
 
 

Delft University of Technology

Document Version
Final published version

Licence
CC BY

Citation (APA)
Komjáthy, J., Lapinskas, J., Lengler, J., & Schaller, U. (2026). Four universal growth regimes in degree-dependent first
passage percolation on spatial random graphs. Forum of Mathematics, Sigma, 14.
https://doi.org/10.1017/fms.2025.10161

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
In case the licence states “Dutch Copyright Act (Article 25fa)”, this publication was made available Green Open
Access via the TU Delft Institutional Repository pursuant to Dutch Copyright Act (Article 25fa, the Taverne
amendment). This provision does not affect copyright ownership.
Unless copyright is transferred by contract or statute, it remains with the copyright holder.
Sharing and reuse
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without
the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as
Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

https://doi.org/10.1017/fms.2025.10161


Forum of Mathematics, Sigma (2026), Vol. 14:e22 1–79
doi:10.1017/fms.2025.10161

RESEARCH ARTICLE

Four universal growth regimes in degree-dependent first
passage percolation on spatial random graphs
Júlia Komjáthy 1, John Lapinskas 2, Johannes Lengler 3 and Ulysse Schaller4

1Delft University of Technology, Netherlands; E-mail: j.komjathy@tudelft.nl (Corresponding author).
2University of Bristol, United Kingdom; E-mail: john.lapinskas@bristol.ac.uk.
3ETH Zurich, Switzerland; E-mail: johannes.lengler@inf.ethz.ch.
4ETH Zurich, Switzerland; E-mail: ulysse.schaller@inf.ethz.ch.

Received: 22 March 2024; Revised: 11 November 2025; Accepted: 11 November 2025

2020 Mathematics Subject Classification: Primary – 05C82, 60K35, 60K50, 82B43, 91D30, 91D25

Abstract
One-dependent first passage percolation is a spreading process on a graph where the transmission time through
each edge depends on the direct surroundings of the edge. In particular, the classical i.i.d. transmission time 𝐿𝑥𝑦 is
multiplied by (𝑊𝑥𝑊𝑦)𝜇 , a polynomial of the expected degrees 𝑊𝑥 ,𝑊𝑦 of the endpoints of the edge 𝑥𝑦, which we
call the penalty function. Beyond the Markov case, we also allow any distribution for 𝐿𝑥𝑦 with regularly varying
distribution near 0. We then run this process on three spatial scale-free random graph models: finite and infinite
Geometric Inhomogeneous Random Graphs, including Hyperbolic Random Graphs, and Scale-Free Percolation.
In these spatial models, the connection probability between two vertices depends on their spatial distance and on
their expected degrees.

We show that as the penalty function, that is, 𝜇 increases, the transmission time between two far away vertices
sweeps through four universal phases: explosive (with tight transmission times), polylogarithmic, polynomial but
strictly sublinear, and linear in the Euclidean distance. The strictly polynomial growth phase is a new phenomenon
that so far was extremely rare in spatial graph models. All four growth phases are robust in the model parameters
and are not restricted to phase boundaries. Further, the transition points between the phases depend nontrivially on
the main model parameters: the tail of the degree distribution, a long-range parameter governing the presence of
long edges, and the behaviour of the distribution L near 0. In this paper we develop new methods to prove the upper
bounds in all sub-explosive phases. Our companion paper complements these results by providing matching lower
bounds in the polynomial and linear regimes.
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1. Introduction

First passage percolation (FPP) is a natural way to understand geodesics in random metric spaces.
Starting from some initial vertex at time 0, the process spreads through the underlying graph so
that the transmission time between any two vertices 𝑥, 𝑦 is the minimum sum of edge transmission
times over all paths between x and y. In classical FPP, edge transmission times are independent and
identically distributed random variables. In the recent paper [55] we introduced one-dependent FPP,
where edge transmission times depend on the edge’s direct surroundings in the underlying graph.
There, we determined the phase transition for explosion (i.e., reaching infinitely many vertices in finite
time). In this paper we study the sub-explosive regime, when explosion does not occur. We show
that the process exhibits rich behaviour with several growth phases and nonsmooth phase transitions
between them. This holds across a large class of scale-free spatial random graph models (namely
Scale-Free Percolation (SFP), Hyperbolic Random Graphs (HypRG), and infinite and finite Geometric
Inhomogeneous Random Graphs (GIRG) [26, 17, 58]), and across all Markovian and non-Markovian
transmission time distributions with reasonable limiting behaviour at zero.

In SFP, the vertex set is formed by the d-dimensional lattice Z𝑑 . Each vertex u is then equipped with
an independent and identically distributed random vertex-weight𝑊𝑢 ≥ 1. Given the weighted vertex set,
the edges are drawn conditionally independently. The probability of an edge between vertices 𝑢, 𝑣 with
weights 𝑊𝑢 ,𝑊𝑣 decreases with the Euclidean distance |𝑢 − 𝑣 | and increases with the vertex-weights,
and is between constant factors of min(1,𝑊𝑢𝑊𝑣/|𝑢− 𝑣 |𝑑)𝛼, see Definition 1.3 below for full detail. The
parameter 𝛼 is often called the long-range parameter, since the model with all vertex-weights set to 1
recovers the classical long-range percolation model [72]. Instead of unit vertex-weights, here we shall
rather assume that the vertex-weight distribution W follows a regularly varying tail, that is, for some
𝜏 ∈ (2, 3) that is called the power-law exponent we assume

P(𝑊 ≥ 𝑥)
P(𝑊 ≥ 𝑐𝑥) → 𝑐−(𝜏−1) for all 𝑐 > 0 as 𝑥 → ∞. (1.1)

The heavy-tailed decay of W creates degree-inhomogeneity in the model: the vertex weight 𝑊𝑣 of v
is (up to constant factors) equal to the expected degree of v, and the degree of a high-weight vertex is
concentrated around its expectation [26, Proposition 2.3]. The parameters 𝜏, 𝛼 play different roles in
governing inhomogeneities in the models: while 𝜏 governs the degree distribution, a smaller 𝛼 causes
a heavier tail on the edge-length distribution, with 𝛼 > 1 needed for a.s. finite degrees [26]. The model
GIRG follows the same construction by replacing the location of vertices by a unit-intensity Poisson
point process (PPP) on R𝑑 . For the overview of the results, the reader may ignore this difference.

Universality classes of transmission times. In one-dependent first passage percolation, we set the
transmission time through the edge 𝑒 = 𝑥𝑦 between vertices 𝑥, 𝑦 as the product of an independent and
identically distributed (i.i.d.) random factor 𝐿𝑥𝑦 and a factor depending on the weights of vertices:
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Table 1. Summary and brief description of the main parameters of the model..

Parameter Range Eqn. Description

𝜏 (2, 3) (1.1) Power-law exponent of the weight (and degree) distribution(s) of the underlying graph model. All
our results focus on the infinite-variance range 2 < 𝜏 < 3.

𝛼 (1, ∞) (1.5) Long-range parameter representing the influence of the latent geometry in the underlying graph
model. A larger 𝛼 yields fewer edges between distant vertices.

d N (1.5) Dimension of the geometric space in which the underlying graph model is embedded.
𝜇 (0, ∞) (1.2) Penalty strength on the edge costs. A larger 𝜇 yields longer transmission time on edges that are

incident to vertices of high weight/degree.
𝛽 (0, ∞) (1.3) Power-exponent of the random component of the edge costs around 0. The commonly used

exponential distribution (with any mean) satisfies 𝛽 = 1.

Definition 1.1 (1-dependent first passage percolation (1-FPP)). Consider a graph 𝐺 = (V , E) where
each vertex 𝑣 ∈ V has an associated vertex-weight 𝑊𝑣 . For every edge 𝑥𝑦 ∈ E , draw an i.i.d. copy 𝐿𝑥𝑦

of a random variable L, and set the (transmission) cost of an edge 𝑥𝑦 as

C (𝑥𝑦) := 𝐿𝑥𝑦 (𝑊𝑥𝑊𝑦)𝜇, (1.2)

for a fixed parameter 𝜇 > 0 called the penalty strength. The costs define a cost distance 𝑑C (𝑥, 𝑦) between
any two vertices x and y, which is the minimal total cost of any path between x and y (see Section 1.4.1).
We call 𝑑C the 1-dependent first passage percolation.

We usually assume that the cumulative distribution function (cdf) 𝐹𝐿 : [0,∞) → [0, 1] of L satisfies
the following assumption (with exceptions of this assumption explicitly mentioned):

Assumption 1.2. There exist constants 𝑡0, 𝑐1, 𝑐2, 𝛽 > 0 such that

𝑐1𝑡
𝛽 ≤ 𝐹𝐿 (𝑡) ≤ 𝑐2𝑡

𝛽 for all 𝑡 ∈ [0, 𝑡0] . (1.3)

Without much effort, one can relax Assumption 1.2 to lim𝑥→0 log 𝐹𝐿 (𝑥)/log 𝑥 = 𝛽, that is, regularly
varying behaviour of 𝐹𝐿 near 0. We work with (1.3) for the sake of readability. Table 1 provides an
overview of the various parameters of the model.

The cost distance 𝑑C (𝑥, 𝑦) corresponds to the transmission time between two vertices 𝑥, 𝑦. In SFP,
we use the same vertex weights𝑊𝑥 ,𝑊𝑦 to generate the edge between 𝑥, 𝑦 as well as to define the edge-
cost C (𝑥𝑦). This leads to the cost of the edge to depend essentially on the expected degrees of the two
involved vertices1, however, it also leads to three layers of randomness. On the first layer, the vertex
set has random vertex-weights; on the second layer, edges are drawn randomly using the randomness
in the first layer, and finally, on the third layer, edge-costs depend on the presence of edges, on the
vertex-weights, and on an extra source of randomness captured in 𝐿𝑥𝑦 .

When 𝜇 ∈ (0, 1), a high-degree vertex still causes more new infections per unit time than a low-degree
vertex, but this effect is sublinear in the degree. As 𝜇 increases and/or the parameters of the underlying
graph change, we prove that the following four different phases occur for the transmission time between
the vertex at 0 and a far away vertex x, see Table 2 for the thresholds between the different phases:

(i) 𝑑C (0, 𝑥) converges to a limiting distribution that is independent of the Euclidean distance |𝑥 |
(explosive phase);

This was the main result of [55]. The main result of this paper is to characterise the other phases:

(ii) 𝑑C (0, 𝑥) grows at most polylogarithmically in the Euclidean distance |𝑥 |, without being explosive;
(iii) 𝑑C (0, 𝑥) grows polynomially in |𝑥 |, with exponent 0 < 𝜂0 < 1;
(iv) 𝑑C (0, 𝑥) grows linearly in |𝑥 |, that is, with exponent 𝜂0 = 1.

1Using 𝑊𝑥 instead of the actual degree of x is natural in these models. We are convinced that the same results would also hold
if we took the actual degrees instead of their expectation. However, that would make the proofs more technical without giving
much additional insight.
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Table 2. Summary of our main results. In 1-FPP, edge transmission times are 𝐿𝑥𝑦 (𝑊𝑥𝑊𝑦)𝜇 where 𝑊𝑥 , 𝑊𝑦 are constant
multiples of the expected degrees of the vertices 𝑥, 𝑦, and 𝐿𝑥𝑦 is i.i.d. with distribution function that varies regularly
near 0 with exponent 𝛽 ∈ (0, ∞]. The degree distribution follows a power law with exponent 𝜏 ∈ (2, 3): graph distances
are doubly logarithmic in the underlying graph. The transmission time 𝑑C (0, 𝑥) between 0 and a far away vertex x
sweeps through four different phases as the penalty exponent 𝜇 increases. For long-range parameter 𝛼 ∈ (1, 2) , long
edges between low-degree vertices maintain polylogarithmic transmission times (similar to long-range percolation), so
increasing 𝜇 stops explosion but it has no further effect. When 𝛼 > 2, these edges are sparser and a larger 𝜇 slows down
1-FPP, to polynomial but sublinear transmission times in an interval of length at least 1/𝑑 for 𝜇. Then, all long edges
have polynomial transmission times in the distance they bridge. For even higher penalty exponent 𝜇 the behaviour becomes
similar to FPP on the grid Z𝑑 . We give the growth exponents Δ0 and 𝜂0 explicitly in (1.9) and (1.10)..

Graph param. 1-FPP parameters Behaviour of 1-FPP transmission times

Weak decay:
𝜏 ∈ (2, 3)𝛼 ∈ (1, 2)

𝜇 < 3−𝜏
2𝛽 Explosive:

𝑑C (0, 𝑥) = Θ(1)

𝜇 > 3−𝜏
2𝛽 Polylogarithmic:

𝑑C (0, 𝑥) = 𝑂 ( (log |𝑥 |)Δ0+𝑜 (1) ) , Δ0 > 1
Strong decay:

𝜏 ∈ (2, 3)𝛼 > 2 𝜇 < 3−𝜏
2𝛽 Explosive:

𝑑C (0, 𝑥) = Θ(1)

𝜇 ∈
( 3−𝜏

2𝛽 , 3−𝜏
𝛽

)
Polylogarithmic:

𝑑C (0, 𝑥) = 𝑂 ( (log |𝑥 |)Δ0+𝑜 (1) ) , Δ0 > 1

𝜇 ∈
( 3−𝜏
𝛽 , 3−𝜏

min{𝛽,𝑑 (𝛼−2) } +
1
𝑑

)
Polynomial:

𝑑C (0, 𝑥) = |𝑥 |𝜂0±𝑜 (1) , 𝜂0 < 1

𝜇 > 3−𝜏
min{𝛽,𝑑 (𝛼−2) } +

1
𝑑 Linear:𝑑C (0, 𝑥) = Θ( |𝑥 |)

These phases are highly robust in the parameters, they are not restricted to phase boundaries in either
𝜇 or the other model parameters. Moreover, all four phases can occur on a single underlying graph by
changing the penalty exponent 𝜇 only; universally across distributions of 𝐿𝑥𝑦 with regularly varying
behaviour at 0, see Figure 1 for a visualisation. This rich behaviour arises despite the doubly logarithmic
graph distances in the underlying spatial graph models. By contrast, in other models the behaviour of
transmission times in classical FPP is less rich, see Section 1.1 for the discussion.

Precise behaviour in the four phases. In this paper we prove the upper bounds on transmission
times in the sub-explosive regime (phase (i) was previous work [55]). In phase (ii), we show that the
transmission time is at most (log |𝑥 |)Δ0+𝑜 (1) with an explicit Δ0 > 1 which we conjecture to be tight. In
phases (iii) and (iv), we show that the transmission time is precisely |𝑥 |𝜂0±𝑜 (1) , where we give 𝜂0 < 1
explicitly for phase (iii) and 𝜂0 = 1 for phase (iv). The companion paper [56] contains the matching
lower bounds for phases (iii)-(iv) as well as some additional results for phase (iv). We develop new
techniques that allow us to treat upper bounds for all three sub-explosive phases simultaneously, which
we expect to be of independent interest.

Motivation of the process from applications. One-dependent processes in general, and one-
dependent FPP in particular, allow for more realistic modelling of real phenomena. In social networks,
actual contacts and infections do not scale linearly with the degree [31, 59, 76, 54]. 1-FPP type penali-
sation has frequently been used to model the sublinear impact of superspreaders [37, 53, 65, 69, 77, 6],
and in other contexts [16, 30, 62, 78, 3, 49]. Consistent with our model, all these applications assume
a polynomial dependence with exponent in the range 𝜇 ∈ (0, 1), where a high-degree vertex may cause
more new infections per time than a low-degree vertex, but this effect is sublinear in the degree.

While our paper is theoretical, we do believe that a model with a rich phase space can have practical
implications. In the spread of physical epidemics, while some diseases spread at an exponential rate,
others spread at a polynomial rate, dominated by the local geometry. Examples of the latter include
HIV/AIDS, Ebola, and foot-and-mouth disease, see the survey [21] on polynomial epidemic growth.
Classical epidemic models can typically only model either exponential or polynomial growth, not both.
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Figure 1. Heatmaps for the four different universality classes. The vertices are sorted by their trans-
mission times from the origin (centre vertex). The colours represent this ordering: yellow infected first,
then orange, then purple. All four plots are generated on the same underlying graph (with parameters
𝜏 = 2.3 and 𝛼 = 5, and edge connection probabilities 𝑝(𝑢, 𝑣) = (𝑤𝑢𝑤𝑣/(E[𝑊]‖𝑢 − 𝑣‖2))5 ∧ 1), where
the vertices are placed on a 750 × 750 grid in the 2-dimensional torus. The random factors 𝐿𝑥𝑦 associ-
ated to each edge are also identical in all four plots, and follow an exponential distribution (i.e., 𝛽 = 1).
The only varying parameter is the penalty exponent 𝜇, taking values (i) 𝜇 = 0 for the explosive regime,
(ii) 𝜇 = 0.5 for the the polylogarithmic regime, (iii) 𝜇 = 1 for the polynomial regime (iv) 𝜇 = 2 for the
linear regime. In the linear regime, the late points are – typically – high degree vertices carrying high
penalisation. We thank Zylan Benjert for generating the simulations and the pictures.

Arguably, 1-FPP provides a natural explanation, since in 1-FPP the transition can be driven by changes
only to the transmission dynamics, not to the underlying network.

New methodology: moving to quenched vertex-set to replace FKG-inequality. In this paper we
develop a general technique – nets combined with multiround exposure – that replaces the FKG-inequality
[32] in problems concerning vertex and/or edge-weighted graph models where this inequality does not
hold. Let us explain why the FKG-inequality fails in the context of 1-FPP. Typically, for upper bounds one
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Figure 2. The budget travel plan with 3-edge bridging-paths: (a) first and (b) second iteration.

constructs paths connecting 0 and x by revealing vertices and/or edges of the graph sequentially, which
destroys the independence of edges. For graph distances in long-range percolation, the FKG-inequality
resolves this problem [11], but it already needs adjustments once vertex-weights are present [41]. In
1-FPP, the existence of a long edge is positively correlated to its endpoints having large vertex weights,
which is negatively correlated to its other outgoing edges having short transmission times. Hence, having
chosen a long edge with low-cost, we lose probabilistic control over how to choose the next low-cost
edge on the path connecting 0 and x. To overcome this issue, we move to the (weighted-vertex) quenched
setting where we reveal the realisation of the whole weighted vertex set – say (V ,W) = (𝑉, 𝑤𝑉 ) – and
thus events concerning only edges become independent. We show that in a large box centred at the origin
of R𝑑 , the proportion of realisations with behaviour ‘close to what is expected’ tends to 1 with the box-
size. More precisely, we require that locally around a constant proportion of the vertices and uniformly
across multiple scales of vertex-weights, the number of points in the weighted vertex set is close to its
expectation. For this we select a subset of the vertices that we call a net realising this property. A net N
is thus a subset of the weighted vertex set, such that for every not-too-small radius r, every ‘reasonable’
weight w, and every selected vertex 𝑣 ∈ N , the net has constant density in 𝐵𝑟 (𝑣) × [𝑤, 2𝑤], shorthand
for vertices of weight in [𝑤, 2𝑤] within Euclidean distance r of v:

|N ∩ 𝐵𝑟 (𝑣) × [𝑤, 2𝑤] |
E
[
|V ∩ 𝐵𝑟 (𝑣) × [𝑤, 2𝑤] | | 𝑣 ∈ V

] ∈
( 1
16
, 16

)
, (1.4)

where the expectation is taken over the randomness in the weights and location of vertices2. We prove
via a multiscale analysis that as the box-size tends to infinity, asymptotically almost every realisation of
the weighted vertex set contains a net N with total density at least 1/4.

When we move to the quenched setting we only reveal the realisation of the weighted vertex set, but
not the edges of the graph. In realisations containing a net, with a carefully chosen multiround exposure
process we can define a coupling of the edges and their costs which lets us replace the FKG inequality
needed for the construction of a low-cost path between 0 and x, see Section 3 for more details. We
believe that this method is also useful for many other graph models, so we explain it streamlined now.

Budget travel plan with 3-edge bridge-paths. Switching to the quenched setting allows to prove
the upper bounds in all subexponential phases (ii)–(iv) all-at-once. Our construction of a connecting
path overcomes the following problem: A long edge with a short transmission time typically occurs
on typical high-degree vertices and thus all other outgoing edges from the same vertices have too long
transmission times. The main idea resembles a ‘budget travel plan’: when someone travels with a low

2In case of GIRG, one uses here the Palm measure by conditioning that the PPP has a point at 𝑣 ∈ R𝑑 , and one takes expectation
over the Poisson point process and the vertex-weights, see also the discussion before Theorem 1.4. For SFP the conditioning can
be dropped, and the expectation is only over the vertex-weights, as the vertex set is deterministically Z𝑑 .
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budget, one takes the cheapest mode of transport to the airport within a 100km radius that offers the
cheapest flight landing within a 100km radius of the destination, then takes the cheapest transport to the
destination city.

Formally, we put balls of radius |𝑥 |𝛾 for some 𝛾 ∈ (0, 1) around 0 and around x, and we find a
cheap 3-edge path (‘bridge’) 𝜋1 = 𝑦0𝑎𝑏𝑦𝑥 between these two balls using only vertices in the net. The net
guarantees enough vertices in each vertex-weight range of interest. We find atypical high-weight vertices
𝑎, 𝑏 that are connected by an atypically cheap edge, that simultaneously have an atypically cheap edge
to low-weight vertices 𝑦0, 𝑦𝑥 , respectively. (Here we use the common terminology of fast transmission
corresponding to ‘cheap’ cost.) Then we have replaced the task of connecting 0 and x by the two tasks
of connecting 0 with 𝑦0 and x with 𝑦𝑥 , where the new ‘gaps’ |0 − 𝑦0 | and |𝑥 − 𝑦𝑥 | are much smaller
than |𝑥 |. The multiround exposure and the net on the fixed vertex set together guarantee that we can
iterate this process without running out vertices in the relevant weight-ranges, and without accumulated
correlations in the presence of edges along the iteration (e.g., out of 𝑦0, 𝑦𝑥). Iteration yields a set of
multiscale bridge-paths, which we call after Biskup a hierarchy [11]. The construction in [11] also
uses recursion, with one-edge bridges instead of three-edge bridges, and yields polylogarithmic graph
distances in long-range percolation. The techniques in [11] would not work for 1-FPP because we need
to balance distances vs costs vs the penalisation on high-weight vertices in very different regimes, and at
the same time deal with edge-costs dependencies. Those can only be dealt with in the quenched setting.

The cost (transmission time) of the bridge-paths 𝜋 in 1-FPP are either polynomial in the distance they
bridge or constant. When the cost is polynomial – with optimal exponent 𝜂0 – we are in the polynomial
phase. The cost of the first bridge 𝜋1 then dominates the cost of the whole path, and we only carry out
a constant number of iterations (irrespective of |𝑥 |). When bridge-paths with constant cost exist, we are
in the polylogarithmic phase. Then, the cost of all bridges together is negligible compared to the cost
of the polylogarithmic number of gaps that remain after the last iteration. Here, we iterate until we can
connect the remaining gaps via essentially constant cost paths. Connecting the gaps is a nontrivial task
itself since the graphs do not contain ‘nearest-neighbour’ edges. Solutions for filling gaps in [11] do not
work in our setting due to the presence of vertex weights. Instead, we connect the gaps with ‘weight-
increasing paths’ that crucially use that the underlying graphs are scale-free. We give a more detailed
discussion about the hierarchical construction at the beginning of Section 5 and back-of-the-envelope
calculations about how to obtain the precise growth exponents in phases (ii) and (iii) at the beginning
of Section 5.1 with proof sketches below Corollaries 5.2 and 5.3.

Robustness of our techniques. The technique of nets combined with multiround edge-exposure is
robust, and will be applicable elsewhere, for questions concerning first passage percolation, robustness
to percolation (random deletion of edges), graph distances, SIR-type and other epidemic processes,
rumour spreading, etc. on a larger class of vertex-weighted graphs; including random geometric graphs,
Boolean models with random radii, the age-dependent and the weight-dependent random connection
model (mimicking spatial preferential attachment), scale-free Gilbert graph, and the models used here
[2, 23, 38, 39, 40, 41, 42, 47, 50], and can also be extended to dynamical versions of the above graph
models on fixed vertex sets.

Two papers, two techniques and optimality. The ‘budget travel plan’ together with the renormali-
sation group argument in [56] reveals that the strategy of polynomial paths is essentially optimal: in this
phase, all long edges have polynomial transmission time in the distance they bridge. Our techniques for
the lower bounds are entirely different and deserve their own exposition, hence we present them in the
companion paper [56].

1.1. Related work: phases of FPP in other models.

The phase diagrams of transmission times in classical FPP are less rich. In particular, the strict poly-
nomial phase is absent or restricted only to phase transition boundaries. Indeed, on sparse nonspatial
graph models with finite-variance degrees, both Markovian and non-Markovian classical FPP univer-
sally show Malthusian (exponential) growth [9]. Transmission times between two uniformly chosen
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Table 3. Known results about the universality classes of graph-distances on long-range percolation LRP, scale-
free percolation SFP, long-range first-passage percolation LRFPP and infinite geometric inhomogeneous random
graphs IGIRG. The results highlighted in yellow color follow (also) from techniques in this paper. ‡An upper
bound is only known for high enough edge-density or all nearest-neighbour edges present..

SFP/LRP with Graph-distance Growth Upper bound Lower bound

𝜏 ∈ (2, 3) (2±𝑜 (1) ) log log |𝑥 |
| log(𝜏−2) | doubly-logarithmic [26, 75] [75]

𝜏 > 3 and (log |𝑥 |)Δ±𝑜 (1) poly- SFP: [46, 60], SFP: [60]
𝛼 ∈ (1, 2) for some Δ > 0 logarithmic LRP: [11, 74] LRP:[11, 12, 74]
𝜏 > 3 and |𝑥 |𝜂±𝑜 (1) , polynomial SFP: open, SFP: open
𝛼 = 2 for some 𝜂 < 1 LRP: [5] LRP: [5]
𝜏 > 3 and Θ( |𝑥 |) linear partly open‡ [4] [8, 27]
𝛼 > 2

LRFPP with Cost-distance Growth Upper bound Lower bound

𝛼′ < 1 0 instantaneous [20]
𝛼′ ∈ (1, 2) (log |𝑥 |)Δ𝛼′ ±𝑜 (1) for poly- [20]

Δ𝛼′ = 1/(1 − log2 𝛼′) logarithmic
𝛼′ ∈ (2, 2 + 1/𝑑) |𝑥 |𝑑 (𝛼′−2)±𝑜 (1) polynomial [20]
𝛼′ > 2 + 1/𝑑 Θ( |𝑥 |) linear [20]

IGIRG/SFP with Cost-distance Growth Upper bound Lower bound

𝜏 ∈ (2, 3)
𝜇 < 𝜇expl converges explosion [55] [55]

in distribution
𝜇 ∈ (𝜇expl , 𝜇log) (log |𝑥 |)Δ0+𝑜 (1) , poly- Theorem 1.4 open
or 𝛼 ∈ (1, 2) Δ0 as in (1.9) logarithmic
𝜇 ∈

(
𝜇log , 𝜇pol) |𝑥 |𝜂0±𝑜 (1) , polynomial Theorem 1.6 [56]

and 𝛼 > 2 𝜂0 as in (1.10)
𝜇 > 𝜇pol Θ( |𝑥 |) linear [56] for 𝑑 ≥ 2, [56]
and 𝛼 > 2 Θ( |𝑥 |1+𝑜 (1) ) Theorem 1.6

for 𝑑 ≥ 1

vertices are then logarithmic in the graph size. Sparse spatial graphs with finite-variance degrees (e.g.,
percolation, long-range percolation, random geometric graphs etc.) are typically restricted to linear
graph distances/transmission times in the absence of long edges [4, 68, 25], or to polylogarithmic dis-
tances in the presence of long edges [11, 12, 46]. In both spatial and nonspatial graph models with
infinite-variance degrees, classical FPP typically either explodes or exhibits a smooth transition be-
tween explosion and doubly logarithmic transmission times (which match the graph distances) [1, 51,
75]; in particular, there is no analogue of phases (ii)–(iv). For one-dependent FPP on nonspatial graphs
there are strong indications that the process either explodes [73], with the same criterion for explosion
as for spatial graphs in [55], or becomes Malthusian [34], the latter implying logarithmic transmission
times between two uniformly chosen vertices by the universality in [9], so only two phases can occur.
The only graph model to exhibit a transition from a fast-growing phase to a slow-growing phase is long-
range percolation, where the polynomial phase is restricted to the phase boundary in the long-range
parameter 𝛼 = 2 [5]. Even in degenerate models (where the underlying graph is complete), long-range
first passage percolation [20] is the only other model where a similarly rich set of phases is known to
occur. Thus one-dependent FPP is the first process that displays a full interpolation between the four
phases on a single nondegenerate graph model. Moreover, the phase boundaries for one-dependent FPP
depend nontrivially on the main model parameters: the degree power-law exponent 𝜏, the parameter 𝛼
controlling the prevalence of long-range edges, and the behaviour of 𝐿𝑥𝑦 near 0 characterised by 𝛽, see
Table 2 for our results, Table 3 for phases of growth in other models, and Section 1.4 for more details
on related work.
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1.2. Graph Models

We consider simple and undirected graphs with vertex set V ⊆ R𝑑 . We use standard graph notation
along with other common terminology, see Section 1.4.1. We consider three random graph models:
Scale-Free Percolation (SFP), Infinite Geometric Inhomogeneous Random Graphs (IGIRG)3, and (finite)
Geometric Inhomogeneous Random Graphs (GIRG). The latter model contains Hyperbolic Random
Graphs (HypRG) as special case, so our results extend to HypRG, see the paragraph below Theorem
1.11. The main difference between SFP and IGIRG is the vertex set V . For SFP, we use V := Z𝑑 , with
𝑑 ∈ N. For IGIRG, a unit-intensity Poisson point process on R𝑑 forms V .
Definition 1.3 (SFP, IGIRG, GIRG). Let 𝑑 ∈ N, 𝜏 > 2, 𝛼 ∈ (1,∞), and 𝑐 > 𝑐 > 0. Let ℓ : [1,∞) →
(0,∞) be function that varies slowly at infinity (see Section 1.4.1), and let ℎ : R𝑑 × [1,∞) × [1,∞) →
[0, 1] be a function satisfying

𝑐 · min
{
1,
𝑤1𝑤2

|𝑥 |𝑑

}𝛼

≤ ℎ(𝑥, 𝑤1, 𝑤2) ≤ 𝑐 · min
{
1,
𝑤1𝑤2

|𝑥 |𝑑

}𝛼

. (1.5)

The vertex set and vertex-weights: For SFP, set V := Z𝑑 , for IGIRG, let V be given by a Poisson point
process on R𝑑 of intensity one.4 For each 𝑣 ∈ V , we draw a weight𝑊𝑣 independently from a probability
distribution on [1,∞) satisfying

𝐹𝑊 (𝑤) = P(𝑊 ≤ 𝑤) = 1 − ℓ(𝑤)/𝑤𝜏−1. (1.6)

We denote Ṽ (𝐺) := (V ,W) the vertex set V together with the random weight vector WV := (𝑊𝑣 )𝑣 ∈V ,
and (𝑉, 𝑤𝑉 ) := (𝑉, (𝑤𝑣 )𝑣 ∈𝑉 ) a realisation of Ṽ := Ṽ (𝐺), where 𝑣̃ := (𝑣, 𝑤𝑣 ) stands for a single
weighted vertex.

The edge set: Conditioned on Ṽ = (𝑉, 𝑤𝑉 ), consider all unordered pairs V (2) of V . Then every pair
𝑥𝑦 ∈ V (2) is present in E (𝐺) independently with probability ℎ(𝑥 − 𝑦, 𝑤𝑥 , 𝑤𝑦).

Finally, a GIRG 𝐺𝑛 is obtained as the induced subgraph 𝐺 [𝑄𝑛] of an IGIRG G by the set of vertices
in the cube 𝑄𝑛 of volume n centred at 0. We call h the connection probability, d the dimension, 𝜏 the
power-law exponent, and 𝛼 the long-range parameter.

The above definition essentially merges the Euclidean space and the vertex-weight space by consid-
ering vertices with weights as points inR𝑑 × [1,∞), that is, we think of each vertex as a pair 𝑣̃ = (𝑣, 𝑤𝑣 ),
where 𝑣 ∈ R𝑑 is its spatial location and 𝑤𝑣 is its weight. While SFP is a somewhat simpler model due
to the deterministic location of vertices, GIRGs gained significant attention in both applications and
theoretical studies [13, 14, 48, 63, 64, 67], and are part of a larger class of marked random connection
models [19, 42, 40]. Definition 1.3 leads to a slightly less general model than those, for example, in [17]
and [55]. The original definition in [17] had a different scaling of the geometric space vs connection
probabilities and (also) considered the torus topology on the unit cube, identifying ‘left’ and ‘right’
boundaries. However, the resulting finite graphs are identical in distribution after rescaling, and the torus
topology vs Euclidean topology does not make a difference for the results below on cost-distances, see
[55] for a comparison. We discuss extensions to 𝛼 = ∞ and 𝛽 = ∞ separately in Section 1.3.1. We call
the set of parameters par := {𝑑, 𝜏, 𝛼, 𝜇, 𝛽, 𝑐, 𝑐, 𝑐1, 𝑐2, 𝑡0} the model parameters. We say that a variable
is large (or small) relative to a collection of other variables when it is bounded below (or above) by
some finite positive function of those variables and the model parameters. We restrict to 𝜏 ∈ (2, 3), (ex-
plicitly stated in the theorems), which ensures that there is a unique infinite component (or linear-sized
‘giant’ component for finite GIRG)5 and that graph distances between vertices 𝑥, 𝑦 in the infinite/giant
component grow like 𝑑𝐺 (𝑥, 𝑦) ∼ 2 log log |𝑥 − 𝑦 |/| log(𝜏 − 2) | in all three models [57, 18, 26, 75]. We

3They have also been called EGIRG, where E stands for extended [57].
4If we take an IGIRG and rescale the underlying space R𝑑 by a factor 𝜆, then we obtain a random graph which satisfies all

conditions of IGIRGs except that the density of the Poisson point process is 𝜆−𝑑 instead of one. Thus it is no restriction to assume
density one.

5For 𝜏 > 3, an infinite component only exists for high enough edge density, which is captured by h in (1.5).
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Figure 3. Phase diagrams of transmission times in one-dependent first passage percolation. On both
diagrams, parameter choices falling in area (a) yield explosive spread. Parameter choices in areas
(b) and (c) yield polylogarithmic transmission times 𝑑C (0, 𝑥) ≤ (log ‖𝑥‖)Δ0+𝑜 (1) , where Δ0 = Δ𝛼 =
1/(1− log2 𝛼) on (b) and Δ0 = Δ𝛽 = 1/(1− log2(𝜏−1− 𝜇𝛽)) on (c). Parameter choices in areas (d), (e)
and (f) yield polynomial transmission times, 𝑑C (0, 𝑥) = ‖𝑥‖𝜂0±𝑜 (1) , where 𝜂0 = 𝜂𝛽 = 𝑑 (𝜇 − (3 − 𝜏)/𝛽)
on (d) 𝜂0 = 𝜂𝛼 = 𝑑𝜇(𝛼−2)/(𝛼− (𝜏−1)) on (e), and 𝜂0 = 1 on (f). The bold lines indicate discontinuous
phase transitions, while the other transitions are smooth.

consider 𝜇 as the easiest parameter to change: increasing 𝜇 means gradually slowing down the spread-
ing process around high-degree vertices, which corresponds to adjusting behaviour of individuals with
high number of contacts. Hence, we will phrase our results from this perspective. Figure 3 shows two
phase diagrams: one where 𝜇 is fixed and 𝜏, 𝛼 vary; another where 𝜏 is fixed and 𝜇, 𝛼 vary.

1.3. Results

In this paper, we focus on the sub-explosive parameter regime

𝜇 >
3 − 𝜏

2𝛽
:= 𝜇expl, (1.7)

since for 𝜇 < 𝜇expl we have shown in previous work [55] that the model is explosive: the cost-distance of
two vertices 𝑥, 𝑦 converges in distribution to an almost surely finite variable as |𝑥− 𝑦 | → ∞, conditioned
on x and y being in the infinite component.6 In other words, (1.7) restricts us to the nonexplosive phase.
The following two quantities define the boundaries of the new phases:

𝜇log :=
3 − 𝜏
𝛽

, 𝜇pol :=
1
𝑑
+ 3 − 𝜏

min{𝛽, 𝑑 (𝛼 − 2)} = max
{
1/𝑑 + 𝜇log, 𝜇pol,𝛼

}
, (1.8)

where we define7 𝜇pol,𝛼 = 𝜇pol,𝛼 (𝑑, 𝜏, 𝛼) := 1
𝑑 + 3−𝜏

𝑑 (𝛼−2) = 𝛼−(𝜏−1)
𝑑 (𝛼−2) and 𝜇pol,𝛽 = 𝜇pol,𝛽 (𝑑, 𝜏, 𝛽) :=

1
𝑑 + 3−𝜏

𝛽 . We also define two growth exponents. If 𝛼 ∈ (1, 2) or 𝜇 ∈ (𝜇expl, 𝜇log), we define

Δ0 := Δ0 (𝛼, 𝛽, 𝜇, 𝜏) :=
1

1 − log2 (min{𝛼, 𝜏 − 1 + 𝜇𝛽}) = min{Δ𝛼,Δ𝛽} > 1, (1.9)

6The phase is called explosive since the size of the the cost-ball of radius r jumps from finite to infinite at some random finite
threshold, called the explosion time.

7In 𝜇pol,𝛼 (𝑑, 𝜏, 𝛼) and 𝜇pol,𝛽 (𝑑, 𝜏, 𝛽) we consider the respective indexing 𝛼 and 𝛽 after ‘pol’ in the subscript as symbols,
rather than numerical values. The same holds for the functions Δ𝛼 , Δ𝛽 , 𝜂𝛼 , 𝜂𝛽 describing the growth exponents: the subscripts
are meant to be considered as symbols.
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with Δ𝛼 = Δ𝛼 (𝛼) := 1/(1 − log2 𝛼) and Δ𝛽 = Δ𝛽 (𝜏, 𝜇, 𝛽) = 1/(1 − log2(𝜏 − 1 + 𝜇𝛽)). Δ0 > 1 follows
since when 𝛼 ∈ (1, 2) then Δ𝛼 > 1, while when 𝜇 ∈ (𝜇expl, 𝜇log) then 𝜏 − 1 + 𝜇𝛽 > 𝜏+1

2 > 1 and also
𝜏 − 1 + 𝜇𝛽 < 2, so log2(𝜏 − 1 + 𝜇𝛽) is positive but less than 1. If both 𝛼 > 2 and 𝜇 > 𝜇log, we define

𝜂0 := 𝜂0 (𝛼, 𝛽, 𝜇, 𝜏) :=

{
1 if 𝜇 > 𝜇pol,

min
{
𝑑 (𝜇 − 𝜇log), 𝜇/𝜇pol,𝛼

}
if 𝜇 ≤ 𝜇pol,

(1.10)

and note that 𝜂0 > 0 for all 𝜇 > 𝜇log, and 𝜂0 < 1 exactly when 𝜇 < 𝜇pol by (1.8). We often write

𝜂𝛽 = 𝜂𝛽 (𝑑, 𝜏, 𝜇, 𝛽) := 𝑑 (𝜇 − 𝜇log) = 𝑑 (𝜇 − (3 − 𝜏)/𝛽),

𝜂𝛼 = 𝜂𝛼 (𝑑, 𝜏, 𝜇, 𝛼) := 𝜇/𝜇pol,𝛼 =
𝜇𝑑 (𝛼 − 2)
𝛼 − (𝜏 − 1) .

(1.11)

The formulas can be naturally extended by taking limits and hold also when 𝛼 = ∞ or 𝛽 = ∞, which we
elaborate in Section 1.3.1 below.

We first formulate the main results for the infinite models IGIRG and SFP. We write 0 ↔ 𝑥 for the
event that there is at least one path of edges in the graph between vertices 0, 𝑥. Whenever 𝜏 ∈ (2, 3),
these models have a unique infinite connected component with constant density, hence the event 0 ↔ 𝑥
occurs with (uniformly) positive probability given that 0, 𝑥 are part of the vertex set [18, 26, 55, 33].
For SFP, the vertex set is deterministic and thus 0, 𝑥 ∈ V holds under the assumption that 𝑥 ∈ Z𝑑 . For
IGIRG, we need to condition on 0, 𝑥 ∈ V . Formally, this is achieved by switching to the Palm measure
of the Poisson point process. The Palm measure of a Poisson point process is again a unit intensity PPP
on R𝑑 with the vertices 0, 𝑥 added to the vertex set, and with all vertex-weights, edges, and edge-costs
still drawn by the Equations (1.6), (1.5) and (1.2) respectively, see also the book [61]. Later in Remark
1.9 we will also give a conditional version of the following theorem given the weighted vertex set.

Theorem 1.4. Consider 1-FPP in Definition 1.1 on the graphs IGIRG or SFP of Definition 1.3 satisfying
the assumptions given in (1.6)–(1.3) with 𝜏 ∈ (2, 3), 𝛼 > 1, 𝑑 ≥ 1, 𝜇 > 0. Assume either 𝛼 ∈ (1, 2) or
𝜇 ∈ (𝜇expl, 𝜇log) or both hold. For SFP, assume 𝑥 ∈ Z𝑑 . Then for any 𝜀 > 0,

lim
|𝑥 |→∞

P
(
𝑑C (0, 𝑥) ≤ (log |𝑥 |)Δ0+𝜀 | 0, 𝑥 ∈ V , 0 ↔ 𝑥

)
= 1.

For IGIRG, due to the conditioning 0, 𝑥 ∈ V , P is the Palm version of the annealed probability measure
taken over edges, edge-costs, vertex-weights and -locations.

The result of Theorem 1.4 is also valid when 𝜇 < 𝜇expl, however, then the model is explosive [55,
Theorem 1.1], and the bound is not sharp. With the restriction 𝜇 > 𝜇expl, we conjecture that Theorem
1.4 is actually sharp, that is, that a corresponding lower bound with exponent Δ0 − 𝜀 also holds. The
exponent Δ0 > 1 intuitively corresponds to stretched exponential ball-growth, where the number of
vertices in cost-distance at most r scales as exp(𝑟1/Δ0). Trapman in [74] showed that strictly exponential
ball growth, that is, Δ0 = 1, is possible for long-range percolation when 𝛼 = 1 under additional
constraints. This is consistent with our formula for Δ0, since Δ0 → 1 as 𝛼 → 1. Related is the work
[60] that treats polylogarithmic graph distances and classical FPP transmission times in the same model
class but in a different parameter regime (finite variance degrees, that is, 𝜏 > 3), however the proof
techniques do not extend to infinite variance degree underlying graphs and/or to 1-FPP. We leave the
lower bound in this phase for future work.

Remark 1.8. Structure of near-optimal paths in the polylog phase. The proof reveals two different types
of paths with polylogarithmic cost-distances present in the graph. When 𝛼 < 2, randomly occurring
long edges on low-weight vertices cause the existence of paths of cost at most (log |𝑥 |)Δ𝛼+𝑜 (1) with
Δ𝛼 = 1/(1 − log2(𝛼)). The closest long edge of order |𝑥 | lands at distance |𝑥 |𝛼/2 from 0 and x
respectively, resulting in a polylog exponent of Δ𝛼 after iterating. When 𝜇 < 𝜇log, there are also paths
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using a cheap yet long edge (of order |𝑥 |) between two high-weight vertices (weight roughly |𝑥 |𝑑/2) that
lie within distance |𝑥 | (𝜏−1+𝜇𝛽)/2+𝑜 (1) from 0 and x respectively, and these cause the existence of paths of
cost at most (log |𝑥 |)Δ𝛽+𝑜 (1) with Δ𝛽 = 1/(1− log2 (𝜏 − 1+ 𝜇𝛽)). Δ𝛽 is the outcome of an optimisation:
we minimise the distance between the high-weight vertices to 0 and x, while maintaining that an edge
with constant cost exists between them. The minimal distance possible is of order |𝑥 | (𝜏−1+𝜇𝛽)/2+𝑜 (1) :
the tail exponent 𝜏 − 1 of the weight distribution (1.6), and 𝜇𝛽, the penalty exponent in (1.2) times the
behaviour of the cdf of L in (1.3) both play a role.

When we increase 𝜇 above 𝜇log and 𝛼 above 2, we enter a new universality class and cost distances
become polynomial:

Theorem 1.6. Consider 1-FPP in Definition 1.1 on the graphs IGIRG or SFP of Definition 1.3 satisfying
the assumptions given in (1.6)–(1.3) with 𝜏 ∈ (2, 3), 𝑑 ≥ 1. When 𝛼 > 2 and 𝜇 > 𝜇log both hold, then
for any 𝜀 > 0,

lim
|𝑥 |→∞

P
(
𝑑C (0, 𝑥) ≤ |𝑥 |𝜂0+𝜀 | 0, 𝑥 ∈ V , 0 ↔ 𝑥

)
= 1.

Here P is the annealed probability measure taken over edges, edge-costs, vertex-weights and -locations.

In the accompanying [56] we prove the corresponding lower bound, which implies:

Corollary 1.7 (Polynomial Regime). Consider 1-FPP in Definition 1.1 on the graphs IGIRG or SFP
satisfying the assumptions given in (1.6)–(1.3) with 𝜏 ∈ (2, 3), 𝑑 ≥ 1. When 𝛼 > 2 and 𝜇 > 𝜇log both
hold, then for any 𝜀 > 0,

lim
|𝑥 |→∞

P
(
|𝑥 |𝜂0−𝜀 ≤ 𝑑C (0, 𝑥) ≤ |𝑥 |𝜂0+𝜀 | 0, 𝑥 ∈ V , 0 ↔ 𝑥

)
= 1.

Corollary 1.7 together with Theorem 1.4 implies that the phase transition is proper at 𝜇log and at
𝛼 = 2: distances increase from at most polylogarithmic to polynomial. Moreover, when 𝜇 > 𝜇pol, (i.e.,
min(𝜂𝛼, 𝜂𝛽) > 1), and the dimension 𝑑 ≥ 2, in [56] we also prove strictly linear cost-distances with both
upper and lower bounds. This, together with Theorem 1.6, implies that there is another phase transition
at 𝜇pol, from sublinear (𝜂0 < 1) to linear (𝜂0 = 1) cost-distances. See Table 2 for a summary. We find it
remarkable that 1-FPP shows polynomial distances with exponent strictly less than one in a spread-out
parameter regime 𝜇 ∈ (𝜇log, 𝜇pol). This implies polynomial ball-growth faster than the dimension for
1-FPP, which is rare in spatial models, see Section 1.4.

Remark 1.6. Structure of near-optimal paths in the polynomial phase. The proof reveals two different
types of paths with polynomial cost-distances present in the graph. When 𝜇 ≤ 𝜇pol,𝛼, there are a few
very long edges (of order |𝑥 |) with endpoints polynomially near 0 and x, emanating from vertices with
weight |𝑥 |1/(2𝜇pol,𝛼) , and these results in paths with cost at most |𝑥 |𝜂𝛼+𝑜 (1) (when (1.10) evaluates to
𝜇/𝜇pol,𝛼). Since there are only few such edges, the optimisation effect of choosing the one with smallest
cost is negligible and 𝛽 does not enter the formula. Further, when 𝜇 ≤ 𝜇pol,𝛽 , there are many long edges
(of order |𝑥 |) with respective endpoints polynomially near 0 and x on vertices with weight roughly |𝑥 |𝑑/2,
and when we optimise to choose the one with cheapest cost, the effect of 𝐹𝐿 , that is, 𝛽 in (1.3), enters
the formula, and we obtain a path with cost at most |𝑥 |𝜂𝛽+𝑜 (1) (when (1.10) evaluates to 𝑑 (𝜇 − 𝜇log)).
The proof of the lower bound in [56] shows that in this phase all long edges near 0, 𝑥 have polynomial
costs in the Euclidean distance they bridge, which explains the qualitative difference between 1-FPP
and classical FPP.

Remark 1.9. From our proofs it follows that a vertex-weighted quenched version of Theorems 1.4 and
1.6 are also valid in the following sense: there is a (cylinder) event A |𝑥 | measurable with respect to the
sigma-algebra generated by the vertex locations and vertex weights in a box of radius 𝐶 |𝑥 | centred at
0 ∈ R𝑑 for some constant 𝐶 > 1, that holds with probability tending to 1 as |𝑥 | → ∞. For any 𝛿 > 0,
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for all sufficiently large |𝑥 | and all realisations (𝑉, 𝑤𝑉 ) ∈ A |𝑥 | of the weighted vertex set with 0, 𝑥 ∈ V ,

P

(
𝑑C (0, 𝑥) ≤ (log |𝑥 |)Δ0+𝜀 | (𝑉, 𝑤𝑉 ), 0 ↔ 𝑥

)
≥ 1 − 𝛿, when 𝛼 ∈ (1, 2) or 𝜇 ∈ (𝜇expl, 𝜇log)

P
(
𝑑C (0, 𝑥) ≤ |𝑥 |𝜂0+𝜀 | (𝑉, 𝑤𝑉 ), 0 ↔ 𝑥

)
≥ 1 − 𝛿, when 𝛼 > 2, 𝜇 > 𝜇log.

(1.12)

Here, P only integrates over the randomness of the edges and their i.i.d. edge-cost variables 𝐿𝑥𝑦 .

The next theorem describes in which sense the results stay valid for finite-sized models:

Theorem 1.10. Consider 1-FPP in Definition 1.1 on the graph GIRG of Definition 1.3 satisfying the
assumptions given in (1.6)–(1.3) with 𝜏 ∈ (2, 3), 𝛼 > 1, 𝑑 ≥ 1, 𝜇 > 0. Let C(𝑛)

max be the largest component
in 𝑄𝑛. Let 𝑢𝑛, 𝑣𝑛 be two vertices chosen uniformly at random from V ∩𝑄𝑛.
(i) When either 𝛼 ∈ (1, 2) or 𝜇 ∈ (𝜇expl, 𝜇log) or both hold, then for any 𝜀 > 0,

lim
𝑛→∞
P

(
𝑑C (𝑢𝑛, 𝑣𝑛) ≤ (log |𝑢𝑛 − 𝑣𝑛 |)Δ0+𝜀 | 𝑢𝑛, 𝑣𝑛 ∈ C(𝑛)

max

)
= 1. (1.13)

(ii) When 𝛼 > 2 and 𝜇 > 𝜇log both hold, then for any 𝜀 > 0,

lim
𝑛→∞
P
(
𝑑C (𝑢𝑛, 𝑣𝑛) ≤ |𝑢𝑛 − 𝑣𝑛 |𝜂0+𝜀 | 𝑢𝑛, 𝑣𝑛 ∈ C(𝑛)

max
)
= 1. (1.14)

The size of the largest component is linear with size 𝑛P(0 ↔ ∞)(1 + 𝑜(1)), see [52]. The lower
bound in Corollary 1.7 also transfers to finite GIRGs, since GIRG is defined as a subgraph of IGIRG.
We refer to [56] for details. The proofs of Theorems 1.4, 1.6, and 1.10 also reveal that the paths realising
the upper bounds deviate only sublinearly from the straight line between the two vertices, cf. Definition
5.6 and Lemmas 6.2 and 6.3 for more details.

1.3.1. Limit Cases and Extensions
Theorems 1.4–1.10 can be extended to interesting cases that may informally be described as 𝛼 = ∞ or
𝛽 = ∞. In the case 𝛼 = ∞, all connection probabilities are either constant or zero, and we replace the
condition (1.5) by

ℎ(𝑥, 𝑤1, 𝑤2)
{
= 0, if 𝑤1𝑤2

|𝑥 |𝑑 < 𝑐′,

≥ 𝑐 if 𝑤1𝑤2
|𝑥 |𝑑 ≥ 𝑐′′,

(1.15)

for some constants 𝑐 ∈ (0, 1] and 𝑐′′ ≥ 𝑐′ > 0. For the sake of simplicity we will assume 𝑐′′ = 1 in all
our proofs, however the results still hold for general 𝑐′′. Models satisfying (1.15) are called threshold
(or zero temperature) models, and include hyperbolic random graphs [58] when the dimension is one.
The correspondence between GIRGs and threshold hyperbolic random graphs was established in [17,
Theorem 2.3]. For models where (1.15) holds, we extend the definitions (1.8)-(1.9) in the natural way
to 𝛼 = ∞, since lim𝛼→∞ 𝜇pol,𝛼 = 1/𝑑:

𝜇log :=
3 − 𝜏
𝛽

, 𝜇pol :=
1
𝑑
+ 3 − 𝜏

𝛽
, 𝜂0 :=

{
1 if 𝜇 > 𝜇pol,

𝑑 · (𝜇 − 𝜇log) if 𝜇 ≤ 𝜇pol,
(1.16)

and, when 𝜇 ∈ (𝜇expl, 𝜇log),

Δ0 :=
1

1 − log2 (𝜏 − 1 + 𝜇𝛽) > 0. (1.17)
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The case 𝛽 = ∞ captures when the cdf of the edge transmission variable L in (1.3) is flatter near 0 than
any polynomial, and we replace (1.3) by the condition that

lim
𝑡→0

𝐹𝐿 (𝑡)/𝑡𝛽 = 0 for all 0 < 𝛽 < ∞. (1.18)

In particular, this condition is satisfied if 𝐹𝐿 has no probability mass around zero, for example8 when
𝐿 ≡ 1. When 𝛽 = ∞, using that 𝜏 ∈ (2, 3) we replace (1.8)-(1.10) naturally by

𝜇expl := 𝜇log := 0, 𝜇pol :=
𝛼 − (𝜏 − 1)
𝑑 (𝛼 − 2) , 𝜂0 :=

{
1 if 𝜇 > 𝜇pol,

𝜇/𝜇pol if 𝜇 ≤ 𝜇pol,
(1.19)

and, when 𝛼 ∈ (1, 2),

Δ0 :=
1

1 − log2 (𝛼)
> 0. (1.20)

Finally, when both 𝛼 = 𝛽 = ∞ we replace (1.8) and (1.10) by

𝜇expl := 𝜇log := 0, 𝜇pol := 1
𝑑 , 𝜂0 := min{1, 𝑑𝜇}, (1.21)

and in that case we do not define Δ0, since the polylogarithmic case is vacuous when 𝛼 = 𝛽 = ∞
(see also below Corollary 5.2). Our main results still hold for these limit regimes. We remark that the
corresponding lower bounds also hold [56, Theorem 1.10].
Theorem 1.11 (Extension to threshold GIRGs and 𝛽 = ∞). (a) Theorems 1.4, 1.6 and 1.10 still hold

for 𝛼 = ∞ if we replace definitions (1.8)-(1.10) by definitions (1.16)-(1.17).
(b) Theorems 1.4, 1.6 and 1.10 still hold for 𝛽 = ∞ if we replace definitions (1.8)-(1.10) by definitions

(1.19)-(1.20).
(c) Theorems 1.6 and 1.10 still hold for 𝛼 = 𝛽 = ∞ if we replace definitions (1.8)-(1.10) by definition

(1.21).
Theorem 1.11(a) implies the analogous result for hyperbolic random graphs (HypRG) by setting

𝑑 = 1 in (1.16), except for some minor caveats. In Definition 1.3, the number of vertices in GIRG
is Poisson distributed with mean n, while in the usual definition of HypRG [58, 45] and GIRG [17]
the number of vertices is exactly n. In HypRG the vertex-weights have an n-dependent distribution
converging to a limiting distribution [57]. However, these differences may be overcome by coupling
techniques presented in, for example, [57]: a model with exactly n vertices can be squeezed between
two GIRGs with Poisson intensity 1 −

√
4 log 𝑛/𝑛 and 1 +

√
4 log 𝑛/𝑛, and one can couple n-dependent

and limiting vertex-weights to each other, respectively, but we avoid spelling out the details and refer
the reader to [57, Claims 3.2, 3.3].

1.4. Discussion

Here we discuss our results in context with related results about (inhomogeneous) first passage perco-
lation and graph distances on spatial random graphs.

Long-range first passage percolation. The work on long-range first passage percolation (LR-FPP)
[20] is closest to our work. In that model, the underlying graph is the complete graph of Z𝑑 , and the
edge transmission time on any edge 𝑢𝑣 is exponentially distributed with mean |𝑢 − 𝑣 |𝑑𝛼′+𝑜 (1) , so 𝛽 = 1,
the process is Markovian, and the penalty depends on the Euclidean distance of u and v. This choice
eliminates the correlations coming from the presence/absence of underlying edges, and the growth is

8For 𝜇 = 0, 𝐿 ≡ 1, the cost-distance 𝑑C (𝑥, 𝑦) then equals the graph-distance between x and y. [56] contains as special cases
the linear lower bound on graph-distances by Berger [8] for long-range percolation (LRP) and by Deprez, Hazra, and Wüthrich
[27] for SFP, see [56, Proposition 2.4].
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strictly governed by the long-range transmission times. As 𝛼′ grows, [20] finds the same sub-explosive
phases for transmission times in LR-FPP that we find for 1-FPP in Table 2. The main difference is
that the explosive phase is absent in LR-FPP, and is replaced by a ‘super-fast’ phase there where
transmission times are 0 almost surely. Moreover, the behaviour on phase boundaries are different.
Using the symmetries in their model, [20] proves that whenever transmission times in LR-FPP are
strictly positive, then they must be at least logarithmic. In contrast, in general 1-FPP on IGIRG and
SFP we also see doubly logarithmic distances, for example for graph-distances (𝐿 ≡ 1, 𝜇 = 0). We
summarise the results on LR-FPP in Table 3. Nevertheless, in 1-FPP, the cost function C (𝑥𝑦) in (1.2)
could also depend on |𝑥− 𝑦 |, that is, take the form 𝐿𝑥𝑦 (𝑊𝑥𝑊𝑦)𝜇 |𝑥− 𝑦 |𝜁 . The result of [55] on explosion
carries through to this case without much effort [70], with the model being explosive if and only if
𝜇 + 𝜁/𝑑 < (3 − 𝜏)/(2𝛽) = 𝜇expl, with 𝜏 ∈ (2, 3). In an ongoing work, we determine the full phase
diagram of cost-distances with spatial penalisation also present [7], which turn out to be more complex
than simply replacing 𝜇 with 𝜇 + 𝜁/𝑑.

Qualitative difference between one-dependent FPP and graph distances. Some phases of 1-
FPP in Table 2 are also phases for graph-distances in spatial models in general. However, while the
polynomial phase is spread-out in 1-FPP, this phase is essentially absent for graph distances. Indeed,
the polynomial phase occurs when long edges all have polynomial spreading times in the Euclidean
distance they bridge, both in 1-FPP here and in LR-FPP in [20]. Thus, transmission times in 1-FPP are
not equivalent to graph distances in any inhomogeneous percolation on the underlying graph. Table 3
summarises known results on 1-FPP, LR-FPP, and graph distances in spatial graphs. Now we elaborate
on each phase.

The polylogarithmic phase. Theorem 1.4 proves polylogarithmic cost-distances in 1-FPP when
𝜏 ∈ (2, 3), and either 𝜇 ∈ (𝜇exp, 𝜇log) or 𝛼 ∈ (1, 2). The results here, in [55] and the accompanying
[56] (Corollary 1.7) together imply that 𝜇exp and 𝜇log are true phase-transition points, separating this
phase from both the explosive and the polynomial phases. Even though we do not have a matching lower
bound, we conjecture that this phase is truly polylogarithmic, and the exponent Δ0 in (1.9) is sharp. The
exponent Δ0 also depends on the product 𝜇𝛽, which does not allow to match it easily to exponents for
graph-distances: For long-range percolation, where each edge (𝑢, 𝑣) ∈ Z𝑑 ×Z𝑑 is present independently
with probability Θ(|𝑢−𝑣 |−𝑑𝛼), Biskup and Lin [12] show that graph distances grow polylogarithmically
with exponent Δ𝛼 = 1/(1 − log2 𝛼) when 𝛼 ∈ (1, 2). This coincides with our upper bound in Theorem
1.4 if 𝛼 ≤ 𝜏 − 1 + 𝜇𝛽. The same type of paths are used in both cases, passing through only low-degree
vertices (and typical edge-costs on them for 1-FPP). For SFP, Lakis et al. prove in [60, Theorem 1.1]
that graph distances and transmission times in Markovian FPP are also polylogarithmic when 𝛼 ∈ (1, 2)
and additionally 𝜏 > 3, with exponent Δ𝐺 ∈ [1/(1 − log2(min(𝛼, 𝜏 − 2))),Δ𝛼] for graph distances
and ΔFPP ∈ [1/(1 − log2(min(𝛼, (𝜏 − 1)/2))),Δ𝛼] for FPP, which improves earlier bounds [46]. The
lower-bound methods in [12, 74, 60] do not transfer to 1-FPP when 𝜏 ∈ (2, 3) since they crucially rely
on finite degree-variance 𝜏 > 3.

The linear phase. Linear distances are common in supercritical spatial graph models with bounded
edge-lengths. For example, Random Geometric Graphs exhibit linear distances [68], and so does
supercritical percolation on grids of dimension at least 2 [4]. Assuming high enough edge-density, a
renormalisation argument to percolation on Z𝑑 gives that SFP and LRP for 𝜏 > 3 and 𝛼 > 2 also have at
most linear graph-distances for 𝑑 ≥ 2. The corresponding lower bound was shown by Berger for LRP [8]
and by Deprez et al. for SFP [27]. Our lower bound for 1-FPP contains these as special cases, and holds
universally for classical FPP for any positive edge-transmission time-distribution [56, Corollary 1.12].

The strictly polynomial phase. The phase where intrinsic distances scale as |𝑥 − 𝑦 |𝜂0+𝑜 (1) with
𝜂0 < 1 (the result of Theorem 1.6) is quite rare in spatial settings and we only know two examples. One
is in LRP at a boundary line in the parameter space, when 𝛼 = 2 [5, 24]. Our methods do not carry
through for 𝛼 = 2. The method in [5] for this setting uses the self-similarity of the model when 𝛼 = 2
and shows the sub-multiplicative structure of graph distances to obtain polynomial lower bounds. The
other example is for long-range first passage percolation (LR-FPP) in [20], mentioned at the beginning
of this section. There are some similarities to 1-FPP: LR-FPP is Markovian, that is, 𝛽 = 1 in (1.3),
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and has strictly polynomial growth when 𝛼′ ∈ (2, 2 + 1/𝑑), see Table 3. Using exponential L in 1-FPP,
the length of the parameter interval (𝜇log, 𝜇pol) with polynomial growth is also exactly 1/𝑑 for 𝜇 when
𝛼 > 2 + 1/𝑑, but it is longer when 𝛼 < 2 + 1/𝑑, which shows that the penalty 𝛼′ of LR-FPP plays a
slightly different role as the long-range parameter 𝛼 in (1.5) here.

Gaps at approaching the phase boundaries. Here we discuss what happens as the parameters
𝜏, 𝛼, 𝜇, 𝛽 approach the phase boundaries of growth. Some of these are indicated on Figure 3 by bold
lines.

Polylogarithmic distances with exponent Δ0 heuristically imply stretched exponential ball-growth,
where the number of vertices within intrinsic distance r scales as exp(𝑟1/Δ0 ). Our upper bound exponent
Δ0 = min{Δ𝛼,Δ𝛽} in (1.9) approaches 1 as 𝛼 ↓ 1, and so does the exponent Δ𝛼 of LRP [11],
which also partly governs SFP. This means that as 𝛼 ↓ 1 we approach exponential growth. In LRP,
strictly exponential ball growth occurs only when 𝛼 = 1 and the connectivity function has a suitably
chosen slowly varying correction term ℓ(·), that is, 𝑝(𝑥, 𝑦) = ℓ(|𝑥 − 𝑦 |)/|𝑥 − 𝑦 |𝛼𝑑 , see [74]. Strictly
exponential growth is a natural barrier, since (age-dependent) branching processes with finite first
moments exhibit at most exponential growth, and non-Markovian FPP can be dominated by such
branching processes. Interestingly, when 𝛼 > 2 and we approach the explosion phase transition by letting
𝜇 ↓ 𝜇expl = (3 − 𝜏)/(2𝛽), then Δ0 in (1.9) does not converge to 1, but to 1/(2 − log2(𝜏 + 1)) =: Δ 𝜏 .
So, for the whole range 𝜏 ∈ (2, 3), Δ 𝜏 ≥ 1/(2 − log2 (3)) > 2.4 > 1. As 𝜏 ↑ 3, Δ 𝜏 approaches ∞,
which is natural, since graph distances are linear already when 𝜏 > 3 and 𝛼 > 2 [27]. This leaves
two possibilities: our upper bound Δ0 is not sharp for 𝛼 > 2; or the ball growth jumps directly from
subexponential (Δ0 > 1) into the explosive phase. If the latter is the case, it would be interesting to
understand better how such a jump could happen. Such jumps at phase boundaries may occur. This
paper, together with [56], proves a gap in polynomial regime when 𝜏 crosses the threshold 3. The
limits of lim𝜏↑3 𝜇pol = 1/𝑑 and lim𝜏↑3 𝜂0 = 𝜇𝑑 exist and are in (0, 1) in (1.8) and (1.10). So if we
fix some 𝜇 < 1/𝑑 and let 𝜏 ↑ 3, the cost-distances grow polynomially with exponents bounded away
from one (e.g., they approach 1/2 from below for 𝜇 = 1/(2𝑑)). But as soon as 𝜏 > 3 is reached, the
exponent ‘jumps’ to 1 and distances become strictly linear [56, Theorem 1.11]. So the parameter space
is discontinuous in 𝜂0 and 𝜇pol with respect to 𝜏.

Some important questions are centred around such gaps. The gap conjecture in geometric group
theory is about the ball growth of finitely generated groups: it states that there are no groups with growth
between polynomial and stretched exponential of order exp(Θ(

√
𝑛)) [43]. Although the polynomial side

is understood by Gromov’s theorem [44], the conjecture remains open. We find it intriguing to discover
a deeper connection between phases of intrinsic growth in spatial random graphs (‘stochastic lattices’)
and group theory (‘deterministic lattices’).

Organisation. We start by moving to the quenched setting. In Section 2 we develop the nets, and
in Section 3 the multiround exposure of edges, with the main result in Proposition 3.9. In Section 4
we collect some connectivity-estimates that serve as our building blocks, while in Section 5 we carry
out the ‘budget travel plan’ and build a hierarchical path that only uses vertices of the net and connects
vertices 𝑦★0 , 𝑦

★
𝑥 very close to 0 and x, respectively. In Section 6 we connect 0, 𝑥 to these vertices with

low cost, which is a nontrivial task itself, and prove the main theorems.

1.4.1. Notation
Throughout, we consider simple and undirected graphs with vertex set V ⊆ R𝑑 . For a graph 𝐺 = (V , E)
and a set 𝐴 ⊆ R𝑑 , 𝐺 [𝐴] stands for the induced subgraph of G with vertex set V ∩ 𝐴. For two vertices
𝑥, 𝑦 ∈ V , we denote the edge between them by 𝑥𝑦, and for a set 𝑉 ⊆ V we write 𝑉 (2) := {{𝑥, 𝑦} :
𝑥, 𝑦 ∈ 𝑉, 𝑥 ≠ 𝑦} for the set of possible edges among vertices in V. For a path 𝜋, E (𝜋) is the set of edges
forming 𝜋, and |𝜋 | is the number of edges of 𝜋. Generally the size of a discrete set S is |𝑆 |, while of a
set 𝐴 ⊆ R𝑑 , Vol(𝐴) is its Lebesgue measure. Given a cost function C : E → [0,∞] on the edges, the
cost of a set of edges P is C (P) :=

∑
𝑒∈E (P) C (𝑒). We define C (𝑥𝑥) := 0 for all 𝑥 ∈ V . We define the

cost-distance between vertices x and y as

𝑑C (𝑥, 𝑦) := inf{C (𝜋) : 𝜋 is a path from 𝑥 to 𝑦 in 𝐺}. (1.22)
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We define the graph distance 𝑑𝐺 (𝑥, 𝑦) similarly, where all edge-costs are set to 1. We denote the
Euclidean norm of 𝑥 ∈ R𝑑 by |𝑥 |, the Euclidean ball with radius 𝑟 ≥ 0 around x by 𝐵𝑟 (𝑥) := {𝑦 ∈
R𝑑 : |𝑥 − 𝑦 | ≤ 𝑟}, and the set of vertices in this ball by B𝑟 (𝑥) := {𝑦 ∈ V : |𝑥 − 𝑦 | ≤ 𝑟} = 𝐵𝑟 (𝑥) ∩ V .
(The minimal notation difference is intentional). The graph-distance ball and cost-distance ball (or
cost-ball for short) around a vertex x are the vertex sets B𝐺

𝑟 (𝑥) := {𝑦 ∈ V : 𝑑𝐺 (𝑥, 𝑦) ≤ 𝑟} and
BC

𝑟 (𝑥) := {𝑦 ∈ V : 𝑑C (𝑥, 𝑦) ≤ 𝑟}, respectively. We set 𝐵𝑟 := 𝐵𝑟 (0), and do similarly for B𝑟 , B𝐺
𝑟 , BC

𝑟 if
0 is a vertex. We define 𝜕𝐵𝑟 (𝑥) := 𝐵𝑟 (𝑥) \ {𝑦 ∈ R𝑑 : |𝑥 − 𝑦 | < 𝑟}, and use similar definitions for 𝜕B𝑟 ,
𝜕B𝐺

𝑟 and 𝜕BC
𝑟 . In particular, 𝜕B𝐺

1 (𝑣) is the set of neighbours of v.
The set of model parameters are par := {𝑑, 𝜏, 𝛼, 𝜇, 𝛽, 𝑐, 𝑐, 𝑐1, 𝑐2, 𝑡0}. For parameters 𝑎, 𝑏 > 0 (model

parameters or otherwise), we use ‘for all 𝑎�★ 𝑏’ as shortcut for ‘∀𝑏 > 0 : ∃𝑎0 = 𝑎0 (𝑏) : ∀𝑎 ≥ 𝑎0’.
We also say ‘𝑎�★ 𝑏’ to mean that 𝑎 ≥ 𝑎0 (𝑏). We use 𝑎�★ 𝑏 analogously, and may use more than two
parameters. For example, ‘for 𝑎�★ 𝑏, 𝑐’ means ‘∀𝑏, 𝑐 > 0 : ∃𝑎0 = 𝑎0 (𝑏, 𝑐) : ∀𝑎 ≥ 𝑎0’. A measurable
function ℓ : (0,∞) → (0,∞) is said to be slowly varying at infinity if lim𝑥→∞ ℓ(𝑐𝑥)/ℓ(𝑥) = 1 for all
𝑐 > 0. We denote by log the natural logarithm, by log2 the logarithm with base 2, and by log∗𝑘 the k-fold
iterated logarithm, for example, log∗3 𝑥 = log log log 𝑥. For 𝑛 ∈ N we write [𝑛] := {1, . . . , 𝑛}, and for
an event A we denote by A� its complement.

2. Working conditionally on the weighted vertex-set: nets

In proving the upper bounds (Theorems 1.4 and 1.6), we will construct cheap paths along the lines of the
‘budget travel plan’ on page 7 in Section 1, which is an iterative scheme of finding long 3-edge bridge-
paths to connect two far-away vertices. Since low-cost events in 1-FPP are not increasing, we develop
a technique that replaces the FKG-inequality. Moving to the quenched setting, we will first expose all
vertex positions and weights (above some threshold weight, in the case of IGIRG); then, low-cost edge
existence events become independent. To be able to work with fixed realisations of the vertex set, we find
(with high probability as |𝑥 | → ∞) a ‘nice’ subset of the vertices, that is, that behaves regularly enough
inside a box around 0, 𝑥, as in (1.4), which we call a net. We formalise the notion of the nets now. We start
with a less demanding notion of nets that we call weak nets which will suffice for the further sections of
the paper. Their existence will follow from the existence of strong nets which make (1.4) precise; this
may be of independent interest, and most of the section shall be devoted to proving their existence.

The vertex-weight distribution satisfies P(𝑊 ≥ 𝑤) = ℓ(𝑤)𝑤−(𝜏−1) in Definition 1.3, and consider
the slowly varying function ℓ(𝑤) from (1.6). We define 𝑤0 to be the smallest integer in [1,∞) such that

∀𝑤 > 𝑤0,∀𝑡 ∈ [1/2, 2] : ℓ(𝑤)𝑤−(𝜏−1) < 2−𝜏−8 and 0.99 ≤ ℓ(𝑡𝑤)/ℓ(𝑤) ≤ 1.01 (2.1)

both hold. Note that 𝑤0 satisfying (2.1) must exist since ℓ is a slowly varying function, and so Potter’s
bound [10] ensures the first inequality.

For a set 𝐴 ⊂ R𝑑 we write Vol(𝐴) for its Lebesgue measure (volume), while for a discrete set
A ⊆ (0,∞) we write |A| for the cardinality (size) of the set. Recall that weighted vertices are of the
form 𝑣̃ = (𝑣, 𝑤𝑣 ) ∈ R𝑑 × [1,∞).

Definition 2.1 (Weak net). Let 𝑄 ⊆ R𝑑 be a box of side length 𝜉, 𝜀 > 0, and 𝑤1 ≥ 𝑤0. A weak
(𝜀, 𝑤1)-net for Q is a set N ⊆ Ṽ ∩ 𝑄 × [1,∞) of size at least Vol(𝑄)/4 such that for all 𝑣̃ ∈ N , all
𝑟 ∈ [(log log 𝜉

√
𝑑)4/𝜀 , 𝜉

√
𝑑] and all 𝑤 ∈ [𝑤1, 𝑟

𝑑/(𝜏−1)−𝜀]:

|N ∩ (𝐵𝑟 (𝑣) × [𝑤/2, 2𝑤]) | ≥ 𝑟𝑑 (1−𝜀) · ℓ(𝑤)𝑤−(𝜏−1) . (2.2)

In a weak (𝜀, 𝑤1)-net, the number of weighted vertices in balls around net-vertices are close to their
expectation. Since we only require the property to hold around net vertices and not everywhere, we
circumvent the issue that the vertex set may have empty/low-density areas. In a weak net, we allow
an error of order 𝑟−𝑑𝜀 on the right-hand side of (2.2), and the minimal radius of the balls around net
vertices grows with the size 𝜉 of the box Q. In a strong net, we shall only allow a constant factor loss,
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see (2.4), and the balls can have constant radii r. The result that we shall use in further sections is the
following, again using the Palm measure in the case of IGIRG [61]. We condition on a few vertices to
be part of the vertex set and also demand that these vertices are part of the net.

Lemma 2.2. Consider IGIRG or SFP with 𝜏 > 2 in Def. 1.3. Then for all 𝜀 ∈ (0, 1/2), and for all 𝜉
sufficiently large relative to 𝜀, and 𝑡 ≤ min{1/𝜀, log log 𝜉} the following holds. Consider a cube𝑄 ⊆ R𝑑

of side length 𝜉, and let 𝑥1, . . . , 𝑥𝑡 ∈ 𝑄, and 𝑤0 from (2.1), then

P(𝑄 contains a weak (𝜀, 𝑤0)-net N , and 𝑥1, . . . , 𝑥𝑡 ∈ N | 𝑥1, . . . , 𝑥𝑡 ∈ V) ≥ 1 − 𝑡𝜀.

The condition 𝑡 ≤ 1/𝜀 is there to avoid a vacuous statement, and below we set 𝑡 = 2 and replace the
conditioning by 0, 𝑥 ∈ V . Note that the condition (2.2) never counts vertices of weight less than 𝑤1/2.
So, we can decide whether a weak (𝜀, 𝑤1)-net N exists by uncovering only the set of vertices of weight
at least 𝑤1/2 (beyond 𝑥1, . . . , 𝑥𝑡 ∈ N ). For IGIRG, this set is independent of the set of vertices of weight
smaller than 𝑤1/2, and we may use low-weight vertices for other purposes. This is the main reason for
introducing the parameter 𝑤1. We mention that Q does not need be a box of equal sizes, the proof also
works for boxes of any finite proportions parametrised by constant multiples of 𝜉.

In order to prove the existence of weak nets, we will divide Q into nested sub-boxes and work induc-
tively, taking the finest partition and lowest-weight vertices as the base case and gradually coarsening
the partition and including higher-weight vertices. To make this argument work, we will need stronger
control over the properties of each layer of the partition than Definition 2.1 provides; see Definition
2.10. As such, it is convenient to instead prove the existence of ‘strong nets’ which satisfy tighter bounds
at specific scales, which we define next. We will then prove that every strong net is also a weak net, as
our strong control at each layer will translate into weaker control between layers. Strong nets may also
be of independent interest in cases where stronger bounds over smaller scales are required.

Recall 𝑤0 from (2.1). For all 𝛿 > 0, and 𝑅 > 0 we define the function 𝑓𝑅,𝛿 (𝑟) slightly below the
typical largest vertex weight in a ball of radius r (roughly 𝑟𝑑/(𝜏−1) ):

𝑓𝑅,𝛿 (𝑟) = 𝑟
𝑑
𝜏−1

(
1 ∧ inf

{
ℓ(𝑥) : 𝑥 ∈ [𝑤0, 𝑟

𝑑/(𝜏−1) ]
}) 1

𝜏−1 ·
(

1
(2𝑑)2𝜏+𝑑+8 log(16𝑅/𝛿)

) 1
𝜏−1

. (2.3)

Definition 2.3 (Strong net). Let 𝐺 = (V , E) be an IGIRG or SFP as in Definition 1.3. Let R =
(𝑟1, 𝑟2, . . . , 𝑟𝑅) ⊆ (0,∞) be an increasing list of radii with 𝑅 = |R| < ∞, let 𝑤0 be as in (2.1) and
𝑓𝑅,𝛿 (·) be as in (2.3). Let 𝑄 ⊆ R𝑑 be a box. A (𝛿,R)-net for Q is a set N ⊆ Ṽ ∩ 𝑄 × [1,∞) of size at
least Vol(𝑄)/4 such that for all 𝑣̃ ∈ N , 𝑟 ∈ R, and all 𝑤 ∈ [𝑤0, 𝑓𝑅,𝛿 (𝑟)],��{𝑢̃ ∈ N ∩ 𝐵𝑟 (𝑣) × [𝑤/2, 2𝑤]

}�� ≥ 𝑟𝑑 · ℓ(𝑤)𝑤−(𝜏−1) /(2𝑑)𝑑+𝜏+5. (2.4)

Each 𝑟 ∈ R in Definition 2.3 will correspond to a layer of the discretisation of Q alluded to above.
We will require these radii to grow at least exponentially, with base depending on the number R of radii
in the list. The specific condition is the following. It may seem very strong that we require (2.4) for
infinitely many w. We discretise [𝑤0, 𝑓𝑅,𝛿 (𝑟)] into a finite set of subintervals (𝐼 𝑗 ) 𝑗≤ 𝑗max in a smart way.
Then we ensure that (2.4) holds with [𝑤/2, 2𝑤] replaced by 𝐼 𝑗 on the left hand side and the ℓ(𝑤)𝑤−(𝜏−1)

replaced by P(𝑊 ∈ 𝐼 𝑗 ) on the right hand side, and then this will imply that (2.4) also holds for all values
𝑤 ∈ [𝑤0, 𝑓𝑅,𝛿 (𝑟)].

Definition 2.4. Fix 𝛿 ∈ (0, 1). We say that an increasing list of radii R = (𝑟1, 𝑟2, . . . , 𝑟𝑅) ⊆ (0,∞) is
𝛿-well-spaced if 𝑅 = |R| < ∞ and the following hold:

𝑟1 ≥ 24𝑑
(
log(4𝑅/𝛿)

)1/𝑑 ∨ 𝑤 (𝜏−1)/𝑑
0 ∨ inf{𝑟 : 𝑓𝑅,𝛿 (𝑟) ≥ 𝑤0}; (2.5)

𝑟𝑖
𝑟𝑖−1

≥ 6𝑅1/𝑑
(

log(2𝑅/𝛿)
𝛿

)1/𝑑
∀𝑖 ∈ [2, 𝑅] . (2.6)
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In Definition 2.3, it may seem very strong that we require (2.4) for infinitely many w. We discretise
[𝑤0, 𝑓𝑅,𝛿 (𝑟)] into a finite set of subintervals (𝐼 𝑗 ) 𝑗≤ 𝑗max in a smart way. Then we ensure that (2.4) holds
with [𝑤/2, 2𝑤] replaced by 𝐼 𝑗 on the left hand side and the ℓ(𝑤)𝑤−(𝜏−1) replaced by P(𝑊 ∈ 𝐼 𝑗 ) on the
right hand side, and then this will imply that (2.4) also holds for all values 𝑤 ∈ [𝑤0, 𝑓𝑅,𝛿 (𝑟)].

We now state the main result of the section. Heuristically, a box Q contains an (𝛿,R)-net with
sufficiently high probability, and we can also condition on the presence of a few vertices in the net. The
condition 𝑡 ≤ 1/𝛿 in the following is added to avoid a vacuous statement.

Proposition 2.5. Consider IGIRG or SFP with 𝜏 > 2. Let 𝛿 ∈ (0, 1/16), 𝜉 > 0, and𝑄 ⊆ R𝑑 be a cube of
side length 𝜉. Let 𝑅 ∈ N andR = {𝑟1, . . . , 𝑟𝑅} be a 𝛿-well-spaced increasing list of radii with 𝑟𝑅 = 𝜉

√
𝑑.

Let 𝑥1, . . . , 𝑥𝑡 ∈ 𝑄 with 𝑡 ≤ min{1/𝛿, (𝑟1/4
√
𝑑)𝑑}, for SFP assume 𝑥1, . . . 𝑥𝑡 ⊂ Z𝑑 also. Then

P(𝑄 contains an (𝛿,R)-net N ) ≥ 1 − 𝛿/𝑅; (2.7)

P(𝑄 contains an (𝛿,R)-net N , 𝑥1, . . . , 𝑥𝑡 ∈ N | 𝑥1, . . . , 𝑥𝑡 ∈ V) ≥ 1 − 𝑡𝛿. (2.8)

For IGIRG (2.8) uses the Palm measure of vertex-weights and positions for IGIRG. For SFP the
conditioning can be dropped.

The proof of this proposition will take the rest of the section. Before that we show how Lemma 2.2
follows from it.

Proof of Lemma 2.2 subject to Proposition 2.5. Let 𝜀 ∈ (0, 1/2), set 𝜂 := 1 − 𝜀/2, and define R =
{𝑟1, . . . , 𝑟𝑅} as

𝑅 := 2 + �(log log 𝜉
√
𝑑 − log∗4 𝜉

√
𝑑 − log 4

𝜀 )/log(1/𝜂)�, (2.9)

𝑟𝑖 := (𝜉
√
𝑑)𝜂𝑅−𝑖 , for 𝑖 ∈ [𝑅] . (2.10)

We show that this choice of R is 𝜀-well-spaced (Def. 2.4). Let 1 − 𝑎 ∈ [0, 1) be the fractional part of
the expression inside the �·� in (2.9). Then using that �𝑥� = 𝑥 − 1 + 𝑎,

𝑟1 = (𝜉
√
𝑑)𝜂𝑅−1

= (𝜉
√
𝑑)𝜂𝑎4 log∗3 𝜉

√
𝑑/(𝜀 log 𝜉

√
𝑑) = (log log 𝜉

√
𝑑) (1−𝜀/2)𝑎4/𝜀 . (2.11)

Since 𝑎 ∈ (0, 1] and 𝜀 < 1/2, this implies that 𝑟1 is a strictly larger power of log log 𝜉
√
𝑑 than 1 while

R is of order log log 𝜉
√
𝑑. Since 𝜉 is large relative to 𝜀, Def. 2.4 (2.5) holds for 𝜀 = 𝛿. For all 𝑖 ∈ [𝑅],

since 𝜂 = 1 − 𝜀/2:

𝑟𝑖/𝑟𝑖−1 = (𝜉
√
𝑑)𝜂𝑅−𝑖 (1−𝜂) ≥ (𝜉

√
𝑑)𝜂𝑅−1 𝜀/2 = 𝑟 𝜀/2

1 = (log log 𝜉
√
𝑑)2(1−𝜀/2)𝑎 .

Since 𝑎 ≤ 1, 2(1 − 𝜀/2)𝑎 > 1 for all 𝜀 < 1/2, so Def. 2.4 (2.6) holds even in 𝑑 = 1, and R is 𝜀-well-
spaced as claimed. Moreover, since 𝑡 ≤ log log 𝜉 by hypothesis, by (2.11) we have 𝑡 ≤ (𝑟1/4

√
𝑑)𝑑 . By

Proposition 2.5, with probability at least 1 − 𝑡𝜀, conditioned on 𝑥1, . . . , 𝑥𝑡 ∈ V , Q contains a strong
(𝜀,R)-net N in Def. 2.3. We now show that a strong net is also a weak net (with the same 𝜀). Fix an
arbitrary 𝑟 ∈ [(log log 𝜉

√
𝑑)4/𝜀 , 𝜉

√
𝑑] and 𝑤 ∈ [𝑤0, 𝑟

𝑑/(𝜏−1)−𝜀] as in Def. 2.1 (this interval is nonempty
since 𝜏 ∈ (2, 3), 𝜀 < 1/2), and consider a vertex 𝑣 ∈ N . Since 𝑎 > 0 in (2.11), we have 𝑟1 ≤ 𝑟 ≤ 𝑟𝑅.
Let 𝑟 𝑗 be such that 𝑟 ∈ [𝑟 𝑗 , 𝑟 𝑗+1); thus 𝑟 𝜂 ≤ 𝑟 𝑗 ≤ 𝑟 by (2.10). Since 𝜉 is large relative to 𝜀, we
have 𝑤 ≤ 𝑓𝑅,𝜀 (𝑟 𝑗 ) (using (2.3)) for 𝑓𝑅,𝜀); thus by the definition of a strong (𝜀,R)-net in Def. 2.3,
|N ∩ (𝐵𝑟 𝑗 (𝑣) × [𝑤/2, 2𝑤]) | ≥ ℓ(𝑤)𝑤−(𝜏−1)𝑟𝑑

𝑗 /(2𝑑)
𝑑+𝜏+5. Since 𝜉 is large relative to 𝜀 and 𝑟 ≥ 𝑟 𝑗 ≥ 𝑟 𝜂 ,

the required inequality in Def. 2.1 follows since

|N ∩ (𝐵𝑟 (𝑣) × [𝑤/2, 2𝑤]) | ≥ ℓ(𝑤)𝑤−(𝜏−1)𝑟𝑑𝜂/(2𝑑)𝑑+𝜏+5 ≥ ℓ(𝑤)𝑤−(𝜏−1)𝑟𝑑 (1−𝜀) .

�

https://doi.org/10.1017/fms.2025.10161 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10161


20 J. Komjáthy et al.

Figure 4. Hyperrectangle-cover and definition of i-good boxes. In this figure, 𝑑 = 1, 𝑅 = 3, 𝑟 ′2/𝑟
′
1 = 3,

and 𝑟 ′3/𝑟
′
2 = 4, and the requirement of (B1) for 𝑖 > 1 is ‘all but at most one sub-box 𝐵′ ∈ P𝑖−1 of B

is good’. The hyperrectangle-cover is denoted by coloured-boundary rectangles. The spatial dimension
on the x axis is covered by nested intervals, where (blue) boxes in P2 contain 3 level-1 (orange) boxes
and (green) boxes in P3 contain 4 level-2 boxes. The weight dimension on the y axis is covered by a
base-2-cover 𝐼1, . . . , 𝐼6. Hyperrectangles above 𝑓 (𝑟1) (e.g., 𝐵1×𝐼3) and above 𝑓 (𝑟2) (e.g., 𝐵2×𝐼5), are
not included in P1,P2, respectively, since they contain too few vertices for concentration. Good boxes
are shaded and bad boxes are hatched or get no colour. Box 𝐵1 is good because its two hyper-rectangles
𝐵1×𝐼1 and 𝐵1×𝐼2 (filled orange) contain the right number of vertices, making all vertices in 𝐵12-good,
including those with weights above 𝐼1 ∪ 𝐼2. Box 𝐵′

1 is bad (light hatching), since it contains too few
vertices in 𝐵1× 𝐼1 (cross-hatching). Box 𝐵2 is good, because it only contains one bad sub-box (𝐵′

1) in
P1, and because its four hyperrectangles 𝐵2× 𝐼1, . . . , 𝐵2× 𝐼4 (filled blue) all contain the right number
of 2-good vertices in total. Since 𝐵1 and 𝐵2 are both good, vertex v is 3-good. Box 𝐵′

2 is ‘doubly’ bad
(filled white): it contains two level-1 bad sub-boxes, and the hyperrectangle 𝐵′

2 × 𝐼3 contains too few
1-good vertices. Thus no vertex in 𝐵′

2 is 3-good, including 𝑣′. Still, 𝐵3 is 3-good: it contains enough
3-good vertices in total, and only one bad level-2 sub-box (𝐵′

2).

The rest of this section is devoted to proving Proposition 2.5. All remaining definitions and lemmas
are used only within this section.

Shortly we shall carry out a multiscale analysis. We abbreviate 𝑓𝑅,𝛿 := 𝑓 everywhere except in
definitions and statements. We partition𝑄×[𝑤0, 𝑓 (𝑟𝑅)] into hyper-rectangles. On the weight-coordinate,
we cover the interval [𝑤0, 𝑓 (𝑟𝑅)] of weights with a set of disjoint intervals (𝐼 𝑗 ) 𝑗=1,..., 𝑗max so that the
first interval is of length 𝑤0, and each consecutive interval is twice as long as the previous one. On the
space-marginal, we partition Q into nested boxes B. The side lengths of these nested boxes will be close
to 𝑟1, . . . , 𝑟𝑅, with some minor perturbation so that they can form a proper nested partition: we write
𝑟 ′𝑖 ≈ 𝑟𝑖 for the side length of the i-th level of boxes. A depiction and extended example can be found in
Figure 4 on page 23 below, after the formal definition.

After fixing this partitioning of𝑄× [𝑤0, 𝑓 (𝑟𝑅)], we look at Ṽ ∩ (𝑄× [𝑤0, 𝑓 (𝑟𝑅)]). For each 𝑖 ∈ [𝑅],
we show that with probability close to 1 there is a dense subset of ‘good’ boxes B of side length 𝑟 ′𝑖 , in
the sense that 𝐵 × 𝐼 𝑗 contains the right number of vertices for all 𝐼 𝑗 with max(𝐼 𝑗 ) ≈ 𝑓 (𝑟𝑖). We choose
𝑟 ′𝑖 < 𝑟𝑖/

√
𝑑 to ensure that for all vertices v in a box of side length 𝑟 ′𝑖 , the entire box will be contained
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in 𝐵𝑟𝑖 (𝑣) – the ball of radius 𝑟𝑖 around v – this will allow us to take the net to be the set of all vertices
which lie in good boxes of all side lengths 𝑟 ′1, . . . , 𝑟

′
𝑅. We start with the space marginal and now formally

define the nested boxes.

Definition 2.6. Given R = {𝑟1, . . . , 𝑟𝑅}, and Q as in Proposition 2.5, an R-partition of Q is a collection
of partitions P̂ (R) := {P1, . . . ,P𝑅} of Q into boxes with the following properties:

(P1) For all 𝑖 ∈ [𝑅], every box in P𝑖 has the same side length 𝑟 ′𝑖 with

𝑟 ′𝑖 ∈ [𝑟𝑖/(2
√
𝑑), 𝑟𝑖/

√
𝑑] . (2.12)

(P2) For all 𝑖 ∈ [𝑅 − 1], every box in P𝑖+1 is partitioned into exactly (𝑟 ′𝑖+1)
𝑑/(𝑟 ′𝑖 )𝑑 boxes in P𝑖 .

(P3) We have P𝑅 = {𝑄}.

For 𝑥 ∈ 𝑄, 𝑖 ∈ [𝑅], write 𝐵𝑖 (𝑥) for the box in P𝑖 containing x. A direct consequence of (P1) of this
definition is

𝐵𝑖 (𝑥) ⊆ 𝐵𝑟𝑖 (𝑥). (2.13)

The partition P𝑖 is, by (P2), a refinement of the partition of P𝑖+1, that is, every box in P𝑖+1 can be
partitioned exactly into sub-boxes in P𝑖 . Also, 𝑟𝑅 = 𝜉

√
𝑑 ensures that (P1) and (P3) can be both satisfied

for 𝑖 = 𝑅.

Lemma 2.7. Suppose R and Q satisfy Proposition 2.5. Then an R-partition P̂ (R) of Q exists.

Proof. We prove that given a 𝛿-well-spaced 𝑟1 < . . . < 𝑟𝑅, there exist side lengths 𝑟 ′1, . . . , 𝑟
′
𝑅 that satisfy

(P1) – (P3), that is, that 𝑟 ′𝑖+1/𝑟
′
𝑖 is an integer, (2.12) holds, and 𝑟 ′𝑅 = 𝜉. We proceed by induction on i,

starting from 𝑖 = 𝑅 and decreasing i. We take 𝑟 ′𝑅 := 𝑟𝑅/
√
𝑑 = 𝜉, then (2.12) is satisfied immediately and

(P2)–(P3) are vacuous. Suppose we have found 𝑟 ′𝑖 , . . . , 𝑟
′
𝑅 satisfying (P1)–(P3) for some 2 ≤ 𝑖 ≤ 𝑅. Let

𝑟 ′𝑖−1 =
𝑟 ′𝑖

�
√
𝑑𝑟 ′𝑖/𝑟𝑖−1�

. (2.14)

This choice of 𝑟 ′𝑖−1 divides 𝑟 ′𝑖 , hence (P2) can be satisfied, and 𝑟 ′𝑖−1 ≤ 𝑟 ′𝑖/(
√
𝑑𝑟 ′𝑖/𝑟𝑖−1) = 𝑟𝑖−1/

√
𝑑.

Moreover,

𝑟 ′𝑖−1 ≥
𝑟 ′𝑖

1 +
√
𝑑𝑟 ′𝑖/𝑟𝑖−1

=
𝑟𝑖−1

𝑟𝑖−1/𝑟 ′𝑖 +
√
𝑑
. (2.15)

Since (2.12) holds for i (by the inductive assumption), 𝑟 ′𝑖 ≥ 𝑟𝑖/2
√
𝑑. Since R is also well-spaced,

𝑟𝑖−1 ≤ 𝑟𝑖/2 by (2.6); hence 𝑟𝑖−1/𝑟 ′𝑖 ≤
√
𝑑. so, by (2.15), 𝑟 ′𝑖−1 ≥ 𝑟𝑖−1/2

√
𝑑, and so (2.12) holds also for

𝑖 − 1 and the induction is advanced.
Given these 𝑟 ′1, . . . , 𝑟

′
𝑅, we find an R-partition of Q by taking P𝑅 = {𝑄} and iteratively forming each

layer P𝑖−1 by taking the unique partition of each box in P𝑖 into (𝑟 ′𝑖 )𝑑/(𝑟 ′𝑖−1)
𝑑 sub-boxes of side length

𝑟 ′𝑖−1. We first define each partition box to be of the form
∏𝑑

𝑗=1 [𝑎 𝑗 , 𝑏 𝑗 ), this allocates each point except
d of the 𝑑 − 1-dim faces of 𝜕𝑄 uniquely. Finally, we allocate the points 𝑥 ∈ 𝜕𝑄 in P𝑖 to the box in P𝑖

that contains x in its closure, this box is unique except on 𝑑 − 2 dimensional faces. Here we again use
half-open 𝑑 − 1-dim boxes to determine the 𝑑 − 2 dim boundaries, and so on until only the corner-points
are left which we allocate arbitrarily (but consistently across different i). �

We continue with the weight-marginal and cover the interval [𝑤0, 𝑓 (𝑟𝑖)] of weights with a collection
of intervals, forming later the weight-coordinate of the hyper-rectangles:
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Definition 2.8 (Base-2-cover). Given a closed interval 𝐽 = [𝑎, 𝑏] ⊂ R+, let 𝑗max := �log2 (𝑏/𝑎)� + 1,
and define 𝐼 𝑗 := [2 𝑗−1𝑎, 2 𝑗𝑎) for 𝑗 ∈ [ 𝑗max]. Then 𝐽 ⊆

⋃ 𝑗max
𝑗=1 𝐼 𝑗 and we call 𝐼 = {𝐼 𝑗 } 𝑗≤ 𝑗max the base-

2-cover of [𝑎, 𝑏]. For each 𝑥 ∈ [𝑎, 𝑏] we define 𝐼 (𝑤) := {𝐼 𝑗 : 𝑤 ∈ 𝐼 𝑗 } to be the unique interval that
contains x, and write 𝐼 (𝑤) = [𝑤−, 𝑤+) for its endpoints.

For each 𝑤 ∈ [𝑎, 𝑏], 𝑤/2 ≤ 𝑤− and 𝑤+ ≤ 2𝑥, so 𝐼 (𝑤) ⊆ [𝑤/2, 2𝑤]; by the definition of 𝐼 𝑗max , we
also have 𝑏 ∈ 𝐼 𝑗max . We define the hyperrectangle-covering of the box Q including vertex-weights now.
Recall vertex-weight distribution W from (1.6), and 𝑓 (𝑟) from Def. 2.3.

Definition 2.9 (Hyperrectangles). Consider the setting of Proposition 2.5 and Definitions 2.6, 2.8. Let
P̂ (R) := {P1, . . . ,P𝑅} be an R-partition of the cube Q with R = {𝑟1, . . . , 𝑟𝑅}, 𝑟 ′𝑖 be the side-lengths
in P𝑖 , and let 𝐼 = {𝐼 𝑗 } 𝑗≤ 𝑗max be a base-2-cover of [𝑤0, 𝑓𝑅,𝛿 (𝑟𝑅)]. Let 𝑗★(𝑖) be the index of the interval
that contains 𝑓𝑅,𝛿 (𝑟𝑖), that is,

𝑓𝑅,𝛿 (𝑟𝑖) ∈ 𝐼 ( 𝑓𝑅,𝛿 (𝑟𝑖)) =: 𝐼 𝑗★ (𝑖) . (2.16)

Then we say that the collection H(R) :=
{
𝐵𝑖 × 𝐼 𝑗 : 𝐵𝑖 ∈ P𝑖 , 1 ≤ 𝑗 ≤ 𝑗★(𝑖)

}
is a hyperrectangle-cover

of 𝑄 × [𝑤0, 𝑓 (𝑟𝑅)]. For all 𝑖 ∈ [𝑅] and all 𝐴 ⊂ [𝑤0, 𝑓 (𝑟𝑅)], we define

𝜇𝑖 (𝐴) := (𝑟 ′𝑖 )𝑑 · P(𝑊 ∈ 𝐴). (2.17)

When we cover with boxes in P𝑖 on the spatial coordinate, the number 𝑗★(𝑖) of weight intervals
in H(R) depends on i. In particular, for smaller side-length we do not include intervals of very large
weights. This is because there are too few (or no) vertices of large weight in a typical box of small
side-length, so we cannot control their number. We illustrate a hyperrectangle cover on Figure 4 in
dimension 1. In IGIRG, 𝜇𝑖 (𝐴) is the expected number of vertices with weights in A in any box in P𝑖 . In
SFP, 𝜇𝑖 (𝐴) is only roughly the expectation, since, for example, a box touching the boundary 𝜕𝑄 in P𝑖

may not contain exactly (𝑟 ′𝑖 )𝑑 vertices of Z𝑑 . By (2.13), all vertices in the hyperrectangle 𝐵𝑖 (𝑣) × 𝐼 𝑗 are
within distance 𝑟𝑖 of v. Hence once we control the number of vertices in a dense set of hyperrectangles
in all partitions 𝑖 ∈ [𝑅], we can find a net. We now define a hyperrectangle being ‘good’, with respect
to a realisation of Ṽ . Recall that 𝐼 (𝑤) denotes the interval 𝐼 𝑗 that contains w in Definition 2.8.

Definition 2.10. Consider the setting of Def. 2.13, and let a H(R) be a hyperrectangle-cover of
𝑄 × [𝑤0, 𝑓 (𝑟𝑅)]. Consider a realisation of the weighted vertex set Ṽ =

(
(𝑣, 𝑤𝑣 )

)
𝑣 ∈V .

We recursively define when we call a vertex 𝑣̃ ∈ Ṽ and a box 𝐵 ∈ P̂ (R) good. Every vertex is 1-
good. For all 𝑖 ∈ [𝑅], we say a vertex 𝑣̃ = (𝑣, 𝑤𝑣 ) ∈ Ṽ is i-good if the boxes 𝐵1(𝑣), . . . , 𝐵𝑖−1(𝑣) are all
good (which we define next). Denote the set of i-good (weighted) vertices by G̃𝑖 := {𝑣̃ ∈ Ṽ 𝑖-good} and
G𝑖 := {𝑣 : 𝑣̃ ∈ G̃𝑖}. We say that a box 𝐵 ∈ P𝑖 is i-good or simply good if the following conditions all hold:

(B1) Either 𝑖 = 1, or B contains at least 1 − 2𝛿
𝑅 · (𝑟 ′𝑖/𝑟 ′𝑖−1)

𝑑 many 𝑖 − 1-good sub-boxes 𝐵′ ∈ P𝑖−1.
(B2) The total number of i-good vertices in B satisfies

|G𝑖 ∩ 𝐵 | ∈
[(

1
2
− 2(𝑖 − 1)𝛿

𝑅

)
(𝑟 ′𝑖 )𝑑 , 2(𝑟 ′𝑖 )𝑑

]
. (2.18)

(B3) For all 𝑤 ∈ [𝑤0, 𝑓𝑅,𝛿 (𝑟𝑖)], the number of i-good vertices in B with weight in 𝐼 (𝑤) satisfies

|G̃𝑖 ∩ (𝐵 × 𝐼 (𝑤)) | ∈
[
1
8

(
1 − 2𝑖𝛿

𝑅

)
𝜇𝑖 (𝐼 (𝑤)), 8𝜇𝑖 (𝐼 (𝑤))

]
. (2.19)

We say that the realisation Ṽ is good with respect to the hyperrectangle-cover P̃ (R) if Q is R-good.

The above definition is not circular; the definition of i-good vertices depends only on the definition
of good boxes in P𝑖−1, that is, one level lower, and then the definition of a good box in P𝑖 depends only
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on the number of i-good vertices in it (and their weights) and its number of good subboxes in P𝑖−1. For
𝑖 = 1, the (longer) definition of 1-good vertices is vacuous, so every vertex is indeed 1-good which we
emphasised in the definition. Further, G𝑅 ⊆ G𝑅−1 ⊆ . . . ⊆ G1 = V ∩𝑄, since each i-good vertex is also
(𝑖−1)-good for all 𝑖 ≤ 𝑅. See Figure 4 for a graphical depiction of i-good vertices and boxes.

Before we relate goodness to our overall goal of finding an (𝛿,R)-net, we give some easy algebraic
bounds which we need multiple times in the rest of the section. Recall that 𝐼 (𝑤) = 𝐼 𝑗 iff 𝑤 ∈ 𝐼 𝑗 (cf. Def.
2.8) and that 𝜇𝑖 (𝐴) = (𝑟 ′𝑖 )𝑑 · P(𝑊 ∈ 𝐴) in (2.17).

Lemma 2.11. Consider the setting of Proposition 2.5 and Definitions 2.6, 2.13. Suppose P̂ (R) =
{P1, . . . ,P𝑅} is an R-partition of Q, and for all 𝑖 ∈ [𝑅], let 𝑟 ′𝑖 be the side length of boxes in P𝑖 . Then
for all 𝑖 ∈ [𝑅] and all 𝑤 ∈ [𝑤0, 𝑓 (𝑟𝑅)], we have

𝑟𝑑
𝑖 ℓ(𝑤)𝑤

−(𝜏−1) /(2𝑑)𝜏+𝑑+1 ≤ 𝜇𝑖 (𝐼 (𝑤)) = (𝑟 ′𝑖 )𝑑 · P(𝑊 ∈ 𝐼 (𝑤)) ≤ 2𝜏𝑟𝑑
𝑖 ℓ(𝑤)𝑤

−(𝜏−1) , (2.20)

𝑟𝑑
𝑖 ℓ( 𝑓 (𝑟𝑖)) 𝑓 (𝑟𝑖)

−(𝜏−1) ≥ (2𝑑)2𝜏+𝑑+8 log(16𝑅/𝛿). (2.21)

Proof. We start by showing (2.20). We write 𝐼 (𝑤) = [𝑤−, 𝑤+). The definition of a base-2-cover
(Definition 2.8) ensures that 𝑤−, 𝑤+ ∈ [𝑤/2, 2𝑤] and 𝑤+/𝑤− = 2. Thus by the lower bound (2.1) on
𝑤0, for all 𝑤 ∈ [𝑤0, 𝑓 (𝑟𝑅)],

P(𝑊 ∈ 𝐼 (𝑤)) = ℓ(𝑤−)𝑤−(𝜏−1)
− − ℓ(𝑤+)𝑤−(𝜏−1)

+

≥ ℓ(𝑤)
(

99
100

𝑤−(𝜏−1)
− − 101

100
𝑤−(𝜏−1)
+

)
= ℓ(𝑤)𝑤−(𝜏−1)

−

(
99

100
− 101

100
· 2−(𝜏−1)

)
.

Since 𝜏 > 2 and 𝑤− ≤ 𝑤, it follows that 𝜇𝑖 (𝐼 (𝑤)) ≥ (𝑟 ′𝑖 )𝑑ℓ(𝑤)𝑤−(𝜏−1) /2𝜏+1. The required lower bound
on 𝜇𝑖 (𝐼 (𝑤)) then follows by the lower bound (P1) in Definition 2.6 on 𝑟 ′𝑖 . By a very similar argument
to the lower bound, (2.1) also implies that

P(𝑊 ∈ 𝐼 (𝑤)) ≤ 101
100

ℓ(𝑤)𝑤−(𝜏−1)
− ≤ 2𝜏ℓ(𝑤)𝑤−(𝜏−1) ,

so the required upper bound on 𝜇𝑖 (𝐼 (𝑤)) likewise follows by the upper bound (P1) on 𝑟 ′𝑖 . It remains
to show (2.21). First we show that 𝑓 (𝑟𝑅) ≥ 𝑓 (𝑟𝑅−1) ≥ . . . ≥ 𝑓 (𝑟1) ≥ 𝑤0. Indeed, let 𝑗 ∈ [𝑅]. By the
definition of f in (2.3),

𝑓 (𝑟 𝑗 )
𝑓 (𝑟 𝑗−1)

=

(
𝑟 𝑗

𝑟 𝑗−1

)𝑑/(𝜏−1)
· ���

1 ∧ inf
{
ℓ(𝑥) : 𝑥 ∈ [𝑤0, 𝑟

𝑑/(𝜏−1)
𝑗 ]

}
1 ∧ inf

{
ℓ(𝑥) : 𝑥 ∈ [𝑤0, 𝑟

𝑑/(𝜏−1)
𝑗−1 ]

} ���
1/(𝜏−1)

. (2.22)

To bound the second factor, we will first observe that since 𝑟 𝑗−1 ≤ 𝑟 𝑗 , we have inf{ℓ(𝑥) : 𝑥 ∈
[𝑤0, 𝑟

𝑑/(𝜏−1)
𝑗 ]} ≤ inf{ℓ(𝑥) : 𝑥 ∈ [𝑤0, 𝑟

𝑑/(𝜏−1)
𝑗−1 ]}. By considering the two possible values of

1∧ inf{ℓ(𝑥) : 𝑥 ∈ [𝑤0, 𝑟
𝑑/(𝜏−1)
𝑗 ]} separately, it follows that we can drop the minimum with 1 in the ratio:

���
1 ∧ inf

{
ℓ(𝑥) : 𝑥 ∈ [𝑤0, 𝑟

𝑑/(𝜏−1)
𝑗 ]

}
1 ∧ inf

{
ℓ(𝑥) : 𝑥 ∈ [𝑤0, 𝑟

𝑑/(𝜏−1)
𝑗−1 ]

} ���
1/(𝜏−1)

≥ ���
inf

{
ℓ(𝑥) : 𝑥 ∈ [𝑤0, 𝑟

𝑑/(𝜏−1)
𝑗 ]

}
inf

{
ℓ(𝑥) : 𝑥 ∈ [𝑤0, 𝑟

𝑑/(𝜏−1)
𝑗−1 ]

} ���
1/(𝜏−1)

. (2.23)

We now bound ℓ(𝑥) on [𝑤0, 𝑟
𝑑/(𝜏−1)
𝑗−1 ] (in the denominator) by repeatedly applying (2.1). We write

lg(·) = log2 (·). Then, we have 𝑟𝑑/(𝜏−1)
𝑗 = 2lg( (𝑟 𝑗/𝑟 𝑗−1)𝑑/(𝜏−1) )𝑟𝑑/(𝜏−1)

𝑗−1 , so we iterate the bound in (2.1)
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roughly lg((𝑟 𝑗/𝑟 𝑗−1)𝑑/(𝜏−1) ) many times to obtain that for all 𝑥 ∈ [𝑟𝑑/(𝜏−1)
𝑗−1 , 𝑟𝑑/(𝜏−1)

𝑗 ] we have

ℓ(𝑥) ≥
(

99
100

)1+lg( (𝑟 𝑗/𝑟 𝑗−1)𝑑/(𝜏−1) )
ℓ(𝑟 𝑗−1).

Returning to (2.23), the ratio of the two infima in the smaller interval [𝑤0, 𝑟
𝑑/(𝜏−1)
𝑗−1 ] is one. And since

𝑟 𝑗 ≥ 2𝑟 𝑗−1 by (R2) of Definition 2.4 (using 𝛿 < 1/16 < 1), it follows that

���
inf

{
ℓ(𝑥) : 𝑥 ∈ [𝑤0, 𝑟

𝑑/(𝜏−1)
𝑗 ]

}
inf

{
ℓ(𝑥) : 𝑥 ∈ [𝑤0, 𝑟

𝑑/(𝜏−1)
𝑗−1 ]

} ���
1/(𝜏−1)

≥
(

99
100

)1+lg( (𝑟 𝑗/𝑟 𝑗−1)𝑑/(𝜏−1) )

≥
(

1
2

) 1
𝜏−1 lg( (𝑟 𝑗/𝑟 𝑗−1)𝑑/(𝜏−1) )

=

(
𝑟 𝑗−1

𝑟 𝑗

)𝑑/(𝜏−1)2

.

Combining this with (2.22), (2.23), and the fact that 𝜏 > 2, we obtain

𝑓 (𝑟 𝑗 )
𝑓 (𝑟 𝑗−1)

≥
(
𝑟 𝑗

𝑟 𝑗−1

) 𝑑
𝜏−1 (1−1/(𝜏−1))

≥ 1.

Hence 𝑓 (𝑟𝑅) ≥ 𝑓 (𝑟𝑅−1) ≥ . . . ≥ 𝑓 (𝑟1), as claimed. It is now relatively easy to prove the desired
lower bound. From the definition of f in (2.3), we have 𝑓 (𝑟𝑖) ≤ 𝑟𝑑/(𝜏−1)

𝑖 , and (2.5) in the definition of
well-spacedness ensures that 𝑓 (𝑟𝑖) ≥ 𝑤0, so

ℓ( 𝑓 (𝑟𝑖)) 𝑓 (𝑟𝑖)−(𝜏−1) =
ℓ( 𝑓 (𝑟𝑖))

1 ∧ inf{ℓ(𝑥) : 𝑥 ∈ [𝑤0, 𝑟
𝑑/(𝜏−1)
𝑖 ]}

· (2𝑑)
2𝜏+𝑑+8 log(16𝑅/𝛿)

𝑟𝑑
𝑖

≥ (2𝑑)2𝜏+𝑑+8 log(16𝑅/𝛿)
𝑟𝑑
𝑖

.

Multiplying by 𝑟𝑑
𝑖 finishes the statement of (2.21). �

We now show that given that the box Q is good with respect to a hyperrectangle cover, we can find
an (𝛿,R)-net for Q (see Def. 2.3).

Lemma 2.12. Consider the setting of Proposition 2.5 and Definitions 2.6, 2.13, 2.10, that is, a hyper-
rectangle cover H(R) of 𝑄 × [𝑤0, 𝑓 (𝑟𝑅)], and a realisation of Ṽ for which Q is R-good. Then G̃𝑅, the
set of all R-good vertices, forms an (𝛿,R)-net for Q.

Proof. Suppose that Q is R-good. The side length of Q equals 𝑟 ′𝑅 by (P3) in Def. 2.6, and 𝛿 ∈ (0, 1/16)
in the setting of Proposition 2.5, hence we may apply (B2) in Def. 2.10 for 𝑖 = 𝑅 to get

|G̃𝑅 | ≥
(

1
2
− 2(𝑅 − 1)𝛿

𝑅

)
Vol(𝑄) ≥

(
1
2
− 2𝛿

)
Vol(𝑄) > Vol(𝑄)/4,

hence the cardinality assumption in Definition 2.3 is satisfied for G̃𝑅. Recall that 𝐵𝑖 (𝑣) is the box in P𝑖

containing v. To show that G̃𝑅 satisfies Definitions 2.3, we first show that for all 𝑣 ∈ G𝑅,

G𝑖 ∩ 𝐵𝑖 (𝑣) = G𝑅 ∩ 𝐵𝑖 (𝑣). (2.24)

To show this, we need to show that every i-good vertex 𝑢 ∈ 𝐵𝑖 (𝑣) is also R-good, that is, that 𝐵 𝑗 (𝑢) is
good for all 𝑗 ∈ [𝑅]. By the definition of i-goodness (Def. 2.10), 𝐵 𝑗 (𝑢) is good for all 𝑗 ≤ 𝑖 − 1, and
𝐵𝑅 (𝑢) = 𝑄 is good by hypothesis. Consider now a 𝑗 ∈ [𝑖 + 1, 𝑅 − 1]. By Def. 2.6, the partition P𝑖 is a
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refinement of the partition P 𝑗 , so 𝐵 𝑗 (𝑢) = 𝐵 𝑗 (𝑣). Since v is R-good, it follows that 𝐵 𝑗 (𝑢) is good. So,
𝐵 𝑗 (𝑢) is good for all 𝑗 ∈ [𝑅], so u is R-good, showing (2.24).

With 𝐼 (𝑤) ⊆ [𝑤/2, 2𝑤] being the interval containing w in the base-2-cover of [𝑤0, 𝑓 (𝑟𝑖)] in Def.2.8,
we now argue that

|G̃𝑅 ∩ (𝐵𝑟𝑖 (𝑣) × [𝑤/2, 2𝑤]) | ≥ |G̃𝑅 ∩ (𝐵𝑖 (𝑣) × 𝐼 (𝑤)) | = |G̃𝑖 ∩ (𝐵𝑖 (𝑣) × 𝐼 (𝑤)) |.

Indeed, 𝐵𝑖 (𝑣) ⊆ 𝐵𝑟𝑖 (𝑣) by (2.13) and 𝐼 (𝑤) ⊆ [𝑤/2, 2𝑤] by Def. 2.8, and since all i-good vertices
in 𝐵𝑖 (𝑣) are also R-good by (2.24), the statement follows. Now we apply, on the right-hand side
|G̃𝑖 ∩ (𝐵𝑖 (𝑣) × 𝐼 (𝑤)) | above, the lower bound (2.19) from Def. 2.10 (B3), then (2.20) to obtain��G̃𝑅 ∩ (𝐵𝑖 (𝑣) × [𝑤/2, 2𝑤])

�� (2.19)
≥ 1

8

(
1 − 2𝑖𝛿

𝑅

)
𝜇𝑖 (𝐼 (𝑤))

(2.20)
≥ 1

8

(
1 − 2𝑖𝛿

𝑅

)
𝑟𝑑
𝑖 ℓ(𝑤)𝑤

−(𝜏−1) /(2𝑑)𝜏+𝑑+1.

Observing that 𝛿 < 1/16 and 𝑖 ≤ 𝑅 ensures that the prefactor on the right-hand side of the last row is at
least 1/8 · 1/2 = 1/24, establishing (2.4) for all 𝑤 ≤ 𝑓 (𝑟𝑖), as required. �

A lower bound on the probability that any given box in an R-partition is good, together with
Lemma 2.7 and Lemma 2.12, will yield the proof of Proposition 2.5. The bound is by induction on i
together with Chernoff bounds. Recall I and 𝐼 (𝑤) from Def. 2.8, applied to the interval [𝑤0, 𝑓 (𝑟𝑅)] for
R = {𝑟1, . . . , 𝑟𝑅}. Recall that (2.19) of Def. 2.10 (B3) is required only when 𝑤 ∈ [𝑤0, 𝑓 (𝑟𝑖)], and that
𝑗★(𝑖) in (2.16) is the index of 𝐼 𝑗 that contains 𝑓 (𝑟𝑖). We now gradually reveal vertex-weights by giving a
weight-revealment scheme. Here, we aim for unified proof that works for SFP and IGIRG simultaneously.
In IGIRG we can make use the independence property of marked Poisson point processes, namely, that
the number of vertices in 𝐵 × 𝐼 𝑗 and 𝐴 × 𝐼 𝑗′ are independent if 𝑗 ≠ 𝑗 ′, see [61]. However, in SFP this
is not the case and we may run out of vertices as we gradually reveal vertices with higher and higher
weights. To solve this issue, we first reveal all vertex positions only (one could think of this as a sigma-
algebra, we call it F0 and leave vertex-weights yet unrevealed. Then, in subsequent weight-revealment
steps F1,F2, . . . ,F𝑅, we reveal the vertex-weights of those vertices whose weight falls into the intervals
𝐼 𝑗 , with the maximal j revealed increasing along the steps. Recall that 𝑗★(𝑖) is the index of the interval
𝐼 𝑗 containing 𝑓 (𝑟𝑖) from (2.16), and that we denote the 𝜎-algebra generated by a random variables 𝑋,𝑌
by 𝜎(𝑋,𝑌 ).

Definition 2.13. Consider the setting of Proposition 2.5 and Definitions 2.6, 2.13. Suppose H(R) is a
hyperrectangle-cover of 𝑄 × [𝑤0, 𝑓 (𝑟𝑅)]. Let Ṽ be a realisation of the weighted vertices in Definition
1.3 and B be a box in one of the partitions (P𝑖)𝑖≤𝑅. We define

F𝑖 (𝐵) :=

{
𝜎(V ∩ 𝐵) for 𝑖 = 0,
𝜎
(
F0(𝐵), Ṽ ∩ (𝐵 × ∪ 𝑗≤ 𝑗★ (𝑖) 𝐼 𝑗

)
for all 1 ≤ 𝑖 ≤ 𝑅.

(2.25)

We say that we vertices with weight in ∪ 𝑗≤ 𝑗★ (𝑖) 𝐼 𝑗 have ‘revealed’ weight in F𝑖 , while the vertices in
[1,∞) \ ∪ 𝑗≤ 𝑗★ (𝑖) 𝐼 𝑗 have ‘unrevealed’ weight in F𝑖 . We denote by X𝑖 (𝐵) the outcome of the revealment
scheme F𝑖 (𝐵): X𝑖 (𝐵) contains the position of all vertices in the box B, where a subset of these vertices
is marked by the revealed vertex-weight.

F0(𝐵) reveals the number and positions of vertices in B, while F𝑖−1(𝐵) reveals the precise weights
only of vertices whose weight falls in the interval ∪ 𝑗≤ 𝑗★ (𝑖−1) 𝐼 𝑗 ⊇ [𝑤0, 𝑓 (𝑟𝑖−1)]. Note that the weight
distribution of vertices with unrevealed weight changes along the revealment procedure, since after
revealment step 𝑖 − 1 it is the conditional weight distribution that the weight does not fall in the
revealed interval ∪ 𝑗≤ 𝑗★ (𝑖−1) 𝐼 𝑗 . The fact that R is 𝛿-well-spaced, means that vertex weights between
𝑤02 𝑗★ (𝑖−1) ≈ 𝑓 (𝑟𝑖−1) and 𝑓 (𝑟𝑖) are not revealed in F𝑖−1(𝐵). Also, vertex weights in [1, 𝑤0) are not
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revealed at all; since 𝑤0 is large, P(𝑊 ≤ 𝑤0) is large and most vertex weights will not be revealed
by exposing F𝑖−1(𝐵). The filtration generated by F𝑖−1(𝐵) thus determines whether or not boxes in
∪ 𝑗≤𝑖−1P 𝑗 are good, and whether or not a vertex is i-good (see Def. 2.10), since i-goodness of a vertex
only depends on boxes with index at most 𝑖 − 1 containing the vertex. So, F𝑖−1(𝐵) determines whether
or not 𝐵 ∈ P𝑖 satisfies Def. 2.10 (B1) -(B2), but it leaves (B3) undecided for weights slightly below
𝑓 (𝑟𝑖). The next lemma treats (B3), with F𝑖−1(𝐵) exposed.

Lemma 2.14. Consider the setting of Proposition 2.5 and Definitions 2.6, 2.13. Let H(R) be a
hyperrectangle-cover of the cube Q. Let 𝑖 ∈ [𝑅] and let 𝐵 ∈ P𝑖 . Let X be a realisation9 of X𝑖−1(𝐵) that
satisfies Definition 2.10 (B1) and (B2) for B. Then independently of other boxes in P𝑖 , uniformly for all
such X,

P(𝐵 is good | X𝑖−1(𝐵) = 𝑋) ≥ 1 − 𝛿/(2𝑅). (2.26)

Proof. Recall 𝐼 𝑗 from Def. 2.8, and let 𝐵 ∈ P𝑖 . Let

𝑎(𝐼 𝑗 ) := (1 − 2𝑖𝛿/𝑅)𝜇𝑖 (𝐼 𝑗 )/8, 𝑏(𝐼 𝑗 ) := 8𝜇𝑖 (𝐼 𝑗 ) (2.27)

be the required lower and upper bounds in (2.19). Let Ξ 𝑗 (𝐵) = |G̃𝑖 ∩ (𝐵× 𝐼 𝑗 ) |; thus (B3) holds for 𝐵× 𝐼 𝑗
iff Ξ 𝑗 (𝐵) ∈ [𝑎(𝐼 𝑗 ), 𝑏(𝐼 𝑗 )]. Since B satisfies (B1)–(B2) on X, by a union bound,

P
(
𝐵 is good | X𝑖−1(𝐵) = 𝑋

)
≥ 1 −

∑
𝐼 𝑗 : 𝑗≤ 𝑗★ (𝑖)

P
(
Ξ 𝑗 (𝐵) ∉ [𝑎(𝐼 𝑗 ), 𝑏(𝐼 𝑗 )] | X𝑖−1(𝐵) = 𝑋

)
. (2.28)

We proceed by bounding each term above. By the definition of F𝑖−1(𝐵) in (2.25), we already exposed
Ξ 𝑗 (𝐵) when 𝑖 > 1 and 𝑗 ≤ 𝑗∗(𝑖 − 1); the latter is equivalent to min(𝐼 𝑗 ) ≤ 𝑓 (𝑟𝑖−1).

Case 1: 𝒊 >1 and 𝒋 ≤ 𝒋★(𝒊−1). We first show that Ξ 𝑗 ≥ 𝑎(𝐼 𝑗 ) holds deterministically on {X𝑖−1(𝐵) =
𝑋}. The goodness of each sub-box 𝐵′ ∈ P𝑖−1 of 𝐵 ∈ P𝑖 is revealed by F𝑖−1(𝐵). If 𝐵′ ∈ P𝑖−1 is a good
box, all vertices in G𝑖−1 ∩ 𝐵′ are also i-good by Definition 2.10. So

Ξ 𝑗 (𝐵) = |G̃𝑖 ∩ (𝐵 × 𝐼 𝑗 ) | ≥
∑

𝐵′ ∈P𝑖−1 : 𝐵′ good
|G̃𝑖−1 ∩ (𝐵′ × 𝐼 𝑗 ) |. (2.29)

Since 𝑗 ≤ 𝑗★(𝑖 − 1), min(𝐼 𝑗 ) ≤ 𝑓 (𝑟𝑖−1), so we may apply (2.19) to the good subboxes:

|G̃𝑖−1 ∩ (𝐵′ × 𝐼 𝑗 ) | ≥
(
1 − 2(𝑖 − 1)𝛿

𝑅

)
𝜇𝑖−1(𝐼 𝑗 )

8
=

(
1 − 2(𝑖 − 1)𝛿

𝑅

)
𝜇𝑖 (𝐼 𝑗 )

8

(
𝑟 ′𝑖−1
𝑟 ′𝑖

)𝑑

, (2.30)

where 𝜇𝑖 (𝐼 𝑗 )/𝜇𝑖−1(𝐼 𝑗 ) = (𝑟 ′𝑖/𝑟 ′𝑖−1)
𝑑 follows from (2.17). By (B1) holding on X, B contains at least

(1 − 2𝛿/𝑅) (𝑟 ′𝑖/𝑟 ′𝑖−1)
𝑑 good sub-boxes in P𝑖−1. Combining that with (2.29)–(2.30) and (2.27) yields

Ξ 𝑗 (𝐵) ≥
(
1 − 2𝛿

𝑅

)
·
(
1 − 2(𝑖 − 1)𝛿

𝑅

)
𝜇𝑖 (𝐼 𝑗 )

8
≥

(
1 − 2𝑖𝛿

𝑅

)
𝜇𝑖 (𝐼 𝑗 )

8
= 𝑎(𝐼 𝑗 ).

We show Ξ 𝑗 (𝐵) = |G̃𝑖 ∩ (𝐵 × 𝐼 𝑗 ) | ≤ 𝑏(𝐼 𝑗 ) also holds a.s. B contains (𝑟 ′𝑖/𝑟 ′𝑖−1)
𝑑 sub-boxes in P𝑖−1 by

Def. 2.6 (P2). If a sub-box is bad, it contains no i-good vertices. If it is good, (B3) holds and it contains
at most 8𝜇𝑖 (𝐼 𝑗 ) (𝑟 ′𝑖−1/𝑟

′
𝑖 )𝑑𝑖-good vertices with weights in 𝐵×𝐼 𝑗 . We obtain Ξ 𝑗 (𝐵) ≤ 8𝜇𝑖 (𝐼 𝑗 ) = 𝑏(𝐼 𝑗 ) in

(2.27). So overall we have shown that

if 𝑖 > 1 and 𝑗 ≤ 𝑗★(𝑖 − 1) : P
(
Ξ 𝑗 (𝐵) ∉ [𝑎(𝐼 𝑗 ), 𝑏(𝐼 𝑗 )] | F𝑖−1(𝐵) = 𝐹

)
= 0. (2.31)

9Thus here F contains the position of all vertices in the box B, where a subset of these vertices is marked by the revealed
vertex-weight.
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Case 2: 𝒊 > 1 and 𝒋 > 𝒋★(𝒊 − 1). Define the set

S = G̃𝑖 ∩
(
𝐵 ×

(
[1, 𝑤0) ∪

⋃
𝑗> 𝑗★ (𝑖−1)

𝐼 𝑗
) )
, (2.32)

the i-good vertices in B with weights not revealed by F𝑖−1(𝐵). F𝑖−1(𝐵) does reveal the positions of
vertices in B, and all weighted vertices not in S; thus F𝑖−1(𝐵) reveals |S |, and the position of vertices
in S . By Def. 1.3, vertex weights are independent of vertex positions and of each other. Further, for a
vertex 𝑣 ∈ Ṽ , conditioning on F𝑖−1(𝐵) is equivalent to either exposing its weight (if 𝑤𝑣 ∈ ∪ 𝑗≤ 𝑗★ (𝑖−1) 𝐼 𝑗 )
or conditioning on 𝑤𝑣 ∉ ∪ 𝑗≤ 𝑗★ (𝑖−1) 𝐼 𝑗 (otherwise). So for each vertex in S , its weight distribution is the
conditional distribution of W given that 𝑊 ∉ ∪ 𝑗≤ 𝑗★ (𝑖−1) 𝐼 𝑗 . Since |S | is determined by F𝑖−1(𝐵), for all
𝑗 ≥ 𝑗★(𝑖 − 1), Ξ 𝑗 (𝐵) given F𝑖−1(𝐵) is binomially distributed with parameters

Ξ 𝑗 (𝐵) | F𝑖−1(𝐵)
𝑑
= Bin

(
|S |, P(𝑊 ∈ 𝐼 𝑗 )/P(𝑊 ∉ ∪ 𝑗≤ 𝑗★ (𝑖−1) 𝐼 𝑗 )

)
. (2.33)

We next bound the conditional expectation of Ξ 𝑗 (𝐵) | F𝑖−1(𝐵), starting with the upper bound. Using
the lower bound (2.1) on 𝑤0, the success probability of the binomial in (2.33) is

P(𝑊 ∈ 𝐼 𝑗 )
P(𝑊 ∉ ∪ 𝑗≤ 𝑗★ (𝑖−1) 𝐼 𝑗 )

≤
P(𝑊 ∈ 𝐼 𝑗 )

P(𝑊 ∈ [1, 𝑤0))
=
P(𝑊 ∈ 𝐼 𝑗 )

1 − ℓ(𝑤0)𝑤𝜏−1
0

≤ 2P(𝑊 ∈ 𝐼 𝑗 ). (2.34)

Since Def. 2.10 (B2) holds for B on X𝑖−1(𝐵) = 𝑋 , by (2.18) there are at most 2(𝑟 ′𝑖 )𝑑𝑖-good vertices in
B, so |S | ≤ 2(𝑟 ′𝑖 )𝑑 . Recalling the definition of 𝜇𝑖 (𝐼 𝑗 ) from (2.17), and (2.27) we thus obtain

E
[
Ξ 𝑗 (𝐵) | X𝑖−1(𝐵) = 𝑋

]
≤ 4(𝑟 ′𝑖 )𝑑P(𝑊 ∈ 𝐼 𝑗 ) = 4𝜇𝑖 (𝐼 𝑗 ) = 𝑏(𝐼 𝑗 )/2. (2.35)

We next prove the corresponding lower bound. We start by giving a lower bound on |S |. Clearly by
(2.32), |S | = |G𝑖 ∩ 𝐵 | − | ∪ 𝑗≤ 𝑗★ (𝑖−1) G̃𝑖 ∩ (𝐵 × 𝐼 𝑗 ) |, both terms revealed by X: the total number of i-good
vertices in B minus the ones with revealed weight. We can bound |G𝑖 ∩ 𝐵 | from below using (2.18) in
Def. 2.10 (B2). By Def. 2.6 (P2), B contains (𝑟 ′𝑖/𝑟 ′𝑖−1)

𝑑 sub-boxes in P𝑖−1. Since there are no i-good
vertices in bad boxes 𝐵′ ∈ P𝑖−1, we can bound | ∪ 𝑗≤ 𝑗★ (𝑖−1) G̃𝑖 ∩ (𝐵× 𝐼 𝑗 ) | from above by applying (2.19)
to each good sub-box 𝐵′ ∈ P𝑖−1 of B, yielding

|S | ≥
(

1
2
− 2(𝑖 − 1)𝛿

𝑅

)
(𝑟 ′𝑖 )𝑑 −

(
𝑟 ′𝑖
𝑟 ′𝑖−1

)𝑑

·
∑

𝑗≤ 𝑗★ (𝑖−1)
8𝜇𝑖−1 (𝐼 𝑗 ). (2.36)

Using that 𝐼 𝑗 = [2 𝑗−1𝑤0, 𝑤0) for all 𝑗 ≥ 1, Lemma 2.11 with 𝑤 = 2 𝑗−1𝑤0 yields

(
𝑟 ′𝑖/𝑟 ′𝑖−1

)𝑑 ∑
𝑗≤ 𝑗★ (𝑖−1)

8𝜇𝑖−1(𝐼 𝑗 ) ≤ 2𝜏+3(𝑟 ′𝑖 )𝑑
𝑗★ (𝑖−1)∑

𝑗=1
ℓ(2 𝑗−1𝑤0) (2 𝑗−1𝑤0)−(𝜏−1)

< 2𝜏+3(𝑟 ′𝑖 )𝑑
∞∑
𝑗=0
ℓ(2 𝑗𝑤0) (2 𝑗𝑤0)−(𝜏−1) ,

(2.37)

where we switched indices in the last row. By the lower bound (2.1) on 𝑤0 and since 𝜏 > 2, for all
𝑗 ≥ 0 we have ℓ(2 𝑗+1𝑤0) (2 𝑗+1𝑤0)−(𝜏−1) < 2

3ℓ(2
𝑗𝑤0) (2 𝑗𝑤0)−(𝜏−1) , so the sum on the right-hand side

is bounded above term-wise by a geometric series. It follows from (2.36) that

|S | ≥
(

1
2
− 2(𝑖 − 1)𝛿

𝑅
− 2𝜏+5ℓ(𝑤0)𝑤−(𝜏−1)

0

)
(𝑟 ′𝑖 )𝑑 ≥ (𝑟 ′𝑖 )𝑑/4,

https://doi.org/10.1017/fms.2025.10161 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10161


28 J. Komjáthy et al.

where we used in the last step that 𝑖 ≤ 𝑅 and 𝛿 < 1/16, and the lower bound (2.1) on 𝑤0. The success
probability of the binomial in (2.33) is at least P(𝑊 ∈ 𝐼 𝑗 ). Since 𝑎(𝐼 𝑗 ) = (1−2𝑖𝛿/𝑅)𝜇𝑖 (𝐼 𝑗 )/8 in (2.27),

E
[
Ξ 𝑗 (𝐵) | X𝑖−1(𝐵) = 𝑋

]
≥ (𝑟 ′𝑖 )𝑑P(𝑊 ∈ 𝐼 𝑗 )/4 = 𝜇𝑖 (𝐼 𝑗 )/4 ≥ 2𝑎(𝐼 𝑗 ). (2.38)

Combining (2.35) with (2.38) yields that E[Ξ 𝑗 (𝐵) | F𝑖−1(𝐵) = 𝐹] ∈ [2𝑎(𝐼 𝑗 ), 𝑏(𝐼 𝑗 )/2], which allows
us to bound P(Ξ 𝑗 (𝐵) ∉ [𝑎(𝐼 𝑗 ), 𝑏(𝐼 𝑗 )]) with standard Chernoff bounds. By (2.35) and Theorem A.1
applied with 𝜀 = 1/2, we have shown that uniformly for all realisations F satisfying (B1)-(B2)

for 𝑖 > 1, 𝑗 > 𝑗★(𝑖 − 1) : P
(
Ξ 𝑗 (𝐵) ∉ [𝑎(𝐼 𝑗 ), 𝑏(𝐼 𝑗 )] | F𝑖−1(𝐵) = 𝐹

)
≤ 2 exp(−𝑎(𝐼 𝑗 )/6)
≤ 2 exp(−𝜇𝑖 (𝐼 𝑗 )/96).

(2.39)

Case 3: 𝒊=1. When 𝑖 = 1, we set 𝑗★(𝑖 − 1) := 0 naturally, since in F0(𝐵) we revealed the total
number of vertices in 𝐵 ∈ P1, which are all 1-good by Def. 2.10. Conditioned on X0(𝐵) = 𝑋 , (2.18) in
(B2) is satisfied and (𝑟 ′1)

𝑑/4 ≤ |S | ≤ 2(𝑟 ′1)
𝑑 directly. The rest of our previous calculations from Case 2

with 𝑗 > 𝑗★(0) = 0 all carry through for estimating the left-hand side of (2.19) in (B3). We obtain that
the bound in (2.39) holds also for 𝑖 = 1 and all 𝑗 ≥ 𝑗★(0) = 0.

Combining the cases: By (2.31), (2.39), and Case 3, for all i and 𝑗 ≤ 𝑗★(𝑖) the bound in (2.39)
holds. Combining that with (2.28), for all 𝐵 ∈ P𝑖 and X𝑖−1(𝐵) = 𝑋 satisfying (B1),(B2),

𝑝𝑖 := P
(
𝐵 ∈ P𝑖 is 𝑖-good | X𝑖−1(𝐵) = 𝑋

)
≥ 1 − 2

∑
𝑗≤ 𝑗★ (𝑖)

exp(−𝜇𝑖 (𝐼 𝑗 )/96)

≥ 1 − 2
∑

𝑗≤ 𝑗★ (𝑖)
exp

(
−(2𝑑)−(𝜏+𝑑+8)𝑟𝑑

𝑖 ℓ(2
𝑗−1𝑤0) (2 𝑗−1𝑤0)−(𝜏−1)

)
,

where the second line follows from 𝜇𝑖 (𝐼 𝑗 ) = 𝜇𝑖 (𝐼 (2 𝑗−1𝑤0)) in Lemma 2.11. Here, the term in the sum
with 𝑗 = 𝑗★(𝑖) is maximal. We use then an reindexing 𝑡 = 𝑗★(𝑖) − 𝑗 , 𝑡 ≥ 0 and argue that the sum can
be dominated by a geometric series in t: By the lower bound (2.1) on 𝑤0 and the fact that 𝜏 > 2, for
all 𝑗 ≥ 1 we have ℓ(2 𝑗−1𝑤0) (2 𝑗−1𝑤0)−(𝜏−1) ≥ 3

2ℓ(2
𝑗𝑤0) (2 𝑗𝑤0)−(𝜏−1) . Using the same geometric-sum

argument as below (2.37) except now from the reversed viewpoint, writing 𝑧 := 𝑤02 𝑗★ (𝑖)−1, the lower
endpoint of 𝐼 𝑗★ (𝑖) , we have

𝑝𝑖 ≥ 1 − 2
∞∑
𝑡=0

exp
(
− 1
(2𝑑)𝜏+𝑑+8 𝑟

𝑑
𝑖

(
3
2

) 𝑡

ℓ(𝑧)𝑧−(𝜏−1)
)
. (2.40)

Since z is the lower endpoint of 𝐼 𝑗★ (𝑖) = 𝐼 ( 𝑓 (𝑟𝑖)), we have 𝑧 ≤ 𝑓 (𝑟𝑖) ≤ 2𝑧 by (2.16). Hence by (2.1)

ℓ(𝑧)𝑧−(𝜏−1) ≥ 2−𝜏ℓ( 𝑓 (𝑟𝑖)) 𝑓 (𝑟𝑖)−(𝜏−1) .

Using this bound in (2.40) and combining it with (2.21) from Lemma 2.11, we obtain that

𝑝𝑖 ≥ 1 − 2
∞∑
𝑡=0

exp
(
−
(

3
2

) 𝑡

log(16𝑅/𝛿)
)
≥ 1 − 𝛿

8𝑅
− 2

∞∑
𝑡=1

(𝛿/16𝑅)𝑡 ≥ 1 − 𝛿

2𝑅
,

where we used that (3/2)𝑡 ≥ 𝑡 for all 𝑡 ≥ 1, and 𝛿 < 1/16. Independence across boxes in the same
P𝑖 is immediate, since whether B satisfies (B3) conditioned on F𝑖−1(𝐵) = 𝐹 satisfying (B1), (B2) only
depends on vertices in B. �

The next lemma gets rid of the conditioning in Lemma 2.14 on the filtration. As before, here in (2.41)
below, P is here the Palm version of the annealed measure integrating over vertex-weights and positions
for IGIRG, while for SFP the conditioning can be dropped.
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Lemma 2.15. Consider the setting of Proposition 2.5 and Definitions 2.6, 2.13. Let H(R) be a
hyperrectangle-cover of the cube Q. Let 𝑡 ≤ (𝑟1/4

√
𝑑)𝑑 be an integer, and for IGIRG let 𝑥1, . . . , 𝑥𝑡

be a (possibly empty) sequence of points in R𝑑 . Then for each 𝐵 ∈ ∪𝑖P𝑖

P
(
𝐵 is good | 𝑥1, . . . , 𝑥𝑡 ∈ V

)
≥ 1 − 𝛿/𝑅. (2.41)

Proof. We prove the statement by induction on i, the base case being 𝑖 = 1. Consider a box 𝐵 ∈ P1.
By Def. 2.10, (B1) holds vacuously. We next consider (B2). Every vertex in B is 1-good, and so
|G1 ∩ 𝐵 | = |V ∩ 𝐵 |. In SFP, V is deterministic and |G1 ∩ 𝐵 | ∈ [(𝑟 ′1)

𝑑/2, 2(𝑟 ′1)
𝑑] holds with certainty by

Def. 2.6 (P1). In (I)GIRG, G1 ∩ 𝐵 is a Poisson point process and the Palm theory (see, e.g., [61]) gives
that under the conditioning 𝑥1, . . . , 𝑥𝑡 ∈ V , |G1 ∩ 𝐵 | − 𝑡 is a Poisson variable with mean (𝑟 ′1)

𝑑 , so by a
standard Chernoff bound (Theorem A.1 with 𝜀 = 1/2), and using 𝑟 ′𝑖 ∈ [𝑟𝑖/(2

√
𝑑), 𝑟𝑖/

√
𝑑] in Def. 2.6

(P1), and the bound (2.5) on 𝑟1 in Def. 2.4,

𝑝′1 := P
(
|G1 ∩ 𝐵 | ∈ [𝑡 + 1

2 (𝑟
′
1)

𝑑 , 𝑡 + 3
2 (𝑟

′
1)

𝑑] | 𝑥1, . . . , 𝑥𝑡 ∈ V
)
≥ 1 − 2e−(𝑟1/24𝑑)𝑑 ≥ 1 − 𝛿/(2𝑅),

so the lower bound in (2.18) in Def. 2.10 (B2) is satisfied. Moreover, since 𝑡 ≤ (𝑟1/4
√
𝑑)𝑑 , by Def. 2.6

(P1), 3
2 (𝑟

′
1)

𝑑 + 𝑡 ≤ 2(𝑟 ′1)
𝑑 , the upper bound in Def. 2.10 (B2) also holds, so independently for all boxes

𝐵 ∈ P1, and regardless on where 𝑥1, . . . , 𝑥𝑡 fall,

P
(
𝐵 ∈ P1 satisfies (𝐵2) | 𝑥1, . . . , 𝑥𝑡 ∈ V

)
≥ 𝑝′1 ≥ 1 − 𝛿/(2𝑅).

Lemma 2.14 ensures that (B3) holds uniformly with probability at least 1 − 𝛿/(2𝑅) conditioned on any
realisation where (B1),(B2) holds. A union bound proves (2.41) for 𝐵 ∈ P1.

Now we advance the induction. Suppose that (2.41) holds for each 𝐵 ∈ ∪ 𝑗≤𝑖−1P𝑖 , and let 𝐵 ∈ P𝑖 .
B contains (𝑟 ′𝑖/𝑟 ′𝑖−1)

𝑑 sub-boxes in P𝑖−1 (by Def. 2.6), and by induction these sub-boxes of B are good
independently (regardless of the positions and weights of 𝑥1, . . . , 𝑥𝑡 ∈ V), so the number of bad sub-
boxes of B is binomial with mean at most (𝑟 ′𝑖/𝑟 ′𝑖−1)

𝑑𝛿/𝑅. Let

A𝑖 (𝐵) :=
{��{𝐵′ ∈ P𝑖−1 : 𝐵′ ⊆ 𝐵, 𝐵′ not (𝑖 − 1)-good}

�� < 2(𝑟 ′𝑖/𝑟 ′𝑖−1)
𝑑𝛿/𝑅

}
. (2.42)

Then, A𝑖 (𝐵) implies Def. 2.10 (B1). A Chernoff bound (Theorem A.1 with 𝜀 = 1) yields that

P

(
A𝑖 (𝐵)� | 𝑥1, . . . , 𝑥𝑡 ∈ V

)
≤ exp

(
− 𝛿

3𝑅
·
(
𝑟 ′𝑖
𝑟 ′𝑖−1

)𝑑
)
.

By Def. 2.6 (P1), (𝑟 ′𝑖/𝑟 ′𝑖−1)
𝑑 ≥ 2−𝑑 (𝑟𝑖/𝑟𝑖−1)𝑑 , so by Def. 2.4 (2.6), regardless of the positions of

𝑥1, . . . , 𝑥𝑡 ∈ V , and independently across different boxes in P𝑖:

P

(
A𝑖 (𝐵)� | 𝑥1, . . . , 𝑥𝑡 ∈ V

)
≤ exp

(
− 𝛿

3𝑅
· 3𝑑𝑅 · log(2𝑅/𝛿)

𝛿

)
≤ 𝛿

2𝑅
. (2.43)

We now show that A𝑖 (𝐵) implies (B2) as well, by inductively applying (2.18) to the good sub-boxes
of B. Consider an (𝑖 − 1)-good vertex v in a good sub-box 𝐵′ ∈ P𝑖−1 of B. Since v is (𝑖 − 1)-good,
𝐵1(𝑣), . . . , 𝐵𝑖−2(𝑣) must all be good; since 𝐵𝑖−1(𝑣) = 𝐵′ is also good, it follows that v is in fact i-good.
Thus, for all good 𝐵′ ∈ P𝑖−1 : G𝑖−1 ∩ 𝐵′ = G𝑖 ∩ 𝐵′ holds. Since 𝐵′ is (𝑖−1)-good, it satisfies (2.18), and
we obtain:

|G𝑖 ∩ 𝐵 | ≥
∑

good 𝐵′ ⊂𝐵

|G𝑖−1 ∩ 𝐵′ | ≥
��{𝐵′ ∈ P𝑖−1 : 𝐵′ ⊂ 𝐵, 𝐵′ good}

��(1
2
− 2(𝑖 − 2)𝛿

𝑅

)
(𝑟 ′𝑖−1)

𝑑 .
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On A𝑖 (𝐵) in (2.42), there are (1 − 2𝛿/𝑅) (𝑟 ′𝑖/𝑟 ′𝑖−1)
𝑑 good sub-boxes of B, so a.s. on A𝑖 (𝐵)

|G𝑖 ∩ 𝐵 | ≥
(
1 − 2𝛿

𝑅

) (
𝑟 ′𝑖
𝑟 ′𝑖−1

)𝑑 (
1
2
− 2(𝑖 − 2)𝛿

𝑅

)
(𝑟 ′𝑖−1)

𝑑 ≥
(

1
2
− 2(𝑖 − 1)𝛿

𝑅

)
(𝑟 ′𝑖 )𝑑 .

Vertices in bad sub-boxes cannot be i-good by Definition 2.10. So (2.18) similarly implies that on A𝑖 (𝐵)
there are at most 2(𝑟 ′𝑖 )𝑑𝑖-good vertices in B, and thus A𝑖 (𝐵) in (2.42) implies both (B1)–(B2) for B; it
follows from (2.43) that

P
(
(𝐵1) and (𝐵2) hold for 𝐵 | 𝑥1, . . . , 𝑥𝑡 ∈ V

)
≥ 1 − 𝛿/(2𝑅). (2.44)

By Lemma 2.14, B is good (i.e., (B3) also holds) with probability at least 1−𝛿/(2𝑅) for all F𝑖−1(𝐵) = 𝐹
with (B1)–(B2) holding for B; these events and 𝑥1, . . . , 𝑥𝑡 ∈ V are all determined by F𝑖−1(𝐵). So, a
union bound on (2.26) and (2.44) yields that independently across boxes in P𝑖 , and regardless of the
vertices 𝑥1, . . . , 𝑥𝑡 ∈ V , (2.41) holds. This advances the induction and finishes the proof. �

Proof of Proposition 2.5. Recall the setting of Proposition 2.5, and consider an R-partition P1, . . . ,P𝑅

of Q, (which exists by Lemma 2.7), and let H(R) be the associated hyperrectangle cover of 𝑄 ×
[𝑤0, 𝑓 (𝑟𝑅)]. By Lemma 2.15, conditioned on 𝑥1, . . . , 𝑥𝑡 ∈ V , each box 𝐵 ∈ P1 ∪ · · · ∪P𝑅 is good with
probability at least 1 − 𝛿/𝑅. Let A be the event that all boxes in {𝐵𝑖 (𝑥 𝑗 ) : 𝑖 ∈ [𝑅], 𝑗 ∈ [𝑡]} are good. A
union bound over 𝑖 = 1, . . . , 𝑅 and 1, . . . , 𝑡 implies that

P(A | 𝑥1, . . . , 𝑥𝑡 ∈ V) ≥ 1 − 𝑡𝛿.

In particular, if A occurs then 𝐵𝑅 (𝑥1) = 𝑄 is also good, so by Lemma 2.12, the set G̃𝑅 =: N of all
R-good vertices forms an (𝛿,R)-net of Q. The requirement that {𝐵𝑖 (𝑥 𝑗 ) : 𝑖 ∈ [𝑅], 𝑗 ∈ [𝑡]} are good is
exactly the requirement for 𝑥1, . . . , 𝑥𝑡 ∈ N to be R-good and this to be in this net, showing (2.8). To
obtain (2.7), note that Lemma 2.15 implies that 𝑄 ⊂ P𝑅 is good with probability at least 1 − 𝛿/𝑅, and
then again Lemma 2.12 finishes the proof. �

3. Multiround exposure with dependent edge-costs

Now with the nets at hand, we may reveal the realisation of the vertex set Ṽ = (𝑉, 𝑤𝑉 ). We shall now
reveal edges adaptively to construct a fast-transmission path between 0, 𝑥, according to the ‘budget
travel plan’ in Section 1, see Fig. 2. In particular, we need to find low-cost edges in spatial regions
which depend on the previous low-cost edges we have found. When studying graph distances in Biskup
[11] this is not a major obstacle, but with the presence of edge-costs we run into conditioning issues.
To overcome these, we develop a multiple-round exposure – essentially an elaborate edge-sprinkling
method on the revealed vertex set – where in each round we reveal more than one edge.

In a classical random graph setting, constructing a path using multiple-round exposure would involve
coupling the base graph model G to a suite of sparser but independent random subgraphs 𝐻1, . . . , 𝐻𝑟 ,
and taking the i-th edge of the path from the i-th ‘round of exposure’ 𝐻𝑖 . In the edge-weighted setting
we design a (slightly more restrictive) construction incorporating independent edge-cost variables on
𝐻1, . . . , 𝐻𝑟 that we describe in Prop. 3.9 after some preliminary definitions. For future reusability,
we formulate Prop. 3.9 in a general class of random graph models, as set out below. Recall that
𝑉 (2) = {𝑢𝑣 : 𝑢, 𝑣 ∈ 𝑉 distinct} denotes the set of possible edges on V.
Definition 3.1 (CIRG models). A conditionally independent edge-weighted vertex-marked random
graph model (CIRG model) G consists of a fixed countable weighted vertex set (𝑉, 𝑤𝑉 ), a random edge
set E ⊆ 𝑉 (2) , and random edge costs C (𝑥𝑦) for each possible edge {𝑥, 𝑦} ∈ 𝑉 (2) . All costs C (𝑥𝑦) and
all events {𝑥𝑦 ∈ E} are independent across {𝑥, 𝑦} ∈ 𝑉 (2) . For brevity, we write ‘𝐺 ∼ G is a CIRG’ to
mean that 𝐺 ∼ G and that G is a CIRG model. Sometimes it is convenient to speak of variables 𝐺 ∼ G
without naming G, and in this case we simply say ‘G is a CIRG’.
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First passage percolation (1-FPP) on SFP (Def. 1.1) and GIRG (Def. 1.3) both become CIRG models
after their weighted vertex sets are exposed, with C (𝑥𝑦) in (1.2) being the edge-weights. It is easy to
verify that the same is true of 1-FPP on Chung-Lu random graphs (defined in [22]) and inhomogeneous
random graphs (defined in [15]) or on the subclass called the stochastic block model [71].

In a classical setting, a multiple-round exposure argument would ‘split’ a graph 𝐺 ∼ G into edge-
disjoint graphs 𝐺1, . . . , 𝐺𝑟 , where we put each edge of G into precisely one 𝐺𝑖 , independently across
edges according to some probability distribution (𝜃1, . . . , 𝜃𝑟 ). We would then couple𝐺1, . . . , 𝐺𝑟 to inde-
pendent graphs 𝐻1, . . . , 𝐻𝑟 using stochastic domination arguments. Here is the analogue of𝐺1, . . . , 𝐺𝑟

in our setting, where we must be careful about costs.

Definition 3.2 (𝜃-percolated CIRG). Let 𝐺 ∼ G be a CIRG from Definition 3.1. Then for all 𝜃 ∈ (0, 1)
the 𝜃-percolation of G is the subgraph 𝐺 𝜃 of G which includes each 𝑒 ∈ E (𝐺) independently with
probability 𝜃, and we write G 𝜃 for its law. We call G 𝜃 the 𝜃-percolation of G, and 𝜃 the percolation
probability.

Remark 3.3 (𝜃-percolated CIRGs are CIRGs). An alternative construction of𝐺 ∼ G 𝜃 is to sample each
edge e independently with probability 𝜃P(𝑒 ∈ E (𝐺)). So G 𝜃 is a CIRG model, and the CIRG model
class is closed under 𝜃-percolation.

We now set out a specific coupling between a base CIRG model and percolated CIRGs, that will
serve as graphs forming the rounds of exposure. Recall that [𝑟] := {1, 2, . . . , 𝑟}.

Definition 3.4 (Exposure setting of G). Let G be a CIRG model from Def. 3.1 with vertex set V. Fix 𝑟 ∈N
and 𝜃1, . . . , 𝜃𝑟 ∈ [0, 1] satisfying

∑
𝑖∈[𝑟 ] 𝜃𝑖 = 1. We define the exposure setting of G with percolation

probabilities 𝜃1, . . . , 𝜃𝑟 as follows. Let (𝑍𝑢𝑣 )𝑢𝑣 ∈𝑉 (2) be i.i.d. random variables with P(𝑍𝑢𝑣 = 𝑖) = 𝜃𝑖 for
all 𝑖 ∈ [𝑟]. Take 𝐺★

1 , . . . , 𝐺
★
𝑟 to be i.i.d. CIRGs, with shared distributions 𝐺★

𝑖 ∼ G, and respective edge
costs C𝑖 (𝑒) for 𝑒 ∈ E (𝐺★

𝑖 ) chosen independently across 𝑖 ≤ 𝑟 . Let 𝐺 𝜃𝑖
𝑖 be the subgraph of 𝐺★

𝑖 with edge
set E (𝐺 𝜃𝑖

𝑖 ) := {𝑒 ∈ E (𝐺★
𝑖 ) : 𝑍𝑒 = 𝑖} and edge costs {C𝑖 (𝑒) : 𝑒 ∈ E (𝐺 𝜃𝑖

𝑖 )}.

In this definition, while the initial graphs 𝐺★
1 , . . . , 𝐺

★
𝑟 are independent, their percolated versions 𝐺 𝜃𝑖

𝑖
are not, since they all use the same (𝑍𝑢𝑣 )𝑢𝑣 ∈𝑉 (2) collection. The following lemma reconstructs G from
the percolated versions.

Lemma 3.5 (Realisation of a CIRG in the exposure setting). Let G be a CIRG model from Def. 3.1
with weighted vertex set (𝑉, 𝑤𝑉 ). Let 𝜃1, . . . , 𝜃𝑟 be the percolation probabilities, and consider (𝐺 𝜃𝑖

𝑖 )𝑖≤𝑟

in Definition 3.4. Then marginally, each 𝐺 𝜃𝑖
𝑖 is a 𝜃𝑖-percolated CIRG. Define now G as the graph

with weighted vertex set (𝑉, 𝑤𝑉 ), and with edge set E (𝐺) := ∪𝑖∈[𝑟 ]E (𝐺 𝜃𝑖
𝑖 ), and with edge costs

{C (𝑒) := C𝑍𝑒 (𝑒) : 𝑒 ∈ E (𝐺)}. Then 𝐺 ∼ G.

Proof. That 𝐺 𝜃𝑖
𝑖 is marginally a 𝜃𝑖-percolated CIRG, that is, that it has law G 𝜃𝑖 , is immediate from the

definition. To see that 𝐺 ∼ G we argue as follows. Since 𝑍𝑢𝑣 takes a single value in [𝑟] each possible
edge 𝑒 = 𝑢𝑣 appears in at most one of 𝐺 𝜃1

1 , . . . , 𝐺
𝜃𝑟
𝑟 . Hence the union ∪𝑖∈[𝑟 ]E (𝐺 𝜃𝑖

𝑖 ) = E (𝐺) is disjoint,
and using that 𝐺★

1 , . . . , 𝐺
★
𝑟 all have law G,

P
(
𝑢𝑣 ∈ E (𝐺)

)
=

∑
𝑖∈[𝑟 ]
P(𝑍𝑢𝑣 = 𝑖)P

(
𝑢𝑣 ∈ E (𝐺★

𝑖 )
)

=
∑
𝑖∈[𝑟 ]

𝜃𝑖P
(
𝑢𝑣 ∈ E (𝐺★

1 )
)
= P

(
𝑢𝑣 ∈ E (𝐺★

1 )
)
,

and 𝐺★
1 ∼ G. Further, edges are present in G independently since the variables 𝑍𝑒 and E (𝐺★

𝑖 ) are
independent. �

For a collection of variables X we write 𝜎(X ) for the 𝜎-algebra generated by the variables in X .
In the following definitions we formalise multiround exposure with edge-cost constraints, in the setting
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of CIRGs with given weighted vertex-set (𝑉, 𝑤𝑉 ), which guarantees that edge presence and edge costs
are independent by Def. 3.1. These definitions are highly technical and so we provide a simplified
motivating example before stating them, with further discussion to follow.

Suppose we are given a CIRG 𝐺 ∼ G with vertex set contained in [0,
√
𝑛]2, and we wish to join two

fixed vertices u and v with a low-cost path in three rounds with equal edge probabilities. We therefore
split G into three disjoint percolated CIRGs 𝐺1/3

1 ⊆ 𝐺★
1 , 𝐺1/3

2 ⊆ 𝐺★
2 and 𝐺1/3

3 ⊆ 𝐺★
3 as in the exposure

setting, taking 𝜃1 = 𝜃2 = 𝜃3 = 1/3; by Lemma 3.5, every edge in any𝐺1/3
𝑖 is an edge of G with the same

cost. We bound the construction’s failure probability on 𝐺1/3
1 , 𝐺1/3

2 and 𝐺1/3
3 by coupling it to the same

construction on independent percolated CIRGs 𝐻1, 𝐻2, 𝐻3 ∼ G1/3; this coupling works in general and
is stated later as Proposition 3.9.

In the first round, we reveal edges of 𝐺1 (or 𝐻1) and search for an unusually low-cost edge from an
unspecified vertex 𝑢′ near u to an unspecified vertex 𝑣′ near v. In the second round, using edges of 𝐺2
(or 𝐻2) we search for a low-cost path from u to 𝑢′; and in the third round we search for a low-cost path
from 𝑣′ to v in 𝐺3 (or 𝐻3). In each round we describe the admissible object we search for and a cost
constraint, such as ‘any path from any 𝑢′ ∈ 𝐵𝑟 (𝑢) to any 𝑣′ ∈ 𝐵𝑟 (𝑣)’ and ‘cost below a specific value
C’). Since we reveal edges, these ‘objects’ are described in terms of edges. When we supply the actual
graph 𝐺1/3

𝑖 or 𝐻𝑖 , the round selects a concrete admissible object – for example, a fixed low-cost path
𝜋𝑢′𝑣′ connecting two vertices 𝑢′, 𝑣′ in 𝐻1. This concrete object is then used to specify admissible objects
in future rounds: round 2 admissible objects depend on the value of 𝑢′, which is a function of 𝜋𝑢′,𝑣′ .

In defining an iterative cost construction, we consider the effect of applying it to arbitrary graphs 𝐺1,
𝐺2 and𝐺3 rather than to the specific graphs𝐺1/3

𝑖 or 𝐻𝑖 . In the definition below, these ideas are captured
for the i-th round by F𝑖 , U𝑖 and S𝑖 respectively: F𝑖 describes the ‘admissible objects’ among which we
select one (as a list), U𝑖 describes the cost-requirements on these, and then S𝑖 finally reveals (part of)
the edge set of 𝐺𝑖 and selects the first admissible object in F𝑖 that satisfies the cost-constraint. The next
round(s) may use the outputs S𝑖 of previous selection rounds – in our example, rounds 2 and 3 depend
on the endpoints of the path chosen in round 1. Initially F𝑖 and U𝑖 will exist as ‘functions’ before any
edge is revealed, describing all possible realisations of admissible objects and constraints on them in
round i. Once 𝐺1, . . . , 𝐺𝑖−1 have been specified, only a subset of these admissible objects will remain
admissible; these new constraints we denote by F𝑖 (𝐺1, . . . , 𝐺𝑖−1) and U𝑖 (𝐺1, . . . , 𝐺𝑖−1). Thus each F𝑖

and U𝑖 is deterministic, while each S𝑖 satisfying the structural constraints of F𝑖 (𝐺1, . . . , 𝐺𝑖−1) and the
cost constraints of U𝑖 (𝐺1, . . . , 𝐺𝑖−1) is adapted to the natural filtration of the process. In this example,
F2 will be a function from the set of all graphs on (𝑉, 𝑤𝑉 ), that given any graph 𝐺1 outputs an output
which is a list of admissible objects for round 2: F2(𝐺1) will be all possible paths between u and the
specific 𝑢′ ∈ 𝐵𝑟 (𝑢) selected in the first round.

There is one more important detail. After choosing an edge 𝑤𝑧 in a round, its cost is exposed and
cannot be redefined in future rounds. To illustrate this in our running example, suppose we are at round 2,
and there is only one low cost path – say 𝜋 – present between 𝑢, 𝑢′ in 𝐺2, and 𝜋 uses an edge 𝑤𝑧 present
in 𝐺2 that has been selected already in round 1 as part of the path between 𝑢′, 𝑣′. While 𝑤𝑧 is present
independently with independent costs in 𝐻1 and 𝐻2, the same is not true in 𝐺1/3

1 and 𝐺1/3
2 , and we need

to couple the construction’s progress on these two sets of graphs. We cannot meaningfully assign two
different costs to 𝑤𝑧 in G, and so we need to adapt the definition of a construction in response.

Observe that despite the fact that we have already chosen 𝑤𝑧 as an edge, it still makes sense to use it
as part of 𝜋. Indeed, we already accounted for the cost of 𝑤𝑧 when we chose it as part of round 1, and
if the three paths from our three rounds overlap then we can always pass to a sub-path with lower total
cost. As such, in the definition of an iterated cost construction, we artificially set the cost in 𝐺𝑖 of every
edge that has already been selected to 0. This we call the i-th marginal cost of the edge. Then (since U𝑖

is fixed), we can require that the cost constraints U𝑖 depend only on the marginal costs of edges in 𝐺1/3
𝑖

and 𝐻𝑖 . This way we avoid exposing the same randomness twice. For our applications in later sections,
the distinction between cost and marginal cost will not be important, as (like our example) we only
require low total cost – and the total cost of our edge set will be precisely the sum of the marginal costs
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over all edges we select. (See Remark 3.7.) In other applications, one may wish to modify F𝑖 to enforce
disjointness from some or all of already selected edges S1, . . . ,S𝑖−1.

With all this in mind, we now define the iterative cost construction in precise mathematical terms.
We denote by E (𝐺) the edge set of a graph G. For simplicity we restrict to simple graphs on finite vertex
sets, however, extension to countable vertex sets and multigraphs is possible.

Definition 3.6 (Iterative cost construction). Fix a weighted vertex set (𝑉, 𝑤𝑉 ), and let 𝑟 ≥ 1 be an
integer. Let 𝑉 (2) = {𝑢𝑣 : 𝑢, 𝑣 ∈ 𝑉 distinct} denote the set of possible edges on V, and fix an ordering
on 𝑉 (2) . Let 𝔊𝑉 ,𝑤𝑉 be the set of all edge-weighted graphs on (𝑉, 𝑤𝑉 ). An r-round iterative cost
construction Iter is a collection (F1,U1), . . . , (F𝑟 ,U𝑟 ) of functions that, when applied to a sequence
of graphs (𝐺1, . . . , 𝐺𝑟 ) all in 𝔊𝑉 ,𝑤𝑉 , outputs a list of selected edge-lists in r rounds. We write
S𝑖 = S𝑖 (𝐺1, . . . , 𝐺𝑖) = Iter𝑖 (𝐺1, . . . , 𝐺𝑖) for the output in the i-th round. Iter is defined recursively as
follows.

(i) For all 𝑖 ∈ [𝑟], the domains of F𝑖 and U𝑖 are 𝔊𝑖−1 (so they are ‘deterministic’ admissible sets and
events for 𝑖 = 1, while for 𝑖 ≥ 2 they may depend on previously exposed graphs 𝐺1, . . . 𝐺𝑖−1). The
domain of S𝑖 = Iter𝑖 is 𝔊𝑖 (so S𝑖 depends only on 𝐺1, . . . 𝐺𝑖).

(ii) For all 𝑖 ∈ [𝑟] and all (𝐺1, . . . , 𝐺𝑖−1) ∈ 𝔊𝑖−1
𝑉 ,𝑤𝑉

, F𝑖 (𝐺1, . . . , 𝐺𝑖−1) is a finite list. Each element in
F𝑖 (𝐺1, . . . , 𝐺𝑖−1) is a list of pairs of vertices in 𝑉 (2) . Each list in F𝑖 (𝐺1, . . . , 𝐺𝑖−1) contains each
pair in 𝑉 (2) at most once. F𝑖 (𝐺1, . . . , 𝐺𝑖−1) represents the set of admissible objects for the output
of round i, given 𝐺1, . . . , 𝐺𝑖−1. Moreover, F𝑖 (𝐺1, . . . 𝐺𝑖−1) depends only on the already selected
weighted edges S1, . . . ,S𝑖−1.

(iii) For all 𝑖 ∈ [𝑟] and all 𝐺1, . . . , 𝐺𝑖 ∈𝔊𝑖
𝑉 ,𝑤𝑉

, define the round-i marginal cost of an edge e by

mcost𝑖 (𝑒) =
{

0 if 𝑒 appears in any of the already-chosen lists S1, . . . ,S𝑖−1,

C𝑖 (𝑒) otherwise;
(3.1)

note that we suppress the dependence of mcost𝑖 (𝑒) on 𝐺1, . . . , 𝐺𝑖 for brevity.
(iv) For all 𝑖 ∈ [𝑟] and all (𝐺1, . . . , 𝐺𝑖−1) ∈𝔊𝑖−1

𝑉 ,𝑤𝑉
, U𝑖 (𝐺1, . . . , 𝐺𝑖−1) is a finite list of events. The j-th

element of U𝑖 (𝐺1, . . . , 𝐺𝑖−1) is the event describing when the j-th element of F𝑖 (𝐺1, . . . , 𝐺𝑖−1) is
allowed to be selected in terms of the round-i marginal costs. Each element in U𝑖 (𝐺1, . . . , 𝐺𝑖−1)
is of a specific form: for all (𝑒1, . . . , 𝑒𝑡 ) ∈ F𝑖 (𝐺1, . . . , 𝐺𝑖−1), U𝑖 (𝑒1, . . . , 𝑒𝑡 ) describes a subset
𝐷𝑖 (𝑒1, . . . , 𝑒𝑡 ) of [0,∞)𝑡 , and the event itself is (mcost𝑖 (𝑒1), . . . ,mcost𝑖 (𝑒𝑡 )) ∈ 𝐷𝑖 (𝑒1, . . . , 𝑒𝑡 ).
Moreover, U𝑖 (𝐺1, . . . 𝐺𝑖−1) depends only on the already selected weighted edges S1, . . . ,S𝑖−1.

(v) We say that a list of edges (𝑒1, . . . , 𝑒𝑡 ) is present in round i if for all 𝑗 ∈ [𝑡] we have 𝑒 𝑗 ∈
E (𝐺𝑖) ∪ S1 ∪ · · · ∪ S𝑖−1.

(vi) S𝑖 = Iter𝑖 (𝐺1, . . . , 𝐺𝑖) is specified as follows. S𝑖 is the first element (𝑒1, . . . , 𝑒𝑡 ) of
F𝑖 (𝐺1, . . . , 𝐺𝑖−1) which is present in round i and which also satisfies the corresponding event
in U𝑖 (𝐺1, . . . , 𝐺𝑟 ). If no such edge exists, we define S𝑖 = None. Observe that the value of S𝑖

depends only on the values of S1, . . . ,S𝑖−1 and 𝐺𝑖 .

We refer to F𝑖 and U𝑖 as the i-th round of Iter, we refer to S𝑖 = Iter𝑖 (𝐺1, . . . , 𝐺𝑖) as the output of the
i-th round, and we write Iter(𝐺1, . . . , 𝐺𝑟 ) for the sequence S1, . . . ,S𝑟 . We say that Iter succeeds on
𝐺1, . . . , 𝐺𝑟 if S𝑖 ≠ None for all 𝑖 ∈ [𝑟].

Returning to our example from above Definition 3.6, the (F𝑖 ,U𝑖) becomes the following. We think
of paths as sequences of edges and we write 𝑢′(S1), 𝑣′(S1) for the two endpoints of the selected path
S1 (in 𝐵𝑟 (𝑢), 𝐵𝑟 (𝑣), respectively). Then:

F1 = {𝜋𝑢′𝑣′ : 𝜋𝑢′𝑣′ is a path between some 𝑢′ ∈ 𝐵𝑟 (𝑢), 𝑣′ ∈ 𝐵𝑥 (𝑣)},

U1 =
{ ∑

𝑒∈𝜋𝑢′𝑣′

mcost1(𝑒) ≤ 𝐶/3 : 𝜋𝑢′𝑣′ ∈ F1

}
, (3.2)
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are indeed the same for any input graphs, while

F2(𝐺1) =
{
𝜋𝑢𝑢′ : 𝜋𝑢𝑢′ is a path from 𝑢 to 𝑢′(S1 (𝐺1))},

U2(𝐺1) =
{ ∑

𝑒∈𝜋𝑢𝑢′

mcost2(𝑒) ≤ 𝐶/3; 𝜋𝑢𝑢′ ∈ F2

}
,

F3(𝐺1, 𝐺2) =
{
𝜋𝑣𝑣′ : 𝜋𝑣𝑣′ is a path in 𝑉 from 𝑣′(S1 (𝐺1)) to 𝑣

}
,

U3(𝐺1, 𝐺2) =
{ ∑

𝑒∈𝜋𝑣𝑣′

mcost3(𝑒) ≤ 𝐶/3 : 𝜋𝑣𝑣′ ∈ F3

}
,

(3.3)

depend on the first round and second rounds. If there is an edge overlap between the selected paths in
different rounds, then we see 0 marginal cost of that edge in later rounds. Since our goal is to bound
the total cost of the selected edges, this is sufficient. More generally, the following remark motivates
our definition of mcost𝑖 (𝑒) in (3.1). Recall the exposure setting of a graph G from Definition 3.4. The
statement is a direct consequence of Lemma 3.5 and the previous definition.

Remark 3.7. Apply an r-round iterative cost construction on (𝐺 𝜃1
1 , . . . , 𝐺

𝜃𝑟
2 ), which form the exposure

setting of G in Definition 3.4 having cost-function C. Then

𝑟∑
𝑖=1

∑
𝑒∈S𝑖

mcost𝑖 (𝑒) =
𝑟∑

𝑖=1

∑
𝑒∈S𝑖\(S1∪···∪S𝑖−1)

C (𝑒) =
∑

𝑒∈S1∪···∪S𝑟
C (𝑒).

That is, the total marginal costs are the same as the total cost of the selected set of edges in G.

Our goal is to prove that iterative cost constructions behave the same way as any other multiple-round
exposure argument (usually proven by applying an FKG-type inequality): If the construction succeeds
whp on an independent graph sequence (𝐻1, . . . 𝐻𝑟 ) with 𝐻𝑖 ∼ G 𝜃𝑖 , then it will also succeed when a
single random graph 𝐺 ∼ G is percolated into edge-disjoint copies 𝐺 𝜃𝑖

𝑖 (as in the exposure setting of
Lemma 3.5). To this end, we first set out notation for these two situations.

Definition 3.8. Fix a weighted vertex set (𝑉, 𝑤𝑉 ), let 𝑟 ≥ 1 be an integer, and let Iter be an r-
round iterative construction consisting of (F1,U1), . . . , (F𝑟 ,U𝑟 ). Let 𝜃 = (𝜃1, . . . , 𝜃𝑟 ) ∈ [0, 1]𝑟 with∑

𝑖∈[𝑟 ] 𝜃𝑖 = 1, and suppose G is a CIRG model on (𝑉, 𝑤𝑉 ). Let 𝐺 𝜃1
1 , . . . , 𝐺

𝜃𝑟
𝑟 be as in the exposure

setting; then we write Iterexp
G, 𝜃 := Iter(𝐺 𝜃1

1 , . . . , 𝐺
𝜃𝑟
𝑟 ). Let 𝐻1 ∼ G 𝜃1 , . . . , 𝐻𝑟 ∼ G 𝜃𝑟 independently; then

we write Iterind
G, 𝜃 := Iter(𝐻1, . . . , 𝐻𝑟 ). We say that Iterexp

G, 𝜃 succeeds if Iter succeeds on𝐺 𝜃1
1 , . . . , 𝐺

𝜃𝑟
𝑟 , and

likewise for Iterind
G, 𝜃 . For all sequences of list of edges 𝑆1, . . . , 𝑆𝑖 , we introduce the shorthand notation

Aexp(𝑆1, . . . , 𝑆𝑖) :=
⋂
𝑗∈[𝑖 ]

{Iter 𝑗 (𝐺 𝜃1
1 , . . . , 𝐺

𝜃 𝑗−1
𝑗−1 ) = 𝑆 𝑗 }. (3.4)

We defineAind analogously for𝐻1, . . . , 𝐻𝑟 . For brevity, for all 𝑖 ∈ [𝑟] we writeS ind
𝑖 := Iter𝑖 (𝐻1, . . . , 𝐻𝑖)

and Sexp
𝑖 := Iter𝑖 (𝐺 𝜃1

1 , . . . , 𝐺
𝜃𝑖
𝑖 ), and use analogous notation for F𝑖 and U𝑖 .

The following proposition essentially says we can lower-bound the probability of success of
the exposure setting Iterexp

G, 𝜃 = Iter(𝐺 𝜃1
1 , . . . , 𝐺

𝜃𝑟
𝑟 ) by that of the much simpler independent setting

Iter(𝐻1, . . . , 𝐻𝑟 ).

Proposition 3.9 (Multiround exposure). Consider the setting of Definition 3.8. Then

P
(
Iterexp

G, 𝜃 succeeds
)
≥ min

𝑆1 ,...,𝑆𝑟−1�None

∏
𝑖∈[𝑟 ]
P
(
S ind

𝑖 ≠ None | Aind(𝑆1, . . . , 𝑆𝑖−1)
)
. (3.5)
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Proof of Proposition 3.9. By repeated conditioning, and taking the minimum over all successful rela-
tions, we have

P
(
Iterexp

G, 𝜃 succeeds
)
=

∏
𝑖∈[𝑟 ]
P
(
Sexp

𝑖 ≠ None | Sexp
1 , . . . ,Sexp

𝑖−1 ≠ None
)

≥ min
𝑆1 ,...,𝑆𝑟−1≠None

∏
𝑖∈[𝑟 ]
P
(
Sexp

𝑖 ≠ None | Aexp(𝑆1, . . . , 𝑆𝑖−1)
)
.

(3.6)

In order to prove (3.5), it now suffices to prove the termwise bound on the right-hand side of (3.6) that
for all 𝑖 ∈ [𝑟], for all possible non-None outcomes 𝑆1, . . . , 𝑆𝑖−1 of the first 𝑖 − 1 rounds of Iter:

P
(
Sexp

𝑖 ≠ None | Aexp(𝑆1, . . . , 𝑆𝑖−1)
)
≥ P

(
S ind

𝑖 ≠ None | Aind(𝑆1, . . . , 𝑆𝑖−1)
)
. (3.7)

To do so, for each possible 𝑆1, . . . , 𝑆𝑖−1 we will couple 𝐺 𝜃𝑖
𝑖 conditioned on Aexp(𝑆1, . . . , 𝑆𝑖−1) to 𝐻𝑖

conditioned on Aind(𝑆1, . . . , 𝑆𝑖−1). For all 𝑒 ∈ 𝑉 (2) , this coupling will satisfy:

{𝑒 ∈ E (𝐻𝑖)} ∩ {𝑒 ∈ E (𝐺 𝜃𝑖
𝑖 )} ⊆ {C𝐻𝑖 (𝑒) = C𝑖 (𝑒)}, (3.8)

{𝑒 ∈ E (𝐻𝑖)} ⊆ {𝑒 ∈ E (𝐺 𝜃𝑖
𝑖 ) ∪ 𝑆1 ∪ · · · ∪ 𝑆𝑖−1}. (3.9)

In words, if an edge appears in both graphs 𝐻𝑖 and 𝐺 𝜃𝑖
𝑖 then its cost is the same in both, and if an

edge is in 𝐻𝑖 then either it has been chosen already in previous rounds or it is also in 𝐺 𝜃𝑖
𝑖 . Under both

conditionings Aexp(𝑆1, . . . , 𝑆𝑖−1) and Aind(𝑆1, . . . , 𝑆𝑖−1) in (3.7), Sexp
𝑗 = S ind

𝑗 = 𝑆 𝑗 for all 𝑗 ≤ 𝑖 − 1.
Recall from Definition 3.6(ii) and (iv) that F exp

𝑖 , F ind
𝑖 , U exp

𝑖 and U ind
𝑖 only depend on the already selected

edge-lists S1, . . . ,S𝑖−1, so F exp
𝑖 = F ind

𝑖 and U exp
𝑖 = U ind

𝑖 .
Suppose we have a coupling that satisfies both (3.8) and (3.9), and S ind

𝑖 =: 𝑆𝑖 ≠ None, that is,
the independent construction returns with a list 𝑆𝑖 when we reveal 𝐻𝑖 . Then by (3.9) each edge
𝑒 ∈ 𝑆𝑖 ⊆ E (𝐻𝑖) ∪ 𝑆1 ∪ · · · ∪ 𝑆𝑖−1 is also contained in E (𝐺 𝜃𝑖

𝑖 ) ∪ 𝑆1 ∪ · · · ∪ 𝑆𝑖−1, and by (3.1) and (3.8)
the round-i marginal cost of e in Iterexp

G, 𝜃 equals those in Iterind
G, 𝜃 . Hence 𝑆𝑖 provides a valid choice for

Sexp
𝑖 (i.e., it lies in F exp

𝑖 and satisfies U exp
𝑖 ), and Sexp

𝑖 ≠ None holds also. Thus (3.7) holds, and so the
result follows from (3.6).

It remains to provide the coupling achieving (3.8) and (3.9). Recall that Definition 3.4 uses the
independent graphs 𝐺★

𝑖 ∼ G, and obtains 𝐺 𝜃𝑖
𝑖 as a dependent thinning of 𝐺★

𝑖 using (𝑍𝑢𝑣 )𝑢𝑣 ∈𝑉 (2)

(independently across different 𝑢𝑣). For each 𝑢𝑣 ∈ 𝑉 (2) and 𝑖 ∈ [𝑟], sample i.i.d. uniform𝑈 (𝑖)
𝑢𝑣 ∼ 𝑈 [0, 1]

and realise the presence of 𝑢𝑣 in 𝐻𝑖 and respectively in 𝐺 𝜃𝑖
𝑖 as

1𝑢𝑣 ∈𝐻𝑖 = 1𝑢𝑣 ∈𝐺★𝑖
1
𝑈

(𝑖)
𝑢𝑣 ≤𝜃𝑖

, 1
𝑢𝑣 ∈𝐺

𝜃𝑖
𝑖

= 1𝑢𝑣 ∈𝐺★𝑖
1𝑍𝑢𝑣=𝑖 . (3.10)

Then 𝐻1, . . . , 𝐻𝑟 are independent 𝜃𝑖-percolations of 𝐺★
1 , . . . , 𝐺

★
𝑟 respectively, so 𝐻1, . . . , 𝐻𝑟 are them-

selves independent as required (since 𝐺★
1 , . . . , 𝐺

★
𝑟 are independent). Note that (3.10) is only a partial

coupling, since we can still specify the joint distribution of (𝑈 (𝑖)
𝑢𝑣 )𝑖≤𝑟 and 𝑍𝑢𝑣 over 𝑢𝑣 ∈ 𝑉 (2) . By this

partial coupling, 𝐻𝑖 and 𝐺 𝜃𝑖
𝑖 are both subgraphs of 𝐺★

𝑖 , and hence if an edge e is in both subgraphs,
then C𝐻𝑖 (𝑒) = C𝑖 (𝑒) (the cost of e in 𝐺★

𝑖 ), so (3.8) holds.
We now extend (3.10) into a full coupling which satisfies (3.9). Fix i and 𝑆1, . . . , 𝑆𝑖−1. We first claim

the following distributional identities hold:(
E (𝐻𝑖) | Aind(𝑆1, . . . , 𝑆𝑖−1)

)
𝑑
= E (𝐻𝑖), (3.11)(

E (𝐺★
𝑖 ) | Aexp(𝑆1, . . . , 𝑆𝑖−1)

) 𝑑
= E (𝐺★

𝑖 ). (3.12)
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Indeed, by Definition 3.6 and Iterind
G, 𝜃 in Definition 3.8, the event Aind(𝑆1, . . . , 𝑆𝑖−1) is measurable with

respect to 𝜎(𝐻1, . . . , 𝐻𝑖−1), and 𝐻1, . . . , 𝐻𝑖−1 are independent of 𝐻𝑖 , so (3.11) holds. Similarly, by
Definition 3.6 and (3.10), Aexp(𝑆1, . . . , 𝑆𝑖−1) is in 𝜎(𝐺 𝜃1

1 , . . . , 𝐺
𝜃𝑖−1
𝑖−1 ) ⊆ 𝜎(𝐺★

1 , . . . , 𝐺
★
𝑖−1, (𝑍𝑒)𝑒∈𝑉 (2) ),

which are independent of 𝐺★
𝑖 , so (3.12) follows.

Given (3.11) and (3.12), to prove that (3.10) can be extended to a full coupling satisfying (3.9), by
Strassen’s theorem it now suffices to prove that for all 𝑘 ≥ 1 and all 𝑒1, . . . , 𝑒𝑘 ∈ 𝑉 (2) \ (𝑆1∪· · ·∪𝑆𝑖−1),

P
(
𝑒1, . . . , 𝑒𝑘 ∈ E (𝐺 𝜃𝑖

𝑖 ) | Aexp(𝑆1, . . . , 𝑆𝑖−1)
)

≥ P
(
𝑒1, . . . , 𝑒𝑘 ∈ E (𝐻𝑖) | Aind(𝑆1, . . . , 𝑆𝑖−1)

)
.

(3.13)

We compute the right-hand side using (3.10)–(3.12):

P
(
𝑒1, . . . , 𝑒𝑘 ∈ E (𝐻𝑖) | Aind(𝑆1, . . . , 𝑆𝑖−1)

)
= P

(
𝑒1, . . . , 𝑒𝑘 ∈ E (𝐻𝑖)

)
= 𝜃𝑘

𝑖 · P
(
𝑒1, . . . , 𝑒𝑘 ∈ E (𝐺★

𝑖 )
)
= 𝜃𝑘

𝑖 · P
(
𝑒1, . . . , 𝑒𝑘 ∈ E (𝐺★

𝑖 ) | Aexp(𝑆1, . . . , 𝑆𝑖−1)
) (3.14)

Dividing the left-hand side of (3.13) and the right-hand side here by P
(
𝑒1, . . . , 𝑒𝑘 ∈ E (𝐺★

𝑖 ) |
Aexp(𝑆1, . . . , 𝑆𝑖−1)

)
and applying (3.10) yields that showing (3.13) is equivalent to showing

P
(
𝑍𝑒1 = · · · = 𝑍𝑒𝑘 = 𝑖 | {𝑒1, . . . , 𝑒𝑘 ∈ E (𝐺★

𝑖 )} ∩Aexp(𝑆1, . . . , 𝑆𝑖−1)
)
≥ 𝜃𝑘

𝑖 .

Since 𝜎(𝐺★
𝑖 ) is independent of 𝜎(𝐺★

1 , . . . , 𝐺
★
𝑖−1, (𝑍𝑒)𝑒∈𝑉 (2) ), we can drop the first event from the

conditioning and thus proving (3.13) is equivalent to proving that for all 𝑘 ≥ 1 and all 𝑒1, . . . , 𝑒𝑘 ∈
𝑉 (2) \ (𝑆1 ∪ · · · ∪ 𝑆𝑖−1),

P
(
𝑍𝑒1 = · · · = 𝑍𝑒𝑘 = 𝑖 | Aexp(𝑆1, . . . , 𝑆𝑖−1)

)
≥ 𝜃𝑘

𝑖 . (3.15)

Intuitively, this inequality holds since all chosen edges in (𝑆1, . . . , 𝑆𝑖−1) have 𝑍𝑒 ≤ 𝑖 − 1 so if none of
(𝑒 𝑗 ) 𝑗≤𝑘 has been chosen yet, then the probability that their 𝑍𝑒 value was higher than 𝑖 − 1 is larger. We
next make this intuition precise.

We express Aexp(𝑆1, . . . , 𝑆𝑖−1) in terms of simpler events, using Definition 3.6. Recall that F exp
𝑖

and U exp
𝑖 depend only on the results of the first 𝑖 − 1 rounds, which are fixed by our conditioning on

Aexp(𝑆1, . . . , 𝑆𝑖−1). To highlight this dependence, we informally write F exp
𝑖 =: F𝑖 (𝑆1, . . . , 𝑆𝑖−1) and

U exp
𝑖 =: U𝑖 (𝑆1, . . . , 𝑆𝑖−1). For 𝑗 ≤ 𝑖 − 1, let 𝑡 𝑗 ,𝑠 be the s-th element in the list F 𝑗 (𝑆1, . . . , 𝑆 𝑗−1), and

write 𝑆 𝑗 =: 𝑡 𝑗 ,𝑠★𝑗 so that 𝑠★𝑗 is the index of the outcome of Iter 𝑗 (𝐺 𝜃1
1 , . . . , 𝐺

𝜃 𝑗
𝑗−1). Fix an 𝑒1, . . . , 𝑒𝑘 ∈

𝑉 (2) \ (𝑆1 ∪ · · · ∪ 𝑆𝑖−1), and define

𝐴 𝑗 ,𝑠 :=
{
∃𝑒 ∈

(
𝑡 𝑗 ,𝑠 \ (𝑆1 ∪ . . . ∪ 𝑆 𝑗−1)

)
∩ {𝑒1, . . . , 𝑒𝑘 } : 𝑍𝑒 ≠ 𝑗

}
,

𝐵 𝑗 ,𝑠 :=
{
∃𝑒 ∈

(
𝑡 𝑗 ,𝑠 \ (𝑆1 ∪ . . . ∪ 𝑆 𝑗−1)

)
\ {𝑒1, . . . , 𝑒𝑘 } : 𝑍𝑒 ≠ 𝑗

}
,

𝐶 𝑗 ,𝑠 :=
{
𝑡 𝑗 ,𝑠 does not satisfy U exp

𝑗 (𝑆1, . . . 𝑆 𝑗−1)
}

∪
{
∃𝑒 ∈ 𝑡 𝑗 ,𝑠 \ (𝑆1 ∪ . . . ∪ 𝑆 𝑗−1) : 𝑒 ∉ E (𝐺★

𝑗 )
}
,

(3.16)

with the idea that if 𝑡 𝑗 ,𝑠 \ (𝑆1 ∪ . . . ∪ 𝑆 𝑗−1) ∩ {𝑒1, . . . , 𝑒𝑘 } = ∅ then 𝐴 𝑗 ,𝑠 = Ω. Since the event 𝑍𝑒 ≠ 𝑗

means that the edge is not present in 𝐺 𝜃 𝑗
𝑗 by (3.10), 𝐴 𝑗 ,𝑠 ∪ 𝐵 𝑗 ,𝑠 means that there is at least one edge

in 𝑡 𝑗 ,𝑠 \ (𝑆1 ∪ · · · ∪ 𝑆 𝑗−1) that is not present in 𝐺 𝜃 𝑗
𝑗 . By Definition 3.6(v), we can only choose 𝑡 𝑗 ,𝑠 for

𝑆 𝑗 if these edges are all present. We also cannot choose 𝑡 𝑗 ,𝑠 for 𝑆 𝑗 if 𝐶 𝑗 ,𝑠 holds by Definition 3.6(v)
and (vi). However, if the complement of all these events hold, then all conditions are satisfied and 𝑡 𝑗 ,𝑠
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is choosable for 𝑆 𝑗 , and it is chosen if it is the first such element of F exp
𝑖 . Hence

Aexp(𝑆1, . . . , 𝑆𝑖−1) =
⋂

𝑗≤𝑖−1

����𝐴
�
𝑗 ,𝑠★𝑗

∩ 𝐵�
𝑗 ,𝑠★𝑗

∩ 𝐶�
𝑗 ,𝑠★𝑗

∩
⋂
𝑠<𝑠★𝑗

(
𝐴 𝑗 ,𝑠 ∪ 𝐵 𝑗 ,𝑠 ∪ 𝐶 𝑗 ,𝑠

)����.
In fact, by assumption we have 𝑒1, . . . , 𝑒𝑘 ∉ (𝑆1 ∪ . . .∪ 𝑆𝑖−1) and 𝑗 ≤ 𝑖−1, so the chosen lists 𝑡 𝑗 ,𝑠★𝑗 = 𝑆 𝑗

do not have an overlap with 𝑒1, . . . , 𝑒𝑘 . So this expression becomes

Aexp(𝑆1, . . . , 𝑆𝑖−1) =
⋂

𝑗≤𝑖−1

����𝐵
�
𝑗 ,𝑠★𝑗

∩ 𝐶�
𝑗 ,𝑠★𝑗

∩
⋂
𝑠<𝑠★𝑗

(
𝐴 𝑗 ,𝑠 ∪ 𝐵 𝑗 ,𝑠 ∪ 𝐶 𝑗 ,𝑠

)����. (3.17)

Now define 𝐴 := {𝑍𝑒1 = · · · = 𝑍𝑒𝑘 = 𝑖} as in (3.15), and define 𝐵 :=
⋂

𝑗≤𝑖−1(𝐵�𝑗 ,𝑠★𝑗 ∩ 𝐶
�
𝑗 ,𝑠★𝑗

) and
𝐶 :=

⋂
𝑗≤𝑖−1

⋂
𝑠<𝑠★𝑗

(𝐴 𝑗 ,𝑠 ∪ 𝐵 𝑗 ,𝑠 ∪ 𝐶 𝑗 ,𝑠) as in (3.17), so that

P
(
𝑍𝑒1 = · · · = 𝑍𝑒𝑘 = 𝑖 | Aexp(𝑆1, . . . , 𝑆𝑖−1)

)
= P(𝐴 | 𝐵 ∩ 𝐶) = P(𝐴 ∩ 𝐵 ∩ 𝐶)

P(𝐵 ∩ 𝐶) .

We first argue that 𝐴 ⊆
⋂

𝑗≤𝑖−1
⋂

𝑠<𝑠★𝑗
𝐴 𝑗 ,𝑠 ⊆ 𝐶. Indeed, these 𝐴 𝑗 ,𝑠 all require that 𝑍𝑒 ≠ 𝑗 whenever e

is both in 𝑒1, . . . , 𝑒𝑘 and also part of another list. In particular if 𝐴 = {𝑍𝑒1 = · · · = 𝑍𝑒𝑘 = 𝑖} occurs then
𝑍𝑒 ≠ 𝑗 is satisfied for all 𝑒 ∈ (𝑒1, . . . , 𝑒𝑘 ). This means that 𝐴 ∩ 𝐵 ∩ 𝐶 = 𝐴 ∩ 𝐵. Moreover, all events
𝐵 𝑗 ,𝑠 with 𝑗 ≤ 𝑖 − 1 and 𝑠 ≤ 𝑠★𝑗 are independent of A, as A is contained in 𝜎(𝑍𝑒1 , . . . , 𝑍𝑒𝑘 ) while 𝐵 𝑗 ,𝑠

is contained in 𝜎({𝑍𝑢𝑣 : 𝑢𝑣 ∈ 𝑉 (2) \ {𝑒1, . . . , 𝑒𝑘 }). We also observe that all events 𝐶 𝑗 ,𝑠 with 𝑗 ≤ 𝑖 − 1
are independent of A, as A is contained in 𝜎(𝑍𝑒1 , . . . , 𝑍𝑒𝑘 ) while 𝐶 𝑗 ,𝑠 is contained in 𝜎(𝐺★

1 , . . . , 𝐺
★
𝑖−1).

We just proved that A is independent of B, so P(𝐴 ∩ 𝐵) = P(𝐴) · P(𝐵). So,

P(𝐴 ∩ 𝐵 ∩ 𝐶)
P(𝐵 ∩ 𝐶) =

P(𝐴 ∩ 𝐵)
P(𝐵 ∩ 𝐶) =

P(𝐴)P(𝐵)
P(𝐵 ∩ 𝐶) =

P(𝐴)
P(𝐶 | 𝐵) ≥ P(𝐴) = 𝜃𝑘

𝑖 ,

where the last equality follows since 𝑍𝑒1 , . . . , 𝑍𝑒𝑘 are independent. This yields the right-hand side of
(3.15), finishing the proof. �

4. Building blocks: finding cheap edges

In this section, we return from CIRGs to GIRGs and state a few important lemmas that we shall use to
construct the different parts of the low-cost path between 0 and x. We work in the quenched setting with
the realisation of vertices and their weights Ṽ = (𝑉, 𝑤𝑉 ) exposed, taking the role of (𝑉, 𝑤𝑉 ) for CIRGs
of Definition 3.1, and the weighted vertex set containing a weak net as in Section 2. All lemmas here
concern 𝜃-percolated SFP/IGIRG as in Definition 3.2, so that we can later use them on the graphs 𝐻𝑖 of
the multiround exposure Proposition 3.9. We first set out some common notation for Sections 4 and 5.

Setting 4.1. (The setting) Consider 1-FPP in Definition 1.1 on the graphs IGIRG or SFP satisfying the
assumptions given in (1.6)–(1.3) with 𝑑 ≥ 1, 𝛼 ∈ (1,∞], 𝜏 ∈ (2, 3). Let 𝑐, 𝑐, h, L, 𝑐1, 𝑐2, and 𝛽 be as
in (1.6)–(1.3); we allow 𝛽 = ∞ and 𝛼 = ∞. Fix a realisation (𝑉, 𝑤𝑉 ) of Ṽ , and let 𝐺 ∼ {G | 𝑉, 𝑤𝑉 },
and for a 𝜃 ∈ (0, 1], let 𝐺 ′ be a 𝜃-percolation 𝐺 ′ of G. For brevity we write P(· | 𝑉, 𝑤𝑉 ) for
P(· | Ṽ (𝐺 ′) = (𝑉, 𝑤𝑉 )). Let 𝑥 ∈ 𝑉 , and let Q be a cube of side length 𝜉 containing 0 and x. Let
𝛿 ∈ (0, 1), 𝑤0 ≥ 1, and assume that (𝑉, 𝑤𝑉 ) is such that Q contains a weak (𝛿/4, 𝑤0)-net N with
0, 𝑥 ∈ N given in Definition 2.1. Finally, let 𝛾 ∈ (0, 1).
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We now define a function of crucial importance for the optimisation of the exponents Δ0, 𝜂0 in (1.9)
(1.10). For all 𝛾 > 0 and all 𝜂, 𝑧 ≥ 0, we define

Λ(𝜂, 𝑧) := 2𝑑𝛾 − 𝛼(𝑑 − 𝑧) − 𝑧(𝜏 − 1) +
(
0 ∧ 𝛽(𝜂 − 𝜇𝑧)

)
. (4.1)

The first lemma ensures the existence of the ‘longest’ edge on Figure 2: for 𝛾 < 1 it joins two Euclidean
balls of radius 𝐷𝛾 with a low-cost edge with endpoints in the net having specified weights in a range
around 𝐷𝑧 , for any large enough 𝐷 ∈ R. We will apply it on multiple scales, hence the need for a
general D for the distance that the edge bridges. The function Λ(𝜂, 𝑧) gives the exponent of D in the
error probability of finding the low-cost edge. Recall par and the notation �★ from Section 1.4.1.

Lemma 4.2 (Single bridge-edge). Consider Setting 4.1. Let 𝑧 ∈ [0, 𝑑] satisfy 2𝑑𝛾 > 𝑧(𝜏 − 1). Let
𝑐𝐻 , 𝜂 ≥ 0. Suppose that 0 < 𝛿�★ 𝛾, 𝜂, 𝑧, 𝑐𝐻 , par, and that 𝐷�★ 𝜂, 𝑧, 𝑐𝐻 , 𝛿, 𝑤0. Assume that 𝐷𝛾 ∈
[(log log 𝜉

√
𝑑)16/𝛿 , 𝜉

√
𝑑] and that 𝑥, 𝑦 ∈ N satisfy |𝑥 − 𝑦 | ≤ 𝑐𝐻𝐷, and let 𝑤 ∈ [𝑤0 ∨ 4(𝑐𝐻 + 2)𝑑 ∨

4000𝑐−1/(𝜇𝛽)
1 , 𝐷 𝛿] satisfy 𝐹𝐿 ((𝑤/4000)𝜇) ≥ 1/2. For 𝑣 ∈ {𝑥, 𝑦}, define

Z (𝑣) = Z𝛾,𝑧,𝑤 (𝑣) := N ∩
(
𝐵𝐷𝛾 (𝑣) × [𝑤𝐷𝑧/2/2, 2𝑤𝐷𝑧/2]

)
. (4.2)

Again for each 𝑣 ∈ {𝑥, 𝑦}, let 𝑍𝑣 ⊆ Z (𝑣) with |𝑍𝑣 | ≥ |Z (𝑣) |/4 be two arbitrary subsets chosen in an
arbitrary way that does not depend on the edges with one endpoint in 𝑍𝑥 and the other in 𝑍𝑦 . For 𝐺 ′ a
𝜃-percolation of G, let

𝑁𝜂,𝛾,𝑧,𝑤 (𝑍𝑥 , 𝑍𝑦) :=
{
(𝑎, 𝑏) ∈ 𝑍𝑥 × 𝑍𝑦 , 𝑎𝑏 ∈ E (𝐺 ′), C (𝑎𝑏) ≤ (𝑤/10)3𝜇𝐷𝜂

}
. (4.3)

Then, (and also for 𝛼 = ∞ and/or 𝛽 = ∞ under the convention that ∞ · 0 = 0 in (4.1)),

P
(
𝑁𝜂,𝛾,𝑧,𝑤 (𝑍𝑥 , 𝑍𝑦) = ∅ | 𝑉, 𝑤𝑉

)
≤ exp

(
−𝜃𝑤−2(𝜏−1)𝐷Λ(𝜂,𝑧)−2𝛾𝑑𝛿/3

)
. (4.4)

Note that the requirements on D and 𝑤 can be simultaneously satisfied since 𝑤0 ∨ 4(𝑐𝐻 + 2)𝑑 ∨
4000𝑐−1/(𝜇𝛽)

1 is a large constant, while D grows at least as Θ(log log 𝜉) with 𝜉. The restriction of the
vertex-weights to be between constant factors of 𝑤𝐷𝑧/2 in (4.2) ensures that we can lower-bound edge-
presence and also upper bound the cost-penalisation (𝑤𝑎𝑤𝑏)𝜇 on these edges.

Proof. We first bound the number of possible edges in 𝑁𝜂,𝛾,𝑧,𝑤 (𝑍𝑥 , 𝑍𝑦) from below. We make use of
the net property: the assumption 𝑥, 𝑦 ∈ N ensures enough vertices in the sets Z (𝑥),Z (𝑦). We check
if all conditions are satisfied: In Def. 2.1, we will take 𝜀 = 𝛿/4, 𝑤 = 𝑤𝐷𝑧/2 and 𝑟 = 𝐷𝛾 . We have
𝑤𝐷𝑧/2 ≥ 𝑤 ≥ 𝑤0. Since 2𝑑𝛾 > 𝑧(𝜏 − 1), we have 𝑧/2 < 𝑑𝛾/(𝜏 − 1), and 𝑤 ≤ 𝐷 𝛿 by hypothesis; for
sufficiently small 𝛿, it follows that 𝑤𝐷𝑧/2 < 𝐷 𝛿 · 𝐷𝑑𝛾/(𝜏−1)−2𝛿 ≤ 𝐷𝑑𝛾/(𝜏−1)−𝛿/4; thus the requirement
on 𝑤 of Def. 2.1 is satisfied. Also 𝐷𝛾 ∈ [(log log 𝜉

√
𝑑)16/𝛿 , 𝜉

√
𝑑] by hypothesis. Thus (2.2) gives for

𝑣 ∈ {𝑥, 𝑦}:

|Z (𝑣) | ≥ 𝐷𝛾𝑑 (1−𝛿/4)ℓ(𝑤𝐷𝑧/2)𝑤−(𝜏−1)𝐷−𝑧 (𝜏−1)/2.

Since 𝑤𝐷𝑧/2 ≤ 𝐷 𝛿+𝑧/2 and 𝐷�★ 𝛿, 𝑧, by Potter’s bound |Z (𝑣) | ≥ 𝑤−(𝜏−1)𝐷𝑑𝛾−𝑧 (𝜏−1)/2−3𝛿𝛾𝑑/10, so
|𝑍𝑣 | ≥ |Z (𝑣) |/4 ≥ 𝑤−(𝜏−1)𝐷𝑑𝛾−𝑧 (𝜏−1)/2−3𝛿𝛾𝑑/10/4 for 𝑣 ∈ {𝑥, 𝑦}. Accounting for the possibility of
even full overlap between 𝑍𝑥 and 𝑍𝑦 , we obtain

��{{𝑎, 𝑏} : 𝑎 ∈ 𝑍𝑥 , 𝑏 ∈ 𝑍𝑦 |}
��≥ (|𝑍𝑥 | ∧ |𝑍𝑦 |)2

4
≥ 𝑤−2(𝜏−1)𝐷2𝑑𝛾−𝑧 (𝜏−1)−3𝛿𝛾𝑑/5/64. (4.5)

We now lower-bound the probability that 𝑎 ∈ 𝑍𝑥 , 𝑏 ∈ 𝑍𝑦 forms a low-cost edge as in (4.3). By hypothesis
|𝑥 − 𝑦 | ≤ 𝑐𝐻𝐷, 𝑎 ∈ 𝐵𝐷𝛾 (𝑥), 𝑏 ∈ 𝐵𝐷𝛾 (𝑦), and 𝛾 < 1, so |𝑎 − 𝑏 | ≤ 𝑐𝐻𝐷 + 2𝐷𝛾 ≤ (𝑐𝐻 + 2)𝐷. Since
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𝑤𝑎, 𝑤𝑏 ∈ [𝑤𝐷𝑧/2/2, 2𝑤𝐷𝑧/2] by (4.2), it follows from (1.5) that

P
(
𝑎𝑏 ∈ E (𝐺 ′) | 𝑉, 𝑤𝑉

)
≥ 𝜃𝑐

(
1 ∧

𝑤2𝐷𝑧

4(𝑐𝐻 + 2)𝑑𝐷𝑑

)𝛼

≥ 𝜃𝑐
(
1 ∧ 𝑤𝐷𝑧−𝑑 )𝛼

, (4.6)

where we used the assumption that 𝑤 ≥ 4(𝑐𝐻 + 2)𝑑 to simplify the formula. Since 𝑧 ∈ [0, 𝑑], and 𝛿 is
small relative to z, if 𝑧 − 𝑑 < 0 then we may assume 𝑧 − 𝑑 ≤ −2𝛿. Since 1 ≤ 𝑤 ≤ 𝐷 𝛿 , the minimum in
(4.6) is attained at 1 only for 𝑧 = 𝑑. So, for all {𝑎, 𝑏} ∈ 𝑍𝑥 × 𝑍𝑦 ,

P
(
𝑎𝑏 ∈ 𝐸 (𝐺 ′) | 𝑉, 𝑤𝑉

)
≥

{
𝜃𝑐1{𝑧 = 𝑑} if 𝛼 = ∞,
𝜃𝑐𝐷𝛼(𝑧−𝑑) otherwise.

(4.7)

Since 𝑤𝑎, 𝑤𝑏 ≤ 2𝑤𝐷𝑧/2 by (4.2),

P
(
C (𝑎𝑏) ≤ (𝑤/10)3𝜇𝐷𝜂 | 𝑎𝑏 ∈ E (𝐺 ′), 𝑉, 𝑤𝑉

)
≥ P

(
(4𝑤2𝐷𝑧)𝜇𝐿𝑎𝑏 ≤ (𝑤/10)3𝜇𝐷𝜂 )

= 𝐹𝐿 (4000−𝜇𝑤𝜇𝐷𝜂−𝜇𝑧).

If 𝜂 < 𝜇𝑧, then since 𝛿�★ 𝑧, 𝜂, par we may assume that 𝜂 − 𝜇𝑧 ≤ −2𝜇𝛿. Since 𝑤 ≤ 𝐷 𝛿 and 𝐷�★ 𝛿,
it follows that 4000−𝜇𝑤𝜇𝐷𝜂−𝜇𝑧 ≤ 𝐷−𝜇𝛿 ≤ 𝑡0 and hence using Assumption 1.2 and the assumption
𝑤 ≥ 4000𝑐−1/(𝜇𝛽)

1 we get 𝐹𝐿 (4000−𝜇𝑤𝜇𝐷𝜂−𝜇𝑧) ≥ 𝐷𝛽 (𝜂−𝜇𝑧) after simplifications. If instead 𝜂 ≥ 𝜇𝑧,
then 𝐹𝐿 (4000−𝜇𝑤𝜇𝐷𝜂−𝜇𝑧) ≥ 𝐹𝐿 (4000−𝜇𝑤𝜇) ≥ 1/2 by hypothesis. Summarising the two cases with
indicators we arrive at

P
(
C (𝑎𝑏) ≤ (𝑤/10)3𝜇𝐷𝜂 | 𝑎𝑏 ∈ E (𝐺 ′), 𝑉, 𝑤𝑉

)
≥

{
1{𝜂 ≥ 𝜇𝑧}/2 if 𝛽 = ∞,
𝐷0∧𝛽 (𝜂−𝜇𝑧) /2 otherwise.

(4.8)

With the convention that ∞·0 = 0, the second row equals the first row in both (4.7) and (4.8). Combining
(4.7) and (4.8), we obtain that for all {𝑎, 𝑏} ∈ 𝑍𝑥 × 𝑍𝑦 :

P
(
{𝑎, 𝑏} ∈ 𝑁𝜂,𝛾,𝑧,𝑤 (𝑥, 𝑦) | 𝑉, 𝑤𝑉

)
≥ 𝜃𝑐𝐷𝛼(𝑧−𝑑)+(0∧𝛽 (𝜂−𝜇𝑧)) /2. (4.9)

Given 𝑉, 𝑤𝑉 , the possible edges {𝑎, 𝑏} lie in 𝑁𝜂,𝛾,𝑧,𝑤 (𝑥, 𝑦) independently. Hence by (4.5) and (4.9),
|𝑁𝜂,𝛾,𝑧 (𝑥, 𝑦) | stochastically dominates a binomial random variable whose mean m is the product of the
two equations’ right-hand sides. On bounding 𝑐/128 ≥ 𝐷−𝛿𝛾𝑑/15, we obtain

𝑚 ≥ 𝜃𝑤−2(𝜏−1)𝐷Λ(𝜂,𝑧)−2𝛿𝛾𝑑/3.

Inequality (4.4) follows since this binomial variable is zero with probability at most 𝑒−𝑚. �

The next lemma finds a low-cost edge from a fix vertex in N with weight roughly M to some nearby
vertex in N with weight roughly K. We will use this lemma later in two different ways, either K being
much lower than M; or K being somewhat larger than M. The former corresponds to the shorter edges
emanating from the longest edge on Figure 2 and ensure that the endpoints of the three-edge bridge
paths; after many iterations, can be connected at low costs using ‘local edges’.
Lemma 4.3 (Single cheap edge nearby). Consider Setting 4.1. Let 𝑀 > 1, and let 𝑥 ∈ N be a vertex
with 𝑤𝑥 ∈ [ 1

2𝑀, 2𝑀]. Let𝑈, 𝐷 > 0 and 𝐾 > 𝑤0, and define the event

A𝐾,𝐷,𝑈 (𝑥) :=
{
∃𝑦 ∈ N ∩ (𝐵𝐷 (𝑥) × [ 1

2𝐾, 2𝐾]) : 𝑥𝑦 ∈ E (𝐺 ′), C (𝑥𝑦) ≤ 𝑈
}
. (4.10)

Suppose that 𝛿�★ par, that 𝐾, 𝑀, 𝐷�★ 𝛿, 𝑤0, and that

(log log 𝜉
√
𝑑)16/𝛿 ≤ (𝐷 ∧ (𝐾𝑀)1/𝑑)/41/𝑑 ≤ 𝜉

√
𝑑, (4.11)

𝐾 ≤ 𝐷𝑑/(𝜏−1)−𝛿 ∧ 𝑀1/(𝜏−2+𝛿𝜏) . (4.12)
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Then if 𝛽 = ∞ and𝑈 (𝐾𝑀)−𝜇 �★ par, or alternatively if 𝛽 < ∞, then

P
(
A𝐾,𝐷,𝑈 (𝑥) | 𝑉, 𝑤𝑉

)
≥ 1 − exp

(
−𝜃𝐾−(𝜏−1) (𝐷𝑑 ∧ 𝐾𝑀)1−𝛿 (1 ∧ (𝑈 (𝐾𝑀)−𝜇)𝛽

)
. (4.13)

The required condition 𝑈 (𝐾𝑀)−𝜇 �★ par when 𝛽 = ∞ ensures that when 𝛽 = ∞, the minimum is
at 1 in the last factor in the exponent on the right-hand side of (4.13).

Proof. Let 𝑟 = 4−1/𝑑 (𝐷 ∧ (𝐾𝑀)1/𝑑), and define Z ′(𝑥) := N ∩ (𝐵𝑟 (𝑥) × [ 1
2𝐾, 2𝐾]). We will first

lower-bound |Z ′(𝑥) | by applying Definition 2.1 with 𝜀 = 𝛿/4, 𝑤 = 𝐾 and the same value of r, that is,
𝑟 = 4−1/𝑑 (𝐷 ∧ (𝐾𝑀)1/𝑑). Observe that (4.11) and the fact that 𝐾 ≥ 𝑤0 imply all the requirements of
Definition 2.1 except 𝐾 ≤ 𝑟𝑑/(𝜏−1)−𝛿/4, which we now prove. By (4.12), 𝑀 ≥ 𝐾 𝜏−2+𝜏 𝛿 and hence

𝑟𝑑/(𝜏−1)−𝛿/4 ≥ (𝐾𝑀/4)1/(𝜏−1)−𝛿/(4𝑑) ≥ (𝐾 𝜏−1+𝜏 𝛿)1/(𝜏−1)−𝛿/4/4

= 𝐾1+𝛿 (𝜏/(𝜏−1)−(𝜏−1)/4−𝜏 𝛿/4)/4.

Since 𝜏 < 3 and 𝛿�★ 𝜏, the coefficient of 𝛿 is positive in the exponent so the right-hand side is at least
K, as required by Def. 2.1. Applying (2.2) followed by Potter’s bound (since 𝐷, 𝐾�★ 𝛿) yields that

|Z ′(𝑥) | ≥ ℓ(𝐾)𝐾−(𝜏−1)𝑟𝑑 (1−𝛿/4) ≥ 𝐾−(𝜏−1) (𝐷 ∧ 𝐾𝑀)1−𝛿/2. (4.14)

We now lower-bound the probability that for a 𝑦 ∈ Z ′(𝑥) the edge 𝑥𝑦 is present and has cost at most U,
satisfying the requirements ofA𝐾,𝐷,𝑈 (𝑥). Let 𝑦 ∈ Z ′(𝑥). Since𝑤𝑥 ∈ [𝑀/2, 2𝑀] and𝑤𝑦 ∈ [𝐾/2, 2𝐾],
by (1.5) and the definition of 𝑟 = 𝐷 ∧ (𝐾𝑀/4)1/𝑑 we have

P
(
𝑥𝑦 ∈ E | 𝑉, 𝑤𝑉

)
≥ 𝜃𝑐(1 ∧ 𝐾𝑀/(4𝑟𝑑))𝛼 = 𝜃𝑐, (4.15)

since the minimum is at the first term; also for 𝛼 = ∞. Moreover, if 𝛽 < ∞, we apply (1.3); otherwise,
since𝑈 (𝐾𝑀)−𝜇 is large, 𝐹𝐿 (𝑈 (4𝐾𝑀)−𝜇) ≥ 1/2, to estimate the cost

P
(
C (𝑥𝑦) ≤ 𝑈 | 𝑥𝑦 ∈ E (𝐺 ′), 𝑉, 𝑤𝑉

)
≥ P

(
(4𝐾𝑀)𝜇𝐿𝑥𝑦 ≤ 𝑈

)
= 𝐹𝐿 ((4𝐾𝑀)−𝜇𝑈)

≥ 𝐶 (1 ∧ (𝑈 (𝐾𝑀)−𝜇)𝛽),
(4.16)

for an appropriate choice of 𝐶 > 0 depending only on par. Combining (4.15) and (4.16), we obtain for
any 𝑦 ∈ Z ′(𝑥):

P
(
𝑥𝑦 ∈ E (𝐺 ′) with C (𝑥𝑦) ≤ 𝑈 | 𝑉, 𝑤𝑉

)
≥ 𝜃𝐶𝑐(1 ∧ (𝑈 (𝐾𝑀)−𝜇)𝛽). (4.17)

Conditioned on (𝑉, 𝑤𝑉 ), edges are present independently, so the number of low-cost edges between x
and Z ′(𝑥) stochastically dominates a binomial random variable with parameters the right-hand side of
(4.14) and (4.17). The mean is

𝜃𝐶𝑐𝐾−(𝜏−1) (𝐷𝑑 ∧ 𝐾𝑀)1−𝛿/2(1 ∧ (𝑈 (𝐾𝑀)−𝜇)𝛽).

Since 𝐾, 𝑀, 𝐷�★ 𝛿, we may swallow the constant factor 𝜃𝐶𝑐 by increasing 𝛿/2 to 𝛿. The result follows
since for a binomial variable Z, P(𝑍 = 0) ≤ exp(−E[𝑍]). �

The third lemma builds cheap weight-increasing paths, from a low-weight vertex in N to a high-
weight vertex in N . The proof is via repeated application of Lemma 4.3. The starting point of these
weight-increasing paths shall be the endpoints of the 3-edge bridge paths depicted on Figure 2, and we
will use them to partially fill in the ‘gaps’ between the 3-edge bridge paths.
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Lemma 4.4 (Weight-increasing paths). Consider Setting 4.1. Let 𝑀 > 1, and let 𝑦0 be a vertex in N
with weight in [ 1

2𝑀, 2𝑀]. Let 𝐾, 𝐷 > 1,𝑈 ≥ 𝐾2𝜇, and let

𝑞 :=
⌈

log(log𝐾/log𝑀)
log(1/(𝜏 − 2 + 2𝑑𝜏𝛿))

⌉
. (4.18)

Let A𝜋 (𝑦0) be the event that 𝐺 ′ contains a path 𝜋 = 𝑦0𝑦1 . . . 𝑦𝑞 contained in N ∩ 𝐵𝑞𝐷 (𝑦0) such
that 𝑊𝑦𝑞 ∈ [ 1

2𝐾, 2𝐾] and C (𝜋) ≤ 𝑞𝑈. Suppose that 𝛿�★ par, that 𝐾, 𝑀, 𝐷�★ 𝜃, 𝛿, 𝑤0, and that
𝑀 ≤ 𝐾 ≤ 𝐷𝑑/2, 𝐷 ≤ 𝜉

√
𝑑, and (𝑀/2)2/𝑑 ≥ (log log 𝜉

√
𝑑)16/𝛿 . Then if 𝛽 = ∞ and𝑈 (𝐾𝑀)−𝜇 �★ par,

or if 𝛽 < ∞, then

P
(
A𝜋 (𝑦0) | 𝑉, 𝑤𝑉

)
≥ 1 − exp(−𝜃𝑀 𝛿). (4.19)

Proof. We will build 𝜋 vertex-by-vertex by applying Lemma 4.3 q times. We first define a doubly
exponentially increasing sequence of target weights. Let 𝑀0 := 𝑀 , and for all 𝑖 ∈ [𝑞], let

𝑀𝑖 := 𝑀1/(𝜏−2+2𝑑𝜏 𝛿)𝑖 ∧ 𝐾. (4.20)

Since 𝜏 < 3 and 𝛿 is small, 𝜏 − 2 + 2𝑑𝜏𝛿 < 1; hence on substituting the definition of q in (4.18) into
(4.20) and removing the ceiling, we obtain

𝑀1/(𝜏−2+2𝑑𝜏 𝛿)𝑞 = exp
(
log𝑀 · e−𝑞 log(𝜏−2+2𝑑𝜏 𝛿)

)
≥ exp

(
log𝑀 · elog

(
log𝐾
log𝑀

) )
= 𝐾,

and hence 𝑀𝑞 = 𝐾 . By a very similar argument, 𝑀𝑞−1 < 𝐾 . We now define 𝑌0 = 𝑦0, and define an
arbitrary ordering onN . For all 𝑖 ∈ [𝑞], we define𝑌𝑖 to be the first vertex inN in 𝐵𝐷 (𝑌𝑖−1)× [ 1

2𝑀𝑖 , 2𝑀𝑖]
with the property that the edge𝑌𝑖−1𝑌𝑖 is present in𝐺 ′ and has cost at most U. If no such vertex exists, we
define 𝑌 𝑗 = None for all 𝑗 ≥ 𝑖. Let A𝑖 be the event that 𝑌0, . . . , 𝑌𝑖 ≠ None. Then, if A𝑞 occurs, the path
𝜋 = 𝑌0 . . . 𝑌𝑞 yields 𝑉 (𝜋) ⊆ N ∩ 𝐵𝑞𝐷 (𝑦0) and C (𝜋) ≤ 𝑞𝑈, and that 𝑤𝑌𝑞 ∈ [ 1

2𝐾, 2𝐾] since 𝑀𝑞 = 𝐾 .
So, (and because A𝑖−1 ⊆ A𝑖),

P
(
A𝜋 (𝑦0) | 𝑉, 𝑤𝑉

)
≥ P

(
A𝑞 | 𝑉, 𝑤𝑉

)
=

𝑞∏
𝑖=1
P
(
A𝑖 | A𝑖−1, 𝑉, 𝑤𝑉

)
. (4.21)

Our goal is to show that

𝑝𝑖 := P
(
A𝑖 | A𝑖−1, 𝑉, 𝑤𝑉

)
≥ 1 − exp(−𝜃𝑀3𝛿

𝑖−1). (4.22)

Indeed, if this bound holds then in (4.21), we obtain that

P
(
A𝑞 | 𝑉, 𝑤𝑉

)
≥

𝑞−1∏
𝑖=0

(
1 − exp(−𝜃𝑀3𝛿

𝑖 )
)
≥ 1 −

𝑞−1∑
𝑖=0

exp(−𝜃𝑀3𝛿
𝑖 ). (4.23)

Recall that for all 2 ≤ 𝑖 ≤ 𝑞 − 1, 𝑀𝑖 = 𝑀1/(𝜏−2+2𝑑𝜏 𝛿)
𝑖−1 , and so since 𝛿 is small and 𝜏 ∈ (2, 3) we have

𝑀𝑖 ≥ 𝑀1+𝛿
𝑖−1 . Since 𝑀0 = 𝑀�★ 𝛿, 𝜃, we obtain exp(−𝜃𝑀3𝛿

𝑖 ) ≤ 1
2 exp(−𝜃𝑀3𝛿

𝑖−1). It follows from (4.23)
that

P
(
A𝑞 | 𝑉, 𝑤𝑉

)
≥ 1 −

𝑞−1∑
𝑖=0

exp(−𝜃𝑀3𝛿
𝑖 ) − exp(−𝑀3𝛿

𝑞 ) ≥ 1 − 3 exp(−𝜃𝑀3𝛿) ≥ 1 − exp(−𝜃𝑀 𝛿)

as required in (4.19), where the last step holds since 𝑀�★ 𝛿, 𝜃.
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We now set out to show (4.22). We simplify the conditioning in (4.21). For all 𝑖 ∈ [𝑞], let

F𝑖 := E (𝐺 ′) ∩
{
{𝑥, 𝑦} : 𝑥, 𝑦 ∈ N , 𝑤𝑥 ∈ [ 1

2𝑀𝑖−1, 2𝑀𝑖−1], 𝑤𝑦 ∈ [ 1
2𝑀𝑖 , 2𝑀𝑖]

}
, (4.24)

F≤𝑖 := (F1, . . . ,F𝑖).

Thus, F𝑖 reveals the edges of 𝐺 ′ that are between vertices in the targeted 𝑖 − 1-st and i-th weight ranges.
Observe that A1, . . . ,A𝑖 and 𝑌1, . . . , 𝑌𝑖 are deterministic functions of F≤𝑖 . Moreover, if 𝐹≤𝑖−1 is a
possible realisation of F≤𝑖−1 such that A𝑖−1 occurs on 𝐹≤𝑖−1, then this gives us the vertex 𝑌𝑖−1 (𝐹≤𝑖−1).
Conditioned on F≤𝑖−1 = 𝐹≤𝑖−1, A𝑖 occurs iff 𝑌𝑖 ≠ None, that is, there is an emanating edge from
𝑌𝑖−1 (𝐹≤𝑖−1) leading to the next weight-range. Thus, with A𝐾,𝐷,𝑈 from (4.10), (4.21) implies that for
all 𝑖 ∈ [𝑞],

𝑝𝑖 ≥ min
𝐹≤𝑖−1 : A𝑖−1 occurs on𝐹≤𝑖−1

P
(
𝑌𝑖 ≠ None | F≤𝑖−1 = 𝐹≤𝑖−1, 𝑉, 𝑤𝑉

)
= min

𝐹≤𝑖−1 : A𝑖−1 (𝐹 ) occurs on𝐹≤𝑖−1
P
(
A𝑀𝑖 ,𝐷,𝑈 (𝑌𝑖−1 (𝐹≤𝑖−1)) occurs | F≤𝑖−1 = 𝐹≤𝑖−1, 𝑉, 𝑤𝑉

)
. (4.25)

Now observe that since 𝜏 ∈ (2, 3), 𝛿 is small, and 𝑀�★ 𝛿, for all 𝑖 ∈ [𝑞 − 2], we may
assume 𝑀𝑖 = 𝑀1/(𝜏−2+2𝑑𝜏 𝛿)𝑖

𝑖−1 > 4𝑀𝑖−1, and moreover 𝑀𝑞 ≥ 𝑀𝑞−1. Therefore, the intervals
[ 1

2𝑀1, 2𝑀1], . . . , [ 1
2𝑀𝑞 , 2𝑀𝑞] are all disjoint except possibly for [ 1

2𝑀𝑞−1, 2𝑀𝑞−1] and [ 1
2𝑀𝑞 , 2𝑀𝑞]. It

follows that the variables F1, . . . ,F𝑞 are determined by disjoint sets of possible edges. Namely, in F𝑞−1
we revealed edges between weights [ 1

2𝑀𝑞−2, 2𝑀𝑞−2] and [ 1
2𝑀𝑞−1, 2𝑀𝑞 − 1], which are disjoint from

edges between [ 1
2𝑀𝑞−1, 2𝑀𝑞−1] and [ 1

2𝑀𝑞 , 2𝑀𝑞]. So, the event A𝑀𝑖 ,𝐷,𝑈 (𝑌𝑖−1 (𝐹)) is independent of
the edges revealed in F≤𝑖−1 = 𝐹≤𝑖−1 in (4.25) (conditioned on (𝑉, 𝑤𝑉 )), and hence

𝑝𝑖 ≥ min
𝑦 : 𝑤𝑦 ∈[𝑀𝑖−1/2,2𝑀𝑖−1 ]

P
(
A𝑀𝑖 ,𝐷,𝑈 (𝑦) | 𝑉, 𝑤𝑉

)
. (4.26)

We now apply Lemma 4.3 on the right-hand side: take there 𝛿4.3 := 𝛿, 𝜃4.3 := 𝜃, 𝑀4.3 := 𝑀𝑖−1, 𝐾4.3 :=
𝑀𝑖 , 𝐷4.3 := 𝐷 and𝑈4.3 := 𝑈. Observe 𝐾4.3, 𝑀4.3 ≥ 𝑀; thus by hypothesis we have that 𝛿4.3 �★ par is
small and that 𝐾4.3, 𝑀4.3, 𝐷4.3 �★ 𝛿, 𝑤0, as required by Lemma 4.3. Next, we have (𝐾4.3𝑀4.3)𝜇 ≤ 𝐾2𝜇,
so if 𝛽 = ∞ it follows that 𝑈4.3(𝐾4.3𝑀4.3)−𝜇 ≥ 𝑈𝐾−2𝜇 is large as required, by the assumptions
before (4.18). Next, (𝐷 ∧ (𝑀𝑖𝑀𝑖−1)1/𝑑)/4𝑑 ≤ 𝐷 ≤ 𝜉

√
𝑑 by hypothesis, and (𝐷 ∧ (𝑀𝑖𝑀𝑖−1)1/𝑑)/4𝑑 ≥

(𝑀0/2)2/𝑑 ≥ (log log 𝜉
√
𝑑)16/𝛿 by hypothesis, so (4.11) holds. Next, 𝑀𝑖 ≤ 𝑀𝑞 = 𝐾 ≤ 𝐷𝑑/2 ≤

𝐷𝑑/(𝜏−1)−𝛿 by hypothesis and because 𝛿 is small; and finally 𝑀𝑖 ≤ 𝑀1/(𝜏−2+2𝑑𝜏 𝛿)
𝑖−1 < 𝑀1/(𝜏−2+𝜏 𝛿)

𝑖−1 by
definition, so (4.12) holds. Thus the conditions of Lemma 4.3 all hold, and applying (4.13) to (4.26)
yields that for all 𝑖 ∈ [𝑞]:

𝑝𝑖 ≥ 1 − exp
(
−𝜃𝑀−(𝜏−1)

𝑖

[
(𝐷𝑑 ∧ 𝑀𝑖𝑀𝑖−1)1−𝛿 (1 ∧ (𝑈 (𝑀𝑖𝑀𝑖−1)−𝜇)𝛽

] )
. (4.27)

Clearly 𝑀𝑖𝑀𝑖−1 ≤ 𝑀2
𝑞 = 𝐾2; and since 𝐾 ≤ 𝐷𝑑/2 by hypothesis, the first minimum is at 𝑀𝑖𝑀𝑖−1, while

the second minimum is taken at 1 on the right-hand side since𝑈 ≥ 𝐾2𝜇 was assumed. Hence

𝑝𝑖 ≥ 1 − exp
(
−𝜃𝑀−(𝜏−2)−𝛿

𝑖 𝑀1−𝛿
𝑖−1

)
.

Since 𝑀𝑖 ≤ 𝑀1/(𝜏−2+2𝑑𝜏 𝛿)
𝑖−1 by (4.20), 𝛿 is small, and 𝜏 ∈ (2, 3), after simplification the exponent of

𝑀𝑖−1 is at least 𝛿(𝜏 + 1 − 2𝑑𝜏𝛿)/(𝜏 − 2 + 2𝑑𝜏𝛿) ≥ 3𝛿, so 𝑝𝑖 ≥ 1 − exp(−𝜃𝑀3𝛿
𝑖−1), showing (4.22). �

The last lemma allows us to find a common neighbour for two vertices with roughly the same weight
if the distance between them is not too large with respect to their weights. This lemma will connect the
weight increasing paths we built in the previous lemma (to partially fill gaps) and is thus responsible for
the final connections to fill in the gaps between 3-edge bridge paths on Figure 2.
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Lemma 4.5 (Common neighbour). Consider Setting 4.1. Let 𝛿�★ par, let 𝑐𝐻 > 0, and let 𝐷 ≥ 𝑤2/𝑑
0

with 𝐷�★ 𝑐𝐻 , 𝛿 and 𝐷 ∈ [(log log 𝜉
√
𝑑)16/𝛿 , 𝜉

√
𝑑]. Let 𝑥0, 𝑥1 ∈ N be vertices with 𝑤𝑥0 , 𝑤𝑥1 ∈

[𝐷𝑑/2, 4𝐷𝑑/2] at distance |𝑥0 − 𝑥1 | ≤ 𝑐𝐻𝐷, and let A𝑥0★𝑥1 be the event that 𝑥0 and 𝑥1 have a common
neighbour in 𝐺 ′, 𝑣 ∈ N ∩ 𝐵𝐷 (𝑥0) with C (𝑥0𝑣) + C (𝑣𝑥1) ≤ 𝐷2𝜇𝑑 . Then

P
(
A𝑥0★𝑥1 | 𝑉, 𝑤𝑉

)
≥ 1 − exp

(
−𝜃2𝐷 (3−𝜏−2𝛿)𝑑/2

)
. (4.28)

Proof. We define a vertex 𝑣 ∈ Ṽ as good if 𝑣 ∈ N ∩ (𝐵𝐷 (𝑥0) × [(𝑐𝐻 + 1)𝑑𝐷𝑑/2, 4(𝑐𝐻 + 1)𝑑𝐷𝑑/2]);
thus for A𝑥0★𝑥1 to occur, it suffices that there is a good vertex v such that 𝑥0𝑣𝑥1 is a path of cost at
most 𝐷2𝜇𝑑 in 𝐺 ′. We call this a good path. We first lower-bound the number of good vertices. By
assumption, 2(𝑐𝐻 + 1)𝑑𝐷𝑑/2 ≥ 𝐷𝑑/2 ≥ 𝑤0, and since 𝜏 < 3, 𝛿 is small and 𝐷�★ 𝑐𝐻 , 𝛿 we have
2(𝑐𝐻 + 1)𝑑𝐷𝑑/2 ≤ 𝐷𝑑/(𝜏−1)−𝛿/4. Since N is a weak (𝛿/4, 𝑤0) net, by (2.4),��N ∩ (𝐵𝐷 (𝑥0) × [(𝑐𝐻 + 1)𝑑𝐷𝑑/2, 4(𝑐𝐻 + 1)𝑑𝐷𝑑/2])

��
≥ 𝐷𝑑 (1−𝛿/4)ℓ

(
2(𝑐𝐻 + 1)𝑑𝐷𝑑/2) (2(𝑐𝐻 + 1)𝑑𝐷𝑑/2)−(𝜏−1) ≥ 𝐷 (3−𝜏−𝛿)𝑑/2,

(4.29)

where the last inequality follows by Potter’s bound since 𝐷�★ 𝑐𝐻 , 𝛿. We now lower-bound the proba-
bility that for a good 𝑣 ∈ N , the edges 𝑥0𝑣, 𝑣𝑥1 are present and have cost at most 𝐷3𝜇𝑑/2 in 𝐺 ′. Observe
that |𝑥1 − 𝑣 | ≤ |𝑥1 − 𝑥0 | + |𝑥0 − 𝑣 | ≤ (𝑐𝐻 + 1)𝐷. Thus, by (1.5), and since 𝐺 ′ is a 𝜃-percolation,
P(𝑥1𝑣 ∈ E (𝐺 ′) |𝑉, 𝑤𝑉 ) ≥ 𝜃𝑐

[
1∧ (𝑐𝐻 + 1)𝑑 (𝐷𝑑/2)2/((𝑐𝐻 + 1)𝐷)𝑑

] 𝛼
= 𝜃𝑐, also when 𝛼 = ∞. Further,

conditioned on the existence of the edge 𝑥1𝑣,

P
(
C (𝑥1𝑣) ≤ 𝐷3𝜇𝑑/2 | 𝑥1𝑣 ∈ E (𝐺 ′), 𝑉, 𝑤𝑉

)
≥ P

(
(16(𝑐𝐻 + 1)𝑑𝐷𝑑)𝜇𝐿 ≤ 𝐷3𝜇𝑑/2)

= 𝐹𝐿 (16−𝜇 (𝑐𝐻 + 1)−𝜇𝑑𝐷𝜇𝑑/2) ≥ 1/2,

where the last inequality holds (including when 𝛽 = ∞) since 𝐷�★ 𝑐𝐻 . Combining the two bounds,
for all good vertices 𝑣 ∈ Ṽ ,

P
(
𝑥1𝑣 ∈ E (𝐺 ′), C (𝑥1𝑣) ≤ 𝐷3𝜇𝑑/2 | 𝑉, 𝑤𝑉

)
≥ 𝜃𝑐/2.

Since |𝑥0 − 𝑣 | ≤ 𝐷, the same lower bounds hold for the edge 𝑥0𝑣. The two events are independent
conditioned on (𝑉, 𝑤𝑉 ), and since 2𝐷3𝜇𝑑/2 < 𝐷2𝜇𝑑 , for all good vertices 𝑣 ∈ Ṽ ,

P
(
𝑥0𝑣, 𝑥1𝑣 ∈ E (𝐺 ′), C (𝑥0𝑣𝑥1) ≤ 𝐷2𝜇𝑑 | 𝑉, 𝑤𝑉

)
≥ 𝜃2𝑐2/4. (4.30)

Conditioned on (𝑉, 𝑤𝑉 ), the presence and cost of 𝑥0𝑣𝑥1 vs 𝑥0𝑣
′𝑥1 are independent, so the number of good

paths between 𝑥0 and 𝑥1 stochastically dominates a binomial random variable with parameters given by
the right-hand side of (4.29) and that of (4.30). For a binomial variable Z, P(𝑍 ≠ 0) ≥ 1− exp(−E[𝑍]),
and so we obtain (4.28) by absorbing the constant 𝑐2/4 by replacing 𝛿 with 2𝛿 in the exponent of D,
using that 𝐷�★ 𝛿. �

5. Budget travel plan: hierarchical bridge-paths

In this section, we present the main construction for the upper bounds in Theorems 1.4 and 1.6. This
construction is a ‘hierarchy’ of cheap bridging paths connecting x and y that we heuristically described in
Section 1 as the ‘budget travel plan’. Here we elaborate more on the heuristics before diving into proofs.

Let U be either polynomial in |𝑥− 𝑦 | (when proving Theorem 1.6) or sub-logarithmic in |𝑥− 𝑦 | (when
proving Theorem 1.4). We first find a 3-edge bridging-path 𝜋1 = 𝑥 ′𝑎𝑏𝑦′ of cost at most U between two
vertices 𝑥 ′ and 𝑦′ with weights 𝑤𝑥′ , 𝑤𝑦′ ∈ [𝑤𝐻1 , 4𝑤𝐻1 ], such that |𝑥 − 𝑥 ′ | and |𝑦 − 𝑦′ | are both at most
|𝑥 − 𝑦 |𝛾 for some 𝛾 ∈ (0, 1), see Figure 2(a). This reduces the original problem of connecting x and y
to two instances of connecting two vertices at distance |𝑥 − 𝑦 |𝛾 , at the additional cost of U. We then
work recursively, applying the same procedure to find a bridging-path with endpoints near x and 𝑥′ and
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another one with endpoints near 𝑦′ and y, with all four distances at most |𝑥 − 𝑦 |𝛾2 , and both bridging-
paths having cost at most U, obtaining the second level of the hierarchy, see Figure 2(b). The endpoints
of the bridging paths always have weight in [𝑤𝐻1 , 4𝑤𝐻1 ], hence iteration is possible. By repeating the
process R times we obtain a ‘broken path’ of bridging-paths of cost 𝑈 (1 + 2 + · · · + 2𝑅) and 2𝑅 gaps
of length |𝑥 |𝛾𝑅 between the bridging-paths. We call this ‘broken path’ a hierarchy after Biskup, who
developed the one-edge bridge construction for graph distances in long range percolation in [11]. There
are two reasons for having a bridging-path instead of a single bridge-edge. Firstly, a typical single
bridge-edge 𝑎𝑏 has very high weights 𝑤𝑎, 𝑤𝑏 and thus typically high cost, and most edges out of a and
b to lower degree vertices also have high costs, which would cause high costs when filling the gaps. So
instead we find an atypical bridge edge 𝑎𝑏 and take one of the cheapest edges to low-weight vertices
nearby emanating from a and b, yielding a path of the form (𝑥′𝑎𝑏𝑦′), with all three edges of cost 𝑈/5,
and 𝑥 ′, 𝑦′ having low weight in [𝑤𝐻1 , 4𝑤𝐻1 ], giving a bridging path of length three. Secondly, to fill the
2𝑅 gaps after R iterations whp, the failure probability of finding a connecting path has to be extremely
low, 𝑜(2−𝑅). In most regimes this is impossible via short paths (e.g., length two) and low enough failure
probability. Instead, we find weight increasing paths 𝜋𝑥′𝑥′′ and 𝜋𝑦′𝑦′′ (as in Lemma 4.4) of cost at most
𝑈/5 from each vertex 𝑥 ′ and 𝑦′ of the bridge paths (𝑥 ′𝑎𝑏𝑦′) to respective vertices 𝑥 ′′, 𝑦′′ still near a
and b but with much higher weights in [𝑤𝐻2 , 4𝑤𝐻2 ]. The concatenated paths (𝜋𝑥′′𝑥′ , 𝑥

′𝑎𝑏𝑦′, 𝜋𝑦′𝑦′′ ) then
themselves form a second hierarchy (now with bridging paths of more than 3 edges). Connecting all the
new 2𝑅 gaps whp is possible via paths of length two and cost 𝑈 ′, which is polynomial in the distance
|𝑥 − 𝑦 |𝛾𝑅 , using Lemma 4.5. In the polylogarithmic case, U and 𝑈 ′ are sublogarithmic, and the factor
2𝑅 is of order (log |𝑥 − 𝑦 |)Δ0+𝑜 (1) and dominates the overall cost. The bottleneck in this regime is the
number of gaps, whereas the bridge-paths have negligible costs. In the polynomial case, however, the
cost of the first bridge 𝑈 = |𝑥 − 𝑦 |𝜂0+𝑜 (1) dominates, and all other costs (even with the factors 2𝑖) are
negligible in comparison, causing the total cost to be polynomial in |𝑥 − 𝑦 |. In both cases we could use
and optimise level-dependent costs𝑈𝑖 , but that does not improve the statements of Theorems 1.4, 1.6.

The main technical result is the following proposition, that finds a path fully contained in the net that
starts near 0 and ends near x. Section 6 shall connect 0 and x to this path at negligible cost compared
to the one here. Recall Λ(𝜂, 𝑧) from (4.1) that determined whether a low-cost connecting edge exist
between two balls. We define now the second exponent that will be crucial in determining whether low-
cost edges can be found. Positivity of this function ensures that the high-weight vertices 𝑎, 𝑏 above have
an atypically cheap edge to a low-weight vertex nearby: For all 𝜂 > 0, 𝑧 ≥ 0 we define

Φ(𝜂, 𝑧) :=
[
𝑑𝛾 ∧ 𝑧

2

]
+

[
0 ∧ 𝛽

(
𝜂 − 𝜇𝑧

2

)]
. (5.1)

Recall from Setting 4.1 that 𝐺 ′ is a 𝜃-percolated GIRG on a vertex set (𝑉, 𝑤𝑉 ), for some fixed 𝜃 > 0,
such that the vertex set contains a weak net N .
Proposition 5.1 (Path from hierarchy). propositionPropositionPathFromHierarchy Consider Setting
4.1, and let 𝑦0, 𝑦1 ∈ N with |𝑦0 − 𝑦1 | = 𝜉. Let 𝑧 ∈ [0, 𝑑], 𝜂 ≥ 0. Let 0 < 𝛿�★ 𝛾, 𝜂, 𝑧, par be
such that Λ(𝜂, 𝑧) ≥ 2

√
𝛿 and either 𝑧 = 0 or Φ(𝜂, 𝑧) ≥

√
𝛿. Let 𝜉�★ 𝛾, 𝜂, 𝑧, 𝜃, 𝛿, 𝑤0. Let 𝑅 ≥ 2

be an integer satisfying 𝜉𝛾𝑅−1 ≥ (log log 𝜉
√
𝑑)16𝑑/𝛿2 and 𝑅 ≤ (log log 𝜉)2, let 𝑤 := 𝜉𝛾𝑅−1𝑑/2. Let

Xhigh-path = Xhigh-path(𝑅, 𝜂, 𝑦0, 𝑦1) be the event that 𝐺 ′ contains a path 𝜋𝑦★0 ,𝑦★1
fully contained in N

between some vertices 𝑦★0 ∈ N ∩ (𝐵
𝑐𝐻 𝜉 𝛾

𝑅−1 (𝑦0) × [𝑤, 4𝑤]) and 𝑦★1 ∈ N ∩ (𝐵
𝑐𝐻 𝜉 𝛾

𝑅−1 (𝑦1) × [𝑤, 4𝑤])
with cost

C (𝜋𝑦★0 𝑦★1
) ≤ 𝑐𝐻 2𝑅𝑤4𝜇𝜉𝜂 = 𝑐𝐻 2𝑅 |𝑥 |2𝛾𝑅−1𝑑𝜇+𝜂 (5.2)

and deviation dev𝑦0𝑦1 (𝜋𝑦★0 𝑦★1
) ≤ 3𝑐𝐻 𝜉

𝛾 , for some constant 𝑐𝐻 depending only on 𝛿, par. Then

P
(
Xhigh-path | 𝑉, 𝑤𝑉

)
≥ 1 − 2 exp

(
−(log log 𝜉)13); (5.3)

under the convention that ∞ · 0 = 0, the statement is also valid when 𝛼 = ∞ or 𝛽 = ∞.
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The constant 𝑐𝐻 can be found below in (5.32). We postpone the proof of this proposition and show
how to obtain the cost of the optimal paths from it.

5.1. Cost optimisation of the constructed paths

In this section we apply Proposition 5.1 and optimise the cost of the path 𝜋𝑦★0 𝑦★1
constructed there,

yielding either polylogarithmic (Corollary 5.2) or polynomial cost-distances (Corollary 5.3). The cost
of 𝜋𝑦★0 𝑦★1

will dominate the cost of the eventual path between 0, 𝑥. These corollaries are rather immediate:
we choose appropriate values of 𝛾, 𝜂, 𝑧, 𝑅, apply Proposition 5.1, and read off the cost of 𝜋𝑦★0 𝑦★1

in (5.2).
There are four possible optimal choices of 𝛾, 𝜂, 𝑧, 𝑅 depending on the model parameters, and verifying
that the conditions of Setting 4.1 and Proposition 5.1 hold for these choices and calculating the resulting
path’s cost requires some work. Thus, we defer a formal proof of Corollaries 5.2 and 5.3 to Appendix
A.2, and instead focus on why these four optimisers arise and what they mean on a qualitative level.

Thus, in Proposition 5.1, disregarding constant factors, our goal is to minimise the cost bound
C (𝜋𝑦★0 𝑦★1

) ≤ 2𝑅𝑤4𝜇 |𝑥 |𝜂 = 2𝑅 |𝑥 |2𝛾𝑅−1𝑑𝜇+𝜂 by choosing 𝛾, 𝜂, 𝑧, 𝑅 optimally. Here, R is the number of
iterations in the hierarchy, and hence controls the number 2𝑅 of gaps, while 𝛾 controls the Euclidean
length of the gaps and hence also the cost of joining them, with the total cost of joining a single gap
being roughly 𝑤4𝜇 = |𝑥 |2𝑑𝜇𝛾𝑅−1 . The exponent 𝜂 controls the cost of bridge-paths in the hierarchy. From
the many constraints in Proposition 5.1, the following are relevant when optimising the cost of the path.
The requirement Λ(𝜂, 𝑧) > 0 ensures that low-cost bridging edges exist (Lemma 4.2). The requirement
that either 𝑧 = 0 or Φ(𝜂, 𝑧) > 0 ensures that among the many potential bridging edges a few can be
extended to low-cost 3-edge bridge-paths in Lemma 5.10. The requirement 𝛾 < 1 ensures that boxes
where we search for the bridging edge shrink in size, while 𝑧 ≤ 𝑑 is a formal requirement for applying
Lemma 4.2 to find bridging edges, which we tolerate because increasing z above d will never be optimal.
Heuristically, the effect of increasing z is to increase the probability that a given bridging edge exists at
the price of increasing its expected cost; at 𝑧 = 𝑑 the existence probability is already in the interval [𝑐, 𝑐]
and cannot be increased further, however the penalty would increase and the number of combinatorial
options decrease by increasing z, which is never optimal. The other constraints of Proposition 5.1 and
Setting 4.1 (such as 2𝑑𝛾 < 𝜏 − 1 and 𝑅 ≤ (log log |𝑥 |)2) never turn out to be tight for optimal choices
of 𝜂, 𝑅, 𝛾, 𝑧. Recall 𝜇log, 𝜇pol from (1.8).

Corollary 5.2 (Path with polylogarithmic cost). Consider 1-FPP in Definition 1.1 on the graphs IGIRG
or SFP satisfying the assumptions given in (1.6)–(1.3) with 𝑑 ≥ 1, 𝛼 ∈ (1,∞], 𝜏 ∈ (2, 3), 𝜇 > 0. Let
𝑐, 𝑐, ℎ, 𝐿, 𝑐1, 𝑐2, 𝛽 be as in (1.5)–(1.3), we allow 𝛽 = ∞ and/or 𝛼 = ∞. Let 𝑞, 𝜀, 𝜁 ∈ (0, 1), let 0 <

𝛿�★ 𝜀, 𝑞, par, and let 𝑤0 > 1. Fix a realisation (𝑉, 𝑤𝑉 ) of Ṽ . Let 𝑥 ∈ 𝑉 with |𝑥 | �★ 𝑞, 𝛿, 𝜀, 𝜁 , 𝑤0, par.
Let Q be a cube of side length |𝑥 | containing 0 and x, and assume that (𝑉, 𝑤𝑉 ) is such that Q contains a
weak (𝛿/4, 𝑤0)-net N with 0, 𝑥 ∈ N given in Definition 2.1. Let 𝐺 ∼ {G | 𝑉, 𝑤𝑉 }. Let Xpolylog(0, 𝑥) be
the event that G contains a path 𝜋, fully contained in N , with endpoints say 𝑦★0 , 𝑦

★
𝑥 , with the following

properties:

𝑤𝑦★0
, 𝑤𝑦★𝑥 ∈ [𝑤, 4𝑤], where 𝑤 ∈ [log log |𝑥 |, (log |𝑥 |) 𝜀], (5.4)

𝑦★0 ∈ 𝐵𝑤3/𝑑 (0) and 𝑦★𝑥 ∈ 𝐵𝑤3/𝑑 (𝑥), (5.5)

C (𝜋) ≤ (log |𝑥 |)Δ0+𝜀 , and dev0𝑥 (𝜋) ≤ 𝜁 |𝑥 |, (5.6)

where Δ0 is defined in (1.9), (1.17) or (1.20) depending on whether 𝛼, 𝛽 < ∞, 𝛼 = ∞ or 𝛽 = ∞. If either
𝛼 ∈ (1, 2) or 𝜇 ∈ (𝜇expl, 𝜇log) or both hold, then P(Xpolylog(0, 𝑥) | 𝑉, 𝑤𝑉 ) ≥ 1 − 𝑞.

Sketch of proof. Corollary 5.2 covers the polylogarithmic regime, which corresponds to solutions where
𝜂 = 0 is possible – such solutions exists when either 𝛼 ∈ (1, 2) or 𝜇 < 𝜇log. When 𝜂 = 0, the cost of the
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path 𝜋𝑦★0 ,𝑦★𝑥 is dominated by the cost 2𝑅 |𝑥 |2𝜇𝛾𝑅−1 of joining gaps. Given 𝛾, this has minimum 2(1+𝑜 (1))𝑅

when setting 𝑅 = (1 − 𝑜(1)) log log |𝑥 |/log(1/𝛾). To minimise the cost further, we must therefore
minimise 𝛾 ∈ (0, 1) subject to the constraints 𝑧 ∈ [0, 𝑑],Λ(0, 𝑧) > 0, and either 𝑧 = 0 or Φ(0, 𝑧) > 0.
This problem turns out to have two potentially optimal solutions corresponding to two possible strategies
for finding bridging edges, with the optimal choice depending on the values of 𝛼, 𝜏, 𝛽, 𝜇. One possible
solution – which only exists when 𝛼 ∈ (1, 2) – takes 𝛾 = 𝛼/2 + 𝑜(1) and 𝑧 = 0, so that bridging edges
are unusually long-range edges between pairs of low-weight vertices, yielding total path cost (log |𝑥 |)Δ𝛼
with Δ𝛼 = 1/(1− log2 𝛼), see Claim A.5. The other possible solution – which only exists when 𝜇 < 𝜇log
– takes 𝛾 = (𝜏−1+𝜇𝛽)/2+𝑜(1) and 𝑧 = 𝑑, so that bridging edges are unusually low-cost edges between
pairs of high-weight vertices and the total path cost is (log 𝑥)Δ𝛽 with Δ𝛽 = 1/(1 − log2 (𝜏 − 1 + 𝜇𝛽)),
see Claim A.6. The proof is in Appendix A.2.

If both 𝛼 = 𝛽 = ∞, then the conditions of Corollary 5.2 cannot be satisfied. Indeed, when 𝛼 = ∞
then 𝛼 ∈ (1, 2) is not satisfied. Since 𝜇expl = 𝜇log = 0 by (1.19) when 𝛼 = 𝛽 = ∞, so 𝜇 ∈ (𝜇expl, 𝜇log)
can also not be satisfied.

Corollary 5.3 (Path with polynomial cost). Consider 1-FPP in Definition 1.1 on the graphs IGIRG
or SFP satisfying the assumptions given in (1.6)–(1.3) with 𝑑 ≥ 1, 𝛼 ∈ (1,∞], 𝜏 ∈ (2, 3), 𝜇 > 0. Let
𝑐, 𝑐, ℎ, 𝐿, 𝑐1, 𝑐2, 𝛽 be as in (1.5)–(1.3), we allow 𝛽 = ∞ and/or 𝛼 = ∞. Let 𝑞, 𝜀, 𝜁 ∈ (0, 1), and let
0 < 𝛿�★ 𝜀, 𝑞, par, and𝑤0 > 1. Fix a realisation (𝑉, 𝑤𝑉 ) of Ṽ . Let 𝑥 ∈ 𝑉 with |𝑥 | �★ 𝑞, 𝛿, 𝜀, 𝜁 , 𝑤0, par.
Let Q be a cube of side length |𝑥 | containing 0 and x, and assume that (𝑉, 𝑤𝑉 ) is such that Q contains
a weak (𝛿/4, 𝑤0)-net N with 0, 𝑥 ∈ N given in Definition 2.1. Let 𝐺 ∼ {G | 𝑉, 𝑤𝑉 }. Let Xpol(0, 𝑥) be
the event that G contains a path 𝜋, fully contained in N , with endpoints say 𝑦★0 , 𝑦

★
𝑥 , with the following

properties:

𝑤𝑦★0
, 𝑤𝑦★𝑥 ∈ [𝑤, 4𝑤], where 𝑤 ∈ [log log |𝑥 |, |𝑥 |𝜀], (5.7)

𝑦★0 ∈ 𝐵𝑤3/𝑑 (0) and 𝑦★𝑥 ∈ 𝐵𝑤3/𝑑 (𝑥), (5.8)

C (𝜋) ≤ |𝑥 |𝜂0+𝜀 , and dev0𝑥 (𝜋) ≤ 𝜁 |𝑥 |, (5.9)

where 𝜂0 is defined in (1.10), (1.16), (1.19), or (1.21) depending on 𝛼, 𝛽 < ∞, 𝛼 = ∞, 𝛽 = ∞, or
𝛼 = 𝛽 = ∞. If both 𝛼 > 2 and 𝜇 ∈ (𝜇log, 𝜇pol] hold then P(Xpol(0, 𝑥) | 𝑉, 𝑤𝑉 ) ≥ 1 − 𝑞.

Sketch of proof. Corollary 5.3 covers the polynomial regime, which corresponds to solutions where only
𝜂 > 0 is possible, that is, when 𝛼 > 2 and 𝜇 > 𝜇log. Here, on taking R to be a suitably large constant, the
cost bound on the path 2𝑅 |𝑥 |2𝜇𝛾𝑅−1 |𝑥 |𝜂 = |𝑥 |𝜂+𝑜 (1) , which is roughly the cost of the very first bridging
edge. Our goal is thus to minimise 𝜂 under the constraints that Λ(𝜂, 𝑧) > 0, 𝑧 ∈ [0, 𝑑], 𝛾 ∈ (0, 1),
and either 𝑧 = 0 or Φ(𝜂, 𝑧) > 0. (4.1) and (5.1) show that both Φ and Λ are increasing functions of 𝛾;
thus we can take 𝛾 = 1 − 𝑜(1). As in the polylogarithmic regime, this minimisation problem has two
potentially optimal solutions. One possible solution – which exists when 𝜇 ≤ 𝜇pol,𝛽 – takes 𝑧 = 𝑑 and
gives 𝜂 = 𝜇𝑑 − (3− 𝜏)𝑑/𝛽 + 𝑜(1), so that bridging edges are unusually low-cost edges between pairs of
high-weight vertices. The total path cost is then |𝑥 |𝜂𝛽+𝑜 (1) with 𝜂𝛽 = 𝑑 (𝜇 − (3− 𝜏)/𝛽) (see Claim A.9).
The other possible solution – which exists when 𝜇 ≤ 𝜇pol,𝛼 – takes z to be as small as possible, so that
bridging edges are unusually long-range edges between pairs of relatively low-weight vertices. However,
when 𝛼 > 2, there are no bridging-edges between constant weight vertices, and the minimal z where
bridging-edges appear is 𝑧 = 𝑑 (𝛼 − 2)/(𝛼 − (𝜏 − 1)) + 𝑜(1) = 1/𝜇pol,𝛼 + 𝑜(1), that is, between vertices
of weight |𝑥 |1/(2𝜇pol,𝛼)+𝑜 (1) . This gives cost-exponent 𝜂𝛼 := 𝜇/𝜇pol,𝛼 and total cost |𝑥 |𝜇/𝜇pol,𝛼+𝑜 (1) (see
Claim A.10). Whenever a solution exists among the above two possibilities, it gives an exponent 𝜂 at
most 1. So, whenever 𝜇 ≤ max{𝜇pol,𝛼, 𝜇pol,𝛽}, we obtain the cost bound |𝑥 |min{𝜂𝛽 ,𝜂𝛼 }+𝑜 (1) , which gives
the definition of 𝜂0 in (1.10). The proof is in Appendix A.2.
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5.2. Constructing the hierarchy.

We now set out to prove Proposition 5.1 in several steps. We start by formally defining the concept
of a hierarchy including edge-costs. In the rest of the paper, the symbol 𝜎 denotes an index 𝜎 =
𝜎1𝜎2 . . . 𝜎𝑅 ∈ {0, 1}𝑅 indicating the place of a vertex in the hierarchy. This can be viewed as the Ulam-
Harris labelling of the leaves of a binary tree of depth R, for example, 𝜎 = 1001 corresponds to the leaf
that we reach by starting at the root and then moving to the right child, the left child twice, and the right
child again. We denote the string formed by concatenating 𝜎′ to the end of 𝜎 by 𝜎𝜎′. We ‘pad’ strings
of length less than R by adding copies of their last digit or its complement via the T and 𝑇𝑐 operations
we now define (and discuss further below):

Definition 5.4 (Binary strings). For 𝜎 = 𝜎1 . . . 𝜎𝑖 ∈ {0, 1}𝑖 for some 𝑖 ≥ 1, we define 𝜎𝑇 :=
𝜎1 . . . 𝜎𝑖𝜎𝑖 ∈ {0, 1}𝑖+1, while 𝜎𝑇0 := 𝜎, and 𝜎𝑇𝑘 := (𝜎𝑇𝑘−1)𝑇 for any 𝑘 ≥ 2. Let 0𝑖 := 0𝑇𝑖−1 and
1𝑖 := 1𝑇𝑖−1 be the strings consisting of i copies of 0 and 1, respectively. Fix an integer 𝑅 ≥ 1. Define
the equivalence relation ∼𝑇 on ∪𝑅

𝑖=1{0, 1}
𝑖 , where 𝜎 ∼𝑇 𝜎′ if either 𝜎𝑇𝑘 = 𝜎′ or 𝜎′𝑇𝑘 = 𝜎 for some

𝑘 ≥ 0, with {𝜎} be the equivalence class of 𝜎. Let

Ξ𝑖 := {𝜎 ∈ ∪𝑅
𝑗=𝑖{0, 1} 𝑗 : 𝜎𝑖−1 ≠ 𝜎𝑖 , 𝜎𝑗 = 𝜎𝑖 ∀ 𝑗 ≥ 𝑖}, Ξ0 := {∅},

with ∅ the empty string. We say that {𝜎} appears first on level i if any (the shortest) representative of
the class {𝜎} is contained in Ξ𝑖 .

For 𝜎 = 𝜎1 . . . 𝜎𝑖 ∈ {0, 1}𝑖 for some 𝑖 ≥ 1, we define 𝜎𝑇𝑐 := 𝜎1 . . . 𝜎𝑖 (1 − 𝜎𝑖) ∈ {0, 1}𝑖+1. For
𝜎 ∈ Ξ𝑖 , we say that (𝜎𝑇𝑗−1)𝑇𝑐 ∈ {0, 1}𝑖+ 𝑗 is the level-(i+j) sibling of {𝜎}. We say that two strings in
level i are newly appearing cousins on level i if they are of the forms𝜎01 and𝜎10 for some𝜎 ∈ {0, 1}𝑖−2.

The inverse of the operator T ‘cuts off’ all but one of the identical last digits from a 𝜎 ∈ {0, 1}𝑅,
hence, each class {𝜎} has exactly one representative in {0, 1}𝑅, and the number of equivalence classes
is 2𝑅. For 𝑖 > 1, there are exactly 2𝑖−1 equivalence classes that first appear on level i (i.e., the shortest
representative of the class is in Ξ𝑖), and (since 0, 1 ∈ Ξ1) the total number of equivalence classes that
appear until level i is 2𝑖 . To show an example of the sibling relationship, for example, 01111 ∼ 01
belongs to Ξ2, and the level-3 sibling of {01} is 010, and the level-(2 + 𝑗) sibling of {01} is 01 𝑗0.
Similarly, 010 and 001 are newly appearing level-3 cousins, and on level i, there are 2𝑖−2 pairs of newly
appearing cousins.

The hierarchy embeds each equivalence class {𝜎} ∈ ∪𝑅
𝑗=1{0, 1}

𝑅 into the (weighted) vertex set of
G so that all cousins are joined by low-cost ‘bridge’ paths, all siblings are close in Euclidean space,
0𝑅 = 𝑥 and 1𝑅 = 𝑦 are the vertices we start with, and the weights of all other vertices in the embedding
are constrained. The Euclidean distances between siblings/cousins will decay doubly exponentially in i.
We formalise the embedding in the following definition.

Definition 5.5 (Hierarchy). Consider Setting 4.1. Let 𝑦0, 𝑦1 ∈ Ṽ ,𝑈, 𝑤, 𝑐𝐻 ≥ 1, and 𝑅 ≥ 2 be an integer.
Consider a set of vertices {𝑦𝜎}𝜎∈{0,1}𝑅 , divided into levels L𝑖 := {𝑦𝜎 : 𝜎 ∈ Ξ𝑖} for 𝑖 ∈ {1, . . . , 𝑅},
satisfying that 𝑦𝜎 = 𝑦𝜎′ if 𝜎 ∼𝑇 𝜎′. We say that {𝑦𝜎}𝜎∈{0,1}𝑅 ⊂ Ṽ is a (𝛾,𝑈, 𝑤, 𝑐𝐻 )-hierarchy of
depth R with L1 = {𝑦0, 𝑦1} if it satisfies the following properties:

(H1) 𝑊𝑦𝜎 ∈ [𝑤, 4𝑤] for all 𝜎 ∈ {0, 1}𝑅 \ Ξ1.
(H2) |𝑦𝜎0 − 𝑦𝜎1 | ≤ 𝑐𝐻 |𝑦0 − 𝑦1 |𝛾

𝑖 for all 𝜎 ∈ {0, 1}𝑖 , 𝑖 = 0, . . . , 𝑅 − 1.
(H3) There is a set {𝑃𝜎 : 𝜎 ∈ {0, 1}𝑖 , 0 ≤ 𝑖 ≤ 𝑅 − 2} of paths in G such that for all 0 ≤ 𝑖 ≤ 𝑅 − 2

and all 𝜎 ∈ {0, 1}𝑖 , 𝑃𝜎 connects 𝑦𝜎01 to 𝑦𝜎10. Moreover, we can partition
⋃

𝜎∈{0,1}𝑅 E (𝑃𝜎)
into sets {E−(𝑃𝜎) : 𝜎 ∈ {0, 1}𝑅} in such a way that for all 𝜎, we have E−(𝑃𝜎) ⊆ E (𝑃𝜎) and
C (E−(𝑃𝜎)) ≤ 𝑈. These paths 𝑃𝜎 are called bridges.

Given a setN ⊆ Ṽ , we say that a hierarchy {𝑦𝜎}𝜎∈{0,1}𝑅 is fully contained inN if both {𝑦𝜎}𝜎∈{0,1}𝑅 ⊆
N , and every vertex on the paths 𝑃𝜎 in (H3) lies in N .
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Condition (H3) is slightly weaker than requiring each bridge to have cost at most U. We shall
construct the hierarchy via an iterative construction in Def. 3.6, using one round to embed each level
L𝑖 . We shall use Prop. 3.9 to estimate the success probability of the whole construction, which requires
that we use marginal costs, and this gives the definition of E−(𝑃𝜎) in (3.1). Using marginal costs causes
no problem, since our goal is to find a path 𝜋 between 𝑦0 and 𝑦1 of low cost. A path 𝜋 uses every edge
in it once, so all the bridges 𝑃𝜎 together will contribute to the cost of 𝜋 at most

C (𝜋) =
∑

𝜎∈{0,1}𝑖 ,0≤𝑖≤𝑅−2

C (E−(𝑃𝜎)) ≤ (2𝑅−1 − 1)𝑈.

Later we also need that the the hierarchy stays close to the straight line segment between the starting
vertices. To track this, we have the following definition:

Definition 5.6. Given 𝑢, 𝑣 ∈ R𝑑 , let 𝑆𝑢,𝑣 denote the line segment between 𝑢, 𝑣. For 𝑥 ∈ R𝑑 we define
the deviation dev𝑢𝑣 (𝑥) := min{|𝑥 − 𝑦 | : 𝑦 ∈ 𝑆𝑢,𝑣 }. Given a set of vertices H in R𝑑 , we define the
deviation of H from 𝑆𝑢𝑣 as dev𝑢𝑣 (H) := max{dev𝑢𝑣 (𝑥) : 𝑥 ∈ H}. Finally, for a path 𝜋 = (𝑥1 . . . 𝑥𝑘 ),
let the deviation of 𝜋 be dev(𝜋) := max{dev𝑥1 𝑥𝑘 (𝑥𝑖) : 𝑖 ∈ [𝑘]}, that is, the deviation of its vertex set
from the segment between the endpoints.

Next we describe the procedure used to find the hierarchy in G. We iteratively embed the levels Ξ𝑖

into the vertex set Ṽ . We first embed Ξ1, by setting 0 ↦→ 𝑦0 and 1 ↦→ 𝑦1, that is, L1 := {𝑦0, 𝑦1}, the
two given starting vertices. Observe that this embedding trivially satisfies condition (H2) for 𝑖 = 0,
(i.e., 𝜎 = ∅ in (H2)) for all 𝑐𝐻 ≥ 1. Conditions (H1) and (H3) do not concern 𝑦0 and 𝑦1. In round
𝑖 + 1 we then embed all 𝜎 ∈ Ξ𝑖+1. Given the embedding of ∪ 𝑗≤𝑖Ξ 𝑗 of vertices in level ∪ 𝑗≤𝑖L 𝑗 , we will
embed 𝜎 ∈ Ξ𝑖+1 by finding {𝑦𝜎}𝜎∈Ξ𝑖+1 = L𝑖+1 as follows. For each sibling pair 𝜎0, 𝜎1 ∈ {0, 1}𝑖 , by
the equivalence relation ∼𝑇 in Definition 5.4, 𝑦𝜎00 = 𝑦𝜎0 and 𝑦𝜎11 = 𝑦𝜎1. We then search for a pair of
vertices a and b close to 𝑦𝜎00 and 𝑦𝜎11 respectively, so that 𝑎𝑏 is a low-cost edge (typically covering
a large Euclidean distance), and both a and b have a low-cost edge to a nearby vertex with weight in
[𝑤, 4𝑤]; we embed these latter two vertices as 𝑦𝜎01 and 𝑦𝜎10. The path (𝑦𝜎01𝑎𝑏𝑦𝜎10) then constitutes
the bridge-path 𝑃𝜎 required by (H3). See Figure 5 for a visual explanation. We formalise our goal for
this iterative construction of bridges in the following definition and lemma.

Definition 5.7 (Valid bridges). Consider Setting 4.1 and the notion of bridges in Definition 5.5, and let
S be a set of edges of G. For any 𝐷,𝑈 > 0, 𝑤 ≥ 1, we say that a path 𝑃 ⊆ N with endpoints 𝑦, 𝑦′ is a
(𝐷,𝑈, 𝑤)-valid bridge for 𝑥0 and 𝑥1 with respect to S if:

𝑤𝑦 , 𝑤𝑦′ ∈ [𝑤, 4𝑤], (5.10)

|𝑥0 − 𝑦 | ≤ 𝐷, and |𝑥1 − 𝑦′ | ≤ 𝐷, (5.11)

C (𝑃 \ 𝑆) ≤ 𝑈. (5.12)

Lemma 5.8. Consider Setting 4.1. Fix any ordering on {0, 1}𝑅, and let {𝑦𝜎}𝜎∈{0,1}𝑅 ⊆ N , 𝑈 > 0,
and 𝑤 ≥ 1. For all 0 ≤ 𝑖 ≤ 𝑅 − 2 and 𝜎 ∈ {0, 1}𝑖 , set 𝑦𝜎′ := 𝑦𝜎 whenever 𝜎′ ∼𝑇 𝜎. For all 𝑖 ≤ 𝑅 − 2,
let 𝐷𝑖 = |𝑦0 − 𝑦1 |𝛾

𝑖 . Suppose that for all 0 ≤ 𝑖 ≤ 𝑅 − 2 and all 𝜎 ∈ {0, 1}𝑖 , there exists a bridge
𝑃𝜎 with endpoints 𝑦𝜎01 and 𝑦𝜎10 that is (𝑐𝐻𝐷𝑖+1,𝑈, 𝑤)-valid for 𝑦𝜎0, 𝑦𝜎1 ∈ {0, 1}𝑖+1 with respect to
𝑆 =

⋃
𝜎′<𝜎 E (𝑃𝜎′ ). Then {𝑦𝜎}𝜎∈{0,1}𝑅 is a (𝛾,𝑈, 𝑤, 𝑐𝐻 )-hierarchy of depth R with first level {𝑦0, 𝑦1}

(i.e., satisfying Definition 5.5).

Proof. Conditions (H1) of Definition 5.5 is immediate from the weight constraint (5.10). (H2) holds
for the following reason. For 𝜎0, 𝜎1 ∈ {0, 1}𝑖+1, 𝑃𝜎 being a (𝑐𝐻𝐷𝑖+1,𝑈, 𝑤) valid bridge for 𝑦𝜎0, 𝑦𝜎1
implies by (5.11) and 𝑦𝜎0 = 𝑦𝜎00, 𝑦𝜎1 = 𝑦𝜎11 that both |𝑦𝜎00 − 𝑦𝜎01 |, |𝑦𝜎10 − 𝑦𝜎11 | are at most
𝑐𝐻 |𝑦0 − 𝑦1 |𝛾

𝑖+1 for all 𝜎 ∈ {0, 1}𝑖 . Setting now either 𝜎′ := 𝜎0 or 𝜎′ := 𝜎1, this is equivalent to
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Figure 5. A schematic representation of a (𝛾,𝑈, 𝑤, 2)-hierarchy of depth 𝑅 = 3. The horizontal axis
represents the (1-dimensional, Euclidean) distances between the vertices, while the vertical axis shows
the level of the hierarchy. The weights of all vertices except 𝑦0 and 𝑦1 are in the interval [𝑤, 4𝑤]. On
level 1, only the initial vertices 𝑦0, 𝑦1 appear and n edges. We ‘push down’ 𝑦0 = 𝑦00, 𝑦1 = 𝑦11 to level
2 (red) and we find them their respective level-2 sibling vertices 𝑦01 and 𝑦10 within Euclidean distance
2𝜉𝛾 , so that there is path of cost at most U between 𝑦01, 𝑦10 (represented by the longest blue arc). Then,
we ‘push down’ to level 3 all vertices that appeared at or before level 2, that is, 𝑦000, 𝑦011, 𝑦100, 𝑦111
(red), and find for each of them their level-3 siblings, that is, 𝑦001, 𝑦010, 𝑦101, 𝑦110, so that each vertex
is within Euclidean distance ≤ 2𝜉𝛾2 from its level-3 sibling, and that there is a path of cost at most U
between the newly appearing cousins 𝑦001, 𝑦010 and between 𝑦101, 𝑦110 (represented by the two shrter
blue arcs). An intuitive representation is in Figure 2.

|𝑦𝜎′0 − 𝑦𝜎′1 | ≤ 𝑐𝐻 |𝑦0 − 𝑦1 |𝛾
𝑖+1 for all 𝜎′ ∈ {0, 1}𝑖+1, 𝑖 ≥ 0, and this exactly corresponds to (H2), since

the inequality in (H2) holds for 𝑖 = 0 trivially. Finally, condition (H3) follows from (5.12) by setting
E−(𝑃𝜎) := E (𝑃𝜎) \

⋃
𝜎′<𝜎 E (𝑃𝜎′ ). �

We now lower-bound the probability of finding a valid bridge between two fixed vertices. Recall that
𝐺 ′ is a 𝜃-percolation of G from Setting 4.1.

Lemma 5.9 (3-edge bridges). Consider Setting 4.1. Let 𝑧 ∈ [0, 𝑑] and let 𝑐𝐻 , 𝜂 ≥ 0. Sup-
pose that 𝛿�★ 𝛾, 𝜂, 𝑧, 𝑐𝐻 , par and that 𝐷�★ 𝛾, 𝜂, 𝑧, 𝑐𝐻 , 𝛿, 𝑤0. Suppose further that 𝐷𝛾 ∈
[41/𝑑 (log log 𝜉

√
𝑑)16/𝛿 , 𝜉

√
𝑑] and that 𝜃𝐷Λ(𝜂,𝑧)−

√
𝛿 > 1. Suppose that 𝑥0, 𝑥1 ∈ N satisfy |𝑥0 − 𝑥1 | ≤

𝑐𝐻𝐷, and let 𝑤�★ 𝛿, 𝑤0 satisfy 𝑤 ∈ [(log log 𝜉
√
𝑑)16𝑑/𝛿 , 𝐷 𝛿]. Let A(𝑥0, 𝑥1) denote the event

that 𝐺 ′ contains a bridge P that is (2𝐷𝛾 , 3𝑤3𝜇𝐷𝜂 , 𝑤)-valid for 𝑥0 and 𝑥1 with respect to ∅, and
dev𝑥0 𝑥1 (𝑃) ≤ 2𝐷𝛾 . Finally, suppose that

𝑝(𝐷, 𝑤, 𝜃, 𝜂, 𝑧) := 𝜃𝑤−(𝜏−1)
(
𝐷𝑑𝛾 ∧ 𝑤2𝐷𝑧/2

)1−𝛿 (
1 ∧ 𝑤𝜇𝛽𝐷𝜂𝛽−𝜇𝛽𝑧/2

)
≥ 20𝜏+𝜇𝛽 . (5.13)

Then, with Λ(𝜂, 𝑧) from (4.1),

P
(
A(𝑥0, 𝑥1) | 𝑉, 𝑤𝑉

)
≥ 1 − 3 exp

(
−
(
𝜃𝐷Λ(𝜂,𝑧)−

√
𝛿 )1/4

)
. (5.14)

With the convention that ∞ · 0 = 0 in (4.1), the statement is also valid when 𝛼 = ∞ or 𝛽 = ∞.

When 𝑧 > 0, the exponent of D in 𝑝(·) is approximating Φ(𝜂, 𝑧) for small 𝛿 in (5.1). Later,
Φ(𝜂, 𝑧) >

√
𝛿 will be sufficient for the condition (5.13) to hold when 𝑧 > 0. For 𝑧 = 0, D does not
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appear in the formula for 𝑝(·), and the exponent of 𝑤 is approximating 3 − 𝜏 > 0, hence in this case the
condition on 𝑝(·) can be satisfied by ensuring the lower bound on 𝑤.

Proof of Lemma 5.9. First, when 𝛽 = ∞ and 𝜂 < 𝜇𝑧 then Λ(𝜂, 𝑧) = −∞ in (4.1), and the condition
𝜃𝐷Λ(𝜂,𝑧)−

√
𝛿 > 1 cannot hold. Hence, we can wlog assume that if 𝛽 = ∞ then 𝜂 ≥ 𝜇𝑧. We will first

apply Lemma 4.3 to show that most vertices of weight roughly 𝑤𝐷𝑧/2 close to 𝑥0 and 𝑥1 are ‘good’, that
is, they have a cheap edge to a vertex with weight in [𝑤, 4𝑤]. We will then apply Lemma 4.2 to find a
cheap edge between some pair of good vertices.

Formally, let 𝐼+ = [5𝑤𝐷𝑧/2, 20𝑤𝐷𝑧/2] and 𝐼− = [𝑤, 4𝑤]. Note that 𝐼+ ∩ 𝐼− = ∅ for all 𝑧 ∈ [0, 𝑑]. As
in Lemma 4.3, for all 𝑣 ∈ N let A2𝑤,𝐷𝛾 ,𝑤3𝜇𝐷𝜂 (𝑣) =: A(𝑣) be the event that there is an edge of cost at
most 𝑤3𝜇𝐷𝜂 in 𝐺 ′ from v to a vertex 𝑦 ∈ N ∩ (𝐵𝐷𝛾 (𝑣) × 𝐼−). Let

𝑍𝑖 :=
{
𝑣 ∈ N ∩ (𝐵𝐷𝛾 (𝑥𝑖) × 𝐼+) : A(𝑣) occurs

}
, 𝑖 ∈ {0, 1}. (5.15)

The set 𝑍𝑖 is thus those high weight vertices near 𝑥𝑖 that have a cheap edge to a low-weight vertex nearby.
As in (4.3) of Lemma 4.2, let 𝑁𝜂,𝛾,𝑧,10𝑤 (𝑍0, 𝑍1) be the set of all edges between 𝑍0 and 𝑍1 of cost at
most 𝑤3𝜇𝐷𝜂 and then 𝐼+ exactly corresponds to the weight interval [5𝑤𝐷𝑧/2, 20𝑤𝐷𝑧/2] as required for
𝑍0 ⊆ Z (𝑥0), 𝑍1 ⊆ Z (𝑥1) in (4.2). With 𝑍𝑖 in (5.15), we now show that

P
(
A(𝑥0, 𝑥1) | 𝑉, 𝑤𝑉

)
≥ P

(
𝑁𝜂,𝛾,𝑧,𝑤 (𝑍0, 𝑍1) ≠ ∅ | 𝑉, 𝑤𝑉

)
. (5.16)

Indeed, suppose there exists (𝑎, 𝑏) ∈ 𝑁𝜂,𝛾,𝑧,10𝑤 (𝑍0, 𝑍1). Since 𝑎 ∈ 𝑍0, there exists 𝑥 ∈ N ∩ (𝐵𝐷𝛾 (𝑎) ×
𝐼−) such that (𝑥, 𝑎) is an edge of cost at most 𝑤3𝜇𝐷𝜂 . Likewise, since 𝑏 ∈ 𝑍1, there exists 𝑦 ∈ N ∩
(𝐵𝐷𝛾 (𝑏) × 𝐼−) such that (𝑦, 𝑏) is an edge of cost at most 𝑤3𝜇𝐷𝜂 . Since 𝑎 ∈ 𝐵𝐷𝛾 (𝑥0) and 𝑏 ∈ 𝐵𝐷𝛾 (𝑥1),
by the triangle inequality, 𝑥 ∈ 𝐵2𝐷𝛾 (𝑥0) and 𝑦 ∈ 𝐵2𝐷𝛾 (𝑥1). Thus 𝑥𝑎𝑏𝑦 is a (2𝐷𝛾 , 3𝑤3𝜇𝐷𝜂 , 𝑤)-valid
bridge with dev𝑥0 𝑥1 ≤ 2𝐷𝛾 , as required by A(𝑥0, 𝑥1), showing (5.16).

Now, for each 𝑖 ∈ {0, 1}, using (4.2), we set Z (𝑥𝑖) = N ∩ (𝐵𝐷𝛾 (𝑥𝑖) × 𝐼+). For (4.4) to hold we
need that |𝑍𝑖 | ≥ |Z (𝑥𝑖) |/4. We prove this by showing that any given vertex in 𝑣 ∈ Z (𝑥𝑖) lies in 𝑍𝑖 with
probability at least 1/2, by recalling that in (5.15), A(𝑣) = A2𝑤,𝐷𝛾 ,𝑤3𝜇𝐷𝜂 (𝑣) = A𝐾,𝐷,𝑈 (𝑣) in Lemma
4.3. Hence we set 𝐾 = 2𝑤, 𝑀 = 10𝑤𝐷𝑧/2,𝑈 = 𝑤3𝜇𝐷𝜂 , 𝐷4.3 = 𝐷𝛾 , and all other variables to match
their current values. We check the requirements of Lemma 4.3:

By hypothesis in the statement of Lemma 5.9, 𝛿 is small; 𝑤, 𝐷�★ 𝛿, 𝑤0, and 𝐷�★ 𝛾. Since
𝑀, 𝐾 ≥ 𝑤, it follows that 𝑀, 𝐾, 𝐷𝛾 �★ 𝛿, 𝑤0, as required above (4.11). Condition (4.11) itself
holds since (𝐷𝛾 ∧ (20𝑤2𝐷𝑧/2)1/𝑑/41/𝑑 ≥ 𝐷𝛾/41/𝑑 ∧ 𝑤1/𝑑 ≥ (log log 𝜉

√
𝑑)16/𝛿 by hypothesis, and

(𝐷𝛾 ∧ (20𝑤2𝐷𝑧/2)1/𝑑/41/𝑑 ≤ 𝐷𝛾 ≤ 𝜉
√
𝑑 by hypothesis. Condition (4.12) holds since 𝐾 = 2𝑤 ≤ 2𝐷 𝛿

by hypothesis, so since 𝛿�★ 𝛾 and 𝐷�★ 𝛿, we have 2𝑤 ≤ 𝐷𝛾 (𝑑/(𝜏−1)−𝛿) , and similarly since 𝜏 ∈ (2, 3)
and 𝛿�★ par, 𝐾 = 2𝑤 ≤ (2𝑤)1/(𝜏−2+𝜏 𝛿) ≤ (10𝑤𝐷𝑧/2)1/(𝜏−2+𝛿𝜏) = 𝑀1/(𝜏−2+𝛿𝜏) . Finally, if 𝛽 = ∞,
then below (4.12) we need to check 𝑈 (𝐾𝑀)−𝜇 �★ par. Since wlog we assumed that 𝜂 ≥ 𝜇𝑧, clearly
𝜂 ≥ 𝜇𝑧/2. Therefore, 𝑈 (𝐾𝑀)−𝜇 = 𝑤3𝜇𝐷𝜂 (20𝑤2𝐷𝑧/2)−𝜇 = 20−𝜇𝑤𝜇𝐷𝜂−𝜇𝑧/2 ≥ (𝑤/20)𝜇, which is
large since 𝑤 is large by hypothesis. Hence, all conditions of Lemma 4.3 are met and (4.13) applies, and
substituting 𝐾 = 2𝑤, 𝑀 = 10𝑤𝐷𝑧/2,𝑈 = 𝑤3𝜇𝐷𝜂 there, the exponent on the right-hand side of (4.13)
in our setting becomes

−2−(𝜏−1)𝜃𝑤−(𝜏−1) (𝐷𝑑𝛾 ∧ 20𝑤2𝐷𝑧/2)1−𝛿
(
1 ∧ (𝑤/20)𝜇𝛽𝐷𝜂𝛽−𝜇𝛽𝑧/2

)
,

where we recognise that this matches 𝑝(·) from (5.13) up to a factor of at most 201−(𝜏+𝜇𝛽) . Since we
assumed 𝑝(·) ≥ 20𝜏+𝜇𝛽 in (5.13), for any vertex 𝑣 ∈ Z (𝑥𝑖) = N ∩ (𝐵𝐷𝛾 (𝑥𝑖) × 𝐼+),

P
(
𝑣 ∈ 𝑍𝑖 | 𝑉, 𝑤𝑉

)
= P(A(𝑣) | 𝑉, 𝑤𝑉 ) ≥ 1 − 𝑒−20 > 1/2. (5.17)

Since 𝐼+ and 𝐼− are disjoint, the events A(𝑣),A(𝑣′) are functions of disjoint edge sets and are therefore
mutually independent conditioned on (𝑉, 𝑤𝑉 ). Hence, for 𝑖 ∈ {0, 1}, |𝑍𝑖 | is dominated below by a
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binomial variable with mean |Z (𝑥𝑖) |/2. By the standard Chernoff bound (Theorem A.1 with 𝜆 = 1/2),

P
(
|𝑍𝑖 | < |Z (𝑥𝑖) |/4 | 𝑉, 𝑤𝑉

)
≤ 𝑒−|Z (𝑥𝑖) |/16. (5.18)

To bound |Z (𝑥𝑖) | below in (5.18), we will use that 𝑥0, 𝑥1 ∈ N and N is a weak (𝛿/4, 𝑤0)-net as
assumed in Setting 4.1, and apply (2.2). We check if the conditions to apply (2.2) in Def. 2.1 hold. Since
Z (𝑥𝑖) = N ∩ (𝐵𝐷𝛾 (𝑥𝑖) × [5𝑤𝐷𝑧/2, 20𝑤𝐷𝑧/2]), we set there 𝑟 = 𝐷𝛾 and 𝑤 = 10𝑤𝐷𝑧/2, and we must
bound 10𝑤𝐷𝑧/2 above and below. Recall that by hypothesis, 𝜃𝐷Λ(𝜂,𝑧)−

√
𝛿 > 1; this implies Λ(𝜂, 𝑧) > 0

and hence 2𝑑𝛾 > 𝑧(𝜏−1) using (4.1). Since 𝛿�★ 𝛾, 𝑧, we may therefore assume 𝑧/2 ≤ 𝑑𝛾/(𝜏−1) −2𝛿.
Also, we assumed 𝑤 ≤ 𝐷 𝛿 , so 10𝑤𝐷𝑧/2 ≤ 10𝐷𝑑𝛾/(𝜏−1)−𝛿 ≤ (𝐷𝛾)𝑑/(𝜏−1)−𝛿/4, where the second
inequality holds since 𝛾 < 1 and 𝐷�★ 𝛿. Moreover, since 𝑤�★ 𝑤0, we have 10𝑤𝐷𝑧/2 ≥ 𝑤0. Thus all
conditions in Def. 2.1 are met, and (2.2) here becomes

|Z (𝑥𝑖) | ≥ 𝐷𝑑𝛾 (1−𝛿/4)ℓ(10𝑤𝐷𝑧/2) (10𝑤𝐷𝑧/2)−(𝜏−1) ≥ 𝐷𝑑𝛾 (1−𝛿/4)−(𝜏−1+𝛿/4) (𝛿+𝑧/2) ,

where the second inequality holds by Potter’s bound since 𝐷 𝛿 ≥ 𝑤 � 𝛿. The exponent of D on the
right-hand side is

𝑑𝛾 − (𝜏 − 1)𝑧/2 − 𝛿(𝑑𝛾/4 + 𝑧/8 + 𝜏 − 1 + 𝛿/4) ≥ 𝑑𝛾/2 − (𝜏 − 1)𝑧/2 ≥ Λ(𝜂, 𝑧)/4,

where we used 𝛿�★ 𝛾 and then the formula of Λ(𝜂, 𝑧) in (4.1). So, |Z (𝑥𝑖) | ≥ 𝐷Λ(𝜂,𝑧)/4 in (5.18), and
since 𝐷�★ 𝛿,

P
(
|𝑍𝑖 | < |Z (𝑥𝑖) |/4 | 𝑉, 𝑤𝑉

)
≤ exp(−𝐷Λ(𝜂,𝑧)/4/16) ≤ exp(−(𝜃𝐷Λ(𝜂,𝑧)−

√
𝛿)1/4). (5.19)

Returning to the event A(𝑥0, 𝑥1) in (5.16), let A′ be the event that |𝑍𝑖 | ≥ |Z (𝑥𝑖) |/4 for each 𝑖 ∈ {0, 1},
and suppose that A′ occurs. Observe also that the set 𝑍𝑖 ⊆ Z (𝑥𝑖) were chosen independently of the
edges between Z (𝑥0),Z (𝑥1) as required in Lemma 4.2. We apply Lemma 4.2, conditioned on the values
of 𝑍0 and 𝑍1, to lower-bound the right-hand side of (5.16). In the statement of Lemma 4.2, we will take
𝑥 = 𝑥0, 𝑦 = 𝑥1, 𝑍𝑥 = 𝑍0, 𝑍𝑦 = 𝑍1, 𝑤4.2 = 10𝑤, and all other variables to match their current values. The
event 𝑁𝜂,𝛾,𝑧,10𝑤 (𝑍0, 𝑍1) ≠ ∅ of (5.16) requires a low-cost edge between the set 𝑍0 and 𝑍1, connecting
vertices with weights in 𝐼+. Given (𝑉, 𝑤𝑉 ), the existence of such an edge (𝑢, 𝑣) is independent of the
events A(𝑢),A(𝑣) since in A(·) the other endpoint of the edge has weight 𝐼−, and 𝐼+ ∩ 𝐼− = ∅. We now
check the requirements of Lemma 4.2: it requires 𝑧 ∈ [0, 𝑑] that we assumed, and 2𝑑𝛾 > 𝑧(𝜏 − 1). The
latter holds since here we assume 𝜃𝐷Λ(𝜂,𝑧)−

√
𝛿 > 1 implying that Λ(𝜂, 𝑧) > 0, so 2𝑑𝛾 > 𝑧(𝜏 − 1) then

follows from (4.1). Second, here we assume 𝑤 ≥ (log log 𝜉
√
𝑑)16𝑑/𝛿 ≥ (log log𝐷𝛾)16𝑑/𝛿 , and also

𝐷�★ 𝛾, 𝑐𝐻 , 𝑤0. So 𝑤 ≥ 𝑤0 ∨ 4(𝑐𝐻 + 2)𝑑 ∨ 4000 and 𝐹𝐿 ((𝑤/4000)𝜇) ≥ 1/2 as required above (4.2).
The requirement on 𝐷𝛾 here is more restrictive than in Lemma 4.2, so all requirements hold. Then,
since here we have 10𝑤, (4.4) turns into the following, which we then estimate by using that 𝑤 ≤ 𝐷 𝛿 ,
that 𝛿�★ par and that 𝐷�★ 𝛿,

P
(
𝑁𝜂,𝛾,𝑧,10𝑤 (𝑍0, 𝑍1) = ∅ | A′, 𝑉, 𝑤𝑉

)
≤ exp

(
−𝜃 (10𝑤)−2(𝜏−1)𝐷Λ(𝜂,𝑧)−2𝛾𝑑𝛿/3

)
≤ exp

(
−𝜃𝐷Λ(𝜂,𝑧)−

√
𝛿
)
≤ exp

(
−
(
𝜃𝐷Λ(𝜂,𝑧)−

√
𝛿 )1/4

)
,

since we assumed 𝜃𝐷Λ(𝜂,𝑧)−
√

𝛿 > 1. Since A′ = {𝑍0 ≥ |Z (𝑥0) |/4, 𝑍1 ≥ |Z (𝑥1) |/4}, combining this
with (5.19) and a union bound, the result in (5.14) follows. �

We now construct a hierarchy by repeatedly applying Lemma 5.9 to find a set of valid bridges as
in Lemma 5.8, using an iterative construction (Def. 3.6) to mitigate independence issues. Recall the
(𝛾,𝑈, 𝑤, 𝑐𝐻 )-hierarchy of depth R from Def. 5.5, and Λ(𝜂, 𝑧) from (4.1) and Φ(𝜂, 𝑧) from (5.1).
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Lemma 5.10 (Hierarchy with low weights𝑤). Consider Setting 4.1, and let 𝑦0, 𝑦1 ∈ N with |𝑦0−𝑦1 | = 𝜉.
Let 𝑧 ∈ [0, 𝑑], 𝜂 ≥ 0, and let 0 < 𝛿�★ 𝛾, 𝜂, 𝑧, par be such that Λ(𝜂, 𝑧) ≥ 2

√
𝛿 and either 𝑧 = 0 or

Φ(𝜂, 𝑧) ≥
√
𝛿. Let 𝜉�★ 𝛾, 𝜂, 𝑧, 𝛿, 𝑤0. Let 𝑅 ≥ 2 be an integer satisfying

𝜉𝛾𝑅−1 ≥ (log log 𝜉
√
𝑑)16𝑑/𝛿2

and 𝑅/𝜃 ≤ (log log 𝜉)1/
√

𝛿 , (5.20)

and let 𝑤 := 𝜉𝛾𝑅−1 𝛿 . (5.21)

Let Xlow-h(𝑅, 𝜂, 𝑦0, 𝑦1) be the event that𝐺 ′ contains a (𝛾, 3𝑤3𝜇𝜉𝜂 , 𝑤, 2)-hierarchy Hlow of depth R with
first level L1 = {𝑦0, 𝑦1}, fully contained in N , with dev𝑦0𝑦1 (Hlow) ≤ 4𝜉𝛾 . Then

P
(
Xlow-h(𝑅, 𝜂, 𝑦0, 𝑦1) | 𝑉, 𝑤𝑉

)
≥ 1 − exp

(
−(log log 𝜉)1/

√
𝛿 ) =: 1 − err𝜉 , 𝛿 . (5.22)

With the convention that ∞ · 0 = 0, the statement is also valid when 𝛼 = ∞ or 𝛽 = ∞.

The lower bound on the minimal vertex weight 𝑤 used in the hierarchy, and the upper bound on
the number of iterations R in (5.20) jointly ensure that the thinning of edge-probabilities 𝜃/𝑅 caused
by/necessary for a multiround exposure of R rounds in Section 3 has controllable effect.

Proof. To construct a (𝛾, 3𝑤3𝜇𝜉𝜂 , 𝑤, 2)-hierarchy in N , we will use an iterative cost construction of
𝑅 − 1 rounds from Definition 3.6 on 𝐺 ′. Recall from Setting 4.1 that 𝐺 ′ with given 𝑉, 𝑤𝑉 is a 𝜃-
percolated CIRG. By Remark 3.3,𝐺 ′ is a CIRG itself (also when 𝜃 = 𝜃𝑛) with distribution {G 𝜃 |𝑉, 𝑤𝑉 }.
In the i-th round we will construct all bridges of the i-th level of the hierarchy at once, using Lemma 5.9
2𝑖−1 times to find each bridge in the level. Level 1 consists of the vertices 𝑦0, 𝑦1 and no edges, see also
Figure 5. The first edge appears thus on level 2, hence we can start with level 𝑖 = 2. We will use Prop. 3.9
to deal with conditioning between rounds, and union bounds to deal with conditioning within rounds.
For 2 ≤ 𝑖 ≤ 𝑅, in the i-th round we we will set the constraints F𝑖 and U𝑖 so that the chosen set S𝑖 in
Def. 3.6(vi) consists of a (2𝜉𝛾𝑖−1

, 3𝑤2𝜇𝜉𝜂 , 𝑤)-valid bridge for 𝑦̃𝜎0 and 𝑦̃𝜎1 for all 𝜎 ∈ {0, 1}𝑖−2, where
𝑦̃𝜎0; and 𝑦̃𝜎1 are (all) endpoints of bridges from the previous levels. In other words, S𝑖 will contain
all the necessary bridges at the i-th level of the hierarchy for Xlow-hierarchy(𝑅, 𝜂, 𝑦0, 𝑦1) := Xlow-h. Since
L1 = {𝑦0, 𝑦1} contains no bridges yet, we denote the iterative construction by (F2,U2), . . . , (F𝑟 ,U𝑟 ). Set
the percolation probabilities as 𝜃 := (𝜃/(𝑅−1), . . . , 𝜃/(𝑅−1)), that is, 𝜃𝑖 := 𝜃/(𝑅−1) for 2 ≤ 𝑖 ≤ 𝑅 in
the exposure setting of 𝐺 ′ in Definition 3.4, and denote the outcome Iter(𝐺 𝜃2

2 , . . . , 𝐺
𝜃𝑟
𝑟 ) by S2, . . . ,S𝑅.

We next inductively define the admissible edge-lists F𝑖 in Def. 3.6 (ii), the cost constraints U𝑖 in
Def. 3.6 (iv), and vertices ˜𝑦𝜎 for all 𝜎 ∈ {0, 1}𝑖 . Assume that 𝑆1, . . . , 𝑆𝑖−1 is already given, that is, we
constructed (L 𝑗 ) 𝑗≤𝑖−1. For each 𝜎 ∈ {0, 1}𝑖−2 consider the vertices 𝑦̃𝜎0, 𝑦̃𝜎1 with 𝜎0, 𝜎1 ∈ {0, 1}𝑖−1

already found10. Set 𝐷𝑖 = 𝜉𝛾𝑖 as in Lemma 5.8, and write P (𝜎) for the set of all possible paths
(i.e., sequence of vertices) contained in N between all 𝑦 ∈ N ∩ (𝐵2𝐷𝑖−1 ( 𝑦̃𝜎0) × [𝑤, 4𝑤]) and all
𝑦′ ∈ N ∩ (𝐵2𝐷𝑖−1 ( 𝑦̃𝜎1) × [𝑤, 4𝑤]) (so that if 𝑃𝜎 ∈ P (𝜎), then 𝑃𝜎 satisfies both (5.10), (5.11) in Def.
5.7). Since 𝑉, 𝑤𝑉 is given, and also 𝑆1, . . . , 𝑆𝑖−1 is already determined, define now an edge-list 𝑡 to be
level-i admissible if it contains exactly one such potential path from P (𝜎) for each 𝜎 ∈ {0, 1}𝑖−2, and
let F𝑖 (𝐺 𝜃2

2 , . . . , 𝐺
𝜃𝑖−1
𝑖−1 ) be the list of all level-i admissible edge-lists, with an arbitrary ordering.

For each such admissible list, U𝑖 (𝐺 𝜃2
2 , . . . , 𝐺

𝜃𝑖−1
𝑖−1 ) describes the cost-constraint; let this be the con-

straint that the edges in the list have total marginal cost at most 3𝑤3𝜇𝜉𝜂 (where marginal cost is defined in
(3.1)). Once we reveal the edges of𝐺 𝜃𝑖

𝑖 , recall that the result of round i, Iter𝑖 (𝐺 𝜃2
2 , . . . , 𝐺

𝜃𝑖−1
𝑖−1 , 𝐺

𝜃𝑖
𝑖 ) =: Sexp

𝑖

is then set by Def. 3.6(vi), and that if the construction succeeds, then Sexp
𝑖 is the first element in

F𝑖 (𝐺 𝜃2
2 , . . . , 𝐺

𝜃𝑖−1
𝑖−1 ) that satisfies the corresponding cost constraint in U𝑖 (𝐺 𝜃2

2 , . . . , 𝐺
𝜃𝑖−1
𝑖−1 ). Given Sexp

𝑖 ,
we define 𝑦̃𝜎00 := 𝑦̃𝜎0, 𝑦̃𝜎11 := 𝑦̃𝜎1, and 𝑦̃𝜎01 and 𝑦̃𝜎10 to be the endpoints of the bridge 𝑃𝜎

present in the chosen edge-list Sexp
𝑖 , or None if Sexp

𝑖 = None. This gives the iterative cost construction

10Thus, for the initial 𝑖 = 2 here 𝜎 = ∅ so we look at the vertices 𝑦0, 𝑦1.
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Iterexp = ((F𝑖 ,U𝑖) : 𝑖 ∈ {2, . . . , 𝑅}) applied on 𝐺 𝜃2
2 , . . . , 𝐺

𝜃𝑅
𝑅 , denoted by Iterexp

{G 𝜃 |𝑉 ,𝑤𝑉 }, 𝜃 in Def. 3.8.
Note that the criteria above for P (𝜎),F𝑖 ,U𝑖 exactly matches Lemma 5.8 with 𝑐𝐻 = 2 and marginal
cost of each bridge 𝑃𝜎 at most 𝑈 =3𝑤3𝜇𝜉𝜂 , implying (5.12), that is, each chosen bridge 𝑃𝜎 ∈ Sexp

𝑖 is
(2𝜉𝛾𝑖−1

, 3𝑤3𝜇𝜉𝜂 , 𝑤)-valid for 𝑦𝜎0, 𝑦𝜎1 ∈ {0, 1}𝑖−1 with respect to the chosen edges in earlier rounds.
Since all vertices in {𝑃𝜎}𝜎 are contained in a 2(𝜉𝛾 + 𝜉𝛾2 + · · · + 𝜉𝛾𝑅−1) ≤ 4𝜉𝛾 ball around 𝑦0 and
𝑦1, respectively, the deviation requirement is also satisfied, and so by Lemma 5.8, if Iterexp

{G 𝜃 |𝑉 ,𝑤𝑉 }, 𝜃
succeeds then {𝑦̃𝜎}𝜎∈{0,1}𝑅 is a (𝛾, 3𝑤3𝜇𝜉𝜂 , 𝑤, 2)-hierarchy as needed in Xlow-h.

Following Prop. 3.9, let 𝑟 = 𝑅 − 1 and 𝜃𝑖 ≡ 1/(𝑅−1) there, and let 𝐻2, . . . , 𝐻𝑅 be independent
1/(𝑅−1)-percolations of {G 𝜃 | 𝑉, 𝑤𝑊 }, that is, with distribution {G 𝜃/(𝑅−1) | 𝑉, 𝑤𝑊 } from Def. 3.2.
Recall from Def. 3.8 the definitions of Iterind

{G 𝜃 |𝑉 ,𝑤𝑉 }, 𝜃 and Aind(𝑆1, . . . , 𝑆𝑖−1). Then applying Prop. 3.9
(with an index shift, since now we start at 𝑖 = 2), (3.5) turns into

P
(
Xlow-h | 𝑉, 𝑤𝑉

)
≥ P

(
Iterexp

{G 𝜃 |𝑉 ,𝑤𝑉 }, 𝜃 succeeds | 𝑉, 𝑤𝑉
)

≥ min
𝑆2 ,...,𝑆𝑅≠None

𝑅∏
𝑖=2
P
(
S ind

𝑖 ≠ None | Aind(𝑆2, . . . , 𝑆𝑖−1)
)

≥ 1 −
𝑅∑

𝑖=2
max

𝑆2 ,...,𝑆𝑖−1≠None
P
(
S ind

𝑖 = None | Aind(𝑆1, . . . , 𝑆𝑖−1)
)
,

(5.23)

by a union bound over all rounds.
We now break the right-hand side of (5.23) down into bridge existence events under simpler condi-

tioning. Recall Definition 5.7, in particular the notation (𝐷,𝑈, 𝑤)-valid bridges with respect to (already
revealed edges) 𝑆 := ∪ 𝑗≤𝑖−1𝑆 𝑗 . For each 2 ≤ 𝑖 ≤ 𝑅 and 𝜎0, 𝜎1 ∈ {0, 1}𝑖−1, let

A𝑖 ( 𝑦̃𝜎0, 𝑦̃𝜎1) := {∃𝑃𝜎 ∈ 𝑆𝑖 : (2𝜉𝛾𝑖−1
, 3𝑤2𝜇𝜉𝛾𝑖−2 𝜂 , 𝑤)-valid for

𝑦̃𝜎0, 𝑦̃𝜎1 with respect to 𝑆 = ∅}.
(5.24)

This is a stronger condition than what is required for a (𝛾, 3𝑤3𝜇𝜉𝜂 , 𝑤, 2)-hierarchy to exist in Lemma
5.8, since 𝛾𝑖−2𝜂 ≤ 𝜂 and validity with respect to ∅ implies validity with respect to any set of edges.
Conditioned on Aind(𝑆2, . . . , 𝑆𝑖−1) so that none of the (𝑆 𝑗 ) 𝑗≤𝑖−1 equals None, the event S ind

𝑖 = None
occurs only if for some pair 𝜎0, 𝜎1 ∈ {0, 1}𝑖−1, the complement of the event A𝑖 ( 𝑦̃𝜎0, 𝑦̃𝜎1) occurs;
hence by a union bound, (5.23) implies

P
(
Xlow-h |𝑉, 𝑤𝑉

)
≥ 1−

𝑅∑
𝑖=2

2𝑖−2 max
𝜎∈{0,1}𝑖−2

𝑆2 ,...,𝑆𝑖−1≠None

P
(
A𝑖 ( 𝑦̃𝜎0, 𝑦̃𝜎1)� |𝑉, 𝑤𝑉 ,Aind(𝑆1, . . . , 𝑆𝑖−1)

)
. (5.25)

Recall that given (𝑉, 𝑤𝑉 ), the graphs 𝐻2, . . . 𝐻𝑅−1 are i.i.d. {G 𝜃/(𝑅−1) | 𝑉, 𝑤𝑊 }. So, the events in
Aind(𝑆2, . . . , 𝑆𝑖−1) are contained in the 𝜎-algebra generated by 𝐻2, . . . , 𝐻𝑖−1, that is, independent of 𝐻𝑖

and thus of the complement of A𝑖 ( 𝑦̃𝜎0, 𝑦̃𝜎1). Hence (5.25) simplifies to

P
(
Xlow-h | 𝑉, 𝑤𝑉

)
≥ 1 −

𝑅∑
𝑖=2

2𝑖−2 max
𝑦̃𝜎0 , 𝑦̃𝜎1≠None

P
(
A𝑖 ( 𝑦̃𝜎0, 𝑦̃𝜎1)� | 𝑉, 𝑤𝑉

)
, (5.26)

where the maximum is taken over all possible values of ( 𝑦̃𝜎0, 𝑦̃𝜎1) occurring in non-None 𝑆𝑖−1. Finally,
we will upper-bound the probabilities on the right-hand side of (5.26) using Lemma 5.9. Let 2 ≤ 𝑖 ≤ 𝑅,
let𝜎 ∈ {0, 1}𝑖−2, and let 𝑦̃𝜎0, 𝑦̃𝜎1 be a possible non-None realisation of the embedding. Recall𝐷𝑖 = 𝜉𝛾𝑖 .
Then the event (5.24) requires a (𝐷𝛾

𝑖−2, 3𝑤
3𝜇𝐷

𝜂
𝑖−2, 𝑤)-valid bridge 𝑃𝜎 , which formally matches Lemma

5.9 with 𝐷 := 𝐷𝑖−2, 𝑦̃𝜎0 := 𝑥0, 𝑦̃𝜎1 := 𝑥1 there and the graph 𝐻𝑖 ∼ {G 𝜃/(𝑅−1) | 𝑉, 𝑤𝑉 } in place of 𝐺 ′

there, that is, with 𝜃5.9 := 𝜃/(𝑅 − 1).
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We check the conditions of Lemma 5.9 in order of their appearance. 𝑧 ∈ [0, 𝑑], 𝜂, 𝛿 > 0
and 𝛿�★ 𝛾, 𝜂, 𝑧 is assumed both here and there. The assumption 𝜉�★ 𝛾, 𝜂, 𝑧, 𝛿, 𝑤0 here implies
𝐷𝑖−2 �★ 𝛾, 𝜂, 𝑧, 𝛿, 𝑤0 since by (5.20) 𝐷𝛾

𝑖−2 ≥ 𝜉𝛾𝑅−1 ≥ (log log 𝜉
√
𝑑)16𝑑/𝛿2 . The latter also implies the

requirement on 𝐷𝛾 in Lemma 5.9. Similarly, the upper bound requirement holds since 𝐷𝛾
𝑖−2 ≤ 𝜉 ≤ 𝜉

√
𝑑.

We now check whether 𝜃𝐷Λ(𝜂,𝑧)−
√

𝛿 > 1 holds in Lemma 5.9 for our choices. Since we assumed here
Λ(𝜂, 𝑧) ≥ 2

√
𝛿, and also (5.20), we estimate

𝜃
𝑅−1𝐷

Λ(𝜂,𝑧)−
√

𝛿
𝑖−2 ≥ (log log 𝜉)−1/

√
𝛿 · 𝐷

√
𝛿

𝑖−2 ≥ (log log 𝜉)15/
√

𝛿 > 1. (5.27)

Next we need to check whether 𝑥0 = 𝑦̃𝜎0, 𝑥1 = 𝑦̃𝜎1 satisfies |𝑥0 − 𝑥1 | ≤ 𝑐𝐻𝐷𝑖−2. This is true since
𝑦̃𝜎0, 𝑦̃𝜎1 are possible non-None values coming from chosen tuples 𝑆1, . . . , 𝑆𝑖−1; and by construction of
P (𝜎) above, we required that | 𝑦̃𝜎′00− 𝑦̃𝜎′01 |, | 𝑦̃𝜎′10− 𝑦̃𝜎′11 | ≤ 2𝐷𝑖−1 for all𝜎′ ∈ {0, 1}𝑖−2, which, when
shifting indices yields exactly that | 𝑦̃𝜎0− 𝑦̃𝜎1 | ≤ 2𝐷𝑖−2 for all𝜎 ∈ {0, 1}𝑖−2. Next we check the criterion
on 𝑤 in Lemma 5.9. Here, 𝑤 is defined in (5.21), hence, using (5.20), 𝑤 = 𝜉𝛾𝑅−1 𝛿 ≥ (log log 𝜉

√
𝑑)16𝑑/𝛿

as required. This also implies 𝑤�★ 𝛿, 𝑤0 since 𝜉�★ 𝛿, 𝑤0. Moreover, 𝑤 = 𝜉𝛾𝑅−1 𝛿 ≤ 𝐷 𝛿
𝑖−2 = 𝜉𝛾𝑖−2 𝛿

holds since 𝑖 − 2 ≤ 𝑅 − 2 and 𝛾 < 1. Next, we check (5.13), which can be lower bounded by omitting
the prefactor 𝑤𝜇𝛽 in the last factor (the minimum):

𝑝(𝐷𝑖−2, 𝑤,
𝜃

𝑅−1 , 𝜂, 𝑧) ≥
𝜃

𝑅−1𝑤
−(𝜏−1)

(
𝐷

𝑑𝛾
𝑖−2 ∧ 𝑤

2𝐷𝑧/2
𝑖−2

)1−𝛿
𝐷

[0∧𝛽 (𝜂−𝜇𝑧/2) ]
𝑖−2 . (5.28)

We distinguish cases with respect to z to handle the minimum in the middle of the right-hand side. If
𝑧 = 0, then 𝑤2𝐷𝑧/2

𝑖 = 𝑤2 = 𝜉2𝛾𝑅−1 𝛿 ≤ 𝜉𝛾𝑖−1𝑑 = 𝐷
𝛾𝑑
𝑖−2, where the inequality holds because 𝑖 ≤ 𝑅 and

𝛿�★ 𝛾. Moreover 0 ≤ 𝜂 − 𝜇𝑧/2 in that case, so when 𝑧 = 0, equation (5.28) becomes

𝑝(𝐷𝑖−2, 𝑤,
𝜃

𝑅−1 , 𝜂, 𝑧) ≥
𝜃

𝑅−1𝑤
2(1−𝛿)−(𝜏−1) = 𝜃

𝑅−1𝑤
3−𝜏−2𝛿 ≥ 𝜃

𝑅−1𝑤
√

𝛿 , (5.29)

where the last inequality holds because 𝛿�★ par. If, however, 𝑧 ≠ 0, then we assumed thatΦ(𝜂, 𝑧) ≥
√
𝛿

in (5.1). Using again 𝑤 ≥ 1, we lower bound (5.28) in this case

𝑝(𝐷𝑖−2, 𝑤,
𝜃

(𝑅−1) , 𝜂, 𝑧) ≥
𝜃

𝑅−1𝑤
−(𝜏−1)𝐷

(1−𝛿) [𝑑𝛾∧𝑧/2]+[0∧𝛽 (𝜂−𝜇𝑧/2) ]
𝑖−2 ≥ 𝜃

𝑅−1𝐷
Φ(𝜂,𝑧)−𝛿 (𝜏−1+𝑑)
𝑖−2 ,

where we used that 𝑤 ≤ 𝐷 𝛿
𝑖−2 implies 𝑤−(𝜏−1) ≥ 𝐷−𝛿 (𝜏−1)

𝑖−2 and 𝑑𝛾 ∧ 𝑧/2 ≤ 𝑑 (since 𝛾 < 1) to obtain
the last inequality. Since 𝛿 is small, Φ(𝜂, 𝑧) ≥

√
𝛿, and 𝑤 ≤ 𝐷 𝛿

𝑖−2, this implies

𝑝(𝐷𝑖−2, 𝑤,
𝜃

𝑅−1 , 𝜂, 𝑧) ≥
𝜃

𝑅−1𝐷
𝛿
𝑖−2 ≥ 𝜃

𝑅−1𝑤 ≥ 𝜃
𝑅−1𝑤

√
𝛿 , (5.30)

the same lower bound as in (5.29) for 𝑧 = 0. Thus for all 𝑧 ∈ [0, 𝑑], using (5.20) for a lower bound on
𝜃/𝑅 and (5.21),

𝑝(𝐷𝑖−2, 𝑤,
𝜃

𝑅−1 , 𝜂, 𝑧) ≥
𝜃

𝑅−1𝑤
√

𝛿 ≥ 𝜃
𝑅−1 (log log 𝜉)16/

√
𝛿 ≥ (log log 𝜉)15/

√
𝛿 ≥ 20𝜏+𝜇𝛽 ,

where the last inequality holds because 𝜉�★ 𝛿, par. With this, all conditions of Lemma 5.9 are satisfied,
so combining (5.14) with (5.26) and then using the lower bound in (5.27) yields

P
(
Xlow-h | 𝑉, 𝑤𝑉

)
≥ 1 − 3

𝑅∑
𝑖=2

2𝑖−2 exp
(
−
[

𝜃
𝑅−1𝐷

Λ(𝜂,𝑧)−
√

𝛿
𝑖−2

]1/4
)

≥ 1 − 3
𝑅∑

𝑖=2
2𝑖−2 · exp

(
−(log log 𝜉)3/

√
𝛿 ) ≥ 1 − 2𝑅+1 exp

(
−(log log 𝜉)3/

√
𝛿 ) . (5.31)
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Finally, in (5.20) the estimate 𝑅 ≤ (log log 𝜉)1/
√

𝛿 can be used to upper bound 2𝑅+1, yielding the required
inequality in (5.22). �

Lemma 5.10 constructed a hierarchy with bridge endpoints 𝑦̃𝜎 of weight roughly 𝑤 = 𝜉𝛾𝑅−1 𝛿 . This
weight is too low to connect the final gaps (siblings) in the hierarchy via short paths. The next lemma
extends this hierarchy to a new one with endpoints 𝑦𝜎 of weight roughly 𝑤 := 𝜉𝑑𝛾𝑅−1/2 using weight-
increasing paths. At these higher weights, connecting the gaps is possible. The proof follows a very
similar structure as for Lemma 5.10, with just two rounds of exposure. Recall the (𝛾,𝑈, 𝑤, 𝑐𝐻 )-hierarchy
of depth R from Def. 5.5, Λ(𝜂, 𝑧),Φ(𝜂, 𝑧) from (4.1) and (5.1), respectively.
Lemma 5.11 (Hierarchy with high weights 𝑤). Consider Setting 4.1, and let 𝑦0, 𝑦1 ∈ N with |𝑦0 − 𝑦1 | =
𝜉. Let 𝑧 ∈ [0, 𝑑], 𝜂 ≥ 0, and let 0 < 𝛿�★ 𝛾, 𝜂, 𝑧, par be such that Λ(𝜂, 𝑧) ≥ 2

√
𝛿 and either 𝑧 = 0 or

Φ(𝜂, 𝑧) ≥
√
𝛿. Let 𝜉�★ 𝛾, 𝜂, 𝑧, 𝜃, 𝛿, 𝑤0. Let 𝑅 ≥ 2 be an integer satisfying 𝜉𝛾𝑅−1 ≥ (log log 𝜉

√
𝑑)16𝑑/𝛿2

and 𝑅 ≤ (log log 𝜉)2, and set

𝑤 := 𝜉𝛾𝑅−1𝑑/2, 𝑐𝐻 := 8
(
1 +

⌈
log(𝑑/𝛿)

log(1/(𝜏 − 2 + 2𝑑𝜏𝛿))

⌉)
. (5.32)

Let Xhigh-h(𝑅, 𝜂, 𝑦0, 𝑦1) be the event that 𝐺 ′ contains a (𝛾, 𝑐𝐻𝑤
4𝜇𝜉𝜂 , 𝑤, 𝑐𝐻 )-hierarchy Hhigh of depth

R with first level L1 = {𝑦0, 𝑦1}, fully contained in N , and dev𝑦0𝑦1 (Hhigh) ≤ 2𝑐𝐻 𝜉
𝛾 . Then

P
(
Xhigh-h(𝑅, 𝜂, 𝑦0, 𝑦1) | 𝑉, 𝑤𝑉

)
≥ 1 − exp

(
−(log log 𝜉)13); (5.33)

under the convention that ∞ · 0 = 0, the statement is also valid when 𝛼 = ∞ or 𝛽 = ∞.

Proof. As in Lemma 5.10, let 𝑤 := 𝜉𝛾𝑅−1 𝛿 . To construct a (𝛾, 𝑐𝐻𝑤
4𝜇𝜉𝜂 , 𝑤, 𝑐𝐻 )-hierarchy in N , we

use two rounds of exposure. First we set 𝜃1 = 𝜃2 = 1/2 and construct the exposure setting of 𝐺 ′, that is,
(𝐺 𝜃1

1 , 𝐺
𝜃2
2 ). In the first round we apply Lemma 5.10 to get Hlow = {𝑦̃𝜎}, a (𝛾, 3𝑤3𝜇𝜉𝜂 , 𝑤, 2)-hierarchy

with failure probability err𝜉 , 𝛿 in (5.22). In the second round, we use weight-increasing paths from
Lemma 4.4 to connect each 𝑦̃𝜎 ∈ Hlow to a vertex 𝑦𝜎 of weight in [𝑤, 4𝑤], transforming Hlow into
Hhigh = {𝑦𝜎}, a (𝛾, 𝑐𝐻𝑤

4𝜇𝜉𝜂 , 𝑤, 𝑐𝐻 )-hierarchy.
We now define an iterative cost construction on 𝐺 ′ ∼ {G 𝜃 |𝑉, 𝑤𝑉 }. In round 1, F1 is the list of

admissible lists of vertex pairs edges (with an arbitrary ordering): we set now a list of vertex-pairs
admissible if it could form the bridges (𝑃𝜎)𝜎∈{0,1}𝑅 of a (𝛾, 3𝑤3𝜇𝜉𝜂 , 𝑤, 2)-hierarchy {𝑦̃𝜎}𝜎∈{0,1}𝑅
fully contained in N . For any given list in F1, let the corresponding event in U1 be specified by the set
of all possible edge costs such that all 𝑃𝜎 satisfy (H3) of Definition 5.5 with𝑈 = 3𝑤3𝜇𝜉𝜂 , so that Hlow
is indeed a valid (𝛾, 3𝑤3𝜇𝜉𝜂 , 𝑤, 2)-hierarchy. The round-1 marginal costs in (3.1) are equal to the edge
costs in 𝐺 𝜃1

1 .
We move now to round 2. For each 𝜎 ∈ {0, 1}𝑅, let P (𝜎) be the set of all paths 𝜋 𝑦̃𝜎 ,𝑦𝜎 in N

connecting 𝑦̃𝜎 to any vertex 𝑦𝜎 ∈ N ∩ (𝐵 (𝑐𝐻−2) 𝜉 𝛾
𝑅−1/2( 𝑦̃𝜎) × [𝑤, 4𝑤]). Given (𝑉, 𝑤𝑉 , 𝑆1), call a

list 𝑡 of vertex-pairs admissible in round 2 if it contains exactly one such potential path from P (𝜎)
for each 𝜎 ∈ {0, 1}𝑅, and let F2(𝐺 𝜃1

1 ) be the collection of all admissible tuples, with an arbitrary
ordering. For any given 𝑡 ∈ F2(𝐺 𝜃1

1 ), let the corresponding event in U2(𝐺 𝜃1
1 ) be specified by the set

of all possible round-2 marginal costs for the edges in 𝑡 which sum to at most (𝑐𝐻 − 3)𝑤4𝜇𝜉𝜂/2 in
(3.1). This defines an iterative cost construction Iter = ((F1,U1), (F2,U2)) applied on 𝐺 𝜃1

1 , 𝐺
𝜃2
2 , that

we denote by Iterexp
{G 𝜃 |𝑉 ,𝑤𝑉 }, 𝜃 . Recall from Def. 3.6(vi) that for 𝑖 ∈ {1, 2}, Sexp

𝑖 is either None or lies in
F exp

𝑖 with round-i marginal costs satisfying U exp
𝑖 .

If Iterexp
G 𝜃 , 𝜃 succeeds, then {𝑦𝜎}𝜎∈{0,1}𝑅 is a (𝛾, 𝑐𝐻𝑤

4𝜇𝜉𝜂 , 𝑤, 𝑐𝐻 )-hierarchy. Indeed, condition (H1)
of Def. 5.5 is satisfied by construction. By the triangle inequality, (H2) is satisfied since for all𝜎 ∈ {0, 1}𝑖 ,
𝑦𝜎1 ∈ 𝐵 (𝑐𝐻−2) 𝜉 𝛾

𝑖 /2( 𝑦̃𝜎1) and 𝑦𝜎0 ∈ 𝐵 (𝑐𝐻−2) 𝜉 𝛾
𝑖 /2( 𝑦̃𝜎0) by construction, and | 𝑦̃𝜎1 − 𝑦̃𝜎0 | ≤ 2𝜉𝛾𝑖 by

(H2) since 𝑦̃𝜎 forms a (𝛾, 3𝑤3𝜇𝜉𝜂 , 𝑤, 2)-hierarchy. This also implies that dev𝑦0𝑦1 (Hhigh) ≤ 𝑐𝐻 (𝜉𝛾 +
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𝜉𝛾2 + · · · + 𝜉𝛾𝑅−1) ≤ 2𝑐𝐻 𝜉
𝛾 , since 𝜉�★ 𝛾, as required. Finally, 𝑃𝜎 is a path between 𝑦̃𝜎01 and 𝑦̃𝜎10, so

let 𝑃𝜎 be the concatenated path 𝜋𝑦𝜎01 , 𝑦̃𝜎01𝑃𝜎𝜋 𝑦̃𝜎10 ,𝑦𝜎10 . Then the total cost of 𝑃𝜎 is

C (𝑃𝜎) ≤ C (𝑃𝜎) + mcost2(𝜋𝑦𝜎01 , 𝑦̃𝜎01 ) + mcost2(𝜋 𝑦̃𝜎10 ,𝑦𝜎10 )
≤ 3𝑤3𝜇𝜉𝜂 + 2(𝑐𝐻 − 3)𝑤4𝜇𝜉𝜂/2 ≤ 𝑐𝐻𝑤

4𝜇𝜉𝜂 ,

since 𝑤 = 𝑤2𝛿/𝑑 , see (5.21) vs (5.32).
As in Def. 3.8 and Prop. 3.9, we now lower-bound the probability that Iterexp

{G 𝜃 |𝑉 ,𝑤𝑉 }, 𝜃 succeeds
by coupling to two independent percolations 𝐻1 and 𝐻2. With 𝜃 := (𝜃/2, 𝜃/2), recall the definition
Iterind

{G 𝜃 |𝑉 ,𝑤𝑉 }, 𝜃 . As in Def. 3.8, let Aind(𝑆1) be the event that the first round returns the edge set
S ind

1 = 𝑆1. Then Proposition 3.9 followed by a union bound gives

P
(
Xhigh-h(𝑅, 𝜂, 𝑦0, 𝑦1) | 𝑉, 𝑤𝑉

)
≥ P

(
Iterexp

{G 𝜃 |𝑉 ,𝑤𝑉 }, 𝜃 succeeds | 𝑉, 𝑤𝑉
)

≥ P
(
S ind

1 ≠ None | 𝑉, 𝑤𝑉
)
· min

𝑆1≠None
P
(
S ind

2 ≠ None | 𝑉, 𝑤𝑉 ,Aind(𝑆1)
)

≥ 1 − P
(
S ind

1 = None | 𝑉, 𝑤𝑉
)
− max

𝑆1≠None
P
(
S ind

2 = None | 𝑉, 𝑤𝑉 ,Aind(𝑆1)
)
.

(5.34)

The event S ind
1 ≠ None occurs precisely when the graph 𝐻1 contains a (𝛾, 3𝑤3𝜇𝜉𝜂 , 𝑤, 2)-hierarchy

Hlow := {𝑦̃𝜎} of depth R fully contained in N with first level L1 = {𝑦0, 𝑦1}. Since 𝐻1 ∼ {G 𝜃/2 | 𝑉, 𝑤𝑉 }
is a CIRG, and since the conditions here are stronger than those in Lemma 5.10, all requirements of
Lemma 5.10 hold with 𝜃 replaced by 𝜃/2, so the first error term in (5.34) is at most err𝜉 , 𝛿 in (5.22).

It remains to upper-bound the second error term in (5.34). We use weight-increasing paths to connect
the endpoints of Hlow to vertices of weight [𝑤, 4𝑤] nearby. Let

𝑞★ :=
⌈

log(𝑑/𝛿)
log(1/(𝜏 − 2 + 2𝑑𝜏𝛿))

⌉
, (5.35)

and for each 𝑣 ∈ N let Apath(𝑣) be the event that 𝐻2 contains a path 𝜋𝑣,𝑣′ from v to some vertex
𝑣′ ∈ N ∩ (𝐵4𝑞★𝜉 𝛾

𝑅−1 (𝑣) × [𝑤, 4𝑤]) with cost C2(𝜋𝑣,𝑣′ ) ≤ 𝑞★𝑤4𝜇𝜉𝜂 . The value 𝑐𝐻 in (5.32) is chosen
so that 4𝑞★ ≤ (𝑐𝐻 − 2)/2 and 𝑞★ ≤ (𝑐𝐻 − 3)/2 both hold; thus conditioned on Aind(𝑆1), the event
S ind

2 = None occurs only if for some 𝜎 ∈ {0, 1}𝑅 the event Apath( 𝑦̃𝜎)� occurs. There are 2𝑅 strings
𝜎 ∈ {0, 1}𝑅, and all the events in A𝐼𝐻 (𝑉, 𝑤𝑉 , 𝑆1) are contained in the 𝜎-algebra generated by 𝐻1,
which is independent of 𝐻2 given 𝑉, 𝑤𝑉 . So, by a union bound,

max
𝑆1≠None

P
(
S ind

2 = None | Aind(𝑆1)
)
≤ 2𝑅 · max

𝜎∈{0,1}𝑅
𝑆1≠None

P
(
Apath( 𝑦̃𝜎)� | Aind(𝑆1)

)
≤ 2𝑅 · max

𝑦̃𝜎≠None
P
(
Apath( 𝑦̃𝜎)� | 𝑉, 𝑤𝑉

)
, (5.36)

where the maximum is taken over all possible values of 𝑦̃𝜎 in non-None 𝑆1. To bound (5.36), we apply
Lemma 4.4 with 𝐺 ′ = 𝐻2, 𝜃 replaced by 𝜃/2, 𝐾 = 2𝑤, 𝑀 = 2𝑤, 𝐷 = 4𝜉𝛾𝑅−1 , 𝑈 = 𝑤4𝜇𝜉𝜂 , 𝑦0 = 𝑦𝜎 ,
and all other variables taking their present values. Using 𝑤, 𝑤 from (5.21) and (5.32), we compute

log𝐾
log𝑀

=
log(2𝑤)
log(2𝑤) =

log 2 + 1
2𝛾

𝑅−1𝑑 log 𝜉
log 2 + 𝛾𝑅−1𝛿 log 𝜉

≤ 1 + 𝑑

2𝛿
≤ 𝑑

𝛿
;

https://doi.org/10.1017/fms.2025.10161 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10161


Forum of Mathematics, Sigma 57

and therefore q from (4.18) with these choices satisfies

𝑞 =

⌈ log
(
log𝐾/log𝑀

)
log(1/(𝜏 − 2 + 2𝑑𝜏𝛿))

⌉
≤

⌈
log(𝑑/𝛿)

log(1/(𝜏 − 2 + 2𝑑𝜏𝛿))

⌉
= 𝑞★.

Hence the event A𝜋 ( 𝑦̃𝜎 ) in Lemma 4.4 is contained in Apath( 𝑦̃𝜎). We now verify that the requirements
of Lemma 4.4 hold in order of their appearance there. Whenever 𝑆1 ≠ None, 𝑦̃𝜎 lies in N with
weight in [𝑤, 4𝑤] = [𝑀/2, 2𝑀] by construction, where 𝑀 = 2𝑤 > 1. Similarly, 𝐾 = 2𝑤 > 1 and
𝐷 = 4𝜉𝛾𝑅−1

> 1 by our choices. We check the requirement 𝑈 ≥ 𝐾2𝜇. By definition of 𝑤 in (5.32) and
the choices 𝑈 = 𝑤4𝜇𝜉𝜂 and 𝐾 = 2𝑤, we compute

𝑈𝐾−2𝜇 = 𝑤4𝜇𝜉𝜂 (2𝑤)−2𝜇 = 2−2𝜇𝑤2𝜇𝜉𝜂 ,

which is larger than 1 (even if 𝜂=0) since 𝜇 > 1 and 𝑤 ≥ (log log 𝜉
√
𝑑)8𝑑2/𝛿2 and 𝜉�★ 𝛿. Next, since

𝛿�★ par by hypothesis, 𝑤 = 𝜉𝛾𝑅−1𝑑/2 > 𝜉𝛾𝑅−1 𝛿 = 𝑤 and so 𝐾 ≥ 𝑀 . Moreover, 𝐾 = 2𝜉𝛾𝑅−1𝑑/2 ≤
4𝑑/2𝜉𝛾𝑅−1𝑑/2 = 𝐷𝑑/2 also holds. Since 𝑀 = 2𝑤 = 2𝜉𝛾𝑅−1 𝛿 ≥ 2(log log 𝜉

√
𝑑)16𝑑/𝛿 , 𝜉�★ 𝜃, 𝛿, 𝑤0, and

𝑀 ≤ 𝐾 ≤ 𝐷𝑑/2, we have 𝐾, 𝑀, 𝐷�★ 𝜃, 𝛿, 𝑤0. Clearly 𝐷 = 4𝜉𝛾𝑅−1
< 𝜉 ≤ 𝜉

√
𝑑 since 𝛾 < 1 and 𝜉 is

large. Next, we check (𝑀/2)2/𝑑 = (𝜉𝛾𝑅−1 𝛿)2/𝑑 > 𝜉𝛾𝑅−1 𝛿/𝑑 ≥ (log log 𝜉
√
𝑑)16/𝛿 as required. Finally,

if 𝛽 = ∞ then we also need that 𝑈 (𝐾𝑀)−𝜇 = 𝑤4𝜇𝜉𝜂 (4𝑤𝑤)−𝜇 ≥ 4−𝜇𝑤2𝜇𝜉𝜂 is sufficiently large. This
holds even when 𝜂=0 since 𝑤�★ par. Hence, all requirements of Lemma 4.4 are satisfied, and since
𝜃 changes to 𝜃/2 and 𝑀 = 2𝑤 = 2𝜉𝛾𝑅−1 𝛿 in (4.19), (5.36) can be bounded as

max
𝑆1≠None

P
(
S ind

2 = None | Aind(𝑆1)
)
≤ 2𝑅 exp

(
−(𝜃/2)2𝛿𝜉𝛾𝑅−1 𝛿2

)
≤ 2𝑅 exp

(
−(log log 𝜉)15

)
≤ exp

(
−(log log 𝜉)14

)
,

(5.37)

where we obtained the second row from the hypotheses 𝜉𝛾𝑅−1 𝛿2 ≥ (log log 𝜉)16 and 𝜉�★ 𝜃, and then
from 2𝑅 ≤ 𝑒𝑅 and 𝑅 ≤ (log log 𝜉)2. Combining (5.37) with (5.34) and recalling that the first error term
there is at most exp(−(log log 𝜉)1/

√
𝛿) finishes the proof of (5.33) since 𝛿 is small and 𝜉 is large. �

The hierarchy constructed in Lemma 5.11 is a ‘broken path’ formed by the bridge paths between the
starting vertices 𝑦0, 𝑦1 ∈ N . Proposition 5.1 connects the endpoints of the high-hierarchy and constructs
a connected path via common neighbours using Lemma 4.5, but not yet between 𝑦0, 𝑦1, only between
𝑦0𝑅−11 and 𝑦1𝑅−10, the closest vertices to 𝑦0, 𝑦1 in the hierarchy constructed in Lemma 5.11. Connecting
𝑦0 to 𝑦0𝑅−11 and 𝑦1 to 𝑦1𝑅−10 needs different techniques, since 𝑦0, 𝑦1 have typically lower weights than
𝑤 in (5.32), see Section 6.

Proof of Proposition 5.1. To construct the path 𝜋𝑦★0 ,𝑦★1
, we again use two rounds of exposure. In the

first round we apply Lemma 5.11 to get a (𝛾, 𝑐𝐻𝑤
4𝜇𝜉𝜂 , 𝑤, 𝑐𝐻 )-hierarchy Hhigh := {𝑦𝜎} of depth R

fully contained in N with first level {𝑦0, 𝑦1}. In the second round, we use Lemma 4.5 to connect, via a
common neighbour, each pair of level-R siblings 𝑦𝜎0, 𝑦𝜎1, 𝜎 ∈ {0, 1}𝑅−1 \ {0𝑅−1, 1𝑅−1}. This yields a
path between 𝑦0𝑅−11 =: 𝑦★0 and 𝑦1𝑅−10 =: 𝑦★1 .

We now define an iterative cost construction on𝐺 ′ ∼ {G 𝜃 |𝑉, 𝑤𝑉 }. First we move to the exposure set-
ting𝐺 𝜃1

1 , 𝐺
𝜃2
2 with 𝜃1 = 𝜃2 = 1/2. LetF1 be the list of all lists of vertex-pairs e with dev𝑦0𝑦1 (𝑒) ≤ 2𝑐𝐻 𝜉

𝛾

that could form the bridges of a (𝛾, 𝑐𝐻𝑤
4𝜇𝜉𝜂 , 𝑤, 𝑐𝐻 )-hierarchy Hhigh = {𝑦𝜎}𝜎∈{0,1}𝑅 fully contained

in N with first level {𝑦0, 𝑦1}. Moreover, for any given admissible list in F1, let the corresponding
event in U1 be the event that the costs of all 𝑃𝜎 satisfy (H3) of Definition 5.5 with 𝑈 = 𝑐𝐻𝑤

4𝜇𝜉𝜂 ,
so that Hhigh is indeed a valid (𝛾, 𝑐𝐻𝑤

4𝜇𝜉𝜂 , 𝑤, 𝑐𝐻 )-hierarchy with dev𝑦0𝑦1 (Hhigh) ≤ 2𝑐𝐻 𝜉
𝛾 . For each

𝜎 ∈ {0, 1}𝑅−1 \ {0𝑅−1, 1𝑅−1}, define J (𝜎) to be the set of all potential paths 𝐽𝜎 fully contained in N
connecting 𝑦𝜎0 and 𝑦𝜎1 with dev𝑦0𝑦1 (𝐽𝜎) ≤ 3𝑐𝐻 𝜉

𝛾 . Given (𝑉, 𝑤𝑉 , 𝑆1), call a list 𝑡 of edges admissi-
ble if it contains exactly one such potential path 𝐽𝜎 from J (𝜎) for each 𝜎 ∈ {0, 1}𝑅 \ {0𝑅−1, 1𝑅−1},
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and let F2(𝐺 𝜃1
1 ) be the collection of all admissible edge-lists, with an arbitrary ordering. For any

given list 𝑡 ∈ F2(𝐺 𝜃1
1 ), let the corresponding event in U2(𝐺 𝜃1

1 ) be that the round-2 marginal costs
of edges in 𝑡 are such that mcost2(𝐽𝜎) ≤ 𝑤4𝜇 in (3.1). This defines an iterative cost construction
Iter = ((F1,U1), (F2,U2)) applied on 𝐺 𝜃1

1 , 𝐺
𝜃2
2 that we denote by Iterexp

{G 𝜃 |𝑉 ,𝑤𝑉 }, 𝜃 with 𝜃 := (𝜃/2, 𝜃/2).
Recall from Def. 3.6(vi) that for 𝑖 ∈ {1, 2}, Sexp

𝑖 is either None or lies in F𝑖 with round-i marginal costs
satisfying U𝑖 .

We claim that if Iterexp
{G 𝜃 |𝑉 ,𝑤𝑉 }, 𝜃 succeeds, then there is a path 𝜋𝑦★0 ,𝑦★1

⊆ N between 𝑦★0 := 𝑦0𝑅−11

and 𝑦★1 := 𝑦1𝑅−10 with C (𝜋𝑦★0 ,𝑦★1
) ≤ 𝑐𝐻 2𝑅𝑤4𝜇𝜉𝜂 and dev𝑦0𝑦1 (𝜋𝑦★0 ,𝑦★1

) ≤ 3𝑐𝐻 𝜉
𝛾 . Indeed, let us order the

elements 𝑦𝜎 of Hhigh lexicographically by their index 𝜎, omitting 𝑦0 and 𝑦1, that is

𝑦★0 = 𝑦0𝑅−11, 𝑦0𝑅−210, 𝑦0𝑅−211, . . . , 𝑦1𝑅−200, 𝑦1𝑅−201, 𝑦1𝑅−10 = 𝑦★1 ,

and notice that 𝑃𝜎 ∈ Hhigh is a path between every consecutive pair of the form 𝑦𝜎01, 𝑦𝜎10 while 𝐽𝜎

is a path between every consecutive pair of the form 𝑦𝜎00, 𝑦𝜎01 or 𝑦𝜎10, 𝑦𝜎11, so the concatenation
forms a connected walk 𝜋+. We then remove any cycles from 𝜋+, passing to an arbitrary sub-path
𝜋𝑦★0 ,𝑦★1

∈ N . Since Hhigh is a (𝛾, 𝑐𝐻𝑤
4𝜇𝜉𝜂 , 𝑤, 𝑐𝐻 ) hierarchy with first level 𝑦0, 𝑦1, by Definition 5.5

(H1) 𝑤𝑦★0
, 𝑤𝑦★1

∈ [𝑤, 4𝑤], and by (H2), the distances |𝑦0 − 𝑦★0 | ≤ 𝑐𝐻 𝜉
𝛾𝑅−1 and |𝑦1 − 𝑦★1 | ≤ 𝑐𝐻 𝜉

𝛾𝑅−1

both hold. Finally, since each edge of 𝜋+ is contained in 𝜋𝑦★0 ,𝑦★1
only once, its cost is at most

C (𝜋𝑦★0 ,𝑦★1
) ≤

∑
𝑒∈𝐸 (𝜋+)

C (𝑒) ≤
∑

𝜎∈{0,1}𝑖 :0≤𝑖≤𝑅−2

mcost1(𝑃𝜎) +
∑

𝜎∈{0,1}𝑅−1\{0𝑅−1 ,1𝑅−1 }
mcost2(𝐽𝜎).

The marginal cost of each 𝑃𝜎 is at most 𝑐𝐻𝑤
4𝜇𝜉𝜂 by Hhigh (see (H3)), and mcost2 (𝐽𝜎) ≤ 𝑤4𝜇 by

construction; since 𝑐𝐻 ≥ 1 it follows that

C (𝜋𝑦★0 ,𝑦★1
) ≤ (2𝑅−1 − 1)𝑐𝐻𝑤

4𝜇𝜉𝜂 + (2𝑅−1 − 2)𝑤4𝜇 < 𝑐𝐻 2𝑅𝑤4𝜇𝜉𝜂 ,

as required by Xhigh-h. The deviation bound 3𝑐𝐻 𝜉
𝛾 also holds since it holds individually for all 𝐽𝜎 and

it holds for Hhigh already by Lemma 5.11.
It remains to lower-bound the probability that Iterexp

{G 𝜃 |𝑉 ,𝑤𝑉 }, 𝜃 succeeds. Again as in Def. 3.8 and
Prop. 3.9, let 𝐻1, 𝐻2 ∼ {G 𝜃/2 | 𝑉, 𝑤𝑉 } independently, let 𝐼 ind

{G 𝜃 |𝑉 ,𝑤𝑉 }, 𝜃 be the result of applying
((F1,U1), (F2,U2)) to 𝐻1 and 𝐻2, and let Aind(𝑆1) be the event that the first round returns the edge set
S ind

1 = 𝑆1. Then Proposition 3.9 followed by a union bound gives similarly to (5.34) that

P(Xhigh-path | 𝑉, 𝑤𝑉 ) ≥ P
(
𝐼

exp
{G 𝜃 |𝑉 ,𝑤𝑉 }, 𝜃 succeeds | 𝑉, 𝑤𝑉

)
≥ 1 − P

(
S ind

1 = None | 𝑉, 𝑤𝑉
)
− max

𝑆1≠None
P
(
S ind

2 = None | Aind(𝑆1)
)
.

(5.38)

We bound both errors on the right-hand side. The event S ind
1 ≠ None can be bounded using Lemma 5.11

with 𝜃 replaced by 𝜃/2, since 𝐻1 ∼ {G 𝜃/2 | 𝑉, 𝑤𝑉 }. All the requirements of Lemma 5.11 are fulfilled
by hypothesis, so the first term on the right-hand side is at most exp

(
−(log log 𝜉)13) by (5.33).

It remains to upper-bound the second term in (5.38). For each 𝑥0, 𝑥1 ∈ N , let Ã𝑥0★𝑥1 be the
event that 𝐻2 contains a two-edge path 𝑥0𝑣𝑥1 ⊆ N of cost at most 𝑤4𝜇 with |𝑥0 − 𝑣 | ≤ 𝑐𝐻 𝜉

𝛾 . If
dev𝑦0𝑦1 (𝑥0) ≤ 2𝑐𝐻 𝜉

𝛾 , this implies dev𝑦0𝑦1 (𝑣) ≤ 3𝑐𝐻 𝜉
𝛾 . Hence, conditioned on Aind(𝑆1), the event

S ind
2 = None occurs only if for some 𝜎 ∈ {0, 1}𝑅−1 \ {0𝑅−1, 1𝑅−1} the complement of the event

Ã𝑦𝜎0★𝑦𝜎1 occurs. Since all the events in Aind(𝑆1) are contained in the 𝜎-algebra generated by 𝐻1, which
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is independent of 𝐻2 given 𝑉, 𝑤𝑉 , we get by a union bound that

max
𝑆1≠None

P
(
S ind

2 = None | Aind(𝑆1)
)

≤ (2𝑅−1 − 2) · max
𝜎∈{0,1}𝑅−1\{0𝑅−1 ,1𝑅−1 }

𝑆1≠None

P
(
Ã�𝑦𝜎0★𝑦𝜎1

| Aind(𝑆1)
)

≤ (2𝑅−1 − 2) · max
𝑦𝜎0 ,𝑦𝜎1≠None

P
(
Ã�𝑦𝜎0★𝑦𝜎1

| 𝑉, 𝑤𝑉
)
,

(5.39)

where the maximum is taken over all possible values of 𝑦𝜎0, 𝑦𝜎1 occurring in non-None 𝑆1. To bound
(5.39), we observe |𝑦𝜎0− 𝑦𝜎1 | ≤ 𝑐𝐻 𝜉

𝛾𝑅−1 and 𝑤𝑦𝜎0 , 𝑤𝑦𝜎1 ∈ [𝑤, 4𝑤] when 𝜎 ∈ {0, 1}𝑅 \ {0𝑅−1, 1𝑅−1},
by Def. 5.5 (H2) and (H1), since Hhigh is a (𝛾, 𝑐𝐻𝑤

4𝜇𝜉𝜂 , 𝑤, 𝑐𝐻 ) hierarchy. Thus we apply Lemma 4.5
with 𝐺 ′ replaced by 𝐻2, 𝜃 replaced by 𝜃/2, 𝐷 = 𝜉𝛾𝑅−1 , 𝑥0 = 𝑦𝜎0, 𝑥1 = 𝑦𝜎1 and all other variables
taking their present values. We verify that the requirements of Lemma 4.5 all hold in order of their
appearance there. 𝛿�★ par by hypothesis and 𝐷 = 𝜉𝛾𝑅−1 ≥ (log log 𝜉

√
𝑑)16𝑑/𝛿2 ≥ (log log 𝜉

√
𝑑)16/𝛿

by assumption, so in particular 𝐷�★ 𝑐𝐻 , 𝛿 and 𝐷 ≥ 𝑤2/𝑑
0 since 𝜉�★ par, 𝛿, 𝑤0. Also, clearly 𝜉𝛾𝑅−1 ≤

𝜉
√
𝑑. Next, we check the distance and weights of 𝑦𝜎0, 𝑦𝜎1. Since 𝑆1 ≠ None, they must lie in N , and

as argued already, satisfy |𝑦𝜎0 − 𝑦𝜎1 | ≤ 𝑐𝐻 𝜉
𝛾𝑅−1

= 𝑐𝐻𝐷 and 𝑤𝑦𝜎0 , 𝑤𝑦𝜎1 ∈ [𝑤, 4𝑤] = [𝐷𝑑/2, 4𝐷𝑑/2].
Finally, the cost-bound in Lemma 4.5 is 𝐷2𝜇𝑑 = 𝜉2𝜇𝑑𝛾𝑅−1

= 𝑤4𝜇 exactly as we require it here, and the
vertex v satisfies |𝑥0 − 𝑣 | ≤ 𝐷 = 𝜉𝛾𝑅−1 ≤ 𝑐𝐻 𝜉

𝛾 , also as required. Lemma 4.5 applies and (5.39) can be
bounded as

max
𝑆1≠None

P
(
S ind

2 = None | Aind(𝑆1)
)
≤ 2𝑅−1 exp

(
−(𝜃2/4)𝜉𝛾𝑅−1 (3−𝜏−2𝛿)𝑑/2

)
≤ 2𝑅−1 exp

(
−(log log 𝜉)15/𝛿 ) ,

where for the second row we used that 𝛿�★ par, so (3 − 𝜏 − 2𝛿)𝑑/2 ≥ 𝛿 and by hypothesis
𝜉𝛾𝑅−1 𝛿 ≥ (log log 𝜉)16/𝛿 and 𝜉�★ 𝜃. This, together with that the first error term in (5.38) was at most
exp

(
−(log log 𝜉)13) concludes the proof of (5.3). �

The goal of this section has been to prove Proposition 5.1 and Corollaries 5.2 and 5.3; now that this
has been achieved, notation internal to this section will no longer be used.

6. Connecting the endpoints 0, 𝑥 to the path

The final step is to connect the initial vertices 0 and x to the respective endpoints 𝑦★0 and 𝑦★𝑥 of the path
constructed in Section 5. We give a brief intuition on how we do this, then state the main result of this
section, followed by the proof of the main theorems (Theorem 1.4-1.6) before the detailed proofs. When
connecting the endpoints, we need to overcome the issue that the construction of the path 𝜋𝑦★0 ,𝑦★𝑥 already
revealed information about the graph: the vertices 𝑦★0 , 𝑦

★
𝑥 are the outcomes of a selection procedure that

might influence the graph around them. For 𝑑 ≥ 2, for some large constant M, we consider the graph𝐺𝑀

induced by the vertices of weight in [𝑀, 2𝑀] restricted to edges with edge costs C𝑒 ≤ 𝑀3𝜇. By a result in
our companion paper [56, Corollary 3.9], this graph has an infinite component11 C𝑀

∞ . We connect 0, 𝑦★0
to respective nearby vertices 𝑢0, 𝑢

★
0 ∈ C𝑀

∞ , and then use that the cost-distance 𝑑C (𝑢0, 𝑢
★
0 ) = Θ(|𝑢0 −𝑢★

0 |)
within C𝑀

∞ . We do the same for 𝑦★𝑥 and x. We ensure that cost-distances are linear in𝐺𝑀 simultaneously
for all ‘candidate’ vertices for 𝑢0 and 𝑢★

0 in Lemma 6.6 below. This overcomes the issue that 𝑦★0 , 𝑦
★
𝑥 are

carefully chosen vertices. To obtain these results, in [56] we use a renormalisation technique to map
𝐺𝑀 to a site-bond percolation on Z𝑑 and ‘pull back’ density and distance results [4, 29] to 𝐺𝑀 . In one
dimension, 𝐺𝑀 does not have an infinite component and the results of [4, 29] do not apply. So, we use

11Here we mean a graph-theoretical component, that is, a component with respect to edge-presence events (edge-costs ignored).
Adopting standard notation we denote this infinite component by C𝑀∞ .
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a finite size approach and consider the graph 𝐺𝑀 with a value M that grows with |𝑥 | to guarantee that
𝐺𝑀 contains a large connected subgraph in the section between 0 and x. We establish the necessary
density and distance bounds ourselves using paths along which the vertex-weight increase followed by
renormalisation. When the graph is finite (e.g., GIRG 𝐺𝑛 in Def. 1.3), we additionally use that (near)-
shortest paths within 𝐺𝑀 have very small deviation from the straight line (see Def. 5.6), so that when
two vertices are not too close to the boundary of the box𝑄𝑛, the constructed path stays in𝑄𝑛. We define
the setting of this section.

Setting 6.1. Consider 1-FPP in Definition 1.1 on the graphs IGIRG or SFP satisfying the assumptions
given in (1.6)–(1.3) with 𝑑 ≥ 1, 𝛼 ∈ (1,∞], 𝜏 ∈ (2, 3), 𝜇 > 0. Let 𝑐, 𝑐, ℎ, 𝐿, 𝑐1, 𝑐2, 𝛽 be as in (1.5)–
(1.3), we allow 𝛽 = ∞ and/or 𝛼 = ∞. Let 𝐺 ∼ G, let F0,𝑥 := {0, 𝑥 ∈ V}, and let C∞ be the (unique)
infinite component of G.

The existence of the infinite component for SFP was proved in [26], for IGIRG in [28, 57]. Uniqueness
proofs exist based on adaptations of the Gandolfi-Keane-Newman argument [36] or on explicit finite-
sized constructions [55, Theorem 3.11] followed by [52]. The two main results of this section are the
following:

Proposition 6.2. Consider Setting 6.1. Suppose that either 𝛼 ∈ (1, 2) or 𝜇 ∈ (𝜇expl, 𝜇log) or both hold,
and let Δ0 be as defined in (1.9), (1.17), or (1.20), depending on whether 𝛼, 𝛽 < ∞, 𝛼 = ∞, or 𝛽 = ∞.
For every 𝑞, 𝜀, 𝜁 > 0 there exists 𝐷 > 0 such that the following holds. For any 𝑥 ∈ R𝑑 let Apolylog be
the event that G contains a path 𝜋0,𝑥 , with endpoints 0 and x, of cost C (𝜋0,𝑥) ≤ (log |𝑥 |)Δ0+𝜀 + 𝐷 and
deviation dev(𝜋0,𝑥) ≤ 𝜁 |𝑥 | + 𝐷. Then P(Apolylog | 0, 𝑥 ∈ C∞) ≥ 1 − 𝑞.

Proposition 6.3. Consider Setting 6.1. Suppose that 𝛼 > 2 and 𝜇 > 𝜇log, and let 𝜂0 be as defined in
(1.10), (1.16), (1.19), or (1.21), depending on 𝛼, 𝛽 < ∞, 𝛽 < 𝛼 = ∞, 𝛼 < 𝛽 = ∞, or 𝛼 = 𝛽 = ∞.
For every 𝑞, 𝜀, 𝛿 > 0 there is 𝐷 > 0 such that the following holds. For any 𝑥 ∈ R𝑑 let Apol be the
event that G contains a path 𝜋0,𝑥 , with endpoints 0 and x, of cost C (𝜋0,𝑥) ≤ |𝑥 |𝜂0+𝜀 + 𝐷 and deviation
dev(𝜋0,𝑥) ≤ 𝜁 |𝑥 | + 𝐷. Then P(Apol | 0, 𝑥 ∈ C∞) ≥ 1 − 𝑞.

We now explain how the proof of the main theorems follow from these propositions.

6.1. Proof of the main theorems

The proofs of Theorems 1.4 and 1.6 follow directly from Propositions 6.2 and 6.3, respectively, and so
do their extensions to 𝛼 = ∞ and/or 𝛽 = ∞ in Theorem 1.11. It remains to prove Theorem 1.10 treating
finite graphs, including its extension to 𝛼 = ∞ and/or 𝛽 = ∞.

Proof of Theorem 1.10. Following Def. 1.3, let 𝐺𝑛 be a finite GIRG obtained by intersecting an IGIRG
𝐺 = (V , E) with a finite cube𝑄𝑛 of volume n, and let 𝑢𝑛, 𝑣𝑛 be two vertices chosen uniformly at random
from V ∩ 𝑄𝑛. For the polylogarithmic case we must prove (1.13). For this, first we prove the slightly
different statement that for two uniformly random positions 𝑥𝑛, 𝑦𝑛 ∈ 𝑄𝑛,

lim
𝑛→∞
P
(
𝑑𝐺𝑛
C (𝑥𝑛, 𝑦𝑛) > (log |𝑥𝑛 − 𝑦𝑛 |)Δ0+𝜀 | 𝑥𝑛, 𝑦𝑛 ∈ C∞

)
= 0. (6.1)

Compared to (1.13), there are two differences. First, C∞ replaces C (𝑛)
max in the conditioning. By [57,

Theorem 3.11] there is a constant 𝜌 > 0 such that a.a.s. |C (𝑛)
max | ≥ 𝜌 |V ∩ 𝑄𝑛 | ≥ 𝜌 |C∞ ∩ 𝑄𝑛 |, and on

the other hand lim𝑛→∞ P
(
C (𝑛)

max ⊆ C∞
)
= 1 since C∞ is unique. Hence, the probability of the conditions

P(𝑢𝑛, 𝑣𝑛 ∈ C (𝑛)
max) and P(𝑢𝑛, 𝑣𝑛 ∈ C∞) differ by at most a constant factor, which means that (1.13) is

equivalent to conditioning on {𝑢𝑛, 𝑣𝑛 ∈ C∞}. Secondly, in (1.13) we draw two random vertices 𝑢𝑛, 𝑣𝑛

from V ∩ 𝑄𝑛, while in (6.1) we draw two random positions 𝑥𝑛, 𝑦𝑛 and condition on those being in
the vertex set. This changes the number of vertices in 𝑄𝑛 from Poisson(𝑛) to Poisson(𝑛)+2. The total
variation distance of these two distributions is vanishing as 𝑛 → ∞, so this difference can also be
ignored, and proving (6.1) implies (1.13).
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To prove (6.1), let 𝐶 > 0 be the constant from Proposition 6.2, let 0 < 𝜁 �★ 𝑞, par and consider
the event Apos(𝑥𝑛, 𝑦𝑛) that |𝑥𝑛 − 𝑦𝑛 | ≥ log 𝑛 and that 𝑥𝑛, 𝑦𝑛 have distance at least 2

√
𝑑𝜁𝑛1/𝑑 from the

boundary of 𝑄𝑛, a box of side-length 𝑛1/𝑑 . Then, since 𝜁 �★ 𝑞, par,

P(Apos (𝑥𝑛, 𝑦𝑛)) ≥ 1 − 𝑞/2. (6.2)

Consider now any given realisation 𝑥𝑛, 𝑦𝑛 ∈ 𝑄𝑛 of the random positions that satisfy Apos(𝑥𝑛, 𝑦𝑛).
By Proposition 6.2 applied with 𝜀6.2 := 𝜀/2, 𝑞6.2 := 𝑞/2, conditional on 𝑥𝑛, 𝑦𝑛 ∈ C∞ there is a path
𝜋𝑥𝑛 ,𝑦𝑛 from 𝑥𝑛 to 𝑦𝑛 with dev(𝜋𝑥𝑛 ,𝑦𝑛 ) ≤ 𝜁 |𝑥𝑛 − 𝑦𝑛 | + 𝐶 ≤ 2

√
𝑑𝜁𝑛1/𝑑 and cost at most C (𝜋) ≤

(log |𝑥𝑛 − 𝑦𝑛 |)Δ0+𝜀/2 + 𝐶 with probability at least 1 − 𝑞/2. Since Apos(𝑥𝑛, 𝑦𝑛) holds, the deviation
bound of 𝜋𝑥𝑛 ,𝑦𝑛 ensures that the path 𝜋𝑥𝑛 ,𝑦𝑛 lies fully within 𝑄𝑛 and thus in 𝐺𝑛. Moreover, since
|𝑥𝑛 − 𝑦𝑛 | ≥ log 𝑛 and n is sufficiently large, C (𝜋) ≤ (log |𝑥𝑛 − 𝑦𝑛 |)Δ0+𝜀/2 + 𝐶 ≤ (log |𝑥𝑛 − 𝑦𝑛 |)Δ0+𝜀 .
Hence, for all n large enough, whenever 𝑥𝑛, 𝑦𝑛 satisfies Apos(𝑥𝑛, 𝑦𝑛),

P
(
𝑑𝐺𝑛
C (𝑥𝑛, 𝑦𝑛) ≤ (log |𝑥𝑛 − 𝑦𝑛 |)Δ0+𝜀 | 𝑥𝑛, 𝑦𝑛 ∈ C∞

)
≥ 1 − 𝑞/2. (6.3)

Since q was arbitrary, together with (6.2), this proves (6.1) and concludes the proof for the polylogarithmic
case of Theorem 1.10 (including the extensions for 𝛼 = ∞, and/or 𝛽 = ∞). The polynomial case is
identical except that we use Proposition 6.3 instead of Proposition 6.2. �

In the rest of the section we prove Propositions 6.2-6.3.

6.2. Infinite weight increasing paths

We first show a simple variant of [55, Lemma 4.3]; this lemma says that any suitably high-weight vertex
is very likely to lie at the start of an infinite weight-increasing path. These weight increasing paths are
necessary in dimension 1 where 𝐺𝑀 does not percolate. Let

V𝑀 := {𝑣 ∈ V : 𝑤𝑣 ∈ [𝑀, 2𝑀]}.
𝐺𝑀 := (V𝑀 , E𝑀 ) E𝑀 := {𝑢, 𝑣 ∈ V𝑀 , C𝑢𝑣 ≤ 𝑀3𝜇}.

(6.4)

Lemma 6.4. Consider Setting 6.1 with 𝑑 = 1. Let 𝜀, 𝛿 ∈ (0, 1) with 𝜀, 𝛿, �★ par, and let
𝑀0 �★ 𝜖, 𝛿, par. Let 𝑧 ∈ R (or Z for SFP), and for all 𝑖 ≥ 0 define, 𝑀𝑖 := 𝑀 (1+𝜀)𝑖

0 , 𝑅𝑖 := 𝑀 (1+𝛿) (𝜏−1)
𝑖 ,

and 𝐼𝑖 := [𝑧, 𝑧 + 𝑅𝑖]. Let Ainc(𝑀0, 𝜀, 𝑧) be the event that there is an infinite path 𝜋𝑧 = 𝑧0𝑧1 . . . in G
starting at 𝑧 =: 𝑧0 such that for all 𝑖 ≥ 1 we have 𝑧𝑖 ∈ (𝐼𝑖 \ 𝐼𝑖−1) ∩ V𝑀𝑖 . Then

P(Ainc(𝑀0, 𝜀, 𝑧)� | 𝑧 ∈ V𝑀0) ≤ exp(−𝑀 𝛿 (𝜏−1)/4
0 ). (6.5)

The bound remains true if we additionally condition on 𝑦 ∈ V for any 𝑦 ∈ R \ {𝑧} for GIRG.

Proof. The proof is very similar to [55, Lemma 4.3], which uses a similar construction but in more than
one dimension and with less control over the weights. For all 𝑗 ≥ 1, let A 𝑗

inc be the event that there is a
path 𝜋𝑧 = 𝑧0𝑧1 . . . 𝑧 𝑗 in G with 𝑧0 := 𝑧 such that for all 𝑖 ∈ [ 𝑗] we have 𝑧𝑖 ∈ (𝐼𝑖 \ 𝐼𝑖−1) ∩ V𝑀𝑖 . Let A0

inc
be the empty event. Then

P
(
Ainc(𝑀0, 𝜀, 𝑧)� | 𝑧 ∈ V𝑀0

)
=

∞∑
𝑖=1
P
(
(A𝑖

inc)
� | A𝑖−1

inc and 𝑧 ∈ V𝑀0

)
. (6.6)

We now bound each term in the sum of (6.6) above. Fix 𝑖 ≥ 1. Observe that A𝑖−1
inc only depends on

𝐺 [𝐼𝑖−1]. Let𝐺 ′ be a possible value (realisation) of𝐺 [𝐼𝑖−1] which impliesA𝑖−1
inc . Then we can decompose

the conditioning in (6.6) by conditioning on events of the type F𝑖−1 := {𝐺 [𝐼𝑖−1] = 𝐺 ′} ∩ {𝑧 ∈ V𝑀0 } and
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later integrating over the possible realisations 𝐺 ′. Given 𝐺 ′ satisfying A𝑖−1
inc , fix the vertices 𝑧0, . . . , 𝑧𝑖−1

ensuring A𝑖−1
inc . Let A𝑖

vert be the event that | (𝐼𝑖 \ 𝐼𝑖−1) ∩ V𝑀𝑖 | ≥ 𝑀 𝛿 (𝜏−1)/2
𝑖 ; then

P
(
(A𝑖

inc)
� | F𝑖−1

)
≤ P

(
(A𝑖

vert)� | F𝑖−1
)
+ P

(
(A𝑖

inc)
� | A𝑖

vert ∩ F𝑖−1
)
. (6.7)

By (1.6), the number of vertices in (𝐼𝑖 \ 𝐼𝑖−1) ∩ V𝑀𝑖 is independent of F𝑖−1 and is either a Poisson
variable (for IGIRG) or a binomial variable (for SFP), in both cases with mean at least

(𝑅𝑖 − 𝑅𝑖−1 − 1)
(
ℓ(𝑀𝑖)
𝑀 𝜏−1

𝑖

− ℓ(2𝑀𝑖)
(2𝑀𝑖)𝜏−1

)
≥ 2𝑀 𝛿 (𝜏−1)/2

𝑖 ,

where we used that ℓ is slowly varying, 𝜏 > 2, and 𝑀𝑖 > 𝑀0 �★ par to obtain the last bound. In both
IGIRG and SFP, it follows by concentration bounds (Theorem A.1) that

P
(
(A𝑖

vert)� | F𝑖−1
)
≤ exp(−𝑀 𝛿 (𝜏−1)/2

𝑖 ). (6.8)

We next lower-bound the probability that 𝑧𝑖−1 is connected to any given 𝑧′ ∈ (𝐼𝑖 \ 𝐼𝑖−1) ∩ V𝑀𝑖 . Let
(𝑉, 𝑤𝑉 ) be a possible value of Ṽ which implies A𝑖

vert, and suppose that 𝑧′ ∈ (𝐼𝑖 \ 𝐼𝑖−1) ∩ V𝑀𝑖 for
Ṽ = (𝑉, 𝑤𝑉 ). The distance between 𝑧𝑖−1 and 𝑧′ is at most 𝑅𝑖 , and vertices have weight in [𝑀, 2𝑀] in
V𝑀 , so by (1.5) (remembering that 𝑑 = 1),

P(𝑧𝑖−1𝑧
′ ∈ E | (𝑉, 𝑤𝑉 ),F𝑖−1) ≥ 𝑐 · min

{
1, 𝑀𝑖−1 𝑀𝑖

𝑅𝑖

}𝛼

= 𝑐 · min
{
1, 𝑀 (1+𝜀)𝑖−1 [2+𝜀−(1+𝜀) (1+𝛿) (𝜏−1) ]

0

}𝛼
.

(6.9)

Since 𝜀, 𝛿�★ par and 𝜏 < 3 we have (1+𝜀) (1+ 𝛿) (𝜏−1) < 2; thus the exponent on the right-hand side
of (6.9) is positive and we obtain that the minimum is at 1 on the right hand side. By A𝑖

vert (defined above
(6.7)) there are at least 𝑀 𝛿 (𝜏−1)/2

𝑖 such vertices 𝑧′, each joined to 𝑧𝑖−1 independently with probability
𝑐 ∈ (0, 1). Thus,

P
(
(A𝑖

inc)
� | A𝑖

vert ∩ F𝑖−1
)
≤ (1 − 𝑐)𝑀 𝛿 (𝜏−1)/2

𝑖 ≤ exp(−𝑐𝑀 𝛿 (𝜏−1)/2
𝑖 ). (6.10)

Combining (6.7), (6.8) and (6.10) and using 𝑀𝑖 ≥ 𝑀0 �★ par, 𝛿 yields

P
(
(A𝑖

inc)
� | F𝑖−1

)
≤ exp(−𝑀 𝛿 (𝜏−1)/2

𝑖 ) + exp(−𝑐𝑀 𝛿 (𝜏−1)/2
𝑖 ) ≤ exp(−𝑀 𝛿 (𝜏−1)/3

𝑖 ).

Substituting this bound into (6.6) and using 𝑀0 �★ par, 𝛿 then yields the required bound of

P
(
Ainc(𝑀0, 𝜀, 𝑧)� | 𝑧 ∈ V𝑀0

)
≤

∞∑
𝑖=1

exp(−𝑀 𝛿 (𝜏−1)/3
𝑖 ) ≤ exp(−𝑀 𝛿 (𝜏−1)/4

0 ).

The bound remains true if we additionally condition also on 𝑦 ∈ V: there is a unique index i so that
𝑦 ∈ 𝐼𝑖 \ 𝐼𝑖−1. The number of points in this interval changes by one, but the concentration bound in (6.8)
still remains valid under the conditioning. �

6.3. Being part of the infinite component

The next lemma is a technical necessity to remove conditioning on membership of C∞ later.

Lemma 6.5. Consider Setting 6.1. There exists 𝜌 > 0 such that for all distinct 𝑎, 𝑏 ∈ R𝑑 , we have
P(𝑎, 𝑏 ∈ C∞ | 𝑎, 𝑏 ∈ V) ≥ 𝜌.
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Proof. For 𝑑 ≥ 2, this is [56, Claim 3.10]. For 𝑑 = 1, we instead apply Lemma 6.4. Intuitively, once
the vertices have weight in 𝑀0, 2𝑀0 they will both have weight-increasing paths whp, so 𝜌 can be taken
slightly less then the probability that both vertices have weight in this interval. Wlog, suppose 𝑎 < 𝑏.
Let 𝑀0 > 1 and 0 < 𝛿, 𝜀 < 1 with 𝛿, 𝜀�★ par and 𝑀0 �★ 𝛿, 𝜀, par. Let Apath(𝑎) be the event that
𝑎 ∈ V lies in an infinite component of 𝐺 [[𝑎,∞)] (that is, G restricted to the spatial interval [𝑎,∞)),
and let Apath(𝑏) be the event that b lies in an infinite component of 𝐺 [(−∞, 𝑏]]. By Lemma 6.4, (and
the last sentence there), we have

P
(
Apath(𝑎)� | 𝑏 ∈ V , 𝑎 ∈ V𝑀0

)
+ P

(
Apath(𝑏)� | 𝑎 ∈ V , 𝑏 ∈ V𝑀0

)
≤ 2 exp(−𝑀 𝛿 (𝜏−1)/4

0 ),

Thus by a union bound,

P(Apath(𝑎) ∩Apath(𝑏) | 𝑎, 𝑏 ∈ V) ≥ P(𝑎, 𝑏 ∈ V𝑀0 | 𝑎, 𝑏 ∈ V) − 2 exp(−𝑀 𝛿 (𝜏−1)/4
0 ). (6.11)

By (1.6), since 𝑀0 �★ par, 𝜏 > 2, and ℓ is slowly varying, we have

P(𝑎, 𝑏 ∈ V𝑀0 | 𝑎, 𝑏 ∈ V) =
(
ℓ(𝑀0)
𝑀 𝜏−1

0
− ℓ(2𝑀0)

(2𝑀0)𝜏−1

)2

≥
(
ℓ(𝑀0)
4𝑀 𝜏−1

0

)2

≥ 1
𝑀3(𝜏−1)

0

.

Since 𝑀0 �★ 𝛿, par, it follows from (6.11) that

P(Apath(𝑎) ∩Apath(𝑏) | 𝑎, 𝑏 ∈ V) ≥ 𝑀−3(𝜏−1)
0 − 2 exp(−𝑀 𝛿 (𝜏−1)/4

0 ) > 𝑀−3(𝜏−1)
0 /2;

since C∞ is a.s. unique, the result therefore follows by taking 𝜌 := 𝑀−3(𝜏−1)
0 /2. �

6.4. Embedded random geometric graphs.

The next lemma, that we prove in the companion paper [56], is the main tool of the section. We first
need some definitions. Recall V𝑀 , 𝐺

𝑀 from (6.4). We use the notation 𝜋𝑎,𝑏 for a path between vertices
a and b. Let 𝑟, 𝜅, 𝜁 , 𝐶 > 0 and 𝑧 ∈ R𝑑 . We say that a set of vertices H ⊆ V𝑀 is r-strongly dense around
𝑧 ∈ R𝑑 in V𝑀 if the following event holds:

Adense(H,V𝑀 , 𝑟, 𝑧) :=
{
∀𝑦 ∈ 𝐵𝑟 (𝑧) :

��𝐵𝑟1/3 (𝑦) ∩H
�� ≥ |𝐵𝑟1/3 (𝑦) ∩ V𝑀 |/2

}
. (6.12)

In words, the setH has local density 1/2 around every vertex y near z. The subtlety here is that we require
smaller radius around y then its distance bound from z. Consider two sets of vertices H ⊆ H′ ⊆ V and
a graph G on V . We say that H shows r-strongly 𝜅-linear distances with deviation 𝜁 in 𝐺 [H′] around
𝑧 ∈ R𝑑 if the following event holds:

Alinear (H, 𝐺 [H′], 𝑟, 𝜅, 𝜁 , 𝐷, 𝑧) :=
{
∀𝑎 ∈ B𝑟 (𝑧) ∩H, ∀𝑏 ∈ H : ∃ a path 𝜋𝑎,𝑏 ⊆ 𝐺 [H′] with

C (𝜋𝑎,𝑏) ≤ 𝜅 |𝑎 − 𝑏 | + 𝐷, dev(𝜋𝑎,𝑏) ≤ 𝜁 |𝑎 − 𝑏 | + 𝐷
}
.

(6.13)

For 𝑑 ≥ 2, we will choose H′ to be the vertex set of the infinite component C𝑀
∞ . For 𝑑 = 1, we will

simply set H,H′ to V𝑀 , restricted to some finite interval. The meaning of the event Alinear is that
between every vertex in H near z and every other vertex in H there is a path in 𝐺 [H′] with uniform
bounds on the length and deviation of these paths. Finally, we say that a set H is (𝑟, 𝐷)-near to 𝑧 ∈ V
in G if the following event holds:

Anear (H, 𝐺, 𝑟, 𝐷, 𝑧) :=
{
∃ a path 𝜋𝑧,𝑎 ∈ 𝐺 to some 𝑎 ∈ 𝐵𝑟 (𝑧) ∩H with

C (𝜋𝑧,𝑎) ≤ 𝐷, dev(𝜋𝑧,𝑎) ≤ 𝐷
}
.

(6.14)
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The meaning of this event is the following:H is the ‘good’ set of vertices where distances scale uniformly
linearly. Anear says that the set H is reachable from a vertex z via a cheap path with small deviation. For
𝑑 = 2, these events are ‘typical’ for a dense subset of vertices in the infinite component of 𝐺𝑀 :

Lemma 6.6. Consider Setting 6.1 and assume 𝑑 ≥ 2. Let 𝑀, 𝑟1, 𝑟2, 𝐷, 𝜅 > 0 and 𝑞, 𝜁 ∈ (0, 1).
Whenever 𝐷�★ 𝑟2 and 𝑟1, 𝑟2 �★ 𝑀, 𝜁, 𝑞, par, and 𝜅�★ 𝑀 , then a.s. a unique infinite component C𝑀

∞
of 𝐺𝑀 exists and there is an infinite-sized vertex set H∞ ⊆ C𝑀

∞ determined by (Ṽ , E (𝐺𝑀 )) so that
𝐺𝑀 [H∞] is connected, and for all 𝑧 ∈ R𝑑 ,

P(Adense (H∞,V𝑀 , 𝑟1, 𝑧)) ≥ 1 − 𝑞/10, P(Anear (H∞, 𝐺, 𝑟2, 𝐷, 𝑧) | 𝑧 ∈ C∞) ≥ 1 − 𝑞/10, (6.15)

P(Alinear (H∞,C𝑀
∞ , 𝑟2, 𝜅, 𝜁 , 𝐷, 𝑧)) ≥ 1 − 𝑞/10. (6.16)

The statement remains valid conditioned on F𝑦,𝑧 = {𝑦, 𝑧 ∈ V}; moreover, the constraints on 𝐷, 𝑟, 𝑀, 𝜅
are uniform over {F𝑦,𝑧 : 𝑦, 𝑧 ∈ R𝑑}.

We mention that D depends on 𝑟2 but not on 𝑟1, this caused the need of the separate notation 𝑟1, 𝑟2.

Proof. The lemma follows from results in [56]. There, we show that H∞ exists, and is infinite and
connected in𝐺𝑀 in Corollary 3.9(ii), by using a renormalisation to site-bond percolation. The 𝑟2-strong
𝜅-linearity comes from Corollary 3.9(iv) in [56] applied with 𝑟3.9 = 𝑟2 and 𝐶3.9 = 𝐷, and the (𝑟2, 𝐷)-
near property comes from [56, Claim 3.11]. Moreover, we can apply [56, Corollary 3.9(iii)] with 𝑟3.9 = 𝑟1
to get the 𝑟1-dense property with (log 𝑟1)2 instead of 𝑟1/3

1 and arbitrary density 1 − 𝜀 instead of 1/2 in
(6.12). This is a strictly stronger statement since we can cover any ball of radius 𝑟1/3

1 with balls of radius
(log 𝑟1)2, at the cost of increasing the fraction 𝜀 of noncovered vertices by a d-dependent factor. �

For 𝑑 = 1, the graph 𝐺𝑀 does not have an infinite component for any M and the proof techniques
in Lemma 6.6 do not apply. Instead, we directly prove the following analogous statement for 𝐺𝑀 in a
finite interval. In the events Anear,Alinear, we replace C𝑀

∞ by the graph𝐺𝑀 restricted to an M-dependent
(spatial) interval.

Lemma 6.7 Consider Setting 6.1 with 𝑑 = 1. Let 𝑞, 𝜁 ∈ (0, 1), 𝑟𝑀 := 𝑒 (log 𝑀 )2 , 𝜅𝑀 := 𝑀3𝜇+2 and
𝐷𝑀 := 𝑀2(𝜏−1)+3𝜇. Let 𝑧 ∈ R𝑑 , and H𝑀 := 𝐵2𝑟𝑀 (𝑧) ∩ V𝑀 . Then whenever 𝑀�★ 𝑞, par,

P(Adense (H𝑀 ,V𝑀 , 𝑟𝑀 , 𝑧)) = 1, P(Anear (H𝑀 , 𝐷𝑀 , 𝐷𝑀 , 𝑧) | 𝑧 ∈ C∞) ≥ 1 − 𝑞/10, (6.17)

P(Alinear (H𝑀 , 𝐺
𝑀 , 𝑟𝑀 , 𝜅𝑀 , 0, 2𝜅𝑀 , 𝑧)) ≥ 1 − 𝑞/10. (6.18)

The statement remains valid conditioned on F𝑦,𝑧 = {𝑦, 𝑧 ∈ V}; moreover, the constraints on 𝑟𝑀 are
uniform over {F𝑦,𝑧 : 𝑦, 𝑧 ∈ R𝑑}.

Proof. We write 𝑟𝑀 =: 𝑟 . Since H𝑀 = 𝐵2𝑟 (𝑧) ∩ V𝑀 , that is, all vertices in V𝑀 in 𝐵2𝑟 (𝑧) belong to
H𝑀 , also all vertices in 𝐵𝑟1/3 (𝑦) ∩ V𝑀 are in H𝑀 for all 𝑦 ∈ 𝐵𝑟 (𝑧), so the event Adense(H,V𝑀 , 𝑟, 𝑧)
always occurs by definition, as required by (6.17).

We next prove (6.18). Here, we need to prove that for every 𝑎 ∈ B𝑟 (𝑧) ∩H𝑀 and every ∀𝑏 ∈ H𝑀

there is a path 𝜋𝑎,𝑏 ⊆ 𝐺𝑀 with

C (𝜋𝑎,𝑏) ≤ 𝜅𝑀 |𝑎 − 𝑏 | + 2𝜅𝑀 , dev(𝜋𝑎,𝑏) ≤ 2𝜅𝑀 .

We divide 𝐵2𝑟 (𝑧) into sub-interval ‘cells’ and proving that each cell is whp both connected and
joined to each of its adjacent cells in 𝐺 [H𝑀 ]. To this end, let 𝑅 := 𝑀2/𝑑/(2

√
𝑑) = 𝑀2/2, let

𝑖max := �2𝑟/𝑅� and 𝑖min := −𝑖max. For all 𝑖 ∈ [𝑖min, 𝑖max], let 𝑦𝑖 := 𝑧 + 𝑖 · 𝑅 and 𝑄 (𝑖) := [𝑦𝑖 , 𝑦𝑖 + 𝑅);
thus 𝑄 (𝑖min ) , . . . , 𝑄 (𝑖max ) partition [𝑧 − 𝑅�2𝑟/𝑅�, 𝑧 + (𝑅 + 1) �2𝑟/𝑅�) ⊃ 𝐵2𝑟 (𝑧). Let Apath be the event
that 𝐺𝑀 [𝑄 (𝑖min ) ], . . . , 𝐺𝑀 [𝑄 (𝑖max ) ] are connected graphs containing at most 2𝑅 vertices and that for
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all 𝑖 ∈ [𝑖min, 𝑖max − 1] there is at least one edge in 𝐺𝑀 from 𝑄 (𝑖) to 𝑄 (𝑖+1) . If Apath occurs, then
for all 𝑎, 𝑏 ∈ 𝐵2𝑟 (𝑧) ∩ V𝑀 = H𝑀 there is a path 𝜋𝑎,𝑏 from a to b in 𝐺𝑀 intersecting at most
�|𝑎 − 𝑏 |/𝑅� + 2 ≤ |𝑎 − 𝑏 |/𝑅 + 2 many cells; since each cell contains at most 2𝑅 vertices and each edge
in 𝐺𝑀 has cost penalty at most 𝑀3𝜇 by (6.4), and since 2𝑅𝑀3𝜇 = 𝜅𝑀 , it follows that

C (𝜋𝑎,𝑏) ≤ (|𝑎 − 𝑏 |/𝑅 + 2) · 2𝑅 · 𝑀3𝜇 = 2(|𝑎 − 𝑏 | + 2𝑅) · 𝑀3𝜇 ≤ 𝜅𝑀 |𝑎 − 𝑏 | + 2𝜅𝑀 .

Moreover, since 𝜋𝑎𝑏 can leave the interval [𝑎, 𝑏] at most by the lengths of cells containing a and b, so
the deviation of 𝜋𝑎,𝑏 is at most 2𝑅, and 2𝑅 < 𝜅𝑀 , that is, it does not depend on |𝑎 − 𝑏 |. With 𝜁 = 0 and
𝐷 = 2𝜅𝑀 , we have just shown that

Alinear (H𝑀 , 𝐺
𝑀 , 𝑟𝑀 , 𝜅𝑀 , 0, 2𝜅𝑀 , 𝑧) ⊆ Apath. (6.19)

We now bound P(Apath) below. We only sketch the proof, the details can be found in [56, Corollary 3.9]
Consider any two vertices in V𝑀 in either the same or in neighbouring cell. We use that the weights are
in [𝑀, 2𝑀] and the distance is at most 2𝑅 = 𝑀2, so for all 𝛼 ∈ [1,∞], it holds that

P
(
𝑢𝑣 ∈ E , C (𝑢𝑣) ≤ 𝑀3𝜇 | 𝑢, 𝑣 ∈ V𝑀 [𝑄 (𝑖) ∪𝑄 (𝑖+1) ]

)
(6.20)

≥ 𝑐
(
1 ∧ 𝑊𝑢𝑊𝑣

|𝑢 − 𝑣 |𝑑

)𝛼

· 𝐹𝐿
(
(𝑊𝑢𝑊𝑣 )−𝜇𝑀3𝜇 ) ≥ 𝑐𝐹𝐿 (4−𝜇𝑀𝜇) ≥ 𝑐/2. (6.21)

The number of vertices in each box is Poisson with mean/deterministic 𝑅P(𝑊 ∈ [𝑀, 2𝑀]) ≥ 𝑀3−𝜏−𝜀

for some 𝜀�★ par with 𝑀�★ 𝜀. We can then couple the induced graph in each cell to an Erdős-
Rényi random graph and use estimates on the probability that it forms a connected graph [35]. We use
concentration of the number of low cost edges between two neighbouring cells using (6.20). So, a single
cell 𝑄 (𝑖) satisfies the conditions in Apath with probability at least 1 − 𝑒−𝑀 3−𝜏−𝜀 for some 𝜀�★ par with
𝑀�★ 𝜀. A union bound over the at most 2 · �2𝑟/𝑅� + 1 cells yields that

P(Apath) ≥ 1 − (2 · �2𝑟/𝑅� + 1) · 𝑒−𝑀 3−𝜏−𝜀 ≥ 1 − 5𝑟𝑒−𝑀 3−𝜏−𝜀
.

Since 𝑟 = 𝑒 (log 𝑀 )2 and 𝑀�★ par, the 𝑒−𝑀 3−𝜏−𝜀 term dominates, and together with (6.19) and
𝑀�★ 𝑐, 𝑞, for any 𝑞 < 1 we obtain P(Alinear (H𝑀 ,H𝑀 , 𝑟, 𝜅, 0, 2𝜅, 𝑧)) ≥ 1− 𝑞/10, and we have proved
(6.18) as required. The argument conditioned on F0,𝑥 is identical. In dimensions 𝑑 ≥ 2 [56, Corollary
3.9(i)] also explicitly allows for planted vertices.

It remains to bound P(Anear (H𝑀 , 𝐷𝑀 , 𝐷𝑀 , 𝑧)) conditioned on 𝑧 ∈ C∞, see (6.14) for the definition
of Anear. Here, we replaced the ‘usual’ radius 𝑟𝑀 = exp((log𝑀)2) by 𝐷𝑀 = 𝑀2(𝜏−1)+3𝜇 � 𝑟𝑀 ,
that is, we can find a path from z to a vertex with weight M within a much smaller radius from z
that 𝑟𝑀 would give. We first dominate Anear (H𝑀 , 𝐷𝑀 , 𝐷𝑀 , 𝑧) below by events A1 to A4 defined as
follows. Let 𝜌�★ par be as in Lemma 6.5, and define 𝑀0 > 0 satisfying 𝑀�★ 𝑀0 �★ 𝑞, 𝜌, par, and
let 𝑟0 := 𝑀2(𝜏−1)

0 . By Lemma 6.4 we know that a.s. C∞ contains a vertex in V𝑀0 , and let 𝑣0 be an
(arbitrarily chosen) closest such vertex to z in Euclidean distance. We define the following events:
(C1) A1: there is a path 𝜋𝑧,𝑣0 from z to 𝑣0 with C (𝜋𝑧,𝑣0) ≤ 𝐷𝑀/2 and V (𝜋𝑧,𝑣0 ) ⊆ 𝐵𝐷𝑀 (𝑧);
(C2) A2: 𝐵𝑟0 (𝑧) contains a vertex in V𝑀0 ∩ C∞, that is, 𝑣0 ∈ 𝐵𝑟0 (𝑧);
(C3) A3: every vertex 𝑥 ∈ 𝐵𝑟0 (𝑧) ∩ V𝑀0 has an associated path 𝜋𝑥→V𝑀 from x to some vertex in V𝑀

with V (𝜋𝑥→V𝑀 ) ⊂ 𝐵𝐷𝑀 (𝑧); and
(C4) A4: A2 and A3 both occur and C (𝜋𝑣0→V𝑀 ) ≤ 𝑀3𝜇 ≤ 𝐷𝑀/2.
Observe that if A1, A2, A3 and A4 all occur then concatenating 𝜋𝑧,𝑣0 and 𝜋𝑣0→V𝑀 yields the path
required by Anear (H𝑀 , 𝐷𝑀 , 𝐷𝑀 , 𝑧); thus

P
(
Anear (H𝑀 , 𝐷𝑀 , 𝐷𝑀 , 𝑧)� | 𝑧 ∈ C∞

)
≤

3∑
𝑖=1
P
(
A�𝑖 | 𝑧 ∈ C∞

)
+ P

(
A�4 | A2,A3, 𝑧 ∈ C∞

)
.
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By Lemma 6.5, z is in the infinite component of G with probability at least 𝜌, so it follows that

P
(
Anear (H𝑀 , 𝐷𝑀 , 𝐷𝑀 , 𝑧)� | 𝑧 ∈ C∞

)
≤ P

(
A�1 | 𝑧 ∈ C∞

)
+

P
(
A�2 | 𝑧 ∈ V

)
/𝜌 + P

(
A�3 | 𝑧 ∈ V

)
/𝜌 + P

(
A�4 | A2,A3, 𝑧 ∈ V

)
/𝜌.

(6.22)

We first bound P
(
A�1 | 𝑧 ∈ C∞

)
in (C1). Given that we fixed 𝑣0, let 𝜋𝑧,𝑣0 be an (arbitrarily chosen)

cheapest path from z to 𝑣0; such a path must exist whenever 𝑧 ∈ C∞. Since C (𝜋𝑧,𝑣0) and inf{𝑅 >
0: V (𝜋𝑧,𝑣0 ) ⊆ 𝐵𝑅 (𝑧)} are a.s.finite random variables and since 𝐷𝑀 �★ 𝑞, par, 𝑀0, we can choose 𝐷𝑀

sufficiently large so that

P
(
A�1 | 𝑧 ∈ C∞

)
≤ 𝑞/40. (6.23)

We next bound P
(
A�2 | 𝑧 ∈ V

)
in (C2). The event A2 occurs if and only if 𝐵𝑟0 (𝑧) ∩ V𝑀0 ∩ C∞ ≠ ∅.

Similarly as before, |𝐵𝑟0 (𝑧) ∩ V𝑀0 | is either a Poisson variable (in IGIRG) or a binomial variable (in
SFP) with mean

E[|𝐵𝑟0 (𝑧) ∩ V𝑀0 | | 𝑧 ∈ V] ≥ 𝑟0

(
ℓ(𝑀0)
𝑀 𝜏−1

0
− ℓ(2𝑀0)

(2𝑀0)𝜏−1

)
≥ 2𝑀 (𝜏−1)/2

0 , (6.24)

where we used 𝑀0 �★ par and the value of 𝑟0 = 𝑀2(𝜏−1)
0 for the second inequality. In particular, by

Chernoff’s bound,

P(|𝐵𝑟0 (𝑧) ∩ V𝑀0 | < 𝑀
(𝜏−1)/2
0 | 𝑧 ∈ V) ≤ exp(−𝑀 (𝜏−1)/8

0 ). (6.25)

Let 𝜀, 𝛿 ∈ (0, 1) satisfy 𝛿, 𝜀−1�★ par and 𝑀0 �★ 𝛿, 𝜀. Recall the event Ainc(𝑀0, 𝜀, 𝑥) about having an
infinite weight-increasing path from Lemma 6.4; this event implies {𝑥 ∈ C∞}. So by (6.5) in Lemma 6.4,
P(𝑥 ∉ C∞ | 𝑥 ∈ V𝑀0 ) ≤ exp(−𝑀 𝛿 (𝜏−1)/4

0 ) for some 𝛿�★ par with 𝑀0 �★ 𝛿. By translation invariance,
this implies

P(𝑥 ∉ C∞ | 𝑥 ∈ 𝐵𝑟0 (𝑧) ∩ V𝑀0 , 𝑧 ∈ V) ≤ exp(−𝑀 𝛿 (𝜏−1)/4
0 ).

Hence, the expected number of vertices in V𝑀0 outside the infinite component is at most

E[|(𝐵𝑟0 (𝑧) ∩ V𝑀0) \ C∞| | 𝑧 ∈ V] ≤ E[|𝐵𝑟0 (𝑧) ∩ V𝑀0 | | 𝑧 ∈ V] · exp(−𝑀 𝛿 (𝜏−1)/4
0 )

≤ E[|𝐵𝑟0 (𝑧) ∩ V | | 𝑧 ∈ V] · exp(−𝑀 𝛿 (𝜏−1)/4
0 ) ≤ (2𝑟0 + 1) exp(−𝑀 𝛿 (𝜏−1)/4

0 ),

which is a crude upper bound. It follows by Markov’s inequality that

P(|(𝐵𝑟0 (𝑧) ∩ V𝑀0 ) \ C∞| ≥ 𝑀 (𝜏−1)/2
0 /2 | 𝑧 ∈ V) ≤

(2𝑟0 + 1) exp(−𝑀 𝛿 (𝜏−1)/4
0 )

𝑀 (𝜏−1)/2
0 /2

≤ exp(−𝑀 𝛿 (𝜏−1)/8
0 ),

(6.26)

where we used 𝑟0 = 𝑀2(𝜏−1)
0 and 𝑀0 �★ 𝛿, par. By a union bound over (6.25) and (6.26),

P
(
A�2 | 𝑧 ∈ V

)
≤ exp(−𝑀 (𝜏−1)/8

0 ) + exp(−𝑀 𝛿 (𝜏−1)/8
0 ) ≤ 𝜌𝑞/40, (6.27)

for all sufficiently large 𝑀0. We next bound P
(
A�3 | 𝑧 ∈ V

)
in (C3). For all 𝑥 ∈ 𝐵𝑟0 (𝑧) ∩ V𝑀0 , let A3(𝑥)

be the event that x has an associated path 𝜋𝑥→V𝑀 as in A3. We restrict this path to be a weight-increasing
path as in Lemma 6.4. Let 𝜀, 𝛿 ∈ (0, 1) satisfy 𝛿, 𝜀�★ par, and require that 𝑀0 �★ 𝛿, 𝜀. For sufficiently
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large M, we may choose 𝑀0 such that 𝑖 := (log log𝑀 − log log𝑀0)/log(1 + 𝜀) ≤ log𝑀 is an integer,
so 𝑀 (1+𝜀)𝑖

0 = 𝑀 . Then by Lemma 6.4, for any given 𝑥 ∈ 𝐵𝑟0 (𝑧), the weight increasing path reaches a
vertex of weight M at radius 𝑅𝑖 = 𝑀 (1+𝜀)𝑖 (𝜏−1) (1+𝛿)

0 = 𝑀 (𝜏−1) (1+𝛿) < 𝑀2(𝜏−1)+3𝜇 = 𝐷𝑀 , and so the
path is contained in 𝐵𝐷𝑀 (𝑧), and we obtain

P
(
A3(𝑥)� | 𝑥 ∈ V𝑀0 , 𝑧 ∈ V

)
≤ P

(
Ainc(𝑀0, 𝜀, 𝑥)� | 𝑥 ∈ V𝑀0 , 𝑧 ∈ V

)
≤ exp(−𝑀 𝛿 (𝜏−1)/4

0 ).
(6.28)

It follows by a union bound that

P
(
A�3 | 𝑧 ∈ V

)
≤ P(|𝐵𝑟0 (𝑧) ∩ V𝑀0 | ≥ 𝑟0 | 𝑧 ∈ V) + 𝑟0 exp(−𝑀 𝛿 (𝜏−1)/4

0 ).

As before |𝐵𝑟0 (𝑧) ∩ V𝑀0 | is either a Poisson variable (in IGIRG) or a binomial variable (in SFP) with
mean bounded from above

E(|𝐵𝑟0 (𝑧) ∩ V𝑀0 | | 𝑧 ∈ V) ≤ 2𝑟0

(
ℓ(𝑀0)
𝑀 𝜏−1

0
− ℓ(2𝑀0)

(2𝑀0)𝜏−1

)
≤ 𝑟0𝑀

−(𝜏−1)/2
0 .

Therefore P(|𝐵𝑟0 (𝑧) ∩ V𝑀0 | ≥ 𝑟0 | 𝑧 ∈ V) ≤ 2−𝑟0 and we get

P
(
A�3 | 𝑧 ∈ V

)
≤ 2−𝑟0 + 𝑟0 exp(−𝑀 𝛿 (𝜏−1)/4

0 ) ≤ 𝜌𝑞/40, (6.29)

where the second inequality holds because because 𝑟0 = 𝑀2(𝜏−1)
0 and 𝑀0 �★ 𝛿, 𝜌, 𝑞, par.

Finally we bound the last term in (6.22), (see A4 in (C4)). Conditioned on the realisation of G, any
path 𝜋𝑣0→V𝑀 that satisfies the weight-increasing path property in (6.28) has at most log𝑀 edges and
all vertex weights at most M. So, its expected cost is at most

E[C (𝜋𝑣0→V𝑀 )] ≤ |E (𝜋𝑣0→V𝑀 ) | · 𝑀2𝜇E[𝐿] ≤ 𝑀2𝜇E[𝐿] log𝑀 ≤ 𝜌𝑞𝑀3𝜇/40

since 𝑀�★ 𝜌, 𝑞, par. Thus by Markov’s inequality, the probability that the cost of this path is larger
than 𝑀3𝜇 is at most 𝜌𝑞/40.

P
(
A�4 | A2,A3, 𝑧 ∈ V

)
≤ 𝜌𝑞/40. (6.30)

The result therefore follows on substituting the bounds (6.23), (6.27), (6.29), and (6.30) into (6.22).
The argument conditioned on F𝑦,𝑧 is identical; note in particular that in applying Lemma 6.4, we may
assume wlog that 𝑦 < 𝑧 by symmetry. �

6.5. Connecting ‘down’ from high to low weight vertices cheaply.

We use the next lemma to connect the endpoints 𝑦★0 , 𝑦
★
𝑥 of the path 𝜋𝑦★0 ,𝑦★𝑥 obtained in Corollaries 5.2

and 5.3 to H∞ ⊆ C𝑀
∞ from Lemma 6.6 (when 𝑑 ≥ 2) and H𝑀 from Lemma 6.7 (when 𝑑 = 1). Recall

E𝑀 from (6.4) and that F0,𝑥 = {0, 𝑥 ∈ V}.

Lemma 6.8. Consider Setting 6.1 and any 𝑑 ≥ 1. Let 𝑤�★ 𝑞, par with 𝑤 ≥ 𝑀8(𝜏−1) , let 𝑟 := 𝑤3/𝑑

and let 𝑧 ∈ R𝑑 . Let H ⊆ V𝑀 be a random vertex set which depends only on (𝑉, 𝑤𝑉 , E𝑀 ) and which
satisfies P(Adense (H,V𝑀 , 𝑟, 𝑧) | F0,𝑥) ≥ 1 − 𝑞/10. Let

Adown (𝑤, 𝑧) :=
{
∀𝑦 ∈ Ṽ ∩ (𝐵𝑟 (𝑧) × [𝑤, 4𝑤]) : ∃𝑢 ∈ H ∩ 𝐵𝑟1/3 (𝑦), 𝑦𝑢 ∈ E , C (𝑦𝑢) ≤ 𝑤2𝜇

}
.

Then for all 𝑧 ∈ R𝑑 , P(Adown (𝑤, 𝑧) | F0,𝑥) ≥ 1 − 𝑞/3.
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Informally, this lemma states that every vertex that has fairly high weight near z has a direct cheap
edge to a nearby vertex that has weight in [𝑀, 2𝑀] and is part of the well-connected sets C𝑀

∞ (in dim
2), H𝑀 in dim 1.

Proof. Fix 𝑧 ∈ R𝑑 and let A1 := Adense(H,V𝑀 , 𝑟, 𝑧) in (6.12), so that P(A�1 | F0,𝑥) ≤ 𝑞/10 by
hypothesis. Considering the definition of Adense in (6.12), let A2 be the event that for all 𝑦 ∈ 𝐵𝑟 (𝑧),
|𝐵𝑟1/3 (𝑦) ∩ V𝑀 | ≥ 𝑟𝑑/4. Choose fixed points 𝑥1, . . . , 𝑥 �𝑟𝑑 � ∈ 𝐵𝑟 (𝑧) such that {𝐵𝑟1/3/2(𝑥𝑖) : 𝑖 ≤ �𝑟𝑑�}
covers 𝐵𝑟 (𝑧). For all y, the ball 𝐵𝑟1/3 (𝑦) must contain at least one ball 𝐵𝑟1/3/2(𝑥𝑖), so if in each ball
𝐵𝑟1/3/2(𝑥𝑖) we find at least 𝑟𝑑/4 vertices from H ⊆ V𝑀 then the event A2 holds. Let 𝑐𝑑 denote the
volume of a unit-radius d-dimensional ball. By (1.6), in IGIRG |𝐵𝑟1/3/2(𝑥𝑖) ∩ V𝑀 | is a Poisson variable
with mean

2−𝑑𝑐𝑑𝑟
𝑑/3

(
ℓ(𝑀)
𝑀 𝜏−1 − ℓ(2𝑀)

(2𝑀)𝜏−1

)
≥ 2𝑟𝑑/3𝑀−3(𝜏−1)/2 ≥ 2𝑟𝑑/4

(also conditioned onF0,𝑥), where the first inequality holds because 𝑀�★ par and the second inequality
holds since 𝑟𝑑/12 = 𝑤1/4 ≥ 𝑀2(𝜏−1) and 𝑀 ≥ 1. Similarly, for SFP it is a binomial variable with mean
greater than 2𝑟𝑑/4; in either case, the Chernoff bound of Theorem A.1 applies, and since 𝑟�★ 𝑞 we have

P(A2 | F0,𝑥) = P
(
∀𝑦 ∈ 𝐵𝑟 (𝑧) : |𝐵𝑟1/3 (𝑦) ∩ V𝑀 | ≥ 𝑟𝑑/4 | F0,𝑥

)
≥ P(∀𝑖 : |𝐵𝑟1/3/2(𝑥𝑖) ∩ V𝑀 | ≥ 𝑟𝑑/4 | F0,𝑥) ≥ 1 − �𝑟𝑑� · 𝑒−𝑟𝑑/4/4 ≥ 1 − 𝑞/30.

(6.31)

Let A3 be the event that 𝐵𝑟 (𝑧) contains at most 2(𝑐𝑑𝑟
𝑑 + 2) vertices. In SFP, P(A3 | F0,𝑥) = 1; in

IGIRG, Theorem A.1 applies. In both cases, using 𝑟�★ 𝑞, par,

P(A3 | F0,𝑥) = P(|𝐵𝑟 (𝑧) ∩ V | ≤ 2(𝑐𝑑𝑟
𝑑 + 2) | F0,𝑥) ≥ 1 − 𝑒−𝑐𝑑𝑟𝑑/3 ≥ 1 − 𝑞/30. (6.32)

Since P(A�1 | F0,𝑥) ≤ 𝑞/10, a union bound with (6.31) and (6.32) yields P(A1 ∩ A2 ∩ A3 | F0,𝑥) ≥
1 − 𝑞/6. We abbreviate P(· | 𝑉, 𝑤𝑉 , 𝐸𝑀 ) when we condition on the event that Ṽ = (𝑉, 𝑤𝑉 ) and
E𝑀 = 𝐸𝑀 . The events F0,𝑥 ,A2,A3, and also the set H and thus A1 are all determined by (𝑉, 𝑤𝑉 , 𝐸𝑀 ).
Let us call the realisation (𝑉, 𝑤𝑉 , 𝐸𝑀 ) good if the event A1 ∩A2 ∩A3 ∩ F0,𝑥 holds. Then

P(Adown (𝑤, 𝑧) | F0,𝑥) ≥ 1 − 𝑞/6 − max
(𝑉 ,𝑤𝑉 ,𝐸𝑀 ) good

P
(
Adown(𝑤, 𝑧)� | 𝑉, 𝑤𝑉 , 𝐸𝑀

)
. (6.33)

Fix a good realisation (𝑉, 𝑤𝑉 , 𝐸𝑀 ). Following Adown, let 𝑦1, . . . , 𝑦𝑘 be the (fixed) vertices in 𝐵𝑟 (𝑧)
with weights in [𝑤, 4𝑤], and for each 𝑖 ∈ [𝑘] let 𝑎 (𝑖)

1 , . . . , 𝑎
(𝑖)
ℓ𝑖

be the (fixed) vertices in 𝐵𝑟1/3 (𝑦𝑖) ∩H.
Thus, by definition of Adown,

P
(
Adown(𝑤, 𝑧)� | 𝑉, 𝑤𝑉 , 𝐸𝑀

)
= P

(
∃𝑖 ∈ [𝑘] : ∀ 𝑗 : 𝑦𝑖𝑎

(𝑖)
𝑗 ∉ E (𝐺) or C (𝑦𝑖𝑎

(𝑖)
𝑗 )>𝑤

2𝜇 | 𝑉, 𝑤𝑉 , 𝐸𝑀
)
.

(6.34)

Conditioned on (𝑉, 𝑤𝑉 , 𝐸𝑀 ), the edges 𝑦𝑖𝑎
(𝑖)
𝑗 are present independently since 𝑤𝑦𝑖 ≥ 𝑤 ≥ 𝑀8(𝜏−1) >

2𝑀 since 𝜏 > 2 and 𝑀�★ par. Since 𝑤𝑦𝑖 ∈ [𝑤, 4𝑤], 𝑤
𝑎 (𝑖)
𝑗

∈ [𝑀, 2𝑀], and |𝑦𝑖 − 𝑎 (𝑖)
𝑗 | ≤ 𝑟1/3 = 𝑤1/𝑑 ,

we get using (1.5) and (1.2) that for all i and j,

P(𝑦𝑖𝑎
(𝑖)
𝑗 ∉ E (𝐺) or C (𝑦𝑖𝑎

(𝑖)
𝑗 ) > 𝑤

2𝜇 | 𝑉, 𝑤𝑉 , 𝐸𝑀 ) ≤ 1 − 𝑐
(
1 ∧ 𝑤𝑀

𝑤

)𝛼 + P
(
𝐿 > 𝑤2𝜇

(8𝑤𝑀 )𝜇
)
≤ 1 − 𝑐

2 ,

where the last inequality holds because 𝑤2𝜇/(8𝑤𝑀)𝜇 ≥ 𝑀8𝜇 (𝜏−1)−𝜇/8𝜇 tends to infinity with M and
𝑀�★ par. This computation also holds for 𝛼 = ∞ or 𝛽 = ∞. Conditioned on a good realisation
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(𝑉, 𝑤𝑉 , 𝐸𝑀 ), A1 ∩ A2 ∩ A3 occurs, so for each i, the number of vertices 𝑎 (𝑖)
𝑗 is ℓ𝑖 ≥ 𝑟𝑑/4, and the

number of vertices 𝑦𝑖 is 𝑘 ≤ 2𝑐𝑑𝑟
𝑑 + 4. By independence across j, (6.34), and a union bound,

P
(
Adown(𝑤, 𝑧)� | 𝑉, 𝑤𝑉 , 𝐸𝑀

)
≤

∑
𝑖≤𝑘

P
(
∀ 𝑗 : 𝑦𝑖𝑎

(𝑖)
𝑗 ∉ E or C (𝑦𝑖𝑎

(𝑖)
𝑗 ) > 𝑤

2𝜇 | 𝑉, 𝑤𝑉 , 𝐸𝑀
)

≤
∑
𝑖≤𝑘

(1 − 𝑐/2)ℓ𝑖 ≤ (2𝑐𝑑𝑟
𝑑 + 4)𝑒−𝑟𝑑/4𝑐/2 ≤ 𝑞/6,

where the last inequality holds since 𝑟 = 𝑤3/𝑑 �★ 𝑞, par. The lemma then follows by (6.33). �

6.6. Connecting 0, 𝑥 to the endpoints of the hierarchy.

We are now ready to prove the main results of this section, Propositions 6.2-6.3 that connects 0, 𝑥 to the
endpoint of the constructed paths in Corollaries 5.2-5.3, respectively. Recall 𝜇log, 𝜇pol from (1.8).

Proof of Proposition 6.2. We first prove the result for 𝑑 ≥ 2, then describe the necessary modifications
for 𝑑 = 1. Let 𝜌 > 0 be as in Lemma 6.5 and let 𝛿�★ 𝜀, 𝑞, 𝜌, par and𝑤0 > 1. We want to apply Corollary
5.2, which holds for sufficiently large |𝑥 |. Thus there exists 𝑟5.2 �★ 𝑞, 𝛿, 𝜀, 𝜁 , 𝑤0, par such that Corollary
5.2 is applicable whenever |𝑥 | ≥ 𝑟5.2. We may also assume 𝑟5.2 �★ 𝜅. To cover the case |𝑥 | < 𝑟5.2, for all
𝑣 ∈ C∞∩𝐵𝑟5.2 (0), pick the cheapest path 𝜋0,𝑣 from 0 to v. Then 𝑅1 := max{C (𝜋0,𝑣 ) : 𝑣 ∈ C∞∩𝐵𝑟5.2 (0)}
and 𝑅2 := max{dev(𝜋0,𝑣 ) : 𝑣 ∈ C∞ ∩ 𝐵𝑟5.2 (0)} are almost surely finite random variables, and since we
may assume 𝐷�★ 𝑟5.2, 𝑞, par, we have P(𝑅1, 𝑅2 ≤ 𝐷 | 0, 𝑥 ∈ C∞) ≥ 1 − 𝑞, as required. So from now
on we may assume |𝑥 | ≥ 𝑟5.2.

Let 𝑤 be as in (5.4) in Corollary 5.2 and let 𝑟1 := 𝑤3/𝑑 . Let 𝑀, 𝑟2, 𝜅 > 0 satisfy 𝑤, 𝐷�★ 𝑟2 �★ 𝑀, 𝜁 ,
𝑞, 𝜌, 𝜀, par and 𝐷�★ 𝑟5.2 �★ 𝜅�★ 𝑀 as in Lemma 6.6, and note that |𝑥 | ≥ 𝑟5.2 implies 𝑤, 𝑟1 �★ 𝜅.
Let Q be a cube of side length |𝑥 | containing 0 and x, and let Anet be the event that Q contains a
weak (𝛿/4, 𝑤0)-net (as in Definition 2.1) which contains 0 and x. Apply Corollary 5.2 with 𝜀5.2 = 𝜀/2
and 𝑞5.2 := 𝑞𝜌/5 to obtain Xpolylog(0, 𝑥). Then consider the intersection of the following events from
Corollary 5.2, Lemma 6.6 (defined in (6.13), (6.14)) and Lemma 6.8:

A := Anet ∩ Xpolylog(0, 𝑥)

∩
⋂

𝑣 ∈{0,𝑥 }

(
Anear (H∞, 𝑟2, 𝐷/4, 𝑣) ∩Alinear (H∞, C𝑀

∞ , 𝑟2, 𝜅, 𝜁 , 𝐷/4, 𝑣) ∩Adown (𝑤, 𝑣)
)
. (6.35)

When A occurs, Xpolylog(0, 𝑥) gives a path between endpoints 𝑦★0 , 𝑦
★
𝑥 with weights in [𝑤, 4𝑤] and within

distance 𝑟1 = 𝑤3/𝑑 from 0, 𝑥, with cost C (𝜋𝑦★0 ,𝑦★𝑥 ) ≤ (log |𝑥 |)Δ0+𝜀/2 and deviation dev0𝑥 (𝜋𝑦★0 ,𝑦★𝑥 ) ≤ 𝜁 |𝑥 |,
respectively, see (5.4)–(5.6). Then, the events Adown (𝑤, 0),Adown (𝑤, 𝑥) from Lemma 6.8 applied re-
spectively to 𝑦★0 , 𝑦

★
𝑥 give us two paths 𝜋𝑦★0 ,𝑢★0

and 𝜋𝑦★𝑥 ,𝑢★𝑥 with 𝑢★
0 , 𝑢

★
𝑥 ∈ H∞ and within respective

distance 𝑤1/𝑑 from 𝑦★0 , 𝑦
★
𝑥 , and cost at most 𝑤2𝜇. Further, the events Anear (H∞, 𝑟2, 𝐷/4, 0) and

Anear (H∞, 𝑟2, 𝐷/4, 𝑥) in (6.14) also give us two paths 𝜋0,𝑢0 and 𝜋𝑥,𝑢𝑥 , with respective endpoints
𝑢0, 𝑢𝑥 ∈ H∞ within distance 𝑟2 ≤ 𝑤3/𝑑 from 0, 𝑥 respectively, and cost at most 𝐷/4 each. Fi-
nally, since 𝑢0, 𝑢

★
0 , 𝑢𝑥 , 𝑢

★
𝑥 ∈ H∞, and 𝑢0, 𝑢𝑥 is within distance 𝑟2 from 0, 𝑥, respectively, the events

Alinear (H∞, C𝑀
∞ , 𝑟2, 𝜅, 𝛿, 𝐷/4, 𝑣), 𝑣 ∈ {0, 𝑥} in (6.13) ensure that there exist paths 𝜋𝑢0 ,𝑢★0

and 𝜋𝑢𝑥 ,𝑢★𝑥

in G that have cost at most 𝜅 |𝑢𝑣 − 𝑢★
𝑣 | + 𝐷/4 ≤ 𝜅3𝑤3/𝑑 + 𝐷/4 since |𝑢𝑣 − 𝑢★

𝑣 | ≤ 3𝑟1 = 3𝑤3/𝑑

and deviation at most 𝜁 |𝑢𝑣 − 𝑢★
𝑣 | + 𝐷/4 ≤ 𝜁3𝑤3/𝑑 + 𝐷/4. The concatenated path is 𝜋0,𝑥 :=

𝜋0,𝑢0𝜋𝑢0 ,𝑢★0
𝜋𝑢★0 ,𝑦★0

𝜋𝑦★0 ,𝑦★𝑥 𝜋𝑦★𝑥 ,𝑢★𝑥 𝜋𝑢★𝑥 ,𝑢𝑥𝜋𝑢𝑥 ,𝑥 . Then, since 𝑤 ≤ (log |𝑥 |) 𝜀/2 in (5.4), we can estimate the
cost, and using that the vertices of the paths 𝜋0,𝑢0 , 𝜋𝑢0 ,𝑢★0

, 𝜋𝑦★0 ,𝑦★𝑥 , 𝜋𝑦★𝑥 ,𝑢★𝑥 , 𝜋𝑢★𝑥 ,𝑢𝑥 , 𝜋𝑢𝑥 ,𝑥 are all within
distance 3𝑟1 = 3𝑤3/𝑑 from 0 and x respectively, we can bound cost and deviation as
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C (𝜋0,𝑥) ≤ 2 · 𝐷/4 + 2𝑤2𝜇 + 2(𝜅3𝑤3/𝑑 + 𝐷/4) + (log |𝑥 |)Δ0+𝜀/2 ≤ (log |𝑥 |)Δ0+𝜀 + 𝐷,
dev(𝜋0,𝑥) ≤ max

{
dev0,𝑥 (𝜋𝑦★0 ,𝑦★𝑥 ), 2𝑤

3/𝑑 + 𝜁3𝑤3/𝑑 + 𝐷/4
}
≤ 𝜁 |𝑥 | + 𝐷,

(6.36)

using |𝑥 | ≥ 𝑟5.2 �★ 𝜀, 𝜅, par. Thus A ⊆ Apolylog. A union bound on the complement of the events in
(6.35) from Lemma 2.2 with 𝑡 = 2 and 𝜀2.2 := 𝛿/4 for Anet, Corollary 5.2, Lemma 6.6 with 𝑞6.6 := 𝑞𝜌,
and Lemma 6.8 with 𝑞6.8 := 𝑞𝜌 gives

P(A�polylog | 0, 𝑥 ∈ C∞) ≤ P(A� | 0, 𝑥 ∈ C∞) =
P(A� ∩ {0, 𝑥 ∈ C∞} | 0, 𝑥 ∈ V)
P(0, 𝑥 ∈ C∞ | 0, 𝑥 ∈ V)

≤ 𝑞𝜌

P(0, 𝑥 ∈ C∞ | 0, 𝑥 ∈ V) .

The result therefore follows from Lemma 6.5.
When 𝑑 = 1, we construct 𝜋0,𝑥 in exactly the same way as below (6.35), using Lemma 6.7 with

𝑀6.7 := exp(
√
(3/𝑑) log𝑤) (so that 𝑟𝑀6.7 = 𝑤3/𝑑), in place of Lemma 6.6. We may assume |𝑥 | �★ 𝜀, 𝜁

as for 𝑑 ≥ 2. Note that𝑀6.7 ≤ exp(
√

log log |𝑥 |) since𝑤 ≤ (log |𝑥 |) 𝜀 and 𝜀�★ par, and in particular we
may assume 𝑤 ≥ 𝑀8(𝜏−1)

6.7 as in Lemma 6.8 since 𝑤�★ 𝜀, par. Using |𝑥 | �★ 𝜀, 𝜁 , this implies the costs
of all our subpaths counted in (6.36) except 𝜋𝑦★0 ,𝑦★𝑥 are negligible compared to the (log |𝑥 |)Δ0+𝜀/2 cost
of 𝜋𝑦★0 ,𝑦★𝑥 , as in the 𝑑 ≥ 2 case, and likewise that the deviation of these subpaths from the line segment
𝑆0𝑥 is negligible compared to 𝜁 |𝑥 |. The cost and deviation of 𝜋𝑦★0 ,𝑦★𝑥 are bounded using Corollary 5.2
exactly as in the 𝑑 ≥ 2 case in (6.36). �

Proof of Proposition 6.3. The proof when 𝜇 ∈ (𝜇log, 𝜇pol] is identical to the proof of Proposition 6.2,
except that the event Xpolylog(0, 𝑥) from Corollary 5.2 is replaced by Xpol(0, 𝑥) from Corollary 5.3.

When 𝜇 > 𝜇pol and 𝑑 = 1, we have 𝜂0 = 1 and we can prove that the cost distance is at most |𝑥 |1+𝜀

by using Lemma 6.7 directly as follows. We set 𝑟𝑀 = |𝑥 |, which gives, using 𝑟𝑀 = exp((log𝑀)2), the
value 𝑀 = exp(

√
log |𝑥 |), which is slowly varying in |𝑥 |. Lemma 6.7 defines H𝑀 := 𝐵2𝑟𝑀 ∩ V𝑀 , and

with 𝐷𝑀 = 𝑀2(𝜏−1)+3𝜇 and 𝜅𝑀 = 𝑀3𝜇+2, it states that

P(Anear (H𝑀 , 𝐷𝑀 , 𝐷𝑀 , 0) ∩Anear (H𝑀 , 𝐷𝑀 , 𝐷𝑀 , 𝑥)
∩Alinear (H𝑀 ,H𝑀 , 𝑟𝑀 , 𝜅𝑀 , 0, 2𝜅𝑀 , 0) | 0, 𝑥 ∈ C∞) ≥ 1 − 3𝑞/10.

The first two events Anear (H𝑀 , 𝐷𝑀 , 𝐷𝑀 , 𝑧) with 𝑧 ∈ {0, 𝑥} guarantee that we find two paths 𝜋0,𝑦★0
and

𝜋𝑥,𝑦★𝑥 with cost at most 𝐷𝑀 from 0 and x to respective vertices 𝑦★0 , 𝑦
★
𝑥 ∈ V𝑀 , that are fully contained

in 𝐵𝐷𝑀 (0) and 𝐵𝐷𝑀 (𝑥), respectively. Here, 𝐷𝑀 = 𝑀2(𝜏−1)+3𝜇 ≤ |𝑥 |𝜀/2 for sufficiently large |𝑥 |. Then,
since 𝑦★0 is within distance 𝐷𝑀 < 𝑟𝑀 from 0, the third event Alinear guarantees a path between 𝑦★0 and
every vertex in H𝑀 = V𝑀 ∩ 𝐵2 |𝑥 | (0) with 𝜅𝑀 -linear cost, in particular there is such a path 𝜋𝑦★0 ,𝑦★𝑥

between 𝑦★0 and 𝑦★𝑥 . Let 𝜋0,𝑥 := 𝜋0,𝑦★0
𝜋𝑦★0 ,𝑦★𝑥 𝜋𝑦★𝑥 ,𝑥 be the concatenation of these paths. Since the distance

|𝑦★0 −𝑦
★
𝑥 | ≤ 2𝐷𝑀 +|𝑥 |, the cost and deviation of this path is, using that 𝜅𝑀 = 𝑀3𝜇+2 ≤ |𝑥 |𝜀/2 for |𝑥 | large,

C (𝜋0,𝑥) = C (𝜋0,𝑦★0
) + C (𝜋𝑦★𝑥 ,𝑥) + C (𝜋𝑦★0 ,𝑦★𝑥 ) ≤ 2𝐷𝑀 + 𝜅𝑀 |𝑦★0 − 𝑦★𝑥 | + 2𝜅𝑀

≤ 2|𝑥 |𝜀/2 + |𝑥 |𝜀/2 (|𝑥 | + 2|𝑥 |𝜀/2) + 2|𝑥 |𝜀/2 ≤ |𝑥 |1+𝜀 ,

dev(𝜋0,𝑥) ≤ max{dev0,𝑥 (𝜋0,𝑦★0
), dev0,𝑥 (𝜋𝑦★0 ,𝑦★𝑥 ), dev0,𝑥 (𝜋𝑦★𝑥 , 𝑥)}

≤ max{𝐷𝑀 , 0|𝑦★0 − 𝑦★𝑥 | + 2𝜅𝑀 } ≤ |𝑥 |𝜀 ,

for |𝑥 | large enough. For small |𝑥 | we can absorb the costs and deviation in the constant D. This proves
the lemma when 𝑑 = 1 and 𝜇 > 𝜇pol with 𝜂0 = 1.

When 𝜇 > 𝜇pol and 𝑑 ≥ 2, a straightforward adaptation of the above proof for 𝑑 = 1 could in
principle also be used in higher dimensions. However, with some more effort one can get rid of the extra

https://doi.org/10.1017/fms.2025.10161 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10161


Forum of Mathematics, Sigma 71

+𝜀 in the exponent, and prove fully linear cost distances. We prove this stronger version (without the
|𝑥 |𝜀 factor) in [56, Theorems 1.8, 1.10]. �

A. Appendix

A.1. Concentration bounds

Theorem A.1. (Chernoff bounds (66, Theorems 4.4–4.5)) Let 𝑋1, . . . 𝑋𝑘 be independent Bernoulli
distributed random variables, and define 𝑋 :=

∑𝑘
𝑖=1 𝑋𝑖 and 𝑚 := E[𝑋]. Then, for all 𝜆 ∈ (0, 1] and all

𝑡 ≥ 2𝑒𝑚,

P(𝑋 � (1 − 𝜆)𝑚) � 𝑒−𝑚𝜆2/2, P(𝑋 � (1 + 𝜆)𝑚) � 𝑒−𝑚𝜆2/3, P(𝑋 ≥ 𝑡) ≤ 2−𝑡 .

The same bounds hold when X is instead a Poisson variable with mean m.

A.2. The optimisation of total cost: proofs of Corollaries 5.2 and 5.3

Both corollaries follow from Proposition 5.1 with suitably chosen parameters. Throughout, we use the
convention that∞·0 = 0. In Proposition 5.1, the values of (𝛾, 𝑧, 𝜂, 𝑅) are not set yet (and they are not part
of the model parameters par). We will introduce constraints on these parameters below in Definition A.2
(‘(𝐾, 𝐴)-validity’), then we show in Lemma A.3 that a (𝐾, 𝐴)-valid assignment of values in Proposition
5.1 yields a path between 0 and x of cost K with a multiplicative ‘error’ of at most A. Recall Λ, Φ and
𝑤 from (4.1), (5.1) and (5.32), and that 𝜉 is the side-length of the box Q in which the net exists.

Definition A.2 (Valid parameter choices). The reduced Setting 4.1 is Setting 4.1, except without 𝛾
being defined. Consider the reduced Setting 4.1, and let 𝐾, 𝐴 > 0. A setting of parameters (𝛾, 𝑧, 𝜂, 𝑅)
is (K,A)-valid for 𝜉 if the following conditions all hold for 𝜉�★ par, writing 𝑤 := 𝜉𝛾𝑅−1𝑑/2:

𝛾 = 𝛾(par) ∈ (0, 1), 𝑧 = 𝑧(par) ∈ [0, 𝑑], 𝜂 = 𝜂(par) ∈ [0,∞), (A.1)

𝑅 = 𝑅(par, 𝜉) ∈ [2, (log log 𝜉)2/4] ∩ N, with (A.2)

𝑤2 ∈ [𝑒 (log∗3 𝜉 )2
, 𝐴/log log 𝜉], (A.3)

2𝑅𝑤4𝜇𝜉𝜂 ≤ 𝐾𝐴/log log 𝜉, (A.4)

Λ(𝜂, 𝑧) > 0 and either 𝑧 = 0 or Φ(𝜂, 𝑧) > 0. (A.5)

Lemma A.3. Consider the reduced Setting 4.1. Let 𝑞, 𝜁 > 0, let 0 < 𝛿�★ 𝑞, par, and suppose that
𝜉�★ 𝛿, 𝑞, 𝑤0, 𝜁 , par. Let 𝐾, 𝐴 > 0, and suppose that (𝛾, 𝑧, 𝜂, 𝑅) is (𝐾, 𝐴)-valid for 𝜉. Let X(𝐾,𝐴) be
the event that there is a path 𝜋𝑦★0 ,𝑦★𝑥 in 𝐺 ′ with endpoints 𝑦★0 and 𝑦★𝑥 satisfying

𝑤𝑦★0
, 𝑤𝑦★𝑥 ∈ [𝑤, 4𝑤], (A.6)

𝑦★0 ∈ 𝐵𝑤3/𝑑 (0), 𝑦★𝑥 ∈ 𝐵𝑤3/𝑑 (𝑥), (A.7)

C (𝜋𝑦★0 ,𝑦★𝑥 ) ≤ 𝐾𝐴 and dev0𝑥 (𝜋) ≤ 𝜁 |𝑥 |. (A.8)

Then P(X(𝐾,𝐴) | 𝑉, 𝑤𝑉 ) ≥ 1 − 𝑞.

Proof. Let 𝑦0 := 0, let 𝑦1 := 𝑥, let 𝜉 := |𝑥 |, and let 𝜃 := 1. We first verify that the conditions
of Proposition 5.1 hold. Since 𝛿�★ par, by (A.1) we may also assume 𝛿�★ 𝛾, 𝑧, 𝜂 as required by
Proposition 5.1. Combined with (A.5) this implies that Λ(𝜂, 𝑧) ≥ 2

√
𝛿 as required, and that either
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𝑧 = 0 or Φ(𝜂, 𝑧) ≥
√
𝛿 as required by Prop. 5.1. Since 𝜉�★ 𝛿, par, the inequalities 𝜉�★ 𝛾, 𝑧, 𝜂, 𝛿, 𝑤0

and 𝜉𝛾𝑅−1 ≥ (log log 𝜉
√
𝑑)16𝑑/𝛿2 by (A.3) and since 𝑤 := 𝜉𝛾𝑅−1𝑑/2, which is also required. Finally,

𝑅 ∈ [2, (log log 𝜉)2] by (A.2) and 𝛾 ∈ (0, 1), 𝑧 ∈ [0, 𝑑] and 𝜂 ≥ 0 by (A.1).
Suppose that the event Xhigh-path of Proposition 5.1 occurs, and let 𝜋 be a path as in the definition

of Xhigh-path. Then 𝜋 satisfies (A.6) immediately, because Xhigh-path requires that the end-vertices of
the path 𝜋 have weights in [𝑤, 4𝑤]. The event also requires that the end-vertices are within distance
𝑐𝐻 𝜉

𝛾𝑅−1 from 0, 𝑥 respectively. Since 𝜉�★ par, 𝛿, 𝑐𝐻 𝜉
𝛾𝑅−1 ≤ 𝜉𝛾𝑅−13/2 = 𝑤3/𝑑 , and so 𝜋 satisfies (A.7).

The cost of 𝜋 is at most 𝑐𝐻 2𝑅𝑤4𝜇𝜉𝜂 ; by (A.4) combined with the fact that 𝜉�★ par, 𝛿, it follows that
C (𝜋) ≤ 𝐾𝐴. The event Xhigh-path ensures that the deviation of 𝜋 from the section 𝑆0,𝑥 is at most 3𝑐𝐻 𝜉

𝛾

where 𝜉�★ 𝜁, par, 𝛿 and 𝛾 < 1, so (A.8) follows for any 𝜁 > 0 fixed. Thus

P
(
X(𝐾,𝐴) | 𝑉, 𝑤𝑉

)
≥ P

(
Xhigh-path | 𝑉, 𝑤𝑉

)
.

By Proposition 5.1 and the fact that 𝜉�★ 𝑞, it follows that

P
(
X(𝐾,𝐴) | 𝑉, 𝑤𝑉

)
≥ 1 − 2𝑒−(log log 𝜉 )13 ≥ 1 − 𝑞.

�

We shall now apply Lemma A.3 to prove Corollary 5.2 (which covers the polylogarithmic regime).
Here, there are two possible choices of parameters (𝛾, 𝑧, 𝜂, 𝑅) for Lemma A.3: if 𝛼 < 2, then we are
able to build a polylogarithmic-cost path using long-range edges between low-weight vertices (Claim
A.5 below); if 𝜇 < 𝜇log then we are able to build a polylogarithmic-cost path using edges between
high-weight vertices (Claim A.6 below). We then prove Corollary 5.2 by applying whichever parameter
setting constructs a lower-cost path (in Corollary A.7). In both regimes, we need the following algebraic
fact.

Claim A.4. Let

𝑅 = 𝑅(𝜉) :=
⌈ log log 𝜉 − (log∗4 𝜉)2

log 𝛾−1

⌉
. (A.9)

Then for all 𝛾 ∈ (1/2, 1) and 𝜉�★ 𝛾, it holds that

𝜉𝛾𝑅−1 ∈ [𝑒 (log∗3 𝜉 )2
, 𝑒
√

log log 𝜉 ] . (A.10)

Proof. The value of 𝜉 is large, so using (A.9) and that �𝑥� ≤ 𝑥 + 1,

𝛾𝑅−1 ≥ 𝑒− log log 𝜉+(log∗4 𝜉 )2
= (log∗3 𝜉)log∗4 𝜉 /log 𝜉 ≥ (log∗3 𝜉)2/log 𝜉.

It follows that 𝜉𝛾𝑅−1 ≥ 𝑒 (log∗3 𝜉 )2 , as required in (A.10). Moreover, since 𝜉�★ 𝛾, it holds that

𝛾𝑅−1 ≤ 𝑒 (log∗4 𝜉 )2/(𝛾2 log 𝜉) ≤ 𝑒 (log∗3 𝜉 )/2/log 𝜉 =
√

log log 𝜉/log 𝜉.

It follows that 𝜉𝛾𝑅−1 ≤ 𝑒
√

log log 𝜉 , as required in (A.10). �

The next claim finds a (𝐾, 𝐴)-valid parameter setting when 𝛼 < 2, for polylogarithmic cost-bound
𝐾𝐴.

Claim A.5. Consider the reduced Setting 4.1, and fix 𝜀 > 0. When 𝛼 < 2, then writing Δ𝛼 := 1/(1 −
log2 𝛼), the following assignment is ((log 𝜉)Δ𝛼 , (log 𝜉) 𝜀)-valid for 𝜉�★ 𝜀, par and 0 < 𝜀′ �★ 𝜀, par:

𝛾 :=
𝛼

2
+ 𝜀′; 𝑧 := 0; 𝜂 := 0; 𝑅 :=

⌈ log log 𝜉 − (log∗4 𝜉)2

log 𝛾−1

⌉
. (A.11)
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Proof. We check the requirements in Definition A.2 one-by-one. All the requirements of (A.1) and
(A.2) are immediately satisfied except for 𝑅 ≤ (log log 𝜉)2/4, which follows from the definition since
𝜉�★ 𝛾 and 𝛾 > 1/2. Also since 𝜉�★ 𝛾, par, (A.3) follows from Claim A.4 since 𝑤 = 𝜉𝛾𝑅−1𝑑/2 and
𝐴 = (log 𝜉) 𝜀 . We now prove (A.4). Since 𝜉�★ 𝛾, we estimate 2𝑅 using R and 𝛾 in (A.11):

2𝑅 ≤ 2log log 𝜉/log 𝛾−1
= (log 𝜉)log 2/log 𝛾−1

= (log 𝜉)− log 2/log(𝛼/2+𝜀′) . (A.12)

Since 𝜀′ �★ 𝜀, the exponent of log 𝜉 on the right-hand side is

log 2
− log(𝛼/2 + 𝜀′) ≤ log 2

log(2/𝛼) +
𝜀

2
=

1
1 − log2 𝛼

+ 𝜀
2
= Δ𝛼 + 𝜀

2
. (A.13)

Moreover, since 𝜂 = 0 in (A.11), the other factor𝑤4𝜇𝜉𝜂 in (A.4) is at most (using Claim A.4 and 𝜉�★ 𝜀),

𝑤4𝜇𝜉𝜂 = 𝜉2𝜇𝑑𝛾𝑅−1 ≤ 𝑒2𝜇𝑑
√

log log 𝜉 ≤ (log 𝜉) 𝜀/2/log log 𝜉. (A.14)

Then (A.4) with 𝐾𝐴 = (log 𝜉)Δ𝛼+𝜀 follows from (A.12)–(A.14). We next prove (A.5). Using the formula
in (4.1), with 𝑧 = 0 and 𝜂 = 0, and 𝛾 = 𝛼/2 + 𝜀′,

Λ(𝜂, 𝑧) := 2𝑑𝛾 − 𝛼(𝑑 − 𝑧) − 𝑧(𝜏 − 1) +
(
0 ∧ 𝛽(𝜂 − 𝜇𝑧)

)
= 2𝑑 (𝛼/2 + 𝜀′) − 𝛼𝑑 = 2𝑑𝜀′,

so Λ(𝜂, 𝑧) > 0 as required. Since 𝑧 = 0, (A.5) follows, so all criteria in Def. A.2 are satisfied. �

The next claim finds a (𝐾, 𝐴)-valid parameter setting when 𝜇 < 𝜇log, for polylogarithmic cost bound
𝐾𝐴.

Claim A.6. Consider the reduced Setting 4.1, and fix 𝜀 > 0. When 𝜇 < 𝜇log, then writing Δ𝛽 :=
1/(1 − log2 (𝜏 − 1 + 𝜇𝛽)), the following assignment is ((log 𝜉)Δ𝛽 , (log 𝜉) 𝜀)-valid for 𝜉�★ 𝜀, par and
𝜀′ �★ 𝜀, par:

𝛾 :=
𝜏 − 1 + 𝜇𝛽

2
+ 𝜀′; 𝑧 := 𝑑; 𝜂 := 0; 𝑅 :=

⌈
log log 𝜉 − (log∗4 𝜉)2

log 𝛾−1

⌉
. (A.15)

Proof. First note that 𝛽 = ∞ is not possible here, since in that case 𝜇log = 0, see (1.19). We check the
requirements in Definition A.2 one-by-one. Since 𝜏 > 2 and 𝜇𝛽 ≥ 0, we obtain 𝛾 > 1/2 > 0 above, and
since 𝜇 < 𝜇log = (3− 𝜏)/𝛽 and 𝜀′ �★ par it also holds that 𝛾 < 1; thus all the requirements of (A.1) are
satisfied. It is also immediate that (A.2) is satisfied except for 𝑅 ≤ (log log 𝜉)2/4, which follows from the
definition in (A.15) since 𝜉�★ 𝛾 and 𝛾 > 1/2. Since 𝜉�★ 𝛾, par, (A.3) follows from Claim A.4 since
𝑤 = 𝜉𝛾𝑅−1𝑑/2 and 𝐴 = (log 𝜉) 𝜀 as in the previous claim. We now prove (A.4). Analogously to (A.12):

2𝑅 ≤ 2log log 𝜉/log 𝛾−1
= (log 𝜉)log 2/log(1/𝛾) . (A.16)

Since 𝜀′ �★ 𝜀, now 𝛾 is given in (A.15) and

log 2
log(1/𝛾) ≤ log 2

log(2/(𝜏 − 1 + 𝜇𝛽)) +
𝜀

2
=

1
1 − log2(𝜏 − 1 + 𝜇𝛽) +

𝜀

2
= Δ𝛽 + 𝜀

2
. (A.17)

Moreover, by Claim A.4 and since 𝜉�★ 𝜀, it holds that

𝑤4𝜇𝜉𝜂 = 𝜉2𝜇𝑑𝛾𝑅−1 ≤ 𝑒2𝜇𝑑
√

log log 𝜉 ≤ (log 𝜉) 𝜀/2/log log 𝜉. (A.18)
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Now (A.4) follows immediately from (A.16)–(A.18). We next prove (A.5). Using the formula in (4.1),
with 𝑧 = 𝑑 and 𝜂 = 0, and 𝛾 as in (A.15),

Λ(𝜂, 𝑧) = 2𝑑𝛾 − 𝛼(𝑑 − 𝑧) − 𝑧(𝜏 − 1) +
(
0 ∧ 𝛽(𝜂 − 𝜇𝑧)

)
= 2𝑑𝛾 − 𝑑 (𝜏 − 1) − 𝑑𝜇𝛽 = 2𝑑𝜀′,

so Λ(𝜂, 𝑧) > 0 as required. This also remains true for 𝛼 = ∞ both formally with 𝛼(𝑑 − 𝑧) = ∞ · 0 = 0
as well as intuitively, since 𝑧 = 𝑑 means we use edges which are present with constant probability. It
remains to prove Φ(𝜂, 𝑧) > 0. Using the formula in (5.1), and that 𝛾 ∧ 1/2 = 1/2,

Φ(𝜂, 𝑧) =
[
𝑑𝛾 ∧ 𝑧

2

]
+

[
0 ∧ 𝛽

(
𝜂 − 𝜇𝑧

2

)]
= 𝑑 (𝛾 ∧ 1/2) − 𝛽𝜇𝑑/2 = 𝑑 (1 − 𝜇𝛽)/2.

Since 𝜇 ≤ 𝜇log = (3 − 𝜏)/𝛽, it follows that Φ(𝜂, 𝑧) ≥ 𝑑 (𝜏 − 2)/2; since 𝜏 > 2, (A.5) follows. �

Comparing the definition of Δ0 in (1.9) to those in Claims A.5 and A.6, we recover here that

Δ0 =
1

1 − log2(min{𝛼, 𝜏 − 1 + 𝜇𝛽}) = min{Δ𝛼,Δ𝛽}, (A.19)

which formally remains true also when 𝛼 = ∞ or 𝛽 = ∞ by (1.17), or (1.20). Combining the two claims
we obtain the following corollary:
Corollary A.7. Consider the reduced Setting 4.1, fix 𝜀 > 0. When either 𝛼 ∈ (1, 2) or 𝜇 ∈ (𝜇expl, 𝜇log)
or both hold, then there exists a setting of (𝛾, 𝑧, 𝜂, 𝑅) (depending on 𝜀) which is ((log 𝜉)Δ0 , (log 𝜉) 𝜀)-
valid for 𝜉�★ 𝜀, par.
Proof. Recall that 𝜇log = (3− 𝜏)/𝛽, so if 𝜇expl < 𝜇 < 𝜇log then 𝛽 < ∞; thus we cannot have 𝛼 = 𝛽 = ∞,
and the formula (A.19) is valid whenever at least one of 𝛼, 𝛽 is finite.

We show that when the minimum in the denominator is 𝛼 ≤ 𝜏 − 1 + 𝜇𝛽, (so that Δ0 = Δ𝛼), then also
𝛼 < 2 holds. Then, Claim A.5 directly gives a ((log 𝜉)Δ𝛼 , (log 𝜉) 𝜀)-valid parameter setting. There are
two cases: either 𝜇 > 𝜇log, then 𝛼 < 2 must hold by the hypothesis of the lemma; or 𝜇 < 𝜇log = (3−𝜏)/𝛽,
so 𝛼 being the minimum gives that 𝛼 < 𝜏 − 1 + 𝜇log · 𝛽 = 2.

Similarly, we show that when the minimum in the denominator is 𝜏 − 1+ 𝜇𝛽 < 𝛼, (so that Δ0 = Δ𝛽),
then also 𝜇 < 𝜇log holds. Then, Claim A.6 directly gives a ((log 𝜉)Δ𝛽 , (log 𝜉) 𝜀)-valid parameter setting.
There are again two cases: either 𝛼 ≥ 2, then 𝜇 < 𝜇log must hold by the hypothesis of the lemma; or
𝛼 < 2, so 𝜏 − 1 + 𝜇𝛽 being the minimum gives that 𝜏 − 1 + 𝜇𝛽 < 2 and hence 𝜇 < (3− 𝜏)/𝛽 = 𝜇log. �

We are ready to prove Corollary 5.2 giving the polylogarithmic upper bound for the cost-distance

Proof of Corollary 5.2. Immediate from combining Lemma A.3 with Corollary A.7, where the required
bounds on 𝑤 in (5.4) follow from (A.3). �

We next apply Lemma A.3 to prove Corollary 5.3 that covers the polynomial regime. As with the
proof of Corollary 5.2, we show that multiple possible choices of parameters are valid and choose the
one which yields the lowest-cost path. We start with the case where 𝛼 = 𝛽 = ∞. Recall the definition of
𝜂0 from (1.10), (1.16), (1.19) and (1.21).
Claim A.8. Consider the reduced Setting 4.1, and fix 𝜀 > 0. When 𝛼 = 𝛽 = ∞ and 𝜇 ∈ (𝜇log, 𝜇pol],
that is, 𝜂0 = 1 ∧ 𝑑𝜇 in (1.21), then the following setting is (𝜉𝜂0 , 𝜉 𝜀)-valid whenever 𝜀′ �★ 𝜀, par (with
1/(𝜀′)2 an integer), and 𝜉�★ 𝜀, 𝜀

′, par:

𝛾 := 1 − 𝜀′; 𝑧 := 𝑑; 𝜂 := 𝜂0 +
√
𝜀′; 𝑅 := 1/(𝜀′)2. (A.20)

Proof. Recall from (1.21) that when 𝛼 = 𝛽 = ∞, the values 𝜇log = 0, 𝜇pol = 1/𝑑. We check the
requirements in Definition A.2 one-by-one. Both (A.1) and (A.2) are immediate. Since 𝜀′ < 1/2, it
holds that 𝛾 ∈ [𝑒−2𝜀′

, 𝑒−𝜀′ ]; thus 𝛾𝑅−1 ∈ [𝑒−2/𝜀′
, 𝑒−1/(2𝜀′) ] by the choice of R in (A.20). Since 𝜉�★ 𝜀

′

and 𝜀′ �★ 𝜀, par, it follows that 𝜉𝛾𝑅−1𝑑 ∈ [𝑒 (log∗3 𝜉 )2
, 𝜉 𝜀/log log 𝜉] as required by (A.3). Moreover,

using that 𝑤 = 𝜉𝛾𝑅−12/𝑑 we estimate 2𝑅𝑤4𝜇𝜉𝜂 = 2𝑅𝜉𝜂+2𝜇𝑑𝛾𝑅−1 ≤ 𝜉 𝜀/3 · 𝜉𝜂0 · 𝜉 𝜀/3 ≤ 𝜉𝜂0+𝜀/log log 𝜉
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and (A.4) holds. It remains to prove (A.5). Using the formula in (4.1) with 𝛾, 𝜂, 𝑧 as in (A.20), and that
𝜇 ≤ 𝜇pol,

Λ(𝜂, 𝑧) = 2𝑑𝛾 − 𝛼(𝑑 − 𝑧) − 𝑧(𝜏 − 1) +
(
0 ∧ 𝛽(𝜂 − 𝜇𝑧)

)
= 2𝑑 (1 − 𝜀′) − ∞ · 0 − 𝑑 (𝜏 − 1) + (0 ∧∞) = 𝑑 (3 − 𝜏 − 2𝜀′);

since 𝜏 < 3 and 𝜀′ �★ par, Λ(𝜂, 𝑧) > 0 as required. Finally, using the formula in (5.1) and that
𝛾 ∧ 1/2 = 1/2, we analogously obtain that

Φ(𝜂, 𝑧) =
[
𝑑𝛾 ∧ 𝑧

2

]
+

[
0 ∧ 𝛽

(
𝜂 − 𝜇𝑧

2

)]
= 𝑑 (𝛾 ∧ 1/2) + (0 ∧∞(𝑑𝜇/2 +

√
𝜀′)) = 𝑑/2 > 0,

so (A.5) follows. Hence, all criteria in Def. A.2 are satisfied. �

When at least one of 𝛼, 𝛽 is noninfinite, we can find two possible optimisers: one when 𝜇 < 𝜇𝜇pol,𝛼

and one when 𝜇 < 𝜇pol,𝛽 hold in (1.8). We treat the two cases separately. Recall 𝜇pol,𝛽 = 1/𝑑 + (3−𝜏)/𝛽
and let 𝜂𝛽 := 𝑑 (𝜇 − 𝜇log), the first term in the second row of (1.10).

Claim A.9. Consider the reduced Setting 4.1, and fix 𝜀 > 0. When 𝛼 > 2, 𝜇 ∈ (𝜇log, 𝜇pol,𝛽], then the
following setting is (𝜉𝜂𝛽 , 𝜉 𝜀)-valid for 𝜀′ �★ 𝜀, par (with 1/(𝜀′)2 an integer) and 𝜉�★ 𝜀, 𝜀

′, par:

𝛾 := 1 − 𝜀′; 𝑧 := 𝑑; 𝜂 := 𝜂𝛽 +
√
𝜀′; 𝑅 := 1/(𝜀′)2. (A.21)

Proof. The 𝛼 = 𝛽 = ∞ case was treated in Claim A.8 with (A.20) coinciding with (A.21). We treat
the cases when at least one of 𝛼, 𝛽 is finite. We check the requirements in Definition A.2 one-by-
one. Both (A.1) and (A.2) are immediate. Since 𝜀′ is small we may choose it 𝜀′ < 1/2, implying
that 𝛾 ∈ [𝑒−2𝜀′

, 𝑒−𝜀′ ]; thus 𝛾𝑅−1 ∈ [𝑒−2/𝜀′
, 𝑒−1/(2𝜀′) ]. Since 𝜉�★ 𝜀

′ and 𝜀′ �★ 𝜀, par, it follows that
𝜉𝛾𝑅−1𝑑 ∈ [𝑒 (log∗3 𝜉 )2

, 𝜉 𝜀/log log 𝜉] as required by (A.3). Moreover, for (A.4) we use that 𝑤 = 𝜉𝛾𝑅−12/𝑑

and estimate 2𝑅𝑤4𝜇𝜉𝜂 = 2𝑅𝜉𝜂+2𝜇𝑑𝛾𝑅−1 ≤ 𝜉 𝜀/3 · 𝜉𝜂𝛽 · 𝜉 𝜀/3 ≤ 𝜉𝜂𝛽+𝜀/log log 𝜉 and so (A.4) holds. It
remains to prove (A.5).

By their definition in (A.21), 𝑧 = 𝑑 and 𝜂 = 𝜂𝛽 +
√
𝜀′ where 𝜂𝛽 = 𝑑 (𝜇 − 𝜇log) = 𝑑 (𝜇 − (3 − 𝜏)/𝛽),

we compute 𝜂− 𝜇𝑧 =
√
𝜀′ − (3− 𝜏)𝑑/𝛽 < 0, since 𝜀′ �★ par. So, using the formula in (4.1) with 𝛾, 𝜂, 𝑧

as in (A.21),

Λ(𝜂, 𝑧) = 2𝑑𝛾 − 𝛼(𝑑 − 𝑧) − 𝑧(𝜏 − 1) +
(
0 ∧ 𝛽(𝜂 − 𝜇𝑧)

)
= 2𝑑 (1 − 𝜀′) − 𝑑 (𝜏 − 1) + 𝛽

√
𝜀′ − (3 − 𝜏)𝑑 = 𝛽

√
𝜀′ − 2𝑑𝜀′.

Since 𝜀′ �★ par, it follows that Λ(𝜂, 𝑧) > 0 as required by (A.5). This computation also remains valid
both formally and intuitively when 𝛼 = ∞ and 𝛽 < ∞, since 𝑧 = 𝑑 and 𝛼(𝑑 − 𝑑) = 0 reflects the fact
that the edges we use appear with constant probability each. When 𝛼 < ∞ and 𝛽 = ∞, 𝜇log = 0 and
𝜇pol,𝛽 = 1/𝑑, hence 𝜂 − 𝜇𝑧 = 𝑑𝜇 +

√
𝜀′ − 𝜇𝑑 =

√
𝜀′, so the minimum in 0∧ 𝛽(𝜂 − 𝜇𝑧) = 0. Hence when

𝛽 = ∞, since 𝛾 = 1 − 𝜀′ and 𝜏 − 1 < 2,

Λ(𝜂, 𝑧) = 2𝑑𝛾 − 𝛼(𝑑 − 𝑑) − 𝑑 (𝜏 − 1) = 𝑑 (2𝛾 − (𝜏 − 1)) > 0. (A.22)

Finally we treat Φ(𝜂, 𝑧) > 0. When 𝛽 < ∞, using the formula in (5.1) and that 𝛾 ∧ 1/2 = 1/2, with
parameters in (A.21) and 𝜂 = 𝜂𝛽 +

√
𝜀′ = 𝜇𝑑 − (3−𝜏)𝑑

𝛽 +
√
𝜀′, we analogously obtain that

Φ(𝜂, 𝑧) =
[
𝑑𝛾 ∧ 𝑧

2

]
+

[
0 ∧ 𝛽

(
𝜂 − 𝜇𝑧

2

)]
=
𝑑

2
+

[
0 ∧ 𝛽

(√
𝜀′ + 𝜇𝑑

2
− (3 − 𝜏)𝑑

𝛽

)]
.
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In case the minimum on the right-hand side is at 0, Φ(𝜂, 𝑧) > 0 and so (A.5) is satisfied. In case the
minimum is at the other term, we use that 𝜇 > 𝜇log = (3 − 𝜏)/𝛽, so 𝜇𝑑/2 > (3 − 𝜏)𝑑/(2𝛽), so

Φ(𝜂, 𝑧) ≥ 𝑑

2
− 𝛽 · (3 − 𝜏)𝑑

2𝛽
=

(𝜏 − 2)𝑑
2

> 0.

and so 𝜏 ∈ (2, 3) ensures that (A.5) holds again. The computation remains valid when 𝛼 = ∞ since Φ
does not depend on 𝛼. When 𝛼 < ∞ and 𝛽 = ∞, the computation simplifies, and 𝜂 − 𝜇𝑧/2 > 0 holds
since already 𝜂 − 𝜇𝑧 > 0 see above (A.22). Hence in this case Φ(𝜂, 𝑧) = 𝑑𝛾 ∧ 𝑧/2 = 𝑑/2 > 0. Hence,
all criteria in Definition A.2 are satisfied with the choice in (A.21). �

The next claim finds minimisers whenever 𝜇 < 𝜇pol,𝛼. Recall that 𝜇pol,𝛼 = 𝛼−(𝜏−1)
𝑑 (𝛼−2) from (1.8) and

let 𝜂𝛼 := 𝜇/𝜇pol,𝛼, the second term in the second row of (1.10).

Claim A.10. Consider the reduced Setting 4.1, and fix 𝜀 > 0. When 𝛼 > 2, 𝜇 ∈ (𝜇log, 𝜇pol,𝛼], then the
following setting is (𝜉𝜂𝛼 , 𝜉 𝜀)-valid for 𝜀′ �★ 𝜀, par (with 1/(𝜀′)2 an integer), and 𝜉�★ 𝜀, 𝜀

′, par:

𝛾 := 1 − 𝜀′; 𝑧 := (𝜂𝛼 +
√
𝜀′)/𝜇; 𝜂 := 𝜂𝛼 +

√
𝜀′; 𝑅 := 1/(𝜀′)2. (A.23)

Proof. We first show that 𝛼 = ∞, 𝛽 < ∞ is not possible here. From (1.16) it follows that 𝜇pol,𝛼 = 1/𝑑,
while 𝜇log = 1/𝑑 + (3 − 𝜏)/𝛽, so for all 𝛽 > 0 the strict inequality 𝜇log > 𝜇pol,𝛼 holds and hence the
interval for 𝜇 is empty when 𝛼 = ∞. Hence 𝛼 < ∞ is necessary for the conditions to be satisfied.
We check the requirements of Definition A.2 one-by-one. Using the formula for 𝜇pol,𝛼 and 𝜏 < 3, we
compute that 𝜂𝛼 = 𝜇𝑑 (𝛼 − 2)/(𝛼 − (𝜏 − 1)) < 𝜇𝑑. Hence, since 𝜀′ �★ par for all sufficiently small 𝜀′
the inequality 𝑧 ≤ 𝑑 holds as required by (A.1). The other conditions of (A.1) and (A.2) are immediate.
Since 𝛾 and 𝜂 is the same here and in Claim A.9, (A.3) and (A.4) hold by the same argument as in Claim
A.9. It remains to prove (A.5). Using the formula in (4.1) with 𝛾, 𝜂, 𝑧 as in (A.23), which implies that
𝜂 − 𝜇𝑧 = 0,

Λ(𝜂, 𝑧) = 2𝑑𝛾 − 𝛼(𝑑 − 𝑧) − 𝑧(𝜏 − 1) +
(
0 ∧ 𝛽(𝜂 − 𝜇𝑧)

)
= 𝑑 (2 − 𝛼) − 2𝜀′𝑑 + 𝑧(𝛼 − (𝜏 − 1)) + 0.

(A.24)

This also remains valid both formally and intuitively when 𝛽 = ∞ (with the convention that ∞ · 0 = 0),
since 𝜂 − 𝜇𝑧 = 0 reflects the fact that the random variable L on the edge we use is constant order. We
substitute 𝑧 = (𝜂𝛼 +

√
𝜀′)/𝜇 from (A.23) and 𝜂𝛼 = 𝜇𝑑 (𝛼 − 2)/(𝛼 − (𝜏 − 1)):

Λ(𝜂, 𝑧) = 𝑑 (2 − 𝛼) + 𝜂𝛼 (𝛼 − (𝜏 − 1))/𝜇 +
√
𝜀′(𝛼 − (𝜏 − 1))/𝜇 − 2𝜀′𝑑

=
√
𝜀′(𝛼 − (𝜏 − 1))/𝜇 − 2𝜀′𝑑,

since the first two terms in the first row cancelled each other. Since 𝜀′ �★ par, 𝛼 > 2 and 𝜏 ∈ (2, 3),
𝛼 − (𝜏 − 1) is positive, and so is 𝜇 > 0, so Λ(𝜂, 𝑧) > 0 as required by (A.5). Finally, by (5.1) and since
𝑧 ≤ 𝑑,

Φ(𝜂, 𝑧) =
[
𝑑𝛾 ∧ 𝑧

2

]
+

[
0 ∧ 𝛽

(
𝜂 − 𝜇𝑧

2

)]
=
𝑧

2
+ 0 > 0,

and so (A.5) holds. This also remains true for 𝛽 = ∞ since the minimum is at 0, meaning we use edges
with constant value L. Hence, all criteria in Definition A.2 are satisfied with the choice in (A.23). �

We are ready to prove Corollary 5.3 proving the upper bounds in the polynomial regime.

Proof of Corollary 5.3. Claim A.8 finds a setting of parameters that is (|𝑥 |𝜂0 , |𝑥 |𝜀)-valid whenever
𝛼 = 𝛽 = ∞ and 𝜇 ≤ 𝜇pol = 1/𝑑. When at least one of 𝛼, 𝛽 is noninfinite, Claims A.9 and A.10
respectively find a setting of parameters that is (|𝑥 |𝜂𝛽 , |𝑥 |𝜀)-valid whenever 𝜇 ≤ 𝜇pol,𝛽 and one that is
(|𝑥 |𝜂𝛼 , |𝑥 |𝜀)-valid whenever 𝜇 ≤ 𝜇pol,𝛼. By noting that 𝜂𝛽 ≤ 1 exactly when 𝜇 < 𝜇pol,𝛽 and 𝜂𝛼 ≤ 1
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exactly when 𝜇 ≤ 𝜇pol,𝛼, we obtain that whenever 𝜇 ≤ max{𝜇pol,𝛼, 𝜇pol,𝛽}, the two claims together
find a parameter setting that is (|𝑥 |min{𝜂𝛼 ,𝜂𝛽 }, |𝑥 |𝜀) valid. Since 𝜂0 = min{𝜂𝛼, 𝜂𝛽} in (1.10), the proof
from here is immediate by applying Lemma A.3, where the required bounds on 𝑤 in (5.7) follow from
(A.3). �
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