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Abstract

In intensity modulated proton therapy (IMPT), patients are irradiated with small spots, that deliver a local
dose to the tumor. The number of possible spots to choose from is virtually infinite, but practically limited,
which requires a spot selection. This spot selection should result in an optimal treatment plan, i.e., to deliver
a sufficient dose to the tumor, while sparing the healthy surrounding tissue. These trade-offs make treatment
planning in radiotherapy a multi-criteria optimization problem. The current approach for this spot selection
by the Erasmus Medical Center (MC) is an iterative resampling method which uses a trial and error principal.
A random sampled spot selection is made, bad spots are removed, and new spots are randomly added.

The research goal of this project is to improve the current spot selection method, by inducing sparsity on
spot selections with the `1-norm, without decreasing the plan quality of the current solution. This idea was
already explored in Janssen [1], and considered viable. Sparse solutions are beneficial for optimization prob-
lems since they reduce the problem size and have higher probability of producing qualitative solutions. To
achieve these goals, the Sparsity-Induced-Spot-Selection (SISS) method was developed. Contrary to the itera-
tive resampling approach, the SISS method uses a top-down approach. Starting with a large spot coverage, it
selects as little relevant spots as possible through the use of the `1-norm to induce sparsity, until an accept-
able treatment plan using as little spots as possible is made.

The developed method was validated on a test set consisting of 10 head and neck patients. Using the SISS
method, an average spot selection of 1159 spots was produced, compared to a solution of 1074 spots for the
resampling method. For the average patient, 6 out of 10 Organs-at-risk (OAR) received a lower dose with
the SISS method than with the resampling method. The remaining OARs all received a marginal dose sur-
plus of 0.6 Gy, with a maximum of 2.6 Gy. The target volumes in the tumor also received a similar dose to
the resampling method, with the near-minimum dose of the tumor receiving a dose shortage of 0.2 Gy, and
the near-maximum dose of the tumor receiving a dose surplus of 0.5 Gy, both being considered as marginal
differences.

The SISS method produces a comparable spot selection and shows no decline in plan quality of the dose
distributions. Using the `1-norm to induce sparsity on spot selections in treatment planning is feasible. The
computation time of the SISS method could be reduced using a voxel reduction, although this reduction in
computation time is not guaranteed in practice due to robust optimization being applied.
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1
Introduction

In 2020, cancer was diagnosed in around 19.3 million patients worldwide, and radiotherapy was used in about
50% of the cases, sometimes in combination with chemotherapy or surgery [2]. In a radiotherapy treatment,
the patient is irradiated with ionizing radiation to damage the malignant tumor cells and eradicate the tumor.
Unfortunately, an inevitable side effect is the damaging of healthy cells around the tumor. This may lead to
certain complications which can negatively impact the patients quality of life. On the other hand, there is the
potential for cure, i.e., to irradiate the tumor with a sufficient dose and destroy it completely. This balancing
between sparing healthy surrounding tissue and irradiating malignant tumor cells makes radiotherapy treat-
ment planning a multi-criteria optimization problem, with the aim of a treatment that results in the highest
quality of life for the patient. Since each patient is anatomically unique, this requires individually balanced
plans.

1.1. Proton therapy

Radiation can be performed using different sources, including photon therapy, proton therapy and brachyther-
apy. The conventional method is photon therapy, which uses X-rays for irradiation. In this project however,
we will focus on irradiation by proton therapy, which is widely considered to be the most technologically ad-
vanced method for irradiation currently available [3]. When a patient is irradiated with protons, beams of
high energy protons are delivered into the tumor.

The main advantage of proton therapy over photon therapy is that the dose deposition is better suited for
irradiating the tumor and sparing the healthy tissue of the patient. In conventional photon therapy, X-rays
start with their peak-dose right at the beginning of their path inside the patient’s body, while the deposited
dose deeper in the patient decreases gradually. At the depth of the tumor, the intensity has decreased signif-
icantly, while the healthy tissue on the path to the tumor has received a high dose, thus damaging the tissue,
as shown in Figure 1.1. Even when passing the tumor, the photons still deposit a dose (exit dose).

1



2 1. Introduction

Figure 1.1: Bragg curve of protons and X-rays, showing the difference in location of the Bragg peak. Image taken from [4].

In proton therapy, the dose starts out low when entering the body and reaches its highest point, the Bragg
peak, preferably at the location of the tumor. Behind the tumor, the dose quickly decreases to zero, thus
having no exit dose. Varying the initial energy of the protons results in a different depth of the Bragg peak.
Proton therapy thus allows a local dose deposition. One of the challenges of proton therapy addressed in this
research is to determine where the volumes of high dose delivered by the protons should be placed in the
patient to ensure sufficient dose to the entire tumor.

The local dose deposition causes another challenge in proton therapy: small anatomical variations or patient-
setup variations on the treatment couch will cause the Bragg-peak to reach its maximum at a different loca-
tion, resulting in underdosages in the tumor, and higher doses in healthy tissue. A method to mitigate this
problem is robust treatment planning, where a desired dose is ensured under different predefined uncer-
tainty conditions [5]. Due to the explorative nature of this project, plan robustness has not been included in
this work. However, since robust treatment planning is captured in a canonical optimization problem for-
mulation, it is expected that the findings of this work can be applied to robust treatment planning for further
exploration.

1.2. Treatment planning
The treatment plan describes all the machine parameters required to deliver the dose distributions in an op-
timal way, i.e., to deliver a sufficient dose to the tumor while sparing the surrounding healthy tissue as much
as possible. At the Erasmus Medical Center (MC), treatment planning is guided by a wishlist. The wishlist
reflects the clinically desired doses in the volumes and describes the constraints and prioritized objectives,
such as a minimum radiation doses for the Clinical-Target-Volume (CTV), and maximum radiation doses for
Organs-At-Risk (OARs), as shown in Table 1.1. The resulting dose distribution must satisfy all constraints,
while balancing the objectives in a clinically favorable way.

Table 1.1: Example of a wishlist with objectives and constraints, for a simplified head and neck case. The number of the objective
indicates its priority in the optimization, with a lower number having the higher priority. For objective 1, the mean dose in the right
parotid should be minimized with a limit of 26 Gy. Furthermore, the first constraint guarantees that the PTV (Planning-Target-Volume)
receives no more than 49.22 Gy.

Objectives Volume Type Limit (Gy)

1 Parotid (R) minimize mean 26

2 Parotid (L) minimize mean 26

Constraints Volume Type Limit (Gy)

PTV maximum 49.22

PTV minimum 43.7

At this moment in clinical practice, the radiation therapist tweaks the parameter of planning objectives it-
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eratively to obtain a treatment plan best suited for the unique anatomy of the patient. With this procedure,
the final dose distribution depends generally on human factors. This does not guarantee optimality of the
trade-offs made between the different objectives.

1.3. Proton beam scanning
A beam delivery technique in proton therapy is called intensity modulated proton therapy (IMPT), which uses
protons for irradiation, with a non-uniform dose that can be adjusted to the size and location of the tumor.
Treatment plans for IMPT are generated using Erasmus-iCycle, an in-house developed treatment planning
system. A patient that undergoes IMPT is irradiated by multiple proton beams from different angles. The
proton beam originates from a source and goes through a magnetic scanner, where the beam is diverted in to
several smaller beamlets, called spots, to a certain off-axis position. The depth depends on the energy of the
beam, see Figure 1.2.

Figure 1.2: Schematic representation of proton beam scanning for IMPT. The patient’s volume is discretized into 3D voxels for the opti-
mization. Image taken and modified from Tony Lomax.

The intensity of each spot is expressed in monitor units (MU). The relation between the monitor unit of a spot
and its intensity is linear, so a higher intensity results in a higher delivered dose.

1.4. Problem description and proposal for a solution
The number of possible spot positions is infinite, as spots may be placed virtually anywhere. Unfortunately,
using a high spot density would make the optimization problem too large to solve. Furthermore, not all spots
can be used due to practical limitations in the treatment device. Therefore, a spot selection is required to
determine which spots to use to deliver a sufficient dose while sparing the healthy tissue as much as possible.

1.4.1. Current method: IMPT through iterative resampling
The current spot selection method uses a resampling approach [6]. It starts by randomly selecting 3000 spots
out of millions of candidate spots. Then a treatment plan is created by converting the objectives and con-
straints of the patient to a weighted-sum problem, which is solved for the optimal MU per spot. Next, the
spots below a certain threshold are removed and up to 3000 new spots are randomly added to the remaining
ones, after which the process repeats until the last iteration, which is determined in advance to fit the patient.
In the last iteration, spots under the minimum MU are removed and the solution is projected onto a Pareto
front (see Section 3.1). This process is known as a Pareto projection.

Randomly
select

3000 spots

Create treat-
ment plan

Remove spots
with negligible

contribution

Last it-
eration?

Add up
to 3000

new spots

Pareto
projection
+ output

No Yes

Figure 1.3: Schematic representation of the iterative resampling process of the current method used by the Erasmus MC.



4 1. Introduction

The minimum MU is required by Holland Proton Therapy Center (HollandPTC), which is an outpatient center
for proton therapy in Delft, to guarantee a stable beam during irradiation. The entire process is visualized in
Figure 1.3.

By using this resampling approach, 24000 spots are tried, of which approximately 1000 spots end up in the
final plan. In the experience of the Erasmus MC, approximately 1000 spots are enough to create a treatment
plan with acceptable plan quality. There are however three main points of improvement to be made with this
resampling approach:

1. The method for the selection of spots should be a more mathematically substantiated method that
ideally results in a better spot selection. Random sampling and trial and error does not guarantee qual-
itative solutions.

2. The transparency of the current approach can be improved. There are a number of complex steps
involved, which we want to avoid by using a more straightforward, intuitive approach to this problem.

3. The computational time takes too long. This iterative approach generates a treatment plan for every
iteration, which is inefficient and could be time consuming when the optimization problems is large.

1.4.2. Sparsity inducement using norms
In this research project we aim to improve the spot selection approach by incorporating sparsity inducement
using norms. The idea of using norms to induce sparsity was already explored in Janssen [1]. Janssen showed
positive results for spot reduction by implementation of the `1-norm, essentially a distance measuring func-
tion, on a small dataset and encouraged testing on a larger dataset.

A vector is considered sparse if it contains mostly zeros and a few non-zeros. When a solution has many
zeros, there are fewer active spots (spots taken into the optimization). This would result in fewer variables
in the optimization, which decreases the problem size, and also in a potential reduction in treatment time.
Given these benefits, we wish to develop a new approach for the spot selection, which uses the `1-norm to
produce sparse solutions. In Chapter 2 it is further explained why the `1-norm induces sparsity on solutions.
The incorporation of the `1-norm in the spot selection led to the development of the Sparsity-Induced-Spot-
Selection (SISS) method. A concise overview of the SISS method is shown in Figure 1.4.

1. Take the spots that were randomly sampled in the resampling method.
2. Select a relevant subset of approximately 1000 spots.
3. Create a treatment plan based on this subset of spots.

Figure 1.4: Concise overview of the proposal for the SISS method.

Step 1 differs from the original resampling approach. Instead of iteratively adding up to 3000 spots and re-
moving bad spots, the SISS method uses a top-down strategy. It starts with a large spot coverage, i.e., approx-
imately 24000 spots in our dataset, and selects as few spots as possible to find a good subset of spots. The
selection of this relevant subset in step 2 is the kernel of the SISS method, and brings the concept of spar-
sity inducement to the problem. After this selection, step 3 converts the solution to an executable plan for the
radiation therapist. The overview of the SISS method in Fig. 1.4 is expanded and further detailed in Chapter 4.

1.5. Design of this study
The general approach of this research is to implement the SISS method and compare the results of the spot
selection to that of the original resampling solution, using a dataset of 10 patients, each head and neck cases.
The implementation of the SISS method is done in Matlab, while the solver for the optimizations runs in C++.
To evaluate whether the spot selection produces a clinically acceptable treatment plan, dose distributions of
both the SISS method and the resampling method are made and compared with each other.

The dose distributions are represented in a cumulative 2D Dose-Volume Histogram (DVH), a commonly used
tool to visualize the 3D dose distributions. An example is shown in Fig. 1.5
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Figure 1.5: Example of a Dose-Volume Histogram (DVH) of a head and neck case.

The horizontal axis represents the dose delivered in Gray (Gy), and the vertical axis represents the relative
volume of a structure that receives at least a certain dose level. For example, 80% of the volume of the MCMid
gets a dose of 30 Gy, while only 40% of the volume receives 50 Gy. In general the CTV volumes receive a higher
dose, as these volumes comprise the tumor, and the other volumes (OARs) receive a lower dose. Note that
the average patient has 10 to 20 volumes in and around the tumor, so showing the dose distributions of all
volumes would decrease the readability of the DVH. Therefore a selection is made of relevant volumes, which
are related to the benchmark parameters in Table 1.2.

To understand these benchmark parameters, we must first define serial and parallel OARs. An organ may be
divided into sub-components. A serial OAR is an organ-at-risk that fails if one if its components is disabled.
Examples include the spinal cord and the brain stem. A parallel OAR is an organ-at-risk where all the sub-
components must be disabled for the organ to fail. Examples include the lungs, liver and kidneys. Because of
this high risk of failure, the threshold for a surplus dose in a serial OAR is low.

Table 1.2: Overview of four different benchmark parameters used to evaluate the quality of dose distributions.

Dose Explanation Applicable to Preferable dose

D0.03cc Dose that 0.03cc of the volume receives. Serial OARs Low

Dmean Mean dose over the entire structure. Parallel OARs Low

D2% Dose that 2% of the volume of the structure receives. This
is the near-maximum dose.

CTV High

D98% Dose that 98% of the volume of the structure receives. This
is the near-minimum dose.

CTV High

The DVHs and benchmark parameters are used when evaluating the quality of dose distributions. The DVHs
give a general overview of the similarity of the dose distribution to the resampling solution, while the bench-
mark parameters highlight important features that are not immediately evident from the DVH, such as the
D2% dose.

1.6. Thesis outline
In Chapter 2, it is explained why and how the `1-norm induces sparsity. A geometrical example is provided
as well as a demonstration of the effect of other `p -norms on sparsity of solutions. In Chapter 3, the different
multi-criteria optimization techniques used in this research are explained. In Chapter 4 the SISS method
is explained in more detail, by introducing different input parameters and additional deliverability settings.
Chapter 5 contains the results and analysis of the previously described methods, as well as a potential method
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for reducing computation time, by reducing the number of voxels in the patients volume. In Chapter 6 we
provide a discussion on the results, and the thesis is finalized with a conclusion in Chapter 7.



2
Sparsity inducement

In this chapter, the functioning of the `1-norm and its involvement in sparsity inducement are discussed in
more detail. A geometric example is provided as well as a look at other norms for sparsity inducement.

2.1. `1-norm
The resampling solution produces a vector with the MU per spot. A way to reduce the delivery time of this
vector is by making it sparser, thus having it contain more zeros. To do so, we will use the `p -norm. The
`p -norm is defined as follows:

‖x‖p =
(

n∑
i=1

|xi |p
)1/p

. (2.1.1)

This project will focus on the `1-norm, which is defined as

‖x‖1 =
n∑

i=1
|xi |. (2.1.2)

To explain why the `1-norm induces sparsity on the spot vector, we show the difference between an `1-norm
penalty and an `2-norm penalty, and explain why the latter norm does not induce sparsity. We take a simple
vector x = (x1, x2) = (1,ε) ∈R2, where ε> 0 is small. The `1-norm and `2-norm on this vector are respectively:

‖x‖1 = 1+ε, (2.1.3)

‖x‖2 =
√

1+ε2. (2.1.4)

Now we penalize both terms of x with δ≤ ε and compare the effects for the `1-norm and the `2-norm:

Table 2.1: Example of the effect of the `1-norm and the `2-norm on magnitude reduction.

`1-norm `2-norm

penalize x1 1−δ+ε
p

1−2δ+δ2 +ε2

penalize x2 1+ε−δ
p

1+ε2 −2δε+δ2

Note that with the `2-norm, penalizing the smaller term x2 results in a smaller reduction in norm than doing
so to the larger term x1. Thus when penalizing a vector with the `2-norm, smaller elements tend not to go

7



8 2. Sparsity inducement

to 0, as the reduction from ε to 0 becomes smaller as ε gets smaller. For the `1-norm however, the reduction
is always δ, regardless of the magnitude of the element. For this reason we will look into the `1-norm for
sparsity inducement.

2.2. Geometric example
A simple geometric example is presented to show the effect of the `1-norm, when compared to the `2-norm.
Take a simple linear program in 2D, as seen in Equation (2.2.1), where the objective is to minimize some
vector f = (x1, x2):

minimize f = (x1, x2)

x1, x2 ∈R
(2.2.1)

We start by adding the familiar `2-norm to the objective function. Now we have to find the point x∗ =
(x∗

1 , x∗
2 ) ∈ R for which ‖x∗‖ < ‖x‖ ∀x ∈ R2. This can be visualized as increasing the value of the `2-norm,

which is essentially increasing a circle around the origin, until it touches the vector f, as seen in Figure 2.1a.
Applying the same procedure to the `1-norm results in increasing a diamond around the origin, as seen in
Figure 2.1b.

(a) (b)

Figure 2.1: Visualization of adding increasing `p -norms to the objective function for p = 2 (a) and p = 1 (b). The increasing `2-norm
takes the shape of increasing circles, while the increasing `1-norm takes the shape of increasing diamond. In both figures, the blue line
is the objective function, given by f (x1), and the red dot is the intersection of the objective function with the minimum `p -norm.

The value of f which has minimum `p -norm is indicated in both cases by the red dot. This shows the differ-
ence between the two norms, as the solution in Figure 2.1a is not a sparse solution, since it does not lie on one
of the axes, but the solution in Fig. 2.1b does, since it lies on the x-axis. It should be noted that the `1-norm
does not always guarantee sparse solutions, as the slope of the vector f could be similar to the slope of one of
the edges of the `1-norm shape, but it does increase the chance of a sparse solution.

2.3. `p-norm for 0 ≤ p < 1
While Figure 2.1 shows that the shape of the `1-norm induces more sparsity than the `2-norm, the shape
of the `p -norm for 0 ≤ p < 1 seems to induce even more sparsity, as seen in Figure 2.2. Ideally we would
want to use the `0-norm, as all of its points lie on the axes, thus making it a highly sparse solution. However,
for 0 ≤ p < 1, the `p -norm does not meet the requirements of the mathematical definition of a norm. For a
function ‖ ·‖ to be considered a norm, it must satisfy three properties:
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Figure 2.2: Geometric representation the `p -norm for p = 0, 2/3, 1, 2 and 10. The shape of the norm expands from a non convex plus
sign to a convex square with rounded corners. The `0-norm has a small circle around the origin, since (0,0) is the only point on the axes
not included in the norm.

1. (Positive definite): If ‖x‖ = 0, then x = 0.

2. (Homogeneity): ∀x ∈Rn ,k ∈R : ‖kx‖ = |k|‖x‖.

3. (Triangle inequality): ∀x, y ∈Rn : ‖x + y‖ ≤ ‖x‖+‖y‖.

If p = 0, then the `0-norm seems undefined in Equation (2.1.1), but it becomes the number of non-zero
elements in a vector. Furthermore, the `0-norm does not meet the homogeneity property. Take x1 = 1, xi = 0
for i 6= 1 and k = 2. Then

‖kx‖0 = ‖2∗1‖0 = 1 6= 2 = |2|‖1‖0 = |k|‖x‖ (2.3.1)

If 0 < p < 1, then the `p -norm is well defined by Equation (2.1.1), but the triangle inequality does not hold
anymore. Take for example x1 = y1 = 2 and xi = yi = 0 for i 6= 1. Then

‖x‖p +‖y‖p = 2+2 = 4 (2.3.2)

But

‖x + y‖p = (
2p +2p)1/p = (

2p+1)1/p = 2 ·21/p > 4 (2.3.3)

Besides the fact that the `0-norm does not meet the mathematical definition, there are also practical reasons
for favoring the `1-norm over the `0-norm or any `p -norm with 0 < p < 1. Note that if 0 < p < 1, the `p -
norm becomes a convex constraint, which is known to cause computational difficulties [7]. Furthermore, the
optimization problem with `0-norm is known to be NP-hard [8]. Finally, it has been proven that the `1-norm
is the best convex approximation to the `0-norm [7]. For these reasons, we use the `1-norm, as it is more
likely to generate sparse solutions than the `2-norm, and does not have the computational difficulties of the
`0-norm or any `p -norm with 0 < p < 1.





3
Multi-criteria optimization

In treatment planning, there are usually multiple objectives to be achieved: delivering a sufficient dose to cer-
tain volumes, and sparing healthy surrounding tissue. This makes radiotherapy treatment planning a multi-
criteria problem. In this chapter, multi-criteria optimization is introduced by explaining the optimization
methods used in the current resampling method, as well as an important feature in radiotherapy treatment
planning.

3.1. Pareto optimality
When dealing with optimizing multiple objectives, the ideal situation occurs when one objective cannot be
improved without worsening another objective. Consider an optimization problem with objectives f1, . . . , fn .
Let f ∗(x) = f ∗

1 , . . . , f ∗
n be a solution of the problem. Then we say that f ∗(x) is Pareto-optimal if there is no

other feasible solution that improves the value of one objective f ∗
i without worsening another objective f ∗

j ,

where i 6= j . The set of all Pareto optimal solutions is referred to as the Pareto-front. To illustrate the Pareto
front, we consider an example of two objective functions, f1(x) = 1+x2 and f2(x) = 3+(x−1)2 that need to be
minimized:

Figure 3.1: Plot of functions f1(x) = 1+x2 and f2(x) = 3+ (x −1)2, with their global minima. The region between the green lines is called
the trade-off region, where the optimal value of the minimization problem is to be found by making trade-offs between both functions.

11
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Both functions decrease for x ≤ 0 and increase for x ≥ 1, but for 0 < x < 1, f1(x) increases while f2(x) de-
creases. This is the region where trade-offs between f1(x) and f2(x) can be made. Now a Pareto front can
be generated using the weighted-sum method, with weights w1 = t and w2 = 1− t for t ∈ [0,1], as shown in
Fig. 3.2.

Figure 3.2: Pareto front for the minimization of f1(x) and f2(x). Every red dot represents a solution for a different t ∈ [0,1]. The blue
point at the intersection represents the optimal solution ( f1, f2) = (1 1

4 ,3 1
4 ) for t = 0.5.

The generated Pareto front in Figure 3.2 shows the optimal solution to be ( f1, f2) = (1 1
4 ,3 1

4 ) for t = 0.5.

In radiotherapy, Pareto-optimality translates to not being able to deliver more dose to a tumor without dam-
aging more healthy tissue, or reducing the dose in one organ without increasing the dose to others. The goal
in radiotherapy is to find a solution that is Pareto optimal. The current planning system optimization with
Erasmus-iCycle is based on a prioritized wishlist, which contains all the targets. Erasmus-iCycle optimizes
objectives from a wish-list by priority. If the highest priority objective meets its hard constraint, the next
objective is optimized, until none of the objectives can be optimized any further. In this way, the solution
generated by Erasmus-iCycle is always Pareto optimal.

3.2. Approaches for multi-criteria optimization
The current method for IMPT at the Erasmus MC uses multiple optimization methods for multi-criteria prob-
lems. In this section we introduce the weighted-sum method, the ε-constraint method, and its extension into
the 2pεc method.

3.2.1. Weighted-sum method
One of the most straightforward methods for solving multi criteria problems is the weighted-sum method. It
operates by assigning a weight wi to the objective functions fi (x) for i = 1. . .n, and summing them together
so that the optimization problem becomes:

minimize
n∑

i=1
wi fi (x)

subject to g(x) ≤ 0

(3.2.1)
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where g(x) are hard constraints which are to be met at all times.

3.2.2. ε-constraint method and 2pεc method
The ε-constraint method works with a priority-based optimization, where one objective at the time is opti-
mized, while keeping the other objectives constrained. This way each objective is optimized only once. The
ε-constraint method can be extended into the 2-phase-ε-constraint (2pεc) method.

The first phase of the 2pεc method consists of assigning a goal bi to each objective fi (x) and minimizing
each objective separately to its goal, while keeping higher prioritized objectives constrained. If it is possible
to minimize an objective fi (x) below its goal bi , it is more desirable to minimize another (lower prioritized)
objective f j (x) to its goal b j than to minimize f j to its fullest extend, because setting the constraint for fi (x)
higher than its goal bi increases the chance of sparing the lower prioritized objective f j [9]. The i ’th step of
the first phase of the optimization problem then becomes:

minimize fi (x)

subject to g(x) ≤ 0

fk (x) ≤ εk for k ∈ {1, . . . , i −1}

(3.2.2)

where εk is a bound that is chosen according to the following rule:

εk =
{

bk fk (x∗)δ< bk

fk (x∗)δ fk (x∗)δ≥ bk
(3.2.3)

where δ is a slight relaxation to prevent numerical problems and x∗ is the result of the previous iteration.
Note that in the first iteration of Equation (3.2.2), there is no other fk (x) that is bounded as a constraint.

In the second phase of the the 2pεc method, all objectives which met their goals are minimized to their fullest,
while keeping all other objectives constrained:

minimize fi (x)

subject to g(x) ≤ 0

fk (x) ≤ εk for k ∈ {1, . . . ,n}\i

(3.2.4)

Note that the second phase of the 2pεc method resembles the ε-constraint method, and therefore their solu-
tions have the same properties [9].

3.2.3. Relation between 2pεc and weighted-sum
It is possible to switch between the 2pεc method and the weighted-sum method. The conversion from the
weighted-sum method to the 2pεc method is not relevant for this research, therefore only the conversion
from the 2pεc method to the weighted-sum method is considered. For this conversion, it is required to con-
struct weights for the weighted-sum optimization. To obtain these weights, the problem in Equation (3.2.2)
is rewritten as an unconstrained problem, called the Lagrangian:

L(x,ν,λ) = fn(x)+
n−1∑
i=1

νi ( fi (x)−εi )+
m∑

j=1
λ j g j (x), (3.2.5)

which is to be minimized with respect to x,ν and λ, where ν and λ are nonnegative vectors of Lagrange
multipliers. Now we can take these Lagrange multipliers for the constrained objectives from the last iteration
of the 2pεc optimization, and use them as the weights for the weighted-sum problem. This approach results
in an identical optimal solution [9]. To get to the optimal triplet (x∗,ν∗,λ∗), a primal-dual interior-point
method is used, which is further explained in Chapter 4.





4
Methodology

In this section our proposed SISS method is further explained, as well as additional research in support of the
SISS method. The research in this project is essentially a continuation of Janssen [1]. Janssen showed positive
results for spot reduction by implementation of the `1-norm on a small dataset and encouraged testing on a
larger dataset.

The initial research consisted of reproducing the results from Janssen [1], to get a better understanding of the
problem. The dataset used by Janssen consisted of a single prostate cancer patient with a resampling solution
of 1705 spots. When the reproduction of the results turned out succesfull, the same approach was applied to
a larger dataset, which consisted of 10 patients (each a head and neck case). This dataset contains actual,
anonimyzed patients that were treated at the Erasmus MC, and is used throughout the project to validate the
SISS method.

4.1. Overview of the SISS method
As explained in Section 1.4.2, the SISS method starts with a large spot coverage, randomly spread over the tar-
get, from which a relevant subset is selected, upon which a treatment plan is based. This concise description
of the method is further detailed in Figure 4.1.

1. Take a large, randomly sampled spot coverage (approximately 24000 spots).
2. Convert the resampling problem to a weighted-sum problem.
3. Add the `1-norm to weighted-sum problem.
4. Solve the weighted-sum problem for the optimal MU per spot.
5. Remove spots below a certain threshold.
6. Re-optimize spots with a 2pεc optimization.
7. Create a treatment plan with the resulting spot selection.

Figure 4.1: Overview of the SISS method.

Steps 1 and 2 detail the setup of the method and conversion of the problem to a practical form. Steps 3 and
4 introduce the main idea of sparsity inducement to this form and result in the first solution. Step 5 serves as
an improvement of the solution found in Step 4, while steps 6 and 7 re-optimize the solution and convert it
to a clinical irradiation plan.

15
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4.2. Iterative resampling method
4.2.1. Resampling solution
As mentioned in Section 1.4.1, the current method for a spot selection uses an iterative resampling approach,
which adds spots the solution on a trial and error base and removes bad spots from the solution. Using this
approach, a spot coverage has been generated for the 10 test patients, as seen in Table 4.1.

Table 4.1: Number of spots evaluated and number of selected spots in the final solution of the resampling approach for 10 test patients.

Patient Spot coverage
Resampling

solution

1 23894 1289

2 23881 1064

3 23909 1225

4 23879 990

5 23871 961

6 23901 1185

7 23917 1306

8 23888 1060

9 23857 873

10 23832 793

Average 23882 1074

The spot coverage contains close to 24000 spots on average per patient. From this spot coverage, only the
spots with a minimum MU of 1.33 have been selected in the solution, to guarantee a stable beam during
irradiation at HollandPTC. This selection results in a resampling solution of 1074 spots on average per patient.
Results of previous research [6, 10, 11] indicate that a spot selection of approximately 1000 spots is sufficient
for a proper dose distribution. With the use of the SISS method, the goal is to achieve a spot selection with
a similar or lower number of spots on average, while maintaining or improving the plan quality of the dose
distributions.

4.2.2. Conversion from 2pεc to weighted-sum
The results from the resampling method serves as the basis for the SISS method. We take the uniformly
sampled spot coverage of the tumor, from Table 4.1. This spot coverage, which includes the spots from the re-
sampling solution, is the framework from which we will construct our spot selection. To be able to perform an
optimization with the `1-norm, we first have to convert the resampling problem, which is a 2pεc optimiza-
tion problem, to a weighted-sum optimization problem, since performing a 2pεc optimization with 24000
spots would take approximately 10 hours to compute, thus making it highly impractical. The weighted-sum
optimization problem is of the form

minimize
n∑

i=1
wi fi (x)

subject to g(x) ≤ 0

(4.2.1)

where the fi (x)’s are the objectives, such as minimizing the dose in the left parotid, and wi are the accom-
panying weights. The objectives are taken from a wishlist, as seen in Table 1.1, and the weights are obtained
from solving the Lagrangian in Equation (3.2.5) for the triplet (x∗,ν∗,λ∗) by using a primal-dual interior-point
method.
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An interior point method is a type of algorithm that is used to solve linear and nonlinear convex optimization
problems. It takes a standard optimization problem of the form:

minimize f (x)

subject to g(x) ≤ 0

x ≥ 0

(4.2.2)

and converts it to:

minimize f (x)−µ
n∑

i=1
ln(xi )

subject to g(x) ≤ 0

(4.2.3)

Equation (4.2.3) prevents violation of the constraints by adding a barrier term ln(xi ) to the objective function.
The method then iterates through the search space by decreasing the value of the parameter µ, which pushes
the solution to its barrier value. The primal-dual aspect of the name refers to the method also updating dual
variables.

The primal-dual interior-point method guarantees optimal and feasible solutions if the problem is well-
defined, i.e., bounded and feasible [12]. The solution of the primal-dual interior-point method represents
the optimal MU per spot, as mentioned in step 4 of Figure 4.1.

4.3. `1-norm addition
Now that we have set up the optimization problem in a proper form, we add the `1-norm to the problem, as
well as introducing two parameters to the problem: norm weight α and threshold θ.

4.3.1. Norm weight
After obtaining the weights from the Lagrangian, we add the `1-norm to the objective function with weight
α. This way the problem in Eq. (4.2.1) becomes

minimize
n∑

i=1
wi fi (x)+α‖x‖1

subject to g(x) ≤ 0

(4.3.1)

where the parameter α represents the weight of the `1-norm. A higher value of α will result in a heavier
penalty by the `1-norm, which results in a sparser solution, and thus in a bigger spot reduction than a lower
value ofα. The value ofα is determined by comparing the effect of different norm weights on the plan quality
of the dose distribution. Before we are able to compare these different norm weights, we first look at the
second parameter of the problem, as it influences the choice for a norm weight as well.

4.3.2. Threshold for removal of redundant spots
The optimization problem in Equation (4.3.1) has the spot coverage from Table 4.1 as its input. The solution
of Equation (4.3.1) is therefore a vector with the size of the spot coverage in Table 4.1, approximately 24000.
As mentioned in Section 4.2.2, this number of spots is too high for a 2pεc optimization. Therefore a threshold
θ is imposed on the solution, which effectively has two consequences:

1. Removal of redundant spots - The magnitude of the MU of the spots ranges from 10−8 to 101. Since
the magnitude of the MU determines the intensity of the pencil beam, the difference in magnitude
implies that certain spots have an intensity that is approximately 109 times greater than other spots.
Furthermore, the frequency of magnitudes is not uniformly distributed, and the majority of the spots
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has a small MU. A threshold θ removes spots with an MU of negligible contribution, and only keeps
spots that have a valuable contribution to the irradiation.

2. Reduction of variables - A reduction of variables decreases the problem size, which is potentially ben-
eficial for the optimization time. The optimization is performed with fewer decision variables, thus
reducing the chance of long optimization times.

The value of θ is determined by evaluating the effect of different values of θ on the spot selection and the dose
distribution. The number of remaining spots after setting the threshold should be high enough to be able to
produce a spot selection of approximately 1000 spots, which is the desired solution size.

After setting the threshold θ and removing spots with MU < θ, a 2pεc optimization is performed on the so-
lution of the weighted-sum optimization problem in Eq. (4.3.1) to take the clinically desired trade-offs into
account.

4.4. Deliverability settings
Steps 1 to 6 of the SISS method, as described in Figure 4.1, result in a spot selection through sparsity in-
ducement. To convert this spot selection to a clinical treatment plan, two deliverability settings are required,
which are summarized in Fig. 4.2.

1. Remove spots with MU < 1.33.
2. Re-optimization with Pareto projection.

Figure 4.2: Deliverability steps required to produce a clinical treatment plan out of the solution of the SISS method. The steps can
essentially be placed between step 6 and 7 of Fig. 4.1.

The first step of the deliverability settings is the removal of spots with MU < 1.33. This seems to obviate the
need of a threshold θ in Section 4.3.2. However, the purpose of the minimum MU of 1.33 is to guarantee a
stable beam during irradiation at HollandPTC. This purpose is not associated to contributing to a better spot
selection, which is the purpose of the threshold θ.

Since the removal of spots with MU < 1.33 will require and additional re-optimization of the spots in Step 3,
it is also obligatory to set a constraint during the optimization, which requires the MU ≥ 1.33 for all spots, to
guarantee only spots with MU ≥ 1.33 are selected in the final solution.

In initial stages of the research, the re-optimization was performed through another 2pεc optimization, but
it was later decided to substitute the 2pεc optimization with a Pareto projection, as earlier mentioned in
Section 1.4.1. The Pareto projection only performs a single optimization, whereas the 2pεc optimization
optimizes each objective separately in its first phase, and possibly a second time in the second phase if its goal
is not met in the first phase. This substitution of a 2pεc with a Pareto projection is therefore beneficial in time
savings on the optimization. The Pareto projection includes a minimum MU of 1.33 in its implementation,
so it also obviates the need for setting the MU ≥ 1.33 constraint.

4.5. Alternative weight distributions
The weights that are used in the weighted-sum optimization problem in Section 4.2.2 are extracted from the
Lagrangian in Equation (3.2.5) and are normalised values between 0 and 1, as seen in Table 4.2. The third
column of Table 4.2 shows the priority of each objective, where 0 is the highest priority, such as in constraints
and the high CTVs, and higher numbers indicate lower priorities, such as the brainstem and spinalcord.
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Table 4.2: Overview of objectives, represented by their volume names, and their accompanying weights. This particular example contains
the first 10 objectives and weights from patient 1. Note that the CTVHigh, CTVintermediate10mm and CTVLow_shrunk10mm appear
twice. First as constraints, which must be satisfied all the time, thus maximum weight 1, and secondly as objectives, thus having a lower
weight. Note that the three constraints all have priority 0, which is the highest priority, as the constraints must be satisfied at all times.

Volume name Weight Priority

CTVHigh 1 0

CTVintermediate10mm 1 0

CTVLow_shrunk10mm 1 0

CTVHigh 0.047482 1

CTVintermediate10mm 0.148177 1

CTVLow_shrunk10mm 0.050694 1

CTVcombined_ring0-10mm 0.001091 2

CTVcombined_ring10-15mm 2.04e−5 2

Brainstem 0.002652 4

SpinalCord 0.00245 4

The weights in the weighted-sum optimization play a key role in deciding which spots the optimization se-
lects for the solution. Using the weights from the resampling solution is undesirable since the resulting so-
lution from the SISS method will depend on the resampling solution. To evaluate the influence of weight
distributions other than the one generated by the resampling solution, four alternative weight distributions
are applied in the `1-norm optimization.

1. All weights equal to 1 - The first distribution sets all weights equal to 1. This practically removes the
weights from the objective function, as all objectives in the objective function become equally impor-
tant.

2. Priority-based - The second distribution determines a weight relative to the priority, by using wi = 1/pi ,
where pi is the priority of objective fi , as seen in Table 4.2. Note that this formula is only applied to the
objectives, as the constraints must always have the highest priority, since they are always to be satisfied,
and therefore must have the highest weight as well.

3. Average of 10 patients - The third distribution uses an approximation of the weight, by using the average
weights of the volume for the nine other test patients in the dataset (who are all similar tumors).

4. Constraints only - The last distribution is similar to the first one, as it sets the weights of the constraints
and the `1-norm equal to 1, and the weights of the objectives equal to a proportionally low value, in
this case 1/30.





5
Results

5.1. `1-norm addition

The results of the `1-norm optimization include the tuning of parameters α and θ, as well as the resulting
spot selection and dose distribution. The tuning of parameters was done without the deliverability settings,
as the priority was the testing of the effect of the `1-norm addition on the spot selection, so the DVHs in this
section are computed without the steps in Figure 4.2, but this does not significantly impact the results.

5.1.1. Norm weight

Based on research done by Janssen [1], the value of α will be somewhere in the interval of [5e−8, 5e−4]. To
decide the value of the norm weight, five different values of α are selected, each in a different order of magni-
tude of the interval: 5e−4, 5e−5, 5e−6, 5e−7 and 5e−8. For every value of α, the weighted-sum optimization
problem in Equation (4.3.1) is solved and a dose distribution is made based on the resulting spot selection.
Finally, a DVH is made to visualize the results.

(a) Dose distribution with α= 5e−4
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(b) Dose distribution with α= 5e−5

(c) Dose distribution with α= 5e−6

(d) Dose distribution with α= 5e−7
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(e) Dose distribution with α= 5e−8

Figure 5.1: Overview of 5 different DVHs for different norm weights. All the optimizations were performed on the data of patient 1.

Table 5.1: Overview of the benchmark parameters for the dose distribution based on the weighed-sum optimization with 3 different
norm weights: α = 5e−6, α = 5e−7 and α = 5e−8. Every triplet of volumes is assigned a color based on its size compared to the others.
For the OARs, the lowest dose gets a green color, and the highest dose a red color, since a lower dose is preferable. For the CTVs, the
color grading is reversed, since a higher dose is preferable. Some rows contain the same number for different α’s, but are still colored
differently, this can be attributed to rounding of values.

D0.03cc

Resampling Dose 5e-6 Dose 5e-7 Dose 5e-8

Brainstem 10.1 8.9 8.9 8.9

SpinalCord 9.8 18.0 18.2 18.1

Dmean

Resampling Dose 5e-6 Dose 5e-7 Dose 5e-8

SMG_L 6.2 5.6 5.6 5.6

SMG_R 43.3 43.0 43.1 43.1

Parotid_L 8.5 7.3 7.2 7.2

Parotid_R 26.0 25.3 25.3 25.3

OralCavity 8.9 9.0 8.9 8.9

MCMid 43.9 45.7 45.7 45.7

MCSup 58.6 59.2 59.2 59.2

MCInf 22.5 24.1 24.0 23.9

D2%

Resampling Dose 5e-6 Dose 5e-7 Dose 5e-8

CTVHigh 73.5 73.3 73.3 73.3

CTV54 73.1 72.9 72.9 72.9

D98%

Resampling Dose 5e-6 Dose 5e-7 Dose 5e-8

CTVHigh 67.4 67.2 67.3 67.3

CTV54 53.4 53.2 53.2 53.2
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Figure 5.1 shows that the dose distribution forα= 5e−4 has significantly more deviation from the resampling
solution than the other norm weights. The dose distribution for α= 5e−5 is also slightly worse than the dose
distributions for α= 5e−6,α= 5e−7 and α= 5e−8, since the MCMid and MCInf receive a higher dose, while
the other volumes receive a similar dose. The dose distributions forα= 5e−6,α= 5e−7 andα= 5e−8 all have
marginal differences, so we examine these dose distributions in more detail, by looking at the benchmark
parameters: D0.03cc, Dmean, D2% and D98% doses, which are explained in Table 1.2.

As seen in Table 5.1, all three norm weights produce good quality dose distributions, as the dose in the OARs
is almost everywhere lower or equal than the resampling dose, and the dose in the CTV is almost everywhere
equal to the resampling dose. Only the SpinalCord seems to get a significantly higher dose than the resam-
pling dose, which can be accounted to a trade-off made by the solver. To determine which norm weight has
the best dose distribution, a score has been assigned of green = 1, yellow = 2 and red = 3 to each cell, where
in the OARs the lowest dose receives a 1, and in the CTVs the highets dose receives a 1. Summing the scores
for all rows and evaluating the minimum score gives a score of 29 for α = 5e−6, 26 for α = 5e−7 and 22 for
α= 5e−8. This indicates that α= 5e−8 has the best dose distribution, although the differences are minimal,
as indicated by the DVHs in Figure 5.1.

Since the aim is to balance the reduction of the number of spots with the plan quality of the dose distributions,
the spot selection is compared as well to make a well considered decision. Since all previously shown dose
distributions are made with the dataset of patient 1, all solutions have 23894 spots in their selection, as seen
in Table 4.1. However, the magnitude of the MU of the spots differs for each α. This brings us to the next
parameter in our solution: a threshold θ for removing spots from the solution.

5.1.2. Threshold
It is desirable to only remove spots from the solution with a negligible contribution. Removing too many spots
will result in an insufficient dose on the tumor, while removing too few spots will not reduce the problem size.
To find a suited value of θ, an evaluation of the frequency of orders of magnitude is required. Figure 5.2 shows
the number of spots below various thresholds, computed for the three norm weights chosen in Section 5.1.1.
It can be seen that for all three values of α the majority of the spots have an MU < 0.1. To test the contribu-
tion of these spots, a comparison is made between the spot selection without any threshold θ, and the spot
selection on which the threshold θ = 0.1 is imposed (so spots with MU < 0.1 are removed from the solution),
as well as a comparison in dose distributions.

Figure 5.2: Frequency table for the number of spots in the solution of the `1-norm optimization for seven different thresholds, computed
for all three norm weights α= 5e−6,α= 5e−7 and α= 5e−8 on patient 1. The red line is the total number of spots in the solution.

Figure 5.3 shows that removing the spots with MU < 0.1 has a negligible effect on the plan quality, since the
lines for the dose of the resampling solution and the dose of the solution with removed spots have marginal
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differences for all three norm weights. Therefore we can safely remove spots with MU < 0.1 from the solution
of the `1-norm optimization.

Figure 5.3: DVH of norm weights α= 5e−6, α= 5e−7 and 5e−8 plotted all together against the DVH of the resampling dose. Every dose
distribution was made after removing spots with MU < 0.1 and performing a 2pεc optimization on the remaining spots.

Finally, the spot selections for the different norm weights are evaluated. As mentioned in Section 4.3.2, the
spots that remain after removing spots with MU < 0.1, first must be optimized using a 2pεc optimization, to
take the clinical trade-offs into account. The 2pεc optimization results in 1857 spots forα= 5e−6, 2234 spots
for α = 5e−7 and 2427 spots for α = 5e−8. As expected, this is inversely proportional to the plan quality of
the dose for each norm weight, making all three values for α a valid choice for the norm weight. To properly
balance the plan quality of the dose distribution with the number of spots in the solution, α= 5e−7 is chosen
as norm weight.

5.1.3. Spot selection and dose distribution
After choosing parameters α = 5e−7 and θ = 0.1, the first six steps of the SISS method, as seen in Figure 4.1,
are executed, which results in the following spot selection for the 10 test patients.

Table 5.2: Overview of the number of spots selected for all 10 test patients in three phases: in the spot coverage, in the resampling
solution, and in the SISS method (after the 2pεc optimization).

Patient Spot coverage
Resampling

solution
SISS (2pεc)

1 23894 1289 2234

2 23881 1064 1578

3 23909 1225 1974

4 23879 990 1747

5 23871 961 1701

6 23901 1185 1861

7 23917 1306 2034

8 23888 1060 1817

9 23857 873 1566

10 23832 973 1151

Average 23882 1074 1766

Table 5.2 shows that the average number of spots selected by the SISS method is 698 spots higher than the
average number of spots in the resampling solution. However, the solution of the SISS method still contains
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spots that need to be removed for deliverability of the treatment plan, which is further explained in the next
section. First a comparison is made of the dose distribution of the solution of the SISS method and the resam-
pling solution. This comparison is visualized in Figure 5.4, and the individual DVHs are seen in Appendix A.1.

Figure 5.4: Bar charts for the differences between the dose of the resampling method and the dose after the 2pεc optimization, as part
of the SISS method. The bars represent the dose of the resampling method, subtracted from the dose of the SISS method (after the 2pεc
optimization). Therefore, for the D0.03cc and Dmean bar charts (OARs), if a bar is negative, it is in favor of the SISS method. For the
D2%/D(98%) bar chart (CTV), the principle is reversed: a positive bar is in favor of the SISS method.

The bar charts in Figure 5.4 show that on an average of 10 patients, 6 out of 10 OARs receive a lower dose
with the SISS method than with the resampling method. For the OARs that receive a higher dose with the
SISS method, the average surplus dose is 0.6 Gy, with a maximum of 2.7 Gy, found at the MCSup for patient
10. The bar charts also show that the doses in the CTVs have marginal differences. While the near-minimum
dose of the tumor (D98%) receives on average 0.1 Gy less with the SISS method than with the resampling
dose, the near-maximum dose of the tumor (D2%) receives on average a dose surplus of 0.6 Gy.

5.2. Deliverability settings

As mentioned in Section 4.4, the spot selection from Table 5.2 must be converted to a clinical treatment plan
that is executable by the radiation therapist. This conversion consists of removing spots with MU < 1.33,
setting the constraint MU ≥ 1.33 in the optimization, and performing a Pareto projection on the remaining
spots. This results in the spot selections seen in Table 5.3.

Table 5.3 shows that setting the minimum MU at 1.33 results in a reduction of spots by 607 spots on average,
in comparison to the 2pεc optimization. This reduction of spots makes the spot selection of the SISS method
deviate less than 8% from the desired solution size of approximately 1000 spots, as mentioned in Section 4.2.1.
Based on this new spot selection, dose distributions have been made for the 10 test patients. The DVHs based
on the dose distributions are shown in Appendix A.2. Using the benchmarks parameters from Table 1.2, an
overview is presented in Table 5.4 of the delivered doses for the 10 test patients.
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Table 5.3: Overview of the spots selected for the 10 test patients at four different stages. The first and second column contain respectively
the spots from the spot coverage and from the resampling solution. The third and fourth column contain the spots generated by the SISS
method after respectively the 2pεc optimization and the Pareto projection.

Patient Spot coverage
Resampling

solution
SISS (2pεc)

SISS (Pareto

projection)

1 23894 1289 2234 1397

2 23881 1064 1578 1097

3 23909 1225 1974 1394

4 23879 990 1747 1150

5 23871 961 1701 1026

6 23901 1185 1861 1189

7 23917 1306 2034 1384

8 23888 1060 1817 1213

9 23857 873 1566 916

10 23832 793 1151 825

Average 23882 1074 1766 1159

Table 5.4: Overview of the benchmark parameters from Table 1.2, applied on the dose of the SISS method, after performing the final
Pareto projection. Note that the values are rounded to one decimal for readability, which accounts for the 0.0 Gy in the Brainstem for
patient 9. The high doses in the Brainstem and SpinalCord for patient 7 can be attributed to the tumor being positioned next to the brain
stem.

D0.03cc (Gy)

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8 Patient 9 Patient 10

Brainstem 4.0 0.6 0.6 1.0 1.8 0.9 70.9 0.3 0.0 0.1

SpinalCord 4.8 4.2 1.0 5.2 4.8 1.2 18.9 1.5 1.7 6.3

Dmean (Gy)

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8 Patient 9 Patient 10

SMG_L 5.9 8.6 55.7 15.5 60.6 63.7 67.2 58.2 46.6 27.3

SMG_R 43.4 70.6 60.7 66.8 23.4 41.2 32.3 32.1 26.3 26.8

Parotid_L 7.5 7.0 16.9 10.9 17.2 28.1 35.6 13.7 60 9.5

Parotid_R 26.1 16.6 32.1 22.4 11.5 5.5 12.2 7.5 8.2 6.9

OralCavity 8.9 44.3 26.0 23.0 20.9 23.1 7.8 21.1 4.4 9.6

MCMid 43.5 47.4 56.8 50.6 42.0 31.4 38.9 64.9 64.8 66.8

MCSup 58.3 50.4 21.7 61.6 59.4 66.9 51.9 28.0 39.7 38.0

MCInf 21.3 8.6 11.1 23.1 14.5 13.3 18.3 40.9 67.0 46.1

D2% (Gy)

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8 Patient 9 Patient 10

CTVHigh 73.8 73.5 73.3 73.7 73.9 73.5 73.8 73.6 73.2 73.6

CTV54 73.4 73.0 72.8 73.0 72.9 73.0 73.4 72.6 72.2 72.3

D98% (Gy)

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8 Patient 9 Patient 10

CTVHigh 67.4 67.7 67.4 67.7 67.7 67.5 67.2 67.0 67.8 68.0

CTV54 53.2 52.5 52.9 52.5 52.5 52.8 52,9 52,8 52,6 52,7
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To compare the results from Table 5.4 with the dose distributions from the resampling method, their differ-
ences are visualized in Figure 5.5. This comparison shows that on an average of 10 patients, 6 out of 10 OARs
receive a lower dose with the SISS method after deliverability settings, than with the resampling method. For
the OARs that received a higher dose with the SISS method after deliverability, the average surplus dose is 0.6
Gy, with a maximum of 2.6 Gy, found at the MCSup for patient 10. The differences in dose for the CTVs are
also marginal. While the near-minimum dose of the tumor (D98%) receives on average 0.2 Gy less with the
SISS method, the near-maximum dose of the tumor (D2%) receives an average dose surplus of 0.5 Gy. These
results show that the reduction in spots do not decrease the quality of the dose distributions.

Figure 5.5: Bar charts for the differences between the dose of the resampling method and the dose after the 2pεc optimization, as part
of the SISS method. The bars represent the dose of the resampling method, subtracted from the dose of the SISS method (after the 2pεc
optimization). Therefore, for the D0.03cc and Dmean bar charts (OARs), if a bar is negative, it is in favor of the SISS method. For the
D2%/D(98%) bar chart (CTV), the principle is reversed: a positive bar is in favor of the SISS method.

5.3. Alternative weight distributions

To evaluate the influence of weight distributions other than the one generated by the resampling solution,
four alternative weight distributions are applied in the `1-norm optimization. The four alternative weight
distributions (equal to 1, priority-based, average, constraints) resulted in spot selections of respectively 417
spots, 404 spots, 364 spots and 449 spots. Based on these spot selections, the dose distributions were com-
puted, which resulted in the DVHs in Figure 5.6.

Figure 5.6 shows that for all four weight distributions, the resulting dose distributions deteriorated in compar-
ison to the resampling dose. Weight distributions 1,2 and 4 show dose surpluses in almost all the OARs, that
are of unacceptable magnitude, i.e., 90% of MCMid receiving 45 Gy instead of 20 Gy in Figure 5.6a. The CTVs
of these weight distributions also exceed the resampling dose significantly, i.e., max dose of CTVHigh reach-
ing 105 Gy, instead of 75 Gy in Figure 5.6b). Weight distribution 3 shows lower doses in the OARs compared
to the other distributions, although still surpluses compared with the resampling solution, but the CTVs also
exceed the resampling dose significantly.
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(a) Weight distribution 1: all weights set equal to 1.

(b) Weight distribution 2: weights based on the priority of the volume.

(c) Weight distribution 3: average weight of the 9 other patients
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(d) Weight distribution 4: constraints and `1-norm have weight 1, objectives have weight 0.

Figure 5.6: DVHs of four different dose distributions, compared with the dose distribution of the resampling method. All the dose
distributions are based on the spot selection by the SISS method.

5.4. Voxel reduction
While this research focuses on the viability of obtaining a spot selection that is as good as the resampling spot
selection with the use of sparsity inducement, another aspect that came up during the research is the compu-
tation time of resulting spot selection of the SISS method. If the spot selection takes too long to compute, the
patient is required to hold still for a longer period of time, which is an unpleasant experience for the patient
and also increases the chance of the patient moving more after a while, resulting in more uncertainty in the
dose distribution. Furthermore, a longer treatment time per patient would also result in less treatments per
day, which is undesirable for the hospital. The computation times of the different optimizations in the SISS
method are seen below.

Table 5.5: Computation time of the optimization done in the SISS method.

Patient
`1−norm

optimization

2pεc

optimization

Pareto

projection
Total

1 1:59:59 0:05:04 0:00:17 2:05:20

2 1:55:04 0:03:37 0:00:08 1:58:49

3 2:03:47 0:04:18 0:00:15 2:08:20

4 1:53:10 0:04:09 0:00:13 1:57:32

5 1:40:43 0:03:33 0:00:12 1:44:28

6 1:31:28 0:04:37 0:00:09 1:36:14

7 1:37:00 0:05:10 0:00:11 1:42:21

8 1:58:44 0:03:52 0:00:13 2:02:49

9 2:04:00 0:03:45 0:00:09 2:07:54

10 1:30:24 0:03:02 0:00:07 1:33:33

Average 1:49:26 0:04:07 0:00:11 1:53:44

Table 5.5 shows that the `1-norm optimization contributes the most to the total optimization time. One way
to reduce this computation time, is by reducing the number of voxels on the patients volume. A voxel is a
discretized piece of the patients volume, as seen in Figure 1.2. If a voxel is removed from the discretization,
spots cannot radiate that voxel in the optimization, which can potentially save computation time, but also
decrease the plan quality, as less spots will be selected in the solution.

Voxel reduction has been performed for three different reduction rates: 50%,33% and 25%, removing re-



5.4. Voxel reduction 31

spectively every second, third and fourth row of voxels. The remaining voxel rows were used in the `1-norm
optimization to produce a new spot selection. After the `1-norm optimization, the rest of the SISS method
proceeds without the voxel reduction, keeping all the voxel rows. Since the computation times of the 2pεc
optimization and the Pareto projection are not influenced by the voxel reduction, only the computation times
of the `1-norm optimization are considered. A comparison is made in Table 5.6 between the `1-norm opti-
mization in the SISS method, and the `1-norm optimization with the voxel reductions. Table 5.6 shows that
the three voxel reductions have reduced the computation times with respectively 9%, 19% and 25%. The
accompanying spot selections are seen in Table 5.7.

Table 5.6: Computation times of the `1-norm optimization, performed with the regular SISS method, and with voxel reduction of 25%,
33% and 50%. The voxel reduction of 50% on patient 7 did not converge, thus producing a dose distribution with excessively high dose
surpluses.

Patient
No voxel

reduction

25% voxel

reduction

33% voxel

reduction

50% voxel

reduction

1 1:59:59 1:35:51 1:26:38 1:23:17

2 1:55:04 1:49:02 1:37:50 1:14:25

3 2:03:47 2:00:58 1:54:28 1:33:33

4 1:53:10 1:43:31 1:33:08 1:29:42

5 1:40:43 1:35:08 1:21:14 1:18:31

6 1:31:28 1:22:34 1:12:48 1:04:09

7 1:37:00 1:03:49 1:10:50 ∼
8 1:58:44 1:56:42 1:27:47 1:25:48

9 2:04:00 1:55:03 1:45:39 1:32:03

10 1:30:24 1:28:19 1:14:05 1:13:08

Average 1:49:26 1:39:06 1:28:27 1:21:37

Table 5.7: Table showing the spot selection of the SISS method after performing a for voxel reductions of respectively 50%, 33% and 25%,
in comparison to the spot selections from the resampling method and the SISS method without a voxel reduction. The voxel reduction
of 50% on patient 7 did not converge, thus producing a dose distribution with excessively high dose surpluses.

Patient
Resampling

solution
SISS solution

Voxel reduction

25%

Voxel reduction

33%

Voxel reduction

50%

1 1289 1397 1040 886 961

2 1064 1097 790 854 775

3 1225 1394 975 1098 644

4 990 1150 817 837 689

5 961 1026 883 722 731

6 1185 1189 950 869 736

7 1306 1384 1019 1077 ∼
8 1060 1213 998 831 813

9 873 916 699 715 701

10 793 825 680 494 496

Average 1074 1159 885 748 723

Table 5.7 shows that the average number of spots in the solution decreases as the number of voxels removed
increases. Since less spots are selected in the solution, it is expected that this will decrease the plan quality of
the dose distributions based on the voxel reductions. These dose distributions are visualized in Figure 5.7.
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(a) Voxel reduction of 25%.

(b) Voxel reduction of 33%.

(c) Voxel reduction of 50%.

Figure 5.7: Bar charts of the effect of a voxel reduction of 25% (a), 33% (b) and 50% (c) on all 10 test patients. The bars represent the dose
of the SISS method, subtracted from the dose of the voxel reduction. So for the D0.03cc and Dmean (OARs), if a bar is negative, it is in
favor of the voxel reduction. For the D2% and D98% (CTV), the principle is reversed: a positive bar is in favor of the voxel reduction.
Note that not all differences in dose show a visible bar. For these volumes, the difference in dose between the voxel reduction and the
SISS method is marginal (≈−0.1), and would barely be visible in the bar chart. It was decided to leave this negative bar out of the image
in favor of showing the comparison between the voxel reductions on the same axes. The voxel reduction of 50% on patient 7 did not
converge, thus producing a dose distribution with excessively high dose surpluses.
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For the voxel reduction of 25%, the mean dose (Dmean) in the OARs shows similarity to the dose of the SISS
method. On average, 8 out of 10 OARs received a dose that was within 1 Gy of the dose of the SISS method.
Only the SpinalCord received a significantly higher dose with an average surplus dose of 3.5 Gy, with a maxi-
mum of 7.2 Gy for patient 6. The CTVs also received a similar dose to the SISS method, as the highest (abso-
lute) deviation received a dose surplus of 1.3 Gy.

For the voxel reduction of 33%, the mean dose in the OARs also shows similarity to the dose of the SISS
method, but more deviations occur and with a higher magnitude. Especially the SpinalCord receives signifi-
cantly higher doses, with three patients receiving a dose surplus of 15 Gy. The CTVs are similar in dose to the
SISS method.

Finally the voxel reduction of 50% shows further deterioration in the doses. Although patients 1-5 and 9
receive a similar mean dose to the SISS method, patients 6 and 10 receive an average dose surplus of 4.0
Gy. For the voxel reduction of patient 7, the solver did not converge, thus producing an unacceptable dose
distribution. Therefore it is removed from the results.
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Discussion

6.1. Norm weight
The SISS method starts by converting the resampling solution to a weighted-sum formulation, by extracting
the weights of the resampling solution. Next the `1-norm was added to the objective function of the weighted-
sum problem with norm weight α. For the choice of a norm weight α, five values of different magnitude were
evaluated. There are numerous other choices for α that might lead to a better spot selection, but due to time
constraints, and the marginal difference in dose distributions, it was decided work with the five selected norm
weight candidates.

The comparison of norm weights consisted of solving the weighted-sum optimization problem with different
norm weights and comparing the resulting spot selections and dose distributions. The dose distributions for
α = 5e−6, α = 5e−7 and α = 5e−8 all were comparable in plan quality. The dose distribution for α = 5e−8
showed a slightly better plan quality, but only with marginal differences. This small improvement over the
other dose distributions can most likely be attributed to α= 5e−8 having the lowest weight on the penalty in
the objective function in the weighted-sum optimization problem, thus leaving the most spots in the solution.

6.2. Threshold
To choose a value for α, we first take the effect of a threshold θ on the solution into account. This threshold
θ has the benefit of removing redundant spots from the solution and decreasing the solution size. After eval-
uating the frequency of different magnitudes of the spots, threshold θ = 0.1 was chosen. This is not an exact
solution for the optimal threshold, but an approximation based on testing. Similar to the norm weightα, due
to time constraints and satisfying results with θ = 0.1, it was decided to take θ = 0.1 as a threshold. To com-
pare the effect of the thresholds on the different norm weights, a 2pεc optimization was required to take the
clinical trade-offs into account. The resulting dose distributions for the three norm weights contain marginal
differences. It could be argued that due to this similarity of the dose distributions, only the number of spots
should be taken into account. This would imply that norm weight α= 5e−6 would be the best choice. It was
however decided to choose a norm weight with a balance in the number of spots and the plan quality of the
dose distributions. This resulted in a norm weight of α= 5e−7.

6.3. Spot selection and dose distribution
After applying the norm weight α= 5e−7 in the `1-norm optimization and setting threshold θ = 0.1, a 2pεc is
performed, which results in a spot selection of 1766 spots on average. While this number is relatively higher
than the average solution size of 1074 spots, it still requires spots to be removed for deliverability of the treat-
ment plan.

Next, to create a clinically acceptable treatment plan, a stable beam during radiation is required, which re-
moves spots with MU < 1.33. This results in the average number of spots in the solution of the SISS method
being reduced to 1159, which deviates only 8% from the desired solution size of 1000 spots and less than 1%
from the resampling solution. As a final step of the SISS method, a Pareto projection is performed to project
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the resulting solution onto a Pareto front. The accompanying dose distributions again shows improvement
over the dose distributions of the resampling method. For the average patient, 6 out of 10 OARs received a
lower dose with the SISS method, and the remaining four patients had comparable dose distributions.

These numbers show that the quality of the solutions produced by the SISS method is comparable, and even
slightly better, to the quality of the solutions produced by the resampling method. The improvement in dose
distributions resulting in a superior spot configuration is expected due to the SISS method optimizing all
spots at once, instead of only optimizing a subset of the spots, and then adding new spots, as done in the
resampling method.

6.4. Voxel reduction
The voxel reduction of 50% resulted in reduction in computation time of 25%, but also in high dose surpluses
in multiple OARs, thus making the resulting dose distributions unacceptable to use in practice. The voxel
reductions of 25% and 33% showed a comparable dose distribution to that of the resampling solution, but
the reduction in computation time was only 9% and 19% respectively. This shows that voxel reduction saves
time during the weighted-sum optimization, but it could be argued that the ratio of (computation time re-
duced):(plan quality lost) is not beneficial enough.

To generate clinically acceptable treatment plans, treatment plans are made robust against patient position-
ing errors and proton range errors. Robust treatment planing takes significantly longer compared to non-
robust treatment planning. It is expected that a voxel reduction of 25% will still reduce computation time of
the SISS method, but the percentage by which the computation time is reduced could differ from the results
found in Section 5.4.

Performing the voxel reductions did not only reduce the computation time of the weighted-sum optimiza-
tion, as expected, but also the number of spots in the solution. During the selection of spots, the voxels on the
volume of the patient should be covered as good as possible. A voxel reduction removes voxels from the dis-
cretization, which implies less spots need to cover those voxels. This could imply that less spots are required
in the weighted-sum optimization.

6.5. Weight distribution
The selected weights in the weighted-sum optimization are extracted from the resampling solution. Because
of this extraction, the current solution of the SISS method is still dependent on the resampling solution. In the
future, it would be desirable to find a set of weights that produce a dose distribution with equally acceptable
or improved plan quality, that can be generated without the dependence on the resampling method.
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Conclusion

In IMPT, the current approach for a spot selection in treatment planning at the Erasmus MC is based on an
iterative resampling method, which uses trial and error to compose a solution. Furthermore, the resampling
method contains a number of complex steps, which decrease the general transparency of the method. To cre-
ate a more mathematically substantiated and clearly defined method, we present the SISS method, a method
for obtaining a spot selection through the use of sparsity inducing norms, as well as a potential method for re-
duction in computation time of the SISS method. With the SISS method, we aimed to find a spot selection of
approximately 1000 spots, with comparable or improved plan quality of the accompanying dose distribution.

The SISS method adds the `1-norm to the weighted-sum problem with norm weight α = 5e−7 and solves
the problem for the optimal MU per spot. A threshold θ = 0.1 is imposed on the spot selection to remove
redundant spots. Both α and θ haven been tweaked until a clinically acceptable dose distribution was made.
To take clinical trade-offs into account, the resulting spot selection is optimized with a 2pεc optimization. To
account for deliverability, spots with < 1.33 were removed to guarantee a stable beam, and a Pareto projection
was performed to project the solution on a Pareto front.

The iterative resampling method results in a spot selection of 1074 spots on average, for a dataset of 10 head
and neck patients. The SISS method results in a spot selection of 1159 spots on average, for the same dataset.
While this number is higher than the average spot selection of the resampling solution, it is still in the desired
range of approximately 1000 spots.

The plan quality of the dose distributions showed improvement over the dose distributions of the resampling
method. For the average patient, 6 out of 10 OARs received a lower dose with the SISS method, and the
remaining four patients had comparable dose distributions.

To reduce the computation time of the SISS method, voxel reduction was applied during the weighted-sum
optimization. Voxel reductions of 50% and 33% resulted in reducing the average computation time of the
weight-sum optimization by respectively 25% and 19%, but also in too many cases of dose surpluses in OARs.
A voxel reduction of 25% reduced the computation time by 9%, and resulted in an acceptable plan quality.

A limitation of this research is the weights in the `1-norm optimization. These weights are extracted from the
resampling solution, which makes the SISS method dependent on the resampling solution.

Future research could be done on constructing an appropriate set of weights that is independent of other dis-
tributions, and improving the computation time of the SISS method, for example by using a different solver.
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Dose-Volume Histograms

A.1. Dose-Volume Histograms after 2pε optimization

Figure A.1: Dose distribution for patient 1, generated with the SISS method (after the 2pεc optimization).

Figure A.2: Dose distribution for patient 2, generated with the SISS method (after the 2pεc optimization).
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Figure A.3: Dose distribution for patient 3, generated with the SISS method (after the 2pεc optimization).

Figure A.4: Dose distribution for patient 4, generated with the SISS method (after the 2pεc optimization).

Figure A.5: Dose distribution for patient 5, generated with the SISS method (after the 2pεc optimization).



A.1. Dose-Volume Histograms after 2pε optimization 41

Figure A.6: Dose distribution for patient 6, generated with the SISS method (after the 2pεc optimization).

Figure A.7: Dose distribution for patient 7, generated with the SISS method (after the 2pεc optimization).

Figure A.8: Dose distribution for patient 8, generated with the SISS method (after the 2pεc optimization).
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Figure A.9: Dose distribution for patient 9, generated with the SISS method (after the 2pεc optimization).

Figure A.10: Dose distribution for patient 10, generated with the SISS method (after the 2pεc optimization).

A.2. Dose-Volume Histograms after Pareto projection

Figure A.11: Dose distribution for patient 1, generated with the SISS method (after the Pareto projection).
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Figure A.12: Dose distribution for patient 2, generated with the SISS method (after the Pareto projection).

Figure A.13: Dose distribution for patient 3, generated with the SISS method (after the Pareto projection).

Figure A.14: Dose distribution for patient 4, generated with the SISS method (after the Pareto projection).
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Figure A.15: Dose distribution for patient 5, generated with the SISS method (after the Pareto projection).

Figure A.16: Dose distribution for patient 6, generated with the SISS method (after the Pareto projection).

Figure A.17: Dose distribution for patient 7, generated with the SISS method (after the Pareto projection).
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Figure A.18: Dose distribution for patient 8, generated with the SISS method (after the Pareto projection).

Figure A.19: Dose distribution for patient 9, generated with the SISS method (after the Pareto projection).

Figure A.20: Dose distribution for patient 10, generated with the SISS method (after the Pareto projection).
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