the added resistance
of the hulls (similar to the added resistance of conventional ships) and an increase
of the frictional resistance of the hulls caused by the sinkage of the vessel due to an
increased amount of air leakage. Their computations do not however include any
added resistance components due to the air cushion. The outcome of the study is
that the speed loss of the SES is larger than the speed loss of the catamaran. The
difference is however not very large.

Kapsenberg et al.[1] measured a very large added resistance during experiments
with a free sailing model. For conventional ships the added resistance is propor-
tional the wave amplitude squared, but Kapsenberg[25],[5] showed that this relation
does not hold for an SES.

Kapsenberg et al.[29] also presented a very simple computational model for
the air cushion induced added resistance of SESs. They use a strip theory method
to compute the motions of the water surface. Subsequently they use the method of
Gerritsma and Beukelman [30] to calculate the added resistance. The model is how-
ever not very realistic because pitch motions, which do not have any effect on the
cushion volume, also induce pitch-like motions of the water surface. Nevertheless
this method leads to results that compare remarkably well to experiments.
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There exists however a large amount of literature on the subject of added resistance
of conventional ships. The thesis of Blok[31] presents an elaborate overview of this
literature. Basically there are two approaches to computing the added resistance:
the far-field approach and the near field approach.

In far-field methods conservation of momentum or conservation of energy is
used to express the mean forces on the vessel in terms of the wave field at a large
distance from the vessel. Maruo was one of the first to study the subject of added
resistance in waves in depth. He presented many papers and articles on a simplified
far-field method for predicting the added resistance in waves (see for instance [32]).
Another well known and very practical far-field based method is by Gerritsma and
Beukelman[30]. In this method the energy of the radiated waves is set equal to
the work being done by the waves to the vessel, where the energy of the radiated
waves is expressed as the sectional damping (strip theory) times the relative vertical
water velocity. The method leads to very good results for head waves. The work of
Newman[33] proved to be a starting point for much subsequent research on far field
methods for added resistance. He derived expressions for the steady drift forces on
a ship in waves at zero speed from conservation of momentum. The steady drift
force is the zero speed equivalent of added resistance. Lin and Reed[34] extended
Newman'’s method to the forward speed case. They presented however no results.
The author of this thesis is not aware of a practical application of this method or any
similar methods.

In near-field or pressure integration methods the added resistance follows from
integration of the unsteady pressure over the wetted part of the hull. Near-field
methods have the advantage that they give more detailed insight into the physical
phenomena that cause the added resistance. Havelock[35] presented the first (near-
field based) method for added resistance. Another relatively simple method was
presented by Boese[36]. More recent studies with an increasing level of complexity
were carried out by Faltinsen et al.[37] and Blok[31]. Pinkster[38] presented a
pressure integration method for the mean and low frequency second order (drift)
force on stationary vessels that includes all relevant terms.

The application of three-dimensional Rankine panel methods in computations
of the added resistance of ships is still very limited. Sclavounos and Nakos[39] im-
plemented a pressure integration method in their Rankine panel code. They used
this method for computing the added resistance of IACC sailing yachts. They never
presented results for commercial vessels. Bertram[40] also presented a 3-D Rank-
ine panel method which uses pressure integration to compute the added resistance.
He did not show any validation.
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From this overview of the literature it appears that there is still a lot of work to be
done on the subjects of motions and added resistance of SESs. When it comes to
the mathematical modeling of the motions of SESs in waves the following aspects
still require much attention: the leakage of air out of the cushion, the bow and stern
seals, the air supply system of fans, and the interaction between the air cushion
and the water surface. In the case of model experiments scale effects are a serious
problem. There is still very little known on the subject of added resistance of SESs.
For conventional ships good results for the added resistance due to waves have been
achieved, but the underlying theories are only partially applicable to SESs.

1.4 The objective and outline of this thesis

The objective of this thesis is to find an answer to the following research question:

How can one calculate the added resistance due to waves of a Surface Effect
Ship?

This objective is slightly less ambitious than the goal of the research project that lies
at the root of this thesis that is the development and validation of a computational
method for the added resistance due to waves of Surface Effect Ships. This goal has
yet not been accomplished completely.

At the beginning of the research project most emphasis was laid on the mathematical
modeling of the motions of SESs. This was done because the computation of the
added resistance due to waves of a vessel first requires an accurate prediction of
the motions of this vessel and, in the case of an SES, also of the cushion pressure
variations. Furthermore, at the start of the research project, there was much credit to
the hypothesis that the large added resistance of SESs is caused by the air cushion.
The step from an accurate prediction of the motions and cushion excess pressure to
a prediction of the added resistance of the air cushion was expected to be relatively
small.

Chapter 2 treats the hydromechanical problem of the interaction between the
water, the hulls and the air cushion. First it presents the translation of the physical
problem into a mathematical problem. Thereafter it presents the Rankine panel
method that is used to solve this mathematical problem. Subsequently Chapter 2
presents some results of the panel method.

Chapter 3 presents the non-linear simulation method for motions and added
resistance of the air cushion of SESs. It presents the equations of motion. Then it
treats the modeling of the dynamics of the air cushion and the seals. Thereafter it
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describes how the added resistance of the air cushion is calculated. Finally Chap-
ter 3 presents results of the non-linear simulation method.

The presentation of the results of the simulation method at the end of Chapter 3 also
involves a comparison of these results to the results of experiments that were carried
out by Kapsenberg et al.[1] at MARIN. The correlation of the computational and
experimental results is good as far as motions and cushion pressures are concerned.
There is however a huge discrepancy between the computed added resistance of the
air cushion and the measured (total) added resistance. The computed added resis-
tance of the air cushion was only small, while the measured (total) added resistance
was very large. Probably the hypothesis that the large added resistance of SESs
is caused by the air cushion is not valid. Therefore the next step in the research
project was to investigate the origin of the added resistance of SESs by means of
model experiments.

Chapter 4 describes an extensive series of model tests that was carried out
at the Ship Hydromechanics Laboratory of Delft University of Technology. The
aim of these experiments was to find the origin of the large added resistance of
SESs. An attempt was made to measure the added resistance of the air cushion,
next to the total added resistance. The difference then yields the added resistance
of the hulls. After an introduction the chapter goes into the scaling of air cushion
dynamics. Thereafter it describes the model and the different types of experiments
to which the model was subjected. Subsequently it treats the measurement of the
added resistance, the added resistance of the air cushion and the added resistance of
the hulls. Finally Chapter 4 presents and discusses the results of the experiments as
far as they concern the added resistance due to waves.

Chapter 5 presents a comparison of the results of the computational method
to the results of the experiments that were described by Chapter 4. The objective
of this comparison is to investigate the validity of the computational method. The
chapter pays attention to the heave and pitch motions, the excess pressures in air
cushion and stern seal plena, the seal forces, the behavior of the fans and the added
resistance due to waves.

Chapter 6 concludes this thesis. It presents an answer to the question that
was posed at the beginning of this section. Furthermore it presents additional con-
clusions concerning the motions and cushion pressure variations of SESs. These
conclusions are only of indirect importance to this question. This chapter ends with
recommendations for further research and extensions of the computational method.



12 CHAPTER 1. INTRODUCTION

1.5 Basic assumptions

This section describes the basic assumptions that underlie the computational method
that is presented in Chapter 2 and Chapter 3.

The first basic assumption is that non-linear effects mainly occur in the dynamics
of the air cushion and seals. The hydromechanics and the equations of motion are
therefore linearized, while the non-linear form of the equations that represent the
dynamics of the air cushion and seals is retained. The linearization of the hydrome-
chanical problem also enables solving this problem in the frequency domain. This
circumvents a complex time stepping algorithm and also saves a lot of computa-
tional time. The equations of motion and the equations that represent the dynamics
of the air cushion and seals are coupled, and must be solved simultaneously in
a time simulation procedure, because the latter equations are non-linear. The fre-
quency domain and the time domain are related by a Fourier transform. Appendix A
discusses the interrelation of the frequency domain and the time domain.

Another basic assumption is that the cobblestone effect is not important for the
added resistance due to waves of Surface Effect Ships. The cobblestone effect par-
ticularly occurs in small sea-states when the added resistance is negligible. The air
cushion excess pressure is therefore assumed to be constant in space.

The last basic assumption that underlies the computational method is that the major
contribution to the added resistance of SESs is due to the air cushion. Therefore the
added resistance of the hulls is neglected for the time being.




Chapter 2

Hydromechanics

This chapter presents the solution method for the hydromechanical problem. In
the first section the physical problem of the (water) flow around a SES sailing in a
seaway is translated into a mathematical problem. The section presents a formula-
tion that is exact within potential flow theory. This formulation is linearized, and
a frequency domain approach is introduced. The hydrodynamic forces that act on
the hulls and the wave height in the air cushion are expressed in the solution of the
mathematical problem.

The second section describes the solution method for the mathematical problem.
The mathematical problem is solved by means of a three-dimensional Rankine panel
method. First an integral equation is presented. Then the numerical solution scheme
for this integral equation is treated.

Section 2.3 presents results of the panel method. First it displays some examples
of computed wave patterns. Thereafter it presents a brief convergence study of
the computed hydrodynamic coefficients and the wave pumping volume of the air
cushion. Finally Section 2.3 presents a comparison of results of the panel method
to experimental data.

2.1 The mathematical problem

First the physical problem, that has to be translated into a mathematical problem
is defined. The SES is assumed to sail at a constant mean forward velocity U in
deep waters. The incident waves cause the vessel to carry out oscillatory motions
superimposed on the translatory forward motion. The incident waves also cause an
oscillatory excess pressure in the air cushion. The oscillating hulls and air cushion

13
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excess pressure generate waves. The flow of the water around the SES is the actual
hydromechanical problem that needs to be solved.

2.1.1 Exact formulation

The mathematical problem is formulated in a right-handed coordinate system. This
coordinate system moves at a constant positive velocity U in positive z-direction;
the same direction as the mean forward velocity of the SES. The origin of the sys-
tem is situated in the undisturbed free (wave) surface. The z-axis points upwards,
and the y-axis points to the port side of the SES.

The fluid is assumed to be in-viscid and irrotational. Therefore a velocity potential
U(z,y, z,t) can be introduced. The fluid velocity is equal to the gradient of the
velocity potential: V. Conservation of mass leads to the Laplace equation:

AT =V*¥ =0 2.1

This linear partial differential equation is the governing field equation for .

Two boundary conditions hold on the free surface, which is elevated a distance
¢(z,y,t) above the z = 0 plane:

e the kinematic free surface condition,

(%+V@~V)(z—§(x,y,t))=0 onz=_(_ (2.2)

o the dynamic free surface condition,

1 1 t
(= ‘g(‘l’t +5(V- VO - U%) + %) onz=¢ (23)
where p(z,y, t) is the excess pressure which equals zero outside the air cush-
ion, p is the density of water, and a subscript denotes differentiation with
respect to this quantity.

The kinematic free surface condition ensures that no water penetrates the free sur-
face. The dynamic free surface condition follows from the Bernoulli equation. It
ensures that the water pressure at the free surface is equal to the air pressure above
the free surface. These conditions can be combined to:

1 1
gUs+ Wy +2VY -V, + V- V(VE-VT) = ~ e+ VUV onz=¢
(2.4)
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This combined free surface condition is non-linear. Moreover it holds on the un-
known position of the free surface.

The boundary condition on the hull surface reads:
_oa

=5
where @ is the local displacement vector of the hull surface, and 7 is the unit vector
which is normal to the surface and pointing into the fluid domain. This condition

ensures that no water penetrates the hull. Although this condition is linear itself, it
holds on the unknown position of the hull.

VV .71 7] on (B) (2.5)

Next to the boundary conditions, a radiation condition has to be imposed to ensure
the uniqueness of the solution. This condition requires that energy carried by the
waves, that are caused by the vessel, propagate away from the vessel. Only the
energy carried by incident waves can propagate towards the vessel. The implemen-
tation of the radiation condition treated in Section 2.2.3.

The author is not aware of any solutions of the fully non-linear unsteady boundary
value problem with forward speed. Up to now, always some kind of linearization
was used. The development of a method that can solve the fully non-linear unsteady
problem is far beyond the scope of this thesis. Therefore, the boundary conditions
will be linearized.

2.1.2 Linearized formulation

Several schemes can be used to linearize the boundary conditions that were pre-
sented in the previous section. The most accurate and only fully consistent approach
is to linearize the unsteady part of ¥ around the steady part of ¥. The steady poten-
tial describes the flow around a ship sailing at a constant speed in otherwise undis-
turbed water. The fully non-linear steady problem has among others been solved by
Raven[41]. Bunnik[42] recently examined into this linearization procedure.

Another popular approach is to linearize both the steady wave potential and/or the
unsteady potential around the double body flow (i.e the flow around the hull and
its mirror image in the undisturbed surface while the presence free surface is ne-
glected). This approach was followed by Dawson[43] for the steady wave flow.
Nakos[44], van’t Veer[45] and others used this linearization procedure for the un-
steady problem.
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In this thesis the problem will be linearized around the undisturbed uniform flow.
This linearization scheme is also known as Neumann-Kelvin linearization. Accord-
ing to Nakos[44] application of uniform flow linearization for the hull boundary
condition leads to poor results. However, only a small part of the weight of an SES
is carried by the buoyancy of the hulls, as most of the vessel’s weight is carried
by the air cushion. Therefore, as far as the motions of an SES are concerned, the
hydrodynamic forces on the hulls are relatively small in comparison with the forces
due to the air cushion. Moreover, the hulls of an SES are usually very slender, so
approximation of the base flow by the undisturbed flow is not too crude. The main
goal of this thesis is to develop a computational method which incorporates the most
relevant phenomena, rather than to built a mathematical model that is as consistent
as possible.

The total potential ¥ is written as the sum of the potential of a base flow @, a steady
potential ¢ and an unsteady potential ¢:

U(x,y,2,t) = ®(z,y,2) + ¢(z,9, 2) + ¢(z,y, 2, 1) (2.6)

The velocity fields V¢ and V¢ are assumed to be of comparable order and small
compared to V®. @ is chosen to be the potential of the undisturbed flow, as was
argued by the previous paragraph (& = —U - z).

Free surface boundary condition

First the free surface boundary condition is linearized. When products of small
quantities like VoV ¢, VoV, e.t.c. are neglected the free surface boundary condi-
tion (Equation 2.4) can be written as:

1
g(¢z+@z)+(Ptt_2U¢xt+U2(¢xm+(Pa:x) = _;(pt—pr+V(¢+(p)vP) onz = O

2.7
The excess pressure p in the air cushion is not a small quantity. If the seals at the
bow and stern seal the cushion perfectly, Vp tends to infinity just under the seals
because of the pressure jump. Therefore the term (V¢ + V) Vp is not a product
of small quantities like V¢V ¢. The right hand side of Equation 2.7 acts however as
the forcing of the problem. The term (V¢ + V) Vp is small when compared to the
term Up,, so it gives only a minor contribution to the total forcing of the problem
and can therefore be neglected.

Now we have arrived at a linear boundary condition. However, it still must be
applied on the unknown position of the free surface. The condition is transfered
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Figure 2.1: Distribution of the air cushion excess pressure

from z = ¢ to z = 0 by means of a Taylor expansion. The linearized expression for
¢ follows from the dynamic boundary condition (Equation 2.3):

¢= —é(‘Pt — U(¢s + 9a) + W) 2.8)

For normal ships without an air cushion this wave height is of the same order as V¢
and V. The excess pressure in the expression for ¢ results in the fact that ¢ is not
small anymore. This excludes a fully consistent linearization scheme. Therefore
is still assumed to be small and of the same order as V¢ and V. Then, in the case
of uniform flow linearization, the transfer of the boundary condition to z = 0 does
not give rise to any additional terms in the free surface boundary condition.

The air cushion excess pressure is written as the sum of a steady and an unsteady
part: p(z,y,t) = p(x,y) + p(z,y,t). This thesis does not focus on acoustic res-
onant phenomena of the air inside the air cushion . Therefore the excess pressure
is assumed to be constant in space except for small strips under the bow and stern
seal. At these strips the excess pressure drops linearly from the cushion pressure to
zero, as is shown in Figure 2.1. A sudden pressure jump at the seals would cause
numerical problems. Doctors[8] investigated the effect of smoothing the edges of
the pressure distribution on wave resistance of air cushions. For not too low Froude
numbers the effect is only small. Therefore the pressure is linearly increased and
decreased at the bow and stern seals. For convenience a non-dimensional unsteady
pressure is defined: n7(t) = p(z,y,t)/ - p(x,y). Now the mathematical problem
can be split up into a steady and an unsteady problem. The separate linearized free
surface boundary condition are:
U op

G, + Uy, = o0 onz=>0 (2.9)
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for the steady potential, and
1, 0 op
9¥; + Pu — ZUSOJ:t + UQQOmm = —_(ﬁ% U P )

P
for the unsteady potential. The separate expressions for the wave height are:

N7 onz=0 (2.10)
ox

1 _
¢=-(Up: -2 @.11)
g p
for the steady problem, and
1 _
(== (o~ Ugpe+ 777%) 2.12)

for the unsteady problem.

Hull surface boundary condition

Now the hull boundary condition is linearized. In the steady case some sinkage and
trim of the vessel are assumed. The position of the hull is then known on fore hand
and the otherwise linear condition can be written as:

Vo-i=U-n on (B) (2.13)

where n, is the z-component of the normal vector and B denotes the assumed mean
position of the hull surface. When the assumed position of the hull turns out to be
incorrect, the computation can be repeated using more appropriate assumptions for
sinkage and trim.

The unsteady hull boundary condition reads:

V<p~ﬁ:g—(tl~ﬁ—V((I>+¢)~ﬁ on (B) (2.14)

This condition holds on the unknown position of the hull surface. Taylorizing and
dropping terms of higher order than linear leads to (see Timman and Newman[46]):

oa _
V(p-ﬁ:B%-ﬁ—(d-V)V@-ﬁ-f-(V@-V)d-ﬁ on (B) (2.15)

An alternative form of Equation 2.15 can be derived if the small displacement of
the hull surface is expressed as:

i=7+0ez (2.16)
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where 1] is the translation vector of the vessel and () is the rotation vector of the
vessel. With

(m, s m8)" = 77,

(7}47 75, ’IG)T = Qv

(n1,na,n3)" = 1,

(7?4,715, G)T = f@’fb‘,
(m17m25m3)T - _(ﬁ . V)V(I),
(mg, ms,me)T = —(i-V)(F® V),

the boundary condition on the hull can be written as:

6
) _
Vo= Z( ;’“ ne+memg)  on(B) 2.17)

This notation was introduced by Ogilvie and Tuck[47]. The terms 7, m; account for
the interaction between the unsteady flow and the base flow, and are usually referred
to as the m-terms. If uniform flow linearization is applied the only non-zero m-terms
are ms = U - ng and mg = —U - no.

2.1.3 Flow around transom sterns

This section goes into the flow around transom sterns. Fast ships usually have a
transom stern because it results in a lower resistance, and because it enables easy
installation of the water-jet propulsion system. The flow around a transom is very
complex. Raven[41] discusses the flow around transom sterns extensively.

The flow around transoms is essentially non-linear. At sufficiently high speed the
flow will separate at the sharp transom edge. The wave height just behind the tran-
som is equal to the draft at the transom. This means that the wave height is not small
compared to the draft of the hull, so the free surface boundary condition cannot be
transferred to the z = O plane. Raven[41] solved the fully non-linear steady prob-
lem. He applies the free surface boundary conditions at the actual wave surface.
His results seem to be very accurate.

Despite the non-linear behavior of the flow around transoms, it will be treated in
a linear way. The method of Reed et al.[48] is largely followed. A smooth flow
detachment is assumed at the transom. Therefore the following conditions must
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hold on the free surface just behind the transom:
C(xt‘ra y) = Z('Ttm y)

¢ 0z,
a(ﬂhmy,,o) - U%('L’t'my) (218)

for the steady potential, where —z(z, y) is the local draft of the hull, and
C(-Ttra Y, t) = a3($tr, Y, t)

0 da da

a—f(xtr, Y, 0,1) = U=(2r,4,8) + == (20r, 0, 1) (2.19)
for the unsteady potential, where a3(x, y, t) is the local vertical displacement of the
hull. 9¢/0z and dp/dz follow from the free surface boundary conditions for ¢
(Equation 2.9) and ¢ (Equation 2.10).

Some confusion appears to exist about the importance of vorticity that is shed at the
transom edge. Reed et al.[48] claim, referring to Tulin and Hsu[49], that vorticity
is very important. Therefore they add a vortex sheet behind the transom, which is
inside the fluid domain. According to Raven[41] vorticity has no physical meaning,
and vorticity inside the fluid domain is fundamentally wrong. In the present method
a vortex sheet was included. Later, when the results with and without a vortex sheet
appeared to be very similar, it has been omitted again.

2.1.4 Formulation in the frequency domain

In the previous sections we have arrived at a linear boundary value problem. Linear
problems can be solved in either the time domain or the frequency domain. Both
approaches are equivalent and related by a Fourier transform. Appendix A treats
the relationship of the time domain and the frequency domain.

The choice was made to solve the unsteady hydromechanical problem in the fre-
quency domain. With this a complex and time consuming time-stepping algorithm
is avoided, as differentiation to time changes to multiplication with 7w. On the other
hand the problem has to be solved for quite a lot of frequencies which is also time
consuming. Later the motions of a SES will be calculated in a time simulation pro-
cedure, as the non-linear form of the dynamics of the air cushion will be retained.
Therefore the frequency domain results must be transformed to the time domain.
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This transformation is treated by Appendix A.

The unsteady potential (¢) is split up into potentials due to harmonically oscillat-
ing motion in surge, sway, heave, roll, pitch and yaw, oscillating cushion excess
pressure, regular incident waves and diffractional waves:

7
= §R{[A(SOI +¢p)+ . f/k@k]eiwt} (2.20)
k=1
where
A = the amplitude of the incident wave
@y = the unit incident wave potential
— i_gekze—z’k(m cos B+y sin f)
Wo
where w = wy — kU cos 3, k = wd /g, and wy is the incident wave
frequency as viewed from a stationary frame
¢p = the unit diffracted wave potential
fix = the complex amplitude of harmonic motion in k' direction,
k=1,...,6, being surge, sway, heave, roll, pitch and yaw respectively
¢r = the potential due to unit harmonic motion in k" direction, £ = 1,. .., 6.
fl; = the complex amplitude of harmonic pressure oscillation
@7 = the potential due to unit harmonic pressure oscillation

Substitution of Equation 2.20 into the boundary conditions (2.10) and (2.17) and
separately balancing each mode, leads to the following boundary value problems:

Agok =0

0 Opx ¢

a('ak w(pk_2szT+U281,2 =0 onz =0
Vg - 7t = iwny + my on (B)
plus the radiation condition (2.21)

for the potentials due to harmonic motion (k =1, .. ., 6),

A(,07 =0

D7 pr 2001
ga——wcp7—2Lan +U e =
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1 0
——(w -U==)p =0
p (tw o )P on z
Vor-ii=0  on(B)
plus the radiation condition (2.22)
for the potential due to harmonic cushion pressure oscillation,
App =0
8(,0 &p D 9 82 YD
— — 2iwlU——+U =
9, ~Wep - AU S U
0oy 0?
—ga +w 901+2sz6 U283(:’;I onz=20
Vop-i=—-Vy;-n on (B)
plus the radiation condition (2.23)

for the diffracted wave potential.

These boundary value problems can be solved by a three-dimensional panel method.
Section 2.2 presents such a panel method.

2.1.5 Hydrodynamic forces and wave pumping volume

This Section presents expressions for the hydrodynamic forces that act on the hull
surface and for the volume modulation of the air cushion due to waves. This vol-
ume modulation will be referred to as wave volume pumping. The hydrodynamic
forces and the wave pumping volume are expressed in terms of the solutions of the
boundary value problems that were formulated in the previous sections.

The hydrodynamic forces that act on the vessel follow from pressure integration
over the wetted surface of the hulls. The pressure p in the flow, which should not be
mixed up with the excess pressure in the air cushion, can be expressed by means of
Bernoulli’s equation:

1 1
p=—p(¥, + SV VY- EUZ +92) (2.24)

This expression is transferred to the mean position of the hull surface by means of
Taylor expansions. Then linearization leads to

—plgz —U¢s) (2.25)
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for the steady pressure, and

p=—plpe —Upe +(@-V)g2) (2.26)

for the unsteady pressure. The hydrodynamic forces that act on the vessel follow
from:

Fy=—[[mis  j=1,...6 2.27)
B

where the subscript j denotes the direction of forcing, r; is defined by Equation 2.17
and B is the part of the hull surface that is below the undisturbed water surface, ex-
cept for the transom which is dry because of the smooth detachment of the flow at
the sharp transom edge.

When the frequency Equation 2.20 is substituted into Equation 2.26 which is sub-
sequently substituted into Equation 2.27, the unsteady hydrodynamic force can be
written as:

Fj = %{Z ([wZAjk(w) - z'ijk(w) - Cjk]ﬁk + AXj(w))ei“’t} ] = 1, ceey 6

k=1
(2.28)
where

14 . Oy,
Ajp(w) = Eﬂ?//(zuﬂpk —U——)n;dS,
B

ox
Bjr(w) = _5%4/(iu}(ﬂk - U%) n; dS,
(Cj1,Cja, Cjs)’ = —p // V(g2)n; dS,
B
(Cjs, Cjs5,Cie)" = —p //(57'® V)(gz) n; dS,
B
Cip = 0,

Xjlw) = f)//[iw(w +¢p) — U%(w + op)] n; dS.

B

Ajr(w), Bji(w) and Cj; are the well known added mass, damping and restoring
coefficients, A is the wave amplitude and X ;(w) is the exiting force due to regular
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unit amplitude incident waves. This exiting force is the sum of the Froude-Kriloff
force and the force due to diffraction of the incident waves.

It can be more convenient to use a different definition of the hydrodynamic coeffi-
cients. When w tends to zero, ¢x(z, y, z,w) approaches a real non-zero function of
z, y and z. Basically @(x,y, 2,0) is a correction to the steady potential (® + ¢)
due to a constant unit displacement of the vessel (1, = 1). Although ¢x(z,y, z,0)
is rather small it causes A, to be infinite when w = 0. This steady part of
contributes to the coefficient A;; while it should contribute to C);. Therefore the
following definition of the hydrodynamic coefficients is more realistic.

wlw) = §R// iwpr(w Uﬂ(%( ) — <,0k(0))] n; dS,

;k(w) = ——\s// Wk (w 8 (cpk( ) — wk(O))]nde,
= —pZ/—Uéchk(O)nde + Ci.

Then the effect of forward speed on the restoring force is incorporated by C7, in-
stead of by Aji. Ajy, By, and C7 will be designated as the modified added mass,
damping and restoring coefﬁcients. Please note that B}, = Bjj, because Ry, (0).

The wave pumping volume (V;) follows from integration of the wave height over the
part of the free surface that is covered by the air cushion. The unsteady wave height
follows from Equation 2.12. When the frequency domain solution (Equation 2.20)
is substituted into this expression the wave pumping volume can be written as:

7
{2_: Wik + A(Dr(w) + Dp(w))} (2.29)

where
=—- // zwgok — U— + p57k) (2.30)
Ips.

and F'S, is the part of the free surface that is covered by the air cushion and d7 is
the Kronecker delta.

This section presented a mathematical problem for the water flow around a Surface
Effect Ship sailing in waves. The problem was linearized and a frequency domain
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solution was introduced. The hydrodynamic forces which act on the hull surface
and the modulation of the air cushion volume due to waves were expressed in the
solution of the problem. The next section presents the solution method for this
mathematical problem.

2.2 Rankine panel method

This section presents a solution method for the mathematical problem that was for-
mulated in the previous section. The first section presents a boundary integral equa-
tion. The solution of this boundary integral equation is an alternative for directly
solving the field equation (Equation 2.1) in the entire computational domain. The
second subsection treats the numerical solution of the integral equation. The third
subsection presents the implementation of the radiation condition.

2.2.1 Integral equation

There are several ways to cast a boundary value problem for the Laplace equa-
tion (Equation 2.1) into the form of a boundary integral equation (see for instance
Sloof[501]). For the present method the so called direct formulation will be used.

Green'’s theorem is applied to the unknown potential ¢ and a Green function which
is taken as the potential of the Rankine source in the point Z. This Green function

reads:
1

ERE]

G(#,7) = 2.31)

When the point Z is an element of the computational domain €2 which is bounded
by the surface S application of Green’s theorem this leads to:

9(@) = 47r// a,, G(,7 )—¢(f”)iG(f,fﬁ”))dS’ forZ e Q (232

From this it follows that the potential is determined in the entire computational
domain when ¢ and it’s normal derivative are prescribed on the boundary of that
domain. This implies that finding ¢ and d¢/0n on the boundary surface S is equiv-
alent to solving the unknown potential in the entire computational domain 2.
When the point 7 is moved to the boundary surface Equation 2.32 becomes:

%)
on'

_,

’E

G(Z,7) — ¢(&) 5~

= G(Z,&))dS'  forie S (2.33)
27T
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where the integral should be taken in a principal value sense. In the present case
the boundary S consists of the hull surface, the wave surface and a control surface
at infinity. The contribution of the control surface can be shown to vanish when 7
remains finite.

The normal derivative of the unknown potential follows from the appropriate
boundary condition. The normal derivative on the hull surface is known from the
hull Boundary condition. The normal derivative on the free surface can be expressed
in tangential derivatives of the potential by means of the free surface boundary con-
dition, as 9¢/0n = —d¢/dz. The following section treats the solution of the inte-
gral equation.

An alternative integral equation can be obtained when the Green function is taken as
the more complex potential of the Kelvin source which implicitly fulfills the Kelvin
boundary condition on the free surface. Then the integration over the free surface
can be reduced to a line integral along the water line of the vessel, leading to a
much smaller number of unknowns. The radiation condition can also be satisfied
implicitly. The evaluation of the kernel however is much more difficult and time
consuming, and the air cushion cannot be included directly as it gives rise to extra
terms in the free surface condition. Furthermore the code was developed jointly
with van’t Veer[45] who linearized the free surface condition around the double
body flow. Then this alternative formulation cannot be used as the coefficients in the
free surface condition are not constant anymore. Hence we choose this formulation
with Rankine singularities.

2.2.2 Numerical solution

The integral equation which was presented by the previous section is solved numer-
ically using the collocation method. The hull surface and a part of the free surface
are paneled with flat quadrilateral panels. Figure 2.2 shows an example of a panel
distribution. The potential and it’s normal derivative are taken to be constant on a
panel. In the center of each panel a collocation point is defined. Satisfaction of the
integral equation in the collocation points leads to the following linear system of
equations:

a-d £ 32 ] ot [[ Fowos]

panel k panel k

where [ = 1,..., N and N is the number of panels or collocation points.
The normal derivative of ¢ on the hull surface follows from the (Neumann)
boundary condition on the hulls. The normal derivative of ¢ on the free surface
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Figure 2.2: Paneling of the port side of a Wigley hull and the free surface

is expressed in tangential derivatives of ¢ using the (Kelvin) free surface bound-
ary condition. Differentiating ¢ tangentially seems to be in contradiction with the
assumption that ¢ is constant on a panel. In the continuous case ¢ is however a
smooth function which can be differentiated many times. The approximation of ¢
and 0¢/On by constant values should be interpreted as samples of otherwise smooth
functions. Therefore differentiation of this function does make sense.

Two schemes to calculate the tangential derivatives of ¢ have been tried: a finite
difference scheme, and a bi-quadratic spline scheme. The finite difference scheme
uses the potential on the eight neighboring panels and on the actual panel itself to
compute the first and second tangential derivatives by means of finite difference
operators.

In the bi- quadratic spline scheme the potential and it’s derivatives follow from
a bi-quadratic spline representation of the potential. The potential is written as the
sum of bi-quadratic B-spline basis functions:

Zx B (x,y) (2.35)

where 1, is the weight factor of basis function B(2 2 B(2 2 is zero except on panel

k and it’s neighboring panels. A two-dimensional basis function B(>?) follows from
the product of two one-dimensional quadratic basis functions:

B2A(£,n) = b (&) - b (n) (2.36)

where £ and 7) are the local non-orthogonal coordinates which are defined by Fig-
ure 2.4. Figure 2.3 shows a one-dimensional quadratic basis function. It can be
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panel k—1 panel k panel k+1

Figure 2.3: One-dimensional quadratic basis function

differentiated two times analytically. 5@ (¢) follows from:

[ (he' + 5hE+€)° .
-6 (GhE+e)?
b e = | 1 2l - £ —Llpk < g < 1pk
© hE(hE + hg™")  RE(RE + RETY) he <6< ol
(RE + St — €)?
AT IhE < € < BT+ Lnt

(2.37)
where h’g is the dimension of panel k in {-direction. The potential and it’s deriva-
tives are expressed in the weight factors of the basis functions (#). These weight
factors are solved for. Nakos[44] also used this bi-quadratic spline scheme, but he
also implemented a quadratic singularity distribution on the panels. In the present
method the mean value of ¢ and 9¢/9n on a panel are used.

In both schemes (finite difference scheme and spline scheme) the differentiation of
the potential is carried out along the local coordinates £ and 7. The dashed lines
in Figure 2.4 show that £ and 7 are, at least in the continuous case, curvilinear
coordinates. Therefore tangential derivatives need to be transformed to the global
coordinates z, y and z by means of the following relations:

1
¢m = ¢£@ + z;bntanﬂ

¢y :¢n

1 tan @
2q§€,,——-n + o tan® @ +

¢:mc = ¢§E cosf

cos?
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Figure 2.4: The local non-orthogonal curvilinear coordinates on panel &

sin 0 1 1
2 (¢§ cos? 6 o cos? 0) ’ (95 cosd Oy tan 0)
1 sin @ 1
¢.’1:y — ¢§n@ -+ d)?m tan 0 -+ (d)gm -+ QST]C_OW) . 077
by = P (2.38)

where f is the skew angle of the panel as defined by Figure 2.4. The terms within
| brackets are due to the curvature of the curvilinear coordinates. It must be noted
‘ that the free surface grid must be generated in such a way that the direction of the
| n-axis and the y-axis are the same for all free surface panels.
|

In both schemes a row of artificial end panels surrounding the grid panels has been

added. In case of the finite difference scheme this enables the use of central dis-
‘ cretization on panels next to the waterline and the truncations of the free surface
grid. In case of the spline scheme this enables a complete spline representation
of the unknown potential, because the basis functions spill over the boundaries of
their panel. This causes the number of unknowns to exceed the number of equa-
tions which follows from collocation. Therefore extra end conditions have been
formulated. At the center line the symmetry condition 0¢/Jdy = 0 is used. At the
waterline two end conditions must be imposed: one for the end panels of the hull
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surface, and one for the end panels of the free surface. For the hull surface the con-
dition of continuity of the potential when passing from the hull surface to the free
surface is used. For the free surface the rather *impartial’ condition 82¢/dy* = 0
is used. The more physical condition of zero normal velocity to the hull resulted in
transverse point to point oscillations in the steady solution near the stem and stern
of the vessel. This is probably caused by the local singular behavior of the solution.
The condition of zero curvature leads to a much smoother solution. This condition
is also used for the end panels of the hull surface at the stem and stern. The next
section treats the end conditions at the upstream, downstream and transverse trun-
cations of the free surface grid in relation with the radiation condition.

The finite difference scheme appears to have significant numerical damping and
dispersion. The performance of the spline scheme is superior on these points. In
the steady solutions some transverse oscillations appear near the waterline when the
grid is refined. This phenomenon was also reported by Sclavounos and Nakos[51].
They attribute the oscillatory behavior to aliasing of the energy of very short waves
to the shortest waves that can be resolved by the grid. The spline scheme already
leads to wiggles on a much coarser grid than the finite difference scheme. The
wiggles do not seem to have an important effect on the convergence of the hydro-
dynamic forces. Therefore the spline scheme is used in most cases.

2.2.3 Radiation condition

The radiation condition has a double function. First it should ensure a unique solu-
tion to the problem. This implies that it should prevent waves which are traveling
into the computational domain. Secondly it should absorb the waves which are gen-
erated by the vessel. As the number of panels is bounded by the available computer
capacity, only a part of the free surface can be covered with panels. Generally the
effect of truncating the free surface does not vanish in the vicinity of the vessel when
the truncation is moved towards infinity. This is caused by the (partial) reflection of
waves by the truncation.

For the present method reflections from the truncations of the free surface grid are
not important. The method is designed to compute the hydrodynamics of fast ships.
When the forward speed is high, the Strouhal number 7 = Uw/g is much larger
than 1/4 in the frequency range of interest. This means that waves cannot travel
upstream. Therefore they will not reach the upstream truncation. Moreover, when
the transverse truncations are sufficiently far away from the vessel, the reflections
of this truncation will end up behind the vessel. Reflections from the downstream
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truncation cannot travel upstream and therefore will not reach the vessel.

A unique solution is effectively ensured by requiring flat water at the upstream
truncation of the free surface. Therefore the following conditions are enforced at
the upstream truncation in both steady and unsteady cases:

¢ =0

(2.39)
¢
5, =0

These conditions were also used by Nakos[44]. The conditions are very similar to
the conditions that require a smooth detachment of the flow at the transom (equa-
tions 2.18 and 2.19).

The two conditions at the upstream truncation of the free surface are implemented
as the end conditions for the upstream and for the downstream truncation of the
free surface grid. The fact that both end conditions only involve unknowns at the
upstream truncation does not lead to an ill-conditioned system of equations. At
the transverse truncation the condition §%¢/0y? = 0 is used. When the vessel has
a transom stern an extra sheet of free surface panels is added behind the transom.
Analogous to the radiation condition, both transom flow conditions are implemented
as the upstream and downstream end conditions of this sheet. ‘

The system of equations is solved using simple LU-decomposition, although an
iterative solver might give a considerable reduction of computational time. The
method is suitable for symmetrical problems (i.e. head or following waves) only.

2.3 Results of the panel method

This section presents results of the panel method. First it displays some exam-
ples of computed wave patterns. Thereafter it presents a convergence study of the
hydromechanic coefficients, the wave pumping volume of the air cushion and the
wave height of the seals. The results of the finite difference scheme and the spline
scheme are compared. Finally this section presents a comparison of computational
and experimental results.
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Figure 2.5: Panel distribution on the hulls of the DUTSES model (30 x 13 panels
on one hull)

2.3.1 Wave patterns

This section presents some examples of computed wave patterns around the DUT-
SES model. The DUTSES model is an SES model that was subjected to an extensive
series of experiments. Chapter 4 describes the DUTSES model and these experi-
ments. Figure 2.5 shows the panel distribution on the hulls that was used in the
computations.

Figure 2.6 and Figure 2.7 both show the computed steady wave pattern around the
DUTSES model sailing at F'n = 0.603. The gaps in the free surface mesh is due
the piercing hulls. The large wave trough between the demi-hulls is due to the air
cushion. Figure 2.6 shows the wave pattern as computed by means of the finite dif-
ference scheme, while the wave pattern that is shown in Figure 2.7 was computed
by means of the spline scheme. Generally the solutions are in good agreement,
although the result of the finite difference scheme are much smoother than the re-
sults of the spline scheme. Both computational schemes result in a wave pattern
that slightly oscillates in transverse direction. These oscillations are much more
pronounced in the results of the finite difference scheme, especially in the vicinity
of the rooster tail like wave system aft of the transoms. These oscillations become
worse upon panel refinement.

Many authors report a poor convergence of the wave pattern close to the water
line of surface piercing bodies. Nakos and Sclavounos [52] also report a poor con-
vergence of their solution upon panel refinement. They attribute this behavior to the
strong singularity exhibited by the underlying continuous (linear) solution. In the
regions where highly non-linear phenomena like wave breaking and spray occur,
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Figure 2.6: Steady wave pattern around the DUTSES model (finite difference
scheme)

| Figure 2.7: Steady wave pattern around the DUTSES model (quadratic B-spline
scheme)
|

the linear continuous solution contains (if it exists at all) very short wave lengths
which contain a considerable amount of energy. This energy is aliased to the short-
est wave lengths that can be represented by the computational grid (Nyquist wave
numbers). Therefore Nakos and Sclavounos [52] introduced a filtering scheme for
the forcing terms in the free surface boundary condition in order to obtain a full
convergence. For the present method we will not mind this oscillatory behavior, as
we are particularly interested in the hydromechanic forces, the wave pumping vol-
ume and (mean) wave height at the seal. The next section presents an investigation
into the convergence of these quantities.
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Figure 2.8: Unsteady wave pattern around the DUTSES model due to heaving hulls
(finite difference scheme)

Figure 2.9: Unsteady wave pattern around the DUTSES model due to oscillating air
cushion pressure (finite difference scheme)

Figure 2.8 shows a snap shot (actually the real part) of the unsteady wave pattern due
to harmonically heaving hulls. This figure does not include the steady waves. The
figure is the result of a computation for F'n = 0.603 and w+/(L/g) = 5.530 using
the finite difference scheme. This frequency is by far over critical (r = 3.333 >
0.25), hence no waves occur upstream of the vessel. The hulls generate relatively
small waves in the air cushion (between the demi-hulls). This is due to the shape of
the hulls: vertical inner side-walls, and inclined outer side walls. Downstream of the
transoms large waves can be observed. This is due to the smooth flow detachment
at the transom.
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Table 2.1: Principal characteristics of the systematically refined free surface grids
for the DUTSES model

name | numberof | h, hy expansion |
f.s. panels factor
Grid A 438 0.1992 | 0.0875 1.226
Grid B 760 0.1494 | 0.0656 1.161
Grid C 1190 0.1195 | 0.0525 1.125
Grid D 1692 0.0996 | 0.0438 1.102

Figure 2.9 shows a snap shot (real part) of the unsteady wave pattern due a har-
monically oscillating air cushion excess pressure. This figure is also the result of
a computation for Fn = 0.603 and w/(L/g) = 5.530 using the finite difference
scheme. The waves in the the air cushion are considerable. These waves have an
important effect on the air cushion volume and therewith on the air cushion pres-
sure. The importance of this interaction is investigated in Section 3.5.3.

2.3.2 Convergence of the hydrodynamic coefficients e.t.c.

This section presents some results of the panel method that were obtained using
systematically refined free surface grids. It illustrates the convergence of the hydro-
dynamic coefficients, the wave pumping volume and the wave height at the seals
upon panel refinement.

Figure 2.10 shows the modified heave added mass and damping curves for the DUT-
SES model sailing at F'n = 0.603. The curves were computed by means of the
spline scheme. They are presented in a non-dimensional form. Table 2.1 presents
the principal characteristics of the systematically refined free surface grids. It sub-
sequently shows the grid name, the total number of free surface panels, the longi-
tudinal panel dimension h,, the transverse panel dimension A, and the transverse
expansion factor for the panels next to the vessel (i.e. h{"*V/h{"), the transverse
panel dimension of transversely neighboring panels).

The convergence of the added mass is quite satisfactory. The convergence of the
damping is however much slower. A cause for the slow convergence is that the hulls
are very slender. For a good representation of the wave exiting due to the hulls one
should use panels with a transverse dimension which is significantly smaller than
the beam of a demi-hull. Furthermore the high speed of SESs results in relatively
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Figure 2.10: Convergence of the heave added mass and damping curves of the DUT-
SES model (spline scheme)

high frequencies of encounter and therefore in very short transverse wavelengths.
The representation of these waves also requires a very small transverse panel di-
mension.

Figure 2.11 shows the heave added mass and damping curves for the Wigley model 1
hull sailing at F'n = 0.300. A Wigley hull is a hull form which follows from a sim-
ple mathematical expression. The next section describes Wigley Model 1. These
curves were also computed by means of the spline scheme. The Wigley I hull is
slender too, but it is much wider than a demi-hull of the DUTSES model. The
speed is also considerably lower. Table 2.2 presents the principal characteristics of
the free surface grids that were used.

The convergence of both the added mass curve and the damping curve is ex-
cellent. This indicates that the results of the panel method do converge upon panel
refinement. In the case of the DUTSES model the convergence is probably delayed
due to the inability of the grid to represent the very short transverse wave lengths.

Table 2.2: Principal characteristics of the systematically refined free surface grids
for the Wigley Model I (spline scheme)

name | numberof | £, hy expansion
f.s. panels factor
Grid A 244 0.3000 | 0.2121 1.108
Grid B 804 0.2000 | 0.1061 1.076
Grid C 1680 0.1000 | 0.0707 1.056
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Figure 2.11: Convergence of the heave added mass and damping curves of Wigley
Model I

Figure 2.12 shows the real and the imaginary part of the wave pumping volume due
to oscillating cushion pressure of the DUTSES model sailing at F'n = 0.603. These
results were also computed by means of the spline scheme. In the low and medium
frequency range the convergence is very satisfactory. In the high frequency range
the method turns unstable when the coarser grids are used, which leads to erroneous
results.

Figure 2.13 shows the same results as Figure 2.12 except that these results were
obtained by means of the finite difference scheme. Both schemes converge to the
same result, but the spline scheme converges much faster than the finite difference
scheme. The finite difference scheme turns unstable at much lower frequencies.
The spline scheme can represent shorter wave lengths on the same grid. In the re-
mainder of this thesis we will always use the spline scheme because of it’s superior
convergence propetties.

Figure 2.14 shows the real and imaginary part of the mean wave height at the
stern seal due to oscillating cushion pressure of the DUTSES model sailing at
Fn = 0.603. These results were again obtained by means of the spline scheme.
The wave height at the seals does not converge that fast as the wave pumping vol-
ume. The convergence of the wave steepness at the seals is even slower.
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Figure 2.12: Convergence of the wave pumping volume due to oscillating cushion

pressure (spline scheme)
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Figure 2.13: Convergence of the wave pumping volume due to oscillating cushion

pressure (finite difference scheme)
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Figure 2.14: Convergence of the wave height at the stern seal due to oscillating

cushion pressure (spline scheme)
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Table 2.3: Main dimensions of Wigley model I

Length to beam ratio L/B 10
Length to draft ratio L/T 16
Midship section coefficient Cps  0.909
Block coefficient Cg 0.561
Length L 3.000 m
Beam B 0300 m
Draft T 0.188 m
Pitch radius of gyration ky, 0750 m

2.3.3 Comparison of the results to experimental data

This section presents a comparison of results of the panel method with experimen-
tal data. It presents hydrodynamic coefficients, wave exiting forces and motions for
Wigley Model I. The experimental data for Wigley Model I were extracted from a
report by Journée[53].

The hull shape of Wigley Model I follows from the following formula:

2y 22 x? z? 22 28 22\
— = [1-=]|1—-—=]|({14+0.2—= —1l—-—=]l1-—= 2.40
B ( T2> < L2) ( T ) TE 0T T ) @40

Table 2.3 presents the main dimensions of Wigley model I.

Figure 2.15 shows a comparison of the computed and the experimentally deter-
mined hydrodynamic coefficients of Wigley Model I sailing at F'n = 0.30. The
computational and experimental data are generally in good agreement. Timman
and Newman([46] derived the following symmetry relations for the coupling co-
efficients of slender fore-aft symmetrical vessels at forward speed: Azs = —As;
and B35 = —DBs3. These relations are adequately reproduced by the experimental
data but not by the computational results. This is due to the use of uniform flow
m-terms. Nakos[44] and van 't Veer[45] showed that the use of double body flow
m-terms leads to a better preservation of these symmetry relations.

Figure 2.16 shows a comparison of the computed and the experimentally deter-
mined amplitude and phase of the wave exiting forces on Wigley Model I sailing at
Fn = 0.30. The data are in good agreement.
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Figure 2.15: Hydrodynamic coefficients of Wigley model 1
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Figure 2.17: Heave and pitch motions of Wigley model I
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Figure 2.17 shows a comparison of the computed and experimentally determined
amplitude and phase of the heave and pitch motions of Wigley Model I sailing at
Fn = 0.30. The computed motions follow from the following equations of motion:

Z ([—(JJZ(M]']C + A]'k) -+ iWBjk + Cjk]ﬁk) = Xj j=3,5 241)
k=3,5

where M is the k" component of the ;%" row of the generalized mass matrix. The
computational and experimental data are in reasonable agreement. The overestima-
tion of the heave motions (and to a smaller extend also pitch motions) is caused by
the somewhat poor prediction of the coupling coefficients. van 't Veer[45] showed
that the use of double body flow m-terms leads to a better prediction of the coupling
coefficients and the motions of a Wigley model. The present method is however
intended for use in a method for the prediction of motions and added resistance of
SESs. The forces acting on the hulls are relatively unimportant for the prediction
of the motions because the largest part of the vessel’s weight is carried by the air
cushion. Therefore the present method is considered sufficiently accurate.

This chapter presented a three dimensional Rankine panel method. This method
can compute the hydromechanic forces on the hulls of an SES, the wave volume in
the air cushion of an SES and the mean wave height and wave slope at the bow and
stern seal of an SES. The panel method is a frequency domain method. The results
of the panel method will be used in the non-linear time simulation method that is
presented by Chapter 3. Appendix A treats the transformation of the frequency
domain results of the panel method to the time domain.




Chapter 3

Non-linear simulation method

This chapter presents a non-linear time simulation method for the motions and
added resistance due to waves of Surface Effect Ships. The most important non-
linear effects occur in the air cushion and seal dynamics. Especially the leakage of
air from the cushion is a highly non-linear phenomenon. The motions and ambi-
ent waves are considered to be relatively small. Therefore linearized equations of
motions and linearized hydrodynamics are used, while the non-linear form of the
cushion and seal dynamics is retained.

The first section presents the equations of motion and a decomposition of all forces
that act on the vessel. The second section treats the dynamics of the air cushion
and the seals. It presents equations which govern the pressures in the air cushion
and stern seal plena. Thereafter this section pays attention to the modeling of the
fans and the modeling of the air air leakage flow. Subsequently it describes the
models for the bag-type stern seal and the finger-type bow seal. The third briefly
comments on the numerical time integration scheme. Section 3.4 treats the topic of
added resistance due to waves. It presents an expression for the added resistance
of the air cushion which was considered to be the most important contribution to
the total added resistance. Section 3.5 presents results of the non-linear simula-
tion method. The computational results are compared with experimental results of
MARIN. Furthermore this section presents an investigation into the sensitivity of
the simulation method to simplifications. Finally Section 3.5 presents preliminary
conclusions concerning the validity of the method and a plan for further research.

43
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3.1 Equations of motion

This section presents the equation of motion. Furthermore, it presents a decompo-
sition of the forces that act on the vessel into force components due to gravitation,
propulsion, hydromechanics, the air cushion and the seals.

The forces that act on the vessel are computed in a body-fixed coordinate system.
Therefore the motions of the SES are also solved in the body-fixed coordinate sys-
tem. In that case the motions follow from the Euler equations which can be derived
from Newton’s second law. The motions of the vessel are assumed to be small.
Therefore the quadratic terms in the Euler equations can be neglected. This leads to
the following system of equations of motion:

6 2

Z ’kdt2 =F, j=1,...,6 (3.1

where M,y is the k' element of the 7" row of the generalized mass matrix, 7y is
the displacement in k™ direction and Fj is the force (or moment) in j** direction.

The total force which acts on the vessel in j** direction can be decomposed into the
following components:

F; =

(9) (») (h) (a) (s)
p ijg +Fjp +Fj _}_F}“_'_F‘js (3.2)

where the affix denotes gravitational force (g), propulsive force (p), hydromechanic
force (h), force due to the air cushion (a) or seal force (s).
The gravitational forces Fj(g ) follow (up to linear order) from:

F(g) —gMéj3 — gM (yy + zgn4) 054 + gM (x4 + 29715)535 (3.3)

where M is the total mass of the vessel, g is the gravitational acceleration constant,
Zg, Yg and z, are the coordinates of the center of gravity, and d;; is the Kronecker
delta.

The propulsive forces Fj(p ) are equal to the thrust of the water jets. However, the
propulsion and resistance characteristics of SESs are not within the scope of this
thesis (except for the added resistance due to waves). Therefore we will assume
that the propulsive force is balanced by the mean resistance of the vessel. More-
over, the surge motion (7);) is up to now not included in the actual program. The
effect of surge on the heave and pitch motions and the added resistance is generally
considered to be small.
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The hydromechanic forces Fj(h) are computed by means of a three-dimensional
Rankine panel method which is presented in Chapter 2. Appendix A treats the
transformation of the frequency domain results of the panel method to the time
domain. The time domain expression for the hydromechanical force includes a
convolution of an impulse response function (retardation function) with the motions
and cushion pressure from the past.

The forces due to the air cushion follow from integration of the air cushion
excess pressure over the deck and the dry part of the inner side of the hulls:

F]-(a) =— / / pen;dS (3.4)
B,

where (11, ng, n3)" = 7 and (ny, ns, ng)T = T @ 7, where 7 is the normal vector to
the hull or deck surface and 7 is the vector to the surface element dS. B, is the part
of the hulls and the deck that bounds the air cushion.

The forces that act on the seals follow from the the appropriate seal models.
Section 3.2.4 describes the stern seal model, while the bow seal model is presented
by Section 3.2.5.

3.2 Air cushion and seal dynamics

This section treats the dynamics of the air cushion and the seals. It presents equa-
tions which govern the pressures in the cushion and stern seal plena. Thereafter
this section pays attention to the modeling of the fan system and air leakage flow.
Subsequently it presents the models for the bag-type stern seal and the finger-type
bow seal. The seals have an important effect on the pressures in the air cushion and
stern seal plena.

3.2.1 Equations for the cushion and stern seal pressures

The equation which governs the excess pressures in a plenum follows from a com-
bination of the conservation of mass equation for this plenum with the equation of
state for the air inside this plenum. The pressure and density of the air in the plenum
are assumed to be constant in space. Therefore conservation of mass can be written
as:

4 | d
p(Q — QL) = = (V) (3.5)

where QU™ is the air volume flux into the plenum, Q°*!) is the air leakage volume
flux from the plenum, p is the density of air and V' is the volume of the plenum.
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The process of compression of the air inside a plenum is assumed to be isentropic.
In the frequency range of interest there is not sufficient time for the exchange of
heat. Moreover the temperature differences are only small because of the relatively
small pressure variations, so heat exchange will take much time. The isentropic gas
law reads:

Pt Pa

o

where p is the excess pressure in the plenum, p, is the ambient pressure and &, is
the ratio of specific heats of air; £ = ¢,/c¢, ~ 1.4. The following expressions for p
and dp/dt can be derived from Equation 3.6:

= constant 3.6)

P+ DPa\: _
p= = i (3.7
(p+pa) P
dp _ (D+Pa\: p dp
- = . i 3.8
dt (15+pa> k(p+p,) dt e

where p and p are the design excess pressure and the corresponding density.

Substitution of Equation 3.7 and Equation 3.8 into Equation 3.5 leads to the desired
equation for the pressure in the plenum:

_ VB i _ ey _ 8V

w(p+p.) dt @ « dt @3:9)
The term V/(k(p + p,)) in the left hand side of Equation 3.9 governs the stiffness
or compressibility of the air cushion. This equation can be linearized by replacing
the stiffness term by V' /(x(p + p,)), where V and p are the design volume of the
plenum and design excess pressure in the plenum. In the present method the non-
linear form of Equation 3.9 will be retained.

dv

Figure 3.1 shows a sketch of the complete system of plena and the air-volume fluxes
of an SES. One fan pumps air directly into the air cushion plenum (Qg’f’) ). The other
fan pumps air into the stern seal plenum (Qgi”)). Air subsequently flows from the
seal plenum to the cushion plenum (Q{**) = Q{™)). Furthermore air leaks from the

cushion under the bow and stern seal (fo,:”t) and Q).

The equations for the pressures in the air cushion and stern seal plena read:

Ve dpe (in) (outy _ dVe
K(pe+pa) dt Q" — Q¢ 7 (3.10)
Vs dp, (in) (outy _ Vs
L. < —o Oy 1C B A 3.11
k(ps +pa) dit @ 2 dt G-11)
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Figure 3.1: The system of plena and the air volume fluxes of an SES

where V. and V; are the volumes of the air cushion and stern seal plena, p. and
D, are the excess pressures in the cushion and stern seal plena, Q™ is the sum of

Qg’}) and QU™, and Q") is the sum of Q") and Q{79 Section 3.2.2 presents
an expression for the the air volume flux through a fan. Section 3.2.3 presents an
expression for the air leakage flux from a plenum. The air cushion volume follows

(up to linear order in 7y, . . . , ) from:

vc:Vc—mc+vbc—w+//(n3+yn4—xn5)ds (3.12)
deck

where V, is the design cushion volume, V, is the part of the cushion volume that
is taken up by the stern seal, V}. is the extra cushion volume that is supplied by the
bow seal, and V/ is the part of the cushion volume that is taken up by the free surface
waves. V, is often referred to as wave pumping volume. The stern seal volume V
and the part of the cushion volume that is taken up by the stern seal V. follow from
the stern seal model. Section 3.2.4 treats the stern seal model. The extra cushion
volume that is supplied by the bow seal V;. follows from the bow seal model, which
is presented by Section 3.2.5. The wave pumping volume is computed by means of
a three-dimensional Rankine source panel method which is presented in Chapter 2.
Appendix A treats the transformation of the frequency domain results of the panel
method to the time domain. The time domain expression for the wave pumping vol-
ume includes a convolution of an impulse response function (retardation function)
with the motions and cushion pressure from the past.

3.2.2 The fan system

The air cushion and stern seal plena are pressurized by means of a system of fans.
The volume flux through a fan into a plenum is approximated by the stationary fan
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characteristic, which is linearized around the design operation point:

| d
Qi — ¢, + (g)ﬁ (p—p) (3.13)

where () is the the design flux through the fan.

In reality the fan will however not respond in a static way. Durkin and Luehr[18],
Sullivan et al.[19], Masset et al.[17] and Witt[20] all show that fans respond in a
dynamical way to oscillating pressure in the plenum. Sullivan et al.[19] determined
the dynamical response of a model scale air cushion lift fan. They found that the
response of the fan was quite linear (i.e. an increase in the pressure variations
resulted in a proportional increase of the flow variations). At higher frequencies the
response appeared to have a considerable phase lag. Sullivan et al.[19] also showed
that the dynamic response of the fan has a large effect on the heave response of a
hovering box. Section 3.5.3 presents an investigation into the importance of the fan
system for the overall motions of an SES.

3.2.3 Air leakage

Air will leak from the cushion under the bow and stern seals. In rough conditions
air will also leak under the hulls. Up to now the air leakage under the hulls is ne-
glected. The air leakage flow has been studied elaborately by Ulstein[12]. He found
that the following one-dimensional analysis yields good results compared to results
obtained by means of a two-dimensional non-linear panel method.

The flow is assumed to be steady, inviscid and incompressible. The unsteady ef-
fects will be small because the outflow velocity is relatively high. The flow can
be considered inviscid outside a thin boundary layer. Therefore the boundary layer
thickness must be small compared to the leakage gap. The flow behaves like an
incompressible flow when the Mach number is much smaller than 1. The outflow
velocity is quite high (Ma ~ 0.25). Therefore compressibility effects might occur
locally.

In the air cushion at some distance from the leakage gap the velocity of the air
equals zero. The flow under the seal is assumed to separate at the lowest point of
the seal. At this point the pressure is atmospheric. The outflow velocity follows

from Bernoulli’s equation:
2Ap
U = ] — (3.14)
p
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where Ap is the pressure jump across the leakage gap. This pressure jump is small
compared to the atmospheric pressure p,, so p = p,. Under the bag-type stern seal
no contraction of the air-jet will occur because of the smoothly rounded orifice (the
radius of curvature of the seal canvas is much larger than the leakage gap height).
If the outflow orifice has a sharp edge, for instance at a finger-type bow seal, the
air-jet will contract. In the case of a sharp edge the height of the contracted air-jet
is equals 0.61 times the leakage gap height. Now the air leakage flux follows from:

[2A
Q(out) = qd; Tp (3.15)

where A, is the leakage gap area and c¢; is the orifice leakage coefficient which
accounts for the contraction of the air-jet (¢; = 1.0 for a smoothly rounded orifice,
while ¢; = 0.61 for a sharp orifice).

3.2.4 The bag-type stern seal

This section presents the model for the bag-type stern seal. Bag-type seals are
commonly used to close the air cushion plenum of SESs at the stern. The bag is
made of thin flexible material. Internal webs restrain the aft side of the bag. The
webs divide the bag into two or three lobes. The bag is open to the sides, where it
is closed by the inner side of the hulls. Figure 3.2 shows a sketch of a three-lobe
stern seal. The seal is pressurized by a fan at a slightly higher pressure than the air
cushion. Air flows from the seal plenum to the cushion plenum. When the lowest
point of the seal does not touch the water surface, air will leak from the cushion.
This air leakage flow results in a dynamic pressure distribution under the seal.

This paragraph presents the underlying assumptions of the stern seal model. The
stern seal model is a two-dimensional model (in a longitudinal plane). This im-
plies that the wave height is assumed to be constant in transverse direction. This
assumption is reasonable when head and following waves are considered, because
the waves that are generated by the hulls and the air cushion are small compared
to the incident waves. Therefore the mean wave height and wave slope across the
cushion width are used.

Furthermore the wave curvature is neglected, but the wave slope is taken into
account. The negligence of the wave curvature is reasonable as long as the wave
length is not too short. Furthermore, the wave surface is assumed to be rigid. This
assumption is valid because of the high speed of SESs. The Froude number based on
a characteristic length like the radius of the lower lobe of the seal (R, in Figure B.3)
is of the order of 10!
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Figure 3.2: Three-lobe bag stern seal

The gravitational and inertial forces that act on the seal canvas are small when
compared to the forces due to the excess pressure in the seal. Therefore the inertial
and gravitational forces can be neglected. Ulstein[12] showed that the inertial forces
are only important in the very high frequency range. Furthermore the seal canvas is
assumed to have no bending stiffness; it only transmits tension .

The air leakage flow under the seal is assumed to be stationary, inviscid and
incompressible. Ulstein[12] showed that a one-dimensional approach leads to good
results. Section 3.2.3 presents a brief discussion of these assumptions. Now the
problem of computing the stern seal bag geometry does not depend on time any
more. The only time dependency of the seal geometry is through the seal and cush-
ion excess pressures.

Appendix B deals with the actual computation of the stern seal bag geometry. First
this appendix presents a simple expression for the pressure distribution under the
seal. Thereafter it presents a method to compute the geometry of the cushion-facing
part of the seal. Then a non-linear system of equations for the parameters that define
the bag geometry is derived from force equilibrium and geometrical considerations.
This system of equations is solved by means of Newton-Raphson’s method. For a
given seal configuration the geometry depends on the following input parameters:
the heave displacement (7)), the pitch displacement (75), the cushion excess pres-
sure (p.), the seal excess pressure (p;), the mean wave height at the seal (¢) and
the mean wave slope at the seal ((;). When the bag geometry is known, it is easy
to calculate the seal volume (), the part of the cushion volume that is taken up
by the seal (V;.), the seal forces (Fj(s)) and the area of the leakage gap (4;). The
details are sown in Appendix B. Figure 3.3 shows some examples of computed bag
geometries. The seal may either touch the water surface or leave a leakage gap. In
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the bottom case the cushion pressure is larger than the seal pressure, which results
in a concave cushion-facing part of the seal.

The time derivatives of V; and V;, occur in the equations for the cushion and
seal pressure (Equation 3.10 and Equation 3.11). Direct evaluation of dV;/dt and
dV./dt is difficult. Lee[15] applies a finite difference scheme using previous time
steps. He needs however a filtering technique to prevent amplification of the trun-
cation error. Therefore the present seal model uses the following expression:

A ov. oV, oV, V. IV. 16
o= a—n;m + %775 + @ﬁc + E?—psps + bf( + a—cmfx (3.16)
where V is either V. or V, and the dot above a parameter denotes differentiation
with respect to time. The partial derivatives of V. and V, follow from finite dif-
ferences of solutions for slightly different inputs. The mean wave height and wave
slope at the stern seal (¢ and () and their derivatives with respect to time follow
from the three-dimensional panel method which is presented by Chapter 2.

Unfortunately the stern seal model is not as robust as one might wish. Sometimes,
when the relative motions at the stern seal become very large, the iterative solution
procedure does not converge. In that case the stern seal is linearized around the last
solution that was found until a new solution is obtained. This linearization implies
that the partial derivatives of V. and V; of the last solution are used, and that the seal
forces and the leakage gap height follow from expressions similar to Equation 3.16.
In extreme cases the iterative solution algorithm might find a spurious solution. This
usually results in diverging simulation that leads to a run-time error.

3.2.5 The finger-type bow seal

This section presents the model for the finger-type bow seal. Most SESs have a
finger type bow-seal. The seal consists of a row of vertical loops of thin flexible
material. Each loop represents a finger. The loops are open to the cushion side.
Figure 3.4 shows an example of a six-finger bow seal.

The modeling of the finger-type bow seal is much more simple than the modeling
of the bag-type stern seal. When the local relative deck height at the bow is smaller
than the height of the seal, the lower part of the fingers is simply bent backwards
at the water surface, and no air will escape under the seal. When the local relative
deck height is larger than the height of the seal, the seal will leave a gap above the
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\

Figure 3.3: Examples of computed bag geometries
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inner side
of port hull

Figure 3.4: Finger-type bow seal

water surface, and air will escape from the cushion plenum.

The bow seal model is also two-dimensional (in a longitudinal plane). Again the
mean wave height and wave slope at the seal are used. The horizontal row of fingers
is represented by a flat boundary which roughly coincides with the foremost part of
the fingers which actually closes the cushion plenum. The boundary may either
leave an air gap or touch the water surface. The part of the seal that is bent away
by the water surface is neglected. This implies that the frictional forces that act on
the bow seal are neglected. The pressure distribution due to air leakage under the
seal is neglected. In the case of a finger seal this pressure distribution has no effect
on the height of the gap under the seal. The pressure distribution does only have a
small effect on the forces that act on the seal, which is neglected.

The computation of the bow seal geometry basically implies computing the inter-
section point of the seal boundary and the water surface, if this point exists. Oth-
erwise it implies computing the leakage gap height under the seal. The bow seal
geometry depends on the heave displacement (73), the pitch displacement (7)5), the
mean wave height at the seal (() and the mean wave slope at the seal ((;;). The mean
wave slope still has a small effect because the point where the mean wave height
is computed does generally not coincide exactly with the position of the bow seal.
When the bow seal geometry is known, the seal forces follow from integration of
the (spatially constant) cushion excess pressure over the plate and the part of the
deck that is not included in B, (Equation 3.4). The extra cushion volume that is
supplied by the bow seal (V) can also be calculated. The time derivative of V.
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follows (analogous to V; and V. in Section 3.2.4) from:

dVie 0%c . 8Vim . av})c : 8%6 .
_ : 3.17

where the partial derivatives of V;,. again follow from finite differences of solutions
for slightly different inputs. The mean wave height and wave slope at the bow seal (¢
and () and their derivatives with respect to time follow from the three-dimensional
panel method which is presented by Chapter 2.

3.3 Numerical time integration

We have now arrived at a system of eight coupled equations (six equations of mo-
tion, the equation for the cushion pressure and the equation for the stern seal pres-
sure) for eight unknowns (7, ..., 7, Pc, Ps). The actual computer program only
includes heave and pitch displacement, and is therefore only suitable for head and
following waves. It can be extended to six degrees of freedom. This system of equa-
tions is solved in time by means of a Runge-Kutta scheme. The time step must be
smaller than about one quarter of the Helmholtz resonant period of the air cushion
in order to achieve stable numerical integration. Usually a smaller time step is used.
A quick estimate of the Helmholtz resonant frequency follows from:

Wl = %(14—];—‘:) (3.18)

where h is the height in the air cushion. This formula was taken from a paper by

Nakos et al.[9]. Helmholtz resonance occurs when the inertia of the SES is balanced
by the compressibility of the air cushion.

3.4 Added resistance due to waves

This section goes into the added resistance due to waves. Surface Effect Ships
appear to have a large speed loss when sailing in a seaway. The major cause for
this speed loss is the increase of the resistance of the vessel due to the ambient
waves. First this section presents a qualitative discussion of the added resistance of
SESs. Subsequently this section presents an expression for the added resistance of
the air cushion, which was expected to be the largest contribution to the total added
resistance.
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3.4.1 Qualitative discussion of the added resistance of SESs

This section presents a qualitative discussion of the added resistance of Surface
Effect Ships. The added resistance of an SES can be split up into two contributions:

o the added resistance of the hulls,
o the added resistance of the air cushion.
There are three mechanisms which cause the added resistance of an SES:
e radiation of waves
e sinkage
e momentum of escaping air

The first mechanism also causes the added resistance that is experienced by conven-
tional ships. It is associated with the momentum of the waves which are radiated by
the vessel (far field approach). These waves are caused by diffraction of the incident
waves by the hulls, and by the motions and air cushion pressure variations of the
SES. This mechanism is relevant for both the added resistance of the hulls and the
added resistance of the air cushion.

The second mechanism is only found with Surface Effect Ships. When an SES
sails in a seaway the amount of air leakage under the seals increases, which results
in a decrease of the cushion pressure. This causes the SES to sink deeper into
the water as a larger part of the vessel’s weight must be carried by the buoyancy
of the hulls. The sinkage of the vessel leads to an increase of the (calm water)
wave making resistance of the hulls, a decrease of the (calm water) wave making
resistance of the air cushion, and also an increase of the viscous resistance of the
hulls.

The third mechanism only contributes to the added resistance of the air cushion.
The velocity of the leaking air under the seals is quite high. The corresponding
outflow of momentum must be compensated by a force that acts on the vessel. Air
leakage under the bow seal results in a resistance while air leakage under the stern
seal leads to a propulsive force (negative resistance). Furthermore the air which is
pumped into the air cushion by the fans must be accelerated up to the vessel’s speed.
Any changes in one of these air flows result in a change of the resistance. When
the air flow changes are caused by the ambient waves, the corresponding resistance
change should be included in the added resistance due to waves.
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When this research project was started the major part of the large added resistance
of SES was believed to be caused by the air cushion. The added resistance of the
hulls was assumed to be small because of several reasons. The hulls are extremely
slender, and therefore will not radiate much waves. Furthermore only a small part
of the vessel’s weight is carried by the hulls. The added resistance due to sinkage
should mainly act on the hulls. Kapsenberg[25] found however from an experiment
that the added resistance due to sinkage was only small. He carried out one test
run with an increased fan RPM. The cushion excess pressure was raised from 0.79
times the calm water excess pressure to 0.99 times the calm water excess pressure.
This only resulted in a six percent drop of the added resistance. When the added
resistance of the hulls is small, the major part of the large added resistance of SESs
must be caused by the air cushion.

In view of the considerations that were presented by the previous paragraph we
choose to focus on the added resistance of the air cushion and to neglect the added
resistance of the hulls for the time being. The next section presents a computational
method for the added resistance of the air cushion.

3.4.2 The added resistance of the air cushion

This section presents a computational method for the added resistance of the air
cushion of a Surface Effect Ship. The expression follows from a near field ap-
proach as far as hydromechanics are concerned. On the other hand the resistance of
the air cushion does not follow from direct pressure integration over the part of the
vessel that bounds the air air cushion. We choose to calculate the resistance of the
air cushion from the rate of change of the linear momentum of the air inside the air
cushion. This has the advantage that the added resistance due to the momentum of
escaping air can easily be accounted for.

Figure 3.5 shows the air cushion and the control surface S (dotted line) that bounds
the air cushion. It also presents a detailed view of the air leakage flow under the bow
seal. The leakage flow under the stern seal is very similar although no contraction
of the air jet occurs because of the smoothly rounded orifice. Furthermore the figure
indicates the air flows into and out of the air cushion, as well as the wave heights
and wave slopes at the bow and stern seals.

The (full) resistance of the air cushion is calculated from the rate of change of the
linear momentum of the air inside the air cushion. The total longitudinal force that
acts on the air cushion must equal the rate of change of the linear momentum inside
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Figure 3.5: The control volume around the air cushion
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the air cushion:

d
Fleo — 2 ppled) 3.19
1 dt 1 ( )

It should be noted that the longitudinal direction is the z-direction in a directionally
fixed coordinate system.

The total longitudinal force that acts on the air cushion follows from pressure inte-
gration over the control surface S:

Fl(ac) = /pnldS

S
= //pnldS + //pnldS (3.20)
Sy Sw

where p is the (local) excess pressure, S, is the part of S that is adjacent to the vessel
(i.e. the parts of the deck, hulls and seals that bound the air cushion), .S, is the part
of S that is adjacent to the wave surface, and n; is the instantaneous z-component
(w.r.t. the directionally fixed coordinate system) of the normal vector to S which
points into the air cushion. The integration over the part of S which bounds the
escape air jets vanishes because the local pressure equals the ambient pressure. The
integral over .S, is just the resistance of the air cushion which must be calculated.
The integral over S,, can be approximated by (¢, — (;) - B, - p., where (; is the
mean wave height at the bow seal, (; is the mean wave height at the stern seal, B,
is the air cushion width and p, is the (spatially constant) cushion excess pressure.
Therefore

B = =R 4 (G—G)- Be-p, (321)

In this approximation a small error is made in the integration of the pressure in the
vicinity of the seals. In the vicinity of the seals the pressure is not equal to the spa-
tially constant cushion pressure (p.). In this area the excess pressure drops from p,
to zero. This effect is however very local, and when the wave steepness at the seals
is relatively small it is negligible.

The rate of change of the linear momentum of the air inside the air cushion follows
from the integration of the inflow of momentum over the control surface. It can be
expressed in terms of the air volume fluxes into and out of the air cushion:

d ac N
%Ml() = /S/p-u-n~u1d5 =
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= p-Q™-(-U) +
p- Q- (=U) +
p-(— ,(,"”t)) U - cosly +

p-(—Q) . (—u,) - cos b, (3.22)

where 4 is the air velocity, u; is the x-component of #. Further U is the forward
speed of the SES and u, is the air escape velocity. Please see Figure 3.5 for the
definition of the air volume flows QU™ Q™ Q{"*" and Q{**"), and the wave slope
angles 6, and ;. Section 3.2 presents expressions for these air volume flows and
the air escape velocity.

The required equation for the resistance of the air cushion follows when Equa-
tion 3.21 and Equation 3.22 are substituted into Equation 3.19:

R = (&= G)-Beope +
pr QMU +
p- QU +
p- Q,(,OM) U - COSB, —
p- QL .y, - cos b, (3.23)

Subsequently the added resistance of the the air cushion follows from:
R = R (in waves) — R\ (in calm waters) (3.24)

where the overlining denotes that the time averaged value of R(%°)(in waves) should
be used.

This section presented a computational method for what is expected to be the most
important contribution to the added resistance of Surface Effect Ships. This method
is implemented in the time simulation method for the motions that was presented by
the previous sections. The next section presents results of the simulation method.
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Table 3.1: Main particulars of the HYDROSES target vessel

symbol | description unit | value
L, length over all m | 160.60
Ly, | length at the perpendiculars m | 153.00
L, length of the air cushion m | 144.00
B beam m | 35.00
Bs beam of the air cushion (fore) m | 26.25
B., beam of the air cushion (aft) m | 2525
To (off) | off-cushion draft at Station 0 m 4.41
Ty (off) | off-cushion draft at Station 20 m 5.85
To (on) | on-cushion draft at Station 0 m 2.76
Ty (on) | on-cushion draft at Station 20 m 0.99
De air cushion excess pressure kPa | 11.04
Ds stern seal excess pressure kPa | 11.17
A mass t | 5050.0
Xg length c.o.g. forward of Station 10 | m | -2.37
kyy pitch radius of gyration m | 49.74

3.5 Results of the simulation method

This section presents results of the non-linear simulation method. First it presents
some time signals as they directly follow from the simulation method. Thereafter it
presents a comparison of harmonically analyzed results of the simulation method to
experimental results of MARIN. Subsequently this section presents an investigation
into the sensitivity of the simulation method to simplifications. Finally the section
presents preliminary conclusions concerning the validity of the method and a moti-
vation for further research.

All results that are presented by this section concern the target vessel of the HYDRO-
SES project. The HYDROSES project was an extensive collective research project
on seakeeping of Surface Effect Ships (see for instance Kapsenberg and Blume[5]).
The HYDROSES target vessel was designed as a large car/passenger ferry by FIN-
CANTIERI in Italy. It served as a study object in the HYDROSES project. Table 3.1
presents the main particulars of the HYDROSES target vessel. The air cushion
lift to weight ratio of the vessel is about 0.85. The results are presented on full
scale. The air cushion of the model that was used in the MARIN experiments was
equipped with a diaphragm in order to obtain a correctly scaled stiffness of the air
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cushion. Chapter 4 presents a discussion of the scaling of air cushion dynamics
and the diaphragm technique. All results concern simulations and experiments in
regular sinusoidal head waves at a forward speed of 45 knots (F'n = 0.61). For the
computations with the panel method the draft was taken according to the on-cushion
drafts as presented by Table 3.1. This position of the vessel corresponds to 73 = 0.0

3.5.1 Time signals

Figure 3.6 shows the time signals of a non-linear simulation in regular waves. It
presents time traces of the following quantities: the incident wave height at the
center of gravity ((), the heave displacement (7)3), the pitch displacement (75), the
air cushion and stern seal excess pressures (p. and p,), the leakage areas under the
bow and stern seal (A.; and A, ), and the vertical acceleration at Station 0 (%),
Station 10 (Z;¢) and Station 20 (Z5). The figure shows the results of a simulation
in regular head waves. The wave frequency was 2.2 [rad/s] which corresponds to
a wave length of 102 [m]. The wave steepness was relatively large (kA = 0.10,
i.e. a wave amplitude of 1.63 [m]). Time signals are however not very practical
for presentation and comparison of the results. Therefore the next section presents
results which were analyzed harmonically. The time signals are an illustration of
the (non-linear) process.

The heave and pitch time signals do not show significant higher harmonic compo-
nents. There is however a significant shift of the mean values of the heave and pitch
displacements. The heave and pitch displacements in calm water are 0.26 [m] and
-0.192 [deg] respectively. This is caused by an increased amount of air leakage,
which results in a drop of the mean cushion pressure, and consequently in a change
of the sinkage and trim of the vessel.

In the air cushion and stern seal excess pressure signals higher harmonic com-
ponents are clearly present. Please note that the shape of the vertical acceleration at
Station 10 signal and the cushion pressure signal are very much alike. This is due
to the fact that the air cushion is responsible for the major contribution to the heave
force.

The most obvious non-linear effects occur in the leakage areas under the seals.
The waves, motions and pressure variation cause a sudden opening and closure of
the air leakage gaps. This highly non-linear effect cannot be captured by some kind
of linearization.

Figure 3.7 shows subsequent solutions of the stern seal geometry. It presents the
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Figure 3.6: Time traces of a non-linear simulation; w, = 2.2 [rad/s], kA = 0.10
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seal geometry at every fourth time step (the time step was 0.05 s). Each time step
requires four seal geometry computations; one for each predictor in the Runge-
Kutta time integration. Figure 3.7 follows from the same simulation as Figure 3.6.
At t = 0.0 the seal pressure is smaller than the cushion pressure which results in a
concave cushion facing part of the seal and a large air leakage gap. At¢ = 1.8 the
seal pressure is much larger than the cushion pressure. This results in a stern seal
geometry that touches the water surface over a considerable length. The height of
the leakage gap under the stern seal depends for a large extent on the ratio of the
seal and cushion excess pressures.

3.5.2 Comparison to experimental data of MARIN

This section presents a comparison of results of the non-linear simulation method
with results of experiments that were carried out by Kapsenberg et al.[1] at MARIN.
The results of the simulations and of the experiments were processed by means of
harmonic analysis.

Figure 3.8 shows the heave response of the HYDROSES target vessel to regular
head waves. The figure presents the mean heave displacement, the amplitude of the
heave motion divided by the amplitude of the incident waves (Response Amplitude
Operator, RAO) and the phase of the heave motion with respect to the incident
waves at the origin which is located at the center of gravity. The results are presented
as a function of the air cushion length divided by the wave length (L/)\). Results
for several levels of wave steepness (kA) are shown. The computations and the
experiments are in good agreement. When L is a multiple of the wave length, the
incident waves do not change the air cushion volume. This causes the RAO to be
smallat L/\ = 1,2,.... The effect of the wave height on the RAO is not very large.
The waves cause however a significant decrease of the mean heave displacement.
This sinkage is caused by the increased air leakage which result in a drop of the
mean cushion pressure which must be compensated by a larger buoyancy of the
hulls.

Figure 3.9 shows the pitch response of the HYDROSES target vessel. The figure
again presents the mean pitch displacement, the pitch RAO and the phase of the
pitch motions. In the very low frequency range where the pitch resonance occurs,
the computed pitch motions are larger than the pitch motions found in the experi-
ments. The correlation of the computational end experimental phase relation is also
not fully satisfactory. In the low frequency range this is probably caused by dif-
ference in resonant behavior. In the higher frequency range one can question the
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relevance of the phase of an almost zero amplitude motion. Close to the pitch reso-
nance the iterative stern seal geometry solver does not converge. This is caused by
the large relative motions at the stern seal which lead to extreme stern seal geome-
tries, or even to the non-existence of a relevant stern seal geometry (for instance
when the deck touches the water surface). Therefore this section does not present
results for higher waves around the pitch resonance.

Figure 3.10 shows the response of the air cushion excess pressure. The correlation
of computations and experiments is generally good for the cushion pressure. The
deviation in the low frequency range is probably caused by the overestimation of the
pitch motions by the computational method. The large pitch motions result in the
opening of large air leakage gaps which excites the cushion pressure. The deviation
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sure response response

in the high frequency range is due to an underestimation of the Helmholtz reso-
nance of the air cushion. The prediction of the amplitude response at the Helmholtz
resonance is difficult as it highly depends on the damping due to the fans. The next
section presents an investigation into the importance of the fans and several other
aspects.

Figure 3.11 shows the response of the stern seal excess pressure. The correlation
of the computations and the experiments is rather poor. From a comparison of the
cushion pressure response with the seal pressure response it can be concluded that
during the experiments the stern seal pressure followed the cushion pressure to a
large extent, while in the computations the seal pressure is much more independent.
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There are several explanations for this discrepancy. First the overestimation of the
pitch motions has of course an important effect on the dynamics of the stern seal.
Furthermore there are some important differences in the air supply system of the
stern seal. In the computations the air supply system was according to Figure 3.1.
In the experiments the aft fan pumped air into an air distribution box which dis-
tributed the air over the stern seal and cushion plena. The air flowed subsequently
via separate ducts from the stern seal plenum to the cushion plenum. In the compu-
tations all air flowed from the aft fan through the stern seal plenum into the cushion
plenum. In the experiments only a part of the air from the aft fan flowed via the
seal plenum to the cushion plenum. In addition to this the stern seal plenum was
not equipped with a diaphragm during the experiments. This results in a much too
large stiffness of this plenum. The computations were carried out at full scale.

Figure 3.12 and Figure 3.13 show the added resistance due to waves. Figure 3.13
presents the same computational data as Figure 3.12 without the experimental re-
sults in order to show the behavior of the computational results. The computed
added resistance only includes the added resistance due to the air cushion (see Sec-
tion 3.4). There seems to be no correlation at all between the experimental and
computational data. From these results it can be concluded that the air cushion does
not give a significant contribution to the added resistance of Surface Effect Ships,
which is completely contrary to the line of reasoning that was presented by Sec-
tion 3.4. Figure 3.14 and Figure 3.15 present the added resistance divided by the
wave amplitude squared. Both experimental and computational result show that the

quadratic relation of the added resistance with wave height does not hold for an
SES.

The important discrepancy between the computed added resistance of the air cush-
ion and the measured (complete) added resistance requires further research. The
next chapter presents an extensive series of model experiments. The main goal of
these experiments is to find the origin of the large added resistance of Surface Effect
Ships.

3.5.3 Sensitivity of the simulation method to simplifications

This section presents an investigation into the sensitivity of the non-linear simu-
lation method to simplifications. The goal of this investigation is to address the
importance of several components of the simulation method. All results that are
presented by this section concern simulation in waves with steepness kA = 0.05.
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Figure 3.16 and Figure 3.17 show the effect of a very attractive simplification on
the heave and pitch motion. This simplification is the linearization of the stern seal.
It implies that the seal geometry only needs to be computed once. This saves a lot
of computational time and also leads to a more robust computational model. The
linearization of the stern seal also implies that the leakage area under the seal can
turn negative, which is not very realistic. Therefore the leakage area is set equal
to zero when this occurs, because otherwise a negative air leakage flux would oc-
cur. Therewith the most important non-linear feature of the stern seal is retained.
The effect of the stern seal linearization on the heave and pitch motions is remark-
ably small. The results however depend on the solution around which the seal is
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linearized. Therefore one should apply this simplification with care. In the investi-
gation into the sensitivity of the method to all other simplifications, the linearization
of the stern seal was applied.

Figure 3.18 and Figure 3.19 show the effect of neglecting the seal forces on the
heave and pitch motion. In the computation without seal forces the stern seal force
was replaced by cushion pressure times an extension of the deck area over the lon-
gitudinal extent of the seal. The bow seal force was simply neglected. The effect of
the seals on the air cushion dynamics were however taken into account. Especially
the stern seal force was expected to have an important (damping) effect on the pitch
motions because of the great distance to the center of gravity which results in large
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seal moments. Other investigators have found that the stern seal has an important
effect on pitch motions of SESs (See the discussion to a paper by Moulijn[54]).
Figure 3.18 shows however that the only effect is a small shift of the pitch reso-
nance frequency. The effect of the seal forces on the heave motions is also small.
One should however not conclude from these results that the effect of the seals on
motions is small in general. The seals have a very important effect on the leakage
gaps, and therefore on the air cushion dynamics. This results in a significant indi-
rect effect of the seals on the heave motions.

Figure 3.20 shows the effect of neglecting air leakage on the heave motions. This
simplification also includes neglecting the mean air flow trough the fans and the




3.5. RESULTS OF THE SIMULATION METHOD 71
1 1 —
— ~— 0— — a
E E -1
£ £ 31
44
_5 1 1 1
0 1 2 3 4
2
with air leakage with fan slope
19 \», Without air leakage ------- 1.54 without fan slope -------
— 0.8+ “ w .
g 067 2
T 04- T
0.2
0
0 4
S ! B
[} ! [}
= ! k=)
Q \ ! o]
(7] 1 I (2]
o Voo 1]
K= Lol <
Q | 1" [+ %
_1 80 l\‘\ 'l 1 1
0 1 2 3 4

UL L

Figure 3.20: The effect of neglecting

air leakage on the heave response

UL L]

Figure 3.21: The effect of neglecting
the fan slope on the heave response

mean air flows from the stern seal plenum to the cushion plenum, in order to com-
pensate for the lack of mean air leakage flow. The instationary flow through the
fans and the instationary flow from the seal to the cushion were taken into account.
Figure 3.20 shows that air leakage has a significant effect on the heave motions.
The most important and obvious effect of neglecting air leakage is that no sinkage
is predicted. Furthermore air leakage appears to have a significant damping effect
on the cushion pressure variation and therewith on the heave motions. Air leakage
also appears to shift the frequency at which the RAO reaches it’s minimum values.
The effect on the phase characteristics is also considerable. The effect of air leakage
on trim was similar to the effect on sinkage. The effect on the pitch RAO and phase

characteristics is very small.
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Figure 3.21 shows the effect of neglecting the fan slope on the heave motions. This
simplification implies that the air volume flux through the fans is assumed constant.
The fan slope appears to have a huge effect on the heave motions. The large peak
in the RAO around L/\ = 3 is due to the Helmholtz resonance of the air cushion.
Helmbholtz resonance occurs when the inertia of the SES is balanced by the com-
pressibility of the air cushion. Apparently the fans have a very important damping
effect on this resonant phenomenon. This means that a correct prediction of the
amplitude response at the Helmholtz resonance requires a very accurate fan model.
It remains to be seen whether the simple static fan model which is applied in the
present study will suffice. Neglecting the fan slope also has a considerable effect
on sinkage. This can be explained by the fact that the mean flow through the fans
does not increase when the mean cushion pressure drops. At the pitch resonance the
sinkage was that large that the cushion volume turned negative which resulted in the
abortion of the simulation. The effect of the fans on the pitch motions is generally
small.

Figure 3.22 shows the effect of neglecting the interaction of the air cushion with
the wave surface on the heave motions. This simplification implies that only in-
cident waves are considered when computing the wave pumping volume and the
wave height at the seals. The forces on the hulls due to cushion pressure variations
are also neglected. The effect is relatively small though still significant. Figure 3.23
shows a similar comparison where in both cases the fan slope was neglected too.
From Figure 3.23 it appears that the cushion-surface interaction causes a consider-
able shift of the Helmholtz resonant frequency. Nakos et all.[9] also reported this
effect. In Figure 3.22 the Helmholtz resonance is damped by the fans, thus conceal-
ing this important effect of the cushion surface interaction.

Figure 3.24 shows the effect of linearizing the stern seal on the computed added
resistance of the air cushion. The added resistance appears to be more sensitive to
the stern seal linearization than the motions. The effect is however still not very
large.

Figure 3.25 shows the effect of neglecting the impulse of the air flows into and
out of the air cushion on the added resistance of the air cushion. In this case the
resistance of the air cushion simply follows from ({; — (;) * B. - p., where (; and (,
are the wave height at the bow and stern seal, B, is the air cushion width and p, is
the air cushion excess pressure. Especially the air leakage under the bow seal gives
a significant contribution to the added resistance of the air cushion. Leakage under
the stern seal gives rise to a propulsive force. The contribution due to the impulse
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of the air flow through the fans is relatively small because the forward speed of the
ship is small when compared to the leakage velocity.

3.6 Conclusions

From the results that were presented by Section 3.5 the following conclusions can
be drawn:

e The computational end experimental results are in good agreement as far as

the heave motions and the air cushion excess pressures are concerned. The
correlation for the pitch motions and the stern seal excess pressure still require
some improvement.

There is a huge discrepancy between the computational and experimental
added resistance due to waves. The computed added resistance only includes
the added resistance of the air cushion. Probably the hypothesis that the air
cushion is responsible for the major contribution to the added resistance due
to waves of Surface Effect Ships is not valid. The computed added resistance
is negligible in comparison with the added resistance that follows from the
experiments.

From the computational results the seals appear to have only a small direct ef-
fect on the motions of SES. The seals do however have an important effect on
the air cushion dynamics by means of their influence on the air leakage gap.
Therefore the seals have an important indirect effect on the heave motions.
The computations indicate that the seals do not have a significant (damping)
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effect on pitch motions. Other investigators found however that the stern seal
does have an important effect on the pitch motions of SESs.

e The linearization of the stern seal is an attractive simplification which does
not need to have a great effect on the results. It must however be applied with
care because the solution around which the linearization is carried out can
have an effect on the results.

e Air leakage appears to have a significant damping effect on the cushion pres-
sure variations and the heave motions. Air leakage is also very important for
the prediction of the drop of the cushion pressure and the consequent sinkage.

e The fan system appears to have a very important damping effect on the cush-
ion pressure variations and the heave motions. It remains to be seen whether
the simple static fan model which is applied in the present study will suffice.
The fan system is also important for the prediction of the cushion pressure
drop and the consequent sinkage.

e The effect of the interaction of the air cushion with the wave surface is signif-
icant though not very large. The interaction appears to cause a considerable
shift of the Helmholtz resonant frequency of the air cushion. This resonance
is however damped to by the fans to a large extent.

e According to the computations the impulse of the leaking air gives rise to a
significant contribution to the added resistance of the air cushion.

From these conclusions it appears that several questions remain unanswered. The
most important question is: what causes the large added resistance of SES? In or-
der to find an answer to this questions an extensive series of model experiments
were carried out. Chapter 4 presents a description of these model experiments. The
experiments particularly focus on the origin of the added resistance of Surface Ef-
fect Ships. Furthermore the experiments will be used in a further validation of the
computational method which is presented by Chapter 5.
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Chapter 4

Model experiments

This chapter presents an extensive series of model experiments that was carried out
at the Ship Hydromechanics Laboratory of Delft University of Technology. After
an introduction this chapter discusses the scaling of air cushion dynamics. Sec-
tion 4.3 and Section 4.4 subsequently describe the model and the various types of
experiments that were carried out. Section 4.5 goes into the actual measurement
of the added resistance, and Section 4.6 presents and discusses the results of the
experiments. This chapter ends with conclusions concerning the origin of the added
resistance of Surface Effect Ships.

4.1 Introduction

At the end of the previous chapter it appeared that the large added resistance of SESs
does not originate from the air cushion, as was expected. The computed added re-
sistance of the air cushion was negligible in comparison to the added resistance that
followed from model experiments of MARIN. Therefore a series of new experi-
ments was carried out. The main goal of these experiments was to get more insight
into the origin of the (large) added resistance due to waves of Surface Effect Ships.

In Section 3.4.1 two components which contribute to the added resistance of SES
were distinguished:

e the added resistance of the hulls,
o the added resistance of the air cushion.

An attempt was made to measure the two added resistance components separately.
As a part of the investigation of the added resistance of the hulls two versions of

77
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the model were tested: one with extremely slender side-hulls, and one with realistic
side-hulls. The aim of the experiments with the first version was to isolate the
effects of the air cushion to a large extent. Alongside of the two components three
mechanisms which cause the added resistance of an SES were distinguished:

o radiation of waves
e sinkage
e momentum of escaping air

The importance of the mechanism of sinkage (a drop of the cushion pressure in
waves that leads to a larger draft and consequently to a larger resistance) was inves-
tigated.

The model with extremely slender hulls lacks buoyancy and restoring capabilities,
and could therefore not be tested in a set-up where it was free in heave and pitch.
Therefore this model and the model with realistic side-hulls were subjected to wave
force and forced oscillation experiments, where a model is rigidly connected to the
carriage. The model with realistic side-hulls was also tested in a set-up where it was
free in heave an pitch (motion experiments).

It is however not common practice to measure the added resistance during wave
force and oscillation tests, because the added resistance that is measured during
these experiments cannot be used in the prediction of the added resistance of a free
sailing vessel. The added resistance is a higher order quantity, or at least a non-
linear quantity. This implies that the added resistance does not simply follow from
a superposition of a wave force test and a forced oscillation experiment.

4.2 Scaling of air cushion dynamics

This section discusses the scaling of air cushion dynamics. Scale effects play an
important role in the model testing of air cushion vehicles. Just as with normal
ships the scaling law of William Froude is applicable. Special attention must be
payed to the scaling of the dynamics of the air cushion. The scaling problems of air
cushion dynamics were amongst others distinguished by Lavis et al.[26]. Figure 4.1
illustrates the scale effect on the air cushion dynamics. It presents a comparison
of the computed heave RAOs for the full scale HYDROSES target vessel and a
geometrically scaled 1:20 scale model.
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Figure 4.1: The effect of an incorrect scaling of the cushion dynamics on the heave
RAO of the HYDROSES target vessel

The Froude scaling law requires that the ratio of gravitational and inertial forces that
act on the water is the same at both model and full scale. When the Froude scaling
law is obeyed, the generated wave pattern is geometrically identical on full scale
and model scale as far as viscosity plays an subordinate part. Table 4.1 presents the
Froude scale factors for several relevant quantities. These factors presuppose that
the density of the water p and the gravitational acceleration g are the same on full
scale and model scale.

In order to investigate how the dynamics of an air cushion can be scaled in a cor-
rect way, the equation which governs the dynamics of a plenum is examined. This

equation reads:

Vv dp _ Q(m) _ Q(out) _ ﬂ “.1)

K(p+p.) dt dt
where V' is the volume of the plenum, p is the excess pressure in the plenum, p, is
the ambient pressure and Q" and Q°“* are the air volume fluxes into and out of the
plenum. This equation was derived from the equation of continuity and the equation
of state for the air in the plenum. The derivation was carried out in Section 3.2.1.
The Froude scaling law requires that Equation 4.1 is scaled by a factor o.3. This
follows from the term dV'/dt in the right hand side of equation 4.1. The volume V is



80 CHAPTER 4. MODEL EXPERIMENTS

Table 4.1: Froude scale factors

description | symbol | unit | factor
length L [m] «
area A [m?] o?
volume 1% [m3] o
mass M [t] ol
force F [kN] ol
pressure P [kPa] o
time t [s] o
velocity 1% m/s] | a3
frequency w [rad/s] o~ %

scaled by o while the time ¢ is scaled by az, leading to a scale factor a?3 for dV/dt.

The stiffness of the air cushion is governed by the term V/(k(p + p,)) in the left
hand side of Equation 4.1. According to Froude scaling, this term should be scaled
by o?, since dp/dt is scaled by a (pis scaled by o while ¢ is scaled by a?). This
can be achieved in two direct ways: scaling of the ambient pressure p, by «, or
scaling of the cushion volume V' by o?. In the second case the absolute pressure
p + p. is almost constant because p, >> p.

Unfortunately both ways are not very practical. A reduction of the ambient pres-
sure can be achieved in the Depressurized Towing Tank at MARIN. Kapsenberg[27]
carried out oscillation experiments in the Depressurized Towing Tank. A reduction
of the ambient pressure is however impossible at other facilities. Moreover it causes
air leakage to scale erroneously, as is pointed out later. Scaling of the cushion vol-
ume by «o? is not very useful because it leads to an impractical height of the air
cushion. The length and width of the air cushion are scaled by « resulting in scaling
of the cushion height by 1. Then it will be impossible to scale the inertial properties
of the model in a realistic way.

The stiffness of the air cushion can also be scaled correctly in an indirect way
by mounting a device on the cushion, which supplies some extra volume when the
excess pressure increases. Then equation 4.1 becomes:

Ve 4+ vE@ gp

9P ) _ ooy _ VT VT dp 2
Kot dt Q Q 4.2)

where V(@ is the extra volume of this device and V(¢ is the volume of the cushion.
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This equation can be rewritten as:

c d d i
K(p + pa) dp dt “

Now the device can be designed to have a “dV(?) /dp” which results in a correctly
scaled stiffness of the air cushion (the term within square brackets).

The device must be very light. Otherwise the inertia of the device can cause
a dynamical response of the device. The most simple design of such a device is a
flexible membrane mounted on top of the air cushion. In literature this membrane
is called diaphragm. It has amongst others been used by Kapsenberg and Blume[5].
Appendix C presents an elaborate analysis of the diaphragm which was used in the
present model tests.

The flow through the fans into the air cushion can be approximated by the linearized
steady fan characteristic:
. dQ
) — 0.+ (=2 - (p—5

Q" =Qp+ (), =9 (“4)
where p is the design excess pressure. All terms in Equation 4.1 should be scaled
by 22, Therefore Q; has to be scaled by 2%, while (‘%) _must be scaled by a2

p

as (p — p) scales by «.. This may be used when choosing the fans for the model.

The air leakage flow can be approximated by the orifice flow formula (see also

Section 3.2.3):
Q) = [ 222 4.5)
p

where ¢, is a coefficient which depends on the geometry of the leakage gap, A, is
the leakage area, Ap is the pressure difference across the leakage gap, and p is the
density of the air at ambient pressure. The coefficient ¢; accounts for the contraction
of the escape air jet.

Q") should also be scaled by o2 (see Equation 4.1). The coefficient ¢; is the
same on model scale and full scale when viscous effects of the leakage flow are of
minor importance. The leakage area A, scales by o%. The pressure difference across
the leakage gap scales by «.. Then the air leakage flux scales correctly provided that
p is the same on model and full scale.

When the ambient pressure is reduced by a factor « in order to achieve a cor-
rectly scaled stiffness of the air cushion p is also reduced by a factor « (provided
that the temperature is constant). In that case Q(°“) scales by o? in stead of a3,
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Then the effects of air leakage will become too great on model scale.

For the present series of experiments there is not a prescribed scale factor. The main
goal of the experiments is to get insight into the origin of the added resistance of
Surface Effect Ships rather than to predict the behavior of a full scale vessel.

Nevertheless we chose to equip the model with a diaphragm. This choice was
made in order to limit the amplitude of the cushion excess pressure. When a model
without a diaphragm is subjected to wave force or forced oscillation experiments,
the large stiffness of the air cushion results in very large cushion pressure variations.
Then the cushion excess pressure can easily turn negative, which is not very realistic
(the seals might collapse and cease to function). The large pressure variations also
result in large forces which might cause a considerable deformation of model. These
effects were reported by van den Berg[55]. Furthermore a realistic scaling of the
stiffness of the air cushion has the advantage that the conclusions drawn from these
experiments are more generally valid.

On the other hand a diaphragm also introduces new unrealistic effects. Ap-
pendix C shows that the “dV (9 /dp” of a diaphragm is not constant, particularly
when the cushion excess pressure is close to zero. Therefore a diaphragm will in-
troduce (unwanted) non-linear effects. When the pressure variations are not too
large these non-linear effects will be small. Furthermore a diaphragm can introduce
(unwanted) dynamic effects. These dynamic effects are not expected to be very
large in the relevant frequency range because the rubber membrane is very light.

Appendix C presents a computational and experimental analysis of the diaphragm
that was applied in the present experiments. The “dV ¥ /dp” of the diaphragm
turned out to be 3.1 - 1075 [m3/Pa]. This suits a scale factor of about 1:15. A scale
factor of 1:50 would have been preferable as that would lead to a better similar-
ity with the results of the HYDROSES project. This however required diaphragm
dimensions that did not fit the model. The applied diaphragm was the largest that
fitted the model in a reasonable way; the width was already greater than the beam
of the vessel.

4.3 Description of the DUTSES model

This section presents a description of the model, that will be referred to as the
DUTSES model. Two versions of the DUTSES model were tested. One version
had extremely slender side-hulls which were in fact 12 mm thick plates. The other
version was equipped with more realistic side-hulls. The model version with ex-
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Table 4.2: Main particulars of the DUTSES model

symbol | description unit | value
Lo Length over all m 3.200
L,, Length at the perpendiculars m 3.000
L. Length of the air cushion m 3.000
B, Beam of the model with plates m | 0.549
B, Beam of the model with hulls m 0.739
B, Beam of the air cushion m 0.525
D, Depth to the upper deck m 0.325
D, Depth to the lower deck m 0.225
To On-cushion draft at station 0 m 0.103
Too On-cushion draft at station 20 m 0.053
\Y Displacement of the hulls (on-cushion) | m*® | 0.0168
Pe Design air cushion excess pressure Pa 300
Ps Design stern seal excess pressure Pa 306

tremely slender side-hulls will be referred to as the model with plates, while the
model version with realistic hulls will be designated model with hulls. First this
section presents a description of the overall geometry and structure of the model.
Thereafter the section describes the seals which closed the air cushion at the bow
and stern. Subsequently this section describes the system of fans that pressurized
the air cushion.

4.3.1 Overall geometry and structure

The model was partially derived from the target vessel of the HYDROSES project.
Section 3.5 presented a description of the HYDROSES target vessel. Figure 4.2
shows a drawing of the DUTSES model that also contains some main dimensions.
Table 4.2 presents the main particulars of the model.

The main differences between the DUTSES model and the HYDROSES target ves-
sel are an increased draft of the hulls, an increased depth of the air cushion and a
higher air cushion excess pressure.

The draft of the hulls (in on-cushion mode) was increased in order to prevent
the occurrence of significant air leakage under the hulls. Air leakage under the hulls
is not included in the computational method that was presented in Chapter 3. The
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Figure 4.2: Overall structure of the DUTSES model
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larger draft of the hulls also leads to a larger displacement of the hulls.

The depth of the air cushion was increased because this leads to larger seals.
This results in larger seal forces, and therefore increases the accuracy of the seal
force measurement.

The cushion pressure and the related weight of the vessel were increased in or-
der to enable a simple and sufficiently stiff structure.

The side-plates and side-hulls have the same lateral contours (see Figure 4.2). The
side-plates were about 12 mm thick. At the bow, keel and stern they were rounded.
The plates were constructed of polyurethane foam which was reinforced by glass-
fiber and polyester. The hulls were constructed by mounting extra polyurethane
bodies to the plates. A smooth transition was achieved by means of filler. Figure 4.3
shows a body plan of the hulls. The hulls were prismatic from the stern up to station
number 15. The double deck of the model was constructed of plywood. Table 4.3
presents the inertial properties of the model.

4.3.2 The seals

The bow and stern seals are similar to the seals of the HYDROSES target vessel.
The main difference is that they are relatively larger as was pointed out above.

The bow seal is of the finger-type. It consists of vertical loops of flexible mate-
rial, which are open to the cushion side of the seal. Each loop is a finger. The bow
seal has nine fingers. Figure 4.4 shows the dimensions of the bow seal.

The stern seal is of the bag type; a bag of flexible material which is pressurized
at a slightly higher pressure than the air cushion. The bag is open to the sides, where
it is closed by the side-hulls. Two internal webs restrain the aft side of the bag, and
divide the bag into three lobes. Figure 4.5 shows the dimensions of the stern seal.
Both seals were manufactured of spinnaker cloth.

During the experiments the forces that were acting on the seals were measured sep-
arately. For this reason the bow seal was mounted on a plate which was connected
to the model by means of force transducers (see Figure 4.4). The stern seal was
mounted on an air distribution box which distributes the air flow from the aft fan
over the stern seal bag and the air cushion. This box was also connected to the
model by means of force transducers (see Figure 4.5). The air distribution box was
connected at the front and the rear side in order to achieve a sufficiently stiff struc-
ture. This was necessary because the aft fan which was also mounted to the air
distribution box might cause considerable vibrations. Table 4.3 presents the inertial
properties of the bow seal plate and the air distribution box plus the fan. The mass
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Figure 4.3: Body plan of the DUTSES model

Table 4.3: Inertial properties of the DUTSES model

symbol | description unit series
1.1-14|21-26 2.7
M Total mass of the kg 48.12 64.02 62.80
model

K, Pitch radius of m 0.964 0.971 0.971
gyration w.r.t. G
Xa Horizontal position | m -0.031 | -0.031 | -0.031
of G w.rt. st. 10
KG Vertical position m 0.291 0.284 0.288
of G w.r.t. keel line
My, Mass of bow seal kg 3.83 3.83 3.83
for z-forces
My, Mass of bow seal kg 3.13 3.13 3.13
for z-forces
M., Mass of stern seal | kg 6.48 6.48 6.48
for z-forces
M, Mass of stern seal | kg 7.88 7.88 7.88
for z-forces
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Figure 4.4: Geometry and structure of the bow seal
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Figure 4.5: Geometry and structure of the stern seal
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Figure 4.6: The static fan characteristics

of the actual seals was very small.

4.3.3 The fan system

The air cushion and the stern seal plenum were both pressurized by axial fans. The
fans were mounted directly on the model. The RPM of the fans was controlled by
a computer. This ensured a very stable fan RPM. Figure 4.6 shows the measured
static characteristics of the two identical fans. The fans were kindly on loan from
MARIN.

The fore fan pumped air directly into the air cushion. The aft fan pumped air into an
air distribution box which distributed the air over the stern seal and the air cushion.
The ducts between the air distribution box and the stern seal were large. Therefore
the volume of the air distribution box could be considered a part of the seal plenum.
The duct between the air distribution box and the air cushion was relatively small.
This resulted in a considerable resistance for the air flow from the stern seal plenum
to the air cushion. The area of this duct could be adjusted by means of two slides.
The pressure difference between the stern seal and cushion plena could be con-
trolled by opening or closing the slides.
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4.4 Description of the experiments

This section describes the three types of experiments that were carried out: wave
force measurements, forced oscillation tests and heave and pitch motion tests. Ta-
ble 4.4 presents an overview of the experiments that were carried out. The model
with side plates was only subjected to wave force and forced oscillation experiments
(Series 1.1 to Series 1.4). The model with hulls was subjected to all types of ex-
periments(Series 2.1 to Series 2.7). Table 4.5 presents an overview of the quantities
that were measured during the experiments. All model tests were carried out at the
towing tank no. 1 of the Ship Hydromechanics Laboratory of Delft University of
Technology. This tank is 142 m long and 4.22 m wide. During the experiments the
water depth was 2.285 m.

4.4.1 Wave force tests

Figure 4.7 shows the experimental set up for the wave force tests and the oscillation
tests. The model was rigidly connected to the carriage by means of the oscillator.
During the wave force measurements the oscillator was fixed in its mean position.
At the two connecting points (500 mm in front of station 10 and 500 mm aft of
station 10) the horizontal and vertical connection forces were measured. The aft
connection point was equipped with a slide which enabled pitch oscillation experi-
ments and also prevented large internal stresses in the structure.

Both versions of the model (the model with side-plates and the model with hulls)
were subjected to wave force test in on-cushion and off-cushion mode. During the
on-cushion and the off-cushion experiments the draft of the model was the same (at
the aft perpendicular: 7; = 103 mm and at the fore perpendicular: T5; = 53 mm).

The wave length varied from 1.00 m to 6.00 m. In order to investigate the depen-
dence of the added resistance on wave height the wave amplitude was varied from
10 mm to 40 mm. The program of the off-cushion experiments was reduced in order
to limit the total number of runs. Next to the experiments in waves, some experi-
ments in calm water were carried out. These experiments were repeated regularly
because the calm water resistance has an important effect on the added resistance.
The model velocity was 3.27 m/s (F'n = 0.603), and the RPM of both fans was
8500 1/min.
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Table 4.4: Overview of the experiments
name model | type of experiment amplitude | wave length | enc. frequency
[mm)/[rad] [m] [rad/s}
Series 1.1 | plates | wave force experiments, 10 1.00 - 6.00 6.64 - 28.43
pe = 300 Pa 20 1.20 - 6.00 6.64 - 24.32
30 1.50-3.00 | 11.39-20.13
40 2.00-6.00 6.64-15.84
Series 1.2 | plates | wave force experiments, 20 1.20 - 6.00 6.64 - 24.32
pe=0Pa 40 240&4.00 | 9.07 & 13.64
Series 1.3 | plates | forced heave oscillation 5 - 6.00 - 24.00
experiments, p. = 300 Pa
Series 1.4 | plates | forced pitch oscillation 0.02 - 6.00 - 18.00
experiments, p. = 300 Pa
Series 2.1 | hulls | wave force experiments, 10 1.00 - 6.00 6.64 - 28.43
pe = 300 Pa 20 1.20- 6.00 6.64 - 24.32
30 1.50 - 6.00 6.64 -20.13
40 2.00-6.00 6.64 - 15.84
Series 2.2 | hulls | wave force experiments, 20 1.20 - 6.00 6.64 - 24.32
p.=0Pa 40 240 &4.00 | 9.07 & 13.64
Series 2.3 | hulls | forced heave oscillation 5 - 6.00 - 24.00
experiments, p. = 300 Pa
Series 2.4 | hulls | forced pitch oscillation 0.02 - 6.00 - 18.00
experiments, p. = 300 Pa
Series 2.5 | hulls | forced heave oscillation 10 - 6.00 - 16.00
experiments, p. = 0 Pa
Series 2.6 | hulls | forced pitch oscillation 0.01 - 6.00 - 18.00
experiments, p. = 0 Pa
Series 2.7 | hulls | heave and pitch motion 10 1.00 - 6.00 6.64 - 28.43
experiments p, = 300 Pa 20 1.20 - 6.00 6.64 - 24.32
30 1.50 - 6.00 6.64 - 20.13
40 2.00 - 4.00 9.07 - 15.84
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Table 4.5: Overview of the quantities that were measured

symbol | unit | description

N3 [mm] | heave displacement

75 [deg] | pitch displacement

F [N] surge force

F3 [N] heave force

Fs [N] pitch moment

Fi, [N] longitudinal bow seal force

F3 [N] vertical bow seal force

F [N] longitudinal stern seal force

F3, [N] vertical stern seal force

Dy [Pa] excess pressure in the air cushion (fore)
Pa [Pa] excess pressure in the air cushion (aft)
Ps [Pa] excess pressure in the stern seal plenum
Ap [Pa] differential pressure between cushion and stern seal
Qy [m3/s] | air flow through the fore fan

Q. [m3/s] | air flow through the aft fan

Co2 [mm] | wave height just aft of the bow seal

(a1 [mm] | wave height just in front of the stern seal
Cs2 [mm] | wave height just aft of the stern seal
Cref1 [mm] | reference wave height at ord. 10

Cref2 [mm] | reference wave height ahead of the model

4.4.2 Forced oscillation tests

The experimental set-up of the forced oscillation tests was identical to the experi-
mental set-up of the wave force measurements (see Figure 4.7). The difference is
that the oscillator now forces the model to carry out harmonic heave or pitch mo-
tions in calm water. The pitch oscillations were carried out around the center of
reference (station 10, 350 [mm] above the keel line).

The model with side-plates was only tested in on-cushion mode, because the forces
acting on oscillating vertical plates was considered to be not very relevant. The
model with hulls was tested in on-cushion as well as off-cushion mode. The off-
cushion tests lead to the well known hydrodynamic coefficients (added mass and
damping) of the hulls. During the off-cushion and on-cushion experiments the draft
of the model was the same (7; = 103 mm and 75y = 53 mm).
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Figure 4.7: Experimental set-up for the wave force tests and the forced heave and
pitch oscillation tests

In the on-cushion heave oscillation tests the oscillation frequency varied from 6.0
rad/s to 24.0 rad/s. For the off-cushion heave oscillation tests and all pitch oscilla-
tion tests the program had to be reduced at the high frequency end because the forces
acting on the vertical force transducers were exceeding the nominal range of these
transducers. The heave amplitude was 5 mm in the on-cushion tests and 10 mm
in the off-cushion tests. The pitch amplitude was 0.02 rad during the on-cushion
tests and 0.01 rad during the off-cushion tests. The on-cushion heave amplitude
was small because otherwise the cushion excess pressure might turn negative. The
on-cushion pitch amplitude was relatively large when compared with the heave am-
plitude. This was done because one of the aims of these tests was to investigate the
effects of (non-linear) air leakage under the seals. A large pitch amplitude results in
significant air leakage gaps. The amplitude of the motions was not varied in order
to limit the total number of tests. The model velocity was 3.27 m/s (F'n = 0.603),
and the RPM of both fans was 8500 1/min.
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Figure 4.8: Experimental set-up for the heave and pitch motion tests

4.4.3 Heave and pitch motion tests

Figure 4.8 shows the experimental set-up for the heave and pitch motion tests. Dur-
ing these experiments the model was free to carry out heave and pitch motions. The
model was connected to the carriage by the so called nutcracker; a device which
prevents surge, sway, roll and yaw motions. The nutcracker was mounted 500 mm
in front of station 10. At the Ship Hydromechanics Laboratory it is common prac-
tice to mount the nutcracker at the center of reference. This was however impossible
because of the presence of the diaphragm. At 500 mm aft of station 10 an extra sway
and yaw preventer was mounted.

The model with side-plates was not subjected to heave and pitch motion tests be-
cause it lacked buoyancy and restoring capabilities. The model with hulls was only
tested in the on-cushion mode (in off-cushion mode the draft was very large). The
calm water trim and sinkage corresponded to the sinkage and trim during the cap-
tive experiments (7; = 103 mm and 75, = 53 mm). The off-cushion zero velocity
drafts of the model were: 7§ = 137 mm and Ty, = 176 mm.

The wave length varied from 1.00 m to 6.00 m. In order to investigate the depen-
dence of the added resistance on wave height the wave amplitude was varied from
10 mm to 40 mm. The model velocity was 3.27 m/s (F'n = 0.603), and the RPM
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of both fans was 9000 1/min. Besides the experiments in waves, some experiments
in calm water with a reduced fan RPM were carried out. This was done in order to
investigate the importance of the mechanism of sinkage. In these experiments the
RPM of both fans was reduced equally.

4.5 Measurement of the added resistance

The total added resistance due to waves follows from:
Ry, = R(in waves) — R(in calm water) 4.6)

It is difficult to obtain an accurate measurement of the the added resistance because
the relatively small added resistance follows from the difference of two large quan-
tities. Especially in the captive experiments (wave force and forced oscillation tests)
the calm water resistance appeared to be very sensitive to small variations of the wa-
ter level in the towing tank which resulted in a change of the draft of the model. In
order to minimize these errors the water level was checked regularly. Furthermore
the calm water resistance was measured several times over again, while the experi-
ments were in progress. An actual calm water resistance was used in the calculation
of the added resistance.

The added resistance due to waves of an SES can be divided into a contribution due
the air cushion and a contribution due to the hulls. The resistance of the air cushion
follows from:

R(ac) = "'Flb — Fls +pcAd sinf) - (ng -+ ng +pcAd CcOS 0) 15 (47)

where Fy,, F3,, Fi; and F3, are the seal forces (the subscripts b and s indicate
bow or stern seal force, and the subscripts 1 and 3 indicate longitudinal or vertical
force). Furthermore A is the area of the deck, p. is the cushion excess pressure, ¢
is the calm water trim angle of the vessel, and 75 is the pitch displacement, which
is assumed to be small. The overlining denotes that the time averaged value of the
expression underneath should be used. This definition of the resistance of the air
cushion also includes the frictional resistance of the seals. Now the added resistance
of the air cushion follows from:

R%) = R (in waves) — R“ (in calm water) (4.8)
Subsequently the added resistance of the hulls can be calculated from:

R® = R, — R (4.9)
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where R,,, is the total added resistance. The added resistance of the hulls also fol-
lowed from captive off-cushion experiments. Of course these experiments do not
include the interaction of the hulls with the hydrodynamic effects due to the air
cushion.

In order to investigate the added resistance due to sinkage, some calm water tests
with a reduced fan RPM were carried out. The reduction of the RPM resulted in
a drop of the cushion pressure thus simulating sinkage due to an increase of the
air leakage flow. From the results of these tests we derived linear relations of re-
sistance (R), resistance of the air cushion (R(*®) and resistance of the hulls (R(")
with the cushion excess pressure (p.). Subsequently the added resistance was cal-
culated by substituting the measured mean cushion pressure from the experiments
in waves into these relations. In the captive experiments the model was restrained,
so0 no sinkage occurred during these experiments. Therefore the investigation of the
added resistance due to sinkage was only carried out for the heave and pitch motion
experiments.

4.6 Presentation and discussion of the results

This section presents and discusses the results of the model experiments as far as
they concern the added resistance due to waves. The other results are presented
in Chapter 5 within the scope of an experimental validation of the computational
method. First this section goes into the magnitude of the added resistance, also in
relation with the the results of the MARIN experiments. Then it discusses the rela-
tion of the added resistance with wave height. Subsection 4.6.3 presents the results
of the separately measured added resistance components; the added resistance of
the air cushion and added resistance of the hulls. Subsection 4.6.4 treats the re-
sults of the investigation into the mechanism of sinkage. This section ends with a
discussion of the results.

4.6.1 Magnitude of the added resistance

Figure 4.9 shows a comparison of the added resistance as it was measured during
the wave force experiments with the model with plates (Series 1.1), the wave force
experiments with the model with hulls (Series 2.1) and the motion experiments (Se-
ries 2.7). The added resistance is presented on model scale as a function of L/,
the cushion length divided by the wave length. The figure shows results for several
wave amplitudes.
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Figure 4.9: Comparison of the added resistance of Series 1.1 (wave force tests,
model with plates), Series 2.1 (wave force tests, model with hulls) and Series 2.7
(model free in heave and pitch)

The by far largest added resistance was measured during the experiments where
the model was free in heave and pitch (Series 2.7). The largest added resistance
occurred in long waves, when the model carried out severe pitch motions. In the
wave force tests (Series 1.1 and Series 2.1) the added resistance was much smaller
but still significant. The added resistance that was measured during the oscillation
experiments was only small (up to about 2 N).

The added resistance that was measured during the present experiments is much
smaller than the added resistance that was measured by Kapsenberg et al. [29] at
MARIN. They measured added resistance values up to about two times the calm
water resistance. In the present experiments the largest measured added resistance
was about half the calm water resistance.

There are however several differences between both experiments. The most
important difference is that the MARIN model was a self-propelled free sailing
model. The added resistance was derived from the thrust increase of the water-jets.
The DUTSES model was not free in surge, and the resistance was measured directly.
Experiments with a self-propelling model are closer to reality than experiments
where the model is only free in heave and pitch. On the other hand the direct
measurement of the added resistance that was applied in the present experiments is
more reliable, and surge motion is generally considered to be of minor importance
for the added resistance.
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divided by the wave amplitude (Se- vided by the wave amplitude squared
ries 2.7: model free in heave and pitch) (Series 2.7: model free in heave and
pitch)

4.6.2 The relation of the added resistance with wave height

For conventional ships the added resistance has a quadratic relation with the wave
amplitude. Figure 4.10 and Figure 4.11 respectively show the added resistance
divided by the wave amplitude and the added resistance divided by the wave am-
plitude squared. Both figures follow from the heave and pitch motion experiments
(Series 2.7). They clearly show that the relation of added resistance with wave am-
plitude is neither linear nor quadratic. The relation of added resistance with wave
height is somewhere between linear and quadratic. It probably contains both linear
and quadratic terms.

From the off-cushion wave force experiments it appeared that the relation of the
added resistance of the hulls with the wave amplitude was not quadratic either (see
Figure 4.12 and Figure 4.13). This is quite remarkable because in these off-cushion
experiments the model was expected to behave like a regular catamaran.

Apparently there does not exist a simple univocal relation of the added resistance of
SESs with the wave amplitude. Therefore the results for the added resistance that
are presented by this thesis are not divided by some power of the wave height.
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Figure 4.13: The added resistance di-
vided by the wave amplitude squared
(Series 2.2: off-cushion wave force
tests, model with hulls)

Figure 4.12: The added resistance di-
vided by the wave amplitude squared
(Series 1.2: off-cushion wave force
tests, model with plates)

4.6.3 The added resistance components

Figure 4.14, Figure 4.15 and Figure 4.16 respectively show the total added resis-
tance, the added resistance of the air cushion and the added resistance of the hulls.
The figures show results of the wave force tests with the model with plates (Se-
ries 1.1) and of the wave force tests with the model with hulls (Series 2.1).

This paragraph compares the results of the model with plates with the results of the
model with hulls. The total added resistance of the model with hulls is larger than
the total added resistance of the model with plates (see Figure 4.14). The difference
is however not very large.

The added resistance of the air cushion of the model with plates does not signif-
icantly differ from the added resistance of the air cushion of the model with hulls
(see Figure 4.15). Apparently the interaction of the hulls and the air cushion is not
very important for the added resistance. This also subscribes the accuracy of the
measurement of the added resistance of the air cushion.

The model with hulls has a larger added resistance of the hulls than the model
with plates (see Figure 4.16). It is however remarkable that the model with plates
does have a significant added resistance of the hulls. This also followed from the
off-cushion wave force tests with the model with plates (see Figure 4.17). Added
resistance is generally considered to be of potential flow origin, i.e. the added re-
sistance is associated with the momentum of radiated waves which are caused by




4.6. PRESENTATION AND DISCUSSION OF THE RESULTS 99
A =10 [mm] A =20 [mm] A = 30 [mm] A =40 [mm]

= Series 1.1 + x

‘§ 6 Series2.1  x r

% X

° 4- j % N

ﬁ x x X + % + x

g 27 X1 % X T +

o X ++ +

© 0 ¥¥¥x¥¥>f¥;<:fj‘f ++¥ | ] T ] ] ] ] 1
0 1 2 30 1 2 30 1 2 30 1 2 3

UA [

Figure 4.14: Comparison of the total added resistance of the model with plates
(Series 1.1) and the model with hulls (Series 2.1) as measured during wave force
experiments
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Figure 4.15: Comparison of the added resistance of the air cushion of the model
with plates (Series 1.1) and the model with hulls (Series 2.1) as measured during
wave force experiments
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Figure 4.16: Comparison of the added resistance of the hulls of the model with
plates (Series 1.1) and the model with hulls (Series 2.1) as measured during wave
force experiments
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Figure 4.17: Comparison of the total added resistance of Series 1.1 (plates) and
Series 2.1 (hulls); wave force experiments

diffraction of the incident waves and by the motions of the vessel. The plates can
hardly generate any waves (at least in head and following seas). Therefore the
added resistance of the plates was expected to be negligible. This indicates that
other mechanisms are important for the added resistance of very slender high speed
hulls. One might think of viscous effects or the generation of spray.

This paragraph compares the added resistance of the air cushion with the added re-
sistance of the hulls. From Figure 4.15 and Figure 4.16 it can be concluded that, in
the case of wave force tests, the added resistance of the air cushion and the added
resistance of the hulls are about of equal importance. The results of the oscillation
experiments lead to the same conclusion. In the pitch oscillation tests the added
resistance of the air cushion is negative. This is due to a considerable drop of the
cushion excess pressure which is caused by the large amount of air leakage under
the seals.

Figure 4.18, Figure 4.19 and Figure 4.20 respectively show the total added resis-
tance, the added resistance of the air cushion and the added resistance of the hulls
as they were measured during the heave and pitch motion experiments (Series 2.7).
It must be noted that during the motion experiments the measurement of the added
resistance of the air cushion was not as accurate as during the captive experiments.
This was due to a less accurate measurement of the bow seal force. In advance of
each test run the model floated in rest at a large draft (p, = 0). As a result the bow
seal was wetted during each test run. The wet bow seal was probably sticking to
the side hulls, thereby affecting the actually measured bow seal force. This sticking
is not likely to reproduce very well, and therefore results in some scattering of the
added resistance of the air cushion. The sticking occurred in the tests in waves as
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Figure 4.18: The total added resistance (model free in heave and pitch)
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Figure 4.19: The added resistance of the air cushion (model free in heave and pitch)
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Figure 4.20: The added resistance of the hulls (model free in heave and pitch)
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well as in the tests in calm water. Therefore it is not expected that it affects the order
of magnitude of the added resistance of the air cushion.

The added resistance of the hulls is much larger than the added resistance of the
air cushion (please compare Figure 4.19 and Figure 4.20). The added resistance of
the air cushion is only small and in most cases even negative. It can therefore be
concluded that, when the model is free in heave and pitch, the contribution of the
hulls to the added resistance is much more important than the contribution of the air
cushion.

4.6.4 The mechanism of sinkage

When an SES sails in waves the extra amount of air leakage results in a lower mean
excess pressure inside the air cushion. Therefore a larger part of the vessel’s weight
must be carried by the buoyancy of the hulls. This leads to a larger draft of the hulls
and consequently to a larger resistance. This increase of the resistance is called the
added resistance due to sinkage. It only occurs in the heave and pitch motion tests
(Series 2.7). In the captive tests the model was not free to sink deeper into the water.

In order to investigate the mechanism of sinkage, some runs with a reduced fan
RPM were carried out. From these runs we derived linear relations of heave dis-
placement (1), resistance (R), resistance of the air cushion (R(®®) and resistance
of the hulls (R) with cushion pressure (p.). These relations were used to calcu-
late the mean heave displacement and the added resistance due to sinkage for the
experiments in waves by substituting the measured mean cushion pressure. Fig-
ure 4.21 shows a comparison of the thus calculated mean heave displacement and
the directly measured mean heave displacement. The directly measured sinkage is
slightly smaller, but the agreement is generally very good. This indicates that this
somewhat indirect approach is valid.

Figure 4.22, Figure 4.23 and Figure 4.24 respectively show the total added resis-
tance due to sinkage, the added resistance of the air cushion due to sinkage and the
added resistance of the hulls due to sinkage. From a comparison of Figure 4.22
with Figure 4.18 it appears that the mechanism of sinkage is responsible for a large
part of the total added resistance; it is more than half the total added resistance.
Both air cushion and hulls contribute to added resistance due to sinkage. The added
resistance of the hulls due to sinkage is large, while the added resistance of the air
cushion due to sinkage is negative. Actually the cushion pressure drop causes a
decrease of the wave making resistance of the air cushion, an increase of the wave
making resistance of the hulls and an increase of the frictional resistance of the
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Figure 4.21: The mean heave displacement (7,) directly measured and computed
from the runs with a reduced fan RPM

hulls. Figure 4.25 shows a comparison of the added resistance of the hulis due to
sinkage with the total added resistance of the hulls. The full added resistance of the
hulls is only slightly larger.

4.6.5 Discussion

The oscillation and wave force experiments led to a conclusion that is quite differ-
ent from the conclusion that was drawn from the motion experiments. In the first
case the conclusion was that the added resistance of the air cushion and the added
resistance of the hulls are of equal importance. In the latter case the conclusion was
that the added resistance of the hulls is large, while the added resistance of the air
cushion is of minor importance.

The difference can be explained by the fact that no sinkage occurred in the oscil-
lation and wave force experiments. Sinkage appeared to be very important for the
added resistance of the hulls. In the oscillation and wave force experiments the
(mean) position of the model was fixed. The model was not allowed to sink deeper
into the water. Therefore the added resistance of the hulls due to sinkage equaled
zero, which results in a much smaller added resistance of the hulls and also in a
much smaller total added resistance.

The motion experiments, where the model was free in heave and pitch, are most
representative for the problem of a real SES sailing in a seaway. Therefore the con-
clusion of these experiments are the most relevant conclusions concerning the origin
of the added resistance of Surface Effect Ships. The conclusions that followed from
the oscillation and wave force experiments are only applicable to a situation that
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Figure 4.23: The added resistance of the air cushion due to sinkage
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Figure 4.24: The added resistance of the hulls due to sinkage
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Figure 4.25: Comparison of the added resistance of the hulls due to sinkage with
the full added resistance of he hulls (model free in heave and pitch)

only exists in a laboratory.

4.7 Conclusions

The following conclusions concerning the added resistance due to waves of Surface
Effect Ships can be drawn from the experiments:

e The contribution of the air cushion to the added resistance is relatively unim-

portant. The major contribution to the added resistance is due to the hulls. In
the wave force experiments the added resistance of the air cushion was sig-
nificant, but in the experiments where the model was free in heave and pitch
the added resistance of the air cushion was only small and in most cases it
was even negative.

The mechanism of sinkage is important for the added resistance of SESs. The
large added resistance of the hulls in the heave and pitch motion experiments
is almost entirely due to sinkage.

The added resistance of the model with realistic side-hulls is larger than the
added resistance of the model with extremely slender side huils (model with
plates). The difference is however not very large. It is remarkable that the
added resistance of the hulls of the model with plates is significant. This
indicates that other mechanisms (probably viscosity) might be important for
the added resistance of fast and very slender hulls.

A relatively large added resistance was measured (up to half the calm water
resistance). It was however considerably smaller than the added resistance
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that was measured by MARIN. It must be noted that there were several dif-
ferences between both experiments.

e The relation of the added resistance with the wave amplitude is neither linear
nor quadratic; the relation is somewhere between quadratic and linear.




Chapter 5

Validation of the computational
method

This chapter presents a validation of the computational method. Therefor the results
of the computational method are compared to the results of the experiments with the
DUTSES model that were described by Chapter 4.

This chapter starts with some remarks on the computations. Thereafter it carries
on with the actual comparison of computational and experimental results. This
chapter subsequently pays attention to the heave and pitch motions, the pressure
variations in the air cushion and stern seal plena, the forces that act on the seals
and the behavior of the fans. Thereafter Section 5.6 presents a comparison of the
computational and experimental results for the added resistance due to waves.

The computational method only includes the part of the added resistance that
is caused by the air cushion (see Chapter 3). The experiments that were presented
by Chapter 4 showed however that the air cushion only gives a minor contribution
to the added resistance of SESs. The experiments also showed that the large added
resistance of the hulls is mainly caused by sinkage of the vessel while sailing in
waves. Therefore Section 5.6 also investigates how the computational method can
be applied in a computation of the added resistance due to sinkage.

This chapter ends with conclusions concerning the validity of the computational
method and the applicability of the computational method for the prediction of the
added resistance.

In order to limit the amount of results to be presented, this chapter mainly focuses
on the results of the experiments in which the DUTSES model was free in heave
and pitch. These experiments are the most representative for the problem of a real
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Figure 5.1: The effect of the bow seal immersion on the heave RAO of the DUTSES
model

SES sailing in waves. In some cases this chapter also presents results of the forced
oscillation and wave force experiments, when these results lead to relevant addi-
tional information. All results in this chapter concern the model with realistic hulls
sailing in head waves at a forward speed of 3.27 [m/s] (F'n = 0.603).

5.1 Some remarks on the computations

Almost every computational method requires some kind of tuning before it yields
good results. This also applies to the present method. The tuning that was carried
out in the present computations concerned the sinkage and trim of the DUTSES
model in calm water. This was particularly important because the bow seal of the
DUTSES model was designed to skim over the water surface, just without leaving
an air leakage gap (in calm water). The computational results in waves strongly
depend on whether the bow seal does or does not leave a leakage gap in calm wa-
ter, particularly when the wave amplitude is small. This is illustrated by Figure 5.1
which shows the effect of the bow seal immersion on the heave RAO of the DUT-
SES model in 1 [mm] amplitude waves. The sinkage and particularly the trim have
a very important effect on the bow seal immersion. It is therefore of great impor-
tance that the computed calm water trim and sinkage are correct.
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In order to obtain a computed calm water sinkage and trim that corresponded closely
to the calm water sinkage and trim of the experiments, a few small modifications
to the input of computational method were made. First of all two small additional
leakage areas were introduced: one leakage area for leakage out of the stern seal
plenum and one leakage area for leakage out of the air cushion. This extra air
leakage resulted in a correct calm water cushion and seal excess pressure, and also
in a correct sinkage. In the experiments some extra air leakage between the stern
seal bag and the hulls also occurred. Furthermore, in order to obtain a correct trim,
the center of gravity was moved about 7 [mm] forward and the bow seal was moved
about 5 [mm)] aft.

5.2 Heave and pitch motions

This section and the following sections carry on with the actual validation of the
computational method. Figure 5.2 shows a comparison of the computed and mea-
sured heave motions (n3;) of the DUTSES model. The figure presents the mean
value of 73, the amplitude of the first harmonic component of 7; divided by the in-
cident wave amplitude, and the phase of the first harmonic component of 73. The
data are plotted as a function of L/, the cushion length divided by the incident
wave length. Results for several incident wave amplitudes (A) are shown. In some
cases (large wave amplitude and close to pitch resonance) the computational results
are represented by a dashed line. For these results the stern seal linearization that
is discussed in Section 3.5.3 was applied because the non-linear iterative procedure
for computing the stern seal geometry did not converge.

The results are generally in good agreement. The computed heave amplitude is
slightly larger than the measured value. Both computational and experimental re-
sults show a small heave amplitude response when the cushion length is a multiple
of the wave length. At these wave lengths the incident waves do not change the air
cushion volume, which leads to a small excitation of the cushion pressure and heave
motions. The correlation of the phase characteristics is good, and the computed and
measured mean heave displacement (sinkage) is also satisfactory.

Figure 5.3 shows a comparison of the computed and measured pitch motions (7))
of the DUTSES model. A dashed line indicates again that the stern seal lineariza-
tion was applied. The correlation of the amplitude characteristics is good. The
computed pitch motion amplitude is only slightly larger than the measured pitch
amplitude. The phase characteristics correlate excellently in the lower frequency
range, but in the higher frequency range a large difference occurs. The phase of
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Figure 5.2: The mean value, amplitude response and phase of the heave displace-

ment of the DUTSES model
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Figure 5.3: The mean value, amplitude response and phase of the pitch displacement
of the DUTSES model
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an almost zero amplitude signal is however not very relevant. The computed mean
pitch displacement is significantly larger than the measured mean pitch displace-
ment, but the trends with wave length and wave height are in good agreement.

Section 3.5.2 presents similar results for the HYDROSES target vessel. When these
results are compared to the present results it appears that the correlation for the
heave motions is better in the HYDROSES case. The DUTSES results show how-
ever a much better correlation for the pitch motions, particularly for the pitch ampli-
tude close to resonance. The latter difference might be explained by the fact that the
air cushion of the HYDROSES model was pressurized by fans that were mounted
on the carriage, while the air cushion of the DUTSES model was pressurized by
fans that were mounted on the model. The tubing which led the air from the fans to
the HYDROSES model might have caused a considerable damping of the pitch mo-
tions. The HYDROSES results also show the phase difference in the high frequency
range.

5.3 Cushion and seal excess pressures

Figure 5.4 presents a comparison of the computed and measured cushion excess
pressure (p.). The air cushion excess pressure was measured at two locations: in
the fore and in the aft part of the cushion. The figure presents results of both pres-
sure measurements. The computational and experimental results are in reasonable
agreement. The amplitude is again small when the cushion length equals a multiple
of the wave length. The computed pressure amplitude is however greater than the
measured pressure amplitude. This corresponds to the results for heave motions; the
calculated heave amplitude response is also somewhat larger than the experimental
one. The correlation of the phase is generally good. The experiments show a phase
difference between the fore and aft pressure in the long wavelength range. Such a
phase difference does not occur in the computations because the cushion pressure
was assumed to be constant in space. The computed and measured mean cushion
excess pressure are also in good agreement.

Figure 5.5 shows the computational and experimental results for the stern seal pres-
sure. They are in reasonable agreement. The computed amplitude is again much
larger than the measured amplitude, but the correlations for the phase and for the
mean value are reasonable.

The occurrence of higher harmonic components is an important effect of the non-
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Figure 5.4: The mean value, amplitude response and phase of the cushion excess

pressure p. (model free in heave and pitch)
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linear cushion and seal dynamics. These higher harmonics are most prominent in
the cushion and seal excess pressures. Figure 5.6 presents the amplitude and phase
of the first, the second and the third harmonic component of the air cushion pressure.
The correlation of the amplitude characteristics is good, but the phase characteristics
do not agree very well. The phase of the higher harmonic components depends
strongly on the opening and closing of the leakage gaps under the seals. Air leakage
is the most important non-linear phenomenon in the air cushion dynamics. It is the
main cause for the higher harmonics. The exact moment of the opening or the
closure of the seals is difficult to predict.

Figure 5.7 also shows amplitude and phase characteristics of the first second and
third harmonic component of the cushion pressure. These results follow however
from forced pitch oscillation experiments in calm water. The pitch amplitude was
0.02 [rad], and the results are plotted as a function of the oscillation frequency. In
this case the second harmonic component is even larger than the first one. Pitch
motions do not change the volume of the air cushion. Therefore the cushion pres-
sure is only excited by air leakage under the seals, which results in small pressure
variations and relatively large higher harmonics. The correlation of the phase of the
second and third harmonic component is good. This is probably due to the fact that
in this case the prediction of the moments at which the leakage gaps under the seals
open or close is relatively easy.

Another remarkable aspect of Figure 5.7 is the phase shift of the first harmonic
components of the pressures that were measured in the fore and aft parts of the air
cushion. Such a phase difference also occurred in Figure 5.4 around L/ = 1. At
this wave length the cushion pressure variations are only small, while the model
carried out significant pitch motions, just like during the forced pitch oscillations.
This can be explained by the fact that a large amount of air leakage causes internal
air flows inside the air cushion, which results in spatial pressure variations. When
waves or heave motions induce significant cushion volume variations and conse-
quent pressure variations, the effect of the spatial variations is only small. It is
not expected that the phase difference is caused by the vertical acceleration of the
pressure transducers since the resonance frequency of the pressure transducers was
much higher than the oscillation frequency.

5.4 Seal forces

At the end of Chapter 3 some doubt was cast on the accuracy of the computed seal
forces. It appeared that the seal forces had only a small effect on the pitch motions,
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Figure 5.6: The first (top), second (middle) and third (bottom) harmonic component
of the cushion excess pressure p, (model free in heave and pitch)
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Figure 5.7: The first, second and third harmonic component of the cushion excess
pressure (p;) due to forced pitch oscillations

but other investigators found that the stern seal forces are very important for pitch
motions. This section presents a comparison of computed and measured seal forces
in order to check the validity of the seal models.

Figure 5.8 and Figure 5.9 show comparisons of the computed and measured bow
seal forces, and Figure 5.10 and Figure 5.11 show comparisons of the computed and
measured stern seal forces. The correlation of computational and the experimental
seal forces is generally good. There are however some differences.

In most cases the computed and measured mean values are shifted with respect
to each other. The measured mean longitudinal seal forces (F}; and Fj;) are smaller
than their computed counter parts. This may be explained by the fact that the vis-
cous resistance of the seals is not included in the calculations. Furthermore the
measured vertical bow seal force (F};) is larger than the computed one. This can be
explained by the sticking phenomenon of the bow seal that was discussed in Sec-
tion 4.6.3. This cannot however explain the complete difference. The trends of the
computed and measured mean seal forces are however in excellent agreement.

The amplitude of the longitudinal bow seal force (F};) does not show the char-
acteristic maxima and minima. This also leads to a somewhat smoother phase char-
acteristic. The most remarkable difference is perhaps that the measured amplitude
of the vertical stern seal force (F}3) is much smaller than the computed one. This is
remarkable since the results for the longitudinal seal force amplitude, which seems
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Figure 5.8: The mean value, amplitude response and phase of the longitudinal bow
seal force (F3;) in head waves (model free in heave and pitch)
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Figure 5.9: The mean value, amplitude response and phase of the vertical bow seal
force (Fp3) in head waves (model free in heave and pitch)
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Figure 5.10: The mean value, amplitude response and phase of the longitudinal
stern seal force (F};) in head waves (model free in heave and pitch)
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Figure 5.11: The mean value, amplitude response and phase of the vertical stern
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even harder to compute, are excellent. The correlation for the phase characteristic
of F3 is good. ’

In general the correlation of the computational and the experimental seal forces is
good. This indicates that the seal models are valid. Together with the good correla-
tion of the pitch motions (Figure 5.3), this confirms the conclusion of Section 3.5.3
that the seal forces only have a small effect on the pitch motions.

5.5 The behavior of the fans

In the computational method the flow through the fans is approximated by means
of the linearized static fan characteristic. Many authors show however that the fans
respond in a dynamical way to pressure variations in the plenum that they pressur-
ize (see Section 3.2.2). Furthermore Section 3.5.3 demonstrated that the fans have
a very important damping effect on pressure variations and therewith on heave mo-
tions. Therefore this section presents results on the behavior of the fans.

Figure 5.12 shows the behavior of the fans during the experiments where the model
was free in heave and pitch (i.e. heave and pitch motion expenments) It presents
the amplitude of the volume flux through the cushion fan (Q ) divided by the
amplitude of the cushion excess pressure (p.), and the amphtude of the volume flux
through the stern seal fan (Q{"™) divided by the amplitude of the stern seal excess
pressure (p;). It also presents the relative phases of the volume fluxes with respect
the corresponding excess pressures. In the computational method the flow trough
the fans is approximated by means of the linearized static fan characteristics. The
slope of the static characteristic of the cushion and seal fans was estimated at -
0.00029 [m3/s/Pa). Hence the computational results in Figure 5.12 are a constant
amplitude relation of 0.00029 [m3/s/Pa] and a phase relation of 180 [deg].

The experimental results are very much scattered. The reason for this scattering is
not clear. Figure 5.13 shows the behavior of the fans during the wave force experi-
ments. These results are not so much scattered. The results of the forced oscillation
tests also show only a small amount of scatter.

Based on Figure 5.13 it can be concluded that the air flow trough the fans can be
approximated by the linearized static fan characteristic with reasonable accuracy. In
general the measured amplitude response is somewhat smaller than the slope of the
static characteristic. The phase of the air flow with respect to the pressure is always
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Figure 5.12: The behavior of the fans during the experiments where the DUTSES
model was free in heave and pitch and the corresponding computations
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Figure 5.14: The added resistance of the air cushion (R{%) (restrained model)

close to 180 [deg], which means that the axial fans that were used in the present
experiments do respond in reasonably static way. The knowledge of the behavior of
real size air cushion lift fans is however still very limited.

5.6 Added resistance due to waves

This section presents a comparison of the computed and the measured added resis-
tance of the DUTSES model. The computational method only calculates the added
resistance of the air cushion. The experiments that were presented in Chapter 4
showed however that the contribution of the air cushion to the total added resistance
is only of minor importance, and that the major contribution is due to the hulls.
The experiments also showed that the large added resistance of the hulls is mainly
caused by sinkage of the vessel while sailing in waves. Therefore this section also
investigates to what extent the computational method can be applied for the predic-
tion of the added resistance due to sinkage.

Figure 5.14 shows results for the added resistance of the air cushion. These re-
sults follow from experiments and computations where the DUTSES model was
restrained in its mean position while it was towed in waves (i.e. wave force exper-
iments). In this setup we measured the largest added resistance of the air cushion.
The figure presents the added resistance of the air cushion as a function of L/, the
air cushion length divided by the wave length. It presents results for several wave
amplitudes.

The correlation of the computational and experimental results is very satisfac-
tory. The actual values do differ significantly for the smaller wave amplitudes, but
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Figure 5.15: The added resistance of the air cushion R{%) (model free in heave and
pitch)
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Figure 5.16: Comparison of the added resistance of the air cushion R\ with the
total added resistance R,

the trends of the added resistance of the air cushion with wave height and wave
length are in good agreement. One should also realize that the measurement of the
added resistance of the air cushion is very complex which leads to some scattering
of the results. This scattering particularly emerges when wave amplitude is small.

Figure 5.15 also shows results for the added resistance of the air cushion. These
results follow however from experiments and computations where the DUTSES
model was free in heave and pitch (i.e. motion experiments). In this figure the
dashed line again indicates that the stern seal linearization, which was discussed in
Section 3.5.3, was applied.
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The correlation is not as good as in Figure 5.14, where the DUTSES model
was restrained. Both calculations and experiments lead to a small and in many
cases even negative added resistance of the air cushion. The experiments do not
show a clear trend. In Section 4.6.3 in Chapter 4 doubt was cast on the accuracy
of the measurement of the added resistance of the air cushion in the heave and
pitch motion experiments. The accuracy was affected by sticking of the soaked
finger-type bow seal to the hulls, which resulted in a poor accuracy of the bow
seal force measurement. This explains the scattering of the experimental results in
Figure 5.15.

Figure 5.16 shows the measured total added resistance, next to the measured and
computed added resistance of the air cushion. When compared to the total added
resistance, the correlation of the computed and measured added resistance of the
air cushion is good; both are small. This figure also shows that the goal of the re-
search project that lies at the root of this thesis (the development and validation of a
computational method for the added resistance of SESs) has not been accomplished
yet. Therefore we will now investigate into the applicability of the computational
method for the prediction of the added resistance due to sinkage.

The experiments that were presented in Chapter 4 showed that the added resistance
of the hulls is the largest contribution to the added resistance of SESs. They also
showed that the large added resistance of the hulls is mainly caused by sinkage of
the vessel due to a drop of the cushion pressure. This pressure drop is caused by an
increase of the air leakage flow out of the cushion when the vessel sails in waves.
Section 5.2 and Section 5.3 showed that the computational method can compute
the drop of the cushion pressure and the consequent sinkage and trim with good
accuracy.

In Chapter 4 linear relations were derived for the resistance, the resistance of
the air cushion and the resistance of the hulls as a function of the cushion excess
pressure. These relations were used to determine the total added resistance due
to sinkage, the added resistance of the air cushion due to sinkage and the added
resistance of the hulls due to sinkage by substituting the measured mean cushion
pressure.

These relations can also be used with the computed mean cushion pressure. Fig-
ure 5.17 presents a comparison of the thus semi-computed added resistance of the
hulls due to sinkage with the measured added resistance of the hulls. The correla-
tion of these data is excellent. This is not very surprising because the computational
and experimental results for the mean cushion pressure were in good agreement too
(see Figure 5.4). It shows however that the computational method can be very use-
ful in the calculation of the added resistance of the hulls.




5.6. ADDED RESISTANCE DUE TO WAVES 123

A =10 [mm] A =20 [mm] A =30 [mm] A =40 [mm]
25
Z 20~ i (Y
3 i
§ 157 '
k] §
0w \
e 104
'8 +
g .
© A - NP calc.
A ¥ exp. -+
0 1 1 1 1 1 1 1 1 1
0 1 2 30 1 2 30 1 2 30 1 2 3
L/A[-]

Figure 5.17: Comparison of the added resistance due to sinkage of the hulls R(%)
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Figure 5.18: Comparison of the measured total added resistance (R,,,) with the sum
of the computed added resistance of the air cushion and the semi-computed added
resistance due to sinkage of the hulls (R{) 4 R y
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Figure 5.18 presents a comparison of the measured total added resistance with the
sum of the computed added resistance of the air cushion and the semi-computed
added resistance due to sinkage of the hulls. Please note that the thus computed
added resistance does not include the added resistance due to wave radiation of the
hulls. The data are in good agreement. It is therefore expected that inclusion of the
added resistance due to sinkage of the hulls in the computational method will result

in a method that gives a reasonably accurate prediction of the added resistance due
to waves of Surface Effect Ships.
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The added resistance of the hulls due to sinkage is basically an increase of the
calm water resistance of the hulls which is caused by a larger draft of the vessel.
The computational method can compute the drop of the cushion pressure and the
consequent sinkage and trim with good accuracy. The work that still remains to be
done is the development of an accurate method for the prediction of the calm water
resistance of the hulls at different drafts.

5.7 Conclusions

This chapter presented a comparison of computational and experimental results.
From this comparison the following conclusions can be drawn:

e The correlation of the computational and experimental results for heave and
pitch motions, excess pressures, seal forces and behavior of the fans is gener-
ally good. The computed and measured mean values are also in satisfactory
agreement. This subscribes the validity of the computational method.

e The computed and measured added resistance of the air cushion are also in
good agreement.

e The computational method does not include the most important contribution
to the added resistance; the added resistance of the hulls due to sinkage.

e The computational method can be very useful for the prediction of the added
resistance of the hulls due to sinkage, because it can compute the drop of the
cushion pressure and the consequent sinkage and trim with good accuracy.




Chapter 6

Conclusions

In the scope of the research question that was put in the introduction of this thesis
(see Section 1.4) the following conclusions are drawn. One should however realize
that these conclusion follow from a somewhat indirect analysis.

e The hulls give the major contribution to the added resistance of SESs. This
follows from the experiments that are presented by Chapter 4. These experi-
ments also show that the large added resistance of the hulls is mainly caused
by the mechanism of sinkage'.

e According to the experiments the added resistance of the air cushion and the
added resistance of the hulls due to wave radiation (i.e. the added resistance
that is experienced by conventional ships) are of minor importance. The hy-
pothesis that the large added resistance of SESs is caused by the air cushion
is therefore rejected.

e A computational method for the added resistance due to waves of Surface
Effect Ships must at least compute the added resistance of the hulls due to
sinkage. The computational method that is presented by Chapter 2 and Chap-
ter 3 does not include the added resistance of the hulls due to sinkage. The
goal of the research project that lies at the root of this thesis, the development

! Added resistance due to the mechanism of sinkage particularly occurs with Surface Effect Ships.
When an SES sails in a seaway the amount of air leakage out of the air cushion increases because
the motions of the vessel and the incident waves cause significant leakage gaps under the bow and
stern seals. This results in a drop of the air cushion excess pressure. This subsequently leads to a
larger draft of the hulls, because a larger part of the vessel’s weight must be carried by buoyancy of
these hulls. This sinkage results in an increase of the resistance of the hulls that is called the added
resistance of the hulls due to sinkage. It is basically an increase of the calm water resistance of the
hulls.
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and validation of a computational method for added resistance of SESs, has
therefore not been fully accomplished yet.

e The computational method can accurately compute the sinkage of an SES
sailing in waves. This is the first important step towards the computation of
the added resistance of the hulls due to sinkage. The second step, which is the
calculation of the extra (calm water) resistance due to this sinkage, still needs
to be implemented.

¢ The computational and the experimental results for the added resistance of the
air cushion are in good agreement. The added resistance of the air cushion is
however of minor importance.

e Air leakage is an important and highly non-linear phenomenon. It is crucial
in the computation of the cushion pressure drop and the consequent sinkage
due to waves.

Furthermore the computational method yields results for motions, excess pressures
and seal forces that are generally in good agreement with experimental results.
From these results the following conclusions, that are only of indirect relevance
for the research question of Section 1.4, can be drawn:

e Air leakage has an important effect on the cushion pressure variations and
heave motions. It appears to have a significant damping effect on the cushion
pressure variation, particularly leakage under the stern seal. Furthermore air
leakage also excites cushion pressure variations. It particularly excites higher
harmonic components in the cushion excess pressure.

e The air supply system (fans) has an important damping effect on the cushion
pressure.

e The effect of the interaction of the air cushion with the wave surface is signif-
icant, although it is not very large. The interaction causes a considerable shift
of the Helmholtz resonant frequency. This resonance is however damped to a
large extent by air leakage and the fans.

e The seals have an important effect on the cushion dynamics and thereby on
the heave motions. The direct effect of the seals on the motions by means
of the seal forces is only limited. The seals only have a small effect on pitch
motions.

The following recommendations for further research are made:
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It is recommended to extend the computational method with a module that
computes the added resistance of the hulls due to sinkage. The computational
method can already compute the sinkage of an SES due to waves. The work
that remains to be done is the development and validation of a method that
computes the increase of the (calm water) resistance due to this sinkage. This
requires further research into the calm water resistance of SESs.

The fans have a very important damping effect on cushion dynamics. The
axial fans that were used in the experiments of Chapter 4 could be modeled
by a simple static fan model with reasonable accuracy. It remains however to
be seen whether this also applies to full scale radial fans. Therefore further
research into the behavior of air cushion lift fans is recommended.
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Appendix A

The frequency domain and the time
domain

This Appendix treats the interrelation of the frequency domain and the time domain
with respect to ship motions. It presents theory that was developed in the early
sixties by Cummins[56] and Ogilvie[57]. Furthermore it presents the actual imple-
mentation of the transformation of the frequency domain results of the panel method
(Chapter 2) to the time domain. The time domain results are used in a non-linear
time simulation method (Chapter 3).

A.1 Introduction

Naval architects are very much used to the frequency domain formulation of the
equations of motion of a ship:

Z{(Mjk+Ajk(w))ﬁk(t) + Bje(w)iw(t) + Cjwk(t)} = X;(t) forj=1,...,6

= (A1)
In 1962 Cummins[56] presented an alternative formulation for the equations of mo-
tion of ships. He developed this formulation because of a dissatisfaction with the
frequency domain formulation. A quotation:

In fact we appear to have forgotten that we are wearing a shoe which
doesn’t quite fit. The “shoe” to which I refer is our mathematical
model, the forced representation of the ship response by a system of
second order differential equations. The shoe is squeezed on, with no
regard for the shape of the foot. The inadequacy of the shoe is evident
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in the distortions it must take if it is to be worn at all. I am referring,
of course, to the frequency dependent coefficients [Equation A.1] which
permit the mathematical model to fit the physical model.

Indeed Equation A.1 only holds when the forcing function X;(t) is purely sinu-
soidal with frequency w. Furthermore the distribution of the in-phase hydrodynamic
reaction force over the added mass and the restoring coefficient is quite arbitrary.
Equation A.1 could for instance just as well be written as:

i{Mjkﬁk(t) + Bip(w)m(t) + (Cix — w*Ap(w)m(t)} = X;(0)  (A2)

k=1

The restoring coefficient C'j;, is often defined in such a way that it only includes the
hydrostatic part of the restoring force. When the velocity of the ship is non-zero,
this causes A,x(w) to become infinite when w tends to zero. When Cj;, is defined
in such a way that it also also includes the hydrodynamic part of the restoring force
Aji(w) remains finite when w tends to zero. Cummins developed a mathematical
model which permits the representation of the response of a ship to an arbitrary
forcing function. This model did not involve any frequency dependent parameters.
Cummins made one major assumption: linearity of the system. This is also the most
important underlying assumption of the frequency domain formulation.

In 1964 Ogilvie[57] presented relations between the equations of motion in the fre-
quency domain and the equations of motion in the time domain. He showed that
the frequency domain equations of motion and the equations of Cummins are fully
equivalent. He also showed how to transform the frequency domain coefficients
and the coefficients and impulse response function which occurs in the time domain
expression into one another.

In 1976 van Oortmersen[58] used the equations of Cummins in computations of
motions of moored ships in waves. This enabled the inclusion of non-linear moor-
ing forces in the simulations, while the hydromechanical problem was solved in the
frequency domain.

In the present study the motions and non-linear air cushion dynamics are solved in a
time simulation procedure, while the linearized hydromechanical problem is solved
in the frequency domain. The next section presents some theory on impulse re-
sponse functions. This theory will be used in subsequent sections which present the
theory of Cummins and the interrelation of the time domain and frequency domain
expressions.
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A.2 Impulse response functions

The response of a linear system to an arbitrarily shaped forcing function can be rep-
resented by means of an impulse response function. An Impulse response function
gives the quantified response of a system to a unit impulsive input at ¢ = 0. This unit
impulsive input is also known as the J-function (or d-distribution as it is formally
not a function). The §-function 6(t) is defined as lima,_,0 da (¢), Where

Sat) =0 if t¢[0,A ,and 5A(t):Ait it ote0,A] (A3

Because of the linearity of the system the response to several impulses (which act
at different moments) can be superimposed. This means that the response (r) to
a continuous input () can be expressed as a convolution of the impulse response
function and input from the past:

4

r(t) = / h(t — t') () dt’ (A4)

—00

The convolution integral represents the memory of the system. When ¢ — ¢’ is sub-
stituted by 7, Equation A.4 can also be written as:

r(t) = / h(r)z(t — 7) dr (A5)

where the integration boundaries could be changed to —oc and oo because h(t) = 0
when ¢ < 0 due to causality.

An impulse response function is related to a corresponding complex harmonic re-
sponse function by means of a Fourier transform. A complex harmonic response
function H (w) gives the (complex) harmonic response of a system to a (complex)
harmonic input:

P = H(w)# (A.6)

where 7(t) = R{Fe*'} and z(t) = R{Ze“'}. The relation of h(¢) and H(w)
reveals itself when a harmonic input is substituted:

r(t) = R{H(w)&e™"} (A7)
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or
r(t) = /Oo h(r) §R{fce"w“"’}dT=51‘3{7h(7) eWdr it} (A8)

Apparently h(t) and H(w) are a Fourier transform pair:

Hw) = / h(t)e~tdt
1 i zwt

= / duw (A9)

The Fourier transform exists when when the following integral exists:

o0

/ IR(t)| dt (A.10)

—00

For stable systems it generally does.

A.3 Cummins’ Equation

This section presents the time domain equations of Cummins. Cummins derived
his equations from a mathematical description of the hydromechanical problem of
a ship sailing in waves.

From now on we will merely focus on the hydromechanic reaction force instead
of on the full equations of motion. The hydromechanic reaction force is the force
which acts on the wetted surface of a vessel due to it’s motions. The frequency
domain expression for the hydromechanic reaction force reads:

6

F; = — Z{Ajk(w)ﬁk(t) + Bjr(w)m(t) + Cjknk(t)} (A.11)

k=1

The equations of motion reappear when F; + X is set equal to 3-5_; M7}, where
X is the forcing function.
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First the boundary value problem for a ship oscillating in otherwise calm water
while sailing at a constant mean velocity U is recapitulated:

Ap=0
dp D ") , 0%
2U = =0
9%, +8t2 (,)(C)tnLU(%2 0 on 2
6 -
7= Z( ny + nkmk) on B
Radiation Condition (A.12)

Cummins proposes a solution of the following form:

6
(p(.’L', Y, 2, t Z{ nk z,y,z ( )+0mk(‘ray7'z)7lk(t) +
k=1

t
[ Ouale,y, 2t = i) dr +

—0o0

t

/ O (T, Yy 2,8 — T)0ie (1) d’r} (A.13)

—00

The potentials 0,x(x, y, 2) and 6, (z, y, z) must fulfill the following boundary con-
ditions:

Van - = Nk Vﬁmk 7= myg on (B)

O =0 O = 0 onz=20

The potentials ¥,,4(x, y, 2, t) and 9,,t(x, y, 2, t) have to fulfill these boundary con-
ditions:

Vi =0 VU -1=0  on(B)

829nk 82 ﬁnk a2T9nlc 2 02 19nk
-2 U =0 =0
9 "o Vawar TV o on#
2 2 2
0k n Ui 2U3 Dk n U28 Dk

9752 a2 " orot gz — 0 onz=0
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Besides ¥, (7, v, 2, t) and 9,k (z, ¥, 2, t) must fulfill the initial conditions:
79nk =0 "9mk =0 fort § 0
aﬁnk _ agnlc 619mk _ agmlc

ot o a oz

Oni and U, must also fulfill the Radiation Condition. When these conditions are
substituted in Equation A.13 it appears that ¢ fulfills it’s boundary conditions.

fort L0

This paragraph discusses the meaning of the potentials 6y, 0k, Ink and Uy The
potential 6, represents the direct response of the water to unit velocity of the ship
in k™ direction without free surface effects. The potential 6,,; represents the direct
response of the water to unit displacement in k** direction without free surface
effects. The boundary condition for 6, and 6,,, on z = 0 is fulfilled when (B)is
reflected in the surface z = 0, and the body boundary condition is taken negative on
this reflection.

The potential ¥, represents the decaying disturbance of the free surface after a
unit impulsive velocity in k direction. The potential 9,,;, represents the decaying
disturbance of the free surface after a unit impulsive displacement in k™ direction.
Unk and 9,,,; are impulse response functions.

The potentials 6, and 6,,, ensure that the body boundary condition is fulfilled.
The potentials 9, and 9, take care of the free surface boundary condition. The
potentials that have a subscript m are associated with the m-terms of the body
boundary condition for ¢. They account for the interaction between the unsteady
and the bases flow. If the ship has no forward speed the m-terms are zero. In that
case these potentials vanish.

The expression for ¢(z, y, z,t) (Equation A.13) can be rewritten as:

6

w(mayazat) = Z{gnk($7yvz)nk(t)+
k=1

[emk(ma%z) +@mk($3y,z70)]nk(t) + (A14)
t

/ ['ﬂnk(x7 Y, Z,t - T) - @mk(‘ra Y, Zat - T)]ﬁk(T) dT}

—0Q
where

T
Ok (z,y,2,t —T) = /ﬁmk(mayv‘zvt_T’)dT,
— 00
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The potentials 0, (x,y, z) + Oni(z,y, z,0) in Equation A.14 are basically a cor-
rection to the steady potential due to a constant unit displacement of the vessel
(k= 1).

The linearized pressure at the wetted hull surface can be expressed as:

Op 0 _
p = —p(gz + E - U(;p (a vV)(gz)) on B (A.15)

where @ is the local displacement of the hull surface. The unsteady part of the
pressure on the hull surface is now expressed in terms of the potentials 6,,x, Ok,
i and I

Z{ i (2,9, 2)Tk(t) + ( Omi (2, Y, 2) — Uaa O (2, ?/>2))771c(t) +
k=1

0
_U%(emk(la Y, Z) + @mk(l‘7 Y, z, 0))77k(t) +

t
/ [% ('ﬁnk(fta Yy, z,t— T) - @mk(i',y, 2.t — T)) +

7] .
—Ua(ﬁnk(i, Y, 2,t — T) — Oz, y, 2,1 — T))]’I}k(”l') dr +

(@ - V)(!JZ)} (A.16)

The hydrodynamic reaction forces follow from pressure integration over the wetted
part of the hull:

—/ pn;dS  j=1,...,6 (A.17)
B

Now F; can be written as:

t

Z{(L]]J]k + bjkﬁk(t) + Cjkﬂk(t) + / h]‘k(t - T)?l}k(’l') dT}
k=1

—00

j=1,...,6 (A.18)

where

ajp, = —p//gnk(x,y,z)n}-ds
B
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b = [ (Busl,9:2) — U (i, y,2) )y dS
B
Cjk = —p// —U%(Hmk(x, Yy, Z) + @mk(.l', Y, z, O))’I’l] ds + Cjk
B
hjk(t) = —p // [% ('l9nk($, Y, z, t) - @mk(ma Y, z, t)) +
B
—U%(ﬁnk(:p,y, 2,t) = Omi(2, 9, 2,1))|n;dS  (A19)

and

(le,cj%CjB)T = ph,//V(gz)nj ds
B

(CiasCis, Cio)" = o [[(@® V)(92)n; dS
B

The impulse response function h ;i (t) is often called retardation function.

A.4 The interrelation of the domains

The previous section presented a frequency domain expression (Equation A.11) and
a time domain expression (Equation A.18) for the hydromechanic reaction force.
This section presents the interrelation of these expressions.

The interrelation of the time domain and frequency domain expressions becomes
clear when a harmonic motion is assumed. Substitution of 7, (t) = R{7;xe™*} into
the frequency domain expression leads after some rearranging to:

6
Fy = =Y R{[-wAj(00) + iwBji(00) + Cjy + iwHjp(w)|e™ ) (A.20)
k=1
where
(W) = iw(A5w) — A3(00)) + (Bj(w) — Bj(o0)) (A.21)

Substitution of 7, (t) = R{n;xe™'} into the time domain expression results in:

6 o
Fy = =Y ®{[-w?aji + iwbjx + cjs + iw / hi(t) e dr| et} (A.22)
k=1 %
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Apparently:
Ak = A;k(oo)
bjx = B;k(oo)
Cjk = ;k
o
@) = [ halt)e
or

1 T * W
hi(t) = g/ij(w)e *dw

The complex harmonic response function H;(w) has to be defined according to
Equation A.21, otherwise the inverse Fourier transform does not exist. One can
prove that a;y, and b;; are indeed equal to the high frequency limit of A}, and Bj,.
In Section A.3 the coefficients a; and b;, were expressed in terms of the potentials
0. and 6,,,. These potentials represent the water flow around the hull without
free surface effects. The high frequency limit of the frequency domain solution
(limy, 00 @k (,y, 2,w)) represents the same flow. The high frequency limit of the
free surface boundary condition for ¢y (z,y, z,w) reads: ¢ = 0. This is the same
as the free surface boundary conditions for 6,,; and 6,,;. The hull surface boundary
conditions for on the one hand ¢y, and on the other hand 6,,;, and 6,,,;, are equivalent
too.

It should also be noted that the modified coefficients (Aj;, B, and C7, defined
in Chapter 2) are used. In these modified hydrodynamic coefficients the forward
speed effect on the restoring force is incorporated in C)y instead of in Ajk. When
the usual definition of the coefficients is used A;x(w) tends to infinity when w tends
to zero. Then the inverse Fourier transform does not exist again. The difference
of Cji, and C7; also follows from the definition of c;; that was presented by Equa-
tion A.19: the fact is that the potentials 0,,.(x,y, 2) + Omi(z, v, z,0) basically
represent a correction to the steady potential due to a constant unit displacement of
the vessel (1, = 1). Ok, y, 2) + Omi(x, ¥, 2, 0) are just equal to ¢k (z,y, z,0).

This paragraph shows how the transformation of the frequency domain results of the
panel method to the time domain is carried out in actual practice. Please note that in
the present study £ may also be equal to 7, since the air cushion excess pressure acts
as an extra degree of freedom. Because the real part of H,(w) is an even function
of w, while the imaginary part of H, (w) is an odd function of w, (t) can also be
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expressed as:
hi(t) = —/?R{ w)}coswtdw = ——/\s{ w)}sinwtdw  (A23)

In the present method the cosine inverse Fourier transform of the real part of /7 (w)
is used. For this transformation I3}, must be known on the entire frequency range.
Although the panel method gives reasonably good results up to a relatively high
frequency, the very high frequency tale of of the coefficients cannot be computed.
Therefore the damping curve is extrapolated by an exponential curve: ae™ + c.
The coefficients a, b and ¢ are chosen in such a way that the damping curve is
continuous and differentiable at the highest computed frequency, where b, which
determines the rate at which the curve approaches it’s asymptotic value, was fixed
in advance. Then B} (co) equals c, and h(t) follows from:

2 7 2 7
hir(t) = - / R{H; (w)} coswtdw = - / ${Hj(w)} sinwtdw  (A24)
0 0
Subsequently A7, (oco) follows from the sine Fourier transform of h . (t):
w(A(w) — A(0)) = / hy(t) sinwt dt (A.25)
0

where one should fill in the A, (w) as it was computed by the panel method. If
the extrapolation of the damping curve is accurate, the thus calculated A7 (c0) is
independent from w. Fortunately A}, (co) does not appear to be very sensitive to
the extrapolation of Bj,. Figure A.1 presentss an example of a thus calculated
impulse response function. Figure A.2 shows the corresponding added mass and
damping curves that were computed by means of the panel method. This figure also
displays the added mass curve as it follows from Equation A.25, where A}, (co) was
constant. The two added mass curves fit very well, thus demonstrating the validity
of the extrapolation of Bj.

Next to the hydromechanic reaction forces, the following quantities also need to be
transformed to the time domain: the wave pumping volume, the wave height at the
bow and stern seal, and the wave steepness at the bow and stern seal. The frequency
domain expression of these quantities can be written in the following form:

7
= 3 R{Di(w) i ™} (A.26)
k=1
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where ( is one of the quantities mentioned above, and Dy (w) is the complex har-
monic response function for this quantity due to a harmonical oscillation in the
k" degree of freedom. Analogous to the hydromechanic reaction force, the time
domain expression for { reads:

7

= 3 (Duloo)mi + / di(t — 7) () d) (A.27)
k=1

where

de(t) = % [ (De(w) ~ Dx(o0)) e

In Chapter 3 it appears that we also need derivatives with respect to time of the
quantities represented by (. They follow from:

7 ¢
= S (Duloo)in+ [ dilt = 7)n(r) dr) (A28)
k=1 -
The impulse response function di (¢) is computed from an inverse sine Fourier trans-
form of the imaginary part of Dy (w):
2 7 ,
dlt) = -~ / ${D}(w)} sinwt dw (A.29)
0

This choice was made because the high frequency limit of the imaginary part of
Dy(w) is known, that is zero. The extrapolation of the curves in the high frequency
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range is however difficult. The curves oscillate and do not approach their asymp-
totic value as rapidly as the damping curves did. Nevertheless satisfying results are
obtained when 3Dy (w) is simply extrapolated by ae~* in such a way that the func-
tion is continuous (but not differentiable) at the highest computed frequency. Again
b is fixed in advance. Now Dy (o00), which is real, follows from:

R{Di(w) — Ds(c)} = / di(t) coswt di (A.30)

where one should substitute $ D (w) as it was computed by the panel method. Fig-
ure A.3 presents an example of a thus calculated impulse response function. Fig-
ure A.4 shows the corresponding complex harmonic response function that was
computed by means of the panel method. This figure also displays the real part
of Dy (w) as it follows from Equation A.30, where Dy (oco) was constant. The two
R Dy (w) curves fit very well thus demonstrating the validity of the rather crude ex-
trapolation of 3Dy (w). Figure A.5 shows the same curves for a worst case: the
wave steepness at the stern seal due to an oscillating cushion pressure. In this worst
case a clear deviation of the directly computed curve and the curve that followed
from the transformation of dj(¢) can be observed. One should however realize that
the convergence of these results of the panel method is also rather poor. Furthermore
one might question whether the wave steepness at the stern seal is very important,
especially if one realizes that the major contribution to the wave steepness is due to
the incident waves.
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This Appendix presented time domain expressions for the hydromechanic forces on
the hulls of an SES due to motions and air cushion pressure oscillations. It also pre-
sented time domain expressions for the wave pumping volume of the air cushion,
the wave height at the seals and the wave steepness at the seals due to motions and
cushion pressure modulations. The time domain expressions involve constant (fre-
quency independent) coefficients and a convolution of an impulse response function
with the motions from the past. The appendix also explained how these coefficients
and the impulse response function can be derived from the frequency domain results
of the panel method which is presented by Chapter 2. The time domain expressions
are applied in the non-linear time simulation method which is presented by Chap-
ter 3.

0.12 T

T
he{D7'}, direct
0.091 Im{D7}, direct -—-----
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Figure A.5: Complex harmonic re-
sponse function for the wave steep-
ness due to a harmonic cushion pres-
sure modulation
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Appendix B

The bag-type stern seal geometry

This Appendix presents the method that is used to compute the geometry of the
bag-type stern seal. Several seal models can be found in literature. For the present
method Steen and Faltinsen[16] have largely been followed. For simplicity the
method for a two-lobe seal is described. The extension of the two-lobe method to
a three-lobe method is simple and straightforward. Figure B.1 shows a longitudinal
cut of a two lobe bag seal.

B.1 Underlying assumptions

The stern seal model is a two-dimensional model (in a longitudinal plane). This
implies that the wave height is assumed to be constant in transverse direction. This
assumption is reasonable when head and following waves are considered, because
the waves that are generated by the hulls and the air cushion are small compared to
the incident waves. Therefore the mean wave height and wave slope at the seal are
used. Furthermore the water surface is assumed to be rigid. This is assumption is
valid because of the high speed of SES. The Froude number based on some char-
acteristic seal length is of the order of 10! The wave curvature is also neglected,
but the wave slope is taken into account. This assumption is reasonable for not too
short waves. The air leakage flow under the seal is assumed to be stationary, invis-
cid and incompressible. A simple one-dimensional analysis of the leakage flow is
used. The gravitational and inertial forces on the bag membrane are assumed to be
small compared to forces due to the excess pressure. Therefore these forces can be
neglected. Now the problem of computing the stern seal bag geometry does not de-
pend on time any more. The only time dependency of the seal dynamics is through
the seal and cushion excess pressures.

143
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Figure B.1: Longitudinal cut of a two-lobe bag stern seal

The three-dimensional bag membrane is analyzed as a two-dimensional cable. The
cable has no bending stiffness and only transmits tension. Force equilibrium for a
cable segment yields the following relation:

T
— = R B.1
v B.1)
where T is the tension in the cable, Ap is the pressure difference across the seal and
R is the radius of curvature of the cable.

B.2 The dynamic pressure distribution under the seal

When the seal does not touch the water surface, air leakage from the cushion will
occur. This air flow results in a spatially varying pressure distribution under the seal.
This air flow has been studied elaborately by Ulstein[12]. He found that the follow-
ing one-dimensional analysis yields good results compared to results obtained from
a two-dimensional non-linear panel method.

The flow is assumed to be steady and inviscid, so Bernoulli’s equation can be used.
In the air cushion, at some distance from the stern seal, the velocity of the air equals
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zero. The flow under the seal is assumed to separate at the lowest point A of the
seal. At this point the pressure is atmospheric. The outflow velocity follows from

Bernoulli’s equation:
2p,
u, = 22 (B.2)
p

Where p, is the cushion excess pressure which is small compared to the atmospheric
pressure p,. Therefore p ~ p,. A mass balance gives the velocity upstream of the

point a:
o he [2p.
u(z) = o\ (B.3)

where h, is the leakage height under the seal, and h(z) is the height of the seal
above the water surface upstream of the point A (see Figure B.1). When the velocity
distribution is known the pressure distribution follows from Bernoulli’s equation:

p(z) = pe [1 - (ﬁh(j))?} (B.4)

B.3 The cushion-facing part of the seal

The pressure jump across the segment OA of the seal is not constant because of
the dynamic pressure distribution due to air leakage. The radius of curvature of the
segment O A is therefore not constant (see equation B.1). This causes the analysis
of this segment to be more difficult. Therefore this part of the bag is analyzed
separately.

Figure B.2 shows the cushion-facing part of a bag seal. A local coordinate system
with origin in O, z-axis pointing upwards and z-axis positive aft is shown. The
pressure jump Ap across the seal in a point (z, z) can now be expressed as:

Ap(z) = ps — Pe [1 - (hd - hsﬂ (B.5)

hg + 2z

where hy and h, are defined by Figure B.1. The curvilinear coordinate s along the
seal segment is defined as the distance along the seal from the point A to the point
(z, z). The following relations follow from Figure B.2:

_d_:n = cosf (B.6)
ds
2 g (B.7)

ds
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Figure B.2: Cushion-facing part of a bag seal

Force equilibrium for the infinitesimal segment ds leads to:
Apds = Tdf (B.8)

Combination of the equations (B.5), (B.7) and (B.8) results in:

N A
Ds Pc hy+ 2
Integration of the right hand side from —h; to z and integration of the left hand side
from the corresponding 0 to £ yields the following relation:

} dz = T'sinfddf B.9)

cosf(z) = 1— % [(ps —pe)(hs + 2) + pe(ha — hs)

h, + z] (B.10)

hg+ 2

Combination and integration of (B.6) and (B.7) leads to:

/ cos 0(¢ (B.11)

V1 —c0820
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The coordinates of the point A can now be expressed as:

/ el and 24 = —h,  (B.I12)
/1 — cos? 9(
The length of the segment O A can be written as:
—hs

Sy = — L
Lo /1 — cos?6(C)

Note that 7" and h, are the only unknown parameters that occur in the expressions
for LA, ZA and S().

(B.13)

The integrals in (B.12) and (B.13) are evaluated by means of numerical integration.
Because the integrand becomes singular at ( = —h;, special care has to be taken
at this integration boundary. Good results are obtained when a cosine distribution
of integration steps and the mean value of § are used, where the mean value of 6 is
[6(z) + 6(z + Az)]. The integrand at the mean value of 6 is simply multiplied by
the step size Az.

B.4 The complete seal

All unknown parameters of a two lobe bag seal are shown in Figure B.3. For con-
venience all unknown parameters are drawn larger than zero. However, |[AA’| can
only be larger than zero if hy = hy, and |BB'| can only be larger than zero if
©1 = o = 0, while |CC’| can only be larger than zero when 1), = 0. The un-
known tension T in the segment O A that appeared in the previous section can be
eliminated: force equilibrium in A combined with equation B.1 leads to T' = R, p,.
When the friction on |AA’| is taken into account this equation becomes:

T = Ryps + Cf%p|AA'|U2 (B.14)

where C} is taken according to the ITTC plate friction line, p is the density of water,
and U is the forward speed of the ship.

Now there are ten unknowns (R, Ry, hs, 5, ¢1, ¢, ¢, [AA'|, |BB'|, ), so ten
equations have to be formulated. First some shortcuts:
T = xa+|AA|+ Ry -sin(B+ ) (B.15)

zg =  za+ Ry [1+cos(B+¢1) (B.16)
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—

Figure B.3: Unknown parameters of a two lobe bag seal

where x4 and z,4 follow from equation B.12.

The following six equations hold, irrespective of whether the bag flies or touches
the water, and irrespective of overlapping of the lobes in the points B and C.

—m
g = arctan( $; ) (B.17)

t% + 2% = (|JOB|+|BB'|)? (B.18)

Tp + Ry - [sin(y + 1) —sin(p2 — B)] = cos(y) - (|OC| +|CC']) (B.19)
zp + Ro - [cos(y + ¢2) + cos(p2 — B)] = —sin(y) - (JOC| +|CC'|) (B.20)
|IBB|+ Ry - (r—B—¢1)+ |44 |+ Sy = L, (B.21)

|ICC\+ Ry - (m+ B —pa—v—12) +|BB'| = L (B.22)

The first two equations make the segment O AA’' B’ connect to the straight line seg-
ment OBB'. The third and fourth equation make the segment B'C’ connect to the
straight line segment OCC". The angle of the deck ('y) is known on fore hand (see
Figure B.1 for the definition of ). It depends on the pitch displacement and the
wave slope. The angle 3 of the segment OBB’ is unknown. The fifth equation
ensures the proper length L, of the lower lobe segment (O AA’'B’B), and the sixth
equation ensures the proper length L, of the upper lobe segment (BB'C'C).




B.4. THE COMPLETE SEAL 149

If the bag touches the water surface (|AA’| > 0) the seventh equation can be written
as:

hs = hy (B.23)

However, when the bag flies above the water surface (h, < hy) the seventh equation
reads:

|AA| = 0 (B.24)

When the upper and lower lobe overlap at the point B (|BB’| > 0) the eighth and
ninth equation are:

pr = 0 (B.25)
w2 = 0 (B.26)
But when the lobes do not overlap at B these equations become:
|BB'| = 0 (B.27)
Ry -sinp; = Ry-singp, (B.28)

where the last equation represents force equilibrium in the point B in the direction
which is perpendicular to the segment O B. If the upper lobe overlaps with the deck
at the point C (JCC’| > 0) the tenth equation is:

Py = 0 (B.29)
When no overlapping occurs in C' this equation becomes:
ICC'| = 0 (B.30)

Now the system of ten equations is complete.

This nonlinear system has to be solved in an iterative procedure. Newton-Raphson’s
method is used. The partial derivatives are calculated by means of finite differences.
The method converges quite rapidly provided that a good initial guess is used. Oth-
erwise no convergence will be obtained.

If the bag touches the water in the initial guess (h; = hy and |[AA’| > 0), and during
the iterative process | AA’| becomes smaller than zero, |AA'| is set to zero, and A, is
set free to values smaller than hy. When h; becomes larger than hy, h, is set equal
to hy, and |AA’| is set free to values larger than zero. For the overlapping at B and
C asimilar procedure is used. After every iteration an overlapping test is performed
in order to select the four appropriate equations from equations B.23, B.24, B.25,
B.26, B.27, B.28, B.29 and B.30 for the next iteration. In the case of a three-lobe
bag seal, the third lope is treated in exactly the same way as the upper lobe of the
two lobe seal.
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B.5 Seal volume and seal forces

When the seal geometry is known, the seal volume (V;), the volume of the part
of the cushion plenum that is taken up by the stern seal (V;.), and the seal force
(Fj(s)) can be computed easily. Figure B.4 shows definitions of V; and V.. The
definition of V; is quite obvious, but the definition of V. requires more attention.
The definition of V. depends on the definition of the deck area, which is used in the
computation of the cushion volume. It also depends on the definition of the part of
the free surface that is covered by the air cushion, which is used in the computation
of the wave pumping volume (V;). Figure B.4 also shows these areas. The cushion
plenum is defined to end at the lowermost point A of the bag.

The seal force follows from the sum of the tension in all canvas segments plus
the seal pressure multiplied by the area of |[OCC"|. The tension in the segments
CC'B'B and BB'A’ follows from equation B.1. Force equilibrium in B leads to
the tension in BO. The tension in the segment AQO follows from equation B.14.
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deckline for 773 = 75 = 0 deck area

free surface area

Figure B.4: Definition of V; and V.
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Appendix C

The diaphragm technique

A diaphragm is a device which is used to reduce the stiffness of the air cushion at
model scale. It is a flexible membrane which is mounted on top of the air cushion.
When the pressure in the air cushion increases, the diaphragm supplies extra vol-
ume which results in a much smaller increase of the pressure. The mass of the thin
flexible membrane is very small. Therefore the inertial and gravitational forces on
the membrane are negligible, so the diaphragm will not introduce new dynamical
effects.

This appendix presents a method to compute the deformed geometry due to an ex-
cess pressure in the air cushion of a circular diaphragm. When this geometry is
known the reduction of the cushion stiffness, dV/dp, can be calculated. Next to this
the section presents an experimental method that can be used to determine dV'/dp.
The results of both methods are compared.

C.1 Computational method

A cylindrical coordinate system (z, r, 6) is used in the calculation of the deformed
geometry of a circular diaphragm due to an excess pressure in the air cushion. The
problem is angularly symmetrical. An axial (£(r)) and a radial (p(r)) displacement
function are introduced (see Figure C.1). Because the membrane is very thin, it’s
bending stiffness can be neglected and stresses perpendicular to the membrane sur-
face are zero. When the excess pressure equals zero both £(r) and p(r) are zero,
and the stress in the membrane equals zero too. The radial and tangential strain (in
the plane which is tangent to the deformed membrane surface) can be expressed in
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Figure C.1: Membrane displacement functions

the displacement functions:

e, = \/(1+Z§)2+(%)2 1 C.1)
- g (C2)

The radial and tangential stress (in the plane which is tangent to the deformed mem-
brane surface) can be expressed in the radial and tangential strain:

E
g, = m(Gr*{Hl/Gg) (C3)

E
%G = T (€9 + ve,) (C4)
where F is the modulus of elasticity and v is Poisson’s ratio of the membrane can-
vas. Radial and tangential force equilibrium for the element dr x r df (see Fig-
ure C.2) leads to the following equations:

p(r+p) 1+ %) =t g;(rar sin a) (C.5)
d d
p(r+p) Ef_ =t (0'9 — %(r O COS a)) (C.6)

where p is the excess pressure in the air cushion, ¢ is the thickness of the membrane
canvas and a(r) is the angle of the slope of the (deformed) membrane canvas (see
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Figure C.2: A surface element of the membrane

Figure C.1). sin « and cos « are expressed in £(r) and p(r) directly:

_d

sine = Tder (C.D
1+ %

- _dr C.8

cos & Tt (C.8)

Their derivatives with respect to r simply follow from differentiation of these ex-
pressions. The displacement functions £(r) and p(r) are written as series of cosine
and sine functions:

N 2n—1r ’
= n — Cc9
£(r) ;g cos( 5 R) (C.9)

N r

= 1 S — C.10
pr) = X pusin(rn ) (C.10)
where R is the radius of the circular diaphragm. Now N radii 7,,...,ry are se-
lected. Equations C.5 and C.6 are fulfilled at these radii. Subsequent substitu-
tion leads to 2/V non-linear equations for §;,...,&y and py, ..., py. This system

is solved by means of the method of Newton-Raphson which converges rapidly.
The convergence in N is also very fast. Now the displacement functions (i.e.the
deformed geometry of the diaphragm) are known. The volume of the diaphragm
follows from:

R de

V@ = 7r/(2'rf —(2rp+ pz)%)dr (C.11)
0
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The reduction of the air cushion stiffness (dV'(%) /dp) is calculated by means of finite
differences using solutions for slightly different cushion excess pressures.

C.2 Experimental method

The reduction of the air cushion stiffness (dV (4 /dp) by a diaphragm is also deter-
mined by means of experiments. A diaphragm is mounted on top of a floating open
bottomed box. The excess pressure inside the box and the draft of the box are mea-
sured. Then the draft of the box is increased by putting some weights on the deck
of the box. Because the air inside the box cannot escape, the excess pressure in the
box increases. Then dV (9 /dp can be computed from:

Ap = —-AV©) (C.12)

(V(C) + V@ dv(d))
+ .
k(p+p.)  dp

This equation follows from equation 4.3. In the relevant scale range dV (@ /dp is
much larger than (V(© + V(@) /(k(p + p,)). Therefore there is no need for a very
accurate estimation of this term. AV(®) can be expressed as:

AV©E = 4, % — A, AT (C.13)

where 7' is the draft of the box, A, is the area of water surface that is covered by the
air cushion, p is the density of water and g is the gravitational acceleration. Now
dV@ /dp follows from:

dv@d A AT A Ve 4y

(C.14)
dp Ap  pg  K(p+Dpa)

The air cushion area A, should not be chosen too large. Otherwise a relevant Ap
would result in an unmeasurably small AT

C.3 Results

This section presents computational results for circular diaphragms (diameters are
775 mm and 895 mm) and experimental results for a rectangular diaphragm (745 x
845 mm). The development of a computational method for rectangular diaphragms
was considered too complicated. On the other hand a rectangular diaphragm 1is
much more easy to construct. Moreover, the actual space left for the diaphragm on
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t 0.35 mm
F 4.64 - 10° Pa
v 0.49

Table C.1: Properties of membrane rubber

the final model is limited by the distance between the legs of the oscillator. The
diameter of 775 mm was chosen because the computational results are in that case
in excellent agreement with the experimental results. The diameter of 895 mm was
chosen because the area of that circle is the same as the area of the rectangle that was
used in the experiments. The membrane was constructed of artificial rubber. The
properties of this rubber are shown in Table C.1. They were determined experimen-
tally. These properties were also used in the calculations. The material appeared
to have considerable creep. This is not included in the calculations. During the
experiments a very small amount of air appeared to be leaking from the cushion.
This resulted in a slowly decreasing excess pressure. Nevertheless we succeeded to
obtain good and reproducible results.

Figure C.3 shows the computed volume of the circular diaphragms as a function
of the excess pressure. Especially in the low pressure range the relation is highly
non-linear. Figure C.4 shows the computed and the experimentally determined re-
ductions of the cushion stiffness (dV(¥) /dp). Again the non-linear behavior of the
diaphragms is clearly visible. The difference between the curves for the 775 mm
circular diaphragm and the 895 mm circular diaphragm is very large. The reduc-
tion of the stiffness is very sensible to the size and probably also the form of the
diaphragm. Therefore, a rectangular and a circular diaphragm are hard to compare.
Keeping the area of the diaphragm constant does not seem to be a good idea, be-
cause the corners of the rectangular diaphragm will not supply much volume. This
explains why the results of the 895 mm circular diaphragm are much larger than the
experimental results for the 845*745mm rectangular diaphragm. In the case of a
two-dimensional (infinitely long) diaphragm it can be shown that V(% /dp is pro-
portional to the width cubed. The smallest side of the rectangle might therefore be
the determining factor for the stiffness of a diaphragm. At least it can be concluded
that the trend of the computational and experimental results agrees very well. This
also supports the accuracy of the experiments.

For a correct scaling the reduction of the cushion stiffness (dV (¥ /dp) should be
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Figure C.4: Reduction of the cushion stiffness by the diaphragms
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constant. Figure C.4 clearly shows that this is not the case. The diaphragm will
introduce extra non-linear effects. For relatively small pressure oscillations (for
instance between 250 and 350 Pa) the non-linear effect will be small. When the
excess pressure becomes however very small, the stiffness is strongly reduced and
the non-linear effect gets important.
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Samenvatting

Er is de laatste jaren steeds meer belangstelling voor grote zeegaande “Surface
Effect Ships” (SESs). Voor het ontwerp van deze schepen is het noodzakelijk te
beschikken over een methode die het gedrag van deze schepen in zeegang nauwkeu-
rig kan voorspellen. Het blijkt dat SESs veel snelheid verliezen als ze in golven
varen. Dit is bedreigend voor de economische haalbaarheid van SES. Het snel-
heidsverlies wordt veroorzaakt door een toename van de weerstand tengevolge van
de golven. Deze weerstandstoename wordt toegevoegde weerstand door golven (of
kortweg toegevoegde weerstand) genoemd. Het doel van het onderzoek dat ten
grondslag ligt aan dit proefschrift is de ontwikkeling en de validatie van een reken-
methode voor de voorspelling van de toegevoegde weerstand van Surface Effect
Ships.

De rekenmethode voor de bewegingen en toegevoegde weerstand is gebaseerd op
de volgende aannames. Het hydromechanische probleem en de bewegingsvergelij-
kingen kunnen worden gelineariseerd. De overdruk in het luchtkussen is constant in
de ruimte. Daarnaast berekent de rekenmethode alleen het deel van de toegevoegde
weerstand dat wordt veroorzaakt door het luchtkussen, omdat verwacht werd dat dit
deel de belangrijkste bijdrage aan de totale toegevoegde weerstand zou leveren.

Het hydromechanische probleem wordt opgelost met behulp van een driedimen-
sionale “Rankine” panelenmethode. De randvoorwaarden op de romp en op het
vrije vloeistofoppervlak zijn gelineariseerd rond de ongestoorde stroming. De pane-
lenmethode berekent de hydromechanische krachten op de rompen, de golthoogte
in het luchtkussen, en de golfhoogte en golfhelling ter plaatse van het voor- en
achterseal. Het probleem wordt opgelost in het frequentiedomein.

Daarna worden de bewegingen van de SESs en de overdrukken in het lucht-
kussen en het achterseal opgelost met behulp van een niet-lineaire tijdsimulatieme-
thode. De bewegingsvergelijkingen zijn gelineariseerd, maar de niet-lineaire vorm
van de vergelijkingen die de kussen- en sealdynamica beschrijven is gehandhaafd.
Vooral de lekkage van lucht onder de seals is een sterk niet-lineair fenomeen, dat
niet kan worden gelineariseerd.
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De toegevoegde weerstand van het luchtkussen volgt uit het verschil tussen de
weerstand van het luchtkussen in golven en de weerstand van het luchtkussen in
vlak water. De weerstand van het luchtkussen volgt in principe uit de overdruk in
het luchtkussen vermenigvuldigd met het verschil in golfhoogte ter plaatse van het
voor- en het achterseal keer met de kussenbreedte. Daarnaast is er nog een bijdrage
tengevolge van de impuls van de lucht die het kussen in- en uitstroomt.

De resultaten van de rekenmethode worden vergeleken met experimentele resul-
taten van het MARIN. De overeenkomst is goed voor zover het de bewegingen en
kussendruk betreft, maar er is een groot verschil tussen de berekende en de gemeten
toegevoegde weerstand. De berekende toegevoegde weerstand van het luchtkussen
is slechts klein en vaak zelfs negatief, terwijl de gemeten toegevoegde weerstand in
het algemeen erg groot is.

Ten einde een verklaring te vinden voor het grote verschil tussen de berekende en
de gemeten toegevoegde weerstand, is er een uitgebreide serie modelproeven uit-
gevoerd in het Laboratorium voor Scheepshydromechanica van de Technische Uni-
versiteit Delft. Het hoofddoel van deze proeven was om de oorsprong van de (grote)
toegevoegde weerstand van SESs te achterhalen. Twee versies van een model zijn
onderworpen aan drie soorten proeven: gedwongen oscillatie proeven, golfkracht
metingen en proeven waarbij het model vrij kon dompen en stampen. De bijdrage
van het luchtkussen aan de toegevoegde weerstand werd apart gemeten naast de to-
tale toegevoegde weerstand. Het verschil levert dan de toegevoegde weerstand van
de rompen op. Het resultaat van proeven is, dat de bijdrage van de rompen aan
de toegevoegde weerstand groot is, terwijl de bijdrage van het luchtkussen slechts
klein is. De grote toegevoegde weerstand van de rompen wordt vooral veroorzaakt
door inzinking tengevolge van lagere kussendruk, die weer wordt veroorzaakt door
een toename van de luchtlekkage als het schip in golven vaart.

Tenslotte wordt de rekenmethode gevalideerd door de resultaten van de proeven en
de berekeningen met elkaar te vergelijken. De correlatie van de berekende en de
gemeten resultaten is in het algemeen goed. Dit onderschrijft de validiteit van de
rekenmethode. Voor de voorspelling van de totale toegevoegde weerstand is het
echter noodzakelijk om de toegevoegde weerstand van de rompen te berekenen.
De toegevoegde weerstand van de rompen wordt vooral veroorzaakt door inzin-
king tengevolge van een afname van de kussendruk. De reken methode geeft een
goede voorspelling van de afname van de kussendruk en de daaruit voortvloeiende
inzinking en trim. Het ligt daarom in de lijn der verwachting dat de rekenmethode
nuttig gebruikt kan worden in de berekening van de toegevoegde weerstand van de
rompen.
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