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Abstract

One-dependent first passage percolation is a spreading process on a graph where the transmission time through
each edge depends on the direct surroundings of the edge. In particular, the classical i.i.d. transmission time Ly is
multiplied by (W, Wy )#, a polynomial of the expected degrees Wy, Wy, of the endpoints of the edge xy, which we
call the penalty function. Beyond the Markov case, we also allow any distribution for Ly, with regularly varying
distribution near 0. We then run this process on three spatial scale-free random graph models: finite and infinite
Geometric Inhomogeneous Random Graphs, including Hyperbolic Random Graphs, and Scale-Free Percolation.
In these spatial models, the connection probability between two vertices depends on their spatial distance and on
their expected degrees.

We show that as the penalty function, that is, u increases, the transmission time between two far away vertices
sweeps through four universal phases: explosive (with tight transmission times), polylogarithmic, polynomial but
strictly sublinear, and linear in the Euclidean distance. The strictly polynomial growth phase is a new phenomenon
that so far was extremely rare in spatial graph models. All four growth phases are robust in the model parameters
and are not restricted to phase boundaries. Further, the transition points between the phases depend nontrivially on
the main model parameters: the tail of the degree distribution, a long-range parameter governing the presence of
long edges, and the behaviour of the distribution L near 0. In this paper we develop new methods to prove the upper
bounds in all sub-explosive phases. Our companion paper complements these results by providing matching lower
bounds in the polynomial and linear regimes.
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1. Introduction

First passage percolation (FPP) is a natural way to understand geodesics in random metric spaces.
Starting from some initial vertex at time O, the process spreads through the underlying graph so
that the transmission time between any two vertices x, y is the minimum sum of edge transmission
times over all paths between x and y. In classical FPP, edge transmission times are independent and
identically distributed random variables. In the recent paper [55] we introduced one-dependent FPP,
where edge transmission times depend on the edge’s direct surroundings in the underlying graph.
There, we determined the phase transition for explosion (i.e., reaching infinitely many vertices in finite
time). In this paper we study the sub-explosive regime, when explosion does not occur. We show
that the process exhibits rich behaviour with several growth phases and nonsmooth phase transitions
between them. This holds across a large class of scale-free spatial random graph models (namely
Scale-Free Percolation (SFP), Hyperbolic Random Graphs (HypRG), and infinite and finite Geometric
Inhomogeneous Random Graphs (GIRG) [26, 17, 58]), and across all Markovian and non-Markovian
transmission time distributions with reasonable limiting behaviour at zero.

In SFP, the vertex set is formed by the d-dimensional lattice Z¢. Each vertex u is then equipped with
an independent and identically distributed random vertex-weight W,, > 1. Given the weighted vertex set,
the edges are drawn conditionally independently. The probability of an edge between vertices u, v with
weights W,,, W,, decreases with the Euclidean distance |u — v| and increases with the vertex-weights,
and is between constant factors of min(1, W, W,, /|u —v|?)®, see Definition 1.3 below for full detail. The
parameter « is often called the long-range parameter, since the model with all vertex-weights set to 1
recovers the classical long-range percolation model [72]. Instead of unit vertex-weights, here we shall
rather assume that the vertex-weight distribution W follows a regularly varying tail, that is, for some
7 € (2, 3) that is called the power-law exponent we assume

PW2X) | ~-D foralle > 0asx — oo, (1.1)
P(W > cx)
The heavy-tailed decay of W creates degree-inhomogeneity in the model: the vertex weight W,, of v
is (up to constant factors) equal to the expected degree of v, and the degree of a high-weight vertex is
concentrated around its expectation [26, Proposition 2.3]. The parameters 7, @ play different roles in
governing inhomogeneities in the models: while T governs the degree distribution, a smaller @ causes
a heavier tail on the edge-length distribution, with @ > 1 needed for a.s. finite degrees [26]. The model
GIRG follows the same construction by replacing the location of vertices by a unit-intensity Poisson
point process (PPP) on R?. For the overview of the results, the reader may ignore this difference.
Universality classes of transmission times. In one-dependent first passage percolation, we set the
transmission time through the edge e = xy between vertices x, y as the product of an independent and
identically distributed (i.i.d.) random factor L, and a factor depending on the weights of vertices:
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Table 1. Summary and brief description of the main parameters of the model.

Parameter Range Eqn. Description

T (2,3) (1.1) Power-law exponent of the weight (and degree) distribution(s) of the underlying graph model. All
our results focus on the infinite-variance range 2 < 7 < 3.
@ (1,00) (1.5) Long-range parameter representing the influence of the latent geometry in the underlying graph

model. A larger « yields fewer edges between distant vertices.
d N (1.5) Dimension of the geometric space in which the underlying graph model is embedded.
(0,00) (1.2) Penalty strength on the edge costs. A larger u yields longer transmission time on edges that are
incident to vertices of high weight/degree.
B (0,00) (1.3) Power-exponent of the random component of the edge costs around 0. The commonly used
exponential distribution (with any mean) satisfies 8 = 1.

Definition 1.1 (1-dependent first passage percolation (1-FPP)). Consider a graph G = (V, ) where
each vertex v € V has an associated vertex-weight W,,. For every edge xy € £, draw an i.i.d. copy Ly,
of a random variable L, and set the (transmission) cost of an edge xy as

C(xy) = Ly (W Wy)H, (1.2)

for a fixed parameter p > 0O called the penalty strength. The costs define a cost distance d¢(x, y) between
any two vertices x and y, which is the minimal total cost of any path between x and y (see Section 1.4.1).
We call d¢ the 1-dependent first passage percolation.

We usually assume that the cumulative distribution function (cdf) Fy, : [0, 00) — [0, 1] of L satisfies
the following assumption (with exceptions of this assumption explicitly mentioned):

Assumption 1.2. There exist constants #y, ¢, ¢z, 8 > 0 such that
c1tP < Fr(t) < eptP forallt € [0, 1]. (1.3)

Without much effort, one can relax Assumption 1.2 to lim,_,o log F7 (x)/log x = 3, that is, regularly
varying behaviour of F7 near 0. We work with (1.3) for the sake of readability. Table 1 provides an
overview of the various parameters of the model.

The cost distance d¢(x, y) corresponds to the transmission time between two vertices x, y. In SFP,
we use the same vertex weights W,, W, to generate the edge between x, y as well as to define the edge-
cost C(xy). This leads to the cost of the edge to depend essentially on the expected degrees of the two
involved vertices!, however, it also leads to three layers of randomness. On the first layer, the vertex
set has random vertex-weights; on the second layer, edges are drawn randomly using the randomness
in the first layer, and finally, on the third layer, edge-costs depend on the presence of edges, on the
vertex-weights, and on an extra source of randomness captured in L.

When u € (0, 1), ahigh-degree vertex still causes more new infections per unit time than a low-degree
vertex, but this effect is sublinear in the degree. As u increases and/or the parameters of the underlying
graph change, we prove that the following four different phases occur for the transmission time between
the vertex at 0 and a far away vertex x, see Table 2 for the thresholds between the different phases:

(1) d¢(0,x) converges to a limiting distribution that is independent of the Euclidean distance |x|
(explosive phase);
This was the main result of [55]. The main result of this paper is to characterise the other phases:
(i) d¢(0,x) grows at most polylogarithmically in the Euclidean distance |x|, without being explosive;
(iii) dc(0,x) grows polynomially in |x|, with exponent 0 < iy < 1;
(iv) d¢(0,x) grows linearly in |x|, that is, with exponent 9 = 1.
1Using Wy instead of the actual degree of x is natural in these models. We are convinced that the same results would also hold

if we took the actual degrees instead of their expectation. However, that would make the proofs more technical without giving
much additional insight.
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Table 2. Summary of our main results. In 1-FPP, edge transmission times are Ly, (WxWy,)# where W, W,, are constant
multiples of the expected degrees of the vertices x,y, and Lyy is i.i.d. with distribution function that varies regularly
near 0 with exponent B € (0, oo|. The degree distribution follows a power law with exponent T € (2, 3): graph distances
are doubly logarithmic in the underlying graph. The transmission time dc (0, x) between 0 and a far away vertex x
sweeps through four different phases as the penalty exponent u increases. For long-range parameter a € (1,2), long
edges between low-degree vertices maintain polylogarithmic transmission times (similar to long-range percolation), so
increasing p stops explosion but it has no further effect. When a > 2, these edges are sparser and a larger u slows down
1-FPP, to polynomial but sublinear transmission times in an interval of length at least 1/d for u. Then, all long edges
have polynomial transmission times in the distance they bridge. For even higher penalty exponent u the behaviour becomes
similar to FPP on the grid Z¢. We give the growth exponents Ao and 1o explicitly in (1.9) and (1.10).

Graph param. 1-FPP parameters Behaviour of 1-FPP transmission times
Weak decay: u < % Explosive:
T€e(2,3)ac(l,2) dc(0,x) =0(1)
o> % Polylogarithmic:
dc (0, x) = O((log |x|)*0*M), Ag > 1
Strong decay:
T€(2,3)a>2 u< 32;57 Explosive:

dc(0,x) =0(1)

HE (32;57, 3%) Polylogarithmic:
dc (0, x) = O((log |x])20+ 1), Ag > 1
ue (%, 7minwi}fa_2)} +2) Polynomial:
de (0, x) = |x|m*oM 3y < 1
B> ampaday td Linear:d¢ (0, x) = O(|x|)

These phases are highly robust in the parameters, they are not restricted to phase boundaries in either
w or the other model parameters. Moreover, all four phases can occur on a single underlying graph by
changing the penalty exponent u only; universally across distributions of Ly, with regularly varying
behaviour at 0, see Figure 1 for a visualisation. This rich behaviour arises despite the doubly logarithmic
graph distances in the underlying spatial graph models. By contrast, in other models the behaviour of
transmission times in classical FPP is less rich, see Section 1.1 for the discussion.

Precise behaviour in the four phases. In this paper we prove the upper bounds on transmission
times in the sub-explosive regime (phase (i) was previous work [55]). In phase (ii), we show that the
transmission time is at most (log |x|)20*°(1) with an explicit A > 1 which we conjecture to be tight. In
phases (iii) and (iv), we show that the transmission time is precisely |x|7*°() where we give 19 < 1
explicitly for phase (iii) and 9 = 1 for phase (iv). The companion paper [56] contains the matching
lower bounds for phases (iii)-(iv) as well as some additional results for phase (iv). We develop new
techniques that allow us to treat upper bounds for all three sub-explosive phases simultaneously, which
we expect to be of independent interest.

Motivation of the process from applications. One-dependent processes in general, and one-
dependent FPP in particular, allow for more realistic modelling of real phenomena. In social networks,
actual contacts and infections do not scale linearly with the degree [31, 59, 76, 54]. 1-FPP type penali-
sation has frequently been used to model the sublinear impact of superspreaders [37, 53, 65, 69, 77, 6],
and in other contexts [16, 30, 62, 78, 3, 49]. Consistent with our model, all these applications assume
a polynomial dependence with exponent in the range u € (0, 1), where a high-degree vertex may cause
more new infections per time than a low-degree vertex, but this effect is sublinear in the degree.

While our paper is theoretical, we do believe that a model with a rich phase space can have practical
implications. In the spread of physical epidemics, while some diseases spread at an exponential rate,
others spread at a polynomial rate, dominated by the local geometry. Examples of the latter include
HIV/AIDS, Ebola, and foot-and-mouth disease, see the survey [21] on polynomial epidemic growth.
Classical epidemic models can typically only model either exponential or polynomial growth, not both.
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(i) Explosive regime (ii) Polylogarithmic regime

(iii) Polynomial regime (iv) Linear regime

Figure 1. Heatmaps for the four different universality classes. The vertices are sorted by their trans-
mission times from the origin (centre vertex). The colours represent this ordering: yellow infected first,
then orange, then purple. All four plots are generated on the same underlying graph (with parameters
T =23and a = 5, and edge connection probabilities p(u,v) = (Wyw, /(E[W]|lu —v||*))> A 1), where
the vertices are placed on a 750 X 750 grid in the 2-dimensional torus. The random factors Ly, associ-
ated to each edge are also identical in all four plots, and follow an exponential distribution (i.e., § = 1).
The only varying parameter is the penalty exponent p, taking values (i) pu = 0 for the explosive regime,
(ii) u = 0.5 for the the polylogarithmic regime, (iii) u = 1 for the polynomial regime (iv) u = 2 for the
linear regime. In the linear regime, the late points are — typically — high degree vertices carrying high
penalisation. We thank Zylan Benjert for generating the simulations and the pictures.

Arguably, 1-FPP provides a natural explanation, since in 1-FPP the transition can be driven by changes
only to the transmission dynamics, not to the underlying network.

New methodology: moving to quenched vertex-set to replace FKG-inequality. In this paper we
develop a general technique — nets combined with multiround exposure —that replaces the FKG-inequality
[32] in problems concerning vertex and/or edge-weighted graph models where this inequality does not
hold. Let us explain why the FKG-inequality fails in the context of 1-FPP. Typically, for upper bounds one
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(@) (b)
Figure 2. The budget travel plan with 3-edge bridging-paths: (a) first and (b) second iteration.

constructs paths connecting 0 and x by revealing vertices and/or edges of the graph sequentially, which
destroys the independence of edges. For graph distances in long-range percolation, the FKG-inequality
resolves this problem [11], but it already needs adjustments once vertex-weights are present [41]. In
1-FPP, the existence of a long edge is positively correlated to its endpoints having large vertex weights,
which is negatively correlated to its other outgoing edges having short transmission times. Hence, having
chosen a long edge with low-cost, we lose probabilistic control over how to choose the next low-cost
edge on the path connecting 0 and x. To overcome this issue, we move to the (weighted-vertex) quenched
setting where we reveal the realisation of the whole weighted vertex set — say (V, W) = (V,wy) — and
thus events concerning only edges become independent. We show that in a large box centred at the origin
of R, the proportion of realisations with behaviour ‘close to what is expected’ tends to 1 with the box-
size. More precisely, we require that locally around a constant proportion of the vertices and uniformly
across multiple scales of vertex-weights, the number of points in the weighted vertex set is close to its
expectation. For this we select a subset of the vertices that we call a ner realising this property. A net N
is thus a subset of the weighted vertex set, such that for every not-too-small radius r, every ‘reasonable’
weight w, and every selected vertex v € NV, the net has constant density in B, (v) X [w, 2w], shorthand
for vertices of weight in [w, 2w] within Euclidean distance  of v:

IN N B,.(v) x [w,2w]|
E[IV N B, (v) x [w,2w]| | v € V]

c (1—16 16), (1.4)

where the expectation is taken over the randomness in the weights and location of vertices?. We prove
via a multiscale analysis that as the box-size tends to infinity, asymptotically almost every realisation of
the weighted vertex set contains a net A/ with total density at least 1/4.

When we move to the quenched setting we only reveal the realisation of the weighted vertex set, but
not the edges of the graph. In realisations containing a net, with a carefully chosen multiround exposure
process we can define a coupling of the edges and their costs which lets us replace the FKG inequality
needed for the construction of a low-cost path between 0 and x, see Section 3 for more details. We
believe that this method is also useful for many other graph models, so we explain it streamlined now.

Budget travel plan with 3-edge bridge-paths. Switching to the quenched setting allows to prove
the upper bounds in all subexponential phases (ii)—(iv) all-at-once. Our construction of a connecting
path overcomes the following problem: A long edge with a short transmission time typically occurs
on typical high-degree vertices and thus all other outgoing edges from the same vertices have too long
transmission times. The main idea resembles a ‘budget travel plan’: when someone travels with a low

2In case of GIRG, one uses here the Palm measure by conditioning that the PPP has a point at v € R<, and one takes expectation
over the Poisson point process and the vertex-weights, see also the discussion before Theorem 1.4. For SFP the conditioning can
be dropped, and the expectation is only over the vertex-weights, as the vertex set is deterministically z4.

https://doi.org/10.1017/fms.2025.10161 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10161

Forum of Mathematics, Sigma 7

budget, one takes the cheapest mode of transport to the airport within a 100km radius that offers the
cheapest flight landing within a 100km radius of the destination, then takes the cheapest transport to the
destination city.

Formally, we put balls of radius |x|” for some v € (0, 1) around 0 and around x, and we find a
cheap 3-edge path (‘bridge’) m; = ypaby, between these two balls using only vertices in the net. The net
guarantees enough vertices in each vertex-weight range of interest. We find atypical high-weight vertices
a, b that are connected by an atypically cheap edge, that simultaneously have an atypically cheap edge
to low-weight vertices yo, yx, respectively. (Here we use the common terminology of fast transmission
corresponding to ‘cheap’ cost.) Then we have replaced the task of connecting 0 and x by the two tasks
of connecting 0 with yo and x with y,, where the new ‘gaps’ |0 — yo| and |x — y| are much smaller
than |x|. The multiround exposure and the net on the fixed vertex set together guarantee that we can
iterate this process without running out vertices in the relevant weight-ranges, and without accumulated
correlations in the presence of edges along the iteration (e.g., out of yg, yy). Iteration yields a set of
multiscale bridge-paths, which we call after Biskup a hierarchy [11]. The construction in [11] also
uses recursion, with one-edge bridges instead of three-edge bridges, and yields polylogarithmic graph
distances in long-range percolation. The techniques in [ 1] would not work for 1-FPP because we need
to balance distances vs costs vs the penalisation on high-weight vertices in very different regimes, and at
the same time deal with edge-costs dependencies. Those can only be dealt with in the quenched setting.

The cost (transmission time) of the bridge-paths 7 in 1-FPP are either polynomial in the distance they
bridge or constant. When the cost is polynomial — with optimal exponent 19 — we are in the polynomial
phase. The cost of the first bridge m; then dominates the cost of the whole path, and we only carry out
a constant number of iterations (irrespective of |x|). When bridge-paths with constant cost exist, we are
in the polylogarithmic phase. Then, the cost of all bridges together is negligible compared to the cost
of the polylogarithmic number of gaps that remain after the last iteration. Here, we iterate until we can
connect the remaining gaps via essentially constant cost paths. Connecting the gaps is a nontrivial task
itself since the graphs do not contain ‘nearest-neighbour’ edges. Solutions for filling gaps in [11] do not
work in our setting due to the presence of vertex weights. Instead, we connect the gaps with ‘weight-
increasing paths’ that crucially use that the underlying graphs are scale-free. We give a more detailed
discussion about the hierarchical construction at the beginning of Section 5 and back-of-the-envelope
calculations about how to obtain the precise growth exponents in phases (ii) and (iii) at the beginning
of Section 5.1 with proof sketches below Corollaries 5.2 and 5.3.

Robustness of our techniques. The technique of nets combined with multiround edge-exposure is
robust, and will be applicable elsewhere, for questions concerning first passage percolation, robustness
to percolation (random deletion of edges), graph distances, SIR-type and other epidemic processes,
rumour spreading, etc. on a larger class of vertex-weighted graphs; including random geometric graphs,
Boolean models with random radii, the age-dependent and the weight-dependent random connection
model (mimicking spatial preferential attachment), scale-free Gilbert graph, and the models used here
[2, 23, 38, 39, 40, 41, 42, 47, 50], and can also be extended to dynamical versions of the above graph
models on fixed vertex sets.

Two papers, two techniques and optimality. The ‘budget travel plan’ together with the renormali-
sation group argument in [56] reveals that the strategy of polynomial paths is essentially optimal: in this
phase, all long edges have polynomial transmission time in the distance they bridge. Our techniques for
the lower bounds are entirely different and deserve their own exposition, hence we present them in the
companion paper [56].

1.1. Related work: phases of FPP in other models.

The phase diagrams of transmission times in classical FPP are less rich. In particular, the strict poly-
nomial phase is absent or restricted only to phase transition boundaries. Indeed, on sparse nonspatial
graph models with finite-variance degrees, both Markovian and non-Markovian classical FPP univer-
sally show Malthusian (exponential) growth [9]. Transmission times between two uniformly chosen
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Table 3. Known results about the universality classes of graph-distances on long-range percolation LRP, scale-
[free percolation SFP, long-range first-passage percolation LRFPP and infinite geometric inhomogeneous random
graphs IGIRG. The results highlighted in yellow color follow (also) from techniques in this paper. *An upper
bound is only known for high enough edge-density or all nearest-neighbour edges present.

SFP/LRP with Graph-distance Growth Upper bound Lower bound
(2+o0(1)) loglog | x| . . - -
T €(2,3) e doubly-logarithmic [26, 75] [75]
7> 3and (log |x])2*e™ poly- SEP: [46, 60], SFP: [60]
a € (1,2) for some A > 0 logarithmic LRP: [11, 74] LRP:[11, 12, 74]
7>3and [x|rxe D) polynomial SFP: open, SFP: open
a=2 for some 17 < 1 LRP: [5] LRP: [5]
7 > 3 and O(|x|) linear partly open [4] _
a>2 I
LRFPP with Cost-distance Growth Upper bound Lower bound
a <1 0 instantaneous [20]
a €(1,2) (log |x])2 =M for  poly- [20]
Ay =1/(1 -log, @’) logarithmic
@ € (2,2+1/d) |x|d@-D=xo(l) polynomial [20]
a >2+1/d O(|x|) linear [20]
IGIRG/SFP with Cost-distance Growth Upper bound Lower bound
7€ (2,3)
M < Mexpl converges explosion [55] [55]
in distribution
1 € (Mexpl> iog)  (log |x])Boro D) poly- Theorem 1.4 open
ora € (1,2) Ap as in (1.9) logarithmic

M€ (Hiog, Hpot)  |x [0 polynomial Theorem 1.6 -
and @ > 2 1o as in (1.10)

> Hpol O(|x]) linear

and @ > 2 O(|x| o) Theorem 1.6 -

ford > 1

vertices are then logarithmic in the graph size. Sparse spatial graphs with finite-variance degrees (e.g.,
percolation, long-range percolation, random geometric graphs etc.) are typically restricted to linear
graph distances/transmission times in the absence of long edges [4, 68, 25], or to polylogarithmic dis-
tances in the presence of long edges [11, 12, 46]. In both spatial and nonspatial graph models with
infinite-variance degrees, classical FPP typically either explodes or exhibits a smooth transition be-
tween explosion and doubly logarithmic transmission times (which match the graph distances) [1, 51,
75]; in particular, there is no analogue of phases (ii)—(iv). For one-dependent FPP on nonspatial graphs
there are strong indications that the process either explodes [73], with the same criterion for explosion
as for spatial graphs in [55], or becomes Malthusian [34], the latter implying logarithmic transmission
times between two uniformly chosen vertices by the universality in [9], so only two phases can occur.
The only graph model to exhibit a transition from a fast-growing phase to a slow-growing phase is long-
range percolation, where the polynomial phase is restricted to the phase boundary in the long-range
parameter @ = 2 [5]. Even in degenerate models (where the underlying graph is complete), long-range
first passage percolation [20] is the only other model where a similarly rich set of phases is known to
occur. Thus one-dependent FPP is the first process that displays a full interpolation between the four
phases on a single nondegenerate graph model. Moreover, the phase boundaries for one-dependent FPP
depend nontrivially on the main model parameters: the degree power-law exponent 7, the parameter a
controlling the prevalence of long-range edges, and the behaviour of L, near O characterised by £, see
Table 2 for our results, Table 3 for phases of growth in other models, and Section 1.4 for more details
on related work.

https://doi.org/10.1017/fms.2025.10161 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10161

Forum of Mathematics, Sigma 9

1.2. Graph Models

We consider simple and undirected graphs with vertex set V € R?. We use standard graph notation
along with other common terminology, see Section 1.4.1. We consider three random graph models:
Scale-Free Percolation (SFP), Infinite Geometric Inhomogeneous Random Graphs (IGIRG)?, and (finite)
Geometric Inhomogeneous Random Graphs (GIRG). The latter model contains Hyperbolic Random
Graphs (HypRG) as special case, so our results extend to HypRG, see the paragraph below Theorem
1.11. The main difference between SFP and IGIRG is the vertex set V. For SEP, we use V := Z4, with
d € N. For IGIRG, a unit-intensity Poisson point process on R? forms V.

Definition 1.3 (SFP, IGIRG, GIRG). Letd e N, 7 > 2, @ € (I,0),and ¢ > ¢ > 0. Let £ : [1,00) —
(0, c0) be function that varies slowly at infinity (see Section 1.4.1), and let 4 : R? X [1, 00) x [1, 00) —
[0, 1] be a function satisfying

WwWiw»p
" x|

g-min{l (1.5)

“ o wiw2 |
< h(x,wi,wz) < C-mingl,

x|

The vertex set and vertex-weights: For SFP, set V := 74, for IGIRG, let V be given by a Poisson point
process on R¢ of intensity one.* For each v € V, we draw a weight W, independently from a probability
distribution on [1, co) satisfying

Fyw(w)=P(W <w)=1-£€(w)/w™ . (1.6)

We denote 17(6) = (V, W) the vertex set V together with the random weight vector Wy, := (W, ), ey,
and (V,wy) = (V,(wy)yev) a realisation of V := V(G), where v := (v,w,) stands for a single
weighted vertex. _

The edge set: Conditioned on V = (V, wy ), consider all unordered pairs V@ of V. Then every pair
xy € V@ is present in £(G) independently with probability A(x — y, wx, wy).

Finally, a GIRG G, is obtained as the induced subgraph G[Q,,] of an IGIRG G by the set of vertices
in the cube Q,, of volume n centred at 0. We call & the connection probability, d the dimension, T the
power-law exponent, and « the long-range parameter.

The above definition essentially merges the Euclidean space and the vertex-weight space by consid-
ering vertices with weights as points in R4 x [1, 00), that is, we think of each vertex as a pair v = (v, w,,),
where v € R is its spatial location and w, is its weight. While SFP is a somewhat simpler model due
to the deterministic location of vertices, GIRGs gained significant attention in both applications and
theoretical studies [13, 14, 48, 63, 64, 67], and are part of a larger class of marked random connection
models [19, 42, 40]. Definition 1.3 leads to a slightly less general model than those, for example, in [17]
and [55]. The original definition in [17] had a different scaling of the geometric space vs connection
probabilities and (also) considered the torus topology on the unit cube, identifying ‘left’ and ‘right’
boundaries. However, the resulting finite graphs are identical in distribution after rescaling, and the torus
topology vs Euclidean topology does not make a difference for the results below on cost-distances, see
[55] for a comparison. We discuss extensions to @ = co and 8 = oo separately in Section 1.3.1. We call
the set of parameters par := {d, 7, @, i, 8, ¢, C, 1, c2, 1o} the model parameters. We say that a variable
is large (or small) relative to a collection of other variables when it is bounded below (or above) by
some finite positive function of those variables and the model parameters. We restrict to 7 € (2, 3), (ex-
plicitly stated in the theorems), which ensures that there is a unique infinite component (or linear-sized
‘giant’ component for finite GIRG)> and that graph distances between vertices x, y in the infinite/giant
component grow like dg (x,y) ~ 2loglog |x — y|/|log(T — 2)| in all three models [57, 18, 26, 75]. We

3They have also been called EGIRG, where E stands for extended [57].

“If we take an IGIRG and rescale the underlying space R? by a factor A, then we obtain a random graph which satisfies all
conditions of IGIRGs except that the density of the Poisson point process is 1~ instead of one. Thus it is no restriction to assume
density one.

SFor T > 3, an infinite component only exists for high enough edge density, which is captured by 4 in (1.5).
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() (@, 7)-phase diagram of transmission times. Here,  (ii) (a, u)-phase diagram of transmission times. Here,
u=0.4,8=1,d =4 are kept fixed. T=2.758=1,d =2 are kept fixed.

Figure 3. Phase diagrams of transmission times in one-dependent first passage percolation. On both
diagrams, parameter choices falling in area (a) yield explosive spread. Parameter choices in areas
(b) and (c) yield polylogarithmic transmission times dc(0,x) < (log ||x[)20*° M) where Ag = Ay =
1/(1-log, @) on(b)and Ag = Ag = 1/(1—1log,(t—1—pupB)) on (c). Parameter choices in areas (d), (e)
and (f) yield polynomial transmission times, dc(0,x) = ||x||*°D where 5o = ng=du-3-1)/8)
on(d)ng=nqe =du(a=2)/(a—-(t-1))on(e), andng = 1 on (f). The bold lines indicate discontinuous
phase transitions, while the other transitions are smooth.

consider u as the easiest parameter to change: increasing y means gradually slowing down the spread-
ing process around high-degree vertices, which corresponds to adjusting behaviour of individuals with
high number of contacts. Hence, we will phrase our results from this perspective. Figure 3 shows two
phase diagrams: one where u is fixed and 7, @ vary; another where 7 is fixed and u, @ vary.

1.3. Results

In this paper, we focus on the sub-explosive parameter regime

2p

since for p1 < pexp1 We have shown in previous work [55] that the model is explosive: the cost-distance of
two vertices x, y converges in distribution to an almost surely finite variable as |x — y| — oo, conditioned
on x and y being in the infinite component.© In other words, (1.7) restricts us to the nonexplosive phase.
The following two quantities define the boundaries of the new phases:

> = Mexpls (1.7

3—-71 1 3—-71

=— —_ 1/d , §s 1.8
Mlog ﬁ HMpol = d mln{,B d(a/ 2)} max{/ +,ulog /Jpol,a} ( )

e a—(7-1)

where we define” ppol,0 = Iv‘pol,(x(d, T,@) = d t (a2 2) — d(a-2) 2) and pporp = /Jpol,ﬁ(d, 7,pB) =
5 + 3’% We also define two growth exponents. If a € (1,2) or u € (fexpl, Miog), We define

1
1 —log,(min{e, 7 — 1 + uB})

Ag = Ao(a,ﬁ"u,r) = = min{Aa,Aﬁ} > 1, (1.9)

SThe phase is called explosive since the size of the the cost-ball of radius r jumps from finite to infinite at some random finite
threshold, called the explosion time.

In ppol,o (d, 7, @) and ppol g(d, 7, B) we consider the respective indexing @ and g after ‘pol” in the subscript as symbols,
rather than numerical values. The same holds for the functions A o, Ag, 1774, 175 describing the growth exponents: the subscripts
are meant to be considered as symbols.
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with Ay, = Ag(@) :=1/(1 -log, a) and Ag = Ag(t, i, ) = 1/(1 =log, (7 — 1+ up)). Ag > 1 follows
since when a € (1,2) then A, > 1, while when u € (pexpl, Hiog) then 7 — 1+ uf > TT“ > 1 and also

T—14upB <2,s0log,(t — 1+ pp) is positive but less than 1. If both & > 2 and u > p10e, We define

1 if u > ppor,
no = no(a, 1) =1 . (1.10)
{mm{d(ﬂ = Hiog)> /J/,upol,a/} if gt < ppols
and note that g > 0 for all u > pjoe, and 779 < 1 exactly when u < ppo1 by (1.8). We often write
ng =np(d, T, 1, B) == d(p — puog) =d(p = (3-1)/B),
ud(a —2) (1.11)

Ne =MNa(d, T, 1, @) := ,U/,Upol,a = m-
The formulas can be naturally extended by taking limits and hold also when @ = oo or § = oo, which we
elaborate in Section 1.3.1 below.

We first formulate the main results for the infinite models IGIRG and SFP. We write 0 < x for the
event that there is at least one path of edges in the graph between vertices 0, x. Whenever 7 € (2, 3),
these models have a unique infinite connected component with constant density, hence the event 0 <> x
occurs with (uniformly) positive probability given that 0, x are part of the vertex set [18, 26, 55, 33].
For SFP, the vertex set is deterministic and thus 0, x € V holds under the assumption that x € 74 For
IGIRG, we need to condition on 0, x € V. Formally, this is achieved by switching to the Palm measure
of the Poisson point process. The Palm measure of a Poisson point process is again a unit intensity PPP
on R4 with the vertices 0, x added to the vertex set, and with all vertex-weights, edges, and edge-costs
still drawn by the Equations (1.6), (1.5) and (1.2) respectively, see also the book [61]. Later in Remark
1.9 we will also give a conditional version of the following theorem given the weighted vertex set.

Theorem 1.4. Consider 1-FPP in Definition 1.1 on the graphs IGIRG or SFP of Definition 1.3 satisfying
the assumptions given in (1.6)—(1.3) with T € (2,3),a > 1,d > 1, u > 0. Assume either a € (1,2) or
1 € (Hexpls Miog) or both hold. For SFP, assume x € 74, Then for any & > 0,

|llim P(dc(0,x) < (log [x[)20%¢ | 0,x € V,0 e x) = 1.

For IGIRG, due to the conditioning 0,x € V), P is the Palm version of the annealed probability measure
taken over edges, edge-costs, vertex-weights and -locations.

The result of Theorem 1.4 is also valid when u < pexp1, however, then the model is explosive [55,
Theorem 1.1], and the bound is not sharp. With the restriction u > expi, we conjecture that Theorem
1.4 is actually sharp, that is, that a corresponding lower bound with exponent Ay — £ also holds. The
exponent Ag > 1 intuitively corresponds to stretched exponential ball-growth, where the number of
vertices in cost-distance at most r scales as exp(r'/2?). Trapman in [74] showed that strictly exponential
ball growth, that is, A9 = 1, is possible for long-range percolation when o = 1 under additional
constraints. This is consistent with our formula for Ag, since Ag — 1 as @ — 1. Related is the work
[60] that treats polylogarithmic graph distances and classical FPP transmission times in the same model
class but in a different parameter regime (finite variance degrees, that is, 7 > 3), however the proof
techniques do not extend to infinite variance degree underlying graphs and/or to 1-FPP. We leave the
lower bound in this phase for future work.

Remark 1.8. Structure of near-optimal paths in the polylog phase. The proof reveals two different types
of paths with polylogarithmic cost-distances present in the graph. When ¢ < 2, randomly occurring
long edges on low-weight vertices cause the existence of paths of cost at most (log |x|)2«**() with
Ao = 1/(1 - logy(a)). The closest long edge of order |x| lands at distance |x|%/? from O and x
respectively, resulting in a polylog exponent of A, after iterating. When u < g, there are also paths
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using a cheap yet long edge (of order |x|) between two high-weight vertices (weight roughly |x|¢/2) that
lie within distance |x|(7=1+#8)/2+¢() from 0 and x respectively, and these cause the existence of paths of
cost at most (log |x|)25+°() with Ag =1/(1-log,(t —1+up)). Ag is the outcome of an optimisation:
we minimise the distance between the high-weight vertices to 0 and x, while maintaining that an edge
with constant cost exists between them. The minimal distance possible is of order |x|(7~1*#8)/Z+o(1).
the tail exponent T — 1 of the weight distribution (1.6), and ug, the penalty exponent in (1.2) times the
behaviour of the cdf of L in (1.3) both play a role.

When we increase p above ujoe and « above 2, we enter a new universality class and cost distances
become polynomial:

Theorem 1.6. Consider 1-FPP in Definition 1.1 on the graphs IGIRG or SFP of Definition 1.3 satisfying
the assumptions given in (1.6)—~(1.3) with T € (2,3),d > 1. When « > 2 and p > o both hold, then
for any g > 0,

|llim P(dc(0,x) < [x|™** | 0,x € V,0 & x) = 1.
x|—00

Here P is the annealed probability measure taken over edges, edge-costs, vertex-weights and -locations.
In the accompanying [56] we prove the corresponding lower bound, which implies:

Corollary 1.7 (Polynomial Regime). Consider 1-FPP in Definition 1.1 on the graphs IGIRG or SFP
satisfying the assumptions given in (1.6)—(1.3) with T € (2,3),d > 1. When @ > 2 and pu > g both
hold, then for any € > 0,

lim P(|x|™% < de(0,x) < |x|*¢ ] 0,x € V,0 & x) = 1.

|x|—>00

Corollary 1.7 together with Theorem 1.4 implies that the phase transition is proper at uos and at
a = 2: distances increase from at most polylogarithmic to polynomial. Moreover, when u > ppo1, (i.€.,
min(7,7ng) > 1), and the dimension d > 2, in [56] we also prove strictly linear cost-distances with both
upper and lower bounds. This, together with Theorem 1.6, implies that there is another phase transition
at fpo1, from sublinear (170 < 1) to linear (170 = 1) cost-distances. See Table 2 for a summary. We find it
remarkable that 1-FPP shows polynomial distances with exponent strictly less than one in a spread-out
parameter regime ¢ € (Uiog, Upol). This implies polynomial ball-growth faster than the dimension for
1-FPP, which is rare in spatial models, see Section 1.4.

Remark 1.6. Structure of near-optimal paths in the polynomial phase. The proof reveals two different
types of paths with polynomial cost-distances present in the graph. When p < 01, o, there are a few
very long edges (of order |x|) with endpoints polynomially near 0 and x, emanating from vertices with
weight |x|!/(2#o.e) " and these results in paths with cost at most |x|”7=*°(1) (when (1.10) evaluates to
14/ Upol, o) Since there are only few such edges, the optimisation effect of choosing the one with smallest
cost is negligible and 8 does not enter the formula. Further, when ¢ < 01,8, there are many long edges
(of order |x|) with respective endpoints polynomially near O and x on vertices with weight roughly |x|4/2,
and when we optimise to choose the one with cheapest cost, the effect of Fr, that is, 8 in (1.3), enters
the formula, and we obtain a path with cost at most |x|6*°(1) (when (1.10) evaluates to d(u — Hiog))-
The proof of the lower bound in [56] shows that in this phase all long edges near 0, x have polynomial
costs in the Euclidean distance they bridge, which explains the qualitative difference between 1-FPP
and classical FPP.

Remark 1.9. From our proofs it follows that a vertex-weighted quenched version of Theorems 1.4 and
1.6 are also valid in the following sense: there is a (cylinder) event .A|,| measurable with respect to the
sigma-algebra generated by the vertex locations and vertex weights in a box of radius C|x| centred at
0 € R? for some constant C > 1, that holds with probability tending to 1 as |x| — co. For any § > 0,
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for all sufficiently large |x| and all realisations (V, wy ) € A|y| of the weighted vertex set with 0,x € V,

P(dC(O,x) < (log |x|)Ao+s | (V,wy),0 <—>x) >1-6, whena € (1,2) or 4 € (fexpl, Hiog) (L12)
P(dc(0,x) < [x|™*° | (V,wy),0 & x) > 1 -6, when @ > 2, u > poq.

Here, P only integrates over the randomness of the edges and their i.i.d. edge-cost variables L.
The next theorem describes in which sense the results stay valid for finite-sized models:

Theorem 1.10. Consider I-FPP in Definition 1.1 on the graph GIRG of Definition 1.3 satisfying the
assumptions given in (1.6)—(1.3) witht € (2,3),a > 1,d > 1,u > 0. Let Cl(lﬁl)x be the largest component
in Qy. Let uy,, v, be two vertices chosen uniformly at random from V N Q.

(i) When either a € (1,2) or i € ({expl, Hiog) OF both hold, then for any & > 0,
lim P(de (1n, vn) < (10g liy = va)*0* | 1y, v € Chi) = 1. (1.13)

(ii) When a > 2 and u > piog both hold, then for any & > 0,

lim P(de (i, vi) < lttn = vl ™" | v, € Clly) = 1. (1.14)

The size of the largest component is linear with size nP(0 < o0)(1 + 0(1)), see [52]. The lower
bound in Corollary 1.7 also transfers to finite GIRGs, since GIRG is defined as a subgraph of IGIRG.
We refer to [56] for details. The proofs of Theorems 1.4, 1.6, and 1.10 also reveal that the paths realising
the upper bounds deviate only sublinearly from the straight line between the two vertices, cf. Definition
5.6 and Lemmas 6.2 and 6.3 for more details.

1.3.1. Limit Cases and Extensions

Theorems 1.4—1.10 can be extended to interesting cases that may informally be described as @ = oo or
B = oco. In the case @ = oo, all connection probabilities are either constant or zero, and we replace the
condition (1.5) by

— if Wiwn ’
—0, lfw<0,

2c if 757 2,

(1.15)

h(x, Wl,Wz){

for some constants ¢ € (0, 1] and ¢’ > ¢’ > 0. For the sake of simplicity we will assume ¢”” = 1 in all
our proofs, however the results still hold for general ¢”’. Models satisfying (1.15) are called threshold
(or zero temperature) models, and include hyperbolic random graphs [58] when the dimension is one.
The correspondence between GIRGs and threshold hyperbolic random graphs was established in [17,
Theorem 2.3]. For models where (1.15) holds, we extend the definitions (1.8)-(1.9) in the natural way
to @ = 00, since lim g0 fpol, 0 = 1/d:

3- 13- ! if ,
u o '={ R Hpol (1.16)

Mlog = > Mpol := = + .
o B P d B d-(u—puog) if u < prpols

and, when g1 € (fexpls Hiog)s

1
Ao'

s e e R 0. (1.17)

https://doi.org/10.1017/fms.2025.10161 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10161

14 J. Komjdthy et al.

The case = oo captures when the cdf of the edge transmission variable L in (1.3) is flatter near O than
any polynomial, and we replace (1.3) by the condition that

lirr(l)FL(t)/t'B =0forall0 < 8 < co. (1.18)
11—

In particular, this condition is satisfied if 7 has no probability mass around zero, for example® when
L = 1. When 8 = oo, using that 7 € (2, 3) we replace (1.8)-(1.10) naturally by

Hexpl 1= fog = 0, Hpol = % M = {L o iﬁ Z Z ii (1.19)
and, when a € (1,2),
Ao=—— 50 (1.20)
1 —log, (@)
Finally, when both @ = 8 = co we replace (1.8) and (1.10) by
Hexpl = Hiog =0, fpol := 5, 70 :=min{1,du}, (1.21)

and in that case we do not define A, since the polylogarithmic case is vacuous when @ = 8 = oo
(see also below Corollary 5.2). Our main results still hold for these limit regimes. We remark that the
corresponding lower bounds also hold [56, Theorem 1.10].

Theorem 1.11 (Extension to threshold GIRGs and 8 = ). (a) Theorems 1.4, 1.6 and 1.10 still hold
for a = oo if we replace definitions (1.8)-(1.10) by definitions (1.16)-(1.17).

(b) Theorems 1.4, 1.6 and 1.10 still hold for B = oo if we replace definitions (1.5)-(1.10) by definitions
(1.19)-(1.20).

(c) Theorems 1.6 and 1.10 still hold for a = 8 = oo if we replace definitions (1.8)-(1.10) by definition
(1.21).

Theorem 1.11(a) implies the analogous result for hyperbolic random graphs (HypRG) by setting
d = 11in (1.16), except for some minor caveats. In Definition 1.3, the number of vertices in GIRG
is Poisson distributed with mean n, while in the usual definition of HypRG [58, 45] and GIRG [17]
the number of vertices is exactly n. In HypRG the vertex-weights have an n-dependent distribution
converging to a limiting distribution [57]. However, these differences may be overcome by coupling
techniques presented in, for example, [57]: a model with exactly n vertices can be squeezed between
two GIRGs with Poisson intensity 1 — y/4logn/n and 1 + 4/4logn/n, and one can couple n-dependent
and limiting vertex-weights to each other, respectively, but we avoid spelling out the details and refer
the reader to [57, Claims 3.2, 3.3].

1.4. Discussion

Here we discuss our results in context with related results about (inhomogeneous) first passage perco-
lation and graph distances on spatial random graphs.

Long-range first passage percolation. The work on long-range first passage percolation (LR-FPP)
[20] is closest to our work. In that model, the underlying graph is the complete graph of Z¢, and the
edge transmission time on any edge uv is exponentially distributed with mean |u — v|4®*+°() so g =1,
the process is Markovian, and the penalty depends on the Euclidean distance of u and v. This choice
eliminates the correlations coming from the presence/absence of underlying edges, and the growth is

8For u = 0, L = 1, the cost-distance d¢ (x, y) then equals the graph-distance between x and y. [56] contains as special cases
the linear lower bound on graph-distances by Berger [8] for long-range percolation (LRP) and by Deprez, Hazra, and Wiithrich
[27] for SFP, see [56, Proposition 2.4].
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strictly governed by the long-range transmission times. As @’ grows, [20] finds the same sub-explosive
phases for transmission times in LR-FPP that we find for 1-FPP in Table 2. The main difference is
that the explosive phase is absent in LR-FPP, and is replaced by a ‘super-fast’ phase there where
transmission times are O almost surely. Moreover, the behaviour on phase boundaries are different.
Using the symmetries in their model, [20] proves that whenever transmission times in LR-FPP are
strictly positive, then they must be at least logarithmic. In contrast, in general 1-FPP on IGIRG and
SFP we also see doubly logarithmic distances, for example for graph-distances (L = 1,u = 0). We
summarise the results on LR-FPP in Table 3. Nevertheless, in 1-FPP, the cost function C(xy) in (1.2)
could also depend on |x — y|, that is, take the form L, (W, Wy)*|x — y|¢. The result of [55] on explosion
carries through to this case without much effort [70], with the model being explosive if and only if
u+{/d < (3=1)/(28) = pexpl, With 7 € (2,3). In an ongoing work, we determine the full phase
diagram of cost-distances with spatial penalisation also present [7], which turn out to be more complex
than simply replacing u with u + ¢/d.

Qualitative difference between one-dependent FPP and graph distances. Some phases of 1-
FPP in Table 2 are also phases for graph-distances in spatial models in general. However, while the
polynomial phase is spread-out in 1-FPP, this phase is essentially absent for graph distances. Indeed,
the polynomial phase occurs when long edges all have polynomial spreading times in the Euclidean
distance they bridge, both in 1-FPP here and in LR-FPP in [20]. Thus, transmission times in 1-FPP are
not equivalent to graph distances in any inhomogeneous percolation on the underlying graph. Table 3
summarises known results on 1-FPP, LR-FPP, and graph distances in spatial graphs. Now we elaborate
on each phase.

The polylogarithmic phase. Theorem 1.4 proves polylogarithmic cost-distances in 1-FPP when
T € (2,3), and either u € (fexp, Miog) OF @ € (1,2). The results here, in [55] and the accompanying
[56] (Corollary 1.7) together imply that pexp and pyog are true phase-transition points, separating this
phase from both the explosive and the polynomial phases. Even though we do not have a matching lower
bound, we conjecture that this phase is truly polylogarithmic, and the exponent A in (1.9) is sharp. The
exponent A also depends on the product uS3, which does not allow to match it easily to exponents for
graph-distances: For long-range percolation, where each edge (1, v) € Z4 x Z¢ is present independently
with probability @ (|u —v|~¢?), Biskup and Lin [12] show that graph distances grow polylogarithmically
with exponent A, = 1/(1 —log, @) when @ € (1,2). This coincides with our upper bound in Theorem
l.4if @ < 7 — 1+ upB. The same type of paths are used in both cases, passing through only low-degree
vertices (and typical edge-costs on them for 1-FPP). For SFP, Lakis et al. prove in [60, Theorem 1.1]
that graph distances and transmission times in Markovian FPP are also polylogarithmic when « € (1, 2)
and additionally 7 > 3, with exponent Ag € [1/(1 — log, (min(a, 7 — 2))),A,] for graph distances
and Appp € [1/(1 —log, (min(e, (7 — 1)/2))), A o] for FPP, which improves earlier bounds [46]. The
lower-bound methods in [12, 74, 60] do not transfer to 1-FPP when 7 € (2, 3) since they crucially rely
on finite degree-variance 7 > 3.

The linear phase. Linear distances are common in supercritical spatial graph models with bounded
edge-lengths. For example, Random Geometric Graphs exhibit linear distances [68], and so does
supercritical percolation on grids of dimension at least 2 [4]. Assuming high enough edge-density, a
renormalisation argument to percolation on Z¢ gives that SFP and LRP for 7 > 3 and @ > 2 also have at
most linear graph-distances for d > 2. The corresponding lower bound was shown by Berger for LRP [8]
and by Deprez et al. for SFP [27]. Our lower bound for 1-FPP contains these as special cases, and holds
universally for classical FPP for any positive edge-transmission time-distribution [56, Corollary 1.12].

The strictly polynomial phase. The phase where intrinsic distances scale as |x — y|*°(1) with
no < 1 (the result of Theorem 1.6) is quite rare in spatial settings and we only know two examples. One
is in LRP at a boundary line in the parameter space, when a = 2 [5, 24]. Our methods do not carry
through for @ = 2. The method in [5] for this setting uses the self-similarity of the model when a = 2
and shows the sub-multiplicative structure of graph distances to obtain polynomial lower bounds. The
other example is for long-range first passage percolation (LR-FPP) in [20], mentioned at the beginning
of this section. There are some similarities to 1-FPP: LR-FPP is Markovian, that is, 8 = 1 in (1.3),
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and has strictly polynomial growth when @’ € (2,2 + 1/d), see Table 3. Using exponential L in 1-FPP,
the length of the parameter interval ({10, tpol) With polynomial growth is also exactly 1/d for u when
a > 2+ 1/d, but it is longer when a < 2 + 1/d, which shows that the penalty @’ of LR-FPP plays a
slightly different role as the long-range parameter « in (1.5) here.

Gaps at approaching the phase boundaries. Here we discuss what happens as the parameters
T,a, u, B approach the phase boundaries of growth. Some of these are indicated on Figure 3 by bold
lines.

Polylogarithmic distances with exponent A heuristically imply stretched exponential ball-growth,
where the number of vertices within intrinsic distance r scales as exp(r'/20). Our upper bound exponent
Ap = min{A,,Ag} in (1.9) approaches 1 as @ | 1, and so does the exponent A, of LRP [11],
which also partly governs SFP. This means that as @ | 1 we approach exponential growth. In LRP,
strictly exponential ball growth occurs only when @ = 1 and the connectivity function has a suitably
chosen slowly varying correction term £(-), that is, p(x,y) = £(|x — y|)/|x — y|?¢, see [74]. Strictly
exponential growth is a natural barrier, since (age-dependent) branching processes with finite first
moments exhibit at most exponential growth, and non-Markovian FPP can be dominated by such
branching processes. Interestingly, when a > 2 and we approach the explosion phase transition by letting
1l pexpt = (3 =17)/(28), then Ag in (1.9) does not converge to 1, but to 1/(2 —log, (7 + 1)) =: A.
So, for the whole range 7 € (2,3), Ar > 1/(2 —1log,(3)) > 2.4 > 1. As 7 T 3, A, approaches oo,
which is natural, since graph distances are linear already when 7 > 3 and @ > 2 [27]. This leaves
two possibilities: our upper bound Ay is not sharp for @ > 2; or the ball growth jumps directly from
subexponential (Ag > 1) into the explosive phase. If the latter is the case, it would be interesting to
understand better how such a jump could happen. Such jumps at phase boundaries may occur. This
paper, together with [56], proves a gap in polynomial regime when 7 crosses the threshold 3. The
limits of limq3 tpor = 1/d and lim 13170 = ud exist and are in (0, 1) in (1.8) and (1.10). So if we
fix some y < 1/d and let 7 T 3, the cost-distances grow polynomially with exponents bounded away
from one (e.g., they approach 1/2 from below for = 1/(2d)). But as soon as 7 > 3 is reached, the
exponent ‘jumps’ to 1 and distances become strictly linear [56, Theorem 1.11]. So the parameter space
is discontinuous in 179 and 0 With respect to 7.

Some important questions are centred around such gaps. The gap conjecture in geometric group
theory is about the ball growth of finitely generated groups: it states that there are no groups with growth
between polynomial and stretched exponential of order exp(®(+/n)) [43]. Although the polynomial side
is understood by Gromov’s theorem [44], the conjecture remains open. We find it intriguing to discover
a deeper connection between phases of intrinsic growth in spatial random graphs (‘stochastic lattices)
and group theory (‘deterministic lattices’).

Organisation. We start by moving to the quenched setting. In Section 2 we develop the nets, and
in Section 3 the multiround exposure of edges, with the main result in Proposition 3.9. In Section 4
we collect some connectivity-estimates that serve as our building blocks, while in Section 5 we carry
out the ‘budget travel plan’ and build a hierarchical path that only uses vertices of the net and connects
vertices y(’)‘ , ¥ very close to 0 and x, respectively. In Section 6 we connect 0, x to these vertices with
low cost, which is a nontrivial task itself, and prove the main theorems.

1.4.1. Notation

Throughout, we consider simple and undirected graphs with vertex set V € R?. For a graph G = (V, £)
and a set A C R, G[A] stands for the induced subgraph of G with vertex set V N A. For two vertices
x,y € V, we denote the edge between them by xy, and for a set V. C V we write V?® = {{x,y} :
x,y € V,x # y} for the set of possible edges among vertices in V. For a path 7, £(7) is the set of edges
forming 7, and |n| is the number of edges of 7. Generally the size of a discrete set S is |S|, while of a
set A € R?, Vol(A) is its Lebesgue measure. Given a cost function C : £ — [0, o] on the edges, the
cost of a set of edges P is C(P) := X,cg(p) C(e). We define C(xx) := 0 for all x € V. We define the
cost-distance between vertices x and y as

de(x,y) :=inf{C(x) : 7 is a path from x to y in G}. (1.22)
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We define the graph distance dg(x,y) similarly, where all edge-costs are set to 1. We denote the
Euclidean norm of x € R? by |x|, the Euclidean ball with radius » > 0 around x by B, (x) := {y €
R4 : |x — y| < r}, and the set of vertices in this ball by B, (x) := {y e V: |[x —y| <r} = B, (x) N V.
(The minimal notation difference is intentional). The graph-distance ball and cost-distance ball (or
cost-ball for short) around a vertex x are the vertex sets B (x) = {y € V : dg(x,y) < r} and
BC(x) :={y € V : dc(x,y) < r}, respectively. We set B, := B, (0), and do similarly for B,, B¢, BC if
0 is a vertex. We define 0B, (x) := B, (x) \ {y € R¢ : |x — y| < r}, and use similar definitions for 415,
dBY and 0BC. In particular, 631G (v) is the set of neighbours of v.

The set of model parameters are par := {d, 7, a, u, B, c, ¢, c1, 2,1 }. For parameters a, b > 0 (model
parameters or otherwise), we use ‘for all a >, b’ as shortcut for Vb > 0 : Jag = ao(b) : Va = ag’.
We also say ‘a >, b’ to mean that a > ag(b). We use a <4 b analogously, and may use more than two
parameters. For example, ‘for a >, b, ¢’ means Vb, ¢ > 0: Jag = ag(b,c) : Ya = ap’. A measurable
function € : (0,00) — (0, c0) is said to be slowly varying at infinity if lim,_,« €(cx)/€(x) = 1 for all
¢ > 0. We denote by log the natural logarithm, by log, the logarithm with base 2, and by log** the k-fold
iterated logarithm, for example, log*> x = logloglogx. For n € N we write [n] := {1,...,n}, and for

an event A we denote by AC it complement.

2. Working conditionally on the weighted vertex-set: nets

In proving the upper bounds (Theorems 1.4 and 1.6), we will construct cheap paths along the lines of the
‘budget travel plan’ on page 7 in Section 1, which is an iterative scheme of finding long 3-edge bridge-
paths to connect two far-away vertices. Since low-cost events in 1-FPP are not increasing, we develop
a technique that replaces the FKG-inequality. Moving to the quenched setting, we will first expose all
vertex positions and weights (above some threshold weight, in the case of IGIRG); then, low-cost edge
existence events become independent. To be able to work with fixed realisations of the vertex set, we find
(with high probability as |x|] — o) a ‘nice’ subset of the vertices, that is, that behaves regularly enough
inside a box around 0, x, as in (1.4), which we call a net. We formalise the notion of the nets now. We start
with a less demanding notion of nets that we call weak nets which will suffice for the further sections of
the paper. Their existence will follow from the existence of strong nets which make (1.4) precise; this
may be of independent interest, and most of the section shall be devoted to proving their existence.
The vertex-weight distribution satisfies P(W > w) = £(w)w~("~1 in Definition 1.3, and consider
the slowly varying function €(w) from (1.6). We define wy to be the smallest integer in [1, o) such that

Yw > wo,Vr € [1/2,2] 0 €w)w T D <2778 and  0.99 < £(tw)/E(w) < 1.01 (2.1

both hold. Note that wq satisfying (2.1) must exist since ¢ is a slowly varying function, and so Potter’s
bound [10] ensures the first inequality.

For a set A ¢ R¢ we write Vol(A) for its Lebesgue measure (volume), while for a discrete set
A C (0, 00) we write |.A] for the cardinality (size) of the set. Recall that weighted vertices are of the
form v = (v, w,) € R? x [1, o).

Definition 2.1 (Weak net). Let Q C R be a box of side length &, & > 0, and w; > wo. A weak
(g,w1)-net for Q is a set ' € V N Q x [1,00) of size at least Vol(Q)/4 such that for all v € N, all
r € [(loglogéVd)* ¢, &Vd] and all w € [wy, r4/(7-D-2]:

IN N (B, (v) x [w/2,2w])] = r?1=9) . e(w)yw (T, (2.2)

In a weak (&, wy)-net, the number of weighted vertices in balls around net-vertices are close to their
expectation. Since we only require the property to hold around net vertices and not everywhere, we
circumvent the issue that the vertex set may have empty/low-density areas. In a weak net, we allow
an error of order r~9¢ on the right-hand side of (2.2), and the minimal radius of the balls around net
vertices grows with the size & of the box Q. In a strong net, we shall only allow a constant factor loss,
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see (2.4), and the balls can have constant radii . The result that we shall use in further sections is the
following, again using the Palm measure in the case of IGIRG [61]. We condition on a few vertices to
be part of the vertex set and also demand that these vertices are part of the net.

Lemma 2.2. Consider IGIRG or SFP with T > 2 in Def. 1.3. Then for all € € (0,1/2), and for all ¢
sufficiently large relative to &, and t < min{1/g,loglog &} the following holds. Consider a cube Q C R¢
of side length &, and let x1, . ..,x; € Q, and wq from (2.1), then

P(Q contains a weak (g, wq)-net N', and x1,...,x; e N | x1,...,x; € V) > 1 —te.

The condition # < 1/¢ is there to avoid a vacuous statement, and below we set ¢ = 2 and replace the
conditioning by 0, x € V. Note that the condition (2.2) never counts vertices of weight less than w /2.
So, we can decide whether a weak (&, w1)-net \V exists by uncovering only the set of vertices of weight
atleast wy /2 (beyond x1, . .., x; € N). For IGIRG, this set is independent of the set of vertices of weight
smaller than w; /2, and we may use low-weight vertices for other purposes. This is the main reason for
introducing the parameter w;. We mention that Q does not need be a box of equal sizes, the proof also
works for boxes of any finite proportions parametrised by constant multiples of &.

In order to prove the existence of weak nets, we will divide Q into nested sub-boxes and work induc-
tively, taking the finest partition and lowest-weight vertices as the base case and gradually coarsening
the partition and including higher-weight vertices. To make this argument work, we will need stronger
control over the properties of each layer of the partition than Definition 2.1 provides; see Definition
2.10. As such, it is convenient to instead prove the existence of ‘strong nets’ which satisfy tighter bounds
at specific scales, which we define next. We will then prove that every strong net is also a weak net, as
our strong control at each layer will translate into weaker control between layers. Strong nets may also
be of independent interest in cases where stronger bounds over smaller scales are required.

Recall wo from (2.1). For all 6 > 0, and R > 0 we define the function fr 5(r) slightly below the
typical largest vertex weight in a ball of radius r (roughly r4/(*=D).

. 1
T 5 S : /(-1 ) 7T 1 o
fr.s(r) =r=T (1 A inf {f(x). x € [wo,r ]}) ((zd)21+d+8 log(16R/5) . (2.3)
Definition 2.3 (Strong net). Let G = (V,€) be an IGIRG or SFP as in Definition 1.3. Let R =
(r1,72,...,rr) C (0, 00) be an increasing list of radii with R = |R| < oo, let wo be as in (2.1) and
fr.5(-) be asin (2.3). Let Q € R¥ be a box. A (8, R)-net for Q is aset N'C V N Q X [1, ) of size at
least Vol(Q) /4 such that for all € N, r € R, and all w € [wy, fr.5(r)],

[{Z e N 0B, (v) x [w/2,2w]}| 2 r? - L(w)w™ TV ) 2d) 7. (2.4)

Each r € R in Definition 2.3 will correspond to a layer of the discretisation of Q alluded to above.
We will require these radii to grow at least exponentially, with base depending on the number R of radii
in the list. The specific condition is the following. It may seem very strong that we require (2.4) for
infinitely many w. We discretise [wo, fr,s(7)] into a finite set of subintervals (;); <., in a smart way.
Then we ensure that (2.4) holds with [w/2, 2w] replaced by /; on the left hand side and the £ (w)w=(T=D
replaced by P(W € I;) on the right hand side, and then this will imply that (2.4) also holds for all values

w € [wo, fr.s(r)].
Definition 2.4. Fix § € (0, 1). We say that an increasing list of radii R = (r1,r2,...,rg) € (0, 00) is
o-well-spaced if R = |R| < oo and the following hold:

r > 24d(10g(4R/6))1/d v wéT_l)/d vinf{r: fr.s(r) = wo}; (2.5)

BARPS 6Rl/d(10g(26R/6)

ri-1

1/d
) Vi € [2,R]. (2.6)
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In Definition 2.3, it may seem very strong that we require (2.4) for infinitely many w. We discretise
[wo, fr,s(r)] into a finite set of subintervals (/;);<},.. in a smart way. Then we ensure that (2.4) holds
with [w/2,2w] replaced by ; on the left hand side and the £(w)w~= (=D replaced by P(W € I;) on the
right hand side, and then this will imply that (2.4) also holds for all values w € [wq, fr,s(7)].

We now state the main result of the section. Heuristically, a box Q contains an (J, R)-net with
sufficiently high probability, and we can also condition on the presence of a few vertices in the net. The
condition ¢ < 1/6 in the following is added to avoid a vacuous statement.

Proposition 2.5. Consider IGIRG or SFP witht > 2. Let§ € (0,1/16),& > 0, and Q C R? be a cube of
side length&. Let R € Nand R = {r1, . ..,rr} be a -well-spaced increasing list of radii with rg = £Vd.
Letxy,...,x; € Q witht < min{1/6, (r1/4Vd)?}, for SFP assume x1, . ..x; C Z¢ also. Then

P(Q contains an (6, R)-net N') > 1 —6/R; 2.7

P(Q contains an (5, R)-net N',x1,...,x; €N | x1,...,x; € V) > 1-16. 2.8)

For IGIRG (2.8) uses the Palm measure of vertex-weights and positions for IGIRG. For SFP the
conditioning can be dropped.

The proof of this proposition will take the rest of the section. Before that we show how Lemma 2.2
follows from it.

Proof of Lemma 2.2 subject to Proposition 2.5. Let ¢ € (0,1/2), set n := 1 — g/2, and define R =
{ri,...,rr} as

R :=2+](log logf\/g - 10g*4§\/2 —log %)/10g(l/n)J, 2.9)
ri = (EVOT™ ", for ielR]. (2.10)

We show that this choice of R is e-well-spaced (Def. 2.4). Let 1 — a € [0, 1) be the fractional part of
the expression inside the | -] in (2.9). Then using that [x] =x -1 +a,

r = (é:\/g)ﬂR'l — (é:\/g)ﬂ“4log*3§‘/3/(8log§\@) — (loglog‘f\/g)(l—aﬂ)““/a_ 2.11)

Since a € (0, 1] and & < 1/2, this implies that r; is a strictly larger power of log log £Vd than 1 while
R is of order loglog 5\/3. Since ¢ is large relative to &, Def. 2.4 (2.5) holds for ¢ = §. For all i € [R],
sincen =1-¢g/2:

rifrio = @A) 2 (@) = 7 = (loglog V)17,

Sincea < 1,2(1 —&/2)* > 1 forall € < 1/2, so Def. 2.4 (2.6) holds even in d = 1, and R is e-well-
spaced as claimed. Moreover, since ¢ < loglog ¢ by hypothesis, by (2.11) we have ¢ < (r1/4Vd)“. By
Proposition 2.5, with probability at least 1 — t&, conditioned on xi,...,x; € V, Q contains a strong
(g, R)-net N in Def. 2.3. We now show that a strong net is also a weak net (with the same &). Fix an
arbitrary r € [(loglog éVd)* ¢, &Vd] andw € [wq, r%/(7=D~#] as in Def. 2.1 (this interval is nonempty
since T € (2,3),& < 1/2), and consider a vertex v € . Since @ > 0in (2.11), we have r| < r < rg.
Let r; be such that r € [rj,rj41); thus r7 < r; < r by (2.10). Since ¢ is large relative to &, we
have w < fr o(rj) (using (2.3)) for fr .); thus by the definition of a strong (&, R)-net in Def. 2.3,
NN (B, (v) x [w/2,2w])] > f(w)w’(T’”r}i/(Zd)d*”S. Since ¢ is large relative tos and r > r; > r',
the required inequality in Def. 2.1 follows since

IN N (B (v) X [w/2,2w])| = e(w)w™ T Drd1 1) BT+ > (w)w™ (T D pd1-2)
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Figure 4. Hyperrectangle-cover and definition of i-good boxes. In this figure, d = 1, R =3, r} [r{ = 3,
and r}[r}, = 4, and the requirement of (Bl) for i > 1 is ‘all but at most one sub-box B’ € P;_y of B
is good’. The hyperrectangle-cover is denoted by coloured-boundary rectangles. The spatial dimension
on the x axis is covered by nested intervals, where (blue) boxes in P, contain 3 level-1 (orange) boxes
and (green) boxes in P3 contain 4 level-2 boxes. The weight dimension on the y axis is covered by a
base-2-cover 1, . . ., Is. Hyperrectangles above f(ry) (e.g., BixI3) and above f(ry) (e.g., ByXIs), are
not included in Py, P,, respectively, since they contain too few vertices for concentration. Good boxes
are shaded and bad boxes are hatched or get no colour. Box By is good because its two hyper-rectangles
B X1y and B1x1I; (filled orange) contain the right number of vertices, making all vertices in B12-good,
including those with weights above Iy U I,. Box By is bad (light hatching), since it contains too few
vertices in By X1y (cross-hatching). Box B, is good, because it only contains one bad sub-box ( Bi )in
‘P1, and because its four hyperrectangles By X1y, . .., By X1y (filled blue) all contain the right number
of 2-good vertices in total. Since B\ and By are both good, vertex v is 3-good. Box B}, is ‘doubly’ bad
(filled white): it contains two level-1 bad sub-boxes, and the hyperrectangle B), X I3 contains too few
1-good vertices. Thus no vertex in B), is 3-good, including v'. Still, B3 is 3-good. it contains enough
3-good vertices in total, and only one bad level-2 sub-box (B)).

The rest of this section is devoted to proving Proposition 2.5. All remaining definitions and lemmas
are used only within this section.

Shortly we shall carry out a multiscale analysis. We abbreviate fgr s := f everywhere except in
definitions and statements. We partition QX [wy, f(rgr)] into hyper-rectangles. On the weight-coordinate,
we cover the interval [wo, f(rr)] of weights with a set of disjoint intervals (1;)j=1,..__j... SO that the
first interval is of length wy, and each consecutive interval is twice as long as the previous one. On the
space-marginal, we partition Q into nested boxes B. The side lengths of these nested boxes will be close
tory,...,rr, with some minor perturbation so that they can form a proper nested partition: we write
r} ~ r; for the side length of the i-th level of boxes. A depiction and extended example can be found in
Figure 4 on page 23 below, after the formal definition. _

After fixing this partitioning of Q X [wy, f(rg)], we look at VN (Q X [wo, f(rr)]). Foreachi € [R],
we show that with probability close to 1 there is a dense subset of ‘good’ boxes B of side length 7/, in
the sense that B x I; contains the right number of vertices for all /; with max(I;) = f(r;). We choose
rlf <ri/ Vd to ensure that for all vertices v in a box of side length rlf , the entire box will be contained
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in B,,(v) — the ball of radius r; around v — this will allow us to take the net to be the set of all vertices
which lie in good boxes of all side lengths r{, . .., 7. We start with the space marginal and now formally
define the nested boxes.

Definition 2.6. Given R = {ry,...,rg}, and Q as in Proposition 2.5, an R-partition of Q is a collection
of partitions P(R) := {P1, ..., Pr} of Q into boxes with the following properties:

(P1) Foralli € [R], every box in ; has the same side length r] with
rl € [ri/(2Vd), ri/Vd]. (2.12)

(P2) Foralli € [R — 1], every box in P4, is partitioned into exactly (r; +1)d [(r] )9 boxes in P;.
(P3) We have Pr = {Q}.

For x € Q,i € [R], write B*(x) for the box in P; containing x. A direct consequence of (PI) of this
definition is

B'(x) C B, (x). (2.13)

The partition P; is, by (P2), a refinement of the partition of P;, that is, every box in P;;; can be
partitioned exactly into sub-boxes in P;. Also, rg = & Vd ensures that (P1) and (P3) can be both satisfied
fori = R.

Lemma 2.7. Suppose R and Q satisfy Proposition 2.5. Then an R-partition 73(73) of Q exists.

Proof. We prove that given a §-well-spaced r| < ... < rg, there exist side lengths r{, . . ., r, that satisfy
(P1) - (P3), that is, that r_, /r/ is an integer, (2.12) holds, and rj, = ¢. We proceed by induction on i,
starting from i = R and decreasing i. We take r, := rg/ Vd = &, then (2.12) is satisfied immediately and
(P2)—(P3) are vacuous. Suppose we have found r/, . . ., rp, satisfying (P1)—(P3) for some 2 < i < R. Let

r!

" Warfrial

’

. (2.14)

This choice of r/_, divides r/, hence (P2) can be satisfied, and r/_| < rlf/(\/arlf/ri_l) = i1/ Vd.
Moreover,

’
, r; ri—

r, > d = ! .
il l+\/3r;/ri_1 Vi_l/r;+‘/3

(2.15)

ri/2Vd. Since R is also well-spaced,
ri—1/2Vd, and so (2.12) holds also for

Since (2.12) holds for i (by the inductive assumption), r/
ri-t < ri/2 by (2.6); hence ri_1 /r] < Vd. so, by (2.15), r]_,
i — 1 and the induction is advanced.

Given these r{, ..., rg, we find an R-partition of Q by taking Pr = {Q} and iteratively forming each
layer P;_; by taking the unique partition of each box in P; into (] )4/ (rlf_l)d sub-boxes of side length
r!_,. We first define each partition box to be of the form ]—I;.lzl [aj, b;), this allocates each point except
d of the d — 1-dim faces of dQ uniquely. Finally, we allocate the points x € dQ in P; to the box in P;
that contains x in its closure, this box is unique except on d — 2 dimensional faces. Here we again use
half-open d — 1-dim boxes to determine the d — 2 dim boundaries, and so on until only the corner-points
are left which we allocate arbitrarily (but consistently across different ). O

>
=

We continue with the weight-marginal and cover the interval [wy, f(r;)] of weights with a collection
of intervals, forming later the weight-coordinate of the hyper-rectangles:
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Definition 2.8 (Base-2-cover). Given a closed interval J = [a,b] C Ry, let jmax = |logy(b/a)] + 1,
and define /; := [27'a,27a) for j € [jmax]. Then J C Uj:f‘f I; and we call I = {I;};<j,.. the base-
2-cover of [a, b]. For each x € [a, b] we define I(w) := {I; : w € I;} to be the unique interval that
contains x, and write I(w) = [w_, w,) for its endpoints.

For each w € [a, b], w/2 < w_ and w, < 2x, so I(w) C [w/2,2w]; by the definition of I, W
also have b € I;, . We define the hyperrectangle-covering of the box Q including vertex-weights now.

Recall vertex-weight distribution W from (1.6), and f(r) from Def. 2.3.

Definition 2.9 (Hyperrectangles). Consider the setting of Proposition 2.5 and Definitions 2.6, 2.8. Let
”13(72) :={P1, ..., Pr} be an R-partition of the cube Q with R = {ry,...,rg}, r/ be the side-lengths
in P;, and let I = {/;} < ;... be abase-2-cover of [wo, fr,5(rr)]. Let j.(i) be the index of the interval
that contains fr 5(r;), that is,

Ir.s(ri) € I(fr,s(ri)) =: 1}, (i)- (2.16)

Then we say that the collection H(R) := {Bi xIj:BiePy,1<j< j*(i)} is a hyperrectangle-cover
of O X [wo, f(rr)]. Foralli € [R] and all A C [wy, f(rr)], we define

wi(A) = (rH? -P(W € A). (2.17)

When we cover with boxes in P; on the spatial coordinate, the number j, (i) of weight intervals
in #(R) depends on i. In particular, for smaller side-length we do not include intervals of very large
weights. This is because there are too few (or no) vertices of large weight in a typical box of small
side-length, so we cannot control their number. We illustrate a hyperrectangle cover on Figure 4 in
dimension 1. In IGIRG, y;(A) is the expected number of vertices with weights in A in any box in P;. In
SFP, u;(A) is only roughly the expectation, since, for example, a box touching the boundary dQ in P;
may not contain exactly (r’)d vertices of Z¢. By (2.13), all vertices in the hyperrectangle B! (v) X I, are
within distance r; of v. Hence once we control the number of vertices in a dense set of hyperrectangles
in all partitions i € [R], we can find a net. We now define a hyperrectangle being ‘good’, with respect
to a realisation of V. Recall that I(w) denotes the interval /; that contains w in Definition 2.8.

Definition 2.10. Consider the setting of Def. 2.13, and let a H(R) be a hyperrectangle-cover of
0 X [wo, f(rr)]. Consider a realisation of the weighted vertex set } = ((v, WV))VEV'

We recursively define when we call a vertex v € ]7 and a box B € ﬁ(R) good. Every vertex is 1-
good. For all i € [R], we say a vertex 7 = (v, w,,) € V is i-good if the boxes B' (v), ..., B~ (v) are all
good (which we define next). Denote the set of i-good (weighted) vertices by G; := {v eVi- -good} and
G ={v:ve Q,} We say that abox B € P; is i- good or simply good if the following conditions all hold:

(B1) Eitheri = 1, or B contains at least 1 — 22 (rifrl_ ) many { — 1-good sub-boxes B’ € P;_;.
(B2) The total number of i-good vertices in B satisfies

1G: N B| € [(1 _Ai- 1)6)

d
> (r)“,2(r )] (2.18)

(B3) For all w € [wo, fr.s(r;)], the number of i-good vertices in B with weight in I(w) satisfies

2i6

1Gi 0 (Bx I(w))] € [%( 4

)u,u(w)) 8u,<1<w)>] 2.19)

We say that the realisation Vis good with respect to the hyperrectangle-cover 73(73) if Q is R-good.

The above definition is not circular; the definition of i-good vertices depends only on the definition
of good boxes in P;_, that is, one level lower, and then the definition of a good box in P; depends only
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on the number of i-good vertices in it (and their weights) and its number of good subboxes in P;_;. For
i = 1, the (longer) definition of 1-good vertices is vacuous, so every vertex is indeed 1-good which we
emphasised in the definition. Further, Gg € Gg-1 € ... € G} =V N Q, since each i-good vertex is also
(i—1)-good for all i < R. See Figure 4 for a graphical depiction of i-good vertices and boxes.

Before we relate goodness to our overall goal of finding an (8, R)-net, we give some easy algebraic
bounds which we need multiple times in the rest of the section. Recall that I(w) = I; iff w € I; (cf. Def.
2.8) and that y; (A) = (r))4 - P(W € A) in (2.17).

Lemma 2.11. Consider the setting of Proposition 2.5 and Definitions 2.6, 2.13. Suppose ﬁ(R) =
{P1,...,Pr} is an R-partition of Q, and for all i € [R], let r] be the side length of boxes in P;. Then
foralli € [R] and allw € [wq, f(rr)], we have

rde(w)w™ TV 1) < i (I(w)) = (P4 - P(W e I(w)) < 27rde(w)yw™ (77D, (2.20)
rde(fra fr) ™D > (2d)*™ 8 1og(16R/5). 2.21)

Proof. We start by showing (2.20). We write I(w) = [w_,w,). The definition of a base-2-cover
(Definition 2.8) ensures that w_,w, € [w/2,2w] and w,/w_ = 2. Thus by the lower bound (2.1) on

wo, for all w € [wo, f(rr)],

P(W € I(w)) = C(w_)w=TD —¢(ww; ™V

101 _
—(T ]) (T 1)
f(w)(loo 100"+ )
99 101
=D 101 ),
(wyw= (100 100

Since T > 2 and w_ < w, it follows that p; (I(w)) > (r/)@¢(w)w=(*=1) /27+1 The required lower bound
on u;(I(w)) then follows by the lower bound (P) in Definition 2.6 on r/. By a very similar argument
to the lower bound, (2.1) also implies that

101
P(W € I(w)) < mf(w)w:“’]) < 27¢(w)w T,

so the required upper bound on w;(/(w)) likewise follows by the upper bound (P1) on r;. It remains
to show (2.21). First we show that f(rg) > f(rgr-1) = ... = f(r;) = wop. Indeed, let j € [R]. By the
definition of f in (2.3),

1/(z-1)

f0r)) _ ( r; )d/(f—l) . 1 A inf {é’(x): X € [wo,r;l/(T_l)]} 222

f(rj-)  \rja I Adnf {£(x): x € [Wo,rﬂiT—l)]}

To bound the second factor, we will first observe that since r;_1 < r;, we have inf{f(x): x €
[wo, r‘.l/(T_l)]} < inf{€(x): x € [wq,r d/(T 1)]} By considering the two possible values of

/(=) .

1 AInf{€(x): x € [wog,r } separately, it follows that we can drop the minimum with 1 in the ratio:

1/(t-1) 1/(z-1)

LA inf {£(x): x € [wo,r{ "V} inf {£(x): x € [wo,r¢/ "V}
>
1 Ainf {€(x): x € [wo,r d/(T 1)]} inf {€(x): x € [wo,r d/(T 1)]}

(2.23)

‘.if (r= 1)] (in the denominator) by repeatedly applying (2.1). We write

a/(x=1) _ olg((rj/rj-)@/0) d/(x=1)
Jj-1

We now bound £(x) on [wy,

lg(-) = log,(-). Then, we have ri , SO we iterate the bound in (2.1)
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roughly lg((r;/rj-1)%(*=D) many times to obtain that for all x € [ 7/57 D j.l/(T_l)] we have
g (1 fry )Y
99 JIg
4 C(ri—y).
(x) > (100) (rj-1)

Returning to (2.23), the ratio of the two infima in the smaller interval [wy, r;lf 577])] is one. And since
rj > 2r;_1 by (R2) of Definition 2.4 (using 6 < 1/16 < 1), it follows that

1 1
inf {£(x): x € [wo, 7"V} ey (99)“lg((rf/rm)d/“-'))
inf {£(x): x € [wo, r "/“ D1} 100

. 1 ﬁlg((rj/rj—l)‘””’”)_ Tt d/(t-1)?

2 (5 =% .

Combining this with (2.22), (2.23), and the fact that 7 > 2, we obtain

> 1.

£0r)) rj \Fr -/
o0 © (_)

Hence f(rgr) = f(rr-1) = ... = f(ry1), as claimed. It is now relatively easy to prove the desired

lower bound. From the definition of f in (2.3), we have f(r;) < rd/ (=D , and (2.5) in the definition of
well-spacedness ensures that f(r;) = wy, S0

I’J',l

~(z- C(f(ri)) (2d)?7* 8 Jog (16R /6)
L flr™ Y = P 7
I Ainf{f(x): x € [wo, 1, 1} T;
(2d)>™*4*810g(16R/5)
> 7 .
Ty
Multiplying by rid finishes the statement of (2.21). O

We now show that given that the box Q is good with respect to a hyperrectangle cover, we can find
an (6, R)-net for Q (see Def. 2.3).

Lemma 2.12. Consider the setting of Proposition 2.5 and Definitions 2.6, 2.13, 2.10, that is, a hyper-
rectangle cover H(R) of Q X [wy, f(rr)], and a realisation of V for which Q is R-good. Then Gg, the
set of all R-good vertices, forms an (8, R)-net for Q.

Proof. Suppose that Q is R-good. The side length of Q equals r by (P3) in Def. 2.6, and ¢ € (0, 1/16)
in the setting of Proposition 2.5, hence we may apply (B2) in Def. 2.10 for i = R to get

1 2(R-
225

IGr| = - 1)6)\/ 10) > (_ _ 26)V01(Q) > Vol(Q)/4,

hence the cardinality assumption in Definition 2.3 is satisfied for Gr. Recall that B (v) is the box in P;
containing v. To show that G satisfies Definitions 2.3, we first show that for all v € G,

GiNB'(v)=GrN B (v). (2.24)
To show this, we need to show that every i-good vertex u € Bi(v) is also R-good, that is, that B/ (u) is

good for all j € [R]. By the definition of i-goodness (Def. 2.10), B/ (u) is good for all j < i -1, and
BR(u) = Q is good by hypothesis. Consider now a j € [i + 1, R — 1]. By Def. 2.6, the partition P; is a
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refinement of the partition P;, so B/ (u) = B/(v). Since v is R-good, it follows that B/ () is good. So,
B/ (u) is good for all j € [R], so u is R-good, showing (2.24).

With I(w) C [w/2,2w] being the interval containing w in the base-2-cover of [wq, f(r;)] in Def.2.8,
we now argue that

Gk 0 (Br, (v) X [w/2,2w])| = |Gr N (B'(v) X I(w))| = 1G; N (B (v) X I(w))].

Indeed, Bi(v) € B,,(v) by (2.13) and I(w) C [w/2,2w] by Def. 2.8, and since all i-good vertices
in Bi(v) are also R-good by (2.24), the statement follows. Now we apply, on the right-hand side
|Gi N (Bi(v) x I(w))| above, the lower bound (2.19) from Def. 2.10 (B3), then (2.20) to obtain

_ ‘ (2.19) 1 2i6
|Gr 0 (B'(v) x [w/2,2w])| = g(l_%)“i(l(w))
(2_20)1 _@ d —(7-1) T+d+1
2 8(1 R)rif(w)w /(2d)TH

Observing that § < 1/16 and i < R ensures that the prefactor on the right-hand side of the last row is at
least 1/8 - 1/2 = 1/2*, establishing (2.4) for all w < f(r;), as required. O

A lower bound on the probability that any given box in an R-partition is good, together with
Lemma 2.7 and Lemma 2.12, will yield the proof of Proposition 2.5. The bound is by induction on i
together with Chernoff bounds. Recall I and I(w) from Def. 2.8, applied to the interval [woq, f(rgr)] for
R ={r1,...,rr}. Recall that (2.19) of Def. 2.10 (B3) is required only when w € [wq, f(r;)], and that
Jx (i) in (2.16) is the index of I; that contains f(r;). We now gradually reveal vertex-weights by giving a
weight-revealment scheme. Here, we aim for unified proof that works for SFP and IGIRG simultaneously.
In IGIRG we can make use the independence property of marked Poisson point processes, namely, that
the number of vertices in B X I; and A x I are independent if j # j’, see [61]. However, in SFP this
is not the case and we may run out of vertices as we gradually reveal vertices with higher and higher
weights. To solve this issue, we first reveal all vertex positions only (one could think of this as a sigma-
algebra, we call it F( and leave vertex-weights yet unrevealed. Then, in subsequent weight-revealment
steps F1, Fa, - - -, FR, We reveal the vertex-weights of those vertices whose weight falls into the intervals
I;, with the maximal j revealed increasing along the steps. Recall that j, (i) is the index of the interval
I; containing f(r;) from (2.16), and that we denote the o--algebra generated by a random variables X, Y
by o (X,Y).

Definition 2.13. Consider the setting of Proposition 2.5 and Definitions 2.6, 2.13. Suppose H(R) is a
hyperrectangle-cover of Q X [wy, f(rr)]. Let V be a realisation of the weighted vertices in Definition
1.3 and B be a box in one of the partitions (P;);<r. We define

o(VNB) fori =0,

- 2.25
a(fo(B),Vm(Bxujsj*(,-)lj) forall 1 <i<R. (2.25)

We say that we vertices with weight in U;<;, (;I; have ‘revealed’ weight in F;, while the vertices in
[1,00) \ Uj<j,(i)!; have ‘unrevealed’” weight in F;. We denote by &;(B) the outcome of the revealment
scheme F;(B): &;(B) contains the position of all vertices in the box B, where a subset of these vertices
is marked by the revealed vertex-weight.

Fo(B) reveals the number and positions of vertices in B, while F;_; (B) reveals the precise weights
only of vertices whose weight falls in the interval U;<;, ;—1)/; 2 [wo, f(ri-1)]. Note that the weight
distribution of vertices with unrevealed weight changes along the revealment procedure, since after
revealment step i — 1 it is the conditional weight distribution that the weight does not fall in the
revealed interval U;<;, ;—1)/;. The fact that R is ¢-well-spaced, means that vertex weights between
wo2/*=D ~ f(r;_1) and f(r;) are not revealed in F;_;(B). Also, vertex weights in [1,wp) are not
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revealed at all; since wy is large, P(W < wy) is large and most vertex weights will not be revealed
by exposing F;_1(B). The filtration generated by F;_;(B) thus determines whether or not boxes in
Uj<i—1’P; are good, and whether or not a vertex is i-good (see Def. 2.10), since i-goodness of a vertex
only depends on boxes with index at most i — 1 containing the vertex. So, F;_ (B) determines whether
or not B € P; satisfies Def. 2.10 (BI) -(B2), but it leaves (B3) undecided for weights slightly below
f(r;). The next lemma treats (B3), with F;_1(B) exposed.

Lemma 2.14. Consider the setting of Proposition 2.5 and Definitions 2.6, 2.13. Let H(R) be a
hyperrectangle-cover of the cube Q. Let i € [R] and let B € P;. Let X be a realisation® of X;_;(B) that
satisfies Definition 2.10 (BI) and (B2) for B. Then independently of other boxes in P;, uniformly for all
such X,

P(Bis good | Xi—-1(B) =X) > 1-6/(2R). (2.26)
Proof. Recall I from Def. 2.8, and let B € P;. Let
a(l;) == (1-2i6/R)u; (1) /8, b(1;) == 8u;(I;) (2.27)

be the required lower and upper bounds in (2.19). Let E;(B) = IG: N (Bx1I;)|; thus (B3) holds for Bx I;
iff 2;(B) € [a(l;),b(I;)]. Since B satisfies (BI)—(B2) on X, by a union bound,

P(Bisgood | Xii(B)=X) > 1- > P(E;(B)¢[a(l)),b(I)] | X1(B)=X).  (2.28)
Ij:j<j« (i)
We proceed by bounding each term above. By the definition of F;_;(B) in (2.25), we already exposed
E;j(B)wheni > 1and j < j.(i — 1); the latter is equivalent to min(/;) < f(ri-1).
Casel:i>1and j < j.(i—1). We first show that Z; > a(/;) holds deterministically on {X;_; (B) =
X}. The goodness of each sub-box B’ € P;_ of B € P; is revealed by F;_(B). If B’ € P;_; is a good
box, all vertices in G;_; N B’ are also i-good by Definition 2.10. So

B =16 BxIpl= > G n (B <)l (2.29)
B’€P;_1: B’ good
Since j < ju(i = 1), min(/;) < f(ri-1), so we may apply (2.19) to the good subboxes:

2(i - 1)5);1,-_1(1,) ) (1 _20i- 1>a)ui<1j) (_1 )"

R 8 R 8 r!

L

Gioi 0 (B % I)] = (1 - (2.30)

where u;(1;)/pni-1(1;) = (rlf/rlffl)d follows from (2.17). By (BI) holding on X, B contains at least
(1- 26/R)(rlf/rlf_1)d good sub-boxes in P;_;. Combining that with (2.29)—(2.30) and (2.27) yields

= 20 2(i-1)6 ,u,'(Ij) 2i0 ﬂi(]j) 3 4
_.J(B) > (1 - E) . (1 - T)T > (l - ?)T —Cl(IJ).

We show E;(B) = IG: N (B I;)| < b(I;) also holds a.s. B contains (rlf/rl.’fl)d sub-boxes in P;_; by
Def. 2.6 (P2). If a sub-box is bad, it contains no i-good vertices. If it is good, (B3) holds and it contains
at most Sui(lj)(rlf_l/r;)di—good vertices with weights in Bx/;. We obtain Z;(B) < 8y;(I;) = b(I;) in
(2.27). So overall we have shown that

ifi>1landj < ju(i—1): P(E;(B)¢[a(l,;),b(I;)]| Fioi(B) = F) =0. (2.31)

9Thus here F contains the position of all vertices in the box B, where a subset of these vertices is marked by the revealed
vertex-weight.
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Case2:i > 1and j > j, (i —1). Define the set

S=Gn (Bx 1, WO)UU1>1*(L : ])) (2.32)

the i-good vertices in B with weights not revealed by F;—;(B). F;—1(B) does reveal the positions of
vertices in B, and all weighted vertices not in S; thus F;_;(B) reveals |S|, and the position of vertices
in S. By Def. 1.3, vertex weights are independent of vertex positions and of each other. Further, for a
vertex v € V, conditioning on F;_;(B) is equivalent to either exposing its weight (if w, € U;<;, i-n1;)
or conditioning on w,, ¢ U, <, ;i-1)/; (otherwise). So for each vertex in S, its weight distribution is the
conditional distribution of W given that W ¢ U, ; (;_1)I;. Since |S| is determined by F;_;(B), for all
J = jx(i—1),E;(B) given F;_;(B) is binomially distributed with parameters

Z,(B) | Fioi(B) £ Bin(IS|,P(W € I;)/P(W & U<, i-1)1;)). (2.33)

We next bound the conditional expectation of Z;(B) | F;_1(B), starting with the upper bound. Using
the lower bound (2.1) on wy, the success probability of the binomial in (2.33) is

P(W € I;) L _PWel) _ BWel)

< = < 2P(W € I;). 2.34
P(W ¢ U.,'sj*(i—l)lj) P(W S [1, WO)) 1- f(WO)wg_l ( ']) ( )

Since Def. 2.10 (B2) holds for B on X;_1(B) = X, by (2.18) there are at most 2(rlf)‘li-g00d vertices in
B,so |S| < 2(rlf)d. Recalling the definition of y; ({;) from (2.17), and (2.27) we thus obtain

E[E;(B) | Xi-1(B) = X| < 4(r))IP(W € I}) = 4u;(I}) = b(I})/2. (2.35)

We next prove the corresponding lower bound. We start by giving a lower bound on |S|. Clearly by
(2.32), [S] = 1G; N B = | U <j, (i-1) Gi N (B x I})|, both terms revealed by X: the total number of i-good
vertices in B minus the ones with revealed weight. We can bound |G; N B| from below using (2.18) in
Def. 2.10 (B2). By Def. 2.6 (P2), B contains (rl.’/rlf_l)d sub-boxes in P;_;. Since there are no i-good
vertices in bad boxes B’ € P;_, we can bound | U<, ;-1 G] N (B x 1;)| from above by applying (2.19)
to each good sub-box B’ € P;_; of B, yielding

r\d
1% (5= 25200 - (5] X s, 2.36)
2 = J<ix(i-1)

i
Using that /; = [2/~ "wo,wo) forall j > 1, Lemma 2.11 with w = 2/~1w yields

Jx(i=1)
(Pt DY Bum () <273 Y 62 wo) (2w Y
J<ix(i=1) oj=1 (2.37)

<27 Y L@ wo) (2 wo) Y,
j=0

where we switched indices in the last row. By the lower bound (2.1) on wy and since T > 2, for all
j > 0 we have €(27 wg) (274 wo)~(*D < %K(ijo)(ijo)_(T‘l), so the sum on the right-hand side
is bounded above term-wise by a geometric series. It follows from (2.36) that

1 2(i-1¢

Sl=z1=
||_2 R

- 27+5€(Wo)wg(7_1))(r{)d > (r)?/4,
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where we used in the last step thati < R and 6 < 1/16, and the lower bound (2.1) on wg. The success
probability of the binomial in (2.33) is at least P(W € I;). Since a(I;) = (1 -2i§/R)u;(1;)/8 in (2.27),

E[Z;(B) | Xi-1(B) = X| > (r))/P(W € 1;)/4 = p;(I}) /4 > 2a(l;). (2.38)

Combining (2.35) with (2.38) yields that E[Z;(B) | Fi-1(B) = F] € [2a(I;), b(I;)/2], which allows
us to bound P(Z;(B) ¢ [a({;),b(I;)]) with standard Chernoft bounds. By (2.35) and Theorem A.]
applied with & = 1/2, we have shown that uniformly for all realisations F satisfying (B1)-(B2)

fori>1,j>ju(i=1): P(E;(B) ¢ [a(l)).b(I))] | Fi-1(B) = F) < 2exp(-a(l;)/6)

2.39
< 2exp(-pi(1)/96). )

Case 3: i=1. When i = 1, we set j.(i — 1) := 0 naturally, since in Fy(B) we revealed the total
number of vertices in B € P;, which are all 1-good by Def. 2.10. Conditioned on Xp(B) = X, (2.18) in
(B2) is satisfied and (r{)d/4 <|S| < 2(ri)d directly. The rest of our previous calculations from Case 2
with j > j.(0) = 0 all carry through for estimating the left-hand side of (2.19) in (B3). We obtain that
the bound in (2.39) holds also fori = 1 and all j > j,(0) =0

Combining the cases: By (2.31), (2.39), and Case 3, for all i and j < j, (i) the bound in (2.39)
holds. Combining that with (2.28), for all B € P; and X;_;(B) = X satisfying (B1),(B2),

pi :=P(B € P;isi-good | Xi-1(B) =X) >1-2 Z exp(—ui(17)/96)
J<jx (i)
>1-2 exp(—(zd)*”d“)r;’f(zf*'wo)(zf*‘wo)*“*‘)),
J<jx (i)

where the second line follows from p; (1;) = p; (1(27 ~Iwo)) in Lemma 2.11. Here, the term in the sum
with j = j, (i) is maximal. We use then an reindexing ¢t = j, (i) — j,¢ > 0 and argue that the sum can
be dominated by a geometric series in ¢: By the lower bound (2.1) on wg and the fact that 7 > 2, for
all j > 1 we have £(27 " 'wg) (27" 'wg)~ ("D > %{’(ijo) (2/wg)~(*=D . Using the same geometric-sum
argument as below (2.37) except now from the reversed viewpoint, writing z := wo2/*()~!, the lower
endpoint of /;, (;), we have

3
_ E (r-1)
= eXp( (2d)f+d+8 & ( ) e ) 240
Since z is the lower endpoint of 1;, ;) = I(f(r;)), we have z < f(r;) < 2z by (2.16). Hence by (2.1)

)z T > 27T f () f ()T,

Using this bound in (2.40) and combining it with (2.21) from Lemma 2.1 1, we obtain that

0

o) 3 t 5 )
pi=1-2 exp(—(—) 10g(16R/6)) >1-—-2)> (6/16R)" > 1 — —,
; 2 8R ; 2R

where we used that (3/2)" > ¢ forall r > 1, and § < 1/16. Independence across boxes in the same
‘P; is immediate, since whether B satisfies (B3) conditioned on F;_|(B) = F satisfying (BI), (B2) only
depends on vertices in B. O

The next lemma gets rid of the conditioning in Lemma 2. 14 on the filtration. As before, here in (2.41)
below, P is here the Palm version of the annealed measure integrating over vertex-weights and positions
for IGIRG, while for SFP the conditioning can be dropped.
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Lemma 2.15. Consider the setting of Proposition 2.5 and Definitions 2.6, 2.13. Let H(R) be a
hyperrectangle-cover of the cube Q. Let t < (r;/4Vd)? be an integer, and for IGIRG let x, .. .,x;
be a (possibly empty) sequence of points in R%. Then for each B € U;P;

P(Bis good | x1,...,x, € V) > 1-6/R. (2.41)

Proof. We prove the statement by induction on i, the base case being i = 1. Consider a box B € P;.
By Def. 2.10, (BI) holds vacuously. We next consider (B2). Every vertex in B is 1-good, and so
|G N B| = [V N B|. In SFP, V is deterministic and |G, N B| € [(r])?/2,2(r!)¢] holds with certainty by
Def. 2.6 (P1). In (I)GIRG, G| N B is a Poisson point process and the Palm theory (see, e.g., [01]) gives
that under the conditioning xy,...,x; € V, |G; N B| — t is a Poisson variable with mean (ri)d, so by a
standard Chernoff bound (Theorem A.1 with & = 1/2), and using r/ € [ri/(2Vd), r;/Vd] in Def. 2.6
(P1), and the bound (2.5) on ry in Def. 2.4,

pl = 1;»(|g1 NBle[t+iDh e+ | x1,...,x € v) > 1 =2 (/MDY 5 1 _5/(2R),

so the lower bound in (2.18) in Def. 2.10 (B2) is satisfied. Moreover, since ¢t < (r1/4\/3)d, by Def. 2.6
(P1), %(ri)d +1 < Z(ri)d , the upper bound in Def. 2.10 (B2) also holds, so independently for all boxes
B € Py, and regardless on where x1, .. ., x; fall,

P(B € P, satisfies (B2) | x1,...,x, € V) > p} > 1-6/(2R).

Lemma 2.14 ensures that (B3) holds uniformly with probability at least 1 — §/(2R) conditioned on any
realisation where (B1),(B2) holds. A union bound proves (2.41) for B € P;.

Now we advance the induction. Suppose that (2.41) holds for each B € U;<;_1P;, and let B € P;.
B contains (r}/ rl.’_l)d sub-boxes in P;_; (by Def. 2.6), and by induction these sub-boxes of B are good
independently (regardless of the positions and weights of xy,...,x; € V), so the number of bad sub-
boxes of B is binomial with mean at most (rl.’/rlf_l)dé/R. Let

Ai(B) := {|{B’ € Piy: B’ C B, B not (i — 1)-good}| < 2(r;/r;_1)d5/R}. (2.42)

Then, A;(B) implies Def. 2.10 (BI). A Chernoff bound (Theorem A.1 with & = 1) yields that

) r d
3R \r/_, ’

By Def. 2.6 (P1), (r}/r]_)? > 27%(r;/ri-1)?, so by Def. 2.4 (2.6), regardless of the positions of
X1,...,X €V, and independently across different boxes in P;:

P(A,-(B)C |X1, .. % € v) < exp

9
2R

IN

(2.43)

IP(.A,-(B)C | x1,...,x € V) < exp(—% .34R. w)

We now show that A;(B) implies (B2) as well, by inductively applying (2.18) to the good sub-boxes
of B. Consider an (i — 1)-good vertex v in a good sub-box B’ € P;_; of B. Since v is (i — 1)-good,

B'(v),...,B""2(v) must all be good; since B'~!(v) = B’ is also good, it follows that v is in fact i-good.
Thus, for all good B’ € P;_1 : Gi—1 N B’ = G; N B holds. Since B’ is (i—1)-good, it satisfies (2.18), and
we obtain:

, , , , 1 2(i-2)5)\, ,
IG: N B| > Z Gi-i NB'| = [{B" € Pi-i: B'C B, B gOOd}|(§__( R ) )(’"il)d'
good B’'CcB
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On A;(B) in (2.42), there are (1 — 26/R) (rlf/rlf_l)d good sub-boxes of B, so a.s. on A;(B)

265\( I\ 26i-26),, 4 (1 26-1D5\, 4
lgiﬁBlZ(l_E)(Z) (E_T)(ri‘l) Z(E_T)(Vi) .

Vertices in bad sub-boxes cannot be i-good by Definition 2.10. So (2.18) similarly implies that on A; (B)
there are at most 2(r; )4i-good vertices in B, and thus A; (B) in (2.42) implies both (BI)—(B2) for B; it
follows from (2.43) that

P((B1) and (B2) hold for B | x1,...,x, € V) = 1 - 6/(2R). (2.44)

By Lemma 2.14, B is good (i.e., (B3) also holds) with probability at least 1 —¢/(2R) forall F;_;(B) = F
with (BI)—(B2) holding for B; these events and xi,...,x; € V are all determined by F;_;(B). So, a
union bound on (2.26) and (2.44) yields that independently across boxes in P;, and regardless of the
vertices xy,...,x; € V, (2.41) holds. This advances the induction and finishes the proof. ]

Proof of Proposition 2.5. Recall the setting of Proposition 2.5, and consider an R-partition Py, ..., Pr
of Q, (which exists by Lemma 2.7), and let H(R) be the associated hyperrectangle cover of Q X
[wo, f(rr)]. By Lemma 2.15, conditioned on x, ..., x; € V,eachbox B € P; U---U Pg is good with
probability at least 1 — §/R. Let A be the event that all boxes in {Bi(xj) :i € [R],j € [t]} are good. A
union bound overi = 1,...,Rand 1, ..., ¢ implies that

P(A|x1,...,x; €V)>1-16.

In particular, if A occurs then BR(x1) = Q is also good, so by Lemma 2.12, the set JR =: N of all
R-good vertices forms an (J, R)-net of Q. The requirement that {B’(x )i €[R],j € [t]} are good is

exactly the requirement for x1,...,x; € N to be R-good and this to be in this net, showing (2.8). To
obtain (2.7), note that Lemma 2.15 implies that Q C Pk is good with probability at least 1 — /R, and
then again Lemma 2.12 finishes the proof. O

3. Multiround exposure with dependent edge-costs

Now with the nets at hand, we may reveal the realisation of the vertex set Y= (V,wy ). We shall now
reveal edges adaptively to construct a fast-transmission path between 0, x, according to the ‘budget
travel plan’ in Section 1, see Fig. 2. In particular, we need to find low-cost edges in spatial regions
which depend on the previous low-cost edges we have found. When studying graph distances in Biskup
[11] this is not a major obstacle, but with the presence of edge-costs we run into conditioning issues.
To overcome these, we develop a multiple-round exposure — essentially an elaborate edge-sprinkling
method on the revealed vertex set — where in each round we reveal more than one edge.

In a classical random graph setting, constructing a path using multiple-round exposure would involve
coupling the base graph model G to a suite of sparser but independent random subgraphs Hy, ..., H,,
and taking the i-th edge of the path from the i-th ‘round of exposure’ H;. In the edge-weighted setting
we design a (slightly more restrictive) construction incorporating independent edge-cost variables on
Hi,...,H, that we describe in Prop. 3.9 after some preliminary definitions. For future reusability,
we formulate Prop. 3.9 in a general class of random graph models, as set out below. Recall that
V@ = {uv: u,v € V distinct} denotes the set of possible edges on V.

Definition 3.1 (CIRG models). A conditionally independent edge-weighted vertex-marked random
graph model (CIRG model) G consists of a fixed countable weighted vertex set (V,wy ), a random edge
set £ € V)| and random edge costs C(xy) for each possible edge {x,y} € V®. All costs C(xy) and
all events {xy € £} are independent across {x,y} € V(?_ For brevity, we write ‘G ~ G is a CIRG’ to
mean that G ~ G and that G is a CIRG model. Sometimes it is convenient to speak of variables G ~ G
without naming G, and in this case we simply say ‘G is a CIRG’.
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First passage percolation (1-FPP) on SFP (Def. 1.1) and GIRG (Def. 1.3) both become CIRG models
after their weighted vertex sets are exposed, with C(xy) in (1.2) being the edge-weights. It is easy to
verify that the same is true of 1-FPP on Chung-Lu random graphs (defined in [22]) and inhomogeneous
random graphs (defined in [15]) or on the subclass called the stochastic block model [71].

In a classical setting, a multiple-round exposure argument would ‘split’ a graph G ~ G into edge-

disjoint graphs Gy, ..., G,, where we put each edge of G into precisely one G;, independently across
edges according to some probability distribution (61, . . ., 6,-). We would then couple G, . . ., G, to inde-
pendent graphs Hy, . . ., H, using stochastic domination arguments. Here is the analogue of Gy, ..., G,

in our setting, where we must be careful about costs.

Definition 3.2 (6-percolated CIRG). Let G ~ G be a CIRG from Definition 3.1. Then for all 8 € (0, 1)
the -percolation of G is the subgraph G? of G which includes each e € £(G) independently with
probability 6, and we write G 9 for its law. We call G? the 0-percolation of G, and 0 the percolation
probability.

Remark 3.3 (6-percolated CIRGs are CIRGs). An alternative construction of G ~ G is to sample each
edge e independently with probability 6P(e € £(G)). So G? is a CIRG model, and the CIRG model
class is closed under 8-percolation.

We now set out a specific coupling between a base CIRG model and percolated CIRGs, that will
serve as graphs forming the rounds of exposure. Recall that [r] := {1,2,...,r}.

Definition 3.4 (Exposure setting of G). Let G be a CIRG model from Def. 3.1 with vertex set V. Fix r e N
and 6y,...,6, € [0, 1] satisfying };¢(,1 6; = 1. We define the exposure setting of G with percolation
probabilities 61, . . ., 0, as follows. Let (Z,,),,, ey @ bei.i.d. random variables with P(Z,,, = i) = 6, for
alli € [r]. Take G7,..., G} to be i.i.d. CIRGs, with shared distributions G} ~ G, and respective edge
costs C;(e) for e € £(GY) chosen independently across i < r. Let G?i be the subgraph of G with edge
set E(Gf") ={e € £(G}): Z, =i} and edge costs {C;(e) : e € €(Gl.9")}.

In this definition, while the initial graphs GT, ..., G} are independent, their percolated versions Gig"
are not, since they all use the same (Z,,),, cy @ collection. The following lemma reconstructs G from
the percolated versions.

Lemma 3.5 (Realisation of a CIRG in the exposure setting). Let G be a CIRG model from Def. 3.1
with weighted vertex set (V,wy ). Let 01, . . ., 0, be the percolation probabilities, and consider (Gig" )i<r

in Definition 3.4. Then marginally, each Gl.ei is a 6;-percolated CIRG. Define now G as the graph
with weighted vertex set (V,wy), and with edge set £(G) := Uie[rJE(Gig"), and with edge costs
{C(e) :=Cz,(e) :e € E(G)}. Then G ~ G.

Proof. That Gl.e" is marginally a ;-percolated CIRG, that is, that it has law G%, is immediate from the
definition. To see that G ~ G we argue as follows. Since Z,,,, takes a single value in [r] each possible
edge e = uv appears in at most one of Gf] ,...,G% Hence the union Uie[,]E(G?") = £(G) is disjoint,
and using that G7, ..., G} all have law G,

P(uv € £(G)) = ). P(Zuy = )P(uv € E(GY))

ie(r]

= > 0:P(uv € £(G)) =P(uv € £(GY)),

ie[r]

and G} ~ §. Further, edges are present in G independently since the variables Z, and £(G}) are
independent. O

For a collection of variables & we write o(X’) for the o-algebra generated by the variables in X.
In the following definitions we formalise multiround exposure with edge-cost constraints, in the setting
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of CIRGs with given weighted vertex-set (V, wy ), which guarantees that edge presence and edge costs
are independent by Def. 3.1. These definitions are highly technical and so we provide a simplified
motivating example before stating them, with further discussion to follow.

Suppose we are given a CIRG G ~ G with vertex set contained in [0, v/n]?, and we wish to join two
fixed vertices u and v with a low-cost path in three rounds with equal edge probabilities. We therefore

split G into three disjoint percolated CIRGs G}/3 c G, G§/3 C GX and G;B C G¥ as in the exposure

setting, taking 6; = 6, = 03 = 1/3; by Lemma 3.5, every edge in any Gg/ 3 isan edge of G with the same
1/3 1/3
,' " and G,
construction on independent percolated CIRGs H,, Hy, H3 ~ G'/3; this coupling works in general and
is stated later as Proposition 3.9.

In the first round, we reveal edges of G (or H;) and search for an unusually low-cost edge from an
unspecified vertex u’ near u to an unspecified vertex v’ near v. In the second round, using edges of G,
(or Hy) we search for a low-cost path from u to u’; and in the third round we search for a low-cost path
from v’ to v in G3 (or H3). In each round we describe the admissible object we search for and a cost
constraint, such as ‘any path from any u’ € B, (u) to any v/ € B,(v)’ and ‘cost below a specific value
C’). Since we reveal edges, these ‘objects’ are described in terms of edges. When we supply the actual
graph G}/ 3 or H;, the round selects a concrete admissible object — for example, a fixed low-cost path
7,y connecting two vertices u’, v/ in Hy. This concrete object is then used to specify admissible objects
in future rounds: round 2 admissible objects depend on the value of u’, which is a function of 7,/ .

In defining an iterative cost construction, we consider the effect of applying it to arbitrary graphs G,
G, and G3 rather than to the specific graphs G}/ 3 or H;. In the definition below, these ideas are captured
for the i-th round by F;, U; and S; respectively: F; describes the ‘admissible objects” among which we
select one (as a list), U; describes the cost-requirements on these, and then S; finally reveals (part of)
the edge set of G; and selects the first admissible object in F; that satisfies the cost-constraint. The next
round(s) may use the outputs S; of previous selection rounds — in our example, rounds 2 and 3 depend
on the endpoints of the path chosen in round 1. Initially F; and U/; will exist as ‘functions’ before any
edge is revealed, describing all possible realisations of admissible objects and constraints on them in
round i. Once G, ..., G;_| have been specified, only a subset of these admissible objects will remain
admissible; these new constraints we denote by F;(G1,...,G;-1) and U;(Gy,...,G;-1). Thus each F;
and U; is deterministic, while each S; satisfying the structural constraints of 7; (G, ..., G;—_1) and the
cost constraints of U; (G, ...,G;_1) is adapted to the natural filtration of the process. In this example,
F> will be a function from the set of all graphs on (V, wy ), that given any graph G outputs an output
which is a list of admissible objects for round 2: F,(G) will be all possible paths between u and the
specific u” € B, (u) selected in the first round.

There is one more important detail. After choosing an edge wz in a round, its cost is exposed and
cannot be redefined in future rounds. To illustrate this in our running example, suppose we are at round 2,
and there is only one low cost path — say 7 — present between u, u’ in G,, and 7 uses an edge wz present
in G, that has been selected already in round 1 as part of the path between u’, v’. While wz is present
independently with independent costs in H; and H;, the same is not true in G]l/ 3 and G;/ 3, and we need
to couple the construction’s progress on these two sets of graphs. We cannot meaningfully assign two
different costs to wz in G, and so we need to adapt the definition of a construction in response.

Observe that despite the fact that we have already chosen wz as an edge, it still makes sense to use it
as part of &. Indeed, we already accounted for the cost of wz when we chose it as part of round 1, and
if the three paths from our three rounds overlap then we can always pass to a sub-path with lower total
cost. As such, in the definition of an iterated cost construction, we artificially set the cost in G; of every
edge that has already been selected to 0. This we call the i-th marginal cost of the edge. Then (since U;
is fixed), we can require that the cost constraints f; depend only on the marginal costs of edges in G; 3
and H;. This way we avoid exposing the same randomness twice. For our applications in later sections,
the distinction between cost and marginal cost will not be important, as (like our example) we only
require low total cost — and the total cost of our edge set will be precisely the sum of the marginal costs

cost. We bound the construction’s failure probability on Gi/ 3, G by coupling it to the same
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over all edges we select. (See Remark 3.7.) In other applications, one may wish to modify F; to enforce
disjointness from some or all of already selected edges Si, . .., Si—1.

With all this in mind, we now define the iterative cost construction in precise mathematical terms.
We denote by £(G) the edge set of a graph G. For simplicity we restrict to simple graphs on finite vertex
sets, however, extension to countable vertex sets and multigraphs is possible.

Definition 3.6 (Iterative cost construction). Fix a weighted vertex set (V,wy ), and let r > 1 be an
integer. Let V® = {uv: u,v € V distinct} denote the set of possible edges on V, and fix an ordering
on V@, Let ®y ., be the set of all edge-weighted graphs on (V,wy). An r-round iterative cost

construction Iter is a collection (Fi,U}), ..., (F»,U,) of functions that, when applied to a sequence
of graphs (Gy,...,G,) all in Gy ,,,, outputs a list of selected edge-lists in r rounds. We write
Si = Si(Gy,...,G;) =Tter;(Gy, . .., G;) for the output in the i-th round. Iter is defined recursively as
follows.

(i) For all i € [r], the domains of F; and U; are &' (so they are ‘deterministic’ admissible sets and
events for i = 1, while for i > 2 they may depend on previously exposed graphs G1, ...G;_1). The
domain of S; = Iter; is &' (so S; depends only on G1,...G;).

(i) Foralli € [r] and all (Gy,...,Gi-1) € @{,‘IWV, Fi(G1,...,Gi_y) is a finite list. Each element in
Fi(Gy,...,G;_1) is a list of pairs of vertices in V@ Each listin 7;(G1, . .., G,_1) contains each
pair in V® at most once. F;(G1, ..., G;_;) represents the set of admissible objects for the output

of round i, given Gy, ...,G;_. Moreover, F;(G1,...G;_1) depends only on the already selected
weighted edges S, ..., Si-1.
(iii) Foralli € [r] and all Gy,...,G; € (ﬁi, wy, » define the round-i marginal cost of an edge e by

0 if e appears in any of the already-chosen lists S, ..., S;_1,
mcost;(e) = 3.D

Ci(e) otherwise;

note that we suppress the dependence of mcost;(e) on G, . .., G; for brevity.

(iv) Foralli € [r] and all (Gy,...,Gi-)) € (5{;’1WV,LIL-(G1, ...,G;_1) is a finite list of events. The j-th
element of U; (G, ...,G;) is the event describing when the j-th element of 7; (G, ...,G;-1) is
allowed to be selected in terms of the round-i marginal costs. Each element in U;(G1,...,Gi-1)
is of a specific form: for all (ey,...,e;) € F;(Gy,...,Gi-1), U;(ey1,...,e;) describes a subset
Di(eyq,...,e;) of [0,00)", and the event itself is (mcost;(e;), ..., mcost;(e;)) € D;(ey,...,e;).
Moreover, U; (G, . .. G;_1) depends only on the already selected weighted edges Sy, . . ., S;i-1-

(v) We say that a list of edges (ei,...,e;) is present in round i if for all j € [t] we have e; €
EGHUS U---US;_.

(vi) §; = Iter;(Gy,...,G;) is specified as follows. S; is the first element (eq,...,e;) of
Fi(G1,...,G;—1) which is present in round i and which also satisfies the corresponding event
in U;(G1,...,G,). If no such edge exists, we define S; = None. Observe that the value of S;
depends only on the values of Sy, ...,S;—; and G;.

We refer to F; and U; as the i-th round of Iter, we refer to S; = Iter;(Gy, ..., G;) as the output of the
i-th round, and we write Iter(Gy, ..., G,) for the sequence Sy, ...,S,. We say that Iter succeeds on
Gi,...,G, if S; # None forall i € [r].

Returning to our example from above Definition 3.6, the (F;, ;) becomes the following. We think
of paths as sequences of edges and we write u’(S;), v/(S;) for the two endpoints of the selected path
&1 (in B, (u), B (v), respectively). Then:

Fi = {my : mypy is a path between some u” € B, (u),v’ € By(v)},

U = { Z mcost; (e) < C/3: myy € ]—"1}, (3.2)

CETT, 1,
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are indeed the same for any input graphs, while

F2(Gy) = {nuur . M is a path from u to u’(S1(G1))},
U(Gi)={ Y meosta(e) < C/3imur € P,

eEm,,

F3(G1,Gy) = {ﬂw/: 7Ty is a path in V from v/ (S1(G1)) to v},
Us(G1,Gy) = { Z mcostz(e) < C/3:m,, € ]-'3},

€ET,,

(3.3)

depend on the first round and second rounds. If there is an edge overlap between the selected paths in
different rounds, then we see 0 marginal cost of that edge in later rounds. Since our goal is to bound
the total cost of the selected edges, this is sufficient. More generally, the following remark motivates
our definition of mcost;(e) in (3.1). Recall the exposure setting of a graph G from Definition 3.4. The
statement is a direct consequence of Lemma 3.5 and the previous definition.

Remark 3.7. Apply an r-round iterative cost construction on (Glg1 s G29’ ), which form the exposure
setting of G in Definition 3.4 having cost-function C. Then

r r

Z Z mcost; (¢) = Z Z Cle) = Z Cle).

i=1 e€S; i=1 e€S;\(S1U---US;_1) e€S U US,
That is, the total marginal costs are the same as the total cost of the selected set of edges in G.

Our goal is to prove that iterative cost constructions behave the same way as any other multiple-round
exposure argument (usually proven by applying an FKG-type inequality): If the construction succeeds
whp on an independent graph sequence (Hj, ... H,) with H; ~ G%, then it will also succeed when a
single random graph G ~ G is percolated into edge-disjoint copies Gl.ei (as in the exposure setting of
Lemma 3.5). To this end, we first set out notation for these two situations.

Definition 3.8. Fix a weighted vertex set (V,wy), let r > 1 be an integer, and let Iter be an r-

round iterative construction consisting of (Fi,U1),. .., (Fr,U,). Let 8 = (61,...,6,) € [0,1]" with
2iepr)¥i = 1, and suppose G is a CIRG model on (V,wy ). Let G]e‘, .. .,Gf" be as in the exposure
setting; then we write Itergipﬁ = Iter(Gel e, Gf’). LetH, ~G9%,...,H, ~ G independently; then
we write Iterig"flg :=Iter(Hy, ..., H,). We say that Iter‘;xpg succeeds if Iter succeeds on G]H1 ,...,GP and

likewise for Iterig“dg. For all sequences of list of edges S, ..., S;, we introduce the shorthand notation

0.
AP(Sy, .., = ﬂ {Tter;(G',...,G ") = $;}. (3.4)
Jelil
We define A" analogously for Hy, . . ., H,. For brevity, foralli € [r] we write S" := Iter; (Hj, . . ., H;)
and ;P := Iterl-(Gf‘, e Gig"), and use analogous notation for F; and U/;.

The following proposition essentially says we can lower-bound the probability of success of
the exposure setting IteregXPH = Iter(G™,...,G%) by that of the much simpler independent setting

Iter(Hy,...,H,).

Proposition 3.9 (Multiround exposure). Consider the setting of Definition 3.8. Then

P(Iterng succeeds) > min 1_[ P(S™ # None | A™(Sy,...,S;-1)).

Stoeees Sy-12None | (35)
ie[r]
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Proof of Proposition 3.9. By repeated conditioning, and taking the minimum over all successful rela-
tions, we have
P(Iterg ", succeeds) = 1_[ P(S;™ # None | §7*,..., 8™ # None)

i€[r]

> min l_[ P(S;™" # None | A%P(S),..., Si1)).
i€[r]

(3.6)

In order to prove (3.5), it now suffices to prove the termwise bound on the right-hand side of (3.6) that
for all i € [r], for all possible non-None outcomes Sy, ..., S;—; of the first i — 1 rounds of Iter:

P(S;™P # None | A™P(S), ..., Si-1)) > P(SI™ # None | A™(S,...,Si-1)). (3.7)

To do so, for each possible Sy, ..., S;—; we will couple Gl.gi conditioned on A*P(Sy,...,S;_1) to H;
conditioned on Aind(Sl, ...,8;_1).Foralle € vV this coupling will satisfy:

{e € E(H)} N {e € £(G{)} € {Chy(e) = Cile)}, (3.8)
{eeEH)}Y C{ee (G USIU---US1). 3.9)

In words, if an edge appears in both graphs H; and Gig" then its cost is the same in both, and if an
edge is in H; then either it has been chosen already in previous rounds or it is also in G?". Under both
conditionings AP (Sy,...,S;_1) and A™(S,...,S;_1) in (3.7), S;.Xp = S}“d =S§jforalj<i-1.
Recall from Definition 3.6(ii) and (iv) that f-f P ]-"l.i“d, Z/{l.eXp and L{l.i“d only depend on the already selected
edge-lists S, ..., Si—1, 80 F; 7 = FiMdand ¢ = ¢,

Suppose we have a coupling that satisfies both (3.8) and (3.9), and S}“d =: §; # None, that is,

the independent construction returns with a list §; when we reveal H;. Then by (3.9) each edge
e€S; CEH;)US U---US;_; is also contained in E(Giei) USiU---US;_1,and by (3.1) and (3.8)

the round-i marginal cost of e in Iter?pe equals those in Iterg‘de. Hence S; provides a valid choice for

S (i.e., it lies in F; " and satisfies ¢/, "), and S;'" # None holds also. Thus (3.7) holds, and so the
result follows from (3.6).

It remains to provide the coupling achieving (3.8) and (3.9). Recall that Definition 3.4 uses the
independent graphs G} ~ G, and obtains Gf" as a dependent thinning of G} using (Zyy),, ey @

(independently across different uv). For each uv € V® and i € [r], sample i.i.d. uniform U,ilv) ~UJ0,1]
and realise the presence of uv in H; and respectively in fo as

luVEHi = luveGi*IUlii\/)SHi’ luveG,.Hi = IWVEG:'* IZ”"zi' (3.10)

Then H, . .., H, are independent 0;-percolations of GT, ..., G} respectively, so Hy, . . ., H, are them-
selves independent as required (since G¥, ..., G) are independent). Note that (3.10) is only a partial

coupling, since we can still specify the joint distribution of (U,ﬁ? )i<r and Z,, over uv € V. By this
partial coupling, H; and G?" are both subgraphs of G, and hence if an edge e is in both subgraphs,
then Cp, (e) = C;(e) (the cost of e in G¥), so (3.8) holds.

We now extend (3.10) into a full coupling which satisfies (3.9). Fix i and Sy, . . ., Si—1. We first claim
the following distributional identities hold:

(€(Hi) | AM(S, .,S,-_l)) 4 ey, 3.11)

(E(GF) | A (S, ..., Si1) £ E(GY). (3.12)
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Indeed, by Definition 3.6 and Iteriélfjg in Definition 3.8, the event Ai“d(S 1,...,8;_1) is measurable with
respect to o-(Hy,...,H;_1), and I-fl ..., H;_| are independent of H;, so (3.11) holds. Similarly, by
Definition 3.6 and (3.10), A%P(Sy,...,S;-1) is in o-(Gfl, e Gigj‘ll) c o(GT, ..., G;‘_l, (Ze)oev ),
which are independent of G;, so (3.12) follows.

Given (3.11) and (3.12), to prove that (3.10) can be extended to a full coupling satisfying (3.9), by
Strassen’s theorem it now suffices to prove that forall k > I andall ey, ...,e;x € VP \(S;U---US,;_1),

P(el, ...,k € E(Gtgl) | AeXp(Sl,. --,Si—l))

nd (3.13)
> P(e], ...,ex € E(Hy) | A™(Sy,. .. ,S[_])).
We compute the right-hand side using (3.10)—(3.12):
Pler,....ex € E(H) | AM(S1,....8i1)) =P(er,....ex € E(HY)) (3.14)

=05 Pler,...,ex € E(GY)) =05 -Pler,...,ex € E(GF) | A™P(S1,...,Si-1))

Dividing the left-hand side of (3.13) and the right-hand side here by P(ey,...,ex € E(G}) |
A*P(Sy, ..., S;-1)) and applying (3.10) yields that showing (3.13) is equivalent to showing

P(Zey = =Ze, =i | {e1,...,ex € E(GF)} NA™(Sy,...,Si-1)) = 6F.

Since o (G7}) is independent of o (G7,...,G7 |, (Z.),ey @), We can drop the first event from the
conditioning and thus proving (3.13) is equivalent to proving that for all k > 1 and all ey,...,ex €
VA (S1U--USi),

P(Zyy =+ =Zep =i | A%P(S1,...,8i1)) = 6F. (3.15)

Intuitively, this inequality holds since all chosen edges in (S, ..., S;—1) have Z, < i — 1 so if none of
(ej);<k has been chosen yet, then the probability that their Z, value was higher than i — 1 is larger. We
next make this intuition precise.

We express A™P(Sy,...,S;-1) in terms of simpler events, using Definition 3.6. Recall that ff P
and Z/ll.cxP depend only on the results of the first i — 1 rounds, which are fixed by our conditioning on
AP(Sy,...,S;-1). To highlight this dependence, we informally write 7, ¥ =: F;(Sy,...,S;-1) and
Upr = U;(S1,...,S8i-1). For j <i—1,let Lis be the s-th element in the list F;(Sy,...,S8;-1), and
write §; =: L

. . 0; .
o+ S0 that s; is the index of the outcome of Iterj(Glg‘, e Gjil). Fixaney,...,ex €
J

V@ '\ (§;U---US;_y), and define
Ajsi={Fe e (L, \ (1 US)) N e et Ze # .

Bj, = {3e c (gj,s\(Sl U...USj_l))\{el,...,ek}: Z. ;tj},
Cjs = {1, , does not satisfy U;*(S1,...S;-1)}
U{Zeer; \(S1U...US; 1) egE(G},

(3.16)

with the idea that if #; ; \ (S U ... US;_1) N{e1,...,ex} =0 then A; ; = Q. Since the event Z, # j
means that the edge is not present in ij by (3.10), Aj ¢ U B; ¢ means that there is at least one edge

ing; \ (§1U---US;_p) that is not present in G;)‘f. By Definition 3.6(v), we can only choose ¢; ; for
S; if these edges are all present. We also cannot choose #; s for S; if C; ¢ holds by Definition 3.6(v)
and (vi). However, if the complement of all these events hold, then all conditions are satisfied and #; g
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is choosable for S;, and it is chosen if it is the first such element of ]-"l P Hence

X _ C C C
AP(S), S = () AT NB; L NCELN () (A75UB;sUC;y) |
Jj<i-1 s<s;

In fact, by assumption we have ey, ...,ex € (S;U...US;_1) and j < i—1, so the chosen lists L= S;

»S

do not have an overlap with e, ..., ex. So this expression becomes

_ C C
ARS8 = ) By NCy.n () (475U B UCy) | (3.17)
J<i-1 s<sT

IJOW deﬁne 1‘ . {Ze ZEk l} as m (‘ 'l*s)’ and ::ﬁ ﬂ]—<l 1( JsS JsS )
J J
C = m]< 1 ﬂ§<sj*(A] s U B] s U C] S) as 1 (\,)1 ;), SO t]lat

P(ANBNC)

Ze :...:Ze =7 exp e Siz = Al BN =
]P( 1 X i| A%P(S, S 1)) P(A | C) P(BNC)

We first argue that A C j<i-1 Ns<s* Aj,s € C.Indeed, these A; ; all require that Z, # j whenever e
i< ; .

isbothin ey, ..., ex and also part of another list. In particular if A = {Z,, = --- = Z,, =i} occurs then
Z. # j is satisfied for all ¢ € (e, ..., ex). This means that AN BN C = A N B. Moreover, all events
Bj , with j <i—1ands < s are independent of A, as A is contained in 0(Z,,, ..., Z,, ) while B; s
is contained in o ({Zy, : uv € V) \ {ey, ..., ex}). We also observe that all events Cjswithj <i-1
are independent of A, as A is contained in o/ (Z, , . . ., Z, ) while C; s is contained in o (G, ..., G ).
We just proved that A is independent of B, so P(A N B) = P(A) - P(B). So,

P(ANBNC) P(ANB) P(AP(B)  P(A)

= = = > P(A) = 6%,
P(BNC) P(BNC) PBNC) P(C|B) (4) =6,
where the last equality follows since Z,,, ..., Z., are independent. This yields the right-hand side of
(3.15), finishing the proof. O

4. Building blocks: finding cheap edges

In this section, we return from CIRGs to GIRGs and state a few important lemmas that we shall use to
construct the different parts of the low-cost path between 0 and x. We work in the quenched setting with
the realisation of vertices and their weights V = (V, wy ) exposed, taking the role of (V, wy ) for CIRGs
of Definition 3.1, and the weighted vertex set containing a weak net as in Section 2. All lemmas here
concern #-percolated SFP/IGIRG as in Definition 3.2, so that we can later use them on the graphs H; of
the multiround exposure Proposition 3.9. We first set out some common notation for Sections 4 and 5.

Setting 4.1. (The setting) Consider 1-FPP in Definition 1.1 on the graphs IGIRG or SFP satisfying the
assumptions given in (1.6)—(1.3) with d > 1, € (1,00],7 € (2,3). Let ¢, ¢, h, L, ¢1, ¢2, and 8 be as
in (1.6)—(1.3); we allow B8 = oo and a = co. Fix a realisation (V, wy ) of )7 andlet G ~ {G | V,wy },
and for a 6 € (0,1], let G’ be a f-percolation G" of G. For brevity we write P(- | V,wy) for
P(- | V(G') = (V,wy)). Let x € V, and let Q be a cube of side length ¢ containing 0 and x. Let
6 € (0,1), wo > 1, and assume that (V,wy ) is such that Q contains a weak (6/4, wo)-net N with
0,x € N given in Definition 2.1. Finally, let y € (0, 1).
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We now define a function of crucial importance for the optimisation of the exponents Ag, 779 in (1.9)
(1.10). For all y > 0 and all , z > 0, we define

A(n,z) :=2dy —a(d-2) —z(t = 1) + (0 A B(n — uz)). (4.1

The first lemma ensures the existence of the ‘longest’ edge on Figure 2: for y < 1 it joins two Euclidean
balls of radius DY with a low-cost edge with endpoints in the net having specified weights in a range
around D*?, for any large enough D € R. We will apply it on multiple scales, hence the need for a
general D for the distance that the edge bridges. The function A(7, z) gives the exponent of D in the
error probability of finding the low-cost edge. Recall par and the notation >, from Section 1.4.1.

Lemma 4.2 (Single bridge-edge). Consider Setting 4.1. Let z € [0,d] satisfy 2dy > z(t — 1). Let
cu,n = 0. Suppose that 0 < 6 <4 v,1,2,cH,par, and that D >, n,z,cqg, 0, wo. Assume that DY €
[(loglog £Vd) "%/, &vd] and that x,y € N satisfy |x — y| < cyD, and let w € [wo V 4(cy +2)¢ v
4OOOCII/(”'B),D6] satisfy Fr.((w/4000)*) > 1/2. Forv € {x,y}, define

Z(v) = 2y .w() = N0 (Bpy(v) x [wD¥?/2,2wD??]). 4.2)

Again for each v € {x,y}, let Z, € Z(v) with |Z,| = |Z(v)|/4 be two arbitrary subsets chosen in an
arbitrary way that does not depend on the edges with one endpoint in Z, and the other in Z,. For G' a
6-percolation of G, let

Npyzw(Zx, Zy) i={(a,b) € Zx X Zy,ab € E(G’),C(ab) < (w/10)**D"}. 4.3)

Then, (and also for @ = oo and/or B = co under the convention that oo - 0 =0 in (4.1)),
BNy, (Zes Zg) = 0 V,wy) < exp(-0w 27D pAn-2vdof3), 4.4)

Note that the requirements on D and w can be simultaneously satisfied since wo V 4(cy +2)?¢ v
4000c1_1/ #B) is a large constant, while D grows at least as ®@(loglog¢) with £. The restriction of the

vertex-weights to be between constant factors of wD?/2 in (4.2) ensures that we can lower-bound edge-
presence and also upper bound the cost-penalisation (w,wj)* on these edges.

Proof. We first bound the number of possible edges in Ny,  ; w(Zx, Zy) from below. We make use of
the net property: the assumption x,y € N ensures enough vertices in the sets Z(x), Z(y). We check
if all conditions are satisfied: In Def. 2.1, we will take € = §/4, w = mDZ/Z and r = D”. We have
wD?? > w > wy. Since 2dy > z(t — 1), we have z/2 < dy/(t — 1), and w < D¢ by hypothesis; for
sufficiently small 8, it follows that wD?/2 < D9 . p47/(7=1)=26 < pdy/(7=D)=6/4; thys the requirement
on w of Def. 2.1 is satisfied. Also D € [(loglog EVd)'%/8 £+/d] by hypothesis. Thus (2.2) gives for
v € {x,y}:

|Z(V)| > Dyd(]_6/4)€(WDZ/2)W_(T_])D_Z(T_])/2.
Since wD¥/? < D%*2/2 and D >, 6, z, by Potter’s bound | Z(v)| > w~(T=D pdy=2(r=D/2=36yd/10 g,

1Z,] = |Z(v)|/4 = w (7= pdy=2(r=1)/2=367d[10 /4 for y € {x,y}. Accounting for the possibility of
even full overlap between Z, and Z,, we obtain

2
(1Zx] /:1|Zy|) > w2(T=D) p2dy=2(r-1)-367d/5 g4 45)

[{{a,b} :a € Z, b € Z,|}|>

We now lower-bound the probability thata € Zy, b € Z, forms a low-cost edge as in (4.3). By hypothesis
|lx —y| < cyD,a € Bpy(x),b € Bpy(y),andy < 1,50 |a —b| < cygD +2DY < (cyg +2)D. Since
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Wa, wp € [wD??/2,2wD?/?] by (4.2), it follows from (1.5) that

ZDZ @

> 0c(1 AwD¥ )7, (4.6)

w
Plab € £(G') | V.wy) > be[1 A —=——
(ab e @) [ V.wy) 9( 4(cy +2)2D4

where we used the assumption that w > 4(cy + 2)4 to simplify the formula. Since z € [0, d], and ¢ is
small relative to z, if z — d < 0 then we may assume z —d < —26. Since 1 < w < DY, the minimum in
(4.6) is attained at 1 only for z = d. So, for all {a, b} € Z, X Z,,

Ocl{z=d} ifa= oo,

4.7
0cD*z=4)  otherwise. @7

P(ab € E(G') | V,wy) > {

Since wg, wp < 2wD/? by (4.2),

P(C(ab) < (w/10)*D" | ab € £(G"),V,wy) = P((4w?D*)*Lap, < (w/10)*# D)
= F7 (4000 HwH D17H7),

If 7 < uz, then since § < z,1, par we may assume that 7 — uz < —2ud. Since w < D% and D >, 6,
it follows that 4000"#wHD"~#2 < DH% < t; and hence using Assumption 1.2 and the assumption

w > 4000c;l/(”ﬁ) we get Fr (40007HwHD1712) > DB(1=12) after simplifications. If instead i > uz,
then Fy, (40007#wHD17H2) > F; (40007#w#) > 1/2 by hypothesis. Summarising the two cases with
indicators we arrive at

Hn = pz}/2  if B =oo,

4.8
DOB(1=12) 12 otherwise. “8)

P(C(ab) < (w/10)*D" | ab € £(G’),V.wy) > {

With the convention that co-0 = 0, the second row equals the first row in both (4.7) and (4.8). Combining
(4.7) and (4.8), we obtain that for all {a, b} € Z, X Zy:

P({a.b} € Nyyow (x.3) | Vowy) 2 0D DHOMG12) p (4.9)

Given V, wy, the possible edges {a, b} lie in N, .\ (x,y) independently. Hence by (4.5) and (4.9),
INy.y.2(x, )| stochastically dominates a binomial random variable whose mean m is the product of the
two equations’ right-hand sides. On bounding ¢/128 > D~%74/15 we obtain

m > Gw 2D pAG1D-26vd3,

Inequality (4.4) follows since this binomial variable is zero with probability at most e™"". O

The next lemma finds a low-cost edge from a fix vertex in A/ with weight roughly M to some nearby
vertex in N with weight roughly K. We will use this lemma later in two different ways, either K being
much lower than M; or K being somewhat larger than M. The former corresponds to the shorter edges
emanating from the longest edge on Figure 2 and ensure that the endpoints of the three-edge bridge
paths; after many iterations, can be connected at low costs using ‘local edges’.

Lemma 4.3 (Single cheap edge nearby). Consider Setting 4.1. Let M > 1, and let x € N be a vertex
with wy € [%M, 2M). Let U, D > 0 and K > wy, and define the event

Ak pu(x) ={3y e N n(Bp(x) x [$K,2K]) : xy € E(G’), C(xy) < U}. (4.10)
Suppose that 6 <4 par, that K, M, D >, 6, wq, and that
(loglog EVd)'%/% < (D A (KM)Y4) /414 < evd, (4.11)

K < Dd/(T*l)*(f /\Ml/(T72+6T). (412)
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Then if B = co and U(KM)™ >, par, or alternatively if B < oo, then
P(Ax.pu(x) | Vowy) = 1- exp(—GK_(T_l)(Dd AKM)'=3(1 A (U(KM)-/')ﬁ). (4.13)

The required condition U(KM)™ >, par when 8 = co ensures that when 8 = co, the minimum is
at 1 in the last factor in the exponent on the right-hand side of (4.13).

Proof. Let r = 47Y4(D A (KM)'/9), and define Z’(x) := N N (B,(x) x [$K,2K]). We will first
lower-bound | Z’(x)| by applying Definition 2.1 with & = §/4, w = K and the same value of r, that is,
r=4"Y4(D A (KM)'4). Observe that (4.11) and the fact that K > w imply all the requirements of
Definition 2.1 except K < rd/(T=D=6/4 \which we now prove. By (4.12), M > K7™2*79 and hence
pdl(T=D=0/4 5 (g pp 4y (T=)=6/(Ad) 5 (gT=1478)1/(T-1)=6/4 14
= KM/ (=) =(=D)/4-78/4) 14

Since 7 < 3 and ¢ <, 7, the coefficient of ¢ is positive in the exponent so the right-hand side is at least
K, as required by Def. 2.1. Applying (2.2) followed by Potter’s bound (since D, K >, ¢) yields that

12" (x)] = €(K)K~ T Dpd0=0/4 > g=(==D (D A KM)'=072, (4.14)

We now lower-bound the probability that for a y € Z’(x) the edge xy is present and has cost at most U,

satisfying the requirements of Ag p y (x).Lety € Z’(x).Since w, € [M/2,2M] and w, € [K/2,2K],
by (1.5) and the definition of r = D A (KM /4)'/¢ we have

P(xy € £ | V,wy) = 0c(1 AKM/(4r?)* = b, (4.15)

since the minimum is at the first term; also for @ = co. Moreover, if 8 < co, we apply (1.3); otherwise,
since U(KM)™* is large, Fy . (U(4KM)™") > 1/2, to estimate the cost
P(C(xy) <U | xy € E(G"),V,wy) = P(4AKM)*Lyy, < U) = FL((4KM)™"U)

> C(1 A (UKM)™M)P), (4.16)

for an appropriate choice of C > 0 depending only on par. Combining (4.15) and (4.16), we obtain for
any y € Z'(x):

P(xy € £(G’) with C(xy) < U | V,wy) = 8Cc(1 A (U(KM)™H)P). (4.17)
Conditioned on (V,wy ), edges are present independently, so the number of low-cost edges between x
and Z’(x) stochastically dominates a binomial random variable with parameters the right-hand side of
(4.14) and (4.17). The mean is
0CcK™ V(DY A KM)'O2(1 A (U(KM)™)P).

Since K, M, D >, §, we may swallow the constant factor 6Cc by increasing ¢ /2 to §. The result follows
since for a binomial variable Z, P(Z = 0) < exp(-E[Z]). O

The third lemma builds cheap weight-increasing paths, from a low-weight vertex in N to a high-
weight vertex in /. The proof is via repeated application of Lemma 4.3. The starting point of these
weight-increasing paths shall be the endpoints of the 3-edge bridge paths depicted on Figure 2, and we
will use them to partially fill in the ‘gaps’ between the 3-edge bridge paths.
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Lemma 4.4 (Weight-increasing paths). Consider Setting 4.1. Let M > 1, and let yo be a vertex in N'
with weight in [%M, 2M]. Let K,D > 1, U > K" and let

: log(log K /log M)
| log(1/(t =2 +2d796)) |

(4.18)

Let Ay (y,) be the event that G’ contains a path m = yoy| ...y contained in NN Byp(yo) such
that Wy, € [ K,2K] and C(rm) < qU. Suppose that § < par, that K,M,D >, 0,5, wy, and that
M<K < Dd/2, D < &Vd, and (M /2)¥4 > (loglog Vd)'®/®. Then if B = 00 and U(KM)™* >, par,
orif B < oo, then

P(Ax(yy) | Vowy) = 1 —exp(-9M°). (4.19)

Proof. We will build 7 vertex-by-vertex by applying Lemma 4.3 g times. We first define a doubly
exponentially increasing sequence of target weights. Let My := M, and for all i € [¢], let

M; = MV(7-242d78)" ;g (4.20)

Since 7 < 3 and ¢ is small, 7 — 2 + 2d7d < 1; hence on substituting the definition of ¢ in (4.18) into
(4.20) and removing the ceiling, we obtain

M/ (-242d78)7 _ exp(logM o4 log(*r—2+2d7'6)) > exp(logM eloe (12557 | = X,

and hence M, = K. By a very similar argument, M,_; < K. We now define Yy = y¢, and define an
arbitrary ordering on . For alli € [g], we define ; to be the first vertex in A in Bp (Y;_1) X [%Mi, 2M;]
with the property that the edge Y;_;Y; is present in G’ and has cost at most U. If no such vertex exists, we
define Y; = None for all j > i. Let A; be the event that Yy, . ..,Y; # None. Then, if A, occurs, the path
n=Yy...Y,yields V(r) € N N Byp(yo) and C(7r) < qU, and that wy, € [%K, 2K] since M, = K.
So, (and because A;_1 C A;),

P(Azyy | Vowy) 2P(Ag | V,wy) = ﬁP(Ai | Ai, Vo wy). (4.21)
i=1
Our goal is to show that
pi =P(A | A, V,wy) 2 1 —exp(-0M3%). (4.22)
Indeed, if this bound holds then in (4.21), we obtain that
q-1 q-1
P(Ay [ V,wy) > | [ (1 —exp(-0M7%)) > 1~ > exp(-0M;°). (4.23)
i=0 i=0

Recall that forall2 <i < ¢g—-1, M; = Ml/(T 242d79) , and so since ¢ is small and 7 € (2, 3) we have

M; > M*?. Since My = M >, 6,6, we obtaln exp(—0M§5 ) < 5 exp(=0M39). It follows from (4.23)
that
q-1
P(Ay | Vowy) 21— Z exp(-0M;%) — exp(~M3%) > 1 - 3exp(-6M3%) > 1 - exp(-6M°)
i=0

as required in (4.19), where the last step holds since M > ¢, 6.
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We now set out to show (4.22). We simplify the conditioning in (4.21). For all i € [¢], let

Fi=EG)n{{x,y}:x,y €N, wy € [AM;_1,2M; 1], wy € [IM;,2M;]}, (4.24)
Fei = (F1,...,. F).

Thus, F; reveals the edges of G’ that are between vertices in the targeted i — 1-st and i-th weight ranges.

Observe that A;,..., A; and Yi,...,Y; are deterministic functions of F;. Moreover, if F<;_; is a

possible realisation of F<;_; such that 4;_; occurs on F;_1, then this gives us the vertex ¥;_;(F<;-1).

Conditioned on F<;—; = F<;—1, A; occurs iff ¥; # None, that is, there is an emanating edge from

Yi_1(F<-1) leading to the next weight-range. Thus, with Ax p  from (4.10), (4.21) implies that for
alli € [¢q],

;> i Y; #N i1 = Fei_
pi = Fg_lei_{rgcrclursoan_lP( i #None | Fej_y = F<i_1, V,wy)
= min P(Apy. Y;_1(F<;_1)) occurs | F<i—1 = F<i—1, V,wy). 4.25
Fory (B onFr (Am,p,u (Yic1 (F<i1)) | Feic1 = Feioy v). (4.25)

Now observe that since 7 € (2,3), § is small, and M >, 6, for all i € [¢q — 2], we may
1 /(T 242dt5)t

assume M; = M.’ > 4M;_;, and moreover M, > M,_;. Therefore, the intervals
[%Ml, 2M],. [ M ,2M,] are all disjoint except possibly for [%Mq_l, 2M,_1] and [%Mq, 2M, ] It
follows that the Varlables F1, ..., Fy are determined by disjoint sets of possible edges. Namely, in F_;

we revealed edges between weights [—Mq_z, 2M,-»] and [%Mq_ 1,2M, — 1], which are disjoint from
edges between [2 g-1,2M4_1] and [éMq,ZMq]. So, the event Ay, p i (Yi—1(F)) is independent of
the edges revealed in F<;—| = F;—1 in (4.25) (conditioned on (V, wy )), and hence

iz Wye[;}il_lln/MMi_I]P(AM,-,D,U(y) | V,wy). (4.26)
We now apply Lemma 4.3 on the right-hand side: take there 643 := 9, 043 :=0, M43 := M;_1,K4 3 :=
M;, D,3 =D and U, 3 := U. Observe K. 3, Ms 3 > M; thus by hypothesis we have that 64 3 <, par is
small and that K, 3, My 3, D43 >, 8, wy, as required by Lemma 4.3. Next, we have (K 3M43)* < K2,
so if B = oo it follows that Uy 3(Ks3My3)™H > UK™2H is large as required, by the assumptions
before (4.18). Next, (D A (M;M;_1)"/?)/4¢ < D < £Vd by hypothesis, and (D A (M;M;_1)"/?)/4¢ >
(Mo/2)*/? > (loglog&Vd)'®/% by hypothesis, so (4.11) holds. Next, M; < M, = K < D4? <
DA/(7=D=4 by hypothesis and because & is small; and finally M; < Ml/(T 22dve) < Ml/(T 270)
definition, so (4.12) holds. Thus the conditions of Lemma 4.3 all hold and applying (4 13) to (4.26)
yields that for all i € [¢]:

pizl- exp(—eM;“*” [(D4 A M:M;_1)' =2 (1 A (U(M,-Mi_l)‘“)ﬁ]). 4.27)

Clearly M;M;_ < Mé = K?; and since K < D4/? by hypothesis, the first minimum is at M; M;_;, while
the second minimum is taken at 1 on the right-hand side since U > K** was assumed. Hence

pi=1- exp(—HMi_(T_z)_éMil:]‘s).
Since M; 1/(7_2”‘”5) by (4.20), ¢ is small, and T € (2,3), after simplification the exponent of

M;_q is at least (5(7‘ +1-2d76)/(t =2 +2d76) > 36,50 p; > 1 —exp(—0M?°)), showing (4.22). O

The last lemma allows us to find a common neighbour for two vertices with roughly the same weight
if the distance between them is not too large with respect to their weights. This lemma will connect the
weight increasing paths we built in the previous lemma (to partially fill gaps) and is thus responsible for
the final connections to fill in the gaps between 3-edge bridge paths on Figure 2.
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Lemma 4.5 (Common neighbour). Consider Setting 4.1. Let § <, par, let cg > 0, and let D > w(z)/ d

with D>, cy,6 and D € [(loglog&Vd)'%/® &Vd). Let xo,x; € N be vertices with Wxo» Wx; €
[D4/2,4D412] at distance |xo — x1| < ¢y D, and let Aoxx, be the event that xo and x| have a common
neighbour in G’, v € NN Bp (xo) with C(xov) + C(vx;) < D**4. Then

P(Auar, | Vowy) 2 1 - exp(-g2pC-7200412), (4.28)

Proof. We define a vertex v € VY as good if v € N' 0 (Bp(xo) x [(cy + 1)4D? 4(cy + 1) D4/?));
thus for A, «x, to occur, it suffices that there is a good vertex v such that xovx; is a path of cost at
most D?*4 in G’. We call this a good path. We first lower-bound the number of good vertices. By
assumption, 2(cy + 1)?D?? > D% >y, and since T < 3, & is small and D >, cy,d we have
2(cy + 14D < pd/(t=1)=6/4 ‘Since N is a weak (6/4, wo) net, by (2.4),

|/\/'ﬁ (Bp(x0) X [(cu + DID? 4(cy + ])dDd/z])|

4.29)
> Dd(1‘5/4)€(2(cH " 1)dDd/2)(2(CH + l)dDd/Z)—(T—l) > D(S—‘r—é)d/2’

where the last inequality follows by Potter’s bound since D >, cg, d. We now lower-bound the proba-
bility that for a good v € N, the edges xov, vx; are present and have cost at most D34/2 in G’. Observe
that |x; — v| < |x; — xo| + |xo — v| £ (cg + 1)D. Thus, by (1.5), and since G’ is a 6-percolation,
P(x1v € E(GN)|V,wy) > Hg[l A(cg +DADY2 ((eqy + 1)D)d] *= Oc, also when @ = co. Further,
conditioned on the existence of the edge x;v,

P(C(x1v) < D42 | xv € £(G),V,wy) = P((16(cy + )DL < D3#/12)
= F (16 (cy + 1) M4 prd/2y > 1/2,

where the last inequality holds (including when 8 = o0) since D >, cy. Combining the two bounds,
for all good vertices v € V,

P(xiv € E(G),C(x1v) < D2 |V, wy) > 6c/2.

Since |xo — v| < D, the same lower bounds hold for the edge xov. The two events are independent
conditioned on (V, wy ), and since 2D3#4/2 < D24 for all good vertices v € V,

P(xov,x1v € E(G"),C(xgvxy) < D |y, wy) = 9222/4. (4.30)

Conditioned on (V, wy ), the presence and cost of xgvx] vs xov’x] are independent, so the number of good
paths between xg and x| stochastically dominates a binomial random variable with parameters given by
the right-hand side of (4.29) and that of (4.30). For a binomial variable Z, P(Z # 0) > 1 —exp(-E[Z]),
and so we obtain (4.28) by absorbing the constant ¢?/4 by replacing § with 2§ in the exponent of D,
using that D >, ¢. O

5. Budget travel plan: hierarchical bridge-paths

In this section, we present the main construction for the upper bounds in Theorems 1.4 and 1.6. This
construction is a ‘hierarchy’ of cheap bridging paths connecting x and y that we heuristically described in
Section | as the ‘budget travel plan’. Here we elaborate more on the heuristics before diving into proofs.

Let U be either polynomial in |x — y| (when proving Theorem 1.6) or sub-logarithmic in |x — y| (when
proving Theorem 1.4). We first find a 3-edge bridging-path my = x"aby’ of cost at most U between two
vertices x” and y” with weights w,/, w,» € [wy,,4wpq, ], such that |x — x’| and |y — y’| are both at most
|x — y|” for some y € (0, 1), see Figure 2(a). This reduces the original problem of connecting x and y
to two instances of connecting two vertices at distance |x — y|?, at the additional cost of U. We then
work recursively, applying the same procedure to find a bridging-path with endpoints near x and x” and
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another one with endpoints near y” and y, with all four distances at most |x — y|72, and both bridging-
paths having cost at most U, obtaining the second level of the hierarchy, see Figure 2(b). The endpoints
of the bridging paths always have weight in [wg,,4wg, ], hence iteration is possible. By repeating the
process R times we obtain a ‘broken path’ of bridging-paths of cost U(1 + 2 + - - - + 2R) and 28 gaps
of length |x|7R between the bridging-paths. We call this ‘broken path’ a hierarchy after Biskup, who
developed the one-edge bridge construction for graph distances in long range percolation in [11]. There
are two reasons for having a bridging-path instead of a single bridge-edge. Firstly, a typical single
bridge-edge ab has very high weights w,, wj, and thus typically high cost, and most edges out of a and
b to lower degree vertices also have high costs, which would cause high costs when filling the gaps. So
instead we find an atypical bridge edge ab and take one of the cheapest edges to low-weight vertices
nearby emanating from a and b, yielding a path of the form (x’aby’), with all three edges of cost U/5,
and x’, y” having low weight in [wg,, 4wg, ], giving a bridging path of length three. Secondly, to fill the
2R gaps after R iterations whp, the failure probability of finding a connecting path has to be extremely
low, 0(27R). In most regimes this is impossible via short paths (e.g., length two) and low enough failure
probability. Instead, we find weight increasing paths 7, and 7y~ (as in Lemma 4.4) of cost at most
U/S from each vertex x” and y’ of the bridge paths (x’aby’) to respective vertices x”, y"’ still near a
and b but with much higher weights in [wg,, 4wy, ]. The concatenated paths (7»,, x’aby’, wys») then
themselves form a second hierarchy (now with bridging paths of more than 3 edges). Connecting all the
new 2R gaps whp is possible via paths of length two and cost U’, which is polynomial in the distance
lx — y|7R , using Lemma 4.5. In the polylogarithmic case, U and U’ are sublogarithmic, and the factor
2R is of order (log |x — y|)20+o() and dominates the overall cost. The bottleneck in this regime is the
number of gaps, whereas the bridge-paths have negligible costs. In the polynomial case, however, the
cost of the first bridge U = |x — y|™*°(1) dominates, and all other costs (even with the factors 27) are
negligible in comparison, causing the total cost to be polynomial in |x — y|. In both cases we could use
and optimise level-dependent costs U;, but that does not improve the statements of Theorems 1.4, 1.6.

The main technical result is the following proposition, that finds a path fully contained in the net that
starts near 0 and ends near x. Section 6 shall connect 0 and x to this path at negligible cost compared
to the one here. Recall A(7,z) from (4.1) that determined whether a low-cost connecting edge exist
between two balls. We define now the second exponent that will be crucial in determining whether low-
cost edges can be found. Positivity of this function ensures that the high-weight vertices a, b above have
an atypically cheap edge to a low-weight vertex nearby: For all > 0, z > 0 we define

D(1,2) = [dy/\%] + [o /\ﬁ(n—%)]. (5.1)

Recall from Setting 4.1 that G’ is a #-percolated GIRG on a vertex set (V, wy ), for some fixed 6 > 0,
such that the vertex set contains a weak net V.

Proposition 5.1 (Path from hierarchy). propositionPropositionPathFromHierarchy Consider Setting
4.1, and let yo,yy € N with |yg — y1| = & Let z € [0,d],n > 0. Let 0 < § <47,n,z, par be
such that A(n,z) > 2V6 and either z = 0 or ®(n,z) > V6. Let £€>,v,1,2,0,6,wo. Let R > 2
be an integer satisfying & > (loglog&Vd)'%/%* and R < (loglog&)?, let w = &€ /2, Let
Xhigh-path = Xnigh-parn (R, 17, Y0, y1) be the event that G’ contains a path Tyx v fully contained in N
between some vertices y; € N'N (B, vkl (yo) x [w,4w]) and yT € N'n (B, s (y1) X [w,4w])
with cost

Clypye) < cn2FWHET = ¢ 2R 7™ i (5.2)
and deviation devy,y, (ﬂyo*yl*) < 3cy&?, for some constant cy depending only on 6, par. Then
P(Xhigh-pan | V.wy) > 1 —2exp (—(loglog _5)13); (5.3)
under the convention that o - 0 = 0, the statement is also valid when a = oo or 8 = co.
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The constant cy can be found below in (5.32). We postpone the proof of this proposition and show
how to obtain the cost of the optimal paths from it.

5.1. Cost optimisation of the constructed paths

In this section we apply Proposition 5.1 and optimise the cost of the path Tyxy constructed there,
yielding either polylogarithmic (Corollary 5.2) or polynomial cost-distances (Corollary 5.3). The cost
of Tyxys will dominate the cost of the eventual path between 0, x. These corollaries are rather immediate:
we choose appropriate values of y, 17, z, R, apply Proposition 5.1, and read off the cost of Ty in (5.2).
There are four possible optimal choices of y, 77, z, R depending on the model parameters, and verifying
that the conditions of Setting 4.1 and Proposition 5.1 hold for these choices and calculating the resulting
path’s cost requires some work. Thus, we defer a formal proof of Corollaries 5.2 and 5.3 to Appendix
A.2, and instead focus on why these four optimisers arise and what they mean on a qualitative level.

Thus, in Proposition 5.1, disregarding constant factors, our goal is to minimise the cost bound
Clrysys) < 2R x| = 2R|x 2" "'du+n by choosing y,7, z, R optimally. Here, R is the number of
iterations in the hierarchy, and hence controls the number 2% of gaps, while y controls the Euclidean
length of the gaps and hence also the cost of joining them, with the total cost of joining a single gap
being roughly Wit = |x|2d/“’R_l . The exponent iy controls the cost of bridge-paths in the hierarchy. From
the many constraints in Proposition 5.1, the following are relevant when optimising the cost of the path.
The requirement A(n, z) > 0 ensures that low-cost bridging edges exist (Lemma 4.2). The requirement
that either z = 0 or (7, z) > 0 ensures that among the many potential bridging edges a few can be
extended to low-cost 3-edge bridge-paths in Lemma 5.10. The requirement y < 1 ensures that boxes
where we search for the bridging edge shrink in size, while z < d is a formal requirement for applying
Lemma 4.2 to find bridging edges, which we tolerate because increasing z above d will never be optimal.
Heuristically, the effect of increasing z is to increase the probability that a given bridging edge exists at
the price of increasing its expected cost; at z = d the existence probability is already in the interval [c, €]
and cannot be increased further, however the penalty would increase and the number of combinatorial
options decrease by increasing z, which is never optimal. The other constraints of Proposition 5.1 and
Setting 4.1 (such as 2dy < 7 — 1 and R < (loglog |x|)?) never turn out to be tight for optimal choices
of n, R, y, z. Recall pog, ptpol from (1.8).

Corollary 5.2 (Path with polylogarithmic cost). Consider 1-FPP in Definition 1.1 on the graphs IGIRG
or SFP satisfying the assumptions given in (1.6)—(1.3) withd > 1,a € (1,00],7 € (2,3),u > 0. Let
c, ¢, h,L,ci,c2,B be as in (1.5)—(1.3), we allow B = oo andfor @ = 0. Let q,&,{ € (0,1), let 0 <
0 <« &, ¢, par, and let wy > 1. Fix a realisation (V,wy ) ofg. Let x € V with |x| >4 q,0, &, {,wp, par.
Let Q be a cube of side length |x| containing 0 and x, and assume that (V,wy ) is such that Q contains a
weak (6/4, wo)-net N with 0,x € N given in Definition 2.1. Let G ~ {G | V,wy }. Let Xpolyiog (0, x) be
the event that G contains a path r, fully contained in N, with endpoints say Yo Y, with the following

properties:
Wyr, Wyx € [w,4w], where W € [loglog|x|, (log|x])®], 5.4
¥y € B34 (0) and Yx € Bsja(x), (5.5)
C(n) < (log |x|)20*, and devoy () < x|, (5.6)

where A is defined in (1.9), (1.17) or (1.20) depending on whether a, B < oo, @ = oo or B = co. If either
@ € (1,2) or pt € (Uexpl, Hiog) OF both hold, then P(Xpoiy100(0,%) | V,wy) > 1 —gq.

Sketch of proof. Corollary 5.2 covers the polylogarithmic regime, which corresponds to solutions where
n = 0 is possible — such solutions exists when either & € (1,2) or u < pjoe. When 57 = 0, the cost of the
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path Tyx yx is dominated by the cost 2R |x|2’“YR_l of joining gaps. Given 7, this has minimum 2(1+* (/)R
when setting R = (1 — o(1)) loglog |x|/log(1/y). To minimise the cost further, we must therefore
minimise y € (0, 1) subject to the constraints z € [0, d], A(0,z) > 0, and either z = 0 or ®(0, z) > 0.
This problem turns out to have two potentially optimal solutions corresponding to two possible strategies
for finding bridging edges, with the optimal choice depending on the values of @, 7, 5, u. One possible
solution — which only exists when a € (1,2) —takes y = @/2 + o(1) and z = 0, so that bridging edges
are unusually long-range edges between pairs of low-weight vertices, yielding total path cost (log |x|)*«
with A, = 1/(1-log, a), see Claim A.5. The other possible solution — which only exists when u < piog
—takesy = (t—1+ufB)/2+0(1) and z = d, so that bridging edges are unusually low-cost edges between
pairs of high-weight vertices and the total path cost is (logx)*# with Ag =1/(1-log, (7 — 1+ up)),
see Claim A.6. The proof is in Appendix A.2.

If both @ = 8 = oo, then the conditions of Corollary 5.2 cannot be satisfied. Indeed, when @ = oo
then @ € (1,2) is not satisfied. Since pexpl = fiog = 0 by (1.19) when @ = 8 = 00, 50 £ € (fexpl, Miog)
can also not be satisfied.

Corollary 5.3 (Path with polynomial cost). Consider 1-FPP in Definition 1.1 on the graphs IGIRG
or SFP satisfying the assumptions given in (1.6)—(1.3) withd > 1,a € (1,],7 € (2,3),u > 0. Let
¢, C,h,L,ci,cp, B be as in (1.5)—(1.3), we allow B = co and/or @ = 0. Let q,&,{ € (0,1), and let
0 < 6 <« &,q,par, andwgy > 1. Fixa realisation (V,wy ) ofﬁ Letx € Vwith|x| >« q,0,¢,{,wp, par.
Let Q be a cube of side length |x| containing 0 and x, and assume that (V,wy) is such that Q contains
a weak (6/4,wo)-net N with 0,x € N given in Definition 2.1. Let G ~ {G | V,wy }. Let X,01(0,x) be
the event that G contains a path r, fully contained in N, with endpoints say Yo Y, with the following

properties:
Wyx, Wyr € [w,4w], where W € [loglog|x|, |x|®], 5.7
¥ € By3/a(0) and Yx € Bja(x), (5.8)
C(m) < |x|'10*e, and devoy () < x|, (5.9)

where ng is defined in (1.10), (1.16), (1.19), or (1.21) depending on a, < oo, @ = oo, B = oo, or
a = =00 Ifboth a > 2 and p1 € (Uiog, Upol] hold then P(Xpo1(0,x) | V,wy) 2 1 —¢.

Sketch of proof. Corollary 5.3 covers the polynomial regime, which corresponds to solutions where only
n > 0is possible, that is, when @ > 2 and ¢ > ... Here, on taking R to be a suitably large constant, the
cost bound on the path 2R |x|24¥"™" |x|7 = |x|7**() which is roughly the cost of the very first bridging
edge. Our goal is thus to minimise 7 under the constraints that A(n,z) > 0, z € [0,d], v € (0, 1),
and either z = 0 or ®(7,z) > 0. (4.1) and (5.1) show that both @ and A are increasing functions of vy;
thus we can take ¥ = 1 — o(1). As in the polylogarithmic regime, this minimisation problem has two
potentially optimal solutions. One possible solution — which exists when y < upo1,p — takes z = d and
givesn = ud — (3 —1)d/B+ 0(1), so that bridging edges are unusually low-cost edges between pairs of
high-weight vertices. The total path cost is then |x|75+°(1) with ng =d(u—(3-1)/B) (see Claim A.9).
The other possible solution — which exists when u < pip01,o — takes z to be as small as possible, so that
bridging edges are unusually long-range edges between pairs of relatively low-weight vertices. However,
when @ > 2, there are no bridging-edges between constant weight vertices, and the minimal z where
bridging-edges appear is z = d(a@ —2) /(@ — (1 — 1)) + 0(1) = 1/upol o + 0(1), that is, between vertices
of weight |x|!/(2#a.a)+0(1) " This gives cost-exponent 174 := 4/ pol,o and total cost |x|#/Hrl.a*o(D) (see
Claim A.10). Whenever a solution exists among the above two possibilities, it gives an exponent 7 at
most 1. So, whenever ¢ < max{pol,a> Upol,3}> We obtain the cost bound |x|min{ms.nat+o(1) "which gives
the definition of 19 in (1.10). The proof is in Appendix A.2.
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5.2. Constructing the hierarchy.

We now set out to prove Proposition 5.1 in several steps. We start by formally defining the concept
of a hierarchy including edge-costs. In the rest of the paper, the symbol o denotes an index o =
10, ... or € {0, 1}R indicating the place of a vertex in the hierarchy. This can be viewed as the Ulam-
Harris labelling of the leaves of a binary tree of depth R, for example, o = 1001 corresponds to the leaf
that we reach by starting at the root and then moving to the right child, the left child twice, and the right
child again. We denote the string formed by concatenating ¢’ to the end of o~ by o-o~’. We ‘pad’ strings
of length less than R by adding copies of their last digit or its complement via the 7 and T¢ operations
we now define (and discuss further below):

Definition 5.4 (Binary strings). For 0 = o...0; € {0, 1} for some i > 1, we define o7 :=
o1 ...0i0; € {0, 1}, while 0Ty := o, and 0Ty := (0Ty_1)T for any k > 2. Let 0; := 0T;_; and
1; := 1T;_; be the strings consisting of i copies of 0 and 1, respectively. Fix an integer R > 1. Define
the equivalence relation ~r on UlR: 10, 1}, where o ~7 o’ if either 0T = o’ or o’Ty = o for some
k > 0, with {o"} be the equivalence class of o. Let

g ={o € Ufzi{O, 1V o # 0,0 =0;Vj =i}, o = {0},

with 0 the empty string. We say that {o"} appears first on level i if any (the shortest) representative of
the class {o} is contained in ;.

For o = o ...07 € {0, 1} for some i > 1, we define oT¢ := oy ...07(1 — o;) € {0, 1}'*'. For
o € E;, we say that (0Tj_1)T¢ € {0, 1}'*/ is the level-(i+j) sibling of {c"}. We say that two strings in
level i are newly appearing cousins on level i if they are of the forms o01 and 10 for some o € {0, 1}/~2.

The inverse of the operator T ‘cuts off” all but one of the identical last digits from a o € {0, 1}%,
hence, each class {o"} has exactly one representative in {0, 1}%, and the number of equivalence classes
is 2R For i > 1, there are exactly 2/~! equivalence classes that first appear on level i (i.e., the shortest
representative of the class is in E;), and (since 0, 1 € E;) the total number of equivalence classes that
appear until level i is 2'. To show an example of the sibling relationship, for example, 01111 ~ 01
belongs to 25, and the level-3 sibling of {01} is 010, and the level-(2 + j) sibling of {01} is 01;0.
Similarly, 010 and 001 are newly appearing level-3 cousins, and on level 7, there are 2°=2 pairs of newly
appearing cousins.

The hierarchy embeds each equivalence class {0} € Uf: 10, 1}R into the (weighted) vertex set of
G so that all cousins are joined by low-cost ‘bridge’ paths, all siblings are close in Euclidean space,
OR = x and 1R =y are the vertices we start with, and the weights of all other vertices in the embedding
are constrained. The Euclidean distances between siblings/cousins will decay doubly exponentially in .
We formalise the embedding in the following definition.

Definition 5.5 (Hierarchy). Consider Setting 4.1. Let yg, y; € 17, U,w,cyg > 1,and R > 2 be an integer.
Consider a set of vertices {ys}co,1}7, divided into levels L; := {y,: o € E;} fori € {1,...,R},
satisfying that y, =y, if o ~r o’. We say that {ys}se(0,118 C Visa (y,U,w, cg)-hierarchy of
depth R with L1 = {yo, y1 } if it satisfies the following properties:

(H1) W, € [w,4w] forall o € {0, IR\ &,

(H2) |yo0 = yoil < crlyo—y1]¥ forallo € {0,1},i=0,...,R—1.

(H3) There is a set {P, : o € {0,1},0 < i < R —2} of paths in G such that forall 0 <i < R-2
and all o € {0, 1}, P, connects y,o; to y,19. Moreover, we can partition Uoeo,13r E(Ps)
into sets {£7(Py): o € {0, 1}R} in such a way that for all o, we have £~ (P,) C £(P,) and
C(E (Py)) < U. These paths P, are called bridges.

Givenaset A’ C V, we say that a hierarchy {y -} ¢ 0,1y is fully contained in N if both {y o} e j0.11% €
N, and every vertex on the paths P, in (H3) lies in V.
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Condition (H3) is slightly weaker than requiring each bridge to have cost at most U. We shall
construct the hierarchy via an iterative construction in Def. 3.6, using one round to embed each level
L;. We shall use Prop. 3.9 to estimate the success probability of the whole construction, which requires
that we use marginal costs, and this gives the definition of £~ (P, ) in (3.1). Using marginal costs causes
no problem, since our goal is to find a path 7 between yq and y; of low cost. A path 7 uses every edge
in it once, so all the bridges P, together will contribute to the cost of & at most

C(n) = Z C(E~(Py)) < R T-1U.

o€{0,1},0<i<R-2

Later we also need that the the hierarchy stays close to the straight line segment between the starting
vertices. To track this, we have the following definition:

Definition 5.6. Given u,v € R?, let Su.v denote the line segment between u, v. For x € R? we define
the deviation dev,, (x) := min{|x — y| : y € S,,,}. Given a set of vertices H in R4, we define the
deviation of H from Sy, as dev,, (H) := max{dev,, (x): x € H}. Finally, for a path 7 = (x1...xg),
let the deviation of m be dev(r) := max{devy,y, (x;): i € [k]}, that is, the deviation of its vertex set
from the segment between the endpoints.

Next we describe the procedure used to find the hierarchy in G. We iteratively embed the levels E;
into the vertex set V. We first embed E;, by setting O +— yg and 1 — y, that is, £; := {yo, y1}, the
two given starting vertices. Observe that this embedding trivially satisfies condition (H2) for i = 0,
(i.e., 0 = 0 in (H2)) for all cy > 1. Conditions (H1) and (H3) do not concern yo and y;. In round
i + 1 we then embed all o € E;,;. Given the embedding of U;;E; of vertices in level U; ;L ;, we will
embed o € E;yy by finding {yo}oeg,,, = Li+1 as follows. For each sibling pair 00,01 € {0, 1}/, by
the equivalence relation ~7 in Definition 5.4, y 00 = Y50 and yo11 = yo1. We then search for a pair of
vertices a and b close to y,qp and y11 respectively, so that ab is a low-cost edge (typically covering
a large Euclidean distance), and both a and b have a low-cost edge to a nearby vertex with weight in
[w, 4w]; we embed these latter two vertices as y o1 and y10. The path (ys01aby+10) then constitutes
the bridge-path P, required by (H3). See Figure 5 for a visual explanation. We formalise our goal for
this iterative construction of bridges in the following definition and lemma.

Definition 5.7 (Valid bridges). Consider Setting 4.1 and the notion of bridges in Definition 5.5, and let
S be a set of edges of G. For any D,U > 0,w > 1, we say that a path P C A with endpoints y, y’ is a
(D, U, w)-valid bridge for xo and x; with respect to S if:

Wy, Wy € [w,4w], (5.10)
|xo—yl <D, and |x;-y'|<D, (5.11)
C(P\S) <U. (5.12)

Lemma 5.8. Consider Setting 4.1. Fix any ordering on {0, 1}R, and let {Voloeoyr SN, U >0,
andw > 1. Forall0 <i < R-2and o € {0,1}, set y, := y, whenever o’ ~r o. Foralli < R -2,
let D; = |yo — y1|”". Suppose that for all 0 < i < R —2 and all o € {0,1}, there exists a bridge
P with endpoints y 01 and y 10 that is (cg Diy1, U, W)-valid for y 50, yo1 € {0, 1} with respect to
S=Ug<o E(Po). Then {ys}geqo,13r is a (v, U, W, cy)-hierarchy of depth R with first level {yo, y1 }
(i.e., satisfying Definition 5.5).

Proof. Conditions (HI) of Definition 5.5 is immediate from the weight constraint (5.10). (H2) holds
for the following reason. For 0, o1 € {0, 1}*!, P, being a (cyy Di41, U, w) valid bridge for y 0, y o1
implies by (5.11) and yo0 = y500,Yo1 = Yei11 that both [yo00 = yoo1ls [yo10 = Yo11| are at most
cHlyo — yi |“/l+] for all o € {0, 1}'. Setting now either o’ := o0 or o’ := o1, this is equivalent to
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Yo = Y{o} Y1 =Yy
L >
=&
r Yoo = Y{o0} Yor = Y{o1} Yio = Y{10} Yit 3 Y{1}
? <287 <287
Yooo T Y{0} Yoor Yoio Yoll Y{10} Y101 yiio Y111 T Y{1}
3
< 2572 < 2572 < 25‘/2 < zg‘/2
de <U dg <U

Figure 5. A schematic representation of a (y,U,w,2)-hierarchy of depth R =3. The horizontal axis
represents the (1-dimensional, Euclidean) distances between the vertices, while the vertical axis shows
the level of the hierarchy. The weights of all vertices except yo and y| are in the interval [w,4w]. On
level 1, only the initial vertices yo, y1 appear and n edges. We ‘push down’ yo = yoo, Y1 = Y11 to level
2 (red) and we find them their respective level-2 sibling vertices yo, and yyo within Euclidean distance
2&7, so that there is path of cost at most U between y1, y1o (represented by the longest blue arc). Then,
we ‘push down’ to level 3 all vertices that appeared at or before level 2, that is, Y000, Y011, Y100, Y111
(red), and find for each of them their level-3 siblings, that is, Yoo1, Y010, Y101, Y110, SO that each vertex
is within Euclidean distance < 2572 from its level-3 sibling, and that there is a path of cost at most U
between the newly appearing cousins yoo1, Yo1o and between yio1, y110 (represented by the two shrter
blue arcs). An intuitive representation is in Figure 2.

Yoo —Yor1l < calyo — y1 |7i+l forall o’ € {0, 1}'*,i > 0, and this exactly corresponds to (H2), since
the inequality in (H2) holds for i = O trivially. Finally, condition (H3) follows from (5.12) by setting
E(Py) =E(Py) \Upico E(Por). o

‘We now lower-bound the probability of finding a valid bridge between two fixed vertices. Recall that
G’ is a 6-percolation of G from Setting 4.1.

pose that & <xvy,n,z,cg,par and that D>, vy,n,z,cg,0,wo. Suppose further that DY €
[4'/4 (loglog £Vd) /%, ¢V d] and that gDAm)VE 5 1 Suppose that xg,x; € N satisfy |xo — x1| <
cuD, and let w>, 6, wo satisfy w € [(loglog éVd)'%4/ DY), Let A(xo,x)) denote the event
that G’ contains a bridge P that is (2D?,3w3* D", w)-valid for xo and x| with respect to 0, and
devy,y, (P) < 2DY. Finally, suppose that

Lemma 5.9 (3-edge bridges). Consider Setting 4.1. Let z € [0,d] and let cy,n > 0. Sup-

1-6
p(D,w,0,1,7) = GE‘(T‘I)(D"“/ A mzpz/z) (1 AmﬂﬁD'fﬁ—ﬂﬁz/z) > 207HHE, (5.13)
Then, with A(n, z) from (4.1),
P(ACxo.x1) | Vowy) 2 1= 3exp(—(opA1272) 1), (5.14)

With the convention that oo - 0 = 0 in (4.1), the statement is also valid when @ = oo or 3 = co.

When z > 0, the exponent of D in p(-) is approximating ®(n,z) for small § in (5.1). Later,
®(1n,z) > V6 will be sufficient for the condition (5.13) to hold when z > 0. For z = 0, D does not
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appear in the formula for p(-), and the exponent of w is approximating 3 — 7 > 0, hence in this case the
condition on p(-) can be satisfied by ensuring the lower bound on w.

Proof of Lemma 5.9. First, when 8 = o0 and n < uz then A(n,z) = —oo in (4.1), and the condition
gDA1:2-Vé 5 1 cannot hold. Hence, we can wlog assume that if § = oo then n > puz. We will first
apply Lemma 4.3 to show that most vertices of weight roughly wD?/? close to xo and x; are ‘good’, that
is, they have a cheap edge to a vertex with weight in [w, 4w]. We will then apply Lemma 4.2 to find a
cheap edge between some pair of good vertices.

Formally, let I* = [SwD?%/?,20wD?/?] and I = [w, 4w]. Note that I, N I_ = 0 for all z € [0, d]. As
in Lemma 4.3, for all v € N let A,,, py ,,3upn(v) =1 A(v) be the event that there is an edge of cost at
most w* D' in G’ from v to a vertex y € N N (Bpy(v) X I7). Let

Z; = {v e NN (Bpr(x;) xI"): A®v) occurs}, i €{0,1}. (5.15)

The set Z; is thus those high weight vertices near x; that have a cheap edge to a low-weight vertex nearby.
As in (4.3) of Lemma 4.2, let N, .- 10w (Zo, Z1) be the set of all edges between Zy and Z; of cost at
most w3# D" and then I'* exactly corresponds to the weight interval [5 KDZ/ 2, 2O£DZ/ 2] as required for
Zy C Z(x9),Zy € Z(x1) in (4.2). With Z; in (5.15), we now show that

P(A(xo,x1) | Vowy) 2 P(Nyyy 2w (Zo. Z1) #0 | V,wy). (5.16)

Indeed, suppose there exists (a, b) € Ny y. 2 10w (Zo, Z1). Since a € Zy, there exists x € N'N (Bp» (a) x
I7) such that (x,a) is an edge of cost at most m3/‘D’7. Likewise, since b € Zi, there exists y € N' N
(Bpy (b) x I") such that (y, b) is an edge of cost at most w>*D. Since a € Bpr(xo) and b € Bpy (x1),
by the triangle inequality, x € Bypv(xg) and y € Bypy(x1). Thus xaby is a (2D?, 3m3“D’7,m)-Valid
bridge with devy,y, < 2D7, as required by .A(xp, x1), showing (5.16).

Now, for each i € {0, 1}, using (4.2), we set Z(x;) = N N (Bpr(x;) x I'). For (4.4) to hold we
need that |Z;| > | Z(x;)|/4. We prove this by showing that any given vertex in v € Z(x;) lies in Z; with
probability at least 1/2, by recalling that in (5.15), A(v) = A,,, pr wiupn (V) = Ak,p,u(v) in Lemma
4.3. Hence we set K = 2w, M = 10wD?/?2,U = w3 D", D, = D”, and all other variables to match
their current values. We check the requirements of Lemma 4.3:

By hypothesis in the statement of Lemma 5.9, ¢ is small; w, D >, 6, wg, and D >, y. Since
M,K > w, it follows that M,K,D?Y >, §,wp, as required above (4.11). Condition (4.11) itself
holds since (D? A (20w?D3/?)1/d j411d > DY j41/d A ywlld > (log log £Vd)'®/% by hypothesis, and
(DY A (20w2D3/?)1d j411d < pY < £Vd by hypothesis. Condition (4.12) holds since K = 2w < 2D°
by hypothesis, so since 6 <4 y and D >, §, we have 2w < DYd/(t=1)=6) and similarly since 7 € (2, 3)
and § <, par, K = 2w < (2w)!/ (7279 < (10wD?/?)V/(7=2467) = pql/(7=2+67) Fipally, if B = oo,
then below (4.12) we need to check U(KM)™" >, par. Since wlog we assumed that n > uz, clearly
n > uz/2. Therefore, U(KM)™# = w3#D"(20w>D/2)~H = 20 HwH D"~#2/2 > (w/20)¥, which is
large since w is large by hypothesis. Hence, all conditions of Lemma 4.3 are met and (4.13) applies, and
substituting K = 2w, M = lOmDZ/ 2 U= y3“D’7 there, the exponent on the right-hand side of (4.13)
in our setting becomes

_2—(7—1)(9&—(7—1) (Dd)’ A 20221)2/2)1_5(1 A (m/ZO)”ﬁD"B_”BZ/Z),

where we recognise that this matches p(-) from (5.13) up to a factor of at most 20!~ (7*#5) Since we
assumed p(-) > 207*#F in (5.13), for any vertex v € Z(x;) = N N (Bpr (x;) x IY),

P(veZ | V,wy)=P(AW) | V,wy) 2 1-e2 > 1/2. (5.17)

Since I* and I~ are disjoint, the events A(v), A(v’) are functions of disjoint edge sets and are therefore
mutually independent conditioned on (V,wy ). Hence, for i € {0, 1}, |Z;| is dominated below by a
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binomial variable with mean | Z(x;)|/2. By the standard Chernoff bound (Theorem A.1 with A = 1/2),
P(1Zi] < 1Z(x)|/4 | V.wy) < e 200118, (5.18)

To bound | Z(x;)| below in (5.18), we will use that xo,x; € N and N is a weak (§/4, wg)-net as
assumed in Setting 4.1, and apply (2.2). We check if the conditions to apply (2.2) in Def. 2.1 hold. Since
Z(x;) = N 0 (Bpr(x;) x [SwD?,20wD?/?]), we set there » = DY and w = 10wD?/?, and we must
bound 10w D/ above and below. Recall that by hypothesis, §D(7:2)=Y3 > 1 this implies A(7, z) > 0
and hence 2dy > z(t—1) using (4.1). Since § < 7, z, we may therefore assume z/2 < dy/(7—1) - 26.
Also, we assumed w < D®, so 10wD?/? < 10D%/(7=1=6 < (p7)d/(r=1)=6/4 where the second
inequality holds since y < 1 and D >, 6. Moreover, since w >, wg, we have IOEDZ/ 2 > . Thus all
conditions in Def. 2.1 are met, and (2.2) here becomes

|Z(x,-)| > Ddy<1_6/4)f(1osz/2)(IOEDZM)_(T_I) > Ddy(1—6/4)—(‘r—1+6/4)(6+z/2)’

where the second inequality holds by Potter’s bound since D > w > . The exponent of D on the
right-hand side is

dy —(t = 1)z/2-6(dy/4+7z/8+1—1+6/4) >dy/2—(t—-1)z/2 > A(n,2)/4,

where we used 6 < y and then the formula of A(7, z) in (4.1). So, | Z(x;)| > DA7-9/4 in (5.18), and
since D >, 6,

P(1Zi| < |1Z(x)|/4 | V.wy) < exp(=DM1I/4/16) < exp(—(0DN12)-V8)1/4) (5.19)

Returning to the event A(xg, x1) in (5.16), let A’ be the event that |Z;| > |Z(x;)|/4 for each i € {0, 1},
and suppose that 4’ occurs. Observe also that the set Z; € Z(x;) were chosen independently of the
edges between Z(xq), Z(x;) as required in Lemma 4.2. We apply Lemma 4.2, conditioned on the values
of Zy and Z, to lower-bound the right-hand side of (5.16). In the statement of Lemma 4.2, we will take
X =Xx0,y = X1, Zx = Zo, Zy = Z1, w, , = 10w, and all other variables to match their current values. The
event N, z,lOK(ZO’ Z1) # 0 of (5.16) requires a low-cost edge between the set Zy and Z;, connecting
vertices with weights in 1. Given (V,wy ), the existence of such an edge (u,v) is independent of the
events A(u), A(v) since in A(-) the other endpoint of the edge has weight I_, and I, N I_ = 0. We now
check the requirements of Lemma 4.2: it requires z € [0, d] that we assumed, and 2dy > z(7 — 1). The
latter holds since here we assume 9DA1:2)-Vé 5 | implying that A(n, z) > 0, so 2dy > z(t — 1) then
follows from (4.1). Second, here we assume w > (loglog V)48 > (loglog DY)1%4/9  and also
D>, y,cH,wo.Sow > wo V4(cy +2)4 v 4000 and Fr ((w/4000)#) > 1/2 as required above (4.2).
The requirement on DY here is more restrictive than in Lemma 4.2, so all requirements hold. Then,
since here we have 10w, (4.4) turns into the following, which we then estimate by using that w < D?°,
that § <, par and that D >, 6,

P(Nyyyztow(Zo. Z1) = 0 | A"V, wy) < exp(—e(10@—2“—”DA('W—ZV‘”/?')

< exp(~0DN 1 V9) < exp(~(DN1-E) ),

since we assumed DAV 5 1 Since A’ = {Zy > |Z(x0)|/4, Z1 > |Z(x1)|/4}, combining this

with (5.19) and a union bound, the result in (5.14) follows. m]

We now construct a hierarchy by repeatedly applying Lemma 5.9 to find a set of valid bridges as
in Lemma 5.8, using an iterative construction (Def. 3.6) to mitigate independence issues. Recall the
(y,U,w, cg)-hierarchy of depth R from Def. 5.5, and A(#, z) from (4.1) and ®(n, z) from (5.1).
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Lemma 5.10 (Hierarchy with low weights w). Consider Setting 4.1, and let yo, y1 € N with |yo—y1| = &.
Let z € [0,d], 7 = 0, and let 0 < 6 <« y,1, 7, par be such that A(n,z) > 2+/$ and either 7 = 0 or
®(17,2) > V6. Let £ >4 y,1,2,6, wo. Let R > 2 be an integer satisfying

ngR_l > (log logf\/ﬁ)m‘l/‘s2 and R/6 < (log logf)l/\r‘s, (5.20)

R-1
and let wi=&" 0

(5.21)
Let Xjp-n (R, 1, y0, y1) be the event that G’ contains a (y, 3w H &, w, 2)-hierarchy Hi,, of depth R with
first level L1 = {yo, y1}, fully contained in N, with devy,y, (Hiow) < 4€Y. Then

P(Xow-n(R, 7, y0,y1) | V,wy ) > 1 —exp (—(log 10g§)1/\/5) =11 —errgs. (5.22)

With the convention that oo - 0 = 0, the statement is also valid when a = oo or 8 = co.

The lower bound on the minimal vertex weight w used in the hierarchy, and the upper bound on
the number of iterations R in (5.20) jointly ensure that the thinning of edge-probabilities 6/R caused
by/necessary for a multiround exposure of R rounds in Section 3 has controllable effect.

Proof. To construct a (y, 3w3#&", w, 2)-hierarchy in N, we will use an iterative cost construction of
R — 1 rounds from Definition 3.6 on G’. Recall from Setting 4.1 that G’ with given V,wy is a 6-
percolated CIRG. By Remark 3.3, G’ is a CIRG itself (also when 8 = 6,,) with distribution {GOlV,wy }.
In the i-th round we will construct all bridges of the i-th level of the hierarchy at once, using Lemma 5.9
2-1 times to find each bridge in the level. Level 1 consists of the vertices yg, y; and no edges, see also
Figure 5. The first edge appears thus on level 2, hence we can start with level i = 2. We will use Prop. 3.9
to deal with conditioning between rounds, and union bounds to deal with conditioning within rounds.
For 2 < i < R, in the i-th round we we will set the constraints F; and I; so that the chosen set S; in
Def. 3.6(vi) consists of a (2£'", 3w, w)-valid bridge for § 50 and § for all o € {0, 1}~2, where
Vo0; and ¥ are (all) endpoints of bridges from the previous levels. In other words, S; will contain
all the necessary bridges at the i-th level of the hierarchy for Xjow-nierarchy (R, 77, Y0, Y1) := Xow-h. Since
L1 = {yo, y1} contains no bridges yet, we denote the iterative construction by (F3,U,), . . ., (F,, U, ). Set
the percolation probabilities as 6 := (/(R—1),...,08/(R—1)), thatis, §; :=6/(R—1)for2 <i < Rin
the exposure setting of G’ in Definition 3.4, and denote the outcome Iter(Goz, cee, Grg "Yby Sa,...,Sk.

We next inductively define the admissible edge-lists F; in Def. 3.6 (ii), the cost constraints {; in
Def. 3.6 (iv), and vertices Y, for all o € {0, l}i. Assume that Sy, ..., S;_| is already given, that is, we
constructed (£;);<;—1. For each o € {0, 1}7~2 consider the vertices J 0, J 1 wWith 00,01 € {0, 1}
already found™©. Set D; = ¢”" as in Lemma 5.8, and write (o) for the set of all possible paths
(i.e., sequence of vertices) contained in A between all y € N N (Bap, ,(Fo0) X [w,4w]) and all
y € N0 (Bap, ,(Fe1) X [w,4w]) (so that if P, € P(c), then P, satisfies both (5.10), (5.11) in Def.
5.7). Since V,wy is given, and also Sy, ..., S;_; is already determined, define now an edge-list  to be
level-i admissible if it contains exactly one such potential path from P (o) for each o € {0, 1}'~2, and
let ]-'i(GZQZ, cee, G?—i]l) be the list of all level-i admissible edge-lists, with an arbitrary ordering.

For each such admissible list, U,-(ng, e, ij’]‘) describes the cost-constraint; let this be the con-
straint that the edges in the list have total marginal cost at most 3w>#£7 (where marginal cost is defined in
(3.1)). Once we reveal the edges of G, recall that the result of round 4, Iter; (G, . . ., Gigj 1 Gy = 8™
is then set by Def. 3.6(vi), and that if the construction succeeds, then Sfo is the first element in
Fi(G™, ..., G?_"’l‘) that satisfies the corresponding cost constraint in U(G2, ..., Gl.efl‘ ). Given Spr,
we define 500 = $50, Yo11 = Jo1, and 501 and 510 to be the endpoints of the bridge P,
present in the chosen edge-list Spr, or None if Sl.eXp = None. This gives the iterative cost construction

10Thus, for the initial i = 2 here o~ = 0 so we look at the vertices yg, y1.
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Iter™ = ((F;,U;): i € {2,...,R}) applied on G%, ... G , denoted by IteregH|V V1.0 in Def. 3.8.

Note that the criteria above for P (o), F;,U; exactly matches Lemma 5.8 with ¢y =2 and marginal
cost of each bridge P, at most U =3w3¢", implying (5.12), that is, each chosen bridge P, € S;" is

(2§7 , 3m3”§”,m) valid for y,0, o1 € {0, 1}~ with respect to the chosen edges in earlier rounds.

Since all vertices in {P }, are contained in a 2(&¢Y + 572 -+ f”R_l) < 4£7 ball around y( and

y1, respectively, the deviation requirement is also satisfied, and so by Lemma 5.8, if Itere’gylv B
SWV 5,9

succeeds then {Jo }reqo,13r is a (v, 3w3HEN, w, 2)-hierarchy as needed in Xow-h.
Following Prop. 3.9, let r = R — 1 and 6; = 1/(R—-1) there, and let H,, ..., Hg be independent
1/(R—1)-percolations of {G? | V,ww }, that is, with distribution {G?/ =D | V,wyw } from Def. 3.2.

Recall from Def. 3.8 the definitions of Iter'"d GOV .y }.0 and A™(Sy,...,S; ). Then applying Prop. 3.9
(with an index shift, since now we start at i = 2), ("i 53 turns into
P(Xowh | Vowy) = P(Itere{’g’glv’w‘/}’g succeeds | V, wy)

R
> min HP(S}“d # None | AM(S,, .. . Si-1))

S2,.0s Sr#None

(5.23)

>1- Z max P(S}“d = None | A™(S,. . 8ic1)),

e—d S>,..., Si—1#None
i=2

by a union bound over all rounds.

‘We now break the right-hand side of (5.23) down into bridge existence events under simpler condi-
tioning. Recall Definition 5.7, in particular the notation (D, U, w)-valid bridges with respect to (already
revealed edges) S := U;<;_1S;. Foreach2 <i < Rand 00,01 € {0, 1}'"!, let

Ai(5o0.5o1) 1= {3Py € S; : (287 3w 71 ) -valid for (5.24)

Vo0, ¥o1 With respect to S = 0}. .
This is a stronger condition than what is required for a (y, 3w3#&", w, 2)-hierarchy to exist in Lemma
5.8, since y'~2n < 5 and validity with respect to @ implies validity with respect to any set of edges.
Conditioned on A™(S,,...,S;_1) so that none of the (S/)j<i-1 equals None, the event S}“d = None
occurs only if for some pair 00,01 € {0,1}~!, the complement of the event A; (¥ 0, 1) occurs;
hence by a union bound, (5.23) implies

P(Xow-n |V, wy) > 1 22[ 2 I?g)alx} P(A; Fo0:Fo1)C 1V, wy, AM(Sy, .., 8im1). (5.25)
€ i-2
Szf—..,S, 1#None

Recall that given (V,wy ), the graphs H»,... Hg_; are i.i.d. {GYR=D | 'V wy}. So, the events in
Amd(S 2,...,8;_1) are contained in the o--algebra generated by H», . . ., H;_1, that is, independent of H;
and thus of the complement of A; (70, ¥o1)- Hence (5.25) simplifies to

R
P(Xiown | Vowy) 2 1= 27272 max  P(Ai(Fo0, 7o)t | V,wy), (5.26)

" $o0,Yo1#None
=2

where the maximum is taken over all possible values of (740, ¥ 1) occurring in non-None S;_;. Finally,
we will upper-bound the probabilities on the right-hand side of (5.26) using Lemma 5.9. Let2 <i < R,
leto € {0,1}"72, and let § -0, ¥ -1 be a possible non-None realisation of the embedding. Recall D; = &Y.
Then the event (5.24) requires a (D) ,,3w** D" ,, w)-valid bridge P, which formally matches Lemma
5.9 with D := Dj_3, $0 := X0, Vo1 := x1 there and the graph H; ~ {G¢ (B~ | V_ wy } in place of G’
there, that is, with 85 ¢ := 0/(R — 1).
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We check the conditions of Lemma 5.9 in order of their appearance. z € [0,d],n,6 > 0
and 0 <4 v,7,z is assumed both here and there. The assumption &>, v,n,2z,d,wo here implies
D3>, y.,1,2,0,wp since by (5.20) DY , > & > (loglog £Vd)194/%°  The latter also implies the
requirement on DY in Lemma 5.9. Similarly, the upper bound requirement holds since Dl.y_2 <E<EV

We now check whether 6DA(7:9-Vé 5 [ holds in Lemma 5.9 for our choices. Since we assumed here
A(n,z) > 2V6, and also (5.20), we estimate

L DMIING 5 (loglog£) V. DYE > (loglog#)'S/Ve > 1. (5.27)

Next we need to check whether xg = y,0,x1 = J1 satisfies |xg — x| < cyD;—,. This is true since
V00, ¥ o1 are possible non-None values coming from chosen tuples Sy, . . ., S;_1; and by construction of
P (o) above, we required that |5 00—V 001, [T or10=Vor11] < 2D;_; forall o’ € {0, 1}1=2, which, when
shifting indices yields exactly that |§ 0~ 1| < 2D;_» forall o € {0, 1}=2. Next we check the criterion
on w in Lemma 5.9. Here, w is defined in (5.21), hence, using (5.20), w = §7R71 S > (loglog f\/z)m‘i/‘s
as required. This also implies w >, J, wg since & >, J, wg. Moreover, w = f”Ril‘s < Df_z = 57172‘5
holds since i —2 < R — 2 and y < 1. Next, we check (5.13), which can be lower bounded by omitting
the prefactor m"ﬁ in the last factor (the minimum):

1-6
_ d /2 0 -puz/2
P(Diaw. gym.2) = gy V(D% Aw? D3] DI L (s08)
We distinguish cases with respect to z to handle the minimum in the middle of the right-hand side. If
z = 0, then szf/z =w?= 5271{71‘5 < f”'ild = D;.yi, where the inequality holds because i < R and
§ <4 y. Moreover 0 < i — uz/2 in that case, so when z = 0, equation (5.28) becomes
P(Dicz.w. gly.m.2) 2 gD = gl TR0 2 2o, (5.29)
where the last inequality holds because § <, par. If, however, z # 0, then we assumed that (7, z) > Vo
in (5.1). Using again w > 1, we lower bound (5.28) in this case

0, (1= I)D(l 6) [dynz[2]+[0AB(1-pz/2)]

] S(t-1+d
P(Di—z,m, (R[il),n,z) 2 raw > R_D (17,2)-6(7- +)

5(7 1)

where we used that w < D¢ implies w= ("1 > D and dy A z/2 < d (since y < 1) to obtain

the last inequality. Since & is small, (1, z) > V6, and w < les_z, this implies

p(Dicayw, 282,1,2) = 22DS, > 2w > 2wV, (5.30)

S

the same lower bound as in (5.29) for z = 0. Thus for all z € [0, d], using (5.20) for a lower bound on
6/R and (5.21),

p(Dia,w, 725.1,2) = 2w¥® > 22 (loglog £)'6/V3 > (loglog £)'5/V0 > 207+,

where the last inequality holds because & >, ¢, par. With this, all conditions of Lemma 5.9 are satisfied,
so combining (5.14) with (5.26) and then using the lower bound in (5.27) yields

R 1/4
P(Xiowen | Vowy) 2 1-3 ) 2072 exp( | Z D] )

i= (5.31)
>1-3 Z 272 . exp (~(log 10g<f)3/‘/5) > 1 -2R* exp (~(loglog 5)3/‘/5).
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Finally, in (5.20) the estimate R < (loglog &)/ V4 canbe used to upper bound 2%*! yielding the required
inequality in (5.22). O

Lemma 5.10 constructed a hierarchy with bridge endpoints § of weight roughly w = §7R71 9. This
weight is too low to connect the final gaps (siblings) in the hierarchy via short paths. The next lemma
extends this hierarchy to a new one with endpoints y, of weight roughly w := fdylH/ 2 using weight-
increasing paths. At these higher weights, connecting the gaps is possible. The proof follows a very
similar structure as for Lemma 5.10, with just two rounds of exposure. Recall the (y, U, w, ¢ g )-hierarchy
of depth R from Def. 5.5, A(n, z), @(7, z) from (4.1) and (5.1), respectively.

Lemma 5.11 (Hierarchy with high weights ). Consider Setting 4.1, and let yo, y1 € N with |yo—y1| =
& Let z € [0,d],n =20, and let 0 < 6 <7y, 1,2, par be such that A(n,z) > 26 and either 7 = 0 or
D(n,z) > V6. Let £, 7,1, 2,0,68, wo. Let R > 2 be an integer satisfying f”Ril > (loglog ‘,;_-\/3)16d/62
and R < (loglog&)?, and set

— _ R ap ._ log(d/¢) }
w = ‘fy s CH = 8(1+{10g(1/(‘r—2+2d76)) . (5.32)

Let Xpign-n(R, 1, yo, y1) be the event that G’ contains a (7, caWHEN W, ¢ )-hierarchy Hhign of depth
R with first level L1 = {yo, y1}, fully contained in N, and devy,y, (Hpign) < 2cpé”. Then

P(Xpigh-n(R 17, v0, ¥1) | Vowy) = 1 —exp (—(loglog &)"); (5.33)

under the convention that oo - 0 = 0, the statement is also valid when a = co or 8 = co.

Proof. As in Lemma 5.10, let w = §7R_1‘5. To construct a (y, cgw H&", W, ¢ )-hierarchy in N, we
use two rounds of exposure. First we set 81 = 6, = 1/2 and construct the exposure setting of G’, that is,
(Gfl , G;’z). In the first round we apply Lemma 5.10 to get Hiow = {7}, a (v, 3w3H£7, w, 2)-hierarchy
with failure probability errg s in (5.22). In the second round, we use weight-increasing paths from
Lemma 4.4 to connect each 7, € Hjow to a vertex y, of weight in [w, 4w], transforming H)oy into
Hhigh = {yo ), a (7, Wt EN W, ¢ )-hierarchy.

We now define an iterative cost construction on G’ ~ {G?|V,wy }. In round 1, F) is the list of
admissible lists of vertex pairs edges (with an arbitrary ordering): we set now a list of vertex-pairs
admissible if it could form the bridges (Po )y e0,13% Of a (v, 3w3HEN, w, 2)-hierarchy Fotoe(o3r
fully contained in V. For any given list in F1, let the corresponding event in U} be specified by the set
of all possible edge costs such that all P satisfy (H3) of Definition 5.5 with U = 3m3“§ 1, so that Hiow
is indeed a valid (y, 3w3#&", w, 2)-hierarchy. The round-1 marginal costs in (3.1) are equal to the edge
costs in Gf‘ .

We move now to round 2. For each o= € {0, 1}%, let P(o) be the set of all paths 73, y, in N
connecting ¥, to any vertex y, € N N (B(CH_2)§VR71/2@U_) X [w,4w]). Given (V,wy,S)), call a
list ¢ of vertex-pairs admissible in round 2 if it contains exactly one such potential path from P (o)
for each o € {0, 1}®, and let .7-"2(G]9‘) be the collection of all admissible tuples, with an arbitrary
ordering. For any given ¢ € fz(Gf‘), let the corresponding event in UQ(Gf‘) be specified by the set
of all possible round-2 marginal costs for the edges in ¢ which sum to at most (cy — 3)W4"§’7 /2 in
(3.1). This defines an iterative cost construction Iter = ((Fy,U), (F2,U>)) applied on Gf‘ s G;z, that

we denote by Iter?gp{, Vo ).0° Recall from Def. 3.6(vi) that for i € {1,2}, S;"" is either None or lies in

ff *P with round-i marginal costs satisfying Z/{l.eXp.

If Iter?f’ﬁ succeeds, then {y o} ocqo,13% isa (v, cHWHEN W, ¢ )-hierarchy. Indeed, condition (H1)
of Def. 5.5 is satisfied by construction. By the triangle inequality, (H2) is satisfied since forall o € {0, 1},
Yol € B(CH_z)gyi/z(yo-l) and y o € B(CH_z)fyi /2()7(,0) by construction, and |¥,1 — ¥o0| < 2£7 by
(H2) since §, forms a (y, 3w3#&", w, 2)-hierarchy. This also implies that devy,y, (Hnigh) < ca (£ +
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572 +- 4 §7R_l) < 2cyé&7, since € >, 7y, as required. Finally, P,isa path between § o1 and ¥ 519, SO
let P be the concatenated path 7ty 5.0 Po-75,.10,v010- Then the total cost of P is

C(Ps) < C(Pg) +mcosta(my, o1 5001) + MCOSL(T5 10 v010)

< 3WHET 4 2(cy — WHET 2 < eygwHEN,

since w = w2979 see (5.21) vs (5.32).

As in Def. 3.8 and Prop. 3.9, we now lower-bound the probability that Itere{xgpglv N succeeds
by coupling to two independent percolations H; and H>. With 6 := (6/2,60/2), recall the definition
Iterl{“g(,Iv w6 As in Def. 3.8, let A™(S) be the event that the first round returns the edge set
S}“d = S1. Then Proposition 3.9 followed by a union bound gives

P(Xhigh-n (R, 17, Yo, y1) | V,wy ) > P(Itere{)g’gw’w”’g succeeds | V, wy)
ind . : ind ind
> P(S™ # None | V, wy) SIIED}EMP(SZ # None | V,wy, A"(S))) (5.34)
>1-P(S™ =None | V,wy) - max P(SI =None | V,wy, AM(S))).
Si1#None

The event Silnd # None occurs precisely when the graph H; contains a (y, 3w3“£7, w, 2)-hierarchy
Hiow := {¥} of depth R fully contained in N with first level £; = {yo, y}. Since H; ~ {G?/% | V,wy }
is a CIRG, and since the conditions here are stronger than those in Lemma 5.10, all requirements of
Lemma 5.10 hold with 6 replaced by 6/2, so the first error term in (5.34) is at most err¢ s in (5.22).

It remains to upper-bound the second error term in (5.34). We use weight-increasing paths to connect
the endpoints of Hqy to vertices of weight [w, 4w] nearby. Let

.. log(d/9)
" | log(1/(t =2 +2d76)) |

q (5.35)

and for each v € N let Apatn (v) be the event that H, contains a path m, ,, from v to some vertex
v eNN (B4q*§7m (v) X [w,4w]) with cost Ca (7, /) < g*W &7, The value ¢y in (5.32) is chosen
so that 4¢* < (cy —2)/2 and ¢* < (cy — 3)/2 both hold; thus conditioned on A™(S)), the event
Sé“d = None occurs only if for some o € {0, 1} the event Apath(yﬁ)c occurs. There are 2% strings

o € {0, 1}%, and all the events in Ar, (V,wy,S1) are contained in the o-algebra generated by Hj,
which is independent of H, given V, wy . So, by a union bound,

max P(S;“d = None | A™(Sy)) <28 . max ]P’(Apath(ig)[: | AM(S)))
Si#None oe{0,1}R
S1#None

<2R. max P(Apn(Fo)C | Vowy), (5.36)

Yo #None

where the maximum is taken over all possible values of ¥, in non-None S;. To bound (5.36), we apply
Lemma 4.4 with G’ = Hy, 0 replaced by /2, K = 2w, M =2w, D = 4§7R71, U= W4"§'7, Yo = Yo
and all other variables taking their present values. Using w, w from (5.21) and (5.32), we compute

logK  log(2w) _ log2 + $yR-1dlogé <14 d _d
logM ~ log(2w)  log2+yR-lslogé ~— 26~ &’
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and therefore g from (4.18) with these choices satisfies

_[_log(logK/logM) ] _ log(d/s) _
1= log(l/(T—2+2d76))W_Log(l/(‘r—2+2d76)) -4

Hence the event A, 5, ) in Lemma 4.4 is contained in Apan (7). We now verify that the requirements
of Lemma 4.4 hold in order of their appearance there. Whenever S| # None, ¥, lies in N with
weight in [w,4w] = [M/2,2M] by construction, where M = 2w > 1. Similarly, K = 2w > 1 and
D = 4§7R71 > 1 by our choices. We check the requirement U > K*#. By definition of w in (5.32) and
the choices U = W“”f 7 and K = 2w, we compute

UK™H = W (2w) 724 = 272K g,

which is larger than 1 (even if n=0) since 4 > 1 and w > (loglog g\/Z)SdZ/éz and & >, 6. Next, since
& <, par by hypothesis, w = & 4/2 > g6 = w and so K > M. Moreover, K = 267"/ <
4412gy"1d[2 = pdI2 g1so holds. Since M = 2w = 2&7"'9 > 2(loglog £Vd)'64/9 &>, 0,5, wo, and
M < K < D2 we have K, M,D >, 0,6, wo. Clearly D = 4§7R71 <&KL f\/ﬁ since y < 1 and ¢ is
large. Next, we check (M /2)%/d = (&77'6)2/d 5 £¥*76/d 5 (1oglog&Vd)!9/? as required. Finally,
if B = co then we also need that U(KM) ™ = W& (4ww) ™ > 4~ Hw?H £ is sufficiently large. This
holds even when 1 =0 since w >, par. Hence, all requirements of Lemma 4.4 are satisfied, and since
6 changes to 8/2 and M =2w = 2§7R71 % in (4.19), (5.36) can be bounded as

max P(SI = None | A™(5))) < 2R exp(~(0/2)27¢"" ')
S1#None

(5.37)
< 2R exp(~(loglog)'*) < exp(~(log log §)'“).

where we obtained the second row from the hypotheses {-’VR_I ot > (loglog &)'¢ and £ >, 6, and then
from 2R < e® and R < (loglog &)%. Combining (5.37) with (5.34) and recalling that the first error term

there is at most exp(—(loglog &)/ ‘5) finishes the proof of (5.33) since ¢ is small and ¢ is large. O

The hierarchy constructed in Lemma 5.11 is a ‘broken path’ formed by the bridge paths between the
starting vertices yo, y; € . Proposition 5.1 connects the endpoints of the high-hierarchy and constructs
a connected path via common neighbours using Lemma 4.5, but not yet between yg, y1, only between
Yog_;1 and Yy, 0, the closest vertices to yo, y1 in the hierarchy constructed in Lemma 5.11. Connecting
Yo to Yoe_,1 and y; to yi, 0 needs different techniques, since yq, y; have typically lower weights than
w in (5.32), see Section 6.

Proof of Proposition 5.1. To construct the path Tyx yr> W again use two rounds of exposure. In the

first round we apply Lemma 5.11 to get a (y, ¢ HW4”§ "1, w, cp)-hierarchy Hpignh := {yo} of depth R
fully contained in NV with first level {yo, y}. In the second round, we use Lemma 4.5 to connect, via a
common neighbour, each pair of level-R siblings y 0, Y1, 0 € {0, 13871\ {Og_1, 1g_1}. This yields a
path between yo,_;1 = y5 and y1,_,0 =: y}.

We now define an iterative cost construction on G’ ~ {G?|V, wy }. First we move to the exposure set-
ting Gfl , G;Z with 6; = 6, = 1/2. Let F be the list of all lists of vertex-pairs e with devy,, () < 2cy&”
that could form the bridges of a (y, ¢ HW4"§ 1, w, ¢y )-hierarchy Hpigh = {Yo } e (0,1}& fully contained
in NV with first level {yo, y;}. Moreover, for any given admissible list in Fj, let the corresponding
event in U] be the event that the costs of all P, satisfy (H3) of Definition 5.5 with U = CHW4"§’7,
so that Hyp;gn is indeed a valid (y, ¢ HW4”§ 7, W, cy)-hierarchy with dev,y, (Hnignh) < 2cy&”. For each
o € {0, 1}R~1\ {Og_1, 1g_1}, define J (o) to be the set of all potential paths J fully contained in A/
connecting y 0 and y 1 with devyy, (J) < 3cyé”. Given (V,wy, S1), call a list ¢ of edges admissi-
ble if it contains exactly one such potential path J, from (o) for each o € {0, 1}% \ {Og_1, Ig_1},

https://doi.org/10.1017/fms.2025.10161 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10161

58 J. Komjdthy et al.

and let FQ(Gf‘) be the collection of all admissible edge-lists, with an arbitrary ordering. For any
given list ¢ € .7-'2(G19‘), let the corresponding event in L{Z(Glg‘) be that the round-2 marginal costs
of edges in ¢ are such that mcostz(J(T) < w* in (3.1). This defines an iterative cost construction
Iter = ((F1,Uy), (F2,U,)) applied on G GH2 that we denote by Iter{gew V1.8 with 6 := (6/2,6/2).

Recall from Def. 3.6(vi) that for i € {1, 2}, S;™ is either None or lies in 7; with round-i marginal costs
satisfying U;.
We claim that if Iter

exp
{Go1V,wy },0
and y} 1= y1p_0 With C(myx yx) < e 2BwHH e and devy,y, (ﬂyg’yl*) < 3cy &Y. Indeed, let us order the
elements y of Hpien lexicographically by their index o, omitting yo and yi, that is

succeeds, then there is a path Tyx v+ S N between Vo = Yogoyl

* *
y() = )’OR_II,)’OR_ZIO,)’OR_ZH, L] -’le_QO()?le_zOl,le_lO = yl’

and notice that P, € Hhpgn is a path between every consecutive pair of the form y 01, yo10 While J
is a path between every consecutive pair of the form y 500, Yo01 OF Y10, Vo11, SO the concatenation
forms a connected walk 7*. We then remove any cycles from n*, passing to an arbitrary sub-path

Tyx v € N. Since Hpign is a (v, CHW4“§’7,W, cy) hierarchy with first level yg, y;, by Definition 5.5

(HI) wys, wys € [W, 4], and by (H2), the distances [yo — y3| < cué?" and [y; = y7| < cu&”"

both hold. Finally, since each edge of 7+ is contained in Ty v only once, its cost is at most

Claye ) < Y. Cle) < > moosti(Py) + > meosty (Jo).

eEE(ﬂ'*) O'E{O,l}iZOSiSR—2 UE{O,I}R_I\{OR,“IR,]}

The marginal cost of each P, is at most CHW4“§” by Hhign (see (H3)), and mcosty (/) < W by
construction; since cgy > 1 it follows that

Clayeyr) < 28 = Depw WHET 4 (2R _ 2yt <y 2Raptren,

as required by Ahigh.n. The deviation bound 3¢y €Y also holds since it holds individually for all J- and
it holds for Hpign already by Lemma 5.11.
exp

It remains to lower-bound the probability that Iter succeeds. Again as in Def. 3.8 and

{GOV.wy }.0
Prop. 3.9, let H;,H, ~ {G%? | V,wy} independently, let Il{ngdew o be the result of applying

((Fi,Uy), (F»,U)) to Hy and H,, and let A™(S) be the event that the ﬁrst round returns the edge set
S ind — §,. Then Proposition 3.9 followed by a union bound gives similarly to (5.34) that

P(Xhigh-pan | V,wv) = ]P( e;p"lV 18 succeeds | V, Wv) <18
—P(S = None | V, wy/) —Srilﬁ);eP(Smd None | A™(S))). (5.38)

We bound both errors on the right-hand side. The event S il“d # None can be bounded using Lemma 5.1 1
with 6 replaced by 6/2, since H; ~ {G?/? | V, wy }. All the requirements of Lemma 5.11 are fulfilled
by hypothesis, so the first term on the right-hand side is at most exp (—(log log 5)13) by (5.33).

It remains to upper-bound the second term in (5.38). For each xg,x; € N, let vZXO*xl be the
event that H, contains a two-edge path xovx; € A of cost at most w'* with |xo — v| < cyé&”. If
devy,y, (x0) < 2cyé&?, this implies devy,y, (v) < 3cyé?. Hence, conditioned on And(S)), the event
Smd = None occurs only if for some o € {0,1}R~1\ {Og_1, 1g_1} the complement of the event

c
<

Ay‘ro*y(ﬂ occurs. Since all the events in .A™(S) are contained in the o-algebra generated by Hj, which
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is independent of H> given V, wy, we get by a union bound that

max P(SI = None | A™(S)))

S1#None
< (2R-1-2). max p(AC And(s
( ) o e{0, 1} 1\ {0r1,1r1} ( y(TO*y(Tll ( 1)) (5.39)
S1#None
R-1 _ . +C
<2 2) max  P(Ay | V,wy),

Yo0,Yo1#None

where the maximum is taken over all possible values of y ¢, y,1 occurring in non-None S;. To bound
(5.39), we observe |yo0—Vo1| < chnyl andwy,_,, wy,, € [w,4w] when o € {0, 1}R\ {Og_1, 1r-1},
by Def. 5.5 (H2) and (H1), since Hpign is a (v, cHWEN W, ¢ hierarchy. Thus we apply Lemma 4.5
with G’ replaced by H,, 6 replaced by 0/2, D = .fVR_l, X0 = Y0, X1 = Y1 and all other variables
taking their present values. We verify that the requirements of Lemma 4.5 all hold in order of their
appearance there. § <, par by hypothesis and D = £”* ' > (loglog&Vd)'64/%" > (loglog &Vd)'6/°
by assumption, so in particular D >, cy,d and D > W(Q)/d since £ >, par, 0, wg. Also, clearly f”Ril <
,;-‘\/Z . Next, we check the distance and weights of y ¢, yo1. Since S; # None, they must lie in A/, and
as argued already, satisfy |y o0 — yo1| < cgé&?" = cuD and wy,,, wy,, € [W,4w] = [DU2,4D4/2],

Finally, the cost-bound in Lemma 4.5 is D2”d = §2“d7R71 = W4/‘l exact]y as we require it here, and the
vertex v satisfies [xg —v| < D = §7R71 < cy &7, also as required. Lemma 4.5 applies and (5.39) can be
bounded as

max P(S;“d = None | Amd(51)) < 2R-1 exp(—(02/4)§7R71 (3_7_2‘5)‘1/2)
S1#None

< 2R-lexp (—(loglog 5)15/‘5),

where for the second row we used that § <, par, so (3 — 7 — 2§)d/2 > ¢ and by hypothesis
£ > (loglog £)'%/9 and ¢ >, . This, together with that the first error term in (5.38) was at most
exp (—(loglog &)!'?) concludes the proof of (5.3). o

The goal of this section has been to prove Proposition 5.1 and Corollaries 5.2 and 5.3; now that this
has been achieved, notation internal to this section will no longer be used.

6. Connecting the endpoints 0, x to the path

The final step is to connect the initial vertices 0 and x to the respective endpoints y7 and y} of the path
constructed in Section 5. We give a brief intuition on how we do this, then state the main result of this
section, followed by the proof of the main theorems (Theorem 1.4-1.6) before the detailed proofs. When
connecting the endpoints, we need to overcome the issue that the construction of the path Tyx vk already
revealed information about the graph: the vertices ya‘, y¥ are the outcomes of a selection procedure that
might influence the graph around them. For d > 2, for some large constant M, we consider the graph G
induced by the vertices of weight in [ M, 2M] restricted to edges with edge costs C, < M>#. By aresultin
our companion paper [56, Corollary 3.9], this graph has an infinite component!' C¥ . We connect 0, Yy
to respective nearby vertices uo, ujy € CM and then use that the cost-distance d¢ (uo, uy) = O(Juo—ugl)
within CM . We do the same for y* and x. We ensure that cost-distances are linear in GM simultaneously
for all ‘candidate’ vertices for uo and ] in Lemma 6.6 below. This overcomes the issue that y7, y are
carefully chosen vertices. To obtain these results, in [56] we use a renormalisation technique to map
GM +to a site-bond percolation on Z¢ and ‘pull back’ density and distance results [4, 29] to GM . In one
dimension, GM does not have an infinite component and the results of [4, 29] do not apply. So, we use

1'Here we mean a graph-theoretical component, that is, a component with respect to edge-presence events (edge-costs ignored).
Adopting standard notation we denote this infinite component by CX .
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a finite size approach and consider the graph GM with a value M that grows with |x| to guarantee that
GM contains a large connected subgraph in the section between 0 and x. We establish the necessary
density and distance bounds ourselves using paths along which the vertex-weight increase followed by
renormalisation. When the graph is finite (e.g., GIRG G, in Def. 1.3), we additionally use that (near)-
shortest paths within G™ have very small deviation from the straight line (see Def. 5.6), so that when
two vertices are not too close to the boundary of the box Q,,, the constructed path stays in Q,,. We define
the setting of this section.

Setting 6.1. Consider 1-FPP in Definition 1.1 on the graphs IGIRG or SFP satisfying the assumptions
given in (1.6)—(1.3) withd > 1,a € (1,00],7 € (2,3),u > 0. Let ¢, ¢, h, L, cy,c2, 8 be as in (1.5)—
(1.3), we allow B = oo and/or @ = oo. Let G ~ G, let Fy  := {0,x € V}, and let Cs, be the (unique)
infinite component of G.

The existence of the infinite component for SFP was proved in [26], for IGIRG in [28, 57]. Uniqueness
proofs exist based on adaptations of the Gandolfi-Keane-Newman argument [36] or on explicit finite-
sized constructions [55, Theorem 3.11] followed by [52]. The two main results of this section are the
following:

Proposition 6.2. Consider Setting 6.1. Suppose that either € (1,2) or p € (fexpl, Hiog) 0F both hold,
and let Ay be as defined in (1.9), (1.17), or (1.20), depending on whether a, f < oo, @ = 00, or = oo.
For every q, &, > 0 there exists D > 0 such that the following holds. For any x € R? let Apolylog be
the event that G contains a path my_, with endpoints 0 and x, of cost C(ng.x) < (log |x|)2*% + D and
deviation dev(mo ) < {|x| + D. Then P(Apoiyiog | 0,x € Coo) > 1 —g.

Proposition 6.3. Consider Setting 6.1. Suppose that @ > 2 and pu > pog, and let 5o be as defined in
(1.10), (1.16), (1.19), or (1.21), depending on a,f3 < 0o, B < @ =00, @ < 3 =00, or @ = f§ = 0.
For every q,&,6 > 0 there is D > 0 such that the following holds. For any x € R¢ let Apol be the
event that G contains a path ng_x, with endpoints 0 and x, of cost C(mpx) < |x|"*¢ + D and deviation
dev(mo x) < {|x|+ D. Then P(Apol | 0,x € Coo) 2 1 —¢.

We now explain how the proof of the main theorems follow from these propositions.

6.1. Proof of the main theorems

The proofs of Theorems 1.4 and 1.6 follow directly from Propositions 6.2 and 6.3, respectively, and so
do their extensions to @ = co and/or 8 = oo in Theorem 1.1 1. It remains to prove Theorem 1.10 treating
finite graphs, including its extension to @ = co and/or § = co.

Proof of Theorem 1.10. Following Def. 1.3, let G,, be a finite GIRG obtained by intersecting an IGIRG
G = (V, £) with a finite cube Q,, of volume n, and let u,,, v,, be two vertices chosen uniformly at random
from V N Q,,. For the polylogarithmic case we must prove (1.13). For this, first we prove the slightly
different statement that for two uniformly random positions x,,, y,, € Qp,

lim P(dS" (xn, yn) > (Iog X = yu)20*® | X, ¥ € Coo) = 0. (6.1)

n—oo

Compared to (1.13), there are two differences. First, C, replaces Cimy in the conditioning. By [57,
Theorem 3.11] there is a constant p > 0 such that a.a.s. [Cig| = p|V N 0, = p|Ce N Oy, and on
the other hand lim,,—, ]P(Cr(n';)x C Co) = 1 since Cq is unique. Hence, the probability of the conditions
P(utn, v, € Ci) and P(u,,v, € Cs) differ by at most a constant factor, which means that (1.13) is
equivalent to conditioning on {u,, v, € Cs}. Secondly, in (1.13) we draw two random vertices u,, v,
from ¥V N Q,, while in (6.1) we draw two random positions x,, y, and condition on those being in
the vertex set. This changes the number of vertices in Q,, from Poisson(#) to Poisson(n)+2. The total
variation distance of these two distributions is vanishing as n — oo, so this difference can also be

ignored, and proving (6.1) implies (1.13).
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To prove (6.1), let C > 0 be the constant from Proposition 6.2, let 0 < { <, g, par and consider
the event Apo(xy, y,) that |x,, — y,| > logn and that x,,, y,, have distance at least 2Vd¢n'/? from the
boundary of Q,,, a box of side-length n'/¢. Then, since £ <, ¢, par,

P(-Apos(xn’ yn)) 2 1-¢q/2. (6.2)

Consider now any given realisation x,,y, € Q, of the random positions that satisfy Apos(xs, yn).
By Proposition 6.2 applied with €6, := €/2, g6 := ¢/2, conditional on x,,y, € Cs there is a path
Ty, from x, to y, with dev(my, y,) < {|xn — yul + C < 2Vd¢n'/4 and cost at most C(7) <
(log |x, — ya|)20*4/2 + C with probability at least 1 — g/2. Since Apos(xn, yn) holds, the deviation
bound of xy, . ensures that the path 7y lies fully within Q, and thus in G,. Moreover, since
|Xn — yn| = logn and n is sufficiently large, C(rr) < (log|x, — yu|)20*%/2 + C < (log|x, — ya|)20*%.
Hence, for all n large enough, whenever x,,, y,, satisfies Apos (X1, Y1),

P(dCGn(xna yn) < (log|x, — Yn|)A0+S | Xn, yn € COO) >1-gq/2. (6.3)

Since g was arbitrary, together with (6.2), this proves (6. 1) and concludes the proof for the polylogarithmic
case of Theorem 1.10 (including the extensions for @ = oo, and/or 8 = o). The polynomial case is
identical except that we use Proposition 6.3 instead of Proposition 6.2. O

In the rest of the section we prove Propositions 6.2-6.3.

6.2. Infinite weight increasing paths

We first show a simple variant of [55, Lemma 4.3]; this lemma says that any suitably high-weight vertex
is very likely to lie at the start of an infinite weight-increasing path. These weight increasing paths are
necessary in dimension 1 where GM does not percolate. Let

Vu:={veV:w, e[M,2M]}.

6.4
GM = Vm.Em) Em = {uaVEVM’CquM3ﬂ}~ ©4

Lemma 6.4. Consider Setting 6.1 with d = 1. Let €,6 € (0,1) with £,0, <« par, and let
My >, €,6,par. Let 7 € R (or Z for SFP), and for all i > 0 define, M; := Mé“‘g)l, R; = Ml.(H‘S)(T_l),
and I; = [z,z+ R;]. Let Ainc(My, €, 7) be the event that there is an infinite path n, = 7971 ... in G
starting at z =: zo such that for all i > 1 we have z; € (I; \ I;—1) N Vyy,. Then

P(Ainc(Mo, £,2)° | z € Vagy) < exp(-M V). 6.5)

The bound remains true if we additionally condition on'y € V for any y € R\ {z} for GIRG.

Proof. The proof is very similar to [55, Lemma 4.3], which uses a similar construction but in more than
one dimension and with less control over the weights. For all j > 1, let Ai]nc be the event that there is a
path 7, = zoz1 ... zj in G with zg := z such that for all i € [;] we have z; € ({; \ Ii—1) N Vp,. Let A?nc
be the empty event. Then

e8]

P(Aine(Mo, £,2)C | 2€ Viagy) = D P((AfL)C | Al and 2 € Vg, ). (6.6)

i=1

We now bound each term in the sum of (6.6) above. Fix i > 1. Observe that .Af;cl only depends on

G|[I;-1]. Let G’ be a possible value (realisation) of G [1;-;] which implies .Af;cl . Then we can decompose
the conditioning in (6.6) by conditioning on events of the type F;_; := {G[[;-1] = G’} N{z € Vp, } and
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later integrating over the possible realisations G’. Given G’ satisfying Af;cl, fix the vertices zg, . . ., Zi-1
ensuring A1, Let A, be the event that |(1; \ 1) N Vg, | > Mi‘S(T_l)/z; then
P((Afpe)C | Fict) < B((Ale)® | Fim) + (A} | Al 0 Fica). ©6.7)

By (1.6), the number of vertices in (I; \ I;_1) N Vy, is independent of F;_; and is either a Poisson
variable (for IGIRG) or a binomial variable (for SFP), in both cases with mean at least

C(M; C(2M; _
(Ri - Ri_, _1)( (Mi)  t(2M;) )ZZM;S(T ne,

MiT_l (2Ml_)‘r—l

where we used that ¢ is slowly varying, 7 > 2, and M; > M >, par to obtain the last bound. In both
IGIRG and SFP, it follows by concentration bounds (Theorem A.1) that

P((Aler)C | Fiot) < exp(=b7 1%, (6.8)

We next lower-bound the probability that z;_; is connected to any given z” € (I; \ I;_1) N Vi, Let
(V,wy) be a possible value of V which implies A, and suppose that z’ € (I; \ I;-1) N Vay, for
VY = (V,wy). The distance between z;_; and z’ is at most R;, and vertices have weight in [M,2M] in

Vi, so by (1.5) (remembering that d = 1),

a
P(zi-12 € € | (Vwy), Fiy) 2 ¢ - min {1, Mg}
(1+&)i~ 1 [2+e—(1+&) (1+6) (z-1)] | ¢ 6.9)
{1,M0 } ,

= ¢ -min

Since €, 5 <, parand 7 < 3 we have (1+¢&)(1+6)(7—1) < 2; thus the exponent on the right-hand side

of (6.9) is positive and we obtain that the minimum is at 1 on the right hand side. By A’ , (defined above

(6.7)) there are at least Mi5(‘r—l)/2

c € (0,1). Thus,

such vertices z’, each joined to z;—; independently with probability

s(r=1)/2

P((AL)C | Al N Fist) < (1= ™7 < exp(-em? V7). (6.10)

nc

Combining (6.7), (6.8) and (6.10) and using M; > M >, par, d yields

P((AL)C | Fist) < exp(-MT72) pexp(—eM? TV2) < exp(-mP TV,

1nc 4

Substituting this bound into (6.6) and using M >, par, ¢ then yields the required bound of

P(Ainc (Mo, &, Z)C |z € Vuy) < Zexp(—Mfs(T*]m) < exp(—M(f(Tfl)M).

i
i=1

The bound remains true if we additionally condition also on y € V: there is a unique index i so that
y € I; \ I;_1. The number of points in this interval changes by one, but the concentration bound in (6.8)
still remains valid under the conditioning. O

6.3. Being part of the infinite component
The next lemma is a technical necessity to remove conditioning on membership of C, later.

Lemma 6.5. Consider Setting 6.1. There exists p > 0 such that for all distinct a,b € R, we have
P(a,b e Cx |a,beV) = p.
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Proof. For d > 2, this is [56, Claim 3.10]. For d = 1, we instead apply Lemma 6.4. Intuitively, once
the vertices have weight in My, 2M, they will both have weight-increasing paths whp, so p can be taken
slightly less then the probability that both vertices have weight in this interval. Wlog, suppose a < b.
Let Mo > 1 and 0 < 6,& < 1 with 6, & <, par and My >, J, &, par. Let Apanm(a) be the event that
a € V lies in an infinite component of G|[[a, )] (that is, G restricted to the spatial interval [a, o)),
and let Ap, (D) be the event that b lies in an infinite component of G[(—co, b]]. By Lemma 6.4, (and
the last sentence there), we have

P(Apan(@)C | b € V,a € Vag) +P(Apan(0)C | @ € V,b € Viagy) < 2exp(—=m0 T/,
Thus by a union bound,
P(Apatn (@) N Apan(b) | a, b € V) 2 P(a, b € Vyy, | a,b € V) = 2exp(-ML 7). (6.11)

By (1.6), since My >, par, T > 2, and ¢ is slowly varying, we have

2 2
P(a,beVMola,beV):(g(Mo)_ £(2Mo) ) Z(f(Mo)) o1

Mt (2M) ™! amgt) T omY
Since My >, 6, par, it follows from (6.11) that

P(Apatn (@) N Apan(b) | a, b € V) = M7V —2exp(—m0 TV > MY 2,

since Cy is a.s. unique, the result therefore follows by taking p := M 30 /2. O

6.4. Embedded random geometric graphs.

The next lemma, that we prove in the companion paper [56], is the main tool of the section. We first
need some definitions. Recall Vy;, GM from (6.4). We use the notation mq,p for a path between vertices
aandb. Letr,x,/,C >0and z € RY. We say that a set of vertices H C V) is r-strongly dense around
z € R? in V), if the following event holds:

Aderse (M, Vi, 7,2) 1= ¥y € Br(2) : [Ban() 0 M| 2 1Ban() 0 Vwl2). (612)

In words, the set H{ has local density 1/2 around every vertex y near z. The subtlety here is that we require
smaller radius around y then its distance bound from z. Consider two sets of vertices H € H’ C V and
a graph G on V. We say that H shows r-strongly k-linear distances with deviation ¢ in G[#H’] around
z € R¥ if the following event holds:

Alinear(H, G| H'],r,k,¢,D, 2) := {Va € By (z)NH, Vb € H:TFapathr,, C G[H'] with
(6.13)
C(Rtap) < Kla — b| + D, dev(rap) < {la— b+ D}.

For d > 2, we will choose H’ to be the vertex set of the infinite component C¥ . For d = 1, we will
simply set H,H’ to V), restricted to some finite interval. The meaning of the event Aje, is that
between every vertex in H near z and every other vertex in H there is a path in G[H’] with uniform
bounds on the length and deviation of these paths. Finally, we say that a set H is (r, D)-nearto z € V
in G if the following event holds:

Anear(H,G,r,D, z) := {EI apathn, , € G to some a € B, (z) NH with
(6.14)
C(m;.q) €D, dev(my 4) < D}.
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The meaning of this event is the following: H is the ‘good’ set of vertices where distances scale uniformly
linearly. Anear says that the set 7 is reachable from a vertex z via a cheap path with small deviation. For
d = 2, these events are ‘typical’ for a dense subset of vertices in the infinite component of G :

Lemma 6.6. Consider Setting 6.1 and assume d > 2. Let M,ri,ry,D,x > 0 and q,¢ € (0,1).
Whenever D >, ry and r1,1y >4 M, , q, par, and k >, M, then a.s. a unique infinite component Cg
of GM exists and there is an infinite-sized vertex set Hoo € CM determined by (]7, E(GM)) so that
M [Hoo] is connected, and for all 7 € RE,

P(Adense(Hoo, VM,I"1,Z)) >1- q/lO, P(Anear(Hoos G,Y’Q,D,Z) | z€ CDO) >1- Q/los (615)

P(Atinear(Hoo, CM 12, k, £, D, 2)) = 1 —¢q/10. (6.16)

The statement remains valid conditioned on F ; = {y,z € V}; moreover, the constraints on D,r, M, k
are uniform over {Fy ; 1 y,2 € R9}.

We mention that D depends on r, but not on ry, this caused the need of the separate notation ry, r;.

Proof. The lemma follows from results in [56]. There, we show that H., exists, and is infinite and
connected in G in Corollary 3.9(ii), by using a renormalisation to site-bond percolation. The r;-strong
k-linearity comes from Corollary 3.9(iv) in [56] applied with r3.9 = r, and C39 = D, and the (r;, D)-
near property comes from [56, Claim 3.11]. Moreover, we can apply [56, Corollary 3.9(iii)] withr3 9 = 1y
to get the r|-dense property with (logr;)? instead of ri /3 and arbitrary density 1 — ¢ instead of 1/2 in

(6.12). This is a strictly stronger statement since we can cover any ball of radius r;/ ? with balls of radius

(logr1)?, at the cost of increasing the fraction & of noncovered vertices by a d-dependent factor. O

For d = 1, the graph GM does not have an infinite component for any M and the proof techniques
in Lemma 6.6 do not apply. Instead, we directly prove the following analogous statement for G in a
finite interval. In the events Apear, Alinear, We replace Cg by the graph GM restricted to an M -dependent
(spatial) interval.

Lemma 6.7 Consider Setting 6.1 with d = 1. Let q,¢ € (0,1), rpy = ellogM)* Ky = MPH2 and
Dy = M2 D30 1ot 7 e R and Hyy = Bory, (2) N Vas. Then whenever M >, q, par,

P(Adense(/HM, Vm,ru, Z)) =1, P(Anear(/HM, Dy, Dy, Z) | 7€ Coo) >1- Q/lo, (6.17)

P(~Alinear(/HMs GM,VM, K, 0,2Kp1, Z)) >1- 6]/10 (618)

The statement remains valid conditioned on F, ; = {y,z € V}; moreover, the constraints on ry are
uniform over {F ;1 y,z € R9}.

Proof. We write rp; =: r. Since Hyps = B, (2) N Vi, that is, all vertices in V), in By, (z) belong to
Har, also all vertices in B,.15(y) N Vi are in Hyy for all y € B,(z), so the event Agense (H, Var, 7, 2)
always occurs by definition, as required by (6.17).

We next prove (6.18). Here, we need to prove that for every a € B,(z) N Hp and every Vb € Hy
there is a path 7, ), C GM with

C(map) < kpla—bl+2kp, dev(mgp) < 2kpm.

We divide Bj,(z) into sub-interval ‘cells’ and proving that each cell is whp both connected and
joined to each of its adjacent cells in G[Has]. To this end, let R := M*4/(2Vd) = M?/2, let
imax := [2r/R] and imin := —imax. For all i € [imin,imax], let y; := z+i- R and Q¥ := [y;,y; + R);
thus QUmi) .. QUm) partition [z — R[2r/R1,z + (R + 1)[2r/R]) D Ba-(z). Let Apan be the event
that GM [QUmin)], ..., GM[Qm~)] are connected graphs containing at most 2R vertices and that for
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all i € [iminsimax — 1] there is at least one edge in G™ from Q% to Q™. If Apan occurs, then
for all a,b € By-(z) N Vi = Hp there is a path 7, from a to b in GM intersecting at most
Lla —b|/R] +2 < |a — b|/R + 2 many cells; since each cell contains at most 2R vertices and each edge
in GM has cost penalty at most M>3* by (6.4), and since 2RM>* = k;, it follows that

C(map) < (la=b|/R+2)-2R - M** =2(|la — b| +2R) - M** < kprla — b| + 2.

Moreover, since 74, can leave the interval [a, b] at most by the lengths of cells containing a and b, so
the deviation of 7, 5, is at most 2R, and 2R < ks, that is, it does not depend on |a — b|. With ¢ = 0 and
D = 2«kypy, we have just shown that

Alinear (Ha » GM, s> Kkm»0,2kp,2) Apath- (6.19)

We now bound P(Apan) below. We only sketch the proof, the details can be found in [56, Corollary 3.9]
Consider any two vertices in V) in either the same or in neighbouring cell. We use that the weights are
in [M,2M] and the distance is at most 2R = M2, soforall @ € [1, o], it holds that

P(uv € E,C(uv) < M** | u,v € Vi [0V U Q™)) (6.20)
W Wy | g3 -
>c|1A T CFL((W Wy)#MH) > cFL(4*M") > ¢/2. (6.21)
u—v

The number of vertices in each box is Poisson with mean/deterministic RP(W € [M,2M]) > M3~7~¢
for some € <, par with M >, €. We can then couple the induced graph in each cell to an Erd&s-
Rényi random graph and use estimates on the probability that it forms a connected graph [35]. We use
concentration of the number of low cost edges between two neighbouring cells using (6.20). So, a single
cell Q1 satisfies the conditions in Ap,n with probability at least 1 — e™™ " for some & < par with
M >, &. A union bound over the at most 2 - [2r/R] + 1 cells yields that
P(Apan) = 1= (2-[2¢/R]+ 1) - e™ 7" > 1 =577

Since r = e10gM)?® and M >, par, the e ™™ 7 term dominates, and together with (6.19) and
M >, c, q, for any g < 1 we obtain P(Ajnear (Hpr, Har» 15k, 0,2k, 7)) = 1 — q/10, and we have proved
(6.18) as required. The argument conditioned on Fy , is identical. In dimensions d > 2 [56, Corollary
3.9(i)] also explicitly allows for planted vertices.

It remains to bound P(Ayear (Haz, Dar, D, 2)) conditioned on z € Co, see (6.14) for the definition
of Apear. Here, we replaced the ‘usual’ radius ry; = exp((log M)?) by Dyy = M>(T-D51 <« py,
that is, we can find a path from z to a vertex with weight M within a much smaller radius from z
that rj; would give. We first dominate Apear(Has, Dars D, z) below by events A; to Ay defined as
follows. Let p <, par be as in Lemma 6.5, and define My > O satisfying M >, My >, q, p, par, and
let ro := Mg(T_l). By Lemma 6.4 we know that a.s. C contains a vertex in Vjy,, and let vo be an
(arbitrarily chosen) closest such vertex to z in Euclidean distance. We define the following events:

(C1) A;: there is a path 7, ,,, from z to v with C(n;,y,) < Dp/2 and V(75 4,) € Bp,, (2);

(C2) Ajy: By, (z) contains a vertex in Vpy, N C, that is, vy € B, (2);

(C3) Ajz: every vertex x € B,,(z) N Vp, has an associated path 7,_,y,, from x to some vertex in Vy,
with V(nx-y,,) € Bp,,(z); and

(C4) Ag: A, and Aj both occur and C(7ry,—y,,) < M3H < Dy /2.

Observe that if 4, A, A3z and A4 all occur then concatenating x, ,, and my,_,y,, yields the path

required by Apear(Har, Dar, Dy, 2); thus

3
P(Ancar(Har. Dar. Dir, )0 | 2 € Coo) < D P(AL | 2 € Co) +P(A] | Ay, As 2 € o).
i=1
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By Lemma 6.5, z is in the infinite component of G with probability at least p, so it follows that

P(Anear(HMs DM, DM, Z)C | Z € Coo) < P(AE: | Z € Coo)+

(6.22)

P(AzC |z € V)/p+]P>(A3C |z € V)/p+P(AE | Ay, A3,z € V) /p.
We first bound P(.AF | z € Coo) in (C1). Given that we fixed vo, let 7, ,, be an (arbitrarily chosen)
cheapest path from z to vp; such a path must exist whenever z € C. Since C(n4,,,) and inf{R >
0: V(7;,v,) € Br(z)} are a.s.finite random variables and since D s >, g, par, My, we can choose D p
sufficiently large so that

P(AL | z € Cu) < g/40. (6.23)
We next bound IE”(AzC | z € V) in (C2). The event A, occurs if and only if B, (z) N Vas, N Coo # 0.

Similarly as before, |B;,(z) N Vay,| is either a Poisson variable (in IGIRG) or a binomial variable (in
SFP) with mean

> oMV, (6.24)

E[|B,(2) NVl |z € V] > ro(‘)(Mo) _ (2Mo) )

M(;r—l (2M0)T71

where we used M >, par and the value of ry = Mé ™ for the second inequality. In particular, by
Chernoft’s bound,

P(1Byy(2) N Vgl < M™% | 2 € V) < exp(-mT"7%). (6.25)

Lete, § € (0, 1) satisfy 6, e—1 <, par and M, >, 6, . Recall the event A;,. (M), €, x) about having an
infinite weight-increasing path from Lemma 6.4; this event implies {x € Cs}. So by (6.5) in Lemma 6.4,
P(x ¢ Coo | x € V) < eXp(—Moé(T_l)M) for some ¢ <, par with My >, ¢. By translation invariance,
this implies

P(x ¢ Coo | X € By (2) N Vit z € V) < exp(-M TV,
Hence, the expected number of vertices in V), outside the infinite component is at most
5(7-1)/4
E[I(Bry () N Vagy) \ Cool | 2 € VI < E[1Bry (2) N Viagg| | 2 € V] - exp(=pag T
< E[|Bn(2) N VI |z € V] -exp(=Mg ") < 2ro + D exp(-5 TV,
which is a crude upper bound. It follows by Markov’s inequality that

(2ro + 1) exp(-M ")
MV (6.26)
< exp(—M(f(T_l)/S),

P(I(Byy(2) N Vagy) \ Cool = M7V 12 1 2 € V) <

where we used rg = Mg(T_l) and My >, 6, par. By a union bound over (6.25) and (6.26),
P(AL | z € V) < exp(-M{"V8) +exp(=M2 TV < pg /a0, (6.27)

for all sufficiently large M. We next bound P(AE | z € V) in(C3). Forall x € B, (z) N Vg, let Az (x)
be the event that x has an associated path 7,_,y,, as in .43. We restrict this path to be a weight-increasing
path as in Lemma 6.4. Let &, § € (0, 1) satisfy §, € <, par, and require that M, >, &, . For sufficiently
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large M, we may choose My such that i := (loglog M —loglog Mo)/log(1 + &) < log M is an integer,
SO Mé“s)' = M. Then by Lemma 6.4, for any given x € B,,(z), the weight increasing path reaches a

vertex of weight M at radius R; = Mélw)i(T*l)(H&) = M(T-DU+6) o pp2(r=D+3u — p,.and so the
path is contained in Bp,, (z), and we obtain

P(A3s(1)C | x € Vagyoz € V) < P(Aine (Mo, £.5)C | x € Vagyz € V)

< exp(—M(§5<T_1)/4).

(6.28)

It follows by a union bound that
P(AY | z € V) < P(IBry(2) N Vigy| 2 70 | 2 € V) +rgexp(-M TV,

As before |By,(z) N V| is either a Poisson variable (in IGIRG) or a binomial variable (in SFP) with
mean bounded from above

< roMy V2,

E(|By (2) N V| | 2 € V) < 2ro(f(Mo) eMy) )

M(;r—l (ZMO)T—I
Therefore P(|B,,(z) N Vpm,| = ro | z € V) <270 and we get

P(AS |z € V) <27+ rgexp(-MS ") < pg/40, (6.29)

where the second inequality holds because because ry = Mg (r-1) and My >, 0, p, q,par.

Finally we bound the last term in (6.22), (see A4 in (C4)). Conditioned on the realisation of G, any
path m,,y,, that satisfies the weight-increasing path property in (6.28) has at most log M edges and
all vertex weights at most M. So, its expected cost is at most

E[C(7ty—va)] < |E(Tvy—vp )| - MPHE[L] < MPE[L]log M < pgM** [40

since M >, p, g, par. Thus by Markov’s inequality, the probability that the cost of this path is larger
than M3# is at most pq/40.

P(AL | Az, A3,z € V) < pg/40. (6.30)

The result therefore follows on substituting the bounds (6.23), (6.27), (6.29), and (6.30) into (6.22).
The argument conditioned on F), ; is identical; note in particular that in applying Lemma 6.4, we may
assume wlog that y < z by symmetry. o

6.5. Connecting ‘down’ from high to low weight vertices cheaply.

We use the next lemma to connect the endpoints yg, y¥ of the path Tyx vk obtained in Corollaries 5.2

and 5.3 to Heo € CM from Lemma 6.6 (when d > 2) and H,, from Lemma 6.7 (when d = 1). Recall
Em from (6.4) and that Fo . = {0,x € V}.

Lemma 6.8. Consider Setting 6.1 and any d > 1. Let w>, g, par with w > M3V [et r := w3/d

and let z € R?. Let H C Vs be a random vertex set which depends only on (V,wy,En) and which
satisfies P(Agense (H, V7, 2) | Fo,x) 2 1 —¢q/10. Let

Aon(00.2) 2= {Vy € V01 (B, (2) x [w.dw]) < 3 € 10 Byus (9). yu € £, Clom) = ws).
Then for all 7z € R, P(Adgown (W, 2) | Fox) = 1—q/3.
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Informally, this lemma states that every vertex that has fairly high weight near z has a direct cheap
edge to a nearby vertex that has weight in [M, 2M] and is part of the well-connected sets CM (in dim
2), Hp indim 1.

Proof. Fix z € R? and let A; = Agense(H, Var,7,2) in (6.12), so that IP’(.AF | Fox) < q/10 by
hypothesis. Considering the definition of Agense in (6.12), let A, be the event that for all y € B,(z),
|B,.1/3(y) N Var| = r/*. Choose fixed points x1, . . . s X[rda] € Byr(z) such that {B,135(x;): i < [r91}
covers B, (z). For all y, the ball B,.i3(y) must contain at least one ball B,.i3,(x;), so if in each ball
B3 (x;) we find at least r%/* vertices from 7 C Vs then the event A, holds. Let ¢4 denote the
volume of a unit-radius d-dimensional ball. By (1.6), in IGIRG |B,.135(x;) N V| is a Poisson variable
with mean

2-d¢ pdl3 (M) t2M) S 2pdf3 p-3T-D/2 5 od/4
MT—I (2M)T—1

(also conditioned on Fy ), where the first inequality holds because M >>, par and the second inequality
holds since 74/12 = w!/* > M?>(*=1) and M > 1. Similarly, for SFP it is a binomial variable with mean

greater than 2r%/4; in either case, the Chernoff bound of Theorem A.1 applies, and since r >, g we have

P(Ay | Fox) = P(Vy € Br(2) 1 [Ba(y) N V| 2 r/ | fo,x) (6.31)
> P(Vi: Bz (xi) N V| > r* ) Fox) = 1-[r4] Lo S q/30.

Let A3 be the event that B, (z) contains at most 2(cyr? + 2) vertices. In SFP, P(A3 | Fox) = 1; in
IGIRG, Theorem A.1 applies. In both cases, using r >, ¢, par,

P(Az | Fo,x) =P(|Br(z) N V| < 2cagr? +2) | Fox) = 1 - earB3 sy - q/30. (6.32)

Since ]PD(AIC | Fo.x) < q/10, a union bound with (6.31) and (6.32) yields P(A; N A> N A3 | Fo.x) =
1 — g/6. We abbreviate P(- | V,wy, Ep) when we condition on the event that Y = (V,wy) and

Em = Ep. The events Fy , Az, Az, and also the set H and thus A; are all determined by (V, wy, Epr).
Let us call the realisation (V, wy, Ep) good if the event A; N Ay N Az N Fo , holds. Then

P(Adonnw,2) | Fo) = 1-q/6—  max  P(Agown(w,2)C | Vowy, En). (6.33)
(V,wy ,Ep) good

Fix a good realisation (V,wy, Epr). Following Agown, let y1,..., yx be the (fixed) vertices in B, (z)
with weights in [w,4w], and for each i € [k] leta\”,...,a;’ be the (fixed) vertices in B,i3(y;) N H.
Thus, by definition of Agown,

P(Adown(ws Z)C | V’ WV’ EM)

, o (634)
=P(3i € [k]: V): yia;.') ¢ £(G) orC(yia;.‘>)>w *1V,wy,Eum).

Conditioned on (V, wy, Ep), the edges y;a' are present independently since wy, > w > M8 >
2M since 7 > 2 and M >, par. Since wy, € [w,4w], w_w € [M,2M], and |y; - a;.”l <3 =ywld
7

we get using (1.5) and (1.2) that for all i and j,

P(yia;f) ¢ £(G) orC(y,-a;.i)) >wH | V,wy,Ey) < 1—c(1A wM)*+P(L > %) <1-5,

where the last inequality holds because w2 /(8wM)H* > M8 (T=D=1 /8K tends to infinity with M and
M >, par. This computation also holds for « = oo or § = oo. Conditioned on a good realisation
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(V,wy,Epnm), A1 N Ay N Az occurs, so for each i, the number of vertices aj is ¢; > r?/* and the

number of vertices y; is k < 2cqr? + 4. By independence across j, (6.34), and a union bound,

P(Adown(w’z)c | V’WV’EM) < ZP(V] yia},—) g& OrC(yia;.i)) > w2 | V,WV,EM)

i<k
< Z(l —c/2)% < (2cqr? +4)e_rd/4£/2 < gq/6,
i<k
where the last inequality holds since » = w3/¢ >, ¢, par. The lemma then follows by (6.33). o

6.6. Connecting 0, x to the endpoints of the hierarchy.

We are now ready to prove the main results of this section, Propositions 6.2-6.3 that connects 0, x to the
endpoint of the constructed paths in Corollaries 5.2-5.3, respectively. Recall g, tpor from (1.8).

Proof of Proposition 6.2. We first prove the result for d > 2, then describe the necessary modifications
ford = 1.Letp > Obeasin Lemma 6.5 andlet§ <, &, g, p, par and wy > 1. We want to apply Corollary
5.2, which holds for sufficiently large |x|. Thus there exists r5 » >4 ¢, 8, &, £, w, par such that Corollary
5.2 is applicable whenever |x| > rs . We may also assume rs » >, k. To cover the case |x| < rs ., for all
v € CuNB,. , (0), pick the cheapest path g, ,, from O tov. Then Ry := max{C(m,y) : v € CooNB;. ,(0)}
and R, := max{dev(m) v) : v € Coo N By ,(0)} are almost surely finite random variables, and since we
may assume D >, r5 .1, g, par, we have P(R],Rz <D |0,x € Cx) = 1 - g, as required. So from now
on we may assume |x| > rs».

Letw be as in (5.4) in Corollary 5.2 and let ry := wld Let M,ry,k > Osatisfyw, D>, r >, M,
q,p,€,par and D >, rs >, k>, M as in Lemma 6.6, and note that |x| > r5, implies W, r; >, k.
Let Q be a cube of side length |x| containing O and x, and let A, be the event that Q contains a
weak (6/4,wp)-net (as in Definition 2.1) which contains 0 and x. Apply Corollary 5.2 with 5, = &/2
and g5 := gp/5 to obtain Xjelyl0g(0,x). Then consider the intersection of the following events from
Corollary 5.2, Lemma 6.6 (defined in (6.13), (6.14)) and Lemma 6.8:

A= Aper N Xpolylog(o’ x)

0 () (Anear(Hoos 2, D/4) 0 Anear (oo, €2, ., DJ4,0) 0 Adoua (7, 9)). (639
ve{0,x}

When A occurs, Xponyiog (0, X) gives a path between endpoints y, yx with weights in [w, 4w] and within
distance r; = w>/¢ from 0, x, with cost C(ﬂ'yg’y;) < (log |x|)20*#/2 and deviation devo, (ﬂ'yg’y;) < x|,
respectively, see (5.4)—(5.6). Then, the events Agown (W, 0), Adown (W x) from Lemma 6.8 applied re-

spectively to y,yy give us two paths 7 Ty i and myx .+ with uj,uy € He and within respective

distance w'/? from y3,y§, and cost at most w2*. Further, the events Apear(Heoo, 12, D/4,0) and
Anear(Hoo, 72, D /4, x) in (6.14) also give us two paths mg,, and 7y, , with respective endpoints
uo, Uy € Heo within distance r, < W/ from 0,x respectively, and cost at most D /4 each. Fi-

nally, since uo, 0, Uy, Uy € Heo, and uo, u, is within distance r, from 0, x, respectively, the events

Alinear(Hoos CM .12, k,8,D /4,v),v € {0,x} in (6.13) ensure that there exist paths Mgy A0 T x
in G that have cost at most «|u, — u}| + D/4 < 3w/ 4 D/4 since |u, —ul| < 3r; = 3w/
and deviation at most {|u, — ul| + D/4 < 43_3“ + D/4. The concatenated path is mp , :=
T00,0u0 Tty aag Tuad v T,y Uy T, M ¢ . Then, since w < (log|x|)®/? in (5.4), we can estimate the
cost, and usmg that the vertices of the paths 7oy, 7y, s Ty s Ty > Tuck > My x AT€ all within

distance 3r; = 3w>/“ from 0 and x respectively, we can bound cost and deviation as
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C(mox) <2-D/4+2w +2(k3w4 + D/4) + (log |x])*"*/% < (log |x|)20*® + D,

6.36)
dev(mo,x) < max {deVo,x(ﬂyO*,y;), 2w 4 3w 4 D/4} < x|+ D, (

using |x| > 755 >, &, &k, par. Thus A C Apgiyioe. A union bound on the complement of the events in
(6.35) from Lemma 2.2 with t = 2 and &, » := §/4 for Ape, Corollary 5.2, Lemma 6.6 with g¢ ¢ := gp,
and Lemma 6.8 with g¢ 3 := gp gives

P(AC N {0,x € Co} | 0,x € V)
P(0,x e Co |0,x € V)

B(AS, o100 € Co) < B(AC | 0.x e Co) =

< qp
T P0,x€Cx |0,x€V)’

The result therefore follows from Lemma 6.5.
When d = 1, we construct mp , in exactly the same way as below (6.35), using Lemma 6.7 with

Mg 7 = exp(4/(3/d) logw) (so that rp, , = W3/d), in place of Lemma 6.6. We may assume |x| >, &,

asford > 2. Note that M 7 < exp(+/loglog |x|) sincew < (log |x|)¥ and &€ <, par, and in particular we

8(7-1)
6.7

may assume w > M : as in Lemma 6.8 since w >, g, par. Using |x| >, &, £, this implies the costs

of all our subpaths counted in (6.36) except Tys yx are negligible compared to the (log |x])20*¢/% cost
of Tyx yis as in the d > 2 case, and likewise that the deviation of these subpaths from the line segment
Sox is negligible compared to {|x|. The cost and deviation of Tyx yx are bounded using Corollary 5.2

exactly as in the d > 2 case in (6.36). |

Proof of Proposition 6.3. The proof when p € (f10g, tpol] is identical to the proof of Proposition 6.2,
except that the event Aoly10¢ (0, x) from Corollary 5.2 is replaced by &p01(0,x) from Corollary 5.3.

When p > ppo and d = 1, we have o = 1 and we can prove that the cost distance is at most x|+
by using Lemma 6.7 directly as follows. We set rp; = |x|, which gives, using ry; = exp((log M)?), the
value M = exp(+/log|x|), which is slowly varying in |x|. Lemma 6.7 defines s := B2y, N Vi, and
with Dy = M2(T=D¥31 and kp, = M3H*2 it states that

P(AneaI(HMs D, Dy, 0) N Anear (Hpr, Dy, D, x)
N Atinear(Har, Hars rar, kar, 0,2k01,0) | 0,x € Coo) = 1 —3¢/10.

The first two events Apear (Hazr, Dar, D, z) with z € {0, x} guarantee that we find two paths 70,y and
Ty yx With cost at most Dy from 0 and x to respective vertices yg, y¥ € Vuy, that are fully contained
in Bp,, (0) and Bp,, (x), respectively. Here, Dy, = M>(T=D+3# < |x|#/2 for sufficiently large |x|. Then,
since yg is within distance Dj; < rys from 0, the third event Ajjpe,r guarantees a path between y(”)‘ and

every vertex in Hys = Vs N By x| (0) with kp-linear cost, in particular there is such a path Tyx v
between yj and y. Let 7o, = 7, ey yaTyx x be the concatenation of these paths. Since the distance

|5 =X < 2Dy +|x|, the cost and deviation of this path is, using that ks = M3#+2 < |x|#/2 for |x| large,

C(mo,x) = C(no’yg) +C(myx ) + C(nyo*,y;) < 2Dy +kmlyy — il +2km
< 20x|*7 + x| (x| + 20x|72) + 20x] /% < [x]'*,
dev(mp ) < max{devo,x(noyy(‘;),devo,x(ny:,y;),devo,x(ny;,x)}
< max{Dy,0lyy — yx| +2km} < |x|%,
for |x| large enough. For small |x| we can absorb the costs and deviation in the constant D. This proves
the lemma when d = 1 and p > ppo with o = 1.

When p > ppo and d > 2, a straightforward adaptation of the above proof for d = 1 could in
principle also be used in higher dimensions. However, with some more effort one can get rid of the extra
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+¢ in the exponent, and prove fully linear cost distances. We prove this stronger version (without the
|x|# factor) in [56, Theorems 1.8, 1.10]. O

A. Appendix
A.l. Concentration bounds

Theorem A.l. (Chernoff bounds (66, Theorems 4.4-4.5)) Let X\, ... X} be independent Bernoulli
distributed random variables, and define X := Z{-‘zl X; and m := E[X]. Then, for all 1 € (0, 1] and all
t > 2em,

P(X<(1-Dm) <e™P2 PX>(1+)m)<e™ B, P(X>1) <2

The same bounds hold when X is instead a Poisson variable with mean m.

A.2. The optimisation of total cost: proofs of Corollaries 5.2 and 5.3

Both corollaries follow from Proposition 5.1 with suitably chosen parameters. Throughout, we use the
convention that co-0 = 0. In Proposition 5.1, the values of (y, z, 7, R) are not set yet (and they are not part
of the model parameters par). We will introduce constraints on these parameters below in Definition A.2
(‘(K, A)-validity’), then we show in Lemma A.3 that a (K, A)-valid assignment of values in Proposition
5.1 yields a path between 0 and x of cost K with a multiplicative ‘error’ of at most A. Recall A, ® and
w from (4.1), (5.1) and (5.32), and that ¢ is the side-length of the box Q in which the net exists.

Definition A.2 (Valid parameter choices). The reduced Setting 4.1 is Setting 4.1, except without y
being defined. Consider the reduced Setting 4.1, and let K, A > 0. A setting of parameters (v, z, 7, R)
is (K,A)-valid for ¢ if the following conditions all hold for & >, par, writing w := §7R_ld/ 2

y=v(par) € (0,1), z=z(par) € [0,d], n=n(par) € [0, o), (A1)
R = R(par, ¢) € [2, (loglog&)?/4] NN, with (A2)

W2 e [e” 97 A/loglogé], (A3)

2RWHET < KA[loglogé, (A4)

A(n,z) >0 and either z = 0 or (7, z) > 0. (A.5)

Lemma A.3. Consider the reduced Setting 4.1. Let q,{ > 0, let 0 < 6 <4 q, par, and suppose that
E>,0,q,wo,,par. Let K, A > 0, and suppose that (y,z,1, R) is (K, A)-valid for é. Let Xk a) be
the event that there is a path Tyx vt in G” with endpoints y and y% satisfying

y
Wy Wy € [, 47, (A.6)

¥y € B34 (0), yr € B3ja(x), (A7)
C(ﬂyg’y;) < KA and devo,(7) < C|x|. (A.8)

Then P(X(x a) | V,wy) =21 —¢.

Proof. Let yg := 0, let y; = x, let & := |x|, and let 6 := 1. We first verify that the conditions
of Proposition 5.1 hold. Since § <, par, by (A.1) we may also assume ¢ <y, z, 1 as required by
Proposition 5.1. Combined with (A.5) this implies that A(77,z) > 2V as required, and that either
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z=0or ®(55,z) > V5 as required by Prop. 5.1. Since & >, 6, par, the inequalities & >, y, 7,7, 8, wo
and €7 > (loglog &Vd)'194/9* by (A.3) and since W := &7 '9/2, which is also required. Finally,
R € [2, (loglog&)?] by (A.2)and y € (0,1), z € [0,d] and 5 > 0 by (A.1).

Suppose that the event Xyignpam 0f Proposition 5.1 occurs, and let 7 be a path as in the definition
of Xhigh-pan- Then 7 satisfies (A.6) immediately, because Xhighpan Tequires that the end-vertices of
the path 7 have weights in [w,4w]. The event also requires that the end-vertices are within distance
chnyl from 0, x respectively. Since & > par, J, cHg-‘“Yml < §7R713/2 = w4 and so r satisfies (A.7).
The cost of 7 is at most cy 2RW4"§ 7; by (A.4) combined with the fact that £ >, par, d, it follows that
C(r) < KA. The event Ayjgh.pan ensures that the deviation of 7 from the section Sg . is at most 3¢z &Y
where & >, {,par, 6 and y < 1, so (A.8) follows for any ¢ > O fixed. Thus

P(Xik,a) | V.wy) = P(Xhighpath | Vo wv ).
By Proposition 5.1 and the fact that & >, ¢, it follows that

P(Xk,a) | Vowy) 2 1=2e7(0eloe " 5 g
O

We shall now apply Lemma A.3 to prove Corollary 5.2 (which covers the polylogarithmic regime).
Here, there are two possible choices of parameters (y, z,7, R) for Lemma A.3: if @ < 2, then we are
able to build a polylogarithmic-cost path using long-range edges between low-weight vertices (Claim
A.5 below); if u < pog then we are able to build a polylogarithmic-cost path using edges between
high-weight vertices (Claim A.6 below). We then prove Corollary 5.2 by applying whichever parameter
setting constructs a lower-cost path (in Corollary A.7). In both regimes, we need the following algebraic
fact.

Claim A 4. Let

loglog & — (log™ é‘)zw

R=R(£) = [ gy (A.9)

Then for all y € (1/2,1) and &€ > v, it holds that
£ e [elloe” €07 pVioglog £ (A.10)
Proof. The value of ¢ is large, so using (A.9) and that [x] < x + 1,
yR-1 5 o= loglog £+(log™ £)? _ (log*3 f)mg*4 £ /logé > (log*3 g)z/logf.
It follows that ‘f”R_l > ol0g” £)? 4g required in (A.10). Moreover, since & >, v, it holds that
YR < ePE O (3P log€) < e 2 log £ = \loglog €/log .

It follows that §7R71 < em, as required in (A.10). O

The next claim finds a (K, A)-valid parameter setting when @ < 2, for polylogarithmic cost-bound
KA.

Claim A.5. Consider the reduced Setting 4.1, and fix £ > 0. When @ < 2, then writing A, := 1/(1 —
log, @), the following assignment is ((log &)2«, (log £)#)-valid for £ >, &, par and 0 < &’ <, &, par:

loglog ¢ — (log™ 6)21

a
==+ =0 =0 R := [
ye=agte ¢ 7 logy~!

(A.11)
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Proof. We check the requirements in Definition A.2 one-by-one. All the requirements of (A.1) and
(A.2) are immediately satisfied except for R < (loglog&)?/4, which follows from the definition since

&>, yandy > 1/2. Also since &>, y, par, (A.3) follows from Claim A.4 since w = & '4/2 and
A = (log &€)¢. We now prove (A.4). Since & >, v, we estimate 2R using R and y in (A.11):
2R < zloglog &[logy™! — (lng)lng/lOgy_l — (logé_-)—logZ/log(n/2+5’)‘ (A12)
Since &’ <4 &, the exponent of log & on the right-hand side is
log2 log2 1
% %% N (A.13)

+ == —.
—log(a/2+¢’) ~ log(2/a) 2 1-log,a 2 2

Moreover, since = 0in (A.11), the other factor W4"§ Tin (A.4)is atmost (using Claim A.4 and £ >, &),
whrgn = gudy* T o pudfloglog & < (100 £)€/2 fog log £. (A.14)

Then (A.4) with KA = (log &)+ follows from (A.12)—(A.14). We next prove (A.5). Using the formula
in(4.1),withz=0andnp=0,and y = a/2 + ¢/,

A(n,z) =2dy —a(d-z2)-z2(t = 1)+ (0AB(n— uz)) =2d(a/2+€") — ad = 2de’,
so A(n,z) > 0 as required. Since z = 0, (A.5) follows, so all criteria in Def. A.2 are satisfied. O

The next claim finds a (K, A)-valid parameter setting when u < pi10g, for polylogarithmic cost bound
KA.

Claim A.6. Consider the reduced Setting 4.1, and fix & > 0. When u < pyog, then writing Ag :=
1/(1 =log,(t — 1 + up)), the following assignment is ((log &)*#, (log &)?)-valid for & >, &, par and
&’ <, g,par:

':T—1+,uﬁ+8,.

loglog & — (log™ £)?
- . z=di pe=0; R |loglogg—(ogm )7

log y~!

(A.15)

Proof. First note that 8 = oo is not possible here, since in that case ujoz = 0, see (1.19). We check the
requirements in Definition A.2 one-by-one. Since 7 > 2 and uf > 0, we obtain y > 1/2 > 0 above, and
since u < pjog = (3—7)/B and &’ <, par it also holds that y < 1; thus all the requirements of (A.1) are
satisfied. It is also immediate that (A.2) is satisfied except for R < (loglog £)?/4, which follows from the
definition in (A.15) since £ >, y and vy > 1/2. Since & >, y, par, (A.3) follows from Claim A.4 since
w= §7R_ld/2 and A = (log &) ¢ as in the previous claim. We now prove (A.4). Analogously to (A.12):

2R < ploglog £flogy™! _ (log f)logz/log(l/)’). (A.16)

Since &’ < &, now vy is given in (A.15) and

log2 log?2 € 1 € &
< + - = +—-=Ag+—. (A.17)
log(1/y) ~ log(2/(t—1+pup)) 2 T-logy(r—1+pup) 2 ~F72
Moreover, by Claim A.4 and since & >, ¢, it holds that
WHen = gudy™h o pudfloglos & o (100 £)€12 [og log £. (A.18)
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Now (A.4) follows immediately from (A.16)—(A.18). We next prove (A.5). Using the formula in (4.1),
with z =d and n = 0, and y as in (A.15),

Am,2)=2dy-a(d-z)—z(t - 1)+ (0AB( — pz)) =2dy —d(r = 1) — dup = 2de’,

so A(n,z) > 0 as required. This also remains true for @ = oo both formally with a(d —z) =0 -0 =0
as well as intuitively, since z = d means we use edges which are present with constant probability. It
remains to prove ®(7, z) > 0. Using the formula in (5.1), and that y A 1/2 = 1/2,

O(1.2) = [dy A 5|+ [0 A B(n - 55)| = dy n1/2) - pdy2 = a1 - up) 2.

Since p < piog = (3 — 7)/B, it follows that ®(n, z) > d(7 —2)/2; since T > 2, (A.5) follows. O
Comparing the definition of Ay in (1.9) to those in Claims A.5 and A.6, we recover here that

1
1 -log,(min{a, 7 — 1 + uB})

Ao =min{A., Ag}, (A.19)
which formally remains true also when @ = oo or 8 = oo by (1.17), or (1.20). Combining the two claims
we obtain the following corollary:

Corollary A.7. Consider the reduced Setting 4.1, fix € > 0. When either o € (1,2) or u € (fexpl, Hiog)
or both hold, then there exists a setting of (v, z,n, R) (depending on &) which is ((log £)2°, (log &)?)-
valid for & >, €, par.

Proof. Recall that p1og = (3—7)/, 50 if fexpl < ft < piog then S < oo; thus we cannot have @ = 8 = oo,
and the formula (A.19) is valid whenever at least one of @, 8 is finite.

We show that when the minimum in the denominator is @ < 7 — 1 + ug, (so that Ag = A, ), then also
@ < 2 holds. Then, Claim A.5 directly gives a ((log €)%=, (log £)?)-valid parameter setting. There are
two cases: either u > pjog, then @ < 2 must hold by the hypothesis of the lemma; or u < pioe = (3—-7)/8,
so a being the minimum gives that @ < 7 — 1 + pyog - = 2.

Similarly, we show that when the minimum in the denominator is 7 — 1 + u8 < «, (so that Ag = Ap),
then also 1 < pjog holds. Then, Claim A.6 directly gives a ((log )25 (log £)¥)-valid parameter setting.
There are again two cases: either @ > 2, then u < ujoe must hold by the hypothesis of the lemma; or
@ < 2,507 — 1+ up being the minimum gives that 7 — 1+ B < 2and hence pp < (3-17)/B = pi1pg. O

We are ready to prove Corollary 5.2 giving the polylogarithmic upper bound for the cost-distance

Proof of Corollary 5.2. Immediate from combining Lemma A.3 with Corollary A.7, where the required
bounds on w in (5.4) follow from (A.3). O

We next apply Lemma A.3 to prove Corollary 5.3 that covers the polynomial regime. As with the
proof of Corollary 5.2, we show that multiple possible choices of parameters are valid and choose the
one which yields the lowest-cost path. We start with the case where @ = § = oo. Recall the definition of
1o from (1.10), (1.16), (1.19) and (1.21).

Claim A.8. Consider the reduced Setting 4.1, and fix & > 0. When @ = 8 = co and u € (iog, Upol]
that is, 7o = 1 A du in (1.21), then the following setting is (£, £€)-valid whenever &’ <, &, par (with
1/(&")? an integer), and £ >, ¢, &', par:

vi=1-¢ z:=d, n=no+ Ve R:=1/(e"). (A.20)

Proof. Recall from (1.21) that when @ = 8 = oo, the values po, = 0, ppor = 1/d. We check the
requirements in Definition A.2 one-by-one. Both (A.1) and (A.2) are immediate. Since &’ < 1/2, it
holds that y € [e™2%", e~%]; thus YR~ € [e7%/#", ¢~1/(28)] by the choice of R in (A.20). Since & >, &’
and &’ <, g, par, it follows that §7R_ld € [e(l"g*3 f)z,fg/log log &] as required by (A.3). Moreover,
using that w = &Y"12d e estimate 2RwHHEN = QREm MY < gef3 L gmo L gel3 < EM*E Noglog &
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and (A.4) holds. It remains to prove (A.5). Using the formula in (4.1) with y, n, z as in (A.20), and that
M =< Hpol,

A(n,z) =2dy—a(d-2)—z(t = 1)+ (0 A B(n — pu2))
=2d(1-&')-00-0-d(t-1)+(0A00)=d(3-17-2&");

since 7 < 3 and &’ <, par, A(n,z) > 0 as required. Finally, using the formula in (5.1) and that
v A 1/2 =1/2, we analogously obtain that

®(n,2) = [dy A %] + [0 /\,8(77 - %)] = d(y A1/2) + (0 A co(du/2 + V&) = dJ2 > 0,
so (A.5) follows. Hence, all criteria in Def. A.2 are satisfied. ]

When at least one of @, § is noninfinite, we can find two possible optimisers: one when p < g,
and one when p1 < pip01, g hold in (1.8). We treat the two cases separately. Recall ppo1 g = 1/d+(3-1)/8
and let g := d(p — piog), the first term in the second row of (1.10).

Claim A.9. Consider the reduced Setting 4.1, and fix € > 0. When @ > 2, u € (p10g, Mpol,g], then the
following setting is (£7, £€)-valid for &’ <, &, par (with 1/(¢’)? an integer) and & >, &, &', par:

yi=1-¢& z:=d; n:=np+Ve'; R:=1/(&")°. (A.21)

Proof. The @ = 8 = oo case was treated in Claim A.8 with (A.20) coinciding with (A.21). We treat
the cases when at least one of a,( is finite. We check the requirements in Definition A.2 one-by-
one. Both (A.1) and (A.2) are immediate. Since &’ is small we may choose it &’ < 1/2, implying
that y € [e72¢,e~%]; thus YR~ € [e72/¢, ¢~/ (28] Since £ >, &’ and &’ <, &, par, it follows that
f"R_ld € [e(log*3 72 &% /loglog £] as required by (A.3). Moreover, for (A.4) we use that w = §7R_]2/d
and estimate 28w gn = QRgm¥2udy™™ < gef3 gnp . gol3 < gmp+e loglog & and so (A.4) holds. Tt
remains to prove (A.5).

By their definition in (A.21), z = d and 7 = njg + Ve’ where ng =d(u— o) =d(u—(3-1)/B),
we compute 77 — uz = V&' — (3 - 1)d/B < 0, since &’ <, par. So, using the formula in (4.1) with y, 7, z
asin (A.21),

A(n,z) =2dy —a(d —z2) —z(t = 1) + (0 A B(57 — puz))
=2d(1-¢')—d(r-1)+pVe' — (3-1)d = BVe' - 2de’.

Since &’ <, par, it follows that A(n, z) > 0 as required by (A.5). This computation also remains valid
both formally and intuitively when @ = oo and 8 < oo, since z = d and a(d — d) = 0 reflects the fact
that the edges we use appear with constant probability each. When @ < oo and 8 = oo, ujo; = 0 and
Hpolp = 1/d, hence n — uz = du + Ve’ — ud = Ve’, so the minimum in 0 A B(n — uz) = 0. Hence when
B=oo,sincey=1-¢ and7 -1 <2,

An,z)=2dy—a(d-d)—d(r-1)=d2y - (r-1)) > 0. (A.22)
Finally we treat ®(n,z) > 0. When 8 < oo, using the formula in (5.1) and that y A 1/2 = 1/2, with

parameters in (A.21) and n = ng + Ve = ud - (3%)”’ + Ve’, we analogously obtain that

®(n,2) = [d)’/\%]+[0/\,8(;7—%)] Z%"J,

- ud  (3-71)d
0/\,8(\/8_+7—T)]
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In case the minimum on the right-hand side is at 0, ©(77,z) > 0 and so (A.5) is satisfied. In case the
minimum is at the other term, we use that u > ujoe = (3 —7)/B, 50 ud/2 > (3 - 1)d/(2f), so

_(3—T)d: (t-2)d S

. 5 0.

0,22 5 -
and so 7 € (2, 3) ensures that (A.5) holds again. The computation remains valid when @ = co since ®
does not depend on @. When a < oo and 8 = oo, the computation simplifies, and  — uz/2 > 0 holds
since already 7 — uz > 0 see above (A.22). Hence in this case ®(n,z) = dy A z/2 = d/2 > 0. Hence,
all criteria in Definition A.2 are satisfied with the choice in (A.21). O

The next claim finds minimisers whenever p < pipo1,o. Recall that ppe) o = %7:21)) from (1.8) and

let nq := i/ tpol,«» the second term in the second row of (1.10).

Claim A.10. Consider the reduced Setting 4.1, and fix £ > 0. When @ > 2, u € (uiog, Mpol, o], then the
following setting is (&7, £2)-valid for £’ <4 &, par (with 1/(g’)? an integer), and & >, €, &/, par:

y=1-¢&" 2= (o + Ve 1 n=na+ Ve, R:=1/(¢")>. (A.23)

Proof. We first show that @ = oo, § < oo is not possible here. From (1.16) it follows that upe1,« = 1/d,
while p1o = 1/d + (3 — 1)/, so for all 8 > 0 the strict inequality f1155 > fipol,o holds and hence the
interval for y is empty when @ = co. Hence @ < oo is necessary for the conditions to be satisfied.
We check the requirements of Definition A.2 one-by-one. Using the formula for up01, o and 7 < 3, we
compute that , = ud(a —2)/(a — (t — 1)) < ud. Hence, since &’ <, par for all sufficiently small &’
the inequality z < d holds as required by (A.1). The other conditions of (A.1) and (A.2) are immediate.
Since vy and 7 is the same here and in Claim A.9, (A.3) and (A.4) hold by the same argument as in Claim
A.9. Tt remains to prove (A.5). Using the formula in (4.1) with y, 7, z as in (A.23), which implies that

n—uz=0,

A(n,z) =2dy—a(d-2z) —z(t = 1)+ (0 A B(n — pu2))

(A.24)
=d2-a)-2&'d+z(a—-(r-1))+0.

This also remains valid both formally and intuitively when 8 = co (with the convention that co - 0 = 0),
since 7 — uz = 0 reflects the fact that the random variable L on the edge we use is constant order. We
substitute z = (174 + V&’)/u from (A.23) and 54 = pd(a —2)/(a - (1 - 1)):

A(m.2)=d2-a)+nola—(t-1)/u+Ve' (@ - (r-1)/u-2¢'d
=Ve'(a - (t-1))/u-2¢'d,
since the first two terms in the first row cancelled each other. Since ¢’ <, par, @ > 2 and 7 € (2, 3),

a — (1 — 1) is positive, and so is u > 0, so A(n,z) > 0 as required by (A.5). Finally, by (5.1) and since
z<d,

(1, 7) = [dy/\%]+[0/\ﬁ(n—%)] =§+0>o,

and so (A.5) holds. This also remains true for 8 = oo since the minimum is at 0, meaning we use edges
with constant value L. Hence, all criteria in Definition A.2 are satisfied with the choice in (A.23). O

We are ready to prove Corollary 5.3 proving the upper bounds in the polynomial regime.

Proof of Corollary 5.3. Claim A.8 finds a setting of parameters that is (|x|7, |x|¥)-valid whenever
a = =ocoand u < ppo = 1/d. When at least one of a, 8 is noninfinite, Claims A.9 and A.10
respectively find a setting of parameters that is (|x|"#, |x|®)-valid whenever u < 01 5 and one that is
(x|, |x|#)-valid whenever u < ppol,o- By noting that ng < 1 exactly when u < ppo15 and 7, < 1
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exactly when p < ppo1, o, We obtain that whenever u < max{upol,a» Hpol,g}, the two claims together
find a parameter setting that is (|x|™"{7«-78} |x|€) valid. Since 59 = min{n4, ng} in (1.10), the proof
from here is immediate by applying Lemma A.3, where the required bounds on w in (5.7) follow from
(A3). O
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