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Abstract

A suitable way of quantifying work for microscopic quantum systems has been constantly debated in
the field of quantum thermodynamics. One natural approach is to measure the average increase in
energy of an ancillary system, called the battery, after a work extraction protocol. The quality of energy
extracted is usually argued to be good by quantifying higher moments of the energy distribution, or by
restricting the amount of entropy to be low. This limits the amount of heat contribution to the energy
extracted, but does not completely prevent it. We show that the definition of ‘work’ is crucial. If one
allows for a definition of work that tolerates a non-negligible entropy increase in the battery, then a
small scale heat engine can possibly exceed the Carnot efficiency. This can be done without using any
additional resources such as coherence or correlations, and furthermore can be achieved even when
one of the heat baths is finite in size.

1. Introduction

Given resources where energy is only present in its most disordered form (heat), how efficiently can one convert
such heat and store it as useful energy (work)? This question lies at the foundation of constructing heat engines,
like the steam engine. Though nearly two centuries old, it remains one of central interest in physics, and can be
applied in studying a large variety of systems, from naturally arising biological systems to intricately engineered
ones. Classically it is known that a heat engine cannot perform at efficiencies higher than the Carnot efficiency
(CE), which is given by

Tcold

77c =1- T > (1)
Hot

Teold» Tiot Deing the temperatures of the heat reservoirs at which the engine operates between. This fundamental
limit on efficiency can be derived as a consequence of the second law of thermodynamics, which is regarded as
one of the ‘most perfect laws in physics’ [1].

Recent advancements in the engineering and control of quantum systems have, however, pushed the
applicability of conventional thermodynamics to its limits. In particular, instead of large scale machines that
initially motivated the study of thermodynamics, we are now able to build nanoscale quantum machines. A
quantum heat engine (QHE) is a machine that performs the task of work extraction when the involved systems
are not only extremely small in size/particle numbers, but also subjected to the laws of quantum physics. Such
studies are highly motivated by the prospects of designing small, energy efficient machines applicable to state-of-
the-art devices, particularly those relevant for quantum computing and information processing. The question
then arises: how efficient can these machines be?

Recently, anumber of schemes for QHEs have been proposed and analyzed, involving systems such as ion traps,
photocells, or optomechanical systems [2—10]. Some of these schemes lie outside the usual heat engine setting (see
figure 1). For example, instead of using a hot and cold bath, the extended quantum heat engine (EQHE) has access to
reservoirs which are not in a thermal state [3, 11, 12]. In this case, EQHE with high efficiencies (even surpassing 1)
have been proposed and demonstrated. Nevertheless, [13] has pointed out that the second law is, strictly speaking,

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. A heat engine with all its basic components: (1) two baths 7¢,q "™ ﬁcﬁc‘)ld)e and Ty e e
which are initially thermal at distinct inverse temperatures 3, > (3, (2) amachine pg/[ which utilizes this temperature difference to
extract work, while undergoing a cyclic process, i.e. pL, = p° , and (3) a battery that goes from p%, — p! and stores the extracted
gomgacyclicp M= Pum ythatg Pw — Py

energy.

never violated because one always has to invest extra work in order to create and replenish these non-thermal
reservoirs. Nevertheless, the study of using such non-thermal reservoirs can still be of interest, since they potentially
may boost other features of the heat engine, such as the rate of extracting work. However, in this manuscript we are
focusing on the standard setting of a QHE, in which the baths are thermal, where in classical thermodynamics, it is
proven that although CE can be approached, it can never be surpassed [14].

Even without additional resources such as those in EQHEs, QHEs are already radically different from
classical engines, since energy fluctuations are much more prominent due to the small number of particles
involved. The laws of thermodynamics for small quantum systems are more restrictive due to finite-size effects
[14—19]. Itis known that such second laws introduce additional restrictions on the performance of QHEs [14].
Specifically, not all QHEs can even achieve the CE. The maximal achievable efficiency depends not only on the
temperatures, but also on the Hamiltonian structure of the baths involved. Furthermore, considering a
probabilistic approach towards work extraction, [20] found that the achievement of CE is very unlikely, when
considering energy fluctuations in the microregime.

Can we design a QHE that operates between genuinely thermal reservoirs and yet achieves a high efficiency? To
answer this, several protocols have been proposed and analyzed [9, 11, 17, 22-27], some showing QHEs that operate
atthe CE[9, 27, 28]. However, crucial to these results is the definition of work. In these approaches, the most
common approach of quantifying work is to measure the average increase in energy of an ancillary system,
sometimes referred to as the battery, after a certain work extraction protocol [9, 28—-31]. Such a measure of work
would be adequate, if the entropy of the battery, denoted as AS remains invariant. Indeed, already in classical
thermodynamics, AS = 0 is always assumed when deriving the upper bound on heat engine efficiency. However,
all explicit QHE protocols to-date do not, and cannot satisfy such an assumption, since in the quantum nanoregime,
fluctuations in work become highly non-negligible and hard to quantify/analyze. In this regime, work is almost
always a random variable, characterized by a non-trivial probability distribution [32—35]. Attempts to keep this
entropy increase arbitrarily small often use additional assumptions such as a catalyst/control system with an
unphysical Hamiltonian [36, 37], or with infinite energy,/ coherence resources [38, 39]. If one does not make such
assumptions, then one has to live with the fact that the energy extracted is tainted by heat, and be satisfied as long as
the amount of heat contribution is simply upper bounded [9]. In the second approach, the quality of work extracted
is usually argued to be good by quantifying higher moments of the energy distribution, or by restricting the amount
of entropy to be low. Underlying all these results a fundamental concept remains hidden: how should work be
quantified in the microscopic regime? A universally agreed upon definition of performing microscopic work is
lacking, and this remains a constantly debated subject in the field of quantum thermodynamics [31, 33, 35, 40—42].
This is mainly why a complete picture describing the performance limits of a QHE remains unknown.

The goal of our paper is to show that average energy increase is not an adequate definition of work for
microscopic quantum systems when considering heat engines, even when imposing further restrictions such as a
limit on entropy increase. Specifically, we demonstrate that if one allows for a definition of work that tolerates a
non-negligible entropy increase in the battery, then one can in fact exceed CE. Most importantly, this can already
happen when (1) the cold bath only consists of 1 qubit, where finite-size effects further impede the possibility of

5 . . . . . .
In this manuscript we concern ourselves with the main problem of efficiency, although there are other features of a heat engine such as
power and constancy that are important as well. See [21] for a discussion about tradeoffs between these features.
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thermodynamic state transitions, and (2) without using additional resources such as non-thermal reservoirs.
The reason for being able to surpass CE stems from the fact that heat contributions have ‘polluted’ our definition
of work extraction. We show that work can be divided into different categories: perfect and near-perfect work,
where heat (entropy) contributions are negligible with respect to the energy gained; while imperfect work
characterizes the case where heat contributions are comparable to the amount of energy gain. We find examples
of extracting imperfect work where the CE is surpassed. This completes our picture of the understanding of work
in QHEs, since we already know that by drawing perfect/near perfect work, no QHE can ever surpass CE [14].

2. General setting of a heat engine

The setup

Let us first describe a generic QHE, which is a setup that extracts work. A generic QHE comprises of four basic
elements: two thermal baths at distinct temperatures Tjo and Tegq respectively, a machine that operates
between the baths in a cyclic fashion, and a battery that stores energy for further usage (figure 1). The total
Hamiltonian

H, = HAcold + Hior + Ay + Aw, (2)

is the sum of individual Hamiltonians, where indices Hot, Cold, M, W represent a hot bath (Hot), a cold bath
(Cold), amachine (M), and a battery (W) respectively. Let us also consider an initial state

pgol dHotMW = Tood @ Toor ® pg/[ ® pgv. The state 7%, (T2.1q) is the initial thermal state at temperature Tjjo
(Tto1a)> corresponding to the hot (cold) bath Hamiltonian Hijor (Heoia)» and Toopg < Tizor. For notational
convenience, we shall often work with inverse temperatures 3, :== 1/kg Tior and (. == 1/kg Tcoiqa where kg is the
Boltzmann constant. Given Hamiltonian H and temperature T, the thermal state is defined as 7 = —BH

tr(e=H)
The initial machine ( pg/l, Hy) can be chosen arbitrarily, as long as its final state is preserved (and therefore the
machine acts like a catalyst).

In order to investigate the fundamental limits to the performance of QHEs, we adopt a thermodynamic
resource theory approach [15, 43—45], where all unitaries U on the global system such that [U, Hcodtonw] = 0
are allowed. Such operations conserve total energy, which is a requirement based on the first law of
thermodynamics. If (73, Higop) and ( p?v{’ Hy) can be arbitrarily chosen, then any such unitary U, (Y00 Higor)
and (p},, Hy) defines a catalytic thermal operation [16] which one can perform on the joint state ColdW . This
implies that the cold bath is used as a non-thermal resource, relative to the hot bath. By catalytic thermal
operations that act on the cold bath, using the hot bath as a thermal reservoir, and the machine as a catalyst, one
can extract work and store it in the battery. The aim is to achieve a final reduced state

1 — 1
pColdMW - trHOt(pCOIdHOtMW)’ such that

| _ 1 |
Pcoldvw = Pcolaw @ P 3

where p}w = p?v{’ and plc01 4 18 the final joint state of the cold bath and battery. For any bipartite state p, 5, we use
the notation of reduced states p, := trg(p,p).

Finally, we need to describe the battery such that the state transformation pOCO[ dHonw Peodiiony STOTES
work in the battery. This is done as follows: consider the battery which has a Hamiltonian
Hyy = 37w, EM|E;) (E|w. For a parameter £ € [0, 1), we consider the initial and final battery states to be

Py = IEj) (Ejlw, )
Py = (1 — &)|E) (Edw + lE;) (Ejlw 5)

respectively. This can be seen as a simple form of extracting work: going from a pure energy eigenstate to a higher
energy eigenstate (except with failure probability ). More general battery states may be in principle allowed,
however this does not affect the main focus of our result, and therefore for simplicity of analysis we consider final
battery states of the form in equation (5). The extracted work W,,, is defined as the energy difference

W = B — E", where we define E" > E}" such that Wz > 0. The parameter € corresponds to the failure
probability of extracting work, usually chosen to be small. To summarize, we make the following minimal
assumptions:

(A.1) Productstate: There are no initial correlations between the cold bath, machine and battery, since each of
the initial systems are brought independently into the process. This is an advantage of the setup, since if
one assumed initial correlations, one would then have to use unknown resources to generate them in the
first place.
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(A.2) Perfect cyclicity: The machine undergoes a cyclic process, i.e. p}, = p},»and piv[ isalso not correlated
with pICO1 aw- Thisis to ensure that the machine does not get compromised in the process: since if pgd was
initially correlated with some reference system R, then by monogamy of entanglement, correlations
between p}v[ and plCOl 4w Would potentially destroy such correlations between the machine M with R.

(A.3) Isolated quantum system: The heat engine as a whole, is isolated from and does not interact with the
world. This assumption ensures that all possible resources in a work extraction process are accounted for.
Mathematically, this implies that the global Hamiltonian is time-independent, while the system evolution
is described by global unitary dynamics.

(A.4) Finite dimension: The Hilbert space associated with pgol dHorvw 18 finite dimensional but can be arbitrarily

large. Moreover, the Hamiltonians g, Hizer, Hy and Hyy all have bounded pure point spectra,
meaning that these Hamiltonians have eigenvalues which are bounded. This assumption comes from the
resource theoretic approach of thermodynamics [15].

3. Quantifying work and efficiency

We have seen from equations (4) and (5) that a failure probability of work extraction is allowed. This probability
injects a certain amount of entropy into the battery’s final state, compromising the quality of extracted work. For
an initially pure battery state, let AS denote the von Neumann entropy of the final battery state,

AS = fp{N lnplW = —¢clne — (1 — &)ln(1 — 2). (6)

Since the distribution of the final battery state has its support on a two-dimensional subspace of the battery
system, AS coincides with the binary entropy of €, denoted by ki, (¢).

The more entropy AS created in the battery, the more disordered is the energy one extracts, i.e. the larger are
the heat contributions. Since work is ordered energy, therefore ideally, zero entropy is desirable; where the final
state of the battery is simply another pure energy eigenstate p}, = |Ex) (Eglw. Not only then we obtain a net
increase in energy, but also we have full knowledge of the state p{N, since itis also pure. This prompts the
following characterization of work:

Definition 1 (Perfect work [14]). An amount of work extracted Wy, is referred to as perfect work when € = 0.

Perfect work, although desirable in principle, is an extremely strict form of work where work extraction
happens with zero failure probability, that is to say, AS = 0. In fact, it has been proven in [ 14] that for any initial
state of the cold bath which is of full rank, if we require perfect work, then W,,, < 0. Since thermal states are
always of full rank, a positive amount of perfect work can never be extracted in a heat engine that operates only
between two thermal heat baths. Such a phenomena is closely analogous to zero-error data compression:
whenever a piece of information is represented by a random variable X over a probability distribution of full
rank, then one cannot achieve zero-error in transmission if the data is compressed and transmitted in a message
of shorter length [46].

Let us therefore proceed by considering another example: for a fixed amount of average energy increase
from pgv — pkN, the entropy increase AS is maximized when the final state plw is thermal. However, another
problem emerges: it is known that a thermal state by itself cannot be used to obtain work, if only energy-
preserving unitaries are allowed. This is precisely why only multiple copies of thermal states (as long as they are
of a fixed temperature) are allowed in the resource theory framework as free states [ 16]. For such a thermal state
pi,v to be useful in work extraction, it has to be combined with other resources (for example another heat bath) in
order to obtain ordered work. Therefore, while energy has increased, one cannot justify the full amount of
average energy increase as work.

From the above example, we have seen the importance of constraining the amount of € (or equivalently, the
amount of AS), in order to properly justify that whatever energy stored in py,, indeed corresponds to useful
work. However, the absolute value of AS is not so important by itself. In particular, we could have cases where
although AS is arbitrarily small, the amount of energy extracted could also be arbitrarily small, even comparable
to AS. Indeed, many protocols for work extraction such as [9, 33] involve infinitesimal steps that extracts energy
by small amounts in each step. In the light of such considerations, we may consider the following regimes:

Definition 2 (Near perfect work [14]). We say that a sequence of heat engine protocols leads to near perfect work
extraction if

(1) Forall protocols in the sequence, 0 < £ < I, forsome fixed ] < 1and

(2) Forany p > 0, there exists a non-trivial subset of protocols where A5

ext

<p.

4
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Definition 2 requires that if the amount of near perfect work W,y for the whole sequence is bounded away
from infinity, then there must always be a subset of protocols where the failure probability of work extraction
governed by ¢ is arbitrarily small. However, it is also more stringent than just that: for near perfect work,
whenever W, is finite, items (1) and (2) are both satisfied only in the limit ¢ — 0, and ifand only if
limgﬂ(ﬁ# = 0. Ifthis limitis not satisfied, we say that the work extracted is imperfect.

ext

Definition 3 (Imperfect work). We say that a sequence of heat engine protocols leads to imperfect work
extraction if

(1) Forall protocols in the sequence, 0 < ¢; < I, forsome fixed ! < 1and

(2) There exists some positive number p > 0, where for all protocols in the sequence, Vﬁs

ext

2 p.

The reader might be concerned with using AS/ W, as a parameter to characterize work quality, since
AS /W,y is not dimensionless. However, one can simply consider the rescaled and dimensionless quantity
kg TAS /Wy, for any value of T from the surrounding bath. Since kz T only comes into the characterization as a
multiplicative factor which is positive but finite, one can therefore see that the regimes of perfect, near perfect
and imperfect work would remain the same, had we use kg TAS/ W, instead of AS/W,,.

Next, we introduce the notion of a quasi-static heat engine. Traditionally in thermodynamics, the expression
quasi-static refers to a process that happens slowly such that the system remains in thermal equilibrium at all
times. In this manuscript, we use this term to denote a heat engine cycle that changes the state of the final cold
bath only slightly, such that it remains a thermal state, however its temperature is slightly increased.

Definition 4 (Quasi-static [14]). Consider a sequence of heat engine protocols, where in each protocol, the final
state of the cold bath is thermal with an inverse temperature of 3r = 3. — g. This heat engine (sequence) is
called quasi-static, if for any positive number G > 0, there exists a non-trivial subset of protocols where ¢ < G.
The quasi-static limit refers to the subset of protocols in the limit where G — 07.

In this manuscript, we constantly refer to gas the quasi-static parameter.

Having fully described the QHE in section 2, and expounding on different characterizations of extracted
energy in definitions 1-3, one asks: for what values of W, can the transition pOCO1 dHotMw — péol dHonw Oceur?
The possibility of such a thermodynamic state transition depends on a set of conditions derived in [16], phrased
in terms of quantities called generalized free energies (see appendix A). These conditions place upper bounds on
the amount of work W, extractable, and since our initial states are block-diagonal in the energy eigenbasis,
these second laws are necessary and sufficient to characterize a transition.

The efficiency of a particular heat engine is given by

_ Wiy
AH’

n: ()
where AH = tr(Hijor o) — tr(Higor phot). This can be simplified by noting that the total Hamiltonian is
simply the individual sum of each system’s free Hamiltonian, and therefore for any state pe;qrommw»
tr(HeoldHotMw Peordomw) = T (Huot Pror) + tTHeold Peoiq) + tr(Hw py) + tr(Hy pyy). If we define the terms
AC = tr(Hcoq péol @ — tr(Heod T.00), and AW = tr(Hy piN) — tr(Hw pgv), then we see that since total
energy is preserved in the process, by noting that p}, = p,, and rearranging terms, we have AH = AC + AW.
Furthermore, note that because of equations (4) and (5), we have AW = (1 — &) W, Hence, according to
equation (7), we have

7)*1:1—6—1-&. )

ext

4. Results

We show that CE can be surpassed in a single-shot setting of work extraction, even without using non-thermal
resources. We obtain this result through deriving an analytical expression for the efficiency of a QHE in the
quasi-static limit, when extracting imperfect work.

Consider the probability e where the final battery state is not in the state | E;) (Eg|, according to equation (5).
This is also what we call the failure probability of extracting work. The limit € — 0 is the focus of our analysis for
several reasons. Firstly, recall that when categorizing the quality of extracted work, one is interested not only in
the absolute values of entropy change in the battery, which we denoted as AS. Rather, AS compared to the
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Table 1. Different regimes of work corresponding to different limits of the ratio lim gﬂo‘ﬁ—s.
ext

Type Maximum efficiency
Perfect work e =0[14] Work extraction for any W,y > 0 is not possible.
Near perfect work limgﬁg‘ﬁ—s =0[14] 7)c is the theoretical maximum, and can only be approached uniquely in the
ext

quasi-static limit. However, 7). can be approached only if certain conditions
on the bath Hamiltonianare met. Otherwise, the maximum attainable effi-
ciency is strictly upper bounded away from 7).
Imperfect work (this limfﬂ()% =p,p € (0, )
paper)
) Unknown, however examples of exceeding CE can be found.

amount of extracted work W, in other words the ratio VAVS

is the quantity of importance. For any given finite n
number of cold bath qubits, the amount of work extractable s finite. Extracting near perfect work means that
AS should be negligible compared with W,y, as we have seen in definition 2. Since according to equation (6),
AS = hy(e) > &, therefore we are concerned with the limit where ¢ is arbitrarily small. On the other hand, now
consider imperfect work. The quasi-static limit, i.e. § — 0 is the focus of our analysis that aims to provide
examples of imperfect work extraction. In the quasi-static limit, since the cold bath changes only by an

infinitesimal amount, therefore the amount of work extractable W,y; is also infinitesimally small. For most cases
AS

ext

In [14], it has been shown that perfect work is never achievable, while considering near perfect work allows
us to sometimes achieve arbitrarily near to CE, but not always. Therefore, our results, when combining with [14]

of imperfect work (when the ratio of

is finite) we know that AS is vanishingly small, and therefore so is €.

provide the full range of possible limits for 25 with the corresponding findings about maximum achievable

efficiency, which we summarize in table 1. Theorem 1 formally states our main result. This theorem establishes a
simplification of the efficiency of a quasi-static heat engine, given a cold bath consisting of # identical qubits,
each with energy gap E. We consider a special case where the failure probability € g is proportional to the
quasi-static parameter g (see definition 4), and evaluate the efficiency in the limit g — 0. We show that this

.. . . . AS
corresponds to extracting imperfect work, in particular, hmg_,ow— = o00. For such a case, we show that
ext
1 . .
whenever E < G5’ then for some parameter o, we can choose the proportionality constant ¢ () = =
Pe — Ph

such that the corresponding efficiency of such a heat engine is given by a simple analytical expression. Therefore,
by numerically evaluating such an expression for different parameters 5., 8y, E, n, o* etc, one can find
examples of surpassing the CE.

Theorem 1 (Main result). Consider a quasi-static heat engine with a cold bath consisting of n identical qubits with
energy gap E > 0. Given the inverse temperatures of the hot and cold bath 3, B, > 0 respectively, and for
a € (1, co) define the functions

E eBital)E _ o(B+ab)E
B. = BE 3,E Byt aB ©)
1 + el eau, _|_ e(‘k h+ﬂrc)E
and B, = ilj: being the first derivative of B, accordingto c. Ifthe energy gap of the qubits satisfy
0<E<—"t (10)
Z(ﬂc - 5}1)
then there exists o € (1, 2) such that the failure probability ¢ = g - n[a*(a* — DB/ — By*] > 0, and the
inverse efficiency (equation (8)) of the described heat engine is given by
1 B/
pl=1 4 B 1 (11)

Be — Bu a*? Bé*.

We plot, in figures 2—4 the comparison between CE and the efficiency achievable according to theorem 1. In all
these plots we observe that CE is always surpassed, therefore providing us with examples of heat engine cycles
that surpass CE. However, this does not imply that the surpassing of CE when extracting imperfect work solely
happens for quasi-static processes. The quasi-static limit is not a necessary restriction; it is simply a specific
example we have chosen in order to demonstrate the consequences of considering imperfect work. The reason
for such a choice, is because if we consider perfect or near perfect work instead, a quasi-static heat engine is most
advantageous, i.e. whenever the CE is achieved, it is achieved only by a quasi-static process.
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It is worth noting that equation (10) formulates a condition on the energy gap E of the cold bath qubits, asa
function of 3,, B. This condition is also a sufficient condition for achieving the CE when extracting near perfect
work [14]. Therefore, the blue curve never falls below the yellow line. The improvement in efficiency happens
most when the parameter o* is adjusted, since this is the parameter that determines how quickly the ratio

AS

ext

— 00 in the quasi-static limit.

Given thatin table 1, the case of p € (0, 00) also corresponds to imperfect work, one might wonder if CE

can also be surpassed in this regime. We show that this is not possible.

5. Methods

There are several steps taken in order to achieve the proof of theorem 1, which we outline in this section. For
details, the reader is referred to corollary 1 and its proof in the appendix C.1, which directly implies theorem 1.

7
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Theorem 1 is obtained by considering a cold bath of n-identical qubits, and calculating the ratio of
extractable work Wy, against AC in the quasi-static limit, i.e. ¢ — 0. Then, by using equation (8), one can
evaluate the efficiency. The main difficulty lies in evaluating Wy, the amount of extractable work. This quantity
represents the maximum value of the battery’s energy gap, such that a transition 73 ® p(\),v — p1C01 a® piN is
possible according to the generalized second laws described in appendix A. Applying the generalized second
laws, we can calculate Wy, which is given by a minimization problem over the continuous range of a real-valued
variable o > 0,

‘/vext = lnf W)n (12)
a>0
where
1
h=—————[In(A — &%) — aln(1 — &)], (13)
Br(a — 1)
a _l—a
A= 284, (14)

where p; are the eigenvalues of the state 73, pi/ are eigenvalues of plcOl o giare eigenvalues of 75, respectively.
Therefore, the difficulty of evaluating the efficiency lies in performing the optimization of W, over a € (0, 00),
which is neither monotonic nor convex. However, by manipulating our freedom of choosing €, we show that in
certain parameter regimes of 3, 3}, and E, one can evaluate a simple, analytical expression for W,,.. The steps
taken are outlined as follows, while all the technical lemmas are proven in the appendix:

1. We start by choosing the failure probability to be € = & - g, where g is independent of the quasi-static
parameter g.

2. Starting out from the expression for extractable work given in lemma 1, we prove that in the quasi-static
limit, the regime v € (0, 1) need not be considered in the optimization. This is proven in lemma 4.

3. We show that the function W, which we desire to minimize has at most one unique local minima. To do so,
we establish technical lemmas 7-9, in order to arrive atlemma 10.

4. We show that g can be chosen such that ¢ > 0 (lemma 11), and that we can choose it so that we know that a
particular o € (1, 2) corresponds to alocal stationary point (lemma 12) and specifically alocal minima
(lemma 13). Since we have established item 3, this implies that we have identified a unique local minima.

5.We show that under certain conditions, W,* < W,. This implies that W,* corresponds to the global
minima which we desire to evaluate®.

6. The conditions for items 3—5 are summarized in corollary 1, where one can now, by choosing the parameter
o directly evaluate W, analytically, and therefore use

AC

nl=1-—¢+ (15)

ext
to calculate the efficiency. The calculation of AC is straightforward once pOCO1 & p1C01 4 are fixed, and for the
quasi-static limit, we expand AC in terms of the quasi-static parameter g.

One can ask whether it is possible to always exceed CE when imperfect work is drawn. For example,

observing in table 1 that the case of p € (0, 0o0) also corresponds to imperfect work, one might wonder ifa
AS

similar result of exceeding CE can be achieved in the regime where a5, p instead of — — oo (asin the case

Wext Wext
where € < g). We show in appendix C.2 that this is not possible, i.e. CE remains the theoretical maximum when
AS

the ratio — remains finite in the quasi-static limit. It is interesting to note that, if only the standard free energy is

ext
responsible for determining state transitions, then CE again might be exceeded. In conclusion, in the regime
where p is finite, the reason that one cannot exceed CE stems from the fact that there exists a continuous family
of generalized free energies in the quantum microregime (see appendix A).

6 The reason why W, is not the relevant quantity in our scenario, as in many other scenarios [15, 16, 33, 47], is noted by the fact that W,
usually provides the maximum possible amount of work extracted, which leads to the cold bath being in a final state that is thermalized with
the surrounding hot bath. However, this process is not the one that maximizes efficiency, which is our goal in this calculation. The fact that
we consider a process that is not completely thermalizing, gives rise to the importance of other W, quantities.
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6. Discussions and conclusion

Why is it important to distinguish between work and heat? Suppose we have two batteries A; and A,, each
containing the same amount of average energy. However, A, is in a pure, defined energy eigenstate; while A, isa
thermal state corresponding to a particular temperature T,. Note that there is an irreversibility via catalytic
thermal operations for these two batteries: the transition A; — A, mightbe possible, but certainly A, -+ Ay,
since the free energy of A, is higher than of A,. This makes A; a more valuable resource compared to A,. Indeed,
if we further consider the environment to be of temperature T,, then having A, is completely useless: it is passive
compared to the environment and cannot be used as a resource to enable more state transitions. Even more
crucially, the full amount of energy contained in A, can be transferred out, because we have full knowledge of the
quantum state.

Indeed, for the case of extracting imperfect work, and in particular for the choice of € proportional to g, heat
contributions are dominant. This is because in such an example, the average energy in the battery increases, its
free energy actually decreases. This can be seen because by using equations (4)—(6), the free energy difference can
bewrittenas AF = (1 — €)Wy — 87!AS, and when € o g in the quasi-static limit, AS is much larger than
W,y This indicates that the free energy difference, instead of average energy difference in the battery would serve
as a more accurate quantifier of work. Indeed, by adopting an operational approach towards this problem, [40]
has also identified the free energy to be a potentially suitable quantifier.

Our result serves as a note of caution when it comes to analyzing the performance of heat engines, that
quantifying microscopic work simply by the average energy increase in the battery does not adequately account
for heat contribution in the work extraction process. Therefore, this might lead to the possibility of surpassing

the CE, despite finite-size effects, even in the absence of non-thermal resources. For example, the work
AS

extraction protocol proposed in [9] indeed corresponds to — 00, when the intial battery state is a pure

energy eigenstate. With each step in the protocol, an infinitesimal amount of energy is extracted, while a finite
amount of entropy is injected into the battery. This reminds us that work and heat, although both may
contribute to an energy gain, are distinctively different in quality (i.e. orderliness). Therefore, when considering
small QHEs, it is not only important to propose schemes that extract energy on average, but also ensure that
work is gained, rather than heat.
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Appendix A. Second laws: the conditions for thermodynamical state transitions

Macroscopic thermodynamics says that for a system undergoing heat exchange with a background thermal bath
(atinverse temperature 3), the Helmholtz free energy

F(p) = (H), — %su}), (A1)

is necessarily non-increasing. For macroscopic systems, this also constitutes a sufficient condition: whenever the
free energy does not increase, we know that a state transition is possible.

However, in the microscopic quantum regime, where only a few quantum particles are involved, it has been
shown that macroscopic thermodynamics is not a complete description of thermodynamical transitions. More
precisely, not only the Helmholtz free energy, but a whole other family of generalized free energies have to
decrease during a state transition. This places further constraints on whether a particular transition is allowed. In
particular, if the final target state p. ., is diagonal in the energy eigenbasis, these laws also give necessary and
sufficient conditions for the possibility of a transition pgol aw = plCO1 aw Via catalytic thermal operations.

We can apply these second laws to our scenario by associating the catalyst with p{,, and considering the heat
engine state transition p3, ® T(glq — Pyqw- 10 this scenario, the hot bath with inverse temperature 3 is
treated as the background temperature used in the resource theory approach. Since we start with p,, ® T
which is diagonal in the energy eigenbasis, and since catalytic thermal operations do not create coherences
between energy levels, the final state plCOl 4w is also diagonal in the energy eigenbasis. Hence, the transition from
p“)N ® T0a — p{M ® plc01 4 1s possible via catalytic thermal operations iff V.o > 0[16],

9
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E,(780a ® P Tlolaw) = Fu(Plogyy © Loy Tlolaw)> (A2)

where 70 jqw is the thermal state of the system at temperature Tjjo; of the surrounding bath. The quantity
E,(p, o) for a > 0 corresponds to a family of free energies defined in [16], which can be written in the form

Eu(p 75) = ﬁi[Da (ol — InZs,], (A3)
h

where D, (p||7) are known as a-Rényi divergences. Sometimes we will use the shorthand E,, := lim,_, F,.On
occasion, we will refer to a particular transition as being possible/impossible according to the F,, free energy
constraint. By this, we mean that for that particular value of o and transition, equation (A2) is satisfied /not
satisfied. The a-Rényi divergences can be defined for arbitrary quantum states, giving us necessary (but
insufficient) second laws for state transitions [ 16, 48]. However, since we are analyzing states which are diagonal
in the same eigenbasis (namely the energy eigenbasis), these laws are both neccesary and sufficient. Also, the
Rényi divergences can be simplified to

1

Da(p”T) =
a—1

In > prq/~", (Ad)

where p,, g;are the eigenvalues of p and the state 7. The cases o« = 0 and o — 1 are defined by continuity,
namely

Dy(p||T) = lirr(}+Da(p||7') = —In Z g, Di(p||T) = limlDa(pHT) = Zpi ln§, (A5)
a= i:p; =0 a— i i
and we also define D, as
Dy (p|l7) = lim D,(p|T) = lnmax&. (A6)
a—oo" i q;

The quantity D;(p||7) is also known as the relative entropy, while it can be checked that F;(p, 7) coincides with
the Helmholtz free energy. We will often use the convention D (p||), F(p, 7) inplace of D;(p||7) and F,(p, 7).

Appendix B. Optimizing over W, in the quasi-static limit

B.1. Basic technical tools
In this section, we write out the analytical expressions for the amount of extractable work in the case of a quasi-
static heat engine, where the cold bath comprises of n identical systems. In particular, we use the expression of
extractable work in lemma 1 in order to evaluate the efficiency of our heat engine.

Consider a state transition via catalytic thermal operations

Thewa © Py = Pooa @ Py (B1)

where 73, is the initial state of the cold bath (at inverse temperature Scoiq)s plCOl 4 18 the final state of the cold
bath, and the battery states are given by

oy = 1E) (B4, (B2)
Py = elEL) (Bl + (1 — ©)|ES) (B . (B3)

Lemma 1. Consider the state transition described in equations (B1)—(B3), and assume that the cold bath
Hamiltonian is taken to be of n identical systems,

n
Heoq = > 126D @ A, @ 120D, (B4)
i=1
Then whenever the failure probability 0 < & < 1, the maximum extractable work is
Wexe = inf W, (B3)

a>0

where

_ 1
Bl — 1)

a _l—-a \?
A [Zipi 4; ] ) (B7)

[In(A — €% — aln(1l — )], (B6)

«

Zipi/a qil -«

10
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e PcEi . ~ . e PnEi
where p, = 2, are the eigenvalues of the thermal state for H, at inverse temperature (3., and q; = 2, e the
probabilities corresponding to the thermal state of the cold bath with respect to (3y,. Furthermore, W, denotes the
shorthand notation for lim,,_, ., W,.

Proof. The proof comes from directly applying the generalized second laws for block-diagonal states, i.e.
noticing that equation (A2) is necessary and sufficient for the transition in equation (B1) to occur. Noting that
Rényi divergences for all « > 0 are additive, equation (A2) is equivalent to having

73 = Da(piy [|Tw) + Dalpleyy 175, (B8)

Da(pg,\/”TW) + Doc(’rﬂc

where Ty is the thermal state with Hamiltonian Hiy at inverse temperature 3;,. We define W, to be the value of
EVY — EjW that satisfies equation (B8) with equality. A straightforward manipulation of these equations will
produce the expression for W, in equation (B7). Then W, = inf,,>o W, is the maximum value that satisfies the
inequalities equation (B8) forall > 0. O

In the quasi-static limit, where recall that this implies p1CO] 4 = Tppsuchthat 3y — . = g < 1,onemay
rewrite equation (B6) into an approximation for small g, ¢; this is done by expanding equation (B6) according to
variables gand e. More precisely, let us define the order terms as follows:

Definition 5 (Big © notation [49]). Consider two real-valued functions P (x), Q(x). We say that
P(x) = ©(Q(x)) inthelimit x — a iff thereexists ¢, ¢ > 0and 6 > 0 such that forall

_ P(x)
Ik~ al < 8oq < | 29

< G.

Remark 1. In definition 5, if the limit of x is unspecified, by default we take a = 0. In[49], these order terms were
originally defined for x — co. However, choosing a general limit x — a can be done by simply defining the
variable x’ = 1/(x — a),and x — a™ is the same as taking x’ — oo.

By the use of the notation for such order functions, one can first simplify A in equation (B7) for small gby
Taylor expandingAin g, i.e. for g < 1,

A=1 +% - g+ O(g?). (B9)
dg

§=0

On the other hand, the function In(1 — x) when |x| < 1(in our case, x depends on both gand €) can also be
written as

In(1 +x) =1+ x + O(x?). (B10)
Therefore, the expansion of W, forany o > 0, in the regime where g, € — 0 can be written as the following:

1
Byl — 1)

lim ———[angB, — € + ac] + O(eg) + O(*Ine) + O(e) + O(g?), ifa =1,

a1t Bula=1)

[angB, — € + ae]l + O(g?) + O(e2*) 4+ O(ge™) + O(e?), if v € (0, c0)\ {1},
W, =

(B11)

where the function B,, is given by

1 a _l—a y
By = == 2o b4 "(He)y, — Ed. (B12)

>opa T

While multi-variable order terms can be defined in a much more general way, it is not necessary in our case.
Here, when the order functions depend on both variables g, €, we have simply adapted a shorthand notation
that for any functions P;(g) and P, (¢), the order function ©(P;(g) P,(¢)) = O(P1(g)) - ©(P,(¢)). Furthermore,
we also checked explicitly that by first taking the limit lim,,_, », W}, then expanding in small g, ¢ gives the same
expression, i.e. equation (B11) holds also in the limit o« — oo.

As in this article, we are considering the limit where both g, € — 0. Throughout our proof, we have dealt
directly with the general expression found in equation (B6). However, in the end we shall see that in this limit,
only the largest order terms in equation (B11) matter. In other words, we will show that when g, ¢ — 0, taking
the infimum over the largest order term in equation (B11) forall o > 0 yields the same solution ay, which also
achieves the infimum over equation (B6).

In the special case where the cold bath consists of 1 identical qubits, i.e. H, = E|1) (1| with E being the energy
gap of each qubit, the expression for B, simplifies to

11
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E e(ﬁh+aﬂ[)E _ e(ﬁ[JrOzﬁh)E

(B13)

(&%

T 11 eAE cOBE 4 eBraRE

We also list several expressions that will be useful in deriving our results later. Taking the derivatives of B, as
defined in equation (B13) w.r.t. o, we have

dB 1 ; p
L . E2 _ . elBta(B+B)IE
B, = do  [ePE 1 cBriaEp E*(B: — Bp) - e h (B14)
>0 whenever 3, > Gy, Va > 0, (B15)
d’B 1 L ;
n_ 9Ba _ BB — B) . elBtaBABIE | [aBE _ o(af+B)E

B =307 = [ehE g Gromip  E (Be — Bu)7 - e ATONE - [e07 — eIV (B16)
<0 whenever 3. > 8y, Va > 0. (B17)

Next, an simple identity will be important for the evaluation of efficiency for a quasi-static heat engine as
well. This we present as alemma here.

Lemma 2. Consider a quasi-static heat engine where the cold bath consists of n identical systems (with individual
Hamiltonians H.) at inverse temperature (.. Denote the inverse temperature of the hot bath as (3}, and the following
function

AC = tr(H. pl) — tr(H ). (B18)
Then in the quasi-static limit, where the cold bath final state is a thermal state of inverse temperature 3y = (3, — g,
where 0 < g < 1,

nB/
AC=——— g+ 0@, (B19)
Bc - ﬁh
where B, = % and B, is defined in equation (B12).
Proof. This lemma is directly obtained by Taylor expansion of equation (B18), noting two things: (1) that
AClg—y = 0,and that (2) when plcad = T
dAC nB/

= . (B20)
dg /Bc - ﬂh

§=0

The third tool is an observation initially made in [14] for choices of € (g) as a function of the quasi-static
parameter g. There, it is shown that one can characterize any choice of continuous function ¢ (¢) by the real
parameters &, 0 € Ro.

Lemma 3 (Lemma 11, [14]). For every continuous function £ (g) > 0 satisfying lim,_,o+£(g) = 0,37 € Rogs.t.

" (g) 0, if Kk > R,
6(k) = lim £8P oc>0, ifk =R, (B21)
g0t g . _
0, if Kk <R,
")

where & = +oc isallowed (that is to say, lim,_+ —~ diverges for every k) and 0 = +oc isalso allowed.

Therefore, we summarize some results from [14] into the following table B1, for any continuous function
e(g) suchthat lim,_,oe(g) = 0. The regime of near perfect work, i.e. limgﬁoﬁ = 0is thoroughly investigated
in [14]. In this paper, we investigate the full regime of imperfect work by first analyzing in section C.1 an example
where limgﬁ()% = 00, and in section C.2 for all cases where limgﬂ()% =p>0.

B.2. Technical lemmas
Building on the results adapted from [14] and summarized in section B.1, this section contains the technical
lemmas and proofs used to develop the proof of theorem 1.

Lemma 4. Given any heat engine, consider the state transition

Thema © P = Poota © Py (B22)

where p(\’,v = |Ej) (Ejlw. piN = (1 — ©)|Ex) (Exlw + €lE;) (Ejlw respectively, where Weyy = Ey — Ej. Let
€ =g - g whereg > 0isindependent of cand g. Then there exists g’ > 0 such thatforall0 < g < ¢/,

12
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Table B1. Each choice of a continuous function € such that lim,_oe = 0, can lead to different

regimes of ‘ﬁ—s in the quasi-static limit, depending on the values of &, o and lim,_, 75;"5 .Recall
ext
lemma 3 for the definitions of % and o.
. AS
limg_o Wt Characterization
Near perfect work 0 R e€[0,1)
eln—
E=1 A limg g . =0
p>0 . ez / /
E=1 A limg g =p, 0<p <00
Imperfect work R € (1, 00)
00 E=1ANo=p">0
el L
This implies that limg_,o . £ =00
Wt = inf W, = inf W, (B23)
a>0 a>1

where W, is defined in equation (B6).

Proof. We start out from the most general expression of extractable work, given by equation (B6). Let us first
note that forany a € [0, o0), W, is a continuous function of g, and that lim,_o W, = 0. This can be seen by
directly pluggingin g = 0into equation (B7), and since ¢ = 0, |A|,— = 1, therefore forall a > 0, we have
W, = 0 (the case of W, is automatically true as well, since W/ is defined by taking the limit o — 1).
Furthermore, for different values of ¢ > 0, the value W, = inf,,~ o W, can be obtained at different values of «
such that the optimal o depends on g. However, in the quasi-static limit, there must exist a particular o;; > 0 that
achieves the minimum value, i.e.

Wext

lim =4 — 1, (B24)
g—0 qu

where this implies that for any o’ = a4, we have that

. Wy
lim

g—0 W(‘n

> 1. (B25)

However, since we know that both limg_,o W,y = 0 and limg_o W, = 0. Therefore by L'Hospital rule, this
implies that if we define the first derivative of W, w.r.t. &

I = W, (B26)
dg
then for any o, we also have
!
im 9D S . (B27)

=0 I(ay) ~

This implies that the solution o to the minimization problem of inf, ¢ W,, in the limit where ¢ — 0, is also the
solution for the minimization problem inf, (I (o). Substituting ¢ = & - ¢ into equation (B26), we obtain

1 1
I(a) = da _ asf'g® | + s | (B28)
O — )| A — e\ dg 1—c¢
We now see how equation (B28) behaves in the limit ¢ — 0. Forany < 1, the terms involved are

Alg—o =1, (B29)
Elg=0 =0, (B30)
% = anB,, (B31)

dg "
g9l — oo. (B32)

Equation (B32) in particular implies that in the limit of g — 0, I («) diverges to infinity in the interval

« € (0, 1). Furthermore, note that since this does not happen for the regime o« > 1, and all other terms do not
diverge, therefore in the a > 1regime there must be some o such that I (a)) < oo is finite. This allows us to
conclude that o; ¢ (0, 1).

13
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We will now exclude the point & = 1 from the minimization. We make use of the small €, g expansion of
W, in equation (B11) to see why this is so, by calculating the limit hmgﬁo Let us first substitute e = g - g,

and write out the expression for W,.:

W, = lim W, = E[ lim —2Ba_ i] +O(g) + O(e™) + O(ge™) + O(<?) (B33)
a—00 ﬁh a—o0 O — 1 n
" [ i] + o), (B34)
B n

where by definition of O (x) it is sufficient to keep the largest order term when several order functions are
summed. One can check that the quantity B,, = lim,, ., B, is finite, for all finite dimensional H,. On the other
hand, from equation (B11), by substituting our choice of ¢ we also have

angB — &% + ag

W= — + O(gg) + O(2Ine) + O(e2) + O(g?) (B35)

ﬁh(}_’ﬁ oa—1
= —lim ngB/ + angB, — e”Ine + ¢ 4+ O(g’Ing) (B36)

ha—»l
g X
,6’ [B1 glne + g] + O(g°lng) (B37)
h

Zg g - ln— + O(g%Ing). (B38)

I

The second equality comes by applying L'Hospital rule for differentiation limits, and the third equality comes by
substituting o = 1into the equation, while noting that B, = 0,and using € = g - g. Thelast inequality sign
comes from noting that B/, g > 0. Comparing equation (B34) and (B38) , we see that

1

g - ln + O(g%lny) g - In
lim — M > lim 3’1 = lim ¢ = o0, (B39)
g—0 W g—0 ’;g [Boc + 51] + 9(g2) g—0 B +

h

and therefore in the quasi-static regime, W, > W,
We have thus proven that in the quasi-static limit, the global minima for W,y = inf,,~ W, will not be
obtained in the interval a € (0, 1]. Thisin turn implies that

inf W, = inf W,. (B40)

a>0 a>1

With lemma 4, one can dismiss the regime 0 < « < 1when considering the infimum over W, in
equation (B11). In this lemma, we have also shown that in the quasi-static limit, the solution «; that corresponds
to the infimum in W,y coincides with the solution of the infimum for the function I (o) = dd%. By again making
use of this function I («), in the next step, we show that since we are interested in the quasi-static limit and the
case where ¢ = g - g, another useful simplification will help us to obtain the minimum for W,y,.

Lemma 5. For ¢ = g - g where g isindependent of cvand g, consider the function

dw, 1 1 dA _ ag
I(a) = —& = — —agfg ]+ , B41
@ dg Bra — 1)[A5“(dg aeg ) 1 5] (BeD)

where W, is given by equations (B6) and (B7). Let v be the solution that achieves the infimum in the quasi-static
limit, such that for all other o' > 0,

!/
Jim L) (B42)
g—01 (a1)
Then, o is also the solution that achieves the infimum for G () = ﬁ(anBa + ag) in theregime
Prla —
a € (1, oo), e
G(ay) = inf G(w). (B43)
a>1

Proof. To see this, note that in lemma 4 we have established that ay is not within the interval (0, 1], since within
thisinterval, lim, oI () = oo. Onthe other hand, forany a € (1, o0),
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1 dA
limI(a) =lim —— | — — ac®¢®* ' + ag | = G(a). B44
g—0 ( ) g—0 ﬂh(a — 1)|:dg 1g 1:| ( ) ( )
This concludes the lemma. 0

Lemma 5 implies that while analyzing W.,; = inf,,~ ¢ W, in the quasi-static limit, where we are interested in
finding the solution « that satisfies equation (B24), it suffices to analyze a much simpler function

G(a) = ;(anBa + ag), (B45)

Bl —1)
since G (o) = inf,~; G (). Looking back to compare G () with the Taylor expansion of W, evaluated in
equation (B11), we see intuitively why this function provides us the same solution to oy as for W in the quasi-
static limit: G () is simply the largest order term (more precisely, it is the term associated with order g) of the
Taylor expansion in the interval a € (1, 00).
To calculate the infimum of G («) over the interval & > 1, we compute

dG(a) n B! B, 5]
= — — _ — — . B
” 5 @1y {a(a 1) 5 nB,} (B46)

« «

AS

Furthermore, we can already apply lemma 4 to understand how — behaves in the quasi-static limit, which

ext

we prove in lemma 6.

Lemma 6. For any heat engine where ¢ = ¢ - g, with & independent of g, in the quasi-static limit ¢ — 0T, we have

lim+ VA\/S = oo. (B47)
g§—0 ext

Proof. From lemma 4, and by using equation (B11) we see that for some particular o; € (1, 00),

Wit = ;[angBa — &% + ag] + O(g?) + O(e2Y) + O(ge®) + O(e?) (B48)
Bn(cq — 1) '
= ﬁ[am&h + al + OE™) + O@g?) + OE™) + OgH M. (B49)
This implies that the leading order term in W,y is of first order in g. On the other hand,

AS = —¢clne — (1 — &)ln(1 — ¢) (B50)
=-a-gl(g-g — (1 —el—e+ O] (B51)
=—g-glng+ glng-g+ e+ O(?) + O(?) (B52)
=—g-glng+ O(g) + O + O(g>. (B53)

The second equality is obtained by substituting e = ¢ - g and writing In(1 — €) = —¢ + O(e?) interms of

Taylor expansion. The third equality is obtained by expanding out all the multiplied brackets, while the last
equality is obtained by noting that ©(¢) = ©O(g), and therefore concluding that the leading order term (which
has the slowest convergence rateas ¢ — 0)is of order g In g. With this, one can evaluate the limit

—g-glng+ O(g) + (g% + O(gY)

lim = lim Z (B54)
80" Wey g—0" By(ar— 1) [OélnBal + aqg] + @(gm) + @(gZ) + @(g20¢1) + @(g1+a1)
— . 2
— lim 1 g-Ing+ O() + O(g) + O(g?) (B55)
g—0"F [gh—(017 1)[a1nBal + a1€1] + (-)(gm—l) + (._)(g) + @(gZGl—l) + @(gal)
=0Q. (B56)

The second equality is obtained by dividing both numerator and denominator with g. Then we see that in the
numerator, —¢ - In g goes to infinity, while the other terms remain finite. On the other hand, the denominator

goes to a finite constant. Therefore, we conclude that limgHm# = 00. B
‘ext

Recall that we have previously estalished in lemmas 4 and 5 that the solution ¢ for the optimization of W,y
in equation (B5)—(B7), in the quasi-static limit, will be the same value that minimizes the function G («) in
equation (B45). From here onwards, we focus our analysis to the case where the cold bath consists of qubits.
Therefore, B, is given by equation (B13),and B., B! inequations (B14)and (B16) respectively. Furthermore, it
is also useful for us to evaluate
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E
By = lim B, = ————, B57
© a—00 “ 1+ e*S:E ( )

by applying equation (B13).

, namely that this function has not more
than 3 roots in the regime a € (1, 00),i.e. G(«) does not have more than 3 stationary points. Then in lemma 9
we show how the value of lim,, . G(«) is approached.

Lemma 7. Consider the function f (o) :== a(aw — 1) — B _ 2,,Which is found in the rhs of equation (B46). Then
f (@) .

its first derivativew.r.t o, f'(a) = is strictly concave in the domain o € (1, 0o). This also implies that f (o)

has at most 3 roots in the regime o € (1 ).

Proof. Note that f/(a) = g'(a) + 2 B‘,;,whereg (o) = —n[a(a - 1) — %].It has been shown inlemma 12,

supplementary material of [14] that g(«) is a strictly concave function. On the other hand, by using the
definitions in equations (B14) and (B16), one can evaluate the second derivative of

dZ B” 2 -0, +a(B+B)IE 2a8,E 2(afB.A40B,)E
a2 B2 = (Bc — Bp)e T ATINEE - [@20PhE — ST,

All the terms in the equation above are positive, except for the last term which is always negative when 3;, < 3,.
"

concave functions, and therefore is also strictly concave itself. O

One can apply lemma 7 to analyze the function G («) to show that it does not have more than 3 stationary
points.

Lemma 8 (G (a) has not more than 3 stationary points). Consider the continuous function

( )

G(a) = S—[Oﬂ’lB + aglintheregime o € (1, 00). Then the equatzon = 0 has at most 3 roots, i.e. the

function G (cv) has not more than 3 stationary points.

Proof. Let us begin by writing out the function

di;a) e " % {a(a -U ”% i }

(&%

Since from the expression in equation (B14), we see that B, > 0 whenever 3, < 3., bylemma 7, we know that
aw,
da g

Lemma 9 (W, is approached from above). Consider the continuous function G (o)) = 3 (a" 5 [aBa + %] in
Br(a—

the regime o € (1, 00). Then the limit lim,, ., G () exists and is approached from above.

Proof. We have seen from equation (B34) that lim,, . G («v) exists and is some finite number. We then only
dG(a)

need to prove that in the limit of large v, the quantity
rewrite here again

< 0. This can be seen from equation (B46), which we

dG(a) 1

o B 1) {a(a — 1)nB,; — nB, — &}. (B58)

Let us compare the terms in the large bracket of the rhs. The first term
ala — 1B, = a(a — 1)E*(B, — By)e e~ BE (B59)

has a quadratic term in o multiplied by a term which decreases exponentially in o, i.e.
lim,_,o a(a — 1)B, = 0.On the other hand, the remaining terms can be expressed by using equation (B57):

. E
lim — Ba - i = [17313 + sl:l < 0. (B60)
a—00 n + e n
Since for large @ >> 1, the multiplicative factor in equation (B58) is positive, we have that —— dG(”) < 0. This
implies that the function G () approaches the limit @ — oo from above. O

Lemma 10. The function G («) does not have more than one distinct local minimas in the regime o € (1, 00).
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Proof. By lemma 8, we know that the function G («) has at most 3 stationary points in the regime o € (1, 00).
Firstly, suppose that G (a) has only 1 or 2 stationary points. Then it is clear that there cannot exist two distinct
local minimas, since for a continuous function with two local minimas, there has to be at least another local
maxima in between, which is also a stationary point.

Now, suppose that G () has 3 stationary points, foundat1 < oy < a; < s < oo respectively. Note that
two neighboring stationary points cannot both correspond to local minimas, as reasoned out in the previous
paragraph. Therefore, the only way for there to exist 2 local minimum points, is to have oy, s corresponding to
local minimas. If there are no more stationary points in the regime a > aj, then the function G(a) can only be
non-decreasing, and the limit @ — o0 has to be approached from below. However, by lemma 9 we know that
this cannot be true.

This establishes the fact that G («) does not have two distinct local minimas. Therefore, it implies that
whenever we find some o corresponding to alocal minima, it will be the unique local minima of the entire
function. This simplifies the minimization of G () in equation (B23) to comparing G (o) with
lim, o G(a). O

In the next lemma, we then prove that by making use of our liberty to choose &, we can design it such that
inf, -1 G(«) is obtained at any o we desire (albeit still within a certain range).

Lemma 11 (Conditions for positive ). Consider the function
ala, n) :==nlala — l)B; — B,]. (Bo61)

When the condition
L2 1+ eltE
Be — B e’ —1

holds, then there exists some o > 1such that g (o, n) > 0.

E (B62)

Proof. We begin by noting that € (1, #n) = 0 for any n. A Taylor’s expansion around a = 1 would determine the

positivityof e (a, n) fora = 1 + 6 where 6 < 1. Therefore, we calculate the derivative dsLﬁ;’")

dg (a, n)

1 =n[(a — 1)B, + aB. + a(a — 1)B! — B)] = n(a — 1)[2B, + aB/]. (B63)
a

1(“ " = 0. Therefore, the term that determines positivity of
a=1
&(a, n)around a = 1isthesecond derlvatlve,

d%s(a, n)
da?

Itis easy to see from equation (B63) that ———

= n[2B) + aB! + (a — 1)(2B! + B” + aB!")]. (B64)

¢ - (“ " = n[2B/ + B/]we can expressed in a simplified form,

n(B, — () eAt30EE?
= e e 2+ (B — B)E + ¢4 — E + BB (865)

The quantity —>—

d’g (a, n)
da?

a=1

For this to be positive, it implies that 2 + (8. — 3,)E + e*f(2 — B.E + 4E) > 0.Rearranging terms, we
find

(B: — BEQ — e*F) > —2(1 + eF) (B66)
BE
<2 & *+1 (B67)
Be — B ehf — 1

O
Lemma 12. Consider the function G (&) as described in equation (B45). When ¢ is given by equation (B61) for some

a=a* > 1, then 952 =0.

a=a*

Proof. To see this, let us write out the final form of the first derivative of G («) in equation (B46),
dG(e) 1
da By (o — 1)?

[a(a — l)nB(i — nB, — al, (B68)

= 0. This concludes

*

and observe that substituting equation (B61) into the equation above gives us ——
a=ao
the proof. O

dG ()
d
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So far, for a specific design of &, we have found conditions expressed in equation (B62) such that ¢ > 0 and
G (o) is a stationary point. Next, we can write down further conditions for when given o* and g (o, n) as
defined in lemma 11, one can now find conditions on E such that G (o) not only is a stationary point, but also a
local minima.

Lemma 13. Consider the functions
dG(@) 1 1

i - B a1 [a(a — l)nB; — nB, — al, (B69)
L (0 —

and
By+aB)E _ o(B+aB)E
pz=— . 2 < (B70)
1+ eBE eBLE + eButab)E
Ifthe following condition holds:
E<—1 (B71)
ﬁc - ﬁh
there one can find some o > 1in thevicinity of « = 1such that when we define
a(a¥, n) == n[a*(o* — l)B’ — Bg*, then g/(d, n) > 0. Furthermoreif1 < o < 2 ischosen, then
2
d G( B > 0. (B72)
ClOé2 a=a*
Proof. We first note that if E <5 then equation (B62) holds and therefore by lemma 11, one can choose
some o > 1and closeto 1 such that 51(a n) > 0. Next, we calculate the analytical expression of 4 (a)
terms of first and second derivatives of B,,. Differentiating equation (B69),
dG(e) 1 1
= a — 1)?*[(a — 1)nB, + anB! + a(a — 1)nB” — nB/
T G\~ D = DB+ anB] -+ a(a — DnB! — nb]
—2(a — D[a(a — l)nB(i — nB, — ]}
L ! ——{(a — D[2(a — D)nB. + a(a — 1)nB!] — 2[a(a — 1)nB., — nB, — gl}
" Bula— 1
= i;{n(a — 1?[2B, + aB!] — 2[a(a — 1)nB. — nB, — gl}. (B73)
B (@ — 1)°
Substituting @ = o into equation (B73), one sees that the last term vanishes, and therefore
2
d G(f‘) _ i—*l [2B. + aB/]. (B74)
da o — o ﬂh (o —=1)

Since o* > 1, we see that to guarantee positivity of equation (B73) is equivalent to showing that the last term
2B/, + aB/,isstrictly positive. To do so, we evaluate the terms B! and B!. Byboth hand derivation and
Mathematica, we obtain the expressions

. = 1 2 18,+a(B+8,)]E
P = [e@hE 4 eBytaB)E2 - E*(B: — Bp) - elPntalBtoy E75)

and

n — 1
@ [eaﬂhE 4 e(ﬂthaﬂ[)E]Zv

BB — Bu)? - At oA MIE . [0 — elaftAE), (B76)

One can then calculate the last term in equation (B73), which we again obtain a simplified expression via
Mathematica,

B — ﬁh)Ez L

2B/, B, = . [By+a(BA+BIE . « i B77

a +a o [ethE + e(,8h+aﬁC)E]3 —fo_, f(a ) ( )

>0
where

F(0¥) 5= e HE[2 + 0B, — FE] + e NE — *(G, — BE] )

:2[e(¥ *ByE + e((x*ﬂ(+ﬁ;L)E] + a*(ﬂ[ _ ﬁh)E[ea*ﬂhE _ e(“*ﬂc‘h@h)E]‘ (B79)

>0 20

Note that the second term is always negative because o > land 3, > (3. Therefore, to lower bound f (o) we
want to upper bound the factor o*(3, — ;) E. Byletting1 < o < 2and E < ﬁ, one can have

'c — Ph
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a*(B. — Br)E < 2, which gives
2B', + aB/, > 2[e®HE 4 @ BABIE] L 2[e"BE — @ BAOIE] = g™ HE > 0, (B80)
« (e}

Note that the constraints on o and E are not necessary, however sufficient and takes a relatively simple form. [J

Finally, for G (o) to be the global minima, we need to compare it with the limits @« — 1, oo. Firstly, by using
equation (B45),

G(1) = lim G(a) = ﬁ[Bl + B/ + 2 lim
a—1 ﬁ n a—1l o — 1

] = . (B81)

We need one last condition: that G (o) < G(0o). In the next lemma, we again develop conditions such that this
is true.

1
[35 - [3}1 ’

Lemma 14. Suppose oE < Then for & (o, n) defined as in equation (B61), we have that G (d*) < G(c0).

Proof. To do so, we write out the expressions for G (o) and G (c0):

G(a) = 1% (B 1 (¥ — DB/, — Byl = 2B/ BS2
(a)—aa*_l[a +a(a—)a*— a]—a o ( )
n g n E €
G()=—|Bo+ —|=—|——=+ — | B83
) ﬁh[m n] 5h[1+Eﬁ‘E ”] -
For G(d*) < G(00), this means

E

aB!. < I + af(a* — 1)B/, — By (B84)
E %12/
m — Ba* — Bn{* > 0. (BSS)
Expanding equation (B85), and using the shorthand X := e®#F 4 e+ HE we obtain
By+a*3 B+a*3
E__ (Be — B o™E? elfrar@sne _ __E eGta™DE 4 e(hraG)E (B86)
1 + EAE X? 1 + EAE X
:i_1£§553%4x2-— FE(Be + B (1 + etE)eltt o GrMIE _ X[eahE 4 (hta®E]) (B87)
:TJ%EﬁﬂXkWM+EWWWﬁL—¢H@+ﬁwa+ekaMWWﬂM} (B8S)
—|— Pe

E . .

=5 X — BME(B + et E) (B89)
E * * *

= €I 4 DL — & E (5 — By} (B90)

The calculation above can be checked as follows: the first equality is obtained by taking out a common factor
from all the three terms. The second equality focuses on the large bracket, and combines the first and third terms
by expanding one of the X in the first term. In the third equality, one recognizes more common factors in
equation (B88), and therefore pulls out e F . (1 + e’F). The fourth equality is obtained by expanding X,
while regrouping terms. To demand that W » < W, implies that we demand

e Bl 4 eWhta"WE[] — o¥E(B, — By)] > 0. (B91)
Rearranging equation (B91), we have
e > et T WEQFE (B — B — 1. (B92)

+a*B)E

One can continue to simplify the expression by bringing e ,and subsequently the —1 to the lhs, yielding

1+ e @ UmMWEle=BE > o*E(B. — B). (B93)
Then finally, one obtains an expression for o*E:

1+ e_“*(ﬁc_ xglz)Ee_ﬂhE

a'E < . (B94)
ﬂc - ﬂh
Since 3. — (B > 0,and we have that e~ "G Ee~AE > (, therefore aslongas o*E < 7 ! W equation (B85) is
'c — Ph
satisfied and G (o) < G(o0). This concludes our proof. O
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Lemma 4, box 10, lemma 11-13 together presents a set of mathematical conditions such that o can be
chosen such that G («) has a global minima at o« = o*.

Appendix C. Results

In [14] it has been shown that for a heat engine to extract any positive amount of work atall, ¢ > 0 has to be true.
Therefore, perfect work can never be drawn. Also, in [14] the regime of near perfect work was analyzed. There, it
was found that the maximum efficiency can never exceed the CE.

In this paper, we develop an example of a heat engine which extracts imperfect work. In section C.1, we show
(our main result) how to find examples where CE is surpassed. More specifically, this occurs in the quasi-static
limitwhere =2 — 00, In section C.2 we analyze the regime where a5, p,with 0 < p < co. Wefind thatin

ext ext

this regime, according to the generalized second laws, CE cannot be surpassed.

C.1. Main result: an example of drawing imperfect work surpassing the CE

Our main result is stated in theorem 1 of the paper. Here, we present corollary 1, which is a direct consequence of
combining all the technical lemmas derived in section B. This corollary is a more detailed version of theorem 1 in
the main text.

Corollary 1. Consider a quasi-static heat engine with a cold bath consisting of n identical qubits with energy gap E.
Given the inverse temperatures of the hot and cold bath (), 3. > 0 respectively, and for o € (1, 00) define the
functions

E eBitaf)E _ o(B+af,)E
B, = i / 1)
1+ eAE B 4 e(BitaB)E
Ifthe energy gap of the qubits satisfies
1
E<o =70 (C2)
z(ﬁc - ﬁh)

then there exists an o* € (1, 2) such that the following holds:

1. The failure probability of the heat engine, can be chosen as € = g - n[a*(a* — 1)B/, — B,*] > 0, where

B, . oo ;
B, = in" is the first derivative of B,, accordingto cv.

2. In the quasi-static limit, the amount of extractable work Wy is achieved by W, i.e.

lim Wext

=1. C3)
g—0 W(l* (

Bn 1 B/
B: = By a*? B!."

3. The (inverse) efficiency of the described heat engine in the quasi-static limitis given by ' = 1 +

Proof. Since 1e : Eei(i > 1,ifequation (C2) holds, then equation (B62) holds. Therefore item 1 is a direct result of

lemmall.

Item 2 concerns the quantity Wy, given by equations (B5)—(B7). Suppose that « is the solution such that
equation (C3) holds. Since we have made a choice of € according to item (1), then in the proof of lemma 4, we
have shown that q is also the solution that provides the infimum for

dw,

I(a) = dg

(C4)
in the quasi-static limit. Furthermore, in lemma 5, we have also shown that a; is also the solution that ahieves the
minimum for inf,, - ; G («), where G () is given by equation (B45) (it is the leading order term of I (o) with
respect to g). Therefore, if we can show that o achieves the global minima for G () in the region a € (1, c0),
then we know that W * satisfies equation (C3).

Let us now see why the infimum inf,,»; G(a) = G(a*). If one chooses o € (1, 2) and that equation (C2)
holds, then equation (B71) holds as well, and so lemmas 13 and 14. Therefore,

+ Bylemma 10 we know G («) does not have more than one distinct local minima.

+ Bylemmas 12 and 13, G () is a unique local minima.
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+ Bylemma 14, G(d) < G(co). Therefore, G () is the global minima.

Finally, for the fixed parameters n € Z*, E € R, o € (1, 2), we can evaluate the efficiency of our quasi-
static heat engine for a cold bath comprising of identical qubits. This can be done by evaluating the efficiency for
our heat engine:

nl=1lm1—-¢e+ AC. (C5)

g—0"

ext

Theterm e = ¢ - g = ©(g), where g = n[a*(d* — 1)B I+ — By is a finite constant. Therefore we know
limg_,o+ £ = 0.On the other hand, we have

dac
lim 28 _ jjm BC . Wow ) & (C6)
=0 W g0 Woe Wi g—0 Wt
; -
/! —1
— "B im 1) (C7)
ﬂc - ﬂh §—0
I’IB/ —1
= L. ]lim G(a®) (C8)
ﬁc - ﬁh §—0
!
nB; B (C9)

B ﬁc - ﬂh na*zB/*.
a

The second equality holds by noting that both AC and W.¥ vanish in the limit g — 0,and therefore apply the
L’Hospital rule. In the third equality, we used the first derivative of AC as calculated in equation (B20) of
lemma 2. Subsequently, we have used lemma 5 to calculate the value of I (o) in the quasi-static limit. where we
have made use of therefore, substituting equation (C9) into the expression for efficiency in equation (C5), we
haveitem 3, i.e.

AC

nl=1+ lin(f)1+ " (C10)
& ext
/
1 LB (Ct1)
ﬁc - ﬁh a*? B(;*
O

With this, we can numerically plot out the achievable efficiency as a function of 3, By, n, E, o, in the limit
where g — 01. These expression are plotted out in several regimes in figures 2—4. It is worth noting that from
the expression for inverse efficiency in corollary 1, we see that 777! contains terms that originate from the
expression of g chosen in item 1 of corollary 1. Itis then, perhaps, unsurprising that we observe the surpassing of
CE (for some values of o > 1). Indeed, although the average energy change in the battery is positive, i.e.

AW = (1 — €)Wy > 0, the change in free energy of the battery,

AFw = F(py) — F(py) = AW — 3,'AS (C12)
is actually negative. This can be seen when we compute the limit

_ a1
lim —AFW = lim —AW Bu AS =1- 3,'lim —AS = —00,

g—0t AW g—0t AW =07 (1 — ) Wexe B
where the last limit comes from noting that lim,_,o+& = 0, and applyinglemma 6.

C.2. Drawing imperfect work with entropy comparable with W,
In this section we analyze the achievable efficiency when considering the quasi-static limit where

AS

ext

—c for some ¢ > 0. (C13)

One can see that only certain choices of ¢ (g) will lead to having such a limit, which we shall see later in detail on
table B1. We prove that for all choices of € such that equation (C13) is true, one cannot surpass the CE.

Theorem 2. Consider a quasi-static heat engine where the failure probability of extracting work is € (¢), g being the
quasi-static parameter (see definition in main text), such that
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lim & _ {0’ ifr>1, (C14)

g0t g 0o, ifk <1
elnt
and limg_o T‘“ = ¢ > 0. Then the maximum achievable efficiency is upper bounded by the CE.

Proof. Firstly, note that an example for such a choice of € can be constructed, i.e. € In g =c-g
We make use of equation (C14) to analyze W,,,, which is given in appendix B. Rewriting equation (B11) by
first drawing out a factor of g,

Wee = g - inf W, (C15)
a>0
where
W,
1 e ae g a & .
roslank - S el e@+o(T) FeEn +0(T), it ac @ s\,
= elnt 2 2 (C16)
ﬂhl[ lim % T] O + @(%) + @(%) + o), a=1

Note that the (inverse) efficiency in the quasi-static limit is given by

n*I:liml—e—l—AC:l—l—limAc>l+lim£, (C17)
g—07 ext g§—07 Vvext §—0" W)

whereany o > 0 gives an upper bound. However, since AC and W, are both vanishing in the quasi-static limit
(for any o > 0), we can also evaluate the limit by using equation (B19),

. AC nB/ (
lim = .
=0t W, B — B

We are, then, interested in picking « that gives us the tightest bound, i.e. the smallest value for lim,_,o W,. This
leads us to scrutinize equation (C16) in the light of £ () that satisfies the statement of the theorem. First of all,

note that equation (C14) implies that for values of a € (0, 1), the term

-1
lim w) . (C18)

g—0

g(;—gjl) goes to infinityas g — 07, while
other terms are finite. This implies that the minimization can be restricted to parameters « > 1. Notice also all
the order terms vanish when we take thelimit ¢ — 0, therefore we need only to deal with the largest order terms
in equation (C16).

Consider the case where o = 1. We have that

lim W, = L[ lim anBa + c], (C19)
g—0 Bulo—1" o — 1

where we have seen that ¢ > 0, by choice of £(g). On the other hand, for & > 1 the expression for W], can be
further simplified in the quasi-static limit,

R anB .
limW, = —— if a € (1, 00). (C20)
g0 Bra — 1)

This is because the terms %, % now vanish as ¢ — 0. From this we also see that since Wy > 5;1 lim,,_, + Z”fl ,

and by continuity of the function Z"—f“l for a € (1, 00), W can also be disregarded in the minimization (see
figure C1 for a pictorial understanding).

Upon scrutiny, one sees that in the quasi-static limit, the contribution from ¢ has dropped out of the
expression for W, Intuitively this tells us that having such a probability of failure € does not help to boost Wy,

and in turn the efficiency. In particular, we can use the lower bound:

12 —1
pl= 1+ tim 2C > "B [lim anB, ] , (c21)
g0 Wexe — Bc — Brla—1 Bl — 1)

where we have substituted equations (C18) and (C20) into equation (C17), while picking & — 1as our bound.
This limit is evaluated as

anB n n
lim ~ = —(Bi + B)) = —B,. C22
Jim S = B+ B) = B (c22)
The first equality in equation (C22) comes by noting that B; = 0, and therefore applying the L’Hospital rule.
The second equality comes again from noting that B; = 0. Finally, substituting this into equation (C21), we have
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Figure C1. The value of W, at @ = 1 can be ignored while minimizing W, over a € [1, cc), because the neighboring values of the
function for & > 1islower.

B !/
n—1>1+”71.5_h/ (C23)
ﬁc - ﬂh nBl
B -1
1 — (C24)
ﬁc - 5}1 ¢
one finds that the upper bound on efficiency yields the Carnot expression, i.e. < 7. This means that for
choices of € (g) according to the statement of the theorem, CE cannot be surpassed. O
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