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Chapter 1

Introduction

Since the beginning of robotics, robots and manipulators keep on becoming more common
to relieve humans in many ways, with an expected 1.4 million new robots being installed
in industry between 2016 and 2019[1]. An area that saw a rapid growth in the application
of robotic manipulators is in manufacturing industries, leading to the industrial revolution
[2]. Recently, with initiatives such as Industry 4.0, extensive effort is being devoted to col-
laborative robotic applications with humans and robots working together. As shown by the
Robotics Industry Association (RIA), this trend is continuously increasing and it does not
appear to stop for the time being[3].
The ultimate goal in robotics is having them operate alongside humans in a collaborative
environment. For this the robot needs to be able to react to the people in its workspace,
making each of the motion the robot has to make slightly different. The problem of find-
ing these motions is called motion planning. Since each motion the robot makes could be
different, the motion planning needs to be done by the robot itself, i.e. online. However,
with current methods this would mean the robot would need computing for minutes, if not
hours between each motion. A further complication is that these motions need be smooth
and ‘natural’-looking in order to create a comfortable work environment for the human. For
safety, the velocities and forces or torques the robot exerts need to be limited as well. All
these constraints lead to a difficult and thus computationally heavy problem. Speeding up
the computation of this problem will be a step towards collaborative robotics, and will be the
main subject of this thesis.

1-1 Motion Planning

As the name suggests, motion planning covers the planning of motion of robots and manipu-
lators. When a robot wants to move from some initial pose xi to some final pose xf , a specific
sequence of control inputs need to be applied to achieve this. On top of that the motion often
has to comply with constraints, such as positions where it can not go due to items blocking
its path or even configurations the robot simply cannot make. The problem of finding how
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2 Introduction

to get from xi to xf while respecting these constraints is called motion planning. In practice
planning is mostly done in a space called the configuration space. The configuration space C
is a space which consists of parameters that describe the pose of a system. For example the
pose of a 2-degrees-of-freedom manipulator can be described by the two angles that its joints
make, {ϑ1, ϑ2}. The movement of a system is limited due to for example joint constraints
and obstacles. This splits the configuration space into a free space Cfree and an obstructed
space Cobs. When there are no constraints or obstacles, Cfree = C, planning can easily be
done by making use of for example path finding algorithms or potential fields. However a
heavy limited space due to complex constraints and obstacles can make planning impossible
using these methods[4], since they need an exact and full representation of Cfree and Cobs. In
practice path finding algorithm or potential fields are not used because of this.
A principle which can deal with these difficult constraints and which is used most nowadays
is called sampling-based motion planning, and in particular Rapidly Exploring Random Trees
(RRT)[5][6]. In RRT, a tree is built through the planning space until a path exists from
the starting state to the goal state. For every new node added to the tree, three steps are
taken: sampling, neighbor selection and steering. First a random point xr is sampled from
the configuration space C. The next step is to find a node in the tree which is nearest to the
randomly sampled node, xnear, based on some distance metric, often the euclidean distance
or optimal cost to go. A new node is created by steering the system from xnear towards
xr. After checking whether the reached node and the path towards it are within Cfree it is
added to the tree. Using this method planning in configuration space becomes a much easier
problem to solve, since it does not require a full representation of Cfree and Cobs beforehand.
Planning in the configuration space C using RRT often leads to a solution, however these
found motions are not necessarily executable by the robot, let alone that the motions are
smooth as is wanted for collaborative robotics. Incorporating the velocities and dynamic con-
straints during planning could solve this. Doing so is called kinodynamic motion planning,
and is achieved by planning in a different space X called the state space.
The state space is a space which contains both the positions and velocities of the system, and
is subject to a differential constraint in the form of the equations of motion ẋ = f(x, u) of
the system. For example the state of earlier mentioned 2-DOF manipulator is now contains
{ϑ1, ϑ2, ω1, ω2}, it also includes the angular velocities. Planning in state space could lead to
more smooth and natural-looking motions since the robots dynamics are taken in account.
Furthermore it provides an infrastructure where limiting the velocities and forces becomes
relatively easy, leading to a safer workspace for humans. An additional possible advantage
could be reduction of energy usage, since the dynamics of the robot can be taken advantage
of. However, these dynamics also greatly complicate the building of a tree. Travelling through
state space is much more difficult because of the differential constraints which often are highly
non-linear, making kinodynamic planning much more time consuming than planning in con-
figuration space[4]. If a robot needs to do the planning itself, necessary for collaborative
robotics since the robot needs to work around moving humans, the motion planning needs
to be done online. The kinodynamic planning problem is currently a too difficult problem to
solve online, it takes too much time, and thus its benefits are not taken advantage of.
Many variants have been created since the introduction of RRT with the goal to speed up
the computation. The state of the art algorithms that achieve large speedups all make use of
supervised learning. The focus of this thesis will be the application of supervised learning in
RRT, with the goal to speed up kinodynamic planning.
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1-2 Supervised Learning 3

1-2 Supervised Learning

State of the art algorithms incorporate supervised learning in different steps of RRT, such
as approximating the distance metric to speed up the neighbor selection[7][8] or to improve
the quality of the random samples[9][10][11]. Supervised learning is a collection of methods
which are used to approximate functions or mappings from a dataset[12]. It is often used
to approximate very complex functions or mappings, reducing the computation time. This
is done by creating a model using input and output data coming from the true relationship,
called labelled training data. This data can be retrieved from measurements or generated
using the true complex function. Given a dataset of input data X, which is a subset of the
set of all possible inputs X , and a corresponding dataset of output data Y , which as well is
a subset of all possible outputs Y, then supervised learning can be described as:

Using input data X ∈ X and corresponding output data Y ∈ Y, find a mapping Ŷ = f̂(X)
such that e(f̂(X), Y ) is minimized, where e(f̂(X), Y ) is some scoring function.

A lot of methods have been developed over the years, starting from simple linear regression
models up to very complex neural networks[12][13], the latter becoming more popular after the
development of the backpropagation algorithm in 1975, which greatly sped up the training of
multilayer networks. A detailed description of the methods that have been succesfully applied
in RRT and that are relevant to this study on speeding up kinodynamic planning are given
in Chapter 2.

1-3 RRT CoLearn

The most recent development in kinodynamic planning and the starting point for this research
is called RRT CoLearn and applies supervised learning to appproximate two of the three main
steps in RRT. Both the steering function and the distance metric[14] are approximated using
a method called k-Nearest Neighbor. In RRT CoLearn, a dataset is created with a lot of small
trajectories using indirect optimal control. From this dataset the algorithm tries to learn how
to steer the system from some state xi to another state xf , by learning the initial costates
from the trajectories in the dataset. In terms of the above definition of supervised learning,
X would contain the trajectories in the form of the initial and final state; {xi, xf}, and Y
would contain the initial costates and the optimal cost to go; {λi, c}. Hence the supervised
learning method learns the mapping f : {xi, xf} 7→ {λi, c}. The initial costates are a property
of indirect optimal control which dictate in what direction the system will move.
The algorithm was applied on a single pendulum swing up problem, which was solved on
average within 2.4s, ten times faster than state of the art kinodynamic planning algorithms.
It is however the only problem that it has been applied on so far, how the algorithm performs
on more complex planning problems with more degrees of freedom is not yet known. Assessing
the performance of RRT CoLearn on these systems is the starting point of this thesis.

1-4 Research

The main focus of this thesis is the application of supervised learning in RRT. RRT CoLearn
is the state of the art algorithm applying supervised learning, so this will be the starting
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4 Introduction

point. Since it has only been applied on a single pendulum yet, the first part of the research
tries to extend the algorithm to 2-DOF system. RRT CoLearn is applied and tested on the
swing up problem of a cart pole system in order to answer the following research question:

1. What are the consequences for RRT CoLearn when it is applied to a 2-DOF system?

1.1. What are the consequences for the data generation?
1.2. What effect do more dimension have on the computational time?

During this research many different configurations of the algorithm have been tested together
with a lot of slight adjustments to the algorithm in order to make the algorithm converge to
a solution. Since none of the adjustments on RRT CoLearn led to a solution for the swing
up problem, the research broadened with a more general research goal:

Use supervised learning in RRT to solve a kinodynamic planning problem of a
2-DOF system.

Pursuing this goal the research deviated from using indirect optimal control as was done in
RRT CoLearn and a new steering function was created based on learning the inverse dynamics
of a system based on artificial neural networks. Using this new steering function the swing
up problem of the cart pole system was easily solved.

1-5 Thesis outline

This thesis starts in Chapter 2 with theoretical background on RRT and supervised learning.
It handles multiple variants of RRT and the state of the art methods in supervised learning.
Readers familiar with these subjects can continue to Chapter 3 which handles the investigation
into RRT CoLearn. In Chapter 4 a new steering function is presented which is based on
learning the inverse dynamics of the underlying system making using neural networks. The
final chapter, Chapter 5, concludes the thesis with a conclusion and recommendations.
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Chapter 2

Related Research

A lot of effort has been put in decreasing the computation time of kinodynamic planning,
as already briefly introduced in the introduction. RRT is regarded as the state of the art in
solving this problem relatively quickly. This chapter handles related research and is split up
into three sections. Section 2-1 handles the RRT algorithm and many of its variants which
speed up the algorithm by using supervised learning. Section 2-2 handles the RRT CoLearn
algorithm, which is also the main focus of Chapter 3. Section 2-3 handles the supervised
learning methods which are used in the research. Readers who are familiar with these subject
can skip these sections.

2-1 Rapidly Expanding Random Tree

In the RRT algorithm the kinodynamic motion planning problem is solved by building a tree
through the free state space Xfree[4][5][6]. The origin of the tree is based at the initial state
xi, from which it attempts to explore the free state space. The algorithm returns when a
tree node is added which is inside the goal region Xgoal. The process of adding a new node
to the tree consists of three main parts: sampling, neighbor selection and steering. When the
environment the robot operates in is not free, i.e. Xfree 6= X , an addition fourth step is added
called collision detection. The vanilla RRT algorithm is outlined in Algorithm 1.

Sampling The simplest step of the RRT algorithm is the sampling. In this step a random
state xr is drawn from the free state space Xfree. The easiest way of sampling is drawing
uniformly from Xfree. Usually a bias is introduced towards the goal state xg by drawing
a sample from Xgoal a certain percentage of the time[5][6], which improves the convergence
speed of the algorithm as it introduces greed into the algorithm.

Neighbor Selection After a random state xr is sampled, it needs to be connected to the tree.
The process of finding the optimal node to connect to is called neighbor selection, and is done

Master of Science Thesis S. Moring



6 Related Research

Algorithm 1: Basic RRT Outline
Input:
xi: Initial state
Xgoal: Goal region
T = {xi}
while T ∩ Xgoal = ∅ do

xr = sample(Xfree)
xnear = findNeighbor(T ,xr)
xnew = steer(xnear,xr)
if noCollision(xnew,E) then

if xnew ∈ Xgoal then
return {xi, · · · , xnew}

else
T = T ∪ xnew

end
end

end

by minimizing some distance metric. A typical distance metric often used is the Euclidian
distance as shown in Equation 2-1.

d(x, xr) =
√

(x− xr)T (x− xr) (2-1)

In kinematic planning this makes sense, since only positions are regarded and the Euclidean
distance then is the actual distance. However when planning in state space, the definition of
distance is not that easy. For example what is the distance between two angular velocities
ω1 and ω2? In Figure 2-1 a swing up trajectory for an underactuated single pendulum is
shown, with two points on the trajectory markerd. Eventhough the two points are spacially
near eachother, to move from x1 to x2 an entire extra swing is needed. Hence in kinodynamic
sense these points are actually far apart. Therefore in [6] and [15] it is suggested to use the
optimal cost-to-go as distance metric. However, the optimal cost-to-go is a heuristic that is
difficult and thus time consuming to compute. Instead of exactly computing the cost-to-go, it
can be approximated as well using supervised learning[16][7][8][14]. State of the art methods
that do so will be handled in the remainder of this section. In Chapter 4 the distance metric
is addressed as well.

Steering After a random state xr and its nearest neighbor xnear are selected, the system
needs be steered from xnear towards xr. Steering means finding a control input such that
when applied to the system with initial state xnear, the state evolves towards a new final
state xf , which is closer to the random sample xr than its neighbor xnear. In the original
RRT steering is done in a crude way. The allowable input set U is assumed to be discrete,
for example {umin, 0, umax}, and all inputs are applied to the system[5][6]. The control input
that minimizes the distance between the reached state xf and the sampled state xr is selected,
and the corresponding xf is added to the tree.

S. Moring Master of Science Thesis
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Figure 2-1: Swing up trajectory of a pendulum. The euclidean distance d is small, however since
direct travel is not possible, the actual distance is far.

Collision Detection If the space is planned in is not free of possible collisions, i.e. Xfree 6= X ,
an additional step is required called collision detection. Not only the reached state xf , but
also the trajectory from xnear to xf need to be collision free. Even when a full geometric
description is available of the environment and all the objects in the surrounding, finding
collission is a computationally heavy process[17]. However, in this thesis the state space is
considered to be entirely free, i.e. Xfree = X and the collision detection step will be further
ignored.

2-1-1 Properties

Due to the random sampling the state space, the expansion of the tree is biased outwards,
making it expand rapidly. This outward bias is called the Voronoi bias. Consider Figure
2-2. Every node in the tree has its own voronoi region. When sampling uniformly over the
state space, the probability of sampling a node in a large voronoi region is larger than that of
sampling in a small one. In practice this means that it is more likely to sample a new random
state xr in an area that has not been explored yet and thus the Voronoi bias stimulates the
tree to extend outwards and explore the unexplored regions. This outward bias is clearly
visible in Figure 2-3. Another nice property of RRTs is its probablistic completeness. In [6]
it is proven that the basic RRT algorithm fulfills this property. Probabilistic completeness
means that the probability of the algorithm finding a path approaches 1, as the number of
randomly taken samples increases. This of course assuming that there exists a feasible path.
This means that, if there exists a path from xi to xf , the RRT algorithm is guaranteed to
find it. It is however a fragile property, minor changes to the algorithm can already take it
away.
So far only the ‘Vanilla’ version of RRT has been handled. Many RRT variants have been

developed, the fastest ones being RRT which makes use of supervised learning. The remainder
of this section handles different approaches in speeding up the RRT algorithm.
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Figure 2-2: 40 nodes of an RRT with xi = (0, 0), and no goal state. Each node has its Voronoi
region shown. Nodes on the outside of the tree have larger Voronoi regions.
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Figure 2-3: Expansion of an RRT for a system with dynamics ẋ1 = u1 and ẋ2 = u2. The tree
starts at xi = (0, 0), and there is no goal state. Figure (a) has 100 nodes, (b) has 500 nodes and
(c) has 1000 nodes. The outwards expansion towards unexplored regions, caused by the Voronoi
bias, is clearly visible.

2-1-2 Parallel RRT

A popular method of speeding up the RRT is by breaking the problem up into smaller pieces
such that the computations can be done in parallel.

RRT Connect

Instead of building a single tree from the initial state xi, RRT Connect builds two trees:
One tree starting from the initial state xi and one tree starting from the goal state xgoal[18].
The two trees are built in the same way as the original RRT, the only difference is that the
tree starting from the goal state xf is connected backwards. When two nodes, one of each
tree, are close enough to eachother, the trees are connected via these nodes. The idea of
using two trees was already presented in [5], but the building of the tree was done completely
random. In RRT-Connect the trees are steered towards eachother speeding up the algorithm
even more.
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2-1 Rapidly Expanding Random Tree 9

Radial RRT

In Radial RRT there are not two, but many trees that are built at the same time[19]. The
space that needs to be explored is split up into multiple sections. This subdividing of the
space is done in a radial way, for example a 2D space is split up as a pie chart. In each of
these seperate sections, a tree is built. Then after a given number of nodes have been added,
a global update is done which tries to connects all the trees. This way the computation can
be spread out over multiple processors, parallelizing the RRT problem.

Blind RRT

Blind RRT is an extension to the Radial RRT algorithm. Presented in [20], instead of doing
the collision checking for every node, it first builds a large tree after which it removes the
branches that are colliding with the environment. This way it solves some cases where a
specific space is not reachable immediately.

A drawback of each of these parallelizations of RRTs is that they are all specifically designed
for kinematic problems. Subdividing the state-space does not work as well, since some regions
will be much more difficult to reach then others, if not impossible. Look for example at Figure
2-1, it is impossible to move outwards in the first and third quadrant of the statespace.
Therefore parallelizing the kinodynamic planning problem as done in Radial or Blind RRT
would not speedup as much as it would for kinemetic planning.
Instead of trying to speed up the entire RRT algorithm, seperate parts of it could be sped up
as well. Eventually these could then be combined with parallel RRT to gain an ever larger
speed up.

2-1-3 Sampling

Instead of simply taking uniform random samples from the state space, using deterministic
sampling could largely speed up the RRT algorithm since it has a large influence on the
subsequent steps[21]. The state-of-the-art sampling methods are called Dynamic Sampling
Domain and Reachability Guided RRT.

Dynamic Sampling Domain

In [22] a method is presented which tries to speed up RRT by adjusting the domain of which
the random samples are drawn. Each node in the tree gets assigned a radius R, which in
the beginning is set to R = ∞. When a specific node is selected for expansion but it fails
due to a collision, this radius is reduced to the distance between the random sample xr and
the selected tree node xnear. The same node will in a later iteration only be selected if the
new random sample xr lies within the radius R. By doing so, the visibile Voronoi region
is approximated by circle with radius R. This sampling method is specifically useful when
specific states are difficult to reach, for example when a lot of obstacles are near or with
so-called narrow gap problems where a path needs to be found through a narrow gap. The
authors claim an increase in speed of several order of magnitude in these difficult cases.
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Reachability Guided RRT

Reachability Guided RRT (RG-RRT) was presented in presented in [9], with the goal to
tackle the problem of random samples not being reachable. It does so by approximating the
reachable set R for every node in the tree. The reachable set is defined as all states that can
be reached from an initial state xi, by applying inputs from the allowable input set U within
a finite time tf . The approximation in RG-RRT is done by storing the reached states when
applying the minimum and maximum control inputs. The reachable set is then approximated
by R̂ which is the triangle created between xi, xumin and xumax . Hence if the randomly taken
sample falls within R̂, the point is considered reachable and the algorithm tries to connect
it. If not, RG-RRT takes a new random sample. The idea behind RG-RRT is that the
sampling and checking wether xr falls within the approximated reachable set is much cheaper
in computation time, compared to trying to connect the node and failing. Hence RG-RRT
provides a speedup to the original RRT. A problem however is that the implementationas
described earlier does not hold for systems with more than one degree of freedom.

2-1-4 Neighbor Selection

The RRT algorithm is very sensitive to the distance metric used when selecting the neighbor
in the tree[15]. Already in the original RRT paper the optimal cost-to-go was defined as the
best distance metric. However, since its computation is time consuming, they proposed use
a custom metric which is very specific for the underlying system[6]. New algorithms found a
way to speed up the computation of the cost-to-go, albeit an approximation.

LQR Based Heuristic

In [23] a distance metric is proposed based on Linear Quadradic regulation. In LQR, a closed
loop controller is found by minimizing the quadratic cost function in Equation 2-2. The cost
function can be tuned using the weight matrices Q and R.

C(x, u) =
∫ t0

0
(xTQx+ uTRu)dt (2-2)

Minimizing this cost function can easily by achieved by solving the quadratic Riccati Equation
2-3 for S, where Ar and Br are the state-space matrices found by linearizing the system around
xr. The optimal value of the cost-to-go to move from some state xi to the random state xr
is then found by evaluating Equation 2-4.

ATr S + SAr − SBrR−1BT
r S +Q = 0 (2-3)

V ∗(xi, xr) = (xi − xf )TS(xi − xf ) (2-4)

The nearest node in the tree xnear now is found by finding the node that minimizes V ∗(xi, xf ).
This technique leads to a distance metric which is an approximation of the optimal cost to
go. Eventhough it is not the exact optimal cost to go, it is a much better distance metric
then the euclidean distance, leading to a better coverage of the state space. The article does
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2-1 Rapidly Expanding Random Tree 11

not state anything about the computation time, but it can be assumed that it is faster than
computing the exact cost-to-go. They do claim that the advantage of using the LQR based
heuristic over the euclidean distance fades as the number of dimensions rises, especially when
the system is very non-linear.

Learning LQR

A large speed up was achieved by [7] which applied supervised learning to the neighbor
selection. In this article, an approximation of the optimal cost to go that was generated using
Iterative Linear Quadratic Regulation (iLQR) was learned by a function approximator called
Locally Weighted Projection Regression (LWPR) which is handled in Section 2-3-5.
In iLQR a different cost function is defined as shown in Equation 2-5. Here C(x, u) is the
earlier defined cost function, and Qf is a weighting matrix for the error between the goal
state xf and the reached state xr.

CiLQR(x, u) = C(x, u) + (xf − xr)TQf (xf − xr) (2-5)

This cost function is then minimized iteratively, until the cost function does not change
anymore. Doing so leads to a tuple containing of an initial state, a final state and a cost to
go: {xi, xf , c}. The relationship between the state pair {xi, xf} and the cost c is then learned
using LWPR. The authors claim a massive decrease of a factor 1000 in computation time.

2-1-5 Steering

One of the most difficult parts of RRT is the steering from the found neighbor xnear towards
a random state xr within reasonable time. The simplest way is discretizing the input set U
and trying all possible control inputs. With a large input set U this of course becomes time
consuming.

LQR-RRT

In [24] a method is presented which uses LQR for steering. Following the same steps as in
[23], a cost function C(x, u) is minimized by solving for S in the Riccati Equation in Equation
2-3. Using S, an optimal control policy can be defined which steers the system from xnear
towards xr.

u∗ = −R−1BT
r S(xr − xnear) (2-6)

Hence when using the LQR based heuristic as presented in [23], the steering function is prac-
tically readily available. In the article results are shown for the swing up of a single pendulum
and an acrobot system of which the average computation time equals 4.8 seconds and 109
seconds respectively.

A very recent development managed to compute a swing up for a single pendulum within
an average computation time of 2.4 seconds. It does so by approximating both the distance
metric and the steering function within a single function approximator. This algorithm is
called RRT CoLearn.
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2-2 RRT CoLearn

A state of the art attempt to speed up the kinodynamic planning problem, a new algorithm
called RRT CoLearn was introduced[14]. The algorithm speeds up the kinodynamic planning
problem by replacing both the distance metric and steering function by a function approxi-
mator. The function approximator is trained on a dataset of trajectories, which are generated
by integrating optimal equations of motion, found using indirect optimal control. The RRT
CoLearn algorithm tries to tackle the problem of steering a system from an initial state xi to
a final state xf by applying supervised learning on a dataset of pregenerated trajectories. A
model tries to learn how to connect two states by learning initial costates, which are a part of
Indirect Optimal Control. The algorithm is currently the state of the art in RRT algorithms
which use supervised learning and the starting point for the research in Chapter 3.

2-2-1 Indirect Optimal Control

In optimal control, a control input sequence u is found, such that the system is steered from
xi to xf within a finite time tf , by optimizing a cost J(x, u), which is defined as:

J(x, u) =
∫ tf

0
C(x, u)dt (2-7)

In the RRT CoLearn algorithm, a method named indirect optimal control is used to generate
trajectories, which is based on Pontryagin’s Maximum Principle[25]. In indirect optimal
control, the optimal control sequence is defined by differential equations additional to the
equations of motion of the sytem, called the costate-equations. Each state x of the regarded
system has its corresponding costate λx. These differential equations can found by minimizing
the control HamiltonianH. MinimizingH is necessary condition for optimality in Pontryagin’s
Principle. Given the cost integrand C(x, u) from Equation 2-7, the system’s equations of
motion ẋ and their corresponding costates λx, the control Hamiltionan can be constructed as
follows:

H(x, λx, u) = C(x, u) + λTx ẋ (2-8)

As already mentioned, minimizing H is a necessary condition for optimality. Hence to find
the optimal control input u∗ we need to minimize H with respect to u.

u∗(x, λx) = arg min
u

H(x, λx, u) (2-9)

Substituting the control input u with the optimal control input u∗ in the control Hamiltonian
H gives us the optimal control Hamiltionan H∗.

H∗(x, λx) = H(x, λx, u∗) (2-10)

Using this optimal control hamiltionan, the optimal state and costate trajectories can be
derived. Note that u∗ is a function of x and λx, hence when we have the trajectories we
can compute the optimal control input. Since the system now is described in Hamiltonian
formalism, the differential equations are found by taking the partial derivates to the states
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and costates as in Equation 2-11.
dx∗

dt
= ∂H∗

∂λx
dλ∗x
dt

= −∂H
∗

∂x

(2-11)

This set of ordinary differential equations describe the optimal evolution of the states over
time. Say we integrate the differential equations from t = 0 to t = tf with an initial state xi
and initial costate λi, then at the time tf a final state xf is reached. In order to optimally
steer the system from xi to xf , u∗(x, λx) needs to be computed using the found trajectories
and applied to the system. Hence, to solve the problem of steering a plant from xi to xf we
need to find an initial costate λi such that x(tf ) = xf .
As later becomes clear, the trajectories that are generated are generated with a free final time
tf . Following Pontryagin’s Maximum Principle this imposes a constraint on the initial value
of the control Hamiltonian, namely that the control Hamiltonian needs to equal zero at t = 0.
This implies a constraint on the initial costates, since the control hamiltonian can now be
solved for a single costate, such that it is a function of the initial state xi and the remaining
costates. A difficulty with this method of optimal control, and the main reason why different
methods which using optimizers to find a control sequence are much more popular, is the
fact that the costate equations most of the times are unstable, making the use of this method
impractical for larger tf since integrating the differential equations becomes impossible. For
the RRT CoLearn algorithm it is ideal however.

2-2-2 Supervised Learning

The main improvement over normal RRT that RRT CoLearn introduces is the use of super-
vised learning. Instead of solving the complex TP-BVPs, both the distance metric in the
connecting step and the steering function are approximated.

Data generation

The RRT CoLearn uses supervised learning to estimate the cost-to-go to travel between two
states, as well as the optimal steering policy. This is done by training a k-Nearest Neighbor
approximator on a large dataset of optimal trajectories, and the corresponding cost-to-go to
travel over those trajectories. The k-Nearest Neighbor classifier is handled in detail in Section
2-3-1. The trajectories that the approximator is trained on, are generated by integrating
the differential equations in 2-11 using for example Runge Kutta integration. Using these
trajectories, a dataset is created. A single datapoint consists of an initial state xi, a final
state xf , the initial costates λx and the corresponding cost-to-go J . From a single trajectory,
the dataset is structured as follows:

D =



x0 x0 λ0 J0
x0 x1 λ0 J1
x0 x2 λ0 J2
...

...
...

...
x0 xn−1 λ0 Jn−1
x0 xn λ0 Jn


(2-12)

Master of Science Thesis S. Moring



14 Related Research

So from this dataset it reads that for example to get from x0 to x2, as initial costates λ0 needs
to be selected and the differential equations need to be integrated until the cost-to-go equals
J2.

k-Nearest Neighbors

This dataset will now be used to train a k-NN approximator to create a function approximator
which maps the initial and final state xi and xf to the initial costates λx and cost-to-go
J . However, before simply feeding the dataset into the function approximator, the dataset
needs to be cleaned. The main reason for this is that multiple trajectory-endpoints can exist
which are very close together or even overlap, but while following a different trajectory and
thus with different initial costates and cost-to-go. When a 1-NN approximator is used this
wouldn’t be a problem, but this would also lead to a high variance estimator. Therefore a
3-NN approximator is used and thus these trajectories need to be removed from the dataset,
because averaging over different initial costates leads to a completely different trajectory.
Cleaning the dataset is done as follows: A random sample is taken from the dataset, together
with its nearest neighbor. If the distance between these neighbors is smaller then a boundary
value ε, the sample with the highest cost is removed. This is done until kmax times no samples
have been removed. The cleaning algorithm is depicted in Algorithm 2. The performance

Algorithm 2: RRT CoLearn cleaning
k = 0
while k < kmax do

pr = randomSample(D)
pn = nearestNeighbor(D, pr)
if ‖pr − pn‖ < ε then

phigh = arg maxp∈{pr,pn} cost(p)
D = D \ phigh

end
k = k + 1

end

of the cleaning algorithm is highly dependant on the boundary value ε. Choosing ε too large
would lead to removing too many datapoints, while choosing ε too small still leaves us with
a noisy dataset. This parameter has to be selected empirically by testing the approximators
model quality. Once the dataset is cleaned the k-NN approximator can be trained and it is
ready to be applied in RRT.

2-2-3 RRT

As described in Section 2-1, the RRT algorithm consists of three main parts: sampling,
neighbor selection and steering. The sampling part is done the same as in the original RRT,
simply uniformly sampling the state space X . The connecting and steering part however are
done differently.
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Neighbor Selection

Selecting the tree node that will be expanded towards the random sample xr is done in two
steps: first the nodes are selected that are ‘near enough’. This is done by computing the
euclidian distance to the dataset D from a query point xq = [xnear, xr]. Here xnear is a
node in the tree and xr is the random sample. The distance to the dataset can be seen as
a confidence measure. If the query point is too far away, the approximator will not able to
make a good estimation and thus xnear cannot be properly expanded towards xr. The query
points that are within a certain distance dmax are stored in a set N . If the set of near enough
nodes is empty, a new random sample is taken. Now the only thing left to do is finding the
nearest neighbor. This is done selecting the node in the set of close enough nodes which
has the lowest cost-to-go. The full algorithm for finding the nearest neighbor is outlined in
Algorithm 3.

Algorithm 3: RRT CoLearn: Finding the nearest neighbor
N ← {}
T ← Current Tree
D ← Approximator Training Set
while N = {} do

xr ← randomSample(X )
foreach xt ∈ T do

xq ← [xnear, xr]
d←computeDistanceToDataset(D,xq)
if d < dmax then

N ← {N, xt}
end

end
end
xnear ← arg minxt∈N cost(xt, xr)

Steering

Steering is done fairly simple in RRT CoLearn. The steering input that is needed to steer the
system from xnear to xr is found using the k-NN function approximator. The approximator
returns an initial costate λi and a corresponding cost-to-go J . Using these, the equations of
motion are integrate until the cost-to-go equals J . The state that is reached, xf , will then be
added to the tree.

2-2-4 Single Pendulum Example

As an example to demonstrate how the RRT CoLearn algorithm works, we derive the equa-
tions for a single pendulum. The single pendulum is modeled as a massless rod of length l,
with a mass m attached to the end of it. The other end of the rod is fixed at an axis around
which it can rotate and where a torque u can be applied. A graphical representation of the
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Figure 2-4: Graphical representation of the Single Pendulum model. The rod with length l is
fixed at the origin around which it can rotate.

model is shown in Figure 2-4. Using Langrangian mechanics, the equations of motion are
derived for the pendulums angle ϑ and its angular velocity ω. For simplicity of computations
all constants, m,l and the gravity g are set to 1. As a cost function C(x, u) = w+ u2

2 is chosen,
where w is some constant which introduces a cost on time. Now the control Hamiltionan can
be found as in 2-14.

ẋ =
[
ϑ̇
ω̇

]
=
[

ω
1
ml2u−

g
l sinϑ

]
=
[

ω
u− sinϑ

]
(2-13)

H(x, λ, u) = C(x, u) + λTx ẋ (2-14)

H(x, λ, u) = w + u2

2 + λϑω + λω(u− sinϑ) (2-15)

The optimal control law u∗ can now be found by taking the derivative of H with respect to
u and setting it to zero.

∂H
∂u

= u+ λω = 0⇒ u∗ = −λω (2-16)

Substituting u with u∗ in Equation 2-14 gives us the optimal Hamiltonian H∗ from which we
can derive the differential equations describing the optimal state evolutions.

H∗(x, λ) = w + λϑω − λω sinϑ− λ2
ω

2 (2-17)

The optimal differential equations are now found to be:
dϑ∗

dt
= ∂H
∂λϑ

= ω

dω∗

dt
= ∂H
∂λω

= − sinϑ− λω

dλ∗ϑ
dt

= −∂H
∂ϑ

= λω cosϑ

dλ∗ω
dt

= −∂H
∂ω

= −λϑ

(2-18)
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Range of ϕ sign(λϑ) sign(root(λω))
−π

2 < ϕ < 0 − +
0 < ϕ < π

2 + +
π
2 < ϕ < π + −
π < ϕ < 3π

2 − −

Table 2-1: The signs of the costates as caused by the parameterization in Equation 2-20. Because
of this parameterization, all possible combinations of signs of the costates are used.

Using these ordinary differential equations, a dataset of trajectories can be created that later
on can be used for learning. The dataset is created by integrating the equations, using random
initial states and costates. Remember that optimal control Hamiltonian has to equal zero at
t = 0, leading to a constraint on the costates. Because of this constraint, λω can be written
in terms of ϑ, ω and λϑ. Note that Equation 2-17 is a quadratic function in terms of λω.
Finding the roots of this equations leads to:

λω = − sinϑ±
√

sin2 ϑ+ 2w + λϑω (2-19)

Now the initial costates are characterized by only one value, λϑ. However, still one of the two
roots needs to be chosen. To solve this, λϑ is parameterized by the parameter ϕ ∈ (−π

2 ,
3π
2 ),

as shown in Equation 2-20.

λϑ = tanϕ

λω = − sinϑ+ sign(cosϕ)
√

sin2 ϑ+ 2w + tan(ϕ)ω
(2-20)

The reason for this parameterization has to do with the signs of the costates, for every λϑ
there exist two values of λω that are valid, namely both roots. The parameterization makes
sure that all combinations of signs exist, as is made clear in Table 2-1. Note that when the
roots in Equation 2-20 become complex, the initial point is discarded and a new ϕ is sampled.
Now the dataset D containing the optimal trajectories can be generated, by first random sam-
pling an initial state [ϑ, ω] ∈ X and an initial costate parameter ϕ ∈ (−π

2 ,−
3π
2 ). Integrating

the equations of motion from this initial state creates the trajectories that then are stored in
the dataset.
Using the generated dataset, the kNN function approximator is trained with which the RRT
algorithm is ran. The goal of the planner is to swing the pendulum up from its downwards
equilibrium [0, 0] to its upright equilibrium [π, 0]. An examplary trajectory that was found
using RRT CoLearn is shown in Figure 2-5.
In the article where are RRT CoLearn was presented, the average computation time of finding
a swing up trajectory was 2.4 seconds, much faster then other variants. However, this system
is currently the only system on which the RRT CoLearn algorithm works. As later turns out
in the research, the algorithm as is fails on a more complex cart-pole system. In attempts to
improve the performance, different supervised learning techniques were investigated.

2-3 Supervised Learning

Supervised learning is a method used to create an approximated function f̂(·), based on a
true function f(·). For example the distance metric in the neighbor selection in RRT is often

Master of Science Thesis S. Moring



18 Related Research

−1 0 1 2 3
ϑ [rad]

−2

−1

0

1

2

ω
 [r

ad
/s

]

Figure 2-5: Swingup trajectory of a single pendulum found by the RRT CoLearn algorithm.

computed using some function d(xi, xf ), which is a mapping from an initial and final state
pair {xi, xf} to a some distance value d. In [7] and [8] the optimal cost-to-go is approximated,
leading to an approximated function d̂(xi, xf ). Creating such a function is done using super-
vised learning. First, a large set of examples is created, in case of the approximated distance
metric d̂(xi, xf ) this would be done by computing the true optimal cost-to-go for a lot of
different initial and final state pairs {xi, xf}. Doing so can be a time consuming process,
but since it is done offline this is not a problem. This large dataset is then shown to the
approximation method, which tries to learn its model parameters based on the examples.
This section describes several methods that are already used in RRT such as k-Nearest Neigh-
bors and Locally Weighted Projection Regression, and state of the art methods such as Gaus-
sian Process Regression and Artificial Neural Networks. The state of art methods will be
considered in the research for this thesis.

2-3-1 k-Nearest Neighbours

One of the simplest yet a very effective way of supervised learning is k-Nearest Neighbours
(kNN)[26]. The mechanics of it are simple: Find the k nearest neighbours in the training set,
find the corresponding outputs and then estimate the output by averaging the corresponding
outputs in the training set. The full algorithm is outlined in Algorithm 4. Due to this
mechanics, any mapping, even highly nonlinear, can be approximated as long as enough
datapoints are available. A large dataset does mean a increase in computational time.
The kNN algorithm does have some drawbacks. For a starter its complexity: using the basic
algorithm described above the complexity is O(N), dependant on the size of the training
set. For a good approximation N needs to be large, and of course this data has to be
stored in memory. The complexity can be reduced by using an efficient data structure, such
as kd-trees[27] which reduces it to O(logN). A kd-tree partitions the space of the input
data, improving the searching speed. In higher dimensions this however loses its effectivity,
making the computational complexity approach O(N). Another problem is the distance
metric used[28]. For low input spaces the euclidean distance makes sense, however in higher
dimensional spaces this does not have to be. As was already shown in Section 2-1, in state
space the euclidean distance does not make sense at all.
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Algorithm 4: k-Nearest Neighbors
Input: xq,X,Y
yq = 0
for i = 1 to k do

find x ∈ X which minimizes ‖xq − x‖2
add corresponding y ∈ Y to yq
remove x from X

end
return 1

kyq

2-3-2 Locally Weighted Regression

Locally Weighted Regression (LWR) is a method used for function approximation, where a
linear model is fitted locally, on a selection of the training data[29]. The total set of training
data must be stored in memory, and is used for every single estimation ŷ = f̂(xq). First
a diagonal weight matrix W is computed. The diagonal values wii are computed using a
distance metric D and the values from the dataset xi.

wii = exp
(
−1

2(xi − xq)TD(xi − xq)
)

(2-21)

The distance metric D is the only open parameter, which describes which datapoints of xi are
used in the computation of the regression coefficients. Usually the D matrix is chosen with
the variances on the diagonal as in Equation 2-22, where h now is the only free parameter to
tune.

D = h · diag
(

1
σ2

1
,

1
σ2

2
,

1
σ2

3
, ...,

1
σ2
N

)
(2-22)

When enough data is available in the training set, leave-one-out cross validation can be used
to optimize the scaling parameter h. Of course this also can be done for the entire D-matrix,
using for example gradient-descent methods. When the weight matrix is computed, a linear
model is fitted using weighted least squares:

β = (XTWX)−1XTWy (2-23)

With:

X =
[
x 1

]
with x =

[
x1 x2 · · · yN

]T
(2-24)

y =
[
y1 y2 · · · yN

]T
The value ŷ can now be estimated using:

ŷ = f̂(xq) =
[
xq 1

]
· β (2-25)

LWR does have some disadvantages, for example the computational complexity is O(N2), it
grows quadratically with the number of training points, since it has to consider the entire
training set for every queried datapoint xq. Another disadvantage of LWR is that the input
matrix X must have full rank. Due to redundant input availability Equation 2-23 could
become singular. Furthermore, regular least squares has difficulties with collinearities in the
input data. In case of the randomly generated datasets, both redundant data an collinearity
could occur. A way to deal with these issues is by using partial least squares.
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2-3-3 Locally Weighted Partial Least Squares

Instead of regressing on all data such as LWR does, one can also regress on projections.
Locally Weighted Partial Least Squares (LWPLS) recursively projects the training data on a
orthogonal basis, after which it does a univariate regression on this projection [30][31]. The
total algorithm for LWPLS is listed below is shown in Algorithm 5.

Algorithm 5: LWPLS Algorithm
Initialize the data:

x̄ =
∑N−1
n=0 Wx

trace(W ) , ȳ =
∑N−1
n=0 Wy

trace(W )
Xres = X − x̄, yres = y − ȳ

for i = 1, . . . , k do
1. Project the input data on an orthogonal basis:

ui = XT
resW

si = Xresui
2. Regress in this direction:

βi = sTi Wyres/(sTi Wsi)
pi = sTi WXres/(sTi Wsi)

3. Compute the residuals:
yres = yres + siβi
Xres = Xres + sipTi

end
Prepare the output computation:
xq = xq − x̄, yq = ȳ
for i = 1, . . . , k do

1. Project the queried value xq on projection i
s = xTq ui

2. Add this to the output value yq
yq = yq + sβi

3. Compute the residual of xq
xq = xq − spi

end

Principle Component Regression

Whereas with LWPLS the data was projected on a orthogonal basis, with Principal Com-
ponent Regression (PCR) the data is projected on its principal components instead of an
orthogonal basis. Hence step 1 in the first for-loop in algorithm 5 becomes:

ui = max(eigv(XT
resWXres)) (2-26)

Choosing these projections will maximize the confidence in the univariate regression. It
however is known to choose bad projections and cannont ignore irrelevant dimensions[31].
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2-3-4 Receptive Field Weighted Regression

Presented in [30], the Receptive Field Weighted Regression (RFWR) predicts the function
output ŷ = f̂(x) by taking a normalized weighted sum of the outputs of multiple local linear
models, as shown in equation 2-27.

ŷ =

n∑
i=1

wiŷi
n∑
i=1

wi

(2-27)

ŷi = βTi x̃ where x̃ =
[
(x− ci)T 1

]T
(2-28)

Here wi is an activation strength computed by an activation centered around ci. The acti-
vation function is characterized by a kernel function, usually the gaussian distribution shown
in equation 2-29. The distance metric Di is constructed from an upper triangular matrix Mi,
such that it renders Di positive definite.

wi = exp
(
−1

2(x− ci)TDi(x− ci)
)
, with Di = MT

i Mi (2-29)

Computation of β

β, the parameter vector for the local fit is computed using a weighted least squares.

β = (XTWX)−1XTWY = PXTWY (2-30)

The update rule for β when a new datapoint x̃ has arrived is shown in equation 2-31. A
forgetting factor λ is incorporated, to cancel out data from when the weights w were not
properly learned yet.

ecv = y− βTn x̃

Pn+1 = 1
λ

(
Pn − Pnx̃x̃TPn

λ
w + x̃TPnx̃

)
(2-31)

βn+1 = βn + wPn+1x̃eTcv

Now the total algorithm is as follows: The only parameter left to tune now is the distance
metric D. This can be done by hand, or as proposed in [30] minimizing a cost function J
using gradient descent. The used cost function is shown in 2-32. In general it consists of two
parts: A weighted cost of the mean squared error of the model, as if it was computed using
leave-on-out cross validation, and a cost for the number of receptive fields used, weighed by
a factor γ.

J = 1
W

p∑
i=1

wi‖yi − ŷi‖2

(1− wix̃Ti Px̃i)2 + γ
p∑

i,j=1
D2
ij (2-32)

One of the biggest advantages of RFWR is that it is truely incremental, it does not need
to store the training data for its regression. Some issues however arise: The computational
complexity, rises cubic in higher dimensions,i.e. O(d2) [29][32]. Hence it is not suitable for high
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Algorithm 6: RFWR Update Algorithm
Input: New datapoint (x, y)
for All models do

Compute activation according to 2-29.
Update local model according to 2-31.

end
if w < wgen∀wi then

Create new model:
ci = x

βi =
[
0 y

]T
end

dimensional systems. Another problem is that, eventhough the distance metric D is updated,
still an initial value has to be chosen. This initial value highly dictates the performance of the
algorithm since it is highly data dependant. Another problem that can occur which is highly
data-dependant, is the number of needed underlying linear models. When the data used for
training is highly non-linear, a lot of local models will be needed to achieve good performance
since the model assumes local linearity[33][34].

2-3-5 Locally Weighted Projection Regression

Created in 2000 by S. Schaal and S. Vijayakumar, Locally Weighted Projection Regression
(LWPR) is a variant on RFWR, where instead of regressing on all available data, it projects
the data on an orthogonal basis, on which the regression is performed recursively (much
like LWPLS)[31]. LWPR is currently considered as one of the most state of the art function
approximators. Since LWPR uses projections instead of the entire dataset, it has a complexity
of O(d), linear in the number of dimensions[32][33]. This makes it one of, if not the fastest
algorithm around. Choosing the initial distance metric D however still remains problematic,
since it still is highly dependant on the underlying data and thus to apply this method still
a lot of tuning is needed beforehand.

2-3-6 Gaussian Process Regression

Gaussian Process Regression (GPR) is a different kind of approach than the regressions
already mentioned. It assumes the function to be approximated is a function with additive
zero-mean gaussian noise with variance σ2

n, i.e. y = f(x) + ε[35]. Hence the output space Y
can be modelled as a Gaussian process:

Y ∼ N (0,K(X ,X ) + σ2
nI) (2-33)

Here K(X ,X ) is a covariance matrix, computed using some covariance function k(x1,x2),
which most often are selected to be gaussian kernels [29][35][36]:

k(x1,x2) = σ2 exp
(
−1

2(x1 − x2)TW(x1 − x2)
)

(2-34)
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Other covariance functions could of course also be used. Inserting a query point xq now leads
to a joint distribution of Y with yq = f̂(xq):[

Y
yq

]
∼ N

(
0,
[
K(X ,X ) + σ2

nI k(X , xq)
k(X , xq) k(xq, xq)

])
(2-35)

Conditioning the distribution in Equation 2-35 leads to a new distribution with all avail-
able data p(yq|xq,X ,Y), of which thus the value yp can be computed as the mean of the
distribution:

yq = E[p(yq|xq,X ,Y)] = k(xq,X )(K(X ,X ) + σ2
nI)−1Y (2-36)

An exact derivation can be found in [35]. Eventhough the algorithm is slower than LWPR,
it has a complexity of O(d3), its predictions are often more accurate. It still has some initial
metaparameters to set (σ2,σ2

n and W), however these could be optimized by maximizing the
log marginal likelihood [35].

In [34] GPR is applied to learn the model of a 7-DOF manipulator, to use it in CTC control.
The model found was actually more accurate than an analytical model found using rigid body
dynamics. Due to its complexity however it was too slow to use as an online feedback law.
For motion planning purpuses however it could be fast enough.

2-3-7 Artificial Neural Networks

A different type of approximator than the above mentioned ones is called Artificial Neural
Networks (ANNs). ANNs themselves have been around for a while, but fastly grew in pop-
ularity together with the rise of computing power in the 1990s. A big advantage of neural
networks is the simplicity in use, for basic applications only a few parameters need to be set.
In case of function approximation, the most used network type is a multilayer perceptron
network.

Perceptron

In a mulilayer perceptron network, a lot of perceptrons are linked together to create a
network[37]. These perceptrons themselves are very simple building blocks, consisting of
a weight vector w, a bias b and some activation function φ(x)[38]. Using these variables,
the output of the perceptron is computed as in Equation 2-37. Hence, the perceptron does
nothing more than take an affine combination of the inputs and than compute an activation
using some, usually non-linear, function.

y(x) = φ(wTx+ b) (2-37)

This function is also one of the most important parameters of the perceptron which can be
selected. Most of the times this function is chosen to be a non-linear function such as the
sigmoidal function in Equation 2-38 or the hyperbolic tangent function. In 2000 the rectified
linear unit (ReLU), Equation 2-39, was presented based on how actual neurons in brains are
actived[39]. Since then the ReLU function has been the most widely used activation function
in neural networks. The main advantage of the ReLU unit are its better learning properties.
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Figure 2-6: Schematic representation of an Artifical Neural Network

In case of for example the sigmoidal function, when the error is very large, the derivative of
it is very small leading to a slow learning. The ReLU function does not have this problem.

φ(x) = 1
1 + e−x

(2-38)

φ(x) =
{
x if x ≥ 0
0 otherwise

(2-39)

Another type of activation funtion that has been successfully used in approximating func-
tions, are wavelet functions. A wavelet function is a function that starts and ends at 0 but
oscillates in between. In [40] some highly non-linear and even discontinuous functions have
been approximated very accurately using Gaussian wavelet functions.

Multilayer Perceptron Network

A multilayer perceptron network is created by combining a lot of these perceptrons, as shown
in Figure 2-6. In this figure each circle represents a perceptron with its own weight vector w
and bias b, and the connections mean that the output of the perceptron on the left is used
as input by the perceptron on the right. Another thing that can be seen from this figure is
that there are multiple layers containing perceptrons. There are three types of layers: Input
Layers, Hidden Layers and Output Layers. The number of perceptrons in the Input layer is
always equal to the number of inputs the mapping has that is being approximated, and the
same holds for the Output Layer. The number of layers in the hidden layer however is subject
to change. Choosing a lot of perceptrons in a hidden layer leads to a wide neural network,
whereas adding multiple hidden layers behind eachother leads to a deep neural network. No
exact solution exists for the optimal number of layers and perceptrons to choose, but in [41] it
is proven that any two-layer network can learn a dataset of N samples with m outputs, using√

(m+ 1)N perceptrons per layer, however usually much less are needed. In [42] a method
is presented which optimizes the network topology using a genetic algorithm.

Training

Now that a network is constructed, the total output of the network can be computed and the
network can be trained. The parameters that are adapted in the training are thus the weight
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vectors wi and the biases bi of every node. Before the training can be done, an error function
needs to be defined. In the field of neural networks, this error function is often called the
loss-function. Many options are available for the loss function, but the one that is used most
in function approximation is called the L2-Norm given in equation 2-40.

L2 =
∑
i

‖yi − ŷi‖2 (2-40)

Initially the training was often done using the Gradient Descent algorithm[43], where the
weights and biases are updated by the partial derivatives of the error L with respect to
the weights and biases as in Equation 2-41. Nowadays however more complex optimization
algorithms are used, which converge must faster and with better results. The most widely
used one is called Adam[44].

wi+1 = wi − α
∂L

∂wi
(2-41)

Classification

However, neural networks are not only used for function approximation. Actually most ap-
plications nowadays are classification problems. In classification, the input vector is called
a vector of features, and certain combinations of these input features will then be classified
into a certain class. To achieve this, the output layer is changed to have as many neurons as
classes, and the activation of the output layer is changed such that it outputs the probability
that it is the given class. Candidates for the output function could be a simple max function,
which outputs a 1 at the most probable class, or for example the softmax function in Equation
2-42 which computes the probability that a set of features is in class j, where N is the number
of classes.

φ(x)j = exj∑N
i=1 e

xi
(2-42)

Training a classification network can be done using the L2 norm, however this often does not
lead to optimal performance[45]. A better loss function for this problem is called the log-loss
function which is .

Lce = − 1
n

∑
x

y ln ŷ + (1− y) ln(1− ŷ) (2-43)

Using the L2-Norm as loss function has the problem that when the network is far off, learning
goes really slow. Only when the estimated output ŷ closes in on y the learning speed improves.
When the cross entropy is used as loss function this problem is much smaller.

Recurrent and Convolutive Networks

Two types of neural networks that are subject to a lot of research nowadays, and which are
applied broadly are Recurrent and Convolutive networks. In recurrent networks, the output
of the neurons in the output layer are fed back into the neurons in the hidden layers[46]. This
way a directed cycle is created, which makes the network particularly profound in detection
of sequences, since the output at some time is a function of the previous outputs as well.
Recurrent networks are therefore used a lot in recognition of speech and writing[47]. Convo-
lutive networks are actually multiple networks on top of each other, that are interconnected.
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Method Complexity Dimenionality Non-linearity
kNN O(N)1 - ++
LWPR O(d) ++ -
GPR O(d3) + +
ANN O(p3) ++ +

Table 2-2: Comparison of the most promising function approximators. 1The complexity of kNN
using kd-trees is O(logN), but reduces to O(N) in higher dimensional spaces. Therefore O(N)
is used in the comparison.

Because of this instead of a vector as input, these networks take a matrix as input[48], which
is very useful when applying classification on images or videos. Since the main applications
of Recurrent and Convolutive Networks are not in the scope of this thesis, they will not be
handled more indepth.

A drawback of using artificial neural networks is called catastrophic interference[49].Interference
happens when a trained model is offered new data to learn. Learning this new data causes
it to forget the previously learned data, especially when the new training data and the pre-
viously used training data do not overlap. A nice example of this is given in [30]. Because
of the interference neural networks can not be used as an incremental model such as the
LWPR algorithm, and they must be trained only once. Neural networks do have the property
of being universal approximators[50][51]. This means that any non-linear mapping can be
approximated by a neural network, as long as enough neurons are used. In practice this of
course could lead to very large networks making them impractical to use, since the complexity
of a neural network is approximately O(p3) where p is the number of neurons[52].

2-3-8 Overview

In Table 2-2 an overview is given of the most promising function approximators handled in
this section. Note that in the complexity column, N stands for the number of datapoints, d
the number of dimensions and p is the number of neurons. Some algorithms, such as LWR
or RFWR are not considered, since very much improved versions of them are available. The
algorithms are scored on computational complexity, dimensionality and the ability to handle
non-linearity. Based on these qualities a selection is made which will be used later on in
this thesis. According to the literature, LWPR should be the state of the art in function
approximation with by far the lowest complexity, it is however very sensitive to tuning its
initial hyperparameters. On top of that, when the non-linearity of the mapping rises and
more local models are needed the complexity rises as well. Neural networks also have a low
complexity, depending on how wide and deep they are made. An advantage of kNN is its
ability of handling highly non-linear data, at the cost of computational time. GPR performs
less on dimensionality but is supposed to create more accurate models. Since computational
time is the main problem with motion planning, ANN and LWPR will be considered. kNN
is considered as well since it is used in the RRT CoLearn algorithm.

S. Moring Master of Science Thesis



Chapter 3

RRT CoLearn on Multi-DOF Systems

In order to answer the first research question ‘What are the consequences for RRT CoLearn
when it is applied to a multi-DOF system?’, the algorithm is applied on a Cart Pole system
and its results are compared to the same experiment on a single pendulum swing up. After
this an analysis is performed on the steering function and data generation. Improvements
have been implemented on both steps, which after analysis showed to not benefit the algo-
rithm as was expected. Furthermore an investigation is done in applying different function
approximators than K-Nearest Neighbor (kNN) in order to speed up the algorithm.

3-1 Baseline Analysis of RRT CoLearn

To make a fair comparison between results, a baseline analysis is done of the RRT CoLearn
algorithm. The reason for doing this and not comparing the new results with those in the
original publication[14], is to rule out performance differences caused by the hardware it is
run on or for example implementation differences. All software is written in Python and run
on a Hewlet-Packard 8560w workstation with an Intel i7-2670QM processor and 16 Gb of
memory. For the kNN function approximator the SciKit implementation is used from the
SciKit-Learn package[53].

3-1-1 Experiment

Algorithm 7 outlines the framework that is used for all experiments performed in this chapter.
First a dataset (D) is created containing the optimal trajectories and their corresponding
initial costate parameterization. In case of the single pendulum system from Section 2-2-4
this means the optimal equations of motion are integrated for 3000 different initial states and
costates for 2 seconds with a timestep of ∆t = 0.01s. This leads to 600k datapoints of the form
{xi, xf , ϕ, c}, which can be read as ‘To get from xi to xf compute the initial costates using ϕ
and integrate until the cost equals c’. Hence each datapoint contains a trajectory. For more
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detailed information refer to Section 2-2. This dataset is then cleaned using cleanData(D)
after which it is used to create a model f(·) which approximates both the distance metric
D and the steering input parameterization ϕ. This model is passed to the doRRT(f(·))
routine which is outlined in Algorithm 8. This routine implements the RRT algorithm with
approximated distance metric and steering function. Finally, all steps are nested in loops such
that they can be executed multiple times. The variable NUM_RUNS states the number of
times a new dataset D is created on which a new model is trained. The variable NUM_TRAJS
states the number of planning attempts that are done using these models. Hence, a full run
leads to NUM_RUNS×NUM_TRAJS trajectories. The RRT framework and the separate
functions outlined by Algorithm 7 and 8 will be the used framework throughout this thesis.
This way the basic RRT functions such as sampling and keeping track of the tree are all
kept equal. When functions are tested separately, such as for example the steering function
steer(xnear,xr,ϕ), these functions will be implemented such that they fit straight into this
RRT framework.
For RRT CoLearn, the model f(·) computes the cost-to-go between two states xi and xf and
the input parameterization is based on the initial costates λi. NUM_RUNS is set to 10 and
NUM_TRAJS is set to 100, leading to a total of 1000 trajectories. The first system that is
tested is the single pendulum system of section 2-2-4. The doRRT(·) function is timed, such
that eventually the average computation time can be computed.

Algorithm 7: RRT Baseline Experiment
1 for k ← 1 to NUM_RUNS do
2 D ← generateData()
3 D ← cleanData(D)
4 f(xi, xf )← createModel(D)
5 for l← 1 to NUM_TRAJS do
6 doRRT(f(·))
7 end
8 end

Algorithm 8: doRRT(xi,xf,f(xi, xf ))
1 T ← {xi}
2 while T ∩ Xgoal = ∅ do
3 xr ← sample(Xfree)
4 D ← approximateDistanceMetric(T ,xr,f(·))
5 xnear, c← findNeighbor(T ,D)
6 ϕ← approximateSteeringInput(xnear,xr,f(·))
7 xnew ← steer(xnear,xr,ϕ,c)
8 T ← T ∪ xnew
9 end

S. Moring Master of Science Thesis



3-1 Baseline Analysis of RRT CoLearn 29

x

y
ϑ1

l1

Figure 3-1: Graphical representation of the cart pole system. The cart with mass m1 can move
along the x-axis. The rod with mass m2 is connected to the cart and can rotate around its end.
Both masses m1 and m2 are modelled as point masses.

3-1-2 Results

The baseline experiment for the RRT CoLearn algorithm on a single pendulum swingup
resulted in an average computation time of 3.323± 5.471 seconds. Note that this is about 1.5
times the computation time from the original paper[14], indicating the difference in hardware
used since the implementation is exactly equal.

3-1-3 Cart Pole System

The RRT CoLearn algorithm works very fast for the single pendulum system. However, it
has not yet been tested on any other system. The next step now is to repeat the experiment
outlined in Algorithm 7, but now applied on a cart pole system. The cart pole system is
a highly non-linear system with 2 degrees of freedom. It consists of two moving parts: A
cart with mass m1 which can move frictionless in the direction of x on the line y = 0, and
a weightless rod of length l with a point mass m2 attached to it at one end. The other end
of the rod is connected to the cart, such that it can rotate around this axis. A graphical
representation of the system is shown in figure 3-1. The state space of the cart is defined by
the position and velocity of the cart, x and v, and the angle and rotational velocity of the rod
ϑ and ω. The equations of motion are derived using Lagrangian mechanics. The Lagrangian
is found by the difference between the kinetic energy and the potential energy, which is shown
in Equation 3-1.

L = T − V

T = 1
2(m1 +m2)v2 +m2vω cosϑ+ 1

2m2l
2ω2

V = −m2gl cosϑ

(3-1)

Using the Lagrangian L the equations of motion can be derived by applying Equation 3-2
with q substituted for ϑ and x. Doing so leads to the equations of motion given in Equation
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3-3.
d
dt
∂L
∂q̇
− ∂L
∂q

= u (3-2)

ẋ = v

ϑ̇ = ω

v̇ = m2lω
2 sinϑ+ u+m2g cosϑ sinϑ
m1 +m2 −m2 cos2 θ

ω̇ = −m2lω
2 cosϑ sinϑ+ (m1 +m2)g sinϑ+ u cosϑ

l(m1 +m2 −m2 cos2 ϑ)

(3-3)

Using these equations of motion the differential equations describing the optimal state evo-
lution are derived as shown in Section 2-2-4, and the same cost function C(x, u) = w + u2

2 is
used. The expectation was that the algorithm would converge within reasonable time, how-
ever as opposed to the single pendulum system, the algorithm did not converge at all. Many
different settings were tried, for example shorter trajectories with higher resolution, since the
equations of motion are unstable this might have improved the performance. Multiple reso-
lutions were tried ranging between ∆t = 0.001s and ∆t = 0.1s. The function approximator
had been changed to a 1-NN classifier to remove the influence of cleaning. This way only the
trajectories were to be stitched together in order to build the tree. Even huge datasets were
made, up to 600 million datapoints, to rule out that the problem was the curse of dimension-
ality. None of these adjustments led to convergence.
The remainder of this chapter is an investigation into other possible reasons for the algorithm
not converging, and how to address these problems.

3-2 Steering Function

The approximation of the cost was found to be within reasonable bounds, as shown in Table
3-2, and multiple publications have also shown that the distance metric can successfully be
approximated[7][8]. Therefore it was expected that the cause of the algorithm not converging
lies with the approximation of the steering input parameterization. This section will inves-
tigate the approximation method used and the performance of the approximated steering
function seperately. First the steering function is investigated as it is applied on the Single
Pendulum, since this system is shown to work. The same is done for the cart pole system
and the differences will be discussed.

3-2-1 Analysis of Steering Function

In order to find out if bad performance of the steering function is the cause of the algo-
rithm not converging, an experiment is set up as follows: Two datasets are created using
the generateData() function, a training set Dtrain and a test set Dtest. Using the training
set a model f(xi, xf ) is created which will then be applied on the test set. This test set
contains initial and final state pairs {xi, xf} and the corresponding true cost-to-go and input
parameterization, {c, ϕ}. For each point in the dataset their approximated values ĉ and ϕ̂
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are computed, which are then used to steer the system from xi towards xf . For each of
these three values the Mean Squared Error (MSE) shown in Equation 3-4 is computed. The
expirement is outlined in Algorithm 9. By doing this experiment the quality of the function
approximator is tested, as well as its application in the steering function. Note that the way
the functions in lines 2− 8 are implemented are exactly the same way as in Algorithm 7.
The experiment is done for the single pendulum system as well as the cart pole system. The
training set contains 3000 random trajectories, generated by integrating the equations of mo-
tion for 2 seconds using Runge Kutta integration with a ∆t of 0.01s. The results are shown
in Table 3-1.

MSE(x, y) = 1
N

N−1∑
i=0

(xi − yi)2 (3-4)

Algorithm 9: Analysis of Steering Function
1 for k ← 1 to NUM_RUNS do
2 Dtrain ← generateData()
3 Dtest ← generateData()
4 f(xi, xf )← createModel(Dtrain)
5 foreach {xi, xf , c, ϕ} ∈ Dtest do
6 ĉ← approximateDistanceMetric(xi,xf,f(·))
7 ϕ̂← approximateSteeringInput(xi,xf,f(·))
8 x̂f ← steer(xi,xf,ϕ,c)
9 ec ← {ec, MSE(c,ĉ)}

10 eϕ ← {eϕ, MSE(ϕ,ϕ̂)}
11 ex ← {ex, MSE(xf,x̂f)}
12 end
13 end

An interesting result is that the quality of the separate predictions is not very good. Consid-
ering that the range of ϕi is equal to (−π

2 ,
3π
2 ), then an average estimation error of 3.928 is

substantial. What is even more remarkable is that even though the approximation errors of
the model are high, applying the steering function still results in a very samll error of 0.020.
These results are further confirmed by Figure 3-2. In this figure, each estimated value is plot-
ted against its true value. In case of a perfect estimation with zero error, this figure would
show a straight line through the origin, which is shown in red in each figure. The closer the
points are plotted near the red line, the higher the correlation is between the true and esti-

Single Pendulum Cart Pole
MSE(ϕ, ϕ̂) 3.928± 0.271 60.037± 2.030
MSE(c, ĉ) 0.079± 0.010 0.625± 0.052
MSE(xf , xr) 0.020± 0.001 0.148± 0.012

tapprox 1.130± 0.114 1.258± 0.098

Table 3-1: Results for the RRT CoLearn steering quality experiment, outlined in Algorithm 9.
The steering error MSE(xf , xr) is higher for the Cart Pole system, but note that the dataset the
approximtor is trained on is of equal size. Increasing the dataset size should lower the error.
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mated values. Figure 3-2a shows the plot for the input parameterization ϕ. As expected, the
spread is large, leading to the high estimation error in Table 3-1. The spread of the approx-
imation of the cost to go is less, as shown in Figure 3-2b. However, when looking at Figure
3-2c and 3-2d the spread around the red line is minimal, meaning that the steering function
does work well even though the approximations are off. Figure 3-3 shows similar results for
the cart pole system. The estimation of the input parameterization, shown in Figure 3-3a,
appears to be completely random. The estimation of the cost in Figure 3-3b shows similar
behavior. However, Figure 3-3c through 3-3f show better results for the steering function.
The fact that even though the approximations of the variables are very off, the steering func-
tion still works has two reasons: The first reason lies in the way the data that the model is
trained on is generated. The trajectories are generated using indirect optimal control, and
thus the dataset contains optimal trajectories. However, these trajectories are not guaranteed
to be globally optimal. Cleaning of the dataset removes sub-optimal trajectories, making the
remaining trajectories the optimal trajectories of the dataset. When the test contains a tra-
jectory with similar {xi, xf} to a trajectory of the training set, it is most likely to be from a
different optimum. In that case, the cost to go and the input parameterization are different
but the end point of the trajectory remains the same. Second, the xf and x̂f are both end-
states from a trajectory starting at the same initial state xi. Since the trajectories in both
the training and test set are short, the reached state x̂f is bound to lie in the vicinity of xi
and thus also of xf .
Taking this in account it is clear that a good steering function based on short trajectories
would lead to a a very small steering error MSE(xf , x̂f ). It does so for the single pendulum,
however it does not for the cart pole system with a MSE of 0.148. A possible reason for this
is the number of trajectories that are used for training the kNN model.

3-2-2 Dataset Size

Recall that the function approximator used is a kNN approximator, which finds the most
similar entries in a dataset and uses those to compute and estimate. A larger dataset would
increase the probability of the dataset containing a similar {xi, xf} state pair which would
result in a lower steering errorMSE(xf , x̂f ). Since the space that is sampled from is doubled
in number of dimensions, more trajectories are needed in order to properly cover the state
space. Therefore the same experiment is repeated, but now with the kNN model trained on
a larger dataset. The results for different dataset sizes are shown in Table 3-2.
As expected, the steering error decreases when larger training sets are used. With a dataset
compiled of 100000 trajectories, the steering error MSE(xf , x̂f ) is reduced to 0.076, which
is still larger than for the single pendulum but half of what it was. However, repeating the
experiment of Section 3-1 but now with the kNN model trained on 100000 trajectories did
not lead to any improvements, the RRT CoLearn algorithm still did not converge. Therefore
the problem is to be sought elsewhere. Since the algorithm does not converge, even when a
large dataset is used, the cause might lie in the quality of the data itself.

3-2-3 Dataset Coverage

The trajectories in the dataset that is used for training are generated using indirect optimal
control. The initial costates play an important role, since they define the trajectory that is
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Figure 3-2: (a) and (b) show the estimated values of φ and c plotted against their true values.
(c) and (d) show the goal states ϑ and ω plotted against their reached counterparts. The red
line depicts perfect estimation. the estimations in (a) and (b) are really off, still a small steering
error is achieved as is visibile in (c) and (d).

Trajectories MSE(ϕ, ϕ̂) MSE(c, ĉ) MSE(xf , x̂r)
3000 60.037± 2.030 0.625± 0.052 0.148± 0.012
10000 58.988± 2.971 0.511± 0.035 0.116± 0.015
50000 56.064± 1.219 0.357± 0.025 0.089± 0.009
100000 56.522± 1.089 0.110± 0.030 0.076± 0.012

Table 3-2: Results for the steering function analysis when using different dataset sizes on the
cart pole system. As was expected, a larger dataset decreases the steering error.
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Figure 3-3: (a) and (b) show the estimated values of λ and c plotted against their true values.
(c)-(f) show the goal states x, ϑ, v and ω plotted against their reached counterparts. The red
line depicts perfect estimation. The large deviation from the red line indicates a high prediction
error.
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generated. Using different initial costates λi for the same initial state xi will lead to a different
state xr. Recall from Section 2-2 how the control Hamiltonian is constructed when using a
quadratic cost function C(x, u) = w + u2

2 :

H(x, λx, u) = w + u2

2 + λTx ẋ (3-5)

Now when computing the optimal control Hamiltionan H∗, the input u is replaced by the
optimal control input u∗, which is parameterized by λx and x. Hence, the optimal control
Hamiltonian is a quadratic function in the terms of λx and x. Finally, recall the initial condi-
tion that needs to be fullfilled, H∗(x, λx) = 0 at t = 0. This condition was met by solving the
condition for the final costate. Since the condition is quadratic, there practically always will
exist two valid solutions. Since the relationship that is learned by the kNN model needs to
be deterministic, only one of the two valid solutions will be selected. This lead to the belief
that the generated dataset D does not cover the full space containing all trajectories enough.
The input data for the function approximator are tuples of initial and final states, {xi, xf}.
The space these tuples are from can be seen as a trajectory space with a dimension two times
the state space dimension. A point in the trajectory space corresponds with a trajectory from
one point to another in state space. Now ideally, the dataset would contain trajectories from
each point in state space to any other point in state space. This would mean the trajectory
space is filled up uniformly. Due to the differential constains in the form of equations of
motion and limited integration time, this is unlikely. For example, a trajectory from a point
with very high positive velocities towards a point with very negative velocities is unlikely to
be present. Hence a 100% dataset coverage is likely impossible, however we can see whether
or not there is a big difference between the datasets for the single pendulum and the cart pole
system.
The dataset coverage can be estimated by doing a fairly simple experiment. The estimation
is done by splitting up the trajectory space into multiple bins, and counting the number of
datapoints in each of these bins for a generated dataset. When a datapoint point is present
in a specific bin, than it means that there is a trajectory starting at a specific part in state
space and ends in another specific part of state space. Each dimension in the trajectory space
is divided in to four bins. This way a division is made between values that are negative large,
negative small, positive small and positive large. The dataset coverage is then defined as the
percentage of non-empty bins. The experiment is repeated for different dataset sizes, such
that the effect caused by the dataset size is also visible.
The results for this experiment are shown in Figure 3-4. Clearly the coverage for the single
pendulum is much better, when using 3000 trajectories in the dataset the coverage is al-
ready at 28%, whereas the coverage for the cart pole just reaches 5% even when using 50000
trajectories. Interesting to see as well is that the dataset coverage for the single pendulum
saturates at 28%. To estimate the number of trajectories needed for the cart pole system
to equal the coverage of the single pendulum system, an optimistic linear extrapolation is
done. The estimation is optimistic since the curve in Figure 3-4 is clearly saturating and not
linearly increasing. Extrapolating leads to a required dataset size of over 500000 trajectories
for a coverage of 25%, but this value is likely to be much higher, assuming that it would ever
reach such a coverage.
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Figure 3-4: Dataset coverage for different dataset sizes. In case of the single pendulum, the
trajectory space is much better covered than for the cart pole system. To achieve similar coverage,
at least an estimated 500k trajectories are needed.
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Figure 3-5: Computation times for the functions approximateDistanceMetric(T ,xr,f(·))
and steer(xnear,xr,ϕ,c). The computation time of the distance metric drastically increases
over when the number of nodes in the tree increase, making RRT CoLearn very slow for larger
trees. A different approximation method could solve this.

3-3 Computation Time

The main problem with kinodynamic planning is its computation time and RRT CoLearn is an
interesting candidate to speed up kinodynamic planning. When investigating the algorithm
on the cart pole system in Section 3-1, it appeared that the algorithm was slowing down as
the tree grew. To find the cause for this, each step in Algorithm 8 was timed. It was found
that two lines of Algorithm 8 were the main contributers to the computation time, namely
the functions approximateDistanceMetric(T ,xr,f(·)) and steer(xnear,xr,ϕ,c). Figure
3-5 shows the computation time of these two steps plotted against the number of nodes in
the tree. Two things can be seen on this figure. The steering function takes up a large chunk
of time, which stays constant for every tree node. The time needed to estimate the distance
metric however grows when more nodes are present in the tree. This is expected, as for every
tree in the node a distance metric has to be found. The rate at which the computation time
grows however was not expected to be this large.
The speed at which the tree is built can be largely increased by selecting a different function
approximator which computes the distance metric. In this section, two different function
approximators are investigated that are supposed to be faster than kNN. In [7] a huge speedup
was achieved by approximating the optimal cost-to-go using LWPR, hence LWPR will be
applied on this data as well. Besides this Artifical Neural Networks will be investigated as
well due to its high speed capabilities.
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D RFs MSE(ϕ, ϕ̂) MSE(c, ĉ) MSE(xf , xr) tapprox
0.1 22 22.360± 0.214 0.405± 0.026 0.746± 0.022 0.036± 0.009
1 567 25.652± 0.434 0.376± 0.029 0.372± 0.013 1.045± 0.026
5 2760 46.031± 1.271 0.692± 0.039 0.262± 0.018 6.641± 0.719
10 3651 53.043± 2.294 0.825± 0.066 0.240± 0.029 7.488± 1.186
20 4868 49.476± 2.481 0.923± 0.024 0.224± 0.024 8.097± 0.659
50 7062 52.653± 4.074 1.072± 0.140 0.262± 0.019 10.421± 1.096

−


4926
4875
4911
4860

 46.378± 1.524 0.910± 0.072 0.245± 0.027 8.313± 0.200

Table 3-3: Results for the initial tuning of the LWPR function approximator and the final
optimized model. The steering error is larger than when using kNN, and actually slower compared
to the results in Table 3-1 and Table 3-2. This is caused by the high number of local models
needed to approximate the function, as visible in the second column.

3-3-1 LWPR

LWPR is a function approximator which is based on local linear models which get activated
by receptive fields. The width of these receptive fields is a parameter which need to be tuned
to get optimal performance. The tuning is done by setting a parameter D which is inversely
related to the width, hence a larger D leads to more local models. In order to get the best
performance, the value of D can be optimized, however the optimization does need an initial
guess in order to converge. To find this initial guess, multiple LWPR models are fitted on
a dataset that consists of 3000 trajectories. The trajectories are created by integrating the
equations of motion of Section 3-1-3 from t = 0.0 to t = 2.0 with ∆t = 0.01. The model is
then applied on 10 equally generated testsets, containing 1000 trajectories. The score for the
initial guess will be the steering error MSE(xf , x̂f ), the error between the goal state and the
reached state. For insight the error in the costate estimation, the error in the cost estimation,
the number of receptive fields and the average approximation time are computed as well. The
implementation used is made by the authors of the algorithm[54]. In the documentation it is
recommended to train the model multiple times with the same data, in order to remove bias
towards the datapoints that are entered first. Therefore each model is trained for 10 epochs.
The results for finding this initial guess are listed in Table 3-3.
The steering errorMSE(xf , xr) using LWPR decreases when a larger initial width is selected
for the receptive fields, until it reaches D = 20. An interesting observation is that the even
though the steering error is decreasing, the approximation errors for ϕ̂ and ĉ are almost
constantly increasing for larger D. This indicates overfitting, however since the steering error
is smallest for D = 20 this initial width is selected as guess for the optimization. The results
for the optimized model are shown in Table 3-3 as well.
The steering error actually did not improve compared to the non-optimized model with D =
20, even though the difference is marginal. The expected reason for this is the high non-
linearity of the relationship between the input data {xi, xf} and the output data {ϕ, c}.
Since LWPR assumes local linearity, it has difficulty generalizing the data. This also shows in
the very high number of local models, almost 5000 models for each output variable. This high

S. Moring Master of Science Thesis



3-3 Computation Time 39

number of models also leads to a larger approximation time tapprox, of which the intention
was to decrease it. Hence, due to the high non-linearity of the relationship between input and
output data, applying LWPR actually would lead to an increase in computation time and an
inaccurate steering function.

3-3-2 Neural Networks

The second function approximator that was investigated in order to bring down the com-
putation time, is a neural network. The main tuning parameter of a neural network is its
shape: one can define the depth of the network by selecting the number of hidden layers, and
the width by selecting the number of perceptrons per layer. For simplicity, no layers with a
different number of neurons will be used. Hence the entire neural network can be described
by its depth and width. Furthermore as activation function the ReLU function from equation
2-39 is selected, which proved empirically to have better performance and faster convergence
compared to other activation functions. The implementation used is that of scikit-learn[53],
in the form of the MLPRegressor class.
To assess the quality of the neural network and the effect of its shape with respect to perfor-
mance, the previous experiment is repeated. Multiple neural networks are created of different
shapes, which are trained on a dataset of trajectories. The dataset that is trained on is equal
to the training set used in the previous experiment. The results for this experiment are shown
in Table 3-4. The shapes that are chosen for the network are such that there is a range from
a very small network (1 × 16) to a very big network 5 × 640. Similar to the LWPR model,

MSE(ϕi, ϕ̂i) MSE(ci, ĉi) MSE(xf , xr) tapprox [ms]
1× 16 22.483± 0.445 0.183± 0.012 0.350± 0.023 0.397± 0.045
1× 128 25.040± 0.440 0.194± 0.019 0.283± 0.022 0.376± 0.032
5× 16 29.495± 0.903 0.255± 0.022 0.368± 0.032 0.438± 0.010
5× 128 39.376± 1.149 0.176± 0.015 0.202± 0.013 0.641± 0.024
1× 640 33.608± 1.476 0.117± 0.013 0.209± 0.021 0.560± 0.079
5× 640 43.514± 1.367 0.065± 0.005 0.259± 0.040 3.073± 0.088

Table 3-4: Approximation errors and steering error when using different shapes of neural networks.
The lowest steering error was achieved using a (5× 128) shaped network.

the results are not very good. The steering error MSE(xf , xr) is larger for every shape of
network compared to the kNN model. The smallest steering error was achieved when using
a (5 × 128) shaped network, MSE(xf , xr) = 0.202, the decrease in performance when using
larger models is probably due to overfitting. the error is still large, the experiment does have
a positive result. The computational time for the neural network is much small than that
of kNN, all but the largest network are faster. Hence if we can improve the quality of the
steering as well, a neural network could be used for a fast and accurate steering function.
The expected reason for the bad performance of the approximation is the same as for LWPR.
The highly non-linear relationship between the input and output data makes it very difficult
to generalize it, and thus makes it hard to make a good approximation. So in order to use a
neural network for the steering function, the relationship between the input and output data
needs to be simplified.
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3-3-3 Time Gain

Even though the approximations are not good enough to be used in RRT, the effect of using
different approximators than kNN in RRT CoLearn can still be shown. To show this, the
experiment of Section 3-1 is repeated, with a minor change. The stopping condition in Line 8
of Algorithm 8 is changed to Nnodes ≤ 100, making the algorithm build a tree until 100 nodes
are added. The function doRRT(f(·)) is then timed while using the different approximation
methods kNN, LWPR and ANN. The experiment is repeated 100 times and the system it is
applied on is the cart pole system. As shape for the neural network (5× 128) is chosen, since
that shape resulted in the lowest steering error. The LWPR model used is the optimized one.
The results are shown in Table 3-5.
Even though the experiment only concerns 100 nodes, the effect of using a different function
approximator is still visible. As expected, the LWPR model made building the tree much
slower since its approximation was slower overall. Using a neural network however sped up
the building of the tree by 1.5 second. This might not seem a lot, but recall that this is
for only 100 nodes. The experiment was repeated with Nnodes ≤ 2000 as stopping condition,
which led to building times of over 500 seconds for kNN while it remained around 300 seconds
for ANN. Hence the effect is significant.

kNN LWPR ANN
Time [s] 14.939± 0.236 131.642± 5.384 13.462± 1.010

Table 3-5: Computation time of building a tree with 100 nodes. Using ANN is faster than kNN,
LWPR is much slower due to the high number of local models.

3-4 Data Generation

The previous two sections provided two motivations to investigate different forms of generating
data for the RRT CoLearn algorithm. The investigation of Section 3-2 lead to the discovery
that the trajectories generated using indirect optimal control barely cover the trajectory space,
only 5% when using 50000 trajectories for the cart pole system. This low coverage is expected
to be the reason RRT CoLearn does not converge for the cart pole system. Different data
generation could solve this problem. Second, in Section 3-3, the effect of the approximation
method on the computation time was investigated. It showed that by using kNN, the needed
time for adding nodes to the tree increased quickly when the tree grew. Using a different
approximator such as LWPR or ANN could highly increase the building speed. However,
due to the difficult, highly nonlinear relationship between the input data {xi, xf} and the
output data {ϕ, c}, it was impossible to properly generalize the data in a simplified model.
If a different approximator is to be used, this relationship has to be simplified and thus the
data generation has to change. In this section Hamiltonian formalism is investigated as a
candidate to for the data generation.
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3-4-1 Hamiltonian Formalism

In the previous sections the equations of motion were derived using Lagrangian mechan-
ics. Hamiltonian formalism can greatly simplify the equations of motion, as is shown in the
following section.

Derivation

Most of the times dynamics of systems are modelled using Lagrangian formalism. In this
method, first a Langrangian L is defined which is the difference between all kinetic energy T
in the system and all potential energy V , as in equation 3-6. Now when each configuration
coordinate is described qi, and its time derivative as q̇i, the eqatuations of motion can directly
be derived from this Lagrangian as in Equation 3-7. Using this formulation, the accelerations
q̈ are written in terms of the velocities q̇ and the configuration q of the system.

L = T − V =
∑
i

1
2miv

2
i − V (3-6)

d

dt

∂L
∂q̇i
− ∂L
∂qi

= 0 (3-7)

In Hamiltonian formalism the system is described in terms of generalized momenta p instead
of velocities. The derivation of the equations of motion is done in a similar way, but using a
different energy function, namely the Hamiltonian H(p, q). Note that this Hamiltonian is a
different one than the one used in the optimal control in Section 2-2. To find the Hamiltonian,
the Legendre transformation in Equation 3-8 can be used. However, now it still is a function
the velocities q̇i. To get rid of these, q̇ can be written in terms of p and q as in Equation 3-9.
Substituting q̇ then leaves the Hamiltonian only in terms of the generalized coordinates p and
q.

H =
∑
i

q̇i
∂L
∂q̇i
− L (3-8)

p = ∂L
∂q̇

= M(q)q̇ → q̇ = M−1(q)p (3-9)

The equations of motion for a system can then be found by applying Equation 3-10. These
equations can then again be transformed into the equations for optimal state evolution by
applying the same steps as in Section 2-2. Doing so leads to a different solution for the optimal
control input u∗.

q̇ = ∂H
∂p

ṗ = −∂H
∂q

+ u

(3-10)

Substituting Equation 3-10 into Equation 2-8 and then applying the derivation steps for
optimal control leads to Equation 3-11. To differentiate between the Hamiltonion used for
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MSE(ϕi, ϕ̂i) MSE(ci, ĉi) MSE(xf , xr) tapprox [ms]
kNN 48.129± 1.894 0.617± 0.037 0.143± 0.008 1.189± 0.038
ANN 38.227± 1.848 0.056± 0.019 0.165± 0.013 0.730± 0.033
LWPR 49.336± 1.383 0.877± 0.067 0.257± 0.014 16.349± 0.415

Table 3-6: Results

the equations of motion and the control hamiltionan, the latter is indicated with a subscript
Hc.

Hc(x, u) = C(x, u) + λTx ẋ

Hc(p, q, u) = C(p, q, u) + λTq q̇ + λTp ṗ

Hc(p, q, u) = C(p, q, u) + λTq
∂H
∂p

+ λTp
∂H
∂q

+ λTp u

(3-11)

The difference with the normal derivation happens when we take the derivative of Hc to u to
find u∗ which minimizes Hc:

∂Hc
∂u

= ∂C

∂u
+ λp (3-12)

Hence if C(p, q, u) is chosen such that it is of the from of Equation 3-13, with W being a
weight matrix on the inputs, then the optimal control input u∗ is found to be as in Equation
3-14.

C(p, q, u) = w + 1
2u

TWu (3-13)

u∗ = −Wλp (3-14)

3-4-2 Experiment

Whether or not using Hamiltonian formalism indeed improves the quality of the dataset can
be tested with an experiment similar to Algorithm 9, but with some minor changes. The
sampling will still be done in state space, such that the bounds of the sample space is still
intuitive. The sampled states will then be transformed to phase space by applying Equation
3-9, in which the approximation and steering is done. The reached state is then transformed
back to state space to be able to compute the steering error. Hence, the dataset used for
training and testing are generated differently. The training set contains samples from phase
space {qi, qf}, whereas the test set contains samples from state space, {xi, xf}. The cost
and input parameterization {c, ϕ} are from phase space in both datasets. The datasets used
are compiled of 3000 trajectories which are generated by integrating the equations of motion
from t = 0.0 to t = 2.0 with ∆t = 0.01. All three function approximators handled in the
previous section, kNN, LWPR and ANN will be tested on this data. The metaparameters of
the function approximators are found in the same way as in the previous section. In case of
the ANN, the shape of the network that was found to perform best is (5× 128). The LWPR
approximator was found to perform best with an initial receptive field width of D = 10.
The results are shown in Table 3-6. The effect of implementing the equations of motion in
Hamiltonian formalism are not as initially was expected. In case of the kNN approximator the
steering error slightly decreased, MSE(xf , xr) = 0.143 versus 0.148 in Lagrangian formalism,
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which is not significant. The approximation errors for ϕ and c are also in the same order.
Even though the equations of motion are much simpler, the data still proves too difficult
to learn. The relationship between the initial and final state pairs in phase space {qi, qf}
and the corresponding initial costates remains highly non-linear. The only difference is the
transformation from state space to phase space, given in equation 3-9. This transformation
should not infer much extra difficulty compared with the original data.
In case of the LWPR approximator, the results remained similar to when using Lagrangian
mechanics. The main difference is the computation time which almost doubled. This is caused
by the high number of local models that are added to the model, the number of receptive
fields are RF =

[
8464 8363 8471 8303

]
. Clearly LWPR is not capable of generalizing the

data properly, making it actually slower than kNN.
When using ANN as approximator the steering function does appear to perform slightly better
with MSE(xf , xr) = 0.164 compared to 0.202 when using Lagrangian mechanics. Interesting
to see is that the approximation of the cost appears to be much better, MSE(c, ĉ) = 0.056
instead of 0.176 when using the same shape. However when using a very wide network (1×640)
with Lagrangian mechanics the approximation error of the cost to go was in the same order
of magnitude.

3-4-3 Direct Optimal Control

In an attempt to find a dataset that has more correlation between the input and output data,
a small investigation was done in to direct optimal control. In direct optimal control the
control input is parameterized into a vector u of fixed length. The optimal control vector
u∗ that steers the system from xi to xf is then found by optimizing a certain cost function,
subject to the initial state constraint x(0) = xi, the final state constraint x(tf ) = xf and
the differential constraint ẋ = f(x, u). As already stated in the background, solving this
boundary value problem would solve the motion planning problem entirely. The problem is
that solving it is very difficult.

u∗ = arg min
u

C(x, u)

s.t. x(0) = xi

x(tf ) = xi

ẋ(t) = f(x, u)

(3-15)

Instead of solving the full problem, a dataset is created by randomly sampling a random xi
and a random xf in the neighborhood of xi and solving that small direct optimal control
problem. This way a short trajectory from some xi to some xf is created which is stored as
shown in Equation 3-16.

D =


x0 x1 u∗0
x1 x2 u∗1
...

...
...

xn−2 xn−1 u∗n−2
xn−1 xn u∗n−1

 (3-16)

A big problem with direct optimal control however is its sensitivity to an initial guess. The
optimizer used to find the control vector u needs an initial guess to start its optimization.
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If this guess is far away from an optimum, the algorithm will not converge. In practice this
means that a very well educated guess needs to be made, which is often impossible. For the
single pendulum data generation worked fine, however it turned out to be difficult to create
a similar dataset for the cart pole system. However, most importantly, the investigation
into direct optimal control inspired for a different approach based on learning the inverse
dynamics. Looking at the dataset in Equation 3-16, each datapoint can be read as ‘To get
from x0 to x1, apply u∗0’. Instead of using the optimal control input u∗ one could also just
apply a random u. This idea is handled in depth in Chapter 4.

3-5 Summary

In this chapter, the RRT CoLearn algorithm has been investigated in-depth. First the full al-
gorithm was implemented in order to reproduce the results of [14]. The algorithm was applied
to the single pendulum setup with the task to compute a swingup. The only difference was
the hardware performed on. This lead to a computation time slightly longer than in [14], but
in the same order of magnitude. In order to answer the question ‘What are the consequences
for RRT CoLearn when it is applied to a multi-DOF system?’, the algorithm was applied to a
cart pole system. In this case, the algorithm did not converge which lead to a more in depth
investigation of seperate parts of the algorithm. Since approximation of cost-to-go has been
done before succesfully, the focus lay on the steering function. An experiment was performed
to assess how good the approximated steering function could steer the system towards a goal
state, and a comparison was made between the single pendulum and the cart pole system.
When using a larger dataset, the steering error was in the same order of magnitude as with
the single pendulum. The steering function thus was not the problem.
Next the quality of the generated datasets was considered. An experiment was set up to
estimate how much of the trajectory space was covered by the data generated using indirect
optimal control. This was done by splitting up the trajectory space into multiple bins and
count the number of occurances in each box. This showed that, in case of the single pen-
dulum, a 28% coverage was achieved compared to a 5% coverage for the cart pole system.
For the cart-pole system to achieve the same coverage at least 500000 trajectories would be
needed. The true figure is believed to be much higher due to the very optimistic extrapolation
it was calculated with, assuming that it will even reach it at all. This lead to the belief that a
different way of generating the data would benefit this coverage, and consequently make the
algorithm converge.
Since the main problem with kinodynamic is the computation time, this was investigated for
RRT CoLearn as well. During the first baseline experiment, it was noted that the time for
adding a node to the tree increased when the tree grew. This is expected, since per random
sample the distance metric needs to be computed for every node in the tree. The current im-
plementation using kNN however took more than 1 second per node when the tree contained
over 1500 nodes. To decrease this computation time, different function approximators than
kNN were investigated. The distance function approximation and steering function were both
implemented using ANN and LWPR. It turned out that both function approximation meth-
ods were not capable of generalizing the data. The steering error was significantly higher, and
to achieve this such a large model was needed that the intended gain in timing dissapeared.
To still be able to use a different, faster function approximator, the relationship between the
input and output data needs to be simplified.
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Since both investigations lead to the idea that the problem lies with the data generation, the
last section investigated formulating the problem in Hamiltionan formalism. Using Hamil-
tionian instead of Lagrangian formalism leads to the optimal control input being parame-
terized by its corresponding costate. The idea was that this simplified relationship would
ease the learning, and thus improve the performance of the steering function and the algo-
rithm overall. When using kNN the performance remained equal, which was to be expected
since kNN does not generalize the data but simply finds the best match from a dataset. In
case of the neural network the performance did improve. The steering error decreased from
MSE(xf , xr) = 0.202 to 0.164 when using a (5× 128) network. Hence the steering error did
not decrease enough to match that of the single pendulum. Using LWPR as approximator did
not increase the performance, it actually was almost twice as slow as when using Lagrangian
mechanics.
Finally, direct optimal control was briefly investigated, but discarded for two reasons: Gen-
erating the data using direct optimal control requires a good initial guess, which as a conse-
quence had that the generation often failed due to not finding a solution. Second, it inspired
to investigate the learning of inverse dynamics, which immediately showed promising results.
This investigation will be handled in the next chapter.
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Chapter 4

Learning Inverse Dynamics

In the previous chapter it was found that RRT CoLearn did not converge for other systems
than the single pendulum. This led to a broader investigation in how to apply supervised
learning in kinodynamic planning, with the research question ‘How can supervised learning be
used to speed up kinodynamic planning?’. This question led to a new steering function based
on learning the inverse dynamics of the system, which will be described in this chapter.

4-1 Data Generation

RRT CoLearn replaces the steering function with a kNN function approximator which tries
to approximate the mapping between a trajectory and a control input parameterization. The
trajectories the approximator is trained on are generated by using indirect optimal control,
and the input parameterization the approximator needs to learn are the initial costates. Two
motivations were found for discarding indirect optimal control and using a different type of
data generation. First, the used method led to a small coverage of the trajectory space, which
was expected to be the cause for the algorithm not converging to a solution for other systems
then the single pendulum. A different data generation method could improve the coverage
and thus make the algorithm converge for other systems as well. Second, a large improvement
in computation time can be achieved when a different approximation method is used than
kNN. However, training different function approximators than kNN on the data which was
generated using indirect optimal control, led to very high approximation and steering errors.
Different forms of data generation were tried in order to overcome this problem, which finally
led to the idea of learning inverse dynamics.
The new proposed form of data generation no longer makes use of optimal control. Instead,
the trajectories are created by applying random control inputs. The data is generated by first
sampling a random initial state xi ∈ X . For every initial state, a random control input u is
sampled from U . The system’s equations of motion are then integrated for a fixed time step
∆t, which results in a final state xf . This integration leads to a single datapoint: {xi, xf , u}
which is appended to a dataset D. To make sure that multiple directions through the state
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space are available from every xi, which should improve the dataset’s coverage of the tra-
jectory space, the sampling of u and integration are done multiple times for every xi. The
integration of the equations of motion is done using the Runge-Kutta method. Algorithm
10 outlines the procedure for data generation. The main difference between indirect optimal
control and the new data generation method is the control input selection. It was expected
that by using indirect optimal control the system was already steered into a certain direction,
leading to a poor coverage of the trajectory space. By using random control inputs, it is more
likely that the system is steered into all directions.
All the trajectories are stored in a dataset D which is then used to train a function approxi-
mator in order to learn the mapping f : {xi, xf} 7→ u. The mapping between {xi, xf} and u
is expected to be much easier to learn than the mapping from trajectory to costate λ, since it
simply are the inverse dynamics that need to be learned. For example in [34] similar dynamics
are approximated succesfully and used in computed torque control. Since the new method
learns the inverse dynamics, I named it Inverse Dynamics Learning (IDL).
Next a series of experiments will be done to find out if using IDL solves the problem of poor
coverage of the trajectory space and whether the mapping f : {xi, xf} 7→ u indeed is easier
to learn.

Algorithm 10: Algorithm used for generating inverse dynamics data.
1 D ← {}
2 for k ← 1 to NUM_TRAJECTORIES do
3 xi ← randomSample(Xfree)
4 u← randomSample(U)
5 for k ← 1 to NUM_SUB_TRAJECTORIES do
6 xf ← integrateEOM(xi,u,∆t)
7 append(D,{xi, xf , u})
8 end
9 end

4-1-1 Dataset Coverage

One of the two reasons for investigating different forms of data generation was to improve
the coverage of the sample space. Using indirect optimal control led to a coverage of 28% for
the single pendulum system but only 5% for the cart pole system, which is expected to be
the cause for RRT CoLearn not converging. To assess whether the coverage is indeed better
when using IDL based generation, the same experiment is repeated as was done in Section
3-2-3.
Each dimension of the trajectory space is split up into four bins, splitting the entire trajectory
space up into multiple boxes. The coverage of the trajectory space is then defined as the
percentage of boxes that have datapoints in them. The inverse dynamics dataset is generated
using ∆t = 0.1s, the RRT CoLearn dataset is generated using ∆t = 0.01s and tmax = 2s. The
reason for taking much shorter trajectories is that in IDL each branch in the tree will have
the same time length ∆t, hence shorter trajectories lead to a higher resolution in searching
through state space and the found paths will have shorter time duration. Note that the
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indirect optimal control dataset contains trajectories from multiple time lenghts, from t = 0s
to t = 2s in steps of ∆t = 0.01, hence much more than in the IDL dataset, both shorter and
longer and with a higher resolution. This in combination with the fact that the differential
equations for the optimal state evolutions are unstable leads to trajectories that can travel
across the entire state space. Doing so within ∆t = 0.1s is simply impossible with the limited
control input used in IDL. Now, if the form of data generation was not the problem, using
indirect optimal control would lead to a much higher coverage than IDL. However, the results
in Figure 4-2a and 4-2b show differently.
The indirect optimal control dataset does provide better coverage than when using the IDL
approach. However, it does not show a huge difference, which should be the case due to the
much longer trajectories present. Even though the indirect optimal control dataset provides
better coverage, it is still expected that the IDL approach will work better in RRT. The
reasoning behind this is shown in Figure 4-1, where some mockup trajectories are shown in
statespace, all starting from the same initial state xi. The green boxes represent the filled
boxes from last experiment when using IDL, the grey boxes show them for indirect optimal
control. The trajectories generated using indirect optimal control provide longer trajectories,
leading to more filled boxes and thus a higher coverage of the trajectory space. However,
they all evolve into the same direction. Hence when building a tree using these trajectories, it
will not be able to explore the entire state space. Using IDL might lead to a lower trajectory
space coverage, but since the trajectories move in all directions it will lead to a much better
exploration when doing RRT, since it does contain trajectories in all directions.
To find out whether this reasoning is correct, i.e. that the trajectories generated using the

4 2 0 2 4
x1

4

2
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2

4

x 2

Indirect Optimal Control
IDL

Figure 4-1: Illustration of the difference between trajectories generated using indirect optimal
control or the IDL approach. The indirect optimal control trajectories lead to a better coverage
since they are longer, as shown by the area in grey. However, the IDL approach leads to trajectories
into more directories leading to the coverage shown in green.

IDL approach travel into more different directions than when using indirect optimal control,
the experiment is repeated but now ∆t = 2s is used for the IDL dataset. Figure 4-2c and 4-2d
show the results when using equal trajectory length. The trajectory space coverage is indeed
much higher when using the IDL approach. In case of the single pendulum the coverage went
up to 47%, the coverage for the cart pole increased to 11%. From this the conclusion can be
made that when using IDL the trajectories travel into more directions. This means that with
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a shorter time step of ∆t = 0.1 the coverage of the trajectory space might not be higher, but
it is better.
Finally note that, even though the number of trajectories used while generating the data is
equal, the number of datapoints in a dataset are not. A single integration using indirect
optimal control leads to up to 200 datapoints per trajectory, whereas the IDL approach only
yields one. Hence the number of trajectories can be increased a lot more when using IDL,
while still having less datapoints. This would lead to an even better coverage with still a
smaller number of datapoints.
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Figure 4-2: Coverage of the trajectory space with a dataset generated using indirect optimal
control and IDL. (a) and (b) show the coverage for the single pendulum and the cart pole system
respectively, where the inverse dynamics dataset is generated using ∆t = 0.1s. (c) and (d) shows
the coverage when using ∆t = 2.0s. The indirect optimal control dataset provides a higher
coverage when using short trajectories, however the coverage when using IDL is better. This is
shown by (c) and (d) where the trajectory lengths are equal but IDL leads to a higher coverage.
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4-2 Approximating Inverse Dynamics

The previous section showed that the dataset coverage indeed improved when the IDL ap-
proach was used, however for it to be applicable in RRT, the mapping f : {xi, xf} 7→ u
needs to be learnable as well. The mapping between the trajectory {xi, xf} and the input
parameterization ϕ used in RRT CoLearn showed to be too difficult to learn. To find out
whether the mapping f : {xi, xf} 7→ u is easier to learn, two function approximators will be
tested, neural networks and LWPR.

4-2-1 Neural Network

To find out whether the mapping f : {xi, xf} 7→ u can be approximated by a neural network,
several networks will be trained on the dataset to learn the mapping f : {xi, xf} 7→ u. As a
score for the performance the steering error MSE(xf , xr) will be used. However for insight
the approximation error of the control input MSE(u, û) and the approximation time tapprox
will be computed as well. The dataset the model is trained on contains 30000 trajectories
generated with ∆t = 0.1s. The equations of motion used are those of the cart pole system,
derived in Section 3-1-3. The results are shown in Table 4-1.
The first thing that stands out is the small approximation and steering errors. The steering

MSE(u, û) [×10−3] MSE(xf , xr) [×10−3] tapprox [ms]
(1× 16) 37.926± 1.596 9.072± 0.557 0.564± 0.027
(3× 16) 5.392± 1.250 1.226± 0.262 0.653± 0.043
(5× 16) 4.678± 1.575 1.006± 0.361 0.662± 0.032
(1× 32) 17.547± 0.639 3.871± 0.147 0.550± 0.018
(3× 32) 1.795± 0.057 0.408± 0.016 0.604± 0.009
(5× 32) 1.196± 0.047 0.264± 0.015 0.690± 0.038
(1× 64) 7.865± 0.354 1.784± 0.108 0.603± 0.059
(3× 64) 1.230± 0.015 0.278± 0.015 0.825± 0.176
(5× 64) 4.097± 0.108 0.846± 0.026 0.956± 0.203

Table 4-1: Approximation error and steering error for different shapes of neural network. The
best steering error is achieved with a (5×32) network,MSE(xf , xr) = 0.264·10−3. The steering
error is almost 300 times smaller than when using indirect optimal control, which in the previous
chapter was found to be MSE(xf , xr) = 0.076. Even with the smallest, (1 × 16) network, the
steering error is smaller than when using indirect optimal control. The wider networks with 64
neurons per layer shows signs of overfitting, since the steering error increases.

error MSE(xf , xr) is three orders of magnitude smaller than in RRT CoLearn, even for the
worst performing neural network. This proves that the data that is generated using the new
approach has a relationship which is indeed much easier to learn. The best results were
achieved using a (5× 32) network, with a steering error of MSE(xf , xr) = 0.264× 10−3. The
approximation time when using this shape was reduced to tapprox = 0.690 seconds, which is
almost half of the time the kNN approximator needed.
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4-2-2 LWPR

The same experiment will be repeated but now for LWPR. First the function approximator
is trained with a fixed receptive field width D. This is repeated for multiple D in order to
find the best guess which will then be used for optimizing the receptive field width. The
results are shown in Table 4-2. Again it shows that the mapping f : {xi, xf} 7→ u can be

D RFs MSE(u, û) [×10−3] MSE(xf , xr) [×10−3] tapprox [ms]
0.5 301 127.741± 5.758 22.080± 1.279 0.086± 0.001
1.0 955 80.110± 2.618 13.553± 0.646 0.286± 0.006
1.5 1874 60.344± 2.205 9.746± 0.707 0.751± 0.020
2.0 3044 52.204± 2.654 8.437± 0.508 1.267± 0.008
3.0 5793 51.022± 1.559 7.929± 0.467 2.567± 0.074
1.5 7295 71.712± 3.922 10.643± 0.830 3.259± 0.249

Table 4-2: Approximation error and steering error for different initial widths of the LWPR re-
ceptive fields. Optimizing D actually leads to worse results. Initially a larger D leads to lower
steering error, at the cost of longer approximation time. D = 1.5 is selected as initial guess for
the optimization.

approximated much easier, for all initial widths tested the steering error was much larger than
when using indirect optimal control. Of all the trained LWPR models with a fixed receptive
field width, the best result in terms of steering error was achieved with D = 3.0, which led to
MSE(xf , xr) = 7.929× 10−3. However, this also led to a relatively large approximation time
of tapprox = 2.567ms, compared to tapprox = 0.690ms when using neural networks. Taking
this in account, the model with D = 1.5 is selected for optimization. The steering error of
9.746 · 10−3 is only slightly higher, but the approximation time is reduced to a third.
Optimizing however led to a worse performance than when using a fixed width. The optimized
model (shown in the bottom row of Table 4-2) achieved a steering error of MSE(xf , xr) =
10.643 × 10−3. Which is slightly higher than when using D = 1.5. The expected reason
for this is overfitting. The optimizer minimizes a cost function which depends on both the
approximation error and a penalty for the number of receptive fields. The penalty is a tuning
parameter which needs to be tuned. However, tuning this parameter yielded worse results
for any value but the default. Since the difference between the optimized width and the fixed
width is relatively insignificant, simply the model with the fixed width will be selected as best
model.

4-3 Fixed Time Inversed Dynamics in RRT

So far a new data generation method has been proposed which is based on learning the inverse
dynamics of the system. It was shown that this new form of data generation led to a better
coverage of the trajectory space and that the mapping between the trajectory {xi, xf} and
the required control input u can be approximated very accurately and thus that a system can
be steered from some xi to some xf very accurately as well.
The next step is to apply the new function in RRT and test whether it converges for other
systems than the single pendulum as well. However, before this can be done another problem
has to be solved. RRT CoLearn inherently provided a distance metric, the cost to go, which
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is no longer available since the trajectories learned are no longer optimal. Hence a different
distance metric needs to be defined.

4-3-1 Distance Metric

The IDL steering functions attempts to steer the system from some node xi to another node
xf . The system will most likely not reach xf exactly, but it will move towards xf . The error
between the goal state xf and the reached state xr can be used as a distance metric. By
doing so the node the node from which the random sample xr is best reachable is selected for
expansion. Please note that an indepth review of the distance metric is beyond the scope of
this thesis, this section just explains how it is implemented and shows that it works. Various
studies have shown that the optimal cost-to-go would be a better distance metric[6][23][15].
To show that the steering error can be indeed seen as a measure for reachability, the steering
error is computed for points which are known to be reachable and randomly drawn {xi, xf}.
The steering error is computed using a (5 × 32) neural network. In Figure 4-3 the steering
error is plotted. The points on the left are steering errors for {xi, xf} generated by integrating
the equations of motion, hence these points are known to be reachable. The points on the
right are steering errors for randomly drawn xi and xf , which are most probably but not
necessarily unreachable. A clear difference is visible between the reachable points and the
randomly drawn points, the steering error is much lower in case of reachable points. Hence
the steering error could be interpreted as a measure of reachability.
Computing the error for every node in the tree is a tedious process which will drastically

Figure 4-3: The difference in steering error for {xi, xf} which are known to be reachable and
randomly drawn {xi, xf}. The randomly drawn pairs on average produce a much higher steering
error.

slow down the building of the tree. Therefore the steering error will be approximated as
well. The approximation is implemented as a second neural network, which will approximate
the mapping fε : {xi, xf} 7→ ε, where ε is the steering error. The approximated mapping is
schematically shown in Figure 4-4. When using a neural network, the shape of the network
is chosen to be equal to the neural network approximating the steering input. When using
LWPR, the same initial widths are used. Note that optimizing the network shape or RF field
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widths as done in Section 4-2 could further improve the computation time, however for a
proof of concept this was not deemed necessary. To make sure the dataset the approximator
is trained on is rich enough, the training set is created by sampling the {xi, xf} that are fed
into the function of Figure 4-4 from both the reachable set and a random set.
To find out whether the approximated steering error can be used as a distance metric, it

{xi, xf}
f(xi, xf )

{xi, û, k̂}
ẋ = f(x, u, t)

xr

xf

‖xr − xf‖

Figure 4-4: Schematic picture of the error mapping that is used as distance metric.

first is tested whether the steering error can be approximated at all. A testset is generated
containing both reachable and unreachable datapoints, similar to the datapoints shown in
Figure 4-3. This dataset will then be fed into the error approximator fε(·). The quality
of the approximation is tested by looking at the MSE between the error and the estimated
error, MSE(ε, ε̂). The system used is the cartpole system and the dataset contains 30000
datapoints. The estimation error is computed for 10 different models, each estimating 1000
datapoints. The estimation error and the approximation time tapprox are shown in Table 4-3.
From these results it can be concluded that the steering error can indeed be approxi-

MSE(ε, ε̂) tapprox [ms]
ANN 0.020± 0.002 0.161± 0.002
LWPR 0.534± 0.019 2.130± 0.078

Table 4-3: Approximation error of the distance metric, the expected steering error. Using a
neural network leads to a much lower approximation error, and it does so faster than when using
LWPR.

mated. The neural network does a much better job approximating the steering error, with
MSE(ε, ε̂) = 0.020 compared to MSE(ε, ε̂) = 0.534 when using LWPR. On top of that the
neural network does it a lot faster as well, almost 20 times faster than LWPR.

Now that it is known that the steering error can be approximated, it has to be tested whether
it can be used as distance metric in RRT or not. This is a question that is difficult to answer
directly, therefore its performance has been tested empirically. It is checked whether the nodes
that are selected for expansion for a given random sample ‘make sense’ intuitively. This is done
by building a tree for a single pendulum system. This system is chosen since its state space
is easy to visualize and interpret, because it is a 1-DOF system. Furthermore, the system
is made underactuated by limiting the control input to u ∈ [−1, 1]. In an underactuated
system, a node that is near in euclidean space can actually be very hard to reach, since it
cannot travel there directly. A good distance measure should be able to discriminate these
nodes from nodes that can actually reach the sample. To assess whether the approximated
steering error can do this, it is monitored which random sample leads to the extension of
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which nodes while building a tree. An example of such a test is shown in Figure 4-5, where
six steps in the building of the tree are shown. The green star in each figure shows the
randomly drawn sample, the red dot marks the node that is selected for extension. As follows
from these figures, the nodes that are selected are often not the nodes that are nearest in
terms of euclidean distance. For example when a sample is drawn with a certain angle ϑr,
then a node is selected for expansion which has a ϑnear < ϑr and a positive angular velocity ω.
These examples are clearly visible in 4-5, from which it is concluded that the selected nodes
indeed make sense intuitively and thus that the distance metric can be used as a distance
metric.
The final test for the distance metric is of course simply applying it in RRT. If the distance
metric does not work, the algorithm most likely will not converge. Therefore it is expected
that the algorithm will perform better when using neural networks, since that led to a higher
accuracy in approximating the steering error.

4-3-2 RRT Results

With the new distance metric which was empirically shown to work properly, the new steering
function based on learning inverse dynamics can be tested in the full RRT algorithm. The
experiment done is listed in Algorithm 7 and 8, with the only difference that the cleaning
of the data is skipped, since it is no longer necessary. The experiment is repeated using
both LWPR and neural networks for the function approximators, with the hyperparameters
found in the previous section. The algorithm is applied on the swingup problems for the
single pendulum and the cart pole system, which is repeated 100 times. In case of the single
pendulum the planning attempt is stopped when the tree contains more than 2000 nodes. In
case of the cart pole system up to 5000 nodes are allowed in the tree. When a tree contains
more than 2000 or 5000 nodes, the planning is stopped and the attempt is considered a failure.
As a measure for the performance, the average planning time and number of nodes in the tree
are measured. The results are shown in Table 4-4.
When using a neural network as function approximator, the algorithm converges much

Succes rate [%] Planning Time [s] Number of Nodes

LWPR Single Pendulum 30.0 170.513± 176.461 956.3± 568.7
Cart Pole - - - - - - - - -

ANN Single Pendulum 95.0 3.480± 3.543 667.3± 482.8
Cart Pole 25.0 67.659± 62.766 2215.6± 1211.9

Table 4-4: Results of planning a swingup for the single pendulum and cart pole system when
using LWPR or ANN and fixed time trajectories. The algorithm performs much better when using
ANN than with LWPR.

more often than when using LWPR. The expected reason for the neural network performing
better is its capability to approximate the distance metric as well, since the approximation
of the steering function worked fine when using LWPR. The high number of required tree
nodes when using LWPR reinforces this presumption, since that is a typical sign of a failing
distance metric.
Most interesting is of course the result that the algorithm does converge for the cart pole
system when using neural networks. Even though the algorithm only converges 25% of the
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Figure 4-5: Building of a RRT for an underactuated single pendulum system. Green stars
represent the random sample xr and the red dots mark the node selected for expension. The
selected nodes are not the nearest in terms of euclidean distance, but they are nodes that could
actually reach the random sample.
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attempts, this is a large improvement over RRT CoLearn which did not converge at all.
Furthermore it does so at a reasonable time of 67.659 seconds. Since the algorithm performs
much better with neural networks than with LWPR, from now on only neural networks will
be considered.
The algorithm can be further improved however. Using the current form of data generation,
all trajectories are of equal length. The next section describes how trajectories of variable
length can be used.

4-4 Variable Time

In the previous section a new steering function was proposed which is based on learning
inverse dynamics. As opposed to RRT CoLearn, IDL does converge when it is applied on a
cart pole system. However, it only did so 25% of the time. To improve this, the generation of
the trajectories on which the approximators are trained is slightly changed. Instead of using
trajectories of fixed time length, the trajectories in the dataset now can vary in time length.
Doing so should improve the dataset’s coverage of the trajectory space, which is expected to
improve the converage rate and time of the full RRT algorithm. This section describes the
implementation of using variable time trajectories and the results of using it in RRT.

4-4-1 Data Generation

The main difference with the method of the previous section is the data generation. The
generation is done similar to how it is described in Section 4-1, with a minor difference.
Again, first a random initial state xi ∈ X and a random control input u ∈ U are drawn.
However, instead of integrating the equations of motion for a single time step of ∆t seconds,
they are now integrated for a number of time steps, kmax ·∆t. A single generated trajectory
then leads to kmax datapoints which is stored as shown in Equation 4-1.

D =


xi xf1 u 1
xi xf2 u k
...

...
...

...
xi xfn−1 u n− 1
xi xfn u n

 (4-1)

A line in the dataset should be read as: to get from xi to xfk, the control input u should be
integrated for t = k ·∆t seconds. This way longer trajectories are present in the dataset as
well, without increasing the resolution. Hence using variable time trajectories should greatly
improve the coverage of the trajectory space.

4-4-2 Dataset Coverage

A new form of data generation was presented which uses variable time trajectories, allowing
longer trajectories to be present in the dataset. This form of data generation should improve
the coverage of the trajectory space. To assess whether this is the case, the experiment from
4-1-1 is repeated with a dataset generated using variable time trajectories. Each dimension
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of the trajectory space is split up into four bins, splitting the entire trajectory space up into
multiple boxes. The coverage of the trajectory space is then defined as the percentage of boxes
that have datapoints in them. Figure 4-6 shows the dataset coverage for the single pendulum
and cart pole system, with a dataset generated using indirect optimal control, IDL with a
fixed ∆t = 0.1 and IDL with variable trajectory length with ∆t = 0.1 and kmax = 5. the
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Figure 4-6: Coverage of the trajectory space for datasets generated using indirect optimal control,
IDL with a fixed integration time and IDL with a variable integration time. Datasets generated
with IDL with a variable integration time lead to a much higher coverage of the trajectory space.

dataset with variable time trajectories indeed covers a much larger portion of the trajectory
space than when using a fixed time step. It actually outperforms the indirect optimal control
method, which is proof that the trajectories in this dataset indeed travel into more different
directions than when using indirect optimal control, since the coverage is higher while the
trajectories are still four times shorter.

Using variable time trajectories in the approximated steering function leads a different map-
ping that needs to be approximated. Instead of f : {xi, xf} 7→ u the mapping now reads
f : {xi, xf} 7→ {u, k}. Since k is a discrete value, a different type of neural network can be
used.

4-4-3 Classification of k

Since the value k that needs to be approximated is discrete, a classifier fits better in this
task then a standard function approximator. The classifier is constructed by replacing the
activation function in the output layer of a neural network with the softmax function of
Equation 2-42. Before it is implemented in the full steering function, it is tested whether the
value k can be approximated. Furthermore the approximation of u is reconsidered as well,
since this approximation is expected to have become slightly more difficult due to the longer
trajectories.
To assess whether the control input u can still be approximated accurately and whether k
can be classified correctly, the experiment of Section 3-3 is repeated. Both the classifier and
approximator network will be trained using different network shapes, and the accuracy of the
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model will be tested using a test set. Three things will be measured: The approximation error
MSE(u, û), the steering errorMSE(xf , xr) and a classification score for k. The classification
score will be the percentage of correctly classifed values. The classification of k will first be
tested on true values of u, hence it will be used directly from the dataset. The equations of
motion of the cart pole system are used for data generation, and the training set contains
30000 trajectories, generated with ∆t = 0.1s and kmax = 5. The results are shown in Table 4-
5. Both the control input u and the required number of time steps k can be approximated very
accurately using neural networks. Even with the smallest network of (1 × 16), the classifier
predicts the value of k correctly 94.7% of the times. The approximation error of the control
input also remains small, even though the data has become more difficult to learn. The best
result was achieved with the largest network shape tested, (5× 64), with an estimation error
of MSE(u, û) = 11.998 · 10−3. The same holds for the time step classification with a score of
97.13%.

MSE(u, û) [×10−3] Score k [%]
(1× 16) 113.379± 13.799 94.68± 0.915
(3× 16) 83.908± 15.347 96.17± 1.103
(5× 16) 37.444± 10.741 93.80± 1.348
(1× 32) 74.160± 10.160 96.04± 1.177
(3× 32) 28.365± 13.194 96.17± 0.857
(5× 32) 21.811± 8.896 96.48± 1.047
(1× 64) 68.319± 6.851 96.89± 0.791
(3× 64) 12.614± 5.519 97.10± 1.234
(5× 64) 11.998± 2.335 97.13± 1.051

Table 4-5: Estimation error for the control input u and prediction score for the required time
steps k when using different shapes of neural network. The best performing shape is the largest
one of (5 × 64), however the difference with the (3 × 64) network is minimal. Even the small
networks predict the correct value 94% of the times. The approximation of the control input is
indeed more difficult, since all approximation are higher than in Table 4-1.

4-4-4 Full Steering Function

As a final test, the full steering function will be considered. The full steering function is
schematically shown in Figure 4-7. The two networks are combined, connecting the output of
the control input approximator with the input of the time step classifier after being clipped
such that the approximated u ∈ U . To find out whether the new steering function works,
the same experiment as in 4-2 will be repeated. Both neural networks will be trained on a
dataset containing 30000 trajectories, generated by integrating the equations of motion with
∆t = 0.1s and kmax = 5. and will be tested on a testset of 1000 trajectories. Note that
instead of selecting the best performing network shapes, the second best is chosen for the
classification of k. The difference in score is negligible, however the training of the network
was found to be much faster when using the smaller shape of (3× 64). The steering function
is scored by its steering error, MSE(xf , xr). The prediction score for k is also measured,
since those predictions are now no longer computed using the true value of u, but with its
estimated value û. The entire experiment is repeated 10 times.
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{xi, xf}
û

k̂

f1(xi, xf )

f2(xi, xf , û)

Figure 4-7: Structure of the steering function that makes use of learning inverse dynamics. The
mappings f1 and f2 are implemented using neural networks.

MSE(u, û) [×10−3] Score k [%] MSE(xf , xr) [×10−3]
Single Pendulum 3.064± 0.278 98.28± 0.214 0.867± 0.106

Cart Pole 12.821± 4.307 97.85± 0.559 59.181± 11.267

Table 4-6: Steering error for the full steering function when using variable time trajectories. Even
though the steering error is higher than with fixed time trajectories, it still is marginal for both
the single pendulum and the cart pole. Hence the steering function works properly with variable
time trajectories as well.

The results are shown in Table 4-6. In case of the cart pole system, the steering error
increased to MSE(xf , xr) = 59.181 · 10−3, higher than when using a fixed time step. This
increase is expected since the training set and test set contain trajectories that are five times
longer. Hence the distance travelled through state space is larger and thus the error is also
expected to be slightly larger. Furthermore the data that the networks are trained on has
become more complex than with a fixed time and thus more difficult to learn. Nevertheless
the error is still negligible small and thus the steering function is assumed to work properly.

4-5 Variable Time Inverse Dynamics in RRT

In the previous section an improvement was proposed on the fixed time IDL steering function.
Using variable time trajectories the dataset coverage greatly improved, while still being able
to steer the system from some xi to some other xf . It is expected that this improvement
will lead the RRT algorithm converge faster and more often. To find out if this is the case,
the experiment outlined in Algorithm 7 is repeated with the new steering function. Apart
from the two known systems, the single pendulum and the cart pole system, the algorithm
is also applied on an underactuated version of the single pendulum. Its equations of motion
are equal to that of the normal single pendulum, however the mass, rod length and gravity
are set to {m, l, g} = {0.5, 0.5, 9.81}.

4-5-1 RRT Results

Table 4-7 shows the results after applying the new steering function on the planning problems.
The underactuated single pendulum is marked with ‘(u.a.)’. In the following sections each
system will be handled separately.
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Succes [%] tplan [s] Number of Nodes
Single Pendulum 100 0.425± 0.400 111.7± 67.9

Single Pendulum (u.a.) 100 4.351± 6.613 536.2± 484.3
Cart Pole 100 16.409± 20.970 758.2± 725.9

Table 4-7: Results after applying the IDL steering function with variable time trajectories on
several planning problems. Each problem converged 100% of the times, and much faster compared
to fixed time IDL or RRT CoLearn.

The Single Pendulum

Running RRT with the steering function trained on variable time trajectories greatly sped
up the planning of a swing up for the single pendulum. It converged 100% of the time with
an average time of 0.425 seconds. Compared to RRT CoLearn this is much faster, since RRT
CoLearn on average converged in 3.4 seconds. Hence, the approach using learned inverse
dynamics is over six times faster than RRT CoLearn. Figure 4-8 shows a swing up trajectory
plotted in state space for the single pendulum. Compared to fixed time trajectories, this
approach also needs much less nodes in the tree, on average a tree consisted of only 111.7
nodes, which is about six times less. Most likely this is due to the longer trajectories that are
learned, leading to longer tree branches as well.
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Figure 4-8: A swingup of the single pendulum plotted in state space. The tree built to found
this trajectory is plotted in black, the path from xi to xgoal is plotted in blue.

Cart Pole

Applying RRT with the new steering function to the cart pole system also greatly improved the
performance, the algorithm converged 100% of the times as well. The average computation
time was found to be only 16.409 seconds, compared to 67.659 seconds when using fixed
time trajectories. Compared to RRT CoLearn this is a major improvement, since with RRT
CoLearn the system did not converge at all. Figure 4-9 shows a swing up trajectory plotted
in statespace for the cart pole system.
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Figure 4-9: A swingup of the cart pole system plotted in state space. The tree built to found
this trajectory is plotted in black, the path from xi to xgoal is plotted in blue.

Underactuated Single Pendulum

Figure 4-10 shows a swing up trajectory plotted in statespace for the underactuated single
pendulum. The required back and forth swings show up in the trajectory as the outwards
spiraling motion. Planning a trajectory for an underactuated pendulum took a bit longer
than for the fully actuated pendulum, which is expected since the trajectory is more complex
and thus needs more nodes. The average computing time was 4.351 seconds and it required
536 nodes on average. It converged 100% of the attempts as well.
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Figure 4-10: A swingup of the underactuated single pendulum plotted in state space. The tree
built to found this trajectory is plotted in black, the path from xi to xgoal is plotted in blue. Due
to the underactuation it has to swing back and forth multiple times to gain momentum, which
leads to a spiral in state space.
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As shown by these three examples, the new steering function based on variable time trajecto-
ries led to a much lower convergence time and converging more often than when using fixed
time trajectories. Each system converged 100% of the times, even the cart pole system. In
comparison with RRT CoLearn, the new steering method lead to a 6 times faster convergence
for the single pendulum, it went from t = 3.4s to t = 0.425s, but most importantly it also
converges for multi-DOF systems, which did not happen with RRT CoLearn.

4-6 Summary

With the goal to increase the coverage of the trajectory space and simplify the relationship
between the data that needs to be learned, a new form of data generation was investigated.
Instead of using optimal control to create the trajectories in the dataset, the trajectories were
simply generated by integrating the equations of motion for a short time ∆t while a constant
control input u was applied to the system. Section 4-1-1 showed that the coverage indeed
increased for both the single pendulum and cart pole system, when equal trajectory lengths
were used. This indicates that the trajectories in the dataset evolve into more different direc-
tions than when using indirect optimal control.
In Section 4-2-1 and 4-2-2 it was tested whether the relationship was simplified as well. A
neural network and a LWPR model were trained on the generated dataset, in order to learn
the mapping f(·) : {xi, xf} 7→ u, hence it tries to learn the inverse dynamics. Using the
trained models it was tested how accurately they could learn the required control input and
how accurate they could steer the system from some initial xi to some other goal state xf .
It showed that the relationship was indeed much simpler to learn, since the approximation
error of the required control input was only MSE(u, û) = 1.196 × 10−3 for the cart pole
system, which is very small. It also showed that the inverse dynamics were much better
and faster approximated when using neural networks than when using LWPR. More impor-
tant is the steering error, which was reduced to MSE(xf , xr) = 0.264 × 10−3, compared
to MSE(xf , xr) = 0.076 when using RRT CoLearn. Hence the system can be steered much
more accurately when learning the inverse dynamics. Since the new method learns the invesre
dynamics, it was called ‘Inverse Dynamics Learning’ (IDL).
An advantage of using optimal control instead of just random trajectories is the direct avail-
ability of a good distance metric, the optimal cost to go. Since the cost to go was no longer
present, a different distance metric has been proposed: the estimated steering error. A second
neural network is trained to learn the mapping fε : {xi, xf} 7→ ε. The larger the expected
error is, the further away the node is assumed to be. In other words, the node from which
the steering function can most accurately reach xr is assumed to be the nearest.
Since the distance metric was not the focus of this thesis, it has only been briefly tested. First
it was tested whether it can be accurately approximated using a neural network which was
indeed the case. Second it was applied in RRT to find whether the nodes it selected were
sensible or not, hence if it took in account the dynamics of the system. It appeared to do so
as is shown in Figure 4-5. The final test for the distance metric was its application in RRT.
Since the planning attempts did converge it was assumed that the distance metric functioned
properly. Using this distance metric and the steering function based on inverse dynamics,
the RRT algorithm converged 95% of the time for the single pendulum and 76% of the time
for the cart pole, both when using neural networks as approximators. The single pendulum
converged within comparable time as RRT CoLearn, however the main difference is that the
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cart pole system converged as well.
To further improve the coverage of the trajectory space, the data generation was improved
further. Instead of using fixed length trajectories, the trajectories trained became of variable
length. The equations of motion were integrated for kmax ·∆t seconds, with kmax a positive
integer. A single integration then leads to kmax trajectories. The steering function now needs
to approximate the mapping f : {xi, xf} 7→ {u, k}, hence it needs to learn what control input
u needs to be applied for k · ∆t seconds in order to steer the system from xi to xf . The
implementation of the approximation of k was done using a neural network classifier, since
k is discrete. Section 4-4 showed that the required number of time steps can be estimated
very accurately and that even though the data is slightly more difficult to learn since the
trajectories are longer and more trajectories from the same initial point are present in the
datset, the steering function still steers with the same order of accuracy.
Finally the new steering function was applied in the full RRT algorithm. The single pendu-
lum has been considered twice, once in the same configuration as used in the RRT CoLearn
publication, and once such that it was underactuated. Using the variable time trajectories,
the algorithm converged 100% of the time for both the single pendulum and the cart pole sys-
tem. The planning time for the single pendulum was reduced to an average of 0.534 seconds,
the cart pole on average converged in 16.409 seconds. All results of the final experiment are
shown in Table 4-7.
In conclusion, to answer the question ‘How can supervised learning be used to speed up kino-
dynamic planning?’, a new steering function is proposed which makes use of neural networks
that greatly increases the computation speed of the swing up of a single pendulum compared
to RRT CoLearn, more than 6 times faster. On top of that the RRT also converges for
the 2-DOF cart pole system when using the learned inverse dynamics, as opposed to RRT
CoLearn.
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Chapter 5

Conclusion & Recommendations

This thesis started of with an investigation into RRT CoLearn to find out whether the claims
of the authors of [14] would hold for other systems than the single pendulum. The complex
mapping that is approximated in RRT CoLearn turned out not to work at all on other systems,
leading to a broader research investigating the application of supervised learning in RRT. This
lead to a new steering function based on learning the inverse dynamics. This chapter contains
conclusions for this research and recommendations for future work.

5-1 RRT CoLearn

In [14] a new RRT method was proposed based on learning an input parameterization from
trajectories. The trajectories were generated using indirect optimal control and the input was
parameterized by the initial costates λ needed by indirect optimal control and the correspond-
ing cost-to-go c. A dataset was then created by integrating the optimal equations of motion
for some time tmax with time step ∆t. A kNN function approximator was then used to learn
the mapping f : {xi, xf} 7→ {λ, c}. The method was applied on a single pendulum swing up
problem leading to an average planning time of 2.4s. In order to rule out any differences in the
research which could be caused by hardware or implementation differences, a baseline analy-
sis was done which led to an average planning time of 3.323s, which is slightly slower. RRT
CoLearn showed to be a promising solution for speeding up kinodynamic planning, however
it has not yet succesfully been applied on other systems than the single pendulum, leading
to the research question ‘What are the consequences for RRT CoLearn when it is applied to
a 2-DOF System?’.
In order to answer this question, the algorithm was applied on a swing up problem for a cart
pole system. The derivation of the equations of motion and an illustration of the system
can be found in Section 3-1-3. The implementation had a minor difference with the imple-
mentation in [14], where the initial costates are again parameterized, such that only a single
parameter had to be learned. This could not be done with the cart pole system, therefore
the initial costates were learned directly. Applying RRT CoLearn as is did not result in
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convergence to a solution. Trying to get the algorithm to converge, many adjustments were
made:

• Larger datasets, up to 600 million datapoints, to rule out the curse of dimensionality.

• Different resolutions in data generation, between ∆t = 0.001s and ∆t = 0.1s.

• 1-NN classifier instead of 3-NN, to remove the need and influence of cleaning.

None of these adjustments, nor any combination of them led to convergence of the algorithm.
Looking at the approximation errors it was expected that the inability to converge was caused
by the steering function, since the approximation of the cost was only MSE(c, ĉ) = 0.110.
However, when looking at the steering error, the mean squared error between the goal state
and reached state, it turned out the steering function was not the problem. Using a large
dataset of 100000 trajectories the steering error was reduced to MSE(xf , xr) = 0.076. Hence
the steering function worked properly and thus could not be the cause of RRT CoLearn not
converging.
The second suspicion was that the data generated using indirect optimal control lead to a
directional bias. This means that the trajectories present in the dataset all propagate in a
certain direction, instead of into all directions. This would cause the tree to build only into
those directions, instead of into all directions. To test if this is the case, the coverage of the
trajectory space was measured. Each dimension of the space was split up into bins, leading
to a grid-like division of the trajectory space into boxes. The datapoints in the dataset were
sorted in these boxes, and the percentage of filled boxes was defined as the space coverage.
The datasets based on the single pendulum lead to a trajectory space coverage of 28% with
3000 trajectories, whereas the cart pole dataset only reached 4.2% with 30000 trajectories.
This large difference confirms the suspicion of the directional bias, and led to research into
different forms of data generation.

Apart from the attempts of making RRT CoLearn work on a 2-DOF system, an investigation
was done into what parts of the algorithm took up most of the computation time. It was
found that the largest chunk of time was consumed by the approximation of the cost to go, of
which the computation time grew together with the size of the tree. Using a different, faster
function approximator could greatly speed up the building of the tree and thus kinodynamic
planning.
Two different function approximators have been implemented in order to find out if they
could replace the kNN approximator. A Locally Weighted Projection Regression (LWPR)[29]
model and a neural network were trained to learn the mapping f : {xi, xf} 7→ {c, λ}, which
were then used to test how good they could approximate the mapping, and how well they
performed in the steering function. It turned out that the mapping was extremely non-linear,
making it very difficult to approximate using a generalizing method such as LWPR or neural
networks. The lowest steering error was achieved when using a (5×128) neural network, with
MSE(xf , xr) = 0.202.
Using a neural network did not lead to convergence of the algorithm, but it was shown that
using a neural network instead of kNN would indeed speed up the algorithm. Building a tree
of only 500 nodes was done about 1.5s faster, a decrease in computation time of almost 10%.
However, to be able to use a neural network, the relationship between the trajectories and
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the control input parameterization needs to be simplified since the mapping from trajectory
to initial costates is too non-linear to be approximated using neural networks. Hence this
investigation also led to research into different forms of data generation.

With two motivations to research different forms of data generation, the use of Hamiltonian
formalism in deriving the equations of motion was investigated. It was found that when using
the cost function C(x, u, t) = w+ 1

2u
TWu, Hamiltonian formalism leads to an input parame-

terization equal to the negative costates corresponding to the momenta of the actuated joints,
u∗ = −λp. It was expected that using this in the data generation would simplify the mapping
that needs to be approximated, allowing neural networks to be used as function approximator
in the steering function.
The approximation of the mapping did indeed slightly improve compared to when using La-
grangiang formalism, a steering error of MSE(xf , xr) = 0.165 was achieved. However, this
error was expected to be too high to be useable in RRT. Furthermore since it is still generated
using indirect optimal control, it still has the problem of directional bias explained earlier.
Finally a different form of optimal control was considered for the data generation, direct
optimal control. A single datapoint in a dataset created using direct optimal control would
contain an initial state xi and final state xf , and the optimal control input u∗ needed to
travel from xi to xf . To generate these datapoints using direct optimal control turned out to
be difficult due to its need for a good initial guess for the optimizer. However, the dataset
that would be created quickly inspired to research approximating the inverse dynamics which
would lead to an almost equal dataset, and therefore direct optimal control was not further
investigated.

The answer the question ‘What are the consequences for RRT CoLearn when it is applied
to a 2-DOF System?’ was found to be that it does not converge due to a directionial bias
introduced by using indirect optimal control. A different form of data generation could solve
this problem, by straying from optimal control and approximating the inverse dynamics of a
system.

5-2 Inverse Dynamics Learning

The limitiaons of RRT CoLearn reported in the previous sections led to a broader investiga-
tion in how to apply supervised learning in RRT, with the research goal of successfully finding
a swingup trajectory for the cart pole system using supervised learning in RRT. This led to
a new steering function based on learning the inverse dynamics of a system, called Inverse
Dynamics Learning (IDL).
In RRT CoLearn indirect optimal control is used for data generation. Optimal control is
discarded in IDL and the trajectories in the dataset are now generated using random selected
control inputs. The dataset is generated by integrating the equations of motion using a ran-
domly drawn fixed control input u for a fixed time ∆t. First of all this should lead to a better
coverage of the trajectory space, since the directional bias caused by indirect optimal control
is no longer present. Second, the mapping between the trajectories and the control input is
much less non-linear and should be easier to learn by a generalizing function approximator
such as a neural network or LWPR, which could greatly reduce the building time of the tree.
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It indeed turned out that using IDL led to a higher trajectory space coverage, for the cart
pole system it increased to 11% when using 2s trajectories. However, short trajectories are
preferred since each branch in the tree will inherit the length of the trajectories. Using tra-
jectories of 0.1s led to a coverage of of 3.6%, slighty lower than when using indirect optimal
control. However, the trajectories generated using IDL are expected to traverse into more
directions due to the lack of directional bias, which is confirmed by the coverage being almost
equal with 20 times shorter trajectories.
To test whether the new data could be used as a steering function, the mapping from trajec-
tory to control input f : {xi, xf} 7→ u was approximated using LWPR and a neural network.
A dataset was created for the cart pole system using ∆t = 0.1s, containing 30000 trajecto-
ries. Using this dataset the accuracy of the approximation was tested. The best results were
achieved by using a neural network, with a steering error ofMSE(xf , xr) = 0.264 ·10−3 when
using a (5×32) network versusMSE(xf , xr) = 7.929 ·10−3 for LWPR. Note that these errors
are remarkably low compared to the RRT CoLearn steering function, which had a steering
error of MSE(xf , xr) = 0.076. This confirms that the mapping is easier to learn than the
mapping that is used in RRT CoLearn.
Before the new IDL steering function can be tested in RRT, a new distance metric had to
be constructed. Since optimal control is no longer used, the cost to go is no longer available.
The expected steering error was proposed as a new distance metric. Steering a system from
one state to another always results in some error. The node with the lowest expected steering
error is assumed to be nearest, since steering from that node gets the system closest to the
random sample. Computing the distance metric exactly is a time consuming process, its value
is approximated using neural network as well. Using a network of (5 × 32) the approxima-
tion error was found be MSE(ε, ε̂) = 0.020 · 10−3 for the cart pole system, hence it can be
approximated very accurately. Finally the distance metric was shown to work empirically, by
looking at which node would be selected for expansion while building a tree.
The new steering function and distance metric were then implemented in the RRT algorithm
and applied to the single pendulum and cart pole swing up problems. Using neural networks
the single pendulum swingup converged 95% of the time with an average planning time of
3.480 seconds. The cart pole swing up problem was solved 25% of the time with an average
planning time of 67.659 seconds. In comparison with RRT CoLearn the method performs
slightly worse on the single pendulum, since RRT CoLearn converged 100% of the time with
an average planning time of 3.323 seconds. However, the IDL approach does work on the cart
pole system, as opposed to RRT CoLearn, which is an improvement.
To improve performance of the steering function the data generation has been changed. In-
stead of trajectories with a fixed length, the function approximators are now trained on
trajectories with variable length. The dataset is created by integrating the equations of mo-
tion for k · ∆t seconds, with k ∈ {1, 2, · · · , kmax}. Hence each integration leads to kmax
datapoints. This causes the mapping that needs to be approximated as well, the function
approximator now has to learn the mapping f : {xi, xf} 7→ {u, k}. The mapping from the
trajectories to u remains equal, the mapping from the trajectories to k is implemented us-
ing a classification neural network, since the value of k is discrete. A dataset based on the
cart pole system was created using ∆t = 0.1s and kmax = 5, on which the approximators
were trained. It was shown that the mapping from {xi, xf} to u has become slightly more
difficult to approximate, with an average approximation error of MSE(u, û) = 11.998 · 10−3,
compared to MSE(u, û) = 1.196 · 10−3 when using fixed time trajectories. The approxi-
mation error is 10 times higher, however it still is marginally small. The classification of k
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was correct 97.13% of the time. Using the new approach a steering error was achieved of
MSE(xf , xr) = 59.181 · 10−3. The steering error is also higher then when using fixed time
trajectories. First of all because the mapping is more difficult to learn, but also because of
the longer trajectories present. A longer trajectory means more distance is travelled through
state space, and thus leads to a higher error as well. Still the steering error is much smaller
than when using RRT CoLearn.
Applying the steering function in RRT on the swing up problems of the single pendulum and
the cart pole system led to a large improvement. Both planning problems converged 100% of
the times. The single pendulum did so on average within 0.425 seconds, almost 8 times faster
than RRT CoLearn. The cart pole system converged within 16.409 seconds on average. The
results are summarized in Table 5-1. The new steering function based on learning the inverse
dynamics of a system performs much better than RRT CoLearn.

RRT CoLearn Fixed Time IDL Variable Time IDL
Succes tplan [s] Succes tplan [s] Succes tplan [s]

Single Pendulum 100% 3.323 95% 3.480 100% 0.425
Cart Pole 0% −−− 25% 67.659 100% 16.409

Table 5-1: Results for planning the single pendulum and cart pole swing up systems when using
different types of steering function. RRT CoLearn did not converge on the cart pole at all. IDL
with variable time trajectories converged every time with an average planning time of only 16.409
seconds due to its higher coverage of the trajectory space and the much simpler mapping that is
learned by the neural network.

The research goal was achieved with a new steering function based on learning the inverse
dynamics of the system, which was named Inverse Dynamics Learning (IDL). It was im-
plemented using two neural networks and achieved much better results compared to RRT
CoLearn, it converged to a solution faster on the single pendulum system and on the cart
pole as well.

5-3 Recommendations for Future Research

A new steering function called IDL has been proposed which shows promising results in
speeding up kinodynamic problem. However, so far it is only a proof of concept on an
example system. Further research is needed to find out how useable the method really is,
and there are some points on which IDL could be improved. Below is a list of recommended
research directions and improvements.

• So far IDL has only been tested on a 2-DOF system. Further research is needed to
find out whether the speed gains also hold for more complex systems, such as indus-
trial manipulators. The dynamics of these systems are much more complex, making
them more difficult to approximate. Furthermore these systems contain multiple con-
trol inputs, something that has not yet been tested. Other interesting systems could be
non-holonomic systems such as self driving cars or UAVs.
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• In Chapter 3, direct optimal control was briefly investigated as a possible method for
trajectory generation. Due to the inspiration for and good results of IDL it was quickly
discarded. However, it still is expected to be a good method, for three reasons. First, it
will not have the directional bias indirect optimal control has. Second, it will supply a
cost-to-go which could then be used as distance metric instead of the estimated steering
error used in IDL. Finally it is expected that the quality of the data improves. In
the current dataset there could be multiple equal trajectories with a different control
input parameterization. For example, starting on xi, the state xf could be reached by
applying u = k for t = 2 ·∆t seconds, but also by applying u = 2 · k for t = ∆t seconds.
Using optimal control these double entries could be removed by picking the one with
minimal cost, improving the quality of the dataset.

• Literature suggests the optimal cost-to-go to be the best possible distance metric, but
IDL currently uses the estimated distance metric. Possibly a further decrease in com-
putation time could be achieved by actually using the optimal cost to go. When using
a different distance metric, the steering function can also be better compared to other
steering functions than it can now. Since then the effect of the steering function can be
isolated.

• In the RRT experiments in Chapter 4, the sampling of the state space is done uniformly.
Deterministic sampling such as in RG-RRT could greatly improve convergence speed,
since then the steering function will work much more accurately. Only trajectories can
then be sampled that the function approximators are trained on, leading to a much
lower approximation and thus steering error.

• A very interesting improvement could be to train the steering function as a whole,
instead of training the function approximators separately. Instead of minimizing the
estimation error, the steering error MSE(xf , xr) can then be minimized. Hence the
steering function will then be trained and penalized on its actual function instead of
underlying functions.
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