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High uncertainty can cost us just a battle, but if we remain indecisive in uncertainty it
may very well cost us everything and much more.
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SUMMARY

Over 90% of international trade is carried out over seas. Shipping is currently the cheap-
est mode of transoceanic transport. The traffic density of shipping lanes on seas, oceans,
and also rivers is likely to increase. Consequently, the GHG, NOx, SOx and noise emis-
sions from shipping will rise making it more difficult to meet stricter emission regula-
tions which the IMO aims to achieve. One opportunity to reduce emissions is by design-
ing more efficient and quieter propellers.

To design quieter and more efficient propellers an optimal blade loading solution is
required. For a rigid propeller, the blade loading distribution is optimized by modifying
the geometry. The propeller geometry must be modified to achieve optimal loading that
maximizes efficiency and minimizes acoustic emissions. In addition to efficiency and
noise considerations, propeller optimization must consider thrust, ship speed, fairing
constraints as well as unsteady wake of the vessel.

Most modern propeller geometries are optimized to the bounds of the capabilities
of low, high fidelity simulations and scaled experiments. Even in the preliminary de-
sign phase, optimizing a propeller is resource intensive. State-of-the-art optimization
methods have used surrogate based methods and machine learning to improve the ef-
ficiency of optimization. Typically, optimization methods use (a) classical design vari-
ables to define the propeller geometry, (b) gradient free search algorithms to explore the
design space and, (c) statistical models to learn the objectives and constraints. While
they have been demonstrated to find well defined Pareto fronts for multi-objective con-
strained propeller optimization problems, they face three challenges. The first challenge
is that most optimization methods tend to approach the optimization problem with
classical design variables however, they lead to the problem of multicollinearity. The
performance prediction of a propeller geometry in Boundary Element Method (BEM) or
Computational Fluid Dynamics (CFD) depends on the discretized geometry i.e. mesh.
Changing a single classical variable results in a change of multiple nodes on the mesh.
Thus, the variables are not orthogonally independent w.r.t performance predictions. This
orthogonal dependence is multicollinearity. It obscures the correlation between the
mesh and predicted efficiency or cavitation behaviour. As a result, more than required
evaluations may be necessary to train statistical models particularly when sensitive cavi-
tation constraints are considered. This makes optimization inefficient. The second chal-
lenge is that preliminary design tools tend to have high uncertainties. These uncertain-
ties result from lower-fidelity physical models, use of semi-empirical relations to pre-
dict skin-friction, numerical methods and variance in operational parameters. Conse-
quently, comparable or similar efficiency and cavitation behaviour may be predicted for
two designs even though their operational performances may be significantly different.
This could lead optimization methods to converge to sub-optimal solutions. The third

ix



x SUMMARY

challenge is that computational cost of optimization for realistic cases is relatively high
even in the preliminary design phase. Consequently simpler methods such as chart-
ing from open-water curves of legacy propeller families such as Wageningen series are
preferred. However, as shape adaptive composite propellers become more prevalent,
propeller design and optimization cannot resort to charting. In such circumstances im-
proving efficiency of optimization process is crucial. In this body of work, each of the
aforementioned three challenges are addressed.

In order to solve the first challenge of multicollinearity, a new parametric model is
required whose features are orthogonally independent. Thus, the orthogonal paramet-
ric model is proposed. It is constructed by projecting the mesh of a geometry in a hy-
perspace defined by several orthonormal vectors. The orthonormal vectors are derived
from Singular Value Decomposition (SVD) of all possible geometric variations of pro-
peller meshes. The projections of a mesh in the hyperspace is demonstrated to be a
viable method to accurately quantify geometric variations and also establish sensitives
of performance w.r.t design variables. If performance correlates linearly with geometric
variation, SVD can be used to identify sensitivities of design parameters a-priori. In situ-
ations when performance correlates non-linearly, SVD can be used to selectively sample
the design space reducing objective function evaluations by almost 50%. This is demon-
strated on the aeroacoustic optimization of a 2D airfoil. The trade-off with completeness
is also found to be reasonable.

In order to solve the second challenge of preliminary design tools leading optimiza-
tion to sub-optimal solutions, it is proposed that uncertainties be modelled and opti-
mization methods favour designs with a better performance and no overlap in the 95
% confidence interval of performance prediction. This is possible when the variance in
performance prediction is known and can be modelled. Soft regression and classifica-
tion can be used to map the orthogonal parameters to mean and variance in predictions
of efficiency and cavitation behaviour. Furthermore, the mean and variance predictions
made by soft regression and classification can be linked to standard distributions result-
ing in confidence intervals. Thus, designs with better performance and no overlap in 95
% confidence intervals can be considered to dominate during search iterations.

For BEM, uncertainty resulting from physical modelling, use of semi-empirical re-
lations and numerical methods are well investigated and documented. Thus, based on
data from literature the variance in efficiency prediction of BEM is modelled. However,
sources of uncertainties in Empirical Tip Vortex (ETV) model are not fully investigated.
Consequently, it is difficult to model variance in predictions of broadband acoustics
made by ETV. A detailed insight into sources of uncertainty and extant of variance in
prediction of tip vortex size and broadband noise requires investigating the governing
physics. Therefore, the dynamics of an isolated cavitating vortex without forced exci-
tation is investigated with scale resolved compressible flow simulations. Observations
indicate the presence of Kelvin-Helmholtz instabilities due to vapour-liquid interface.
These instabilities grow resulting in helical and superimposed response modes. On the
relevance of compressibility, it is observed that the vapour core tends to be compressible.
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Density variations in the free-stream are negligible and predominantly due to acoustics.
The free-stream may influence the dynamics within the cavity however, the momentum
within the core is most likely too low to influence free-stream dynamics. This indicates
that the ETV model’s incompressibility assumption is most consistent with our observa-
tions. As compressibility is not expected to play a dominant role, the ETV is hypothesized
to be most reliable in predicting the size of the vortex cavity which depends mostly on
blade tip loading. Thus, in this research the ETV model is used to predict only the radius
of the tip vortex. Due to the direct correlation with blade tip loading and for simplicity,
it is assumed that variance in tip vortex core size prediction is the same as that of effi-
ciency prediction documented in literature. With soft regression and classification, the
mean and variance in efficiency and radius of the tip vortex core are modelled.

In order to address the third challenge of high computational cost of optimization, it
is proposed that explainable supervised soft classifiers be trained to identify the location
of the Pareto front. The classifiers advise search strategies to focus on lucrative regions
of the design space. Furthermore, explainable machine learning models also provide in-
sight into why a certain region is lucrative. The classifiers are trained with orthogonal
features which capture geometric variation in radial distribution of pitch, skew, camber
and chordlength. The method is demonstrated on a cavitating, unsteady flow case of Wa-
geningen B-4 70 propeller with P/D=1.0 operating in the Seiun-Maru wake. Compared to
the classical Non-dominated Sorting Genetic Algorithm - III (NSGA-III) the optimization
method is able to reduce 30 % of evaluations per generation while reproducing a compa-
rable Pareto front. Trade-offs between suction side, pressure side, tip-vortex cavitation
and efficiency are identified. The non-elitist NSGA-III search algorithm in conjunction
with the supervised classifiers are able to identify a Pareto front with very diverse solu-
tions. Among the solutions, a design with no pressure side cavitation, low suction side
cavitation and reasonable tip-vortex cavitation is found.

By addressing the three challenges, the current body of work contributes to new pro-
peller optimization methods which are expected to be more efficient.





1
INTRODUCTION

1.1. BACKGROUND
Over 90% of international trade is carried out over seas [55]. The shipping routes shows
that traffic cuts across the worlds seas and oceans predominantly transporting contain-
ers, bulk cargo, gas, oil, liquids and vehicles [1]. Fundamentally, this demand for com-
mercial shipping is created by Global Value Chains (GVCs) where different stages of pro-
duction processes are located in different countries [42] based on the respective coun-
try’s comparative advantages. For the economy to benefit from these comparative ad-
vantages, it is a critical requirement to transport intermediate products to centres of
manufacturing and finished products to markets at the lowest possible cost. Shipping
can deliver on this requirement being the cheapest mode of transport.

As the economy recovers from impacts due to Covid-19, global trade is expected to
increase and GVCs are likely to be more robust. Thus, the traffic density of shipping lanes
on seas, oceans, and also rivers is likely to increase. Consequently, the Green House
Gas (GHG) and noise emissions from shipping will rise making it more difficult to meet
stricter emission regulations [106] and noise reduction guidelines [105]. The Interna-
tional Maritime Organization (IMO) aims to achieve a 50% reduction in GHG emissions
by 2050 compared to 2008 levels [70] and ports have also started to incentivize silent
ships with harbour due rate discounts [102].

There are several sources of airborne and underwater noise from ships [4]. For spe-
cial purpose vessels mounted equipment can be a significant source of airborne noise.
Compared to air, noise travels faster and farther in water. Underwater noise is gener-
ated by water flow on vessels, auxiliary machinery and equipment, diesel generators,
prime movers, electric motors and propellers. Most modern propellers are typically well
designed and tip-vortex cavitation, see Figure 1.1 is often the observed mode of cavita-
tion. Averson et. al [8] report the underwater radiated noise for M/V Overseas Harriette
at different ship speeds (propeller rpm). The ship has a cavitation inception speed of
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Figure 1.1: Cavitating tip vortex with slip stream contraction [56].

10 knots which corresponds to 86 RPM for the propeller. Figure 1.2 illustrates the one-
third octave broadband spectrum for the vessel. It is observed at cavitation inception,
the noise hump between 50-100 Hz gets more pronounced with increasing speed. This
noise hump is typically associated with the broad band spectrum of tip vortex noise [108]
which is often the dominant source of underwater radiated noise. Against this back-
ground, there is strong emphasis on making ship propellers more quiet and more effi-
cient.

To design quieter and more efficient propellers an optimal blade loading is required.
Blade loading plays an important role in propeller design as blade sections are contin-
uously exposed to different angles of attack in the non-uniform wake-field they operate
in. For a rigid propeller, the blade loading distribution is optimized by modifying the
geometry. Traditionally, in addition to efficiency objectives indirect noise constraints as
a limit on cavitation volume or area [64, 93] have been implemented. Acoustic objec-
tives have been considered [101] but the focus has been limited to pressure fluctuations
at blade passage frequencies. Most modern propellers are typically optimised to limit-
ing bounds of performance and are more likely to operate with vortex cavitation as the
dominant source of radiated pressure fluctuations and broadband noise [8]. In addition
to noise and efficiency design objectives, propeller design must also account for con-
straints on hull excitation [88], cavitation erosion [111], ship speed, thrust and strength.
State of the art optimization methods are able to tackle this multi-objective constrained
problem. However, there are opportunities to improve current methods to make them
more computationally efficient while still identifying lucrative designs in a vast design
space.
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Figure 1.2: Third-octave broadband spectrum of M/V Overseas Harriette at different ship speeds [8]. The
hump due to tip-vortex cavitation is highlighted.
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1.2. STATE OF THE ART
The hydroacoustic design and optimisation problem of propellers is of immense strate-
gic importance and is most likely well researched in defence. However, there is limited
knowledge and reporting in the public domain. Access to specialized simulation soft-
ware, models based on propriety data and intellectual property restrictions (due to sen-
sitivity or embargo) result in hydroacoutic optimization of propellers being tractable to
very few academic research groups. In North America, Yin Lu Young’s group in Michi-
gan university focus on flexible composite propellers [113] as a way towards designing
quieter and more efficient propellers. One of the focus areas at the group is to design
shape adaptive propellers which have a bend twist coupling to optimize propeller load-
ing [97, 100, 109] and improve efficiency. Given the challenging structural modelling
for composites [98], cavitation and noise constraints are secondary considerations. In
Europe, MARIN has focused on developing and demonstrating tools for hydroacoustic
design and optimization of propellers [27, 95]. Florian Vesting in Rickard Bensow’s group
has investigated algorithms, strategies and methods for hydrodynamic optimization of
propellers with cavitation considerations [26, 84, 112]. In Asia, Nakashima propellers
have focused on achieving better cavitation behaviour and improved efficiency for large
vessels [110]. Better cavitation behaviour is expected to result in lower cavity volume
fluctuations and thus lower pressure fluctuations and noise.

Up to approximately 2015, the focus in the aforementioned studies was predom-
inantly on optimizing for efficiency and controlling sheet cavitation. In parallel, ef-
forts were underway to better predict tip-vortex cavitation behaviour with simulations
[29, 104]. These efforts continue even today as challenges related to physical modelling
and numerical dissipation remain [96]. Thus, while propellers with better sheet cavita-
tion behaviour were designed and introduced, the dominant source of noise was tending
to be the cavitating tip-vortex (see Figure 1.2). However, predicting tip-vortex cavitation
on propellers continues to be quite resource intensive for optimization. Furthermore,
developing acoustic models for cavitating tip vortices based on simulation data requires
a few challenges to be addressed (see Chapter 3). Recently, Bosschers .J [15] proposed
the emperical tip vortex model which offers one approach to hydroacoutic optimization
of propellers with tip-vortex considerations.

Most optimization methods that handle a maximise-efficiency objective are typically
constrained with a minimum thrust requirements and maximum structural stress limits.
Where an acoustic objective is also considered [101], the focus was limited to pressure
fluctuations at blade passage frequencies. These pressure fluctuations tend to have low
frequencies. Other examples have generally implemented indirect noise constraints as
a limit on cavitation volume or area [64, 93]. As the only example, Huisman et. al [95]
found a trade-off between tip-vortex cavitation noise and efficiency.

Summarizing most of the methods in literature, the author finds that Figure 1.3 il-
lustrates the optimization method that is predominantly used in propeller optimization
problems. At the start, objectives and constraints are specified (block 1). After objectives
and constraints, the design variables are determined (block 2). Most parametric models
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rely on (a) classical design variables - pitch, diameter, hydrofoil camber, thickness dis-
tribution, skew and rake [6, 66], (b) control points of splines or coefficients of equations
that define propeller families [62, 67, 85] and, (c) free-form control points [68]. How-
ever, they could lead to multicollinearity [2, 47]. Multicollinearity makes it difficult to
isolate the impact of changing individual design variables on objectives and constraints.
Therefore, the computational cost of optimization could increase as it could take more
evaluations to try and isolate the individual impact of design variables. Consider a func-
tion φ = f (~M(~s)), where ~M represents the mesh and ~s is the design vector. By chain

rule, ∂ f
∂s = ∂ f

∂~M
. ∂
~M
∂~s = J1.J2 where J1 is the Jacobian of the function w.r.t the mesh and J2

is the Jacobian of the mesh w.r.t the design variables. The optimization problem is free
of multicollinearity if both J1 and J2 are orthonormal matrices. The orthonormality of
J1 is determined by the flow physics and J2 by the chosen design variables. Any design
variable which affects multiple nodes on the mesh will lead to J2 which is not orthonor-
mal. This is because the blade surface is often defined with splines thus, change in mesh
nodes are strongly correlated and also predictable. Different classical design variables
also tend to change the same mesh nodes. Thus, it is difficult to isolate the impact of
individual design variables on objectives and constraints.

After defining the design variables, a search strategy is chosen (block 3). For the
multi-objective constrained optimization problem Non-dominated Sorting Genetic Al-
gorithm - II (NSGA-II) and Particle Swarm Optimisation (PSO) are mostly used as they
are able to navigate a complex and discontinuous design space [57]. Among search
strategies, NSGA-III is also a promising development which has been demonstrated on
3 to 15 objective optimization problems with convex, concave, disjointed and differently
scaled Pareto fronts [90].

After the search strategy is chosen, the queried geometries are generated (block 4).
The geometries are then evaluated, usually using panel methods or CFD (block 5). In
most cases, to reduce the cost of several tens of thousand evaluations, Response Surface
(RS) methods or statistical machine learning approaches are employed to learn the re-
lation between objectives, constraints and design variables (block 5a). Most commonly
Artificial Neural Networks, Krigging, iKrigging, Cascading Neural Networks [112] have
been used. More recently Deep Learning [94] has also gained traction in propeller de-
sign and optimization [99].

In addition to deep learning, there is also a push towards explainable machine learn-
ing approaches [3]. This is particularly the case in critical applications such as health
care where regulation requires the use of explainable models. Within the maritime do-
main, explainable machine learning presents very interesting opportunities to provide
performance grantees thus presenting an interesting business advantage for propeller
manufacturers. Furthermore, explainable machine learning can also meaningfully re-
duce the computational cost of optimization. Similar to RS and deep learning, they can
be trained to learn the relation between objectives and constraints. Thus, they can be
used to predict where lucrative designs may be found in the design space and also pro-
vide insight into why the regions are lucrative. However, explainable machine learning
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approaches have not yet been fully investigated or considered. The reason for this is not
clearly known. Nonetheless, RS and deep learning models are trained till they are accu-
rate and used to find the optimum (block 6). When the convergence criteria are met, the
design method stops and reports the optimum. Along with the optimum, the necessary
trade-off between objectives, constraints and their relation to design parameters is also
often reported.

Start

1. Objectives
& Constraint

fob j , g

2. Design
Variables, ~s

3. DoE or
Search Agent

4. Geometry

5. Analysis

5a. RS
f :~s → fob j , g

6. Find Optimum

Converged?

End

Accurate?
Yes

Yes

No

Figure 1.3: Traditional Design and Optimisation (D&O) workflow

A few design and optimization methods also account for uncertainty in operational
parameters. These methods are identified as Robust Design [73]. The goal is to drive
optimization towards designs with gradual performance degradation. To find such de-
signs, Robust Design converts single point optimization problems into multi-point opti-
mization problems where the mean and variance in operational parameters determine
the range of operation over which a design is to be optimized. While uncertainties in
operational parameters are accounted for, current optimization methods in the prelimi-
nary design phase are yet to account for uncertainties in performance prediction of pre-
liminary design tools such as BEM and ETV [15, 83] used in hydroacoutic optimization
problems. Preliminary design tools tend to have high uncertainties. These uncertainties
result from lower-fidelity physical models, use of semi-empirical relations, numerical
methods and variance in operational parameters. Consequently, comparable or similar
efficiency and cavitation behaviour may be predicted for two designs even though their
actual performances may be significantly different. This is a problem because it could
lead optimization methods to converge to sub-optimal solutions resulting in expensive
design reworks or performance surprises in the detailed design phases.
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In summary, current multi-objective constrained propeller optimization problem
need to address three challenges in order to improve the efficiency of optimization with a
reasonable trade-off with completeness. The first challenge is that multicollinearity [91]
resulting from classical design variables can potentially make optimization expensive.
The second challenge is that in the preliminary design phase, BEM and ETV model may
lead to high uncertainties which could lead hydroacoustic optimization to sub-optimal
solutions. The third challenge is that even in the preliminary design phase optimization
is computationally expensive. While RS and deep learning have been applied, there is an
opportunity to use explainable machine learning models to reduce cost of optimization
by predicting where a lucrative region in the design space exists and also also provide
insight into why the region is lucrative.

The aforementioned challenges lead to three specific research objectives which are
pursued in this body of work.

1.3. RESEARCH OBJECTIVES AND METHODS
The primary objective of this research is to improve the efficiency of optimization while
achieving a reasonable trade-off with completeness and robustness. The specific objec-
tives to address each of the three challenges - multicollinearity, uncertainty and compu-
tational cost - of state of the art optimization method are detailed below.

1.3.1. PARAMETRIZATION

OBJECTIVE

The first objective is to solve the problem of multicollinearity which can potentially make
optimization inefficient and computationally expensive.

METHOD

The problem is solved with an orthogonal parametric model (see Section 4.2.4) which
is derived from the propeller mesh. At the heart of the proposed model is SVD which is
shown to accurately capture geometric variations [52]. As there is a direct correlation be-
tween the propeller mesh and predicted efficiency or cavitation performance, machine
learning models can be trained quicker and better to identify lucrative regions in the
design space. This quicker and better learning is expected to improve the efficiency of
optimization.

1.3.2. UNCERTAINTY

OBJECTIVE

The second objective is to solve the problem of optimization methods converging to sub-
optimal designs due to high uncertainties in prediction of efficiency and acoustic radia-
tion in the preliminary design phase.
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METHOD

To account for uncertainties in predictions of efficiency and cavitation behaviour, it is
proposed that their mean and variance be modelled. The uncertainty in efficiency pre-
diction of BEM is known and well documented [83]. However, sources of uncertainty
in acoustic predictions of preliminary methods such as ETV-2 [16] are yet to be investi-
gated.

Firstly, sources of uncertainty in the predicting acoustic behaviour of isolated tip vor-
tices are investigated with scale resolved simulations to gain an insight into the govern-
ing physics which influences vortex dynamics. The insight gained in the investigation is
used to model uncertainties in the predictions of cavitation behaviour made by prelimi-
nary design tools for propellers.

When uncertainties for both efficiency and cavitation metrics are known, soft regres-
sion and classification are applied to learn the mean and variance in performance esti-
mations of preliminary design tools. The mean and variance predictions made by soft
regression and classification models are used to identify 95 % confidence interval. De-
signs with a better mean performance AND no overlap in the 95 % confidence interval
with compared designs are favoured in optimization iterations. This is expected to mit-
igate the risk of optimization methods converging to sub-optimal designs when uncer-
tainty is not accounted for. However within the scope of this research, the expectation is
not demonstrated.

1.3.3. EFFICIENCY

OBJECTIVE

The third objective is to address the problem of computational cost of optimization with
a reasonable trade-off with completeness.

METHOD

Hydro-acoustic design and optimization of propellers is computationally expensive. Two
methods are proposed to improve efficiency of optimization. The first is by the use of
explainable machine learning methods to learn the location of lucrative designs in the
design space. The second is by the use of semi-empirical models such as ETV-2 [16] to
predict acoustic performance or tip-vortex cavitation behaviour.

1.4. OUTLINE
The first research objective is pursued in Chapter 2 where the application of SVD to cap-
ture geometric variation reliably is demonstrated for both a propeller and a 2D airfoil.
Based on the finding that geometric variation can be accurately captured, the orthogo-
nal parametric model is defined. The model is detailed in Section 4.2.4.

The second research objective is pursued and the method is demonstrated in Chap-
ters 4-5. In Chapter 4, supervised and unsupervised learning strategies are synergised
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and applied to a single objective constrained propeller optimization problem with the
goal to maximize efficiency. In the chapter, soft regression and classification are used to
model mean and variance in efficiency predictions of BEM. In Chapter 3, the dynamics
which influence the broad-band acoustic spectrum of tip vortices is investigated. The in-
vestigation provides insights into possible sources of uncertainty for empirical tip vortex
models. In Chapter 5, mean and variance in efficiency and acoustic performance predic-
tion is used to define the Pareto band where solutions dominate when there is no overlap
in the 95 % confidence intervals of performance with compared solutions. This reduces
the risk of false positives on whether a solution dominates or not. Consequently, Design
and Optimisation (D&O) strategies are expected to yield a range of solutions whose pre-
dicted performance does not differ significantly from operational performance.

The third research objective is pursued in Chapter 4 and 5. Machine learning strate-
gies are applied during optimization to identify lucrative regions in the design space with
very few objective function evaluations with a reasonable trade-off with completeness.





2
GEOMETRY DEFINITION AND

ANALYSIS

When optimizing propeller geometries it is very important to know sensitivities of perfor-
mance w.r.t the chosen design parameters and also to make sure that the chosen parame-
ters do not suffer from multicollinearity. If a suitable parameter set is chosen, it becomes
possible to correlate geometric variation and performance. Establishing the correlation
is also an important step towards facilitating machine learning approaches in optimiza-
tion. This chapter introduces Model Order Reduction (MOD) as a possible solution to mea-
sure geometric variation accurately. The method to quantify variation is demonstrated on
the skewed Seiun-Maru blade geometry and a 2D airfoil. For the latter, results of geometric
variance study is used to selectively include a diverse set of geometries with both major and
minor variations. The selective inclusion of design points results in focused evaluations
thus the efficiency of multi-objective optimization improves significantly. The trade-off
with completeness is also reasonable1.

2.1. INTRODUCTION
D&O of propellers can be cost effective if lucrative regions in the design space are ex-
plored efficiently. This requires insight into the sensitivities of performance w.r.t design
variables in all regions of the design space. Using the sensitivities it is possible to reduce
the number of design variables and/or number of samples required to explore the de-
sign space thus reducing the cost of D&O. These sensitivities are estimated via analysis
(computational or experimental) which can be the most expensive steps of D&O rou-
tines. Thus, it would be a good advantage to gain insight into sensitivities with very few
design point evaluations or in an a-priori manner i.e. without analysis. As the variations
in performance correlate with variations in geometry of the propeller, such an a-priori
insight into the magnitude of sensitivities could be gained by investigating variations in

1The research in this chapter is published in NuTTS conference 2018 [52].
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propeller geometry. As a pre-requisite to such an investigation, the variations in pro-
peller geometry need to be quantified. This chapter explores the applicability of MOD to
quantify geometric sensitivities in an a-priori manner to enable the design space to be
searched efficiently.

At the heart of MOD is Singular Value Decomposition where a real matrix Am×n is
factorized as

Am×n =Um×mΣm×nV T
n×n , (1)

where U and V are left and right singular vectors of A respectively. U is a collection of or-
thonormal vectors (basis) and can be interpreted as the principal dimensions of the data
in A. Σ is a diagonal matrix which stores the singular values σi . They can be interpreted
as the magnitude of each dimension. V can be interpreted as the rotation matrix for the
data set.

The high-dimensional data in A can be approximated in a lower-dimensional sub-
space [60]. This dimension reduction is called Proper Orthogonal Decomposition (POD)
when the leading basis of A are chosen [31]. SVD and POD have been successfully ap-
plied to quantify geometric variation and optimize geometries. Diez et. al [20] apply
Karhunen Loéve expansion (KLE) (also referred to as POD) to reduce dimensions of the
design space for D&O of a high speed catamaran hull. The design space with the largest
variance is considered for optimisation. Subsequent dimensions are iteratively intro-
duced to preserve 95% of the geometric variance. Oyama et. al [44] use POD to extract
design information from shape data of Pareto-optimal transonic airfoils. The principal
geometric modes are then used to classify geometries into low-drag designs, high-lift-
to-drag designs, and high-lift design families. [59] perform SVD on the Jacobian matrix
of a transonic airfoil’s aerodynamic performance w.r.t highly dimensional geometric un-
certainties. Dominant modes of geometric perturbation which influence performance
are identified. These modes are then used to select a small number of inspection points
on the airfoil surface to reduce uncertainty in airfoil performance by measuring manu-
facturing errors at the points.

In the above applications, the primary focus is to identify dominant modes or di-
mensions of the data. Thus, the smaller modes are ignored. This limits the applicability
of dimension reduction techniques in detailed design phases where the small geomet-
ric feature variations may result in flow features such as transition or flow separation.
Thus, it is important to preserve even the smaller modes. In this chapter, a sampling
technique which also preserves the smaller modes is detailed. Furthermore, for MOD
to be successful, the data matrix must be populated with data that accurately represents
geometric variations.

In Section 2.2 the construction of the data matrix is detailed. In Sections 2.3 the
Seiun-Maru propeller blade [54] and 2D airfoil test cases are detailed. Section 2.4 re-
ports the results of the sensitivity study for the propeller and 2D airfoil. For the latter,
the result of the sensitivity study is used to include designs with the largest and smallest
variations allowing the design space to be explored efficiently during aeroacoutic opti-



2.2. DATA MATRIX

2

13

mization.

2.2. DATA MATRIX
To populate the data matrix, a spline surface is built from classical design parameters.
For propellers examples of classical design parameters can be Diameter (D) and radial
distributions of Pitch (p), Skew (s), Rake (r ), Chord length (c)[7]. For 2D airfoil classical
design parameters such as chord, thickness distribution and camber can be used as de-
sign parameters.

The built surface can be probed in the spline’s parametric space where the coor-
dinates u, v ∈ [0.0,1.0] represent the same point on the surface for all designs. In the
Cartesian space, probed points ~Pi (u, v) and the local gradients ∇~Pi (u, v) are extracted
from spline parameters. The difference between probed points and local gradients of
the i-th design and baseline design are used to quantifying geometric variation. Thus,
our data matrix (also referred to later as geometry probe data matrix) becomes XN×n =
{~X1,~X2...~XN }, where

~Xi = {~Pi (u0, v0)−~Pr e f (u0, v0),∇~Pi (u0, v0)−∇~Pr e f (u0, v0)...

~Pi (un′ , vn′ )−~Pr e f (un′ , vn′ ),∇~Pi (un′ , vn′ )−∇~Pr e f (un′ , vn′ )}
(2)

The sum of singular values λ= ∑n
i=1σi can be a measure of the total variance of the

data. When data corresponding to a particular design is removed from X , the new sum
of singular values λ’ is lower than λ. The magnitude of difference |λ−λ′| indicates the
reduction in total variance. ~Xi can also be defined as the design vector of classical vari-
ables making X the design matrix.

For the geometry probe data matrix, ∆λi indicates the magnitude of similarity be-
tween the i-th design (Gi ) and the reference design (G0). A low value of∆λ indicates that
Gi is very similar to the reference design and a high value of ∆λ indicates that Gi varies
significantly from G0. This information can then be used to identify design variables
which significantly influence design as well as choose geometries which represent high,
mid and low variance design clusters.

2.3. TEST CASES
Two cases are considered to test the viability of using SVD. The first is the Seiun-Maru
propeller blade geometry and the second is a NACA4412 airfoil. The goal of this exercise
is to investigate whether it is possible to classify classical design variables based on the
magnitude of influence on the geometry and/or reduce the number of sample points
required to explore the design space.

2.3.1. PROPELLER BLADE
The baseline geometry is initialized from coordinates of a reference propeller. Six hy-
drofoil cross-sections are defined and the blade is then lofted through them. Figure 2.1
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Figure 2.1: Generated Blade Geometry

illustrates the generated blade geometry. To study the geometric variation, design vari-
ables listed in Table 2.1 are varied within the specified bounds. The schematics to modify
the geometry are detailed in Chapters 4 and 5. The suffix i indicates the section which is
modified. The suffix s f indicates that the design variable is a scaling factor. For this case,
it is important to note that variation in classical design variables are not proportional to
variations in the geometry. For example, both ∆si ,∆pi ∈ [−0.056,0.056] however, their
influence on the geometry may be quite different. The test for the proposed method is
to distinguish between the influence of these design variables.

2.3.2. NACA 4412

Figure 2.2: NACA4412 parametrisation

The NACA4412 airfoil’s camberline is parametrized with two control points ~P1,~P2 as
illustrated in Figure 2.2. The design variables are the ordinates of the control points. In
this case, both design variables ycp1, ycp2 are varied within the bounds [−4.5e −2,1.0e −
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Table 2.1 Design Variables and Bounds

Design
Variables

Units
Lower

Bounds
Upper

Bounds
∆D mm -300.00 +400.00
∆s4 rad -0.056 +0.56
∆s4 rad -0.056 +0.56
c s f ,2 - 0.8 1.2
c s f ,3 - 0.8 1.2
c s f ,4 - 0.8 1.2
c s f ,5 - 0.8 1.2
∆p1 rad -0.056 +0.56
∆p2 rad -0.056 +0.56
∆p3 rad -0.056 +0.56
∆p4 rad -0.056 +0.56
∆p5 rad -0.056 +0.56

thk_dists f ,1 - -0.04 0.04
thk_dists f ,2 - -0.04 0.04
thik_dists f ,5 - -0.04 0.04

5]. The setup is such that it is not possible to reduce the number of design variables as
both influence the geometry in comparable magnitudes. The goal thus is to investigate
whether the number of samples required to map the design space can be reduced. To
achieve this goal, trends in Coefficient of Lift (C L), ωSPLmax and Sound Pressure Level
(SPL)(ω) predicted from the reduced sample set must lead to minima and maxima which
are in close proximity to that predicted by the unreduced sample set.

C L is predicted with XFOIL [23] and broadband turbulence noise is estimated with
NAFNoise [40]. NAFNoise is a semi-empirical method developed to estimate the broad-
band frequency spectrum due to turbulent boundary layer of a 2D airfoil [41]. The un-
derlying models correlate the thickness of the boundary layer, shear stresses within the
boundary layer and freestream velocity to estimate amplitude and frequency of surface
pressure fluctuations. While the absolute uncertainties in SPL prediction for broadband
frequencies is high, NAFNoise claims to have low relative uncertainty in prediction for
NACA0012 at moderate angles of attack with a laminar boundary layer. The authors rec-
ognize that in our case, high uncertainties are expected in the prediction of SPL(ω).

Both C L and SPL(ω) are predicted for a flow assumed to be at Mach number (M)
= 0.2, Re = 5.4e5 with an Angle of Attack (α) of 0o .

2.4. RESULTS

2.4.1. PROPELLER BLADE
Figure 2.3 compares ∆λi /λ when data for the i-th design is removed from the design
matrix and geometry probe data matrix. The histogram shows clustered bars and each
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Figure 2.3: Propeller Blade ∆λ/λ vs design variables

cluster corresponds to a design variable. The leftmost bar in the cluster corresponds to
the design when xi = lbi and the right most bar in the cluster corresponds to xi = ubi .

SVD of the design matrix indicates that D has the highest influence on the geome-
try. This is because the magnitude of ∆D is highest among design variables. Given that
the bounds for ∆si and ∆p i are the same, corresponding ∆λ/λ are also the same. Thus,
no inference can be drawn about the influence of each design variable on the geome-
try. However, SVD of the geometry probe data matrix makes a distinction between the
influence of the two design variables. Furthermore, it also gives insight into sensitivities
of the geometry w.r.t design variables allowing them to be classified. This classification
can be beneficial in multi-stage D&O routines where variables which influence geometry
significantly can be investigated in the preliminary design stages and finer modifications
in the detailed design phases.

2.4.2. NACA 4412

Figure 2.4: NACA 4412 ∆λ/λ vs design variables

Figure 2.4 compares ∆λi /λ when data for the i-th design is removed from the design
matrix and geometry probe data matrix. The performance matrix XN×3 has C L in the
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first column, ωSPLmax in the second column and the corresponding SPL(ωmaxSPL) in
the third column. The histogram shows clustered bars and each cluster corresponds to
a design variable. As in the case of the propeller, the design variables are systematically
changed one at a time. The leftmost bar in the cluster corresponds to the design vector
when xi = lbi and the right most bar in the cluster corresponds to xi = ubi .

(a) RS for CL

generated from all samples
(a) RS for CL

generated from 50% of original samples

Figure 2.5: CL Response Surfaces

(a) RS for ωSPLmax

generated from all samples
(a) RS for ωSPLmax

generated from 50% of original samples

Figure 2.6: ωmaxSPL Response Surfaces

From Figure 2.4 it can be observed that the geometry is comparably sensitive to both
the design variables. Thus, it is not possible to reduce the number of design variables in
the current stage of design. While design variables cannot be classified, the designs can
be clustered to significantly reduce the number of designs required to map the design
space.

To make a-priori design selections for analysis, ∆λi from SVD analysis of the geom-
etry probe data matrix is used to classify designs into high, mid and low variance cate-
gories. From each category, half the samples are selected. For the selected subset the
performance predictions are made with XFOIL and NAFNoise. A Radial Basis Function
(RBF) RS is built to correlate the design vector with performance predictions. Figure 2.5
- 2.7 illustrate the response surfaces built from the original design matrix (N = 38) and
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(a) RS for SPL(ωSPLmax )

generated from all samples
(a) RS for SPL(ωSPLmax )

generated from 50% of original samples

Figure 2.7: SPL(ωSPLmax )Response Surfaces

Table 2.2 Minima

RS1 RS2
Num Training Samples 38 19

C Lmi n -0.14 -0.12
~Xsol ,C L [-0.033, -0.045] [-0.032, -0.045 ]

mi n(ωSPLmax ) 179.95 174.36
~Xsol ,mi n(ωSPLmax ) [ -4.50e-02, 1.00e-05] [ -4.50e-02, 1.00e-05]

mi n(SPLmax ) 74.48 74.29
~Xsol ,SPL [-0.0058, -0.0067] [-0.033, -0.033 ]

the reduced design matrix (N = 19) for C L, ωSPLmax and SPL(ωSPLmax ). It is observed
that there is reasonable agreement between the RS built with the unreduced sample set
(RS1) and the reduced sample set (RS2). The RSs are searched with a constrained Se-
quential Least SQuares Programming (SLSQP) algorithm to find the minima. The results
are listed in Table 2.2. It is observed that for C L and ωSPLmax , the minima predicted by
RS1 and RS2 are close. However, for SPL(ωSPLmax ) the minima are quite far apart. This
is because, there are two possible minima as shown in Figure 2.7 and one of them was
not included in the reduced sample set. This issue can be addressed with adaptive sam-
pling where ever a lucrative trough is located on the RS.

2.5. CONCLUSION
SVD seems to be a promising technique to (a) reduce the number of samples in Design of
Experiments (DoE) and, (b) classify design variables based on their magnitude of influ-
ence on the geometry. For the method to be applicable, data populating the factorized
matrix must represent geometric variations reliably. Thus, data such as probed points
and local gradients are more useful to quantify geometric variation as opposed to de-
sign vectors with classical design variables. This is because, the magnitude of change in
geometry is not always proportional to the magnitude of change in classical design vari-
ables all the time.
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In the propeller blade case, SVD of the geometry probe data matrix enabled the clas-
sification of variables based on the magnitude of influence on the geometry. To gain
insight into the sensitivities of performance w.r.t design variables, analysis of specific
design points is required. The jacobians of performance data w.r.t design variables may
be appended to the data matrix for analysis. The hypothesis is that the method may
require fewer design point evaluations compared to classical methods to provide neces-
sary insight into global sensitivities of performance parameters.

In the case of the airfoil, it was possible to identify from SVD of the geom probe data
matrix that classification of variables is not viable. Furthermore, it was also possible to
reduce the number of sample points by 50% while still capturing the performance trends
globally in the design space. However, it is noted that the reducing the initial sample set
may lead to exclusion of one or more local minima. This can be addressed by adaptively
refining the RS in regions where a trough is observed and a local minima is expected.

Also, for the 2D airfoil case, the use of lower-fidelity methods leads to monotonic
or convex trends in performance. But the use of higher fidelity methods could lead to
more complex performance trends. Under such circumstances, SVD’s applicability is
yet to be investigated. This concern mainly arises from studies which drop all smaller
modes/dimensions of the data. However, these smaller modes may be necessary to
preserve dynamics within the data. Our methods preserve some of the smaller dimen-
sions/modes, but they need to be demonstrated for cases with complex performance
trends.

2.6. RECOMMENDATIONS
• In the current study, classical design variables - pitch, diameter, hydrofoil cam-

ber, thickness distribution, skew and rake are used to parametrize the geometries.
Thus, it is recommended that the sensitivity studies also be repeated for other
parametric models such as coefficients of polynomials that define propeller fami-
lies and control points of splines and free-form deformation boxes.

• Model Order Reduction: For dimension reduction, it is recommended that Gappy
POD be further investigated. Gappy PoD may preserver the smaller singular values
which contain information regarding smaller geometric variations resulting from
modifications to thickness distribution. Consequently, better relations between
modified thickness distribution and cavitation behaviour can be established.
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TIP VORTEX CAVITATION NOISE

In this research, the authors simulate a cavitating vortex without forced excitation. In the
simulation, (a) the influence of Kelvin-Helmholtz instabilities on the vortex cavity and, (b)
the relevance of compressibility is investigated. Due to the presence of the water-vapour
interface, KH instabilities develop and excite the vortex cavity in an axis asymmetric man-
ner. This results in a broadband acoustic spectrum. In the free-stream the acoustic waves
result in relatively small density perturbations however, within the core of the vortex the
gradient of density is significantly higher when compared to the free-stream. This suggests
that water is largely incompressible and in contrast the vapour core is compressible. While
dynamics in the free-stream can influence the flow within the core the momentum within
the vapour core is expected to be too low to influence free-stream dynamics 1.

3.1. INTRODUCTION
The maritime industry has embraced its responsibility towards the environment and
aims to significantly reduce emissions of GHG and Underwater Radiated Noise (URN).
Modern propellers are typically optimised to bounds of performance thus, they are more
likely to operate with vortex cavitation as the dominant source of radiated pressure fluc-
tuations and broadband noise [8].

The acoustic spectrum of the propeller tip vortex cavity results from excitation by (a)
the wake-field [108], (b) turbulence, (c) flow separation on the lifting surface [37] and,
(d) sheet cavity feeding into the tip-vortex [15]. Furthermore, for a cavitating vortex, the
presence of an interface is likely to result in Kelvin-Helmholtz instabilities [12, 28]. The
relation between these instabilities and resulting broadband spectrum is investigated in
this study.

1The research in this chapter will be submitted as a paper to International Journal of Fluid Mechanics
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Chandrasekhar [17] and Drazin and Reid [22] studied the stability of perturbed vortex
cavities. For stable vortex filaments which are excited, three primary modes of oscilla-
tion illustrated in Figure 3.1 are expected. Axisymmetric disturbances result in the n = 0
breathing mode. The bending mode n = 1 occurs when the axis of the vortex is deformed
and velocity perturbations remain at r = 0. The helical mode n = 2 occurs when the vor-
tex is deformed into an ellipse that rotates about the axis [49]. The first mode is expected
to behave as a monopole, the second as a dipole and the third as a quadrupole [45].

Figure 3.1: The primary vortex cavity oscillation modes. (Figure reproduced from [13])

To date, simulations of vortex cavitation [10, 37, 51] have been performed with an
incompressibility assumption and on relatively coarse domains. In this research an iso-
lated vortex cavity is simulated. It is initialised in a finer domain without explicit exter-
nal perturbations to observe the resulting response of vortex cavity. Water is modelled
as a compressible barotropic fluid. The governing equations and thermodynamic model
are detailed in Sections 3.2.1-3.2.2. The turbulence model and the numerical scheme is
discussed in Section 3.2.3. The geometry, boundary conditions and mesh for the com-
putational domain is detailed in Section 3.3.

3.2. PHYSICAL AND NUMERICAL MODEL

3.2.1. GOVERNING EQUATIONS
The governing equations of flow are barotropic three-dimensional Navier-Stokes equa-
tions:

∂ρ

∂t
+ ∂(ρui )

∂xi
= 0, (1)

∂(ρui )

∂t
+ ∂(ρui u j )

∂x j
=− ∂p

∂xi
+ ∂τi j

∂x j
, (2)

where t is time, ui is the component of velocity, ρ is density, p is pressure and τ is
the viscous stress tensor. The thermodynamic model correlates pressure and density to
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complete the system of equations.

3.2.2. THERMODYNAMIC MODEL
In the cavitating flow, phase change is modelled by assuming thermodynamic and ther-
modynamic equilibrium [34]. For water-vapour mixtures the pressure and vapour vol-
ume fraction are functions of mean density:

ρ̄ =αρvap + (1−α)ρl i q , (3)

where the vapour volume fraction is

α= Vvap

V
(4)

It is assumed that phase change is instantaneous, isentropic and in mechanical equi-
librium. Thus, the vapour fraction can be computed as:

α=
{

0 ρ̄ ≥ ρsat ,l i q
ρsat ,l i q−ρl i q

ρsat ,l i q−ρsat ,vap
ρ̄ < ρsat ,l i q

(5)

Liquid water (α= 0), is modelled by the Tait equation of state [34]:

p̄ = (psat +B).

(
ρ̄

ρsat ,l i q

)N

−B , (6)

where N = 7.1 and B = 3.06e8 Pa. When 1 >α> 0, the equilibrium pressure is:

p̄ = psat +C

(
1

ρsat ,l i q
− 1

ρ̄

)
. (7)

The parameter C is:

C = L2
ρ2

sat ,vap

(C pl i q T )
, (8)

where L is the latent heat of vaporisation and C p is the specific heat of water at constant
pressure and T is the temperature. The thermodynamic properties comply with Inter-
national Association for the Properties of Water and Steam (IAWPS) Formulation [58].

Based on Beattie et. al [9] volume averaged viscosity is defined as:

µ̄= (1−α)(1+ 5

2
α)µl i q +αµvap . (9)

The above model is derived by merging the viscosity definitions

µ̄= (1+ 5

2
α)µl i q (bubble flow) (10a)

µ̄= (1−β)µl i q +βµvap (annular flow) (10b)
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The bubble and annular flow definitions are merged because Beattie et. al [9] find
that at higher void fractions the coefficient 2.5 is too low and the annular flow definition
is based on the concept of interfacial waves switching µl i q and µvap intermittently. As
both higher void fractions and interfacial waves are expected to play a role in the simu-
lation, the hybrid viscosity definition is adopted.

3.2.3. LARGE EDDY SIMULATIONS

For Large Eddy Simulations a Sub-Grid Scale (SGS) closure model is required. For this
an Implicit LES (ILES) turbulence model [32, 33] based on the Adaptive Local Decon-
volution Method (ALDM) is used. ILES is an approach where the nonlinear truncation
error resulting from discretisation of the convective terms is used as the SGS model
[5]. ALDM is a non-linear discretisation scheme designed for ILES where the discreti-
sation is based on a solution-adaptive deconvolution operator that allows control over
the truncation error. The parameters of deconvolution were tuned to obtain an opti-
mum spectral match for numerical viscosity. This approach has also been demonstrated
to work well in simulating complex multi-phase fully compressible flows [24, 39, 43].
The ALDM reconstruction is applied to velocity and pressure. The density and free-gas
mass fraction are reconstructed by first-order upwind biased method. The viscous flux
is discretized by a second-order centred scheme. Time integration is performed with an
explicit, third-order Runge-Kutta method.

3.3. COMPUTATIONAL DOMAIN
The computational domain is illustrated in Figure 3.2. The domain has a length of 0.02
m with a square cross-section of width 3.2 m. The principal axis of the domain is parallel
to positive x-axis. The longitudinal faces are treated as periodic boundaries. The lateral
faces are modelled as free-slip walls.

The cross section width is chosen to minimise the influence of a square cross section
on an annular flow. The domain length of 0.02 m is chosen to specify the wavelength of
resulting modes with the periodic boundary condition.

3.3.1. DOMAIN INITIALISATION

For the flow, Re = 9e5 and σ ∈ {1.2,1.7,2.6}, the system of Equations (11)-(13) are solved
for free-stream density (ρ∞), free-stream velocity (u∞) and free-stream temperature (T∞).
The solutions are listed in Table 3.1. As the computational domain has periodic bound-
ary conditions, u∞=6.0193ms−1 is maintained for all three cases. Turbulence intensity
of the flow is also initially set to zero. Thus, in the situation that the imposed boundary
condition itself becomes a numerical source of excitation, a strong response would be
expected at ν= v∞

0.02 ≈ 301H z.

Re = ρsat ,l i q (T∞)×u∞×d

µ(T∞)
(11)
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Figure 3.2: The computational domain to simulate the cavitation vortex.

Table 3.1 Free-stream temperature, velocity and density for the three cavitation numbers

Parameters(Units)
Cavitation numbers

1.2 1.7 2.6

T∞ (K ) 2.9830e2 3.009e2 3.007e2
u∞ (ms−1) 6.3759 6.0193 6.0491
ρ∞ (kg m−3) 9.9698e2 9.9626e2 9.9635e2

σ= p∞−psat (T∞)
1
2ρsat ,l i q (T∞)×u2∞

(12)

pr c = psat (T∞) =−
∫ ∞

r c

ρsat ,l i q (T∞)×u2
θ

r
+p∞ (13)

The azimuthal velocity (uθ) is initialised with the Proctor-Winkelmans kinematic
model. Pennings et. al [46] study the flow field around cavitating vortices generated
by an elliptical hydrofoil at different angles of attack and cavitation numbers. The goal
of the study was to establish a correlation between the vapour cavity size and the circu-
lation strength of the vortex. Towards this end, the kinematics of a wetted and cavitating
vortex were studied. It was observed that the kinematics were best captured by the mod-
ified 2D Proctor-Winkelmans vortex model as it performed well even in the vortex roll-
up region. When r < 1.15rvc , the uθ is specified by the Winckelmans model described
in Equation (14) and when r >= 1.15rvc , uθ is specified by the modified Proctor model
described in Equation (15). In Equation (14), B is the span of the lifting surface which
generates the vortex and Vortex Circulation (Γ). β0 accounts for the vortex roll-up and
inclusion of the wing boundary layer wake in the outer part of the vortex flow. βi sets
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Table 3.2 Proctor-Winckelmans vortex model parameters for cavitating vortex cases

Parameter(Units)
Cavitation numbers

1.2 1.7 2.6

rvc (mm) 2.8152 2.1627 1.7401
rc (mm) 2.4042 1.8980 1.0995

Γ(r ad .m2.s−1) 0.2159 0.2163 0.2186
βi 5.6195e3 7.6927e3 1.0470e4
β0 1.6588e1 1.6375e1 1.6748e1
β 1.6590e1 1.6374e1 1.6731e1

B (m) 0.3 0.3 0.3
p 1.6200e2 3.6843e1 2.1417e1

the relation for viscous core as rv /B ≈ (β0/βi )4/5. p is tuned to match the peak uθ. In
Equation (15), β is optimised to ensure uθ is continuous.

uθ =
Γ

2πr

1−exp

 −βi
( r

B

)2(
1+

(
βi
β0

( r
B

) 5
4

)p
) 1

p


 (14)

uθ =
Γ

2πr

(
1−e−β

( r
B

)0.75)
(15)

Figure 3.3: (Reproduced from [45]). Uncertainty in experimental measurements of azimuthal velocity for an
elliptical hydrofoil at CL = 0.66 and Re = 9e5 for various cavitation numbers. uθ,max = 6.7ms−1 and

rvc = 1.1mm.
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Figure 3.3 illustrates the azimuthal velocity and corresponding uncertainties in To-
mographic Particle Image Velocimetry (PIV) measurements used to train the Proctor-
Winckelmans kinematic model. It is observed that the uncertainty is relatively higher
near the interface compared to the viscous roll-up region. Furthermore, as these mea-
surements are made with Tomographic PIV, no measurements could be made within the
core of the vortex. For the available data, Table 3.2 lists parameters of the trained kine-
matic model for the three cavitating vortex cases.

From the Proctor-Winckelmans kinematic model, the pressure and density field are
initialised. The pressure at radius r from the principal axis for the 2D vortex is,

p(r ) = p∞−
∫ ∞

r

ρ(p)u2
θ

(r,Γ,βi ,β0,B ,p)

r
∂r . (16)

As pressure and density are correlated, a simple pressure density iteration algorithm
solves for pressure. The radial pressure at the j+1 iteration is,

p j+1(r ) = p∞−
∫ ∞

r

ρ(p j )u2
θ

(r,Γ,βi ,β0,B ,p)

r
∂r , (17)

and the density based convergence criteria is,

abs(ρ j+1 −ρ j ) < 10−14. (18)

The domain is thus initialised with uθ(r ),ρ(p j+1).

3.3.2. ADAPTIVE MESH REFINEMENT
Cartesian grids for the conservative finite volume discretisation of the integral form of
the Navier-Stokes equations is used. The Cartesian grid is iteratively refined to resolve
the cavitating vortex. For a non-cavitating flow there are several vortex identification
methods [25] available and theλ2 criteria is employed in conjunction with spatial bounds
to restrict mesh refinement to the free-stream region away from walls. Within the spatial
bounds, the grid is refined in regions where λ2 is below a specified threshold. Since iter-
ative mesh refinement locally increases vorticity, λ2 favourably reduces over each itera-
tion respecting the threshold. This localised refinement tends to over-resolve the vortex
core, thus, the grid is also uniformly refined in the viscous core region of the vortex. Most
Eulerian local vortex identification methods fail when the resolved vortex begins to cav-
itate as they are derived for incompressible flows without a vortex jump. Thus, with the
onset of cavitation λ2 criteria is switched to a density threshold criteria.

3.3.3. MESH
Figures 3.4a-3.4c illustrates the mesh in the X=0 plane and Figure 3.4d illustrates the
mesh in the Z=0 plane for the three cases. The viscous core of the vortex is resolved with
δy = δz = 0.8789µm and δx = 0.7812µm. The vortex roll-up region is resolved with mesh
coarsened by a factor of 2 w.r.t the mesh in the viscous core region.
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(a) σ= 1.2 (b) σ= 1.7

(c) σ= 2.6 (d) Longitudinal cross-section of the mesh

Figure 3.4: The mesh generated for the simulation domain visualised at X=0 Plane.
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3.4. RESULTS
The following sections present the results of the simulation. Subsections 3.4.1-3.4.4 de-
tail the observed dynamics in the flow and 3.4.5 details the resulting response modes
and acoustics of the simulated cavitating vortices.

(a) σ= 1.2 (b) σ= 1.7

(c) σ= 2.6

Figure 3.5: The deviation of normalised tangential velocity uθ of cavitating vortex cases for simulations
initialised with Proctor-Winkelmans kinematic model. uθ,max = 6.7ms−1. The plots are overlaid with α(t )

filtered along the flow axis.

3.4.1. KINEMATICS
The simulation provides insight into the kinematics at the cavitating core. Figure 3.5
illustrates the difference in tangential velocity from the initialised Proctor-Winkelmans
kinematic model for all three cases. The difference is computed from the tangential ve-
locity filtered along the flow axis at t0 = 0.0000ms. The velocity profile deviates signifi-
cantly from the Proctor-Winkelmans kinematic model within the vapour cavity. Towards
the centre of the cavity and up to the interface the kinematic model under-predicts uθ.
Near the viscous core the model over-predicts uθ. The magnitude of difference reduces
beyond the viscous core where the grid is also relatively coarser.

The observed deviations are expected to result from (a) the Proctor-Winkelmans model
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not being trained with measurements in the vortex core, (b) relatively high experimental
uncertainties in azimuthal velocity measurements near the interface (see Fig. 3.3), (c)
3D dynamic deformation modes which are not factored in the 2D kinematic model and,
(d) uncertainties in simulation predictions. The observed deviation from the kinematic
model indicates that it is important to account for uncertainties when making sound
pressure level predictions with Empirical Tip Vortex [16] models where the size of the
vortex cavity plays an important role in predicting mean frequencies.

3.4.2. KELVIN-HELMHOLTZ INSTABILITY

Figure 3.6: Iso-contours of λ2 for σ= 2.6 at different time-steps showing developing bending modes. The
liquid-vapour interface is illustrated as an iso-contour of α= 0.8.
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(a) σ= 1.2 (b) σ= 1.7

Figure 3.7: Iso-contours of λ2 for σ ∈ {1.2,2.6} showing a dominant helical deformation mode. The
liquid-vapour interface is illustrated as an iso-contour of α= 0.8.

The presence of tangential velocity inflection near the interface results in Kelvin-Helmholtz
instabilities which grow and influence the dynamics of the cavitating vortex in all three
cases. Figure 3.6 illustrates the vortex structures due to KH instabilities surrounding the
cavity for σ= 2.6 and the resulting dynamic response of the cavity. Figure 3.7 illustrates
the dynamic response of the vortex cavity for σ ∈ {1.2,1.7}. It is observed that the re-
sponses varies with cavity size. For σ = 2.6 the bending mode is visually discerned and
for σ ∈ {1.2,1.7} the helical mode is visually discerned. The dynamic modes in addition
to the above are detailed in Subsection 3.4.5.
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3.4.3. TURBULENCE

(a) (b)

(c) (d)

Figure 3.8: Plots of turbulent velocity fluctuations (u′) for different instances in time for case σ= 2.6. The
plots are overlaid with α(t ).

The turbulent velocity fluctuations

u′(tn) = 1

tn+3 − tn

∫ tn+3

tn

u(t )d t −u(tn), (19)

are shown in Figure 3.8. Since the initial condition is a laminar axisymmetric vortex
flow without perturbations, the turbulent fluctuation are expected to develop in the flow.
The turbulence in the viscous core and rollup region is expected to be a result of the
growing Kelvin-Helmholtz instabilities. Turbulence also develops within the cavitating
core of the vortex. The vapour cavity is relatively more turbulent than the free-stream
liquid flow. However, the energy and momentum contained in these fluctuations is very
small compared to that in the free-stream as water has a significantly higher density than
vapour.
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3.4.4. COMPRESSIBILITY

From the continuity equation, the rate of change of density is

∂ρ

∂t
=−{u ·∇ρ+ρ∇·u}. (20)

When water is treated as an incompressible fluid, ∇ρ = 0 and ∇.u becomes a source
term for the cavitation model. When water is treated as a compressible fluid, both the
gradient of density and divergence of velocity are expected to be non-zero thus, they
contribute to the rate of change of density.

(a) ρ∇.u
|u.∇ρ|+|ρ∇.u| (b) u.∇ρ

|u.∇ρ|+|ρ∇.u|

Figure 3.9: Relative contributions of density gradient and velocity divergence to rate of change of density for
σ= 2.6

(a) ρ∇.u
|u.∇ρ|+|ρ∇.u| (b) u.∇ρ

|u.∇ρ|+|ρ∇.u|

Figure 3.10: Relative contributions of density gradient and velocity divergence to rate of change of density for
σ= 1.7
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(a) ρ∇.u
|u.∇ρ|+|ρ∇.u| (b) u.∇ρ

|u.∇ρ|+|ρ∇.u|

Figure 3.11: Relative contributions of density gradient and velocity divergence to rate of change of density for
σ= 1.2

Figure 3.9 shows the relative contributions of density gradient and velocity diver-
gence towards rate of change of density for σ = 2.6. Figure 3.9a illustrates the relative
importance of velocity divergence. Acoustic waves in the free stream appear as arcs of
positive and negative divergence bands. They are predominantly responsible for change
in density of water as observed in Figure 3.9b. From Figure 3.9b it can be observed that
density gradient is significantly higher in the vortex cavity compared to the free-stream.
Similar observations are made on the relevance of compressibility for larger vortex cavi-
ties at σ ∈ {1.2,1.7} as seen in Figures 3.10-3.11.

It can thus be concluded that KH instabilities excite the vortex resulting in a broad-
band acoustic spectrum. These acoustic waves propagate into the free-stream and also
into the vortex cavity. It is observed that in the free-stream, velocity divergence - pri-
marily related to acoustics — leads to a change in density of water. Since the gradient
of density is very low in the free-stream, water tends to be largely incompressible. In-
compressibility rapidly decreases however when vapour is mixed in water. In the vapour
core, the gradient of density (∇ρ) is much higher compared to the free-stream and the
divergence of velocity is also a source for change in density. Thus, the vapour core be-
haves as a compressible gas.

While the core tends to behave as a compressible gas, the density of water vapour is
several orders of magnitude lower than that of water. Thus, while the free-stream may
influence the dynamics within the cavity, the momentum within the core is most likely
too low to influence interface dynamics and thereby the free-stream dynamics.
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3.4.5. ACOUSTICS AND RESPONSE MODES
The acoustics of the cavitating vortices are measured with probes in the free-stream sit-
uated close to the viscous core. The spectrum of the measured signal is extracted with
Fast Fourier Transforms (FFT). The corresponding response modes of the cavity are ex-
tracted with Dynamic Mode Decomposition (DMD) [48, 50].

DMD of the scalar vapour fraction field in 3D is performed. For m snapshots, the
snapshot matrix (X )

X =
αi j k (0) · · · αi j k (tm−1)

 , (21)

and time-shifted snapshot matrix (X ′)

X ′ =
αi j k (1) · · · αi j k (tm)

 , (22)

are assembled. A linear mapping A connects the i th flow filed xi to the subsequent
flow field xi+1. Thus, the mapping is defined as

A = X ′X −1, (23)

where X −1 is the Moore-Penrose pseudo-inverse [53]. With thin SVD the inverse can
be efficiently and accurately computed as

X −1 ≈UΣV T . (24)

Thus, the system is approximated as

Ã = X V Σ−1U T (25)

The Eigen decomposition of Ã.W = WΛ yields the different Eigen modes and their

frequencies νi = ang l e(wi )
2π∆t .

The Fourier analysis of the pressure spectrum, the corresponding Eigen modes and
their frequencies for two cavitating vortices are detailed below.
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(a) Pressure signal (b) FFT of the pressure signal.

Figure 3.12: Probe signal and FFT at Location [5 mm, 5 mm, 0 mm] for σ= 2.6. The response modes
corresponding to tonal frequencies (a-d) in Figure 3.12b are illustrated in Figure 3.13.

(a) ν= 69.2519 Hz (b) ν= 164.9226 Hz

(c) ν= 256.6732 Hz (d) ν= 703.8970 Hz

Figure 3.13: Response modes of vortex cavity for σ= 2.6 corresponding to tonal frequencies (a-d) in Figure
3.12b.

Case 1 - σ= 2.6
Figures 3.12a-3.12b illustrates the pressure signal and its FFT outside the cavitating core
for σ = 2.6. The response modes corresponding to the labelled spikes (a-d) in FFT of
the pressure signal are shown in Figure 3.13. The First mode illustrated in Figure 3.13a
shows that the cross section of the vortex develops an eccentricity. The response modes
illustrated in Figure 3.13b — 3.13c are relatively complex and suggest changes in both
cavity size and eccentricity. The response mode illustrated in Figure 3.13d shows a heli-
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cal mode of oscillation which corresponds to the peak frequency.

(a) Pressure signal (b) FFT of the pressure signal

Figure 3.14: Probe signal and FFT at Location [5 mm, 5 mm, 0 mm] for σ= 1.7. The response modes
corresponding to tonal frequencies (a-d) in Figure 3.14b are illustrated in Figure 3.15.

(a) ν= 105.6182 Hz (b) ν= 402.7549 Hz

(c) ν= 680.5261 Hz (d) ν= 1079.1321 Hz

Figure 3.15: Response modes of vortex cavity for σ= 1.7 corresponding to tonal frequencies (a-d) in Figure
3.14b

Case 2 - σ= 1.7
Figures 3.14a-3.14b illustrates the pressure signal and its FFT outside the cavitating core
for σ = 1.7. The response modes corresponding to the labelled spikes (a-d) in FFT of
the pressure signal are shown in Figure 3.15. The mode illustrated in Figure 3.15a shows
that the cross section of the vortex tends to develop an eccentricity similar to the pre-
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vious case. The response mode illustrated in Figure 3.15b suggests a breathing mode
of the cavity and this corresponds to the peak acoustic emission in the FFT of the pres-
sure signal. Figure 3.15c suggests a response mode which changing cavity size as well as
eccentricity. Finally, Figure 3.15d shows a higher harmonic of the helical mode of oscil-
lation.

The domain is initialized with a laminar axisymmetric vortex flow without perturba-
tions thus, the observed dynamics are expected to have developed in the well resolved
simulation. One possible source of artificial excitation could be the periodic boundary
condition itself. However, the peak responses observed vary for cavities of different sizes
and differ meaningfully from ν = v∞

0.02 ≈ 301 Hz. Thus, it is expected that the observed
cavity response and the modes result from excitation due to growing Kelvin-Helmholtz
instabilities at the interface. In all our cases, the excitation from KH instabilities appears
to be axis-asymmetric and the helical mode of vortex oscillation is observed as a strong
tonal deformation.

3.5. CONCLUSION
In this research, the dynamics of an isolated cavitating vortex without forced excitation
is simulated. The vortex is initialised with the Proctor-Winkelmans kinematic model fit
to experimental data [46]. Observations have been made on the kinematics, dynamics
and the relevance of compressibility in simulating acoustics of cavitating vortices.

The tangential velocity of the vortex is observed to differ significantly from that pre-
dicted by the Proctor-Winkelmans model at the cavitating core and up to the outer edge
of the viscous core. The model over-predicts the tangential velocity at the core and
under-predicts the velocity gradient up to the viscous core. The observed deviation im-
plies relatively higher uncertainties in tangential velocity predictions. Higher uncertain-
ties in predicted tangential velocity result in higher uncertainties for predicted core ra-
dius of the cavitating vortex. Consequently, any semi-empirical models which predict
acoustic radiation of the tip-vortex based on its core radius are also likely to have higher
uncertainties.

The presence of a tangential velocity inflection leads to Kelvin-Helmholtz instabili-
ties. These instabilities grow into axis asymmetric excitation sources for the vortex cav-
ity resulting in helical and superimposed response modes. Thus, KH instabilities are
expected to influence the acoustic spectrum at higher frequencies and with lower am-
plitudes compared to axis-symmetric sources which result in breathing modes for the
cavitating vortex.

On the relevance of compressibility, it is observed that the vapour core tends to be-
have as a compressible gas. In contrast density variations in the free-stream are pre-
dominantly small. This observation leads to the conclusion that the free-stream may
be regarded as an incompressible liquid. The free-stream may influence the dynamics
within the cavity however, the momentum within the core is most likely too low to influ-
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ence free-stream dynamics.

3.6. RECOMMENDATIONS
• Since the current simulation assumes the vortex to be infinite, no collapse is sim-

ulated. It is recommended that a finite cavitating vortex be simulated in a much
longer domain with a high grid resolution where collapse is not triggered by im-
posed boundary conditions or pressure gradients.

• In the current simulation, Volume of Fluids leads to a smeared interface, thus, it is
recommended that the interface also be modelled and tracked.

• The current simulation imposes no axis-symmetric excitations which are expected
on a propeller operating in the wake of a hull. Therefore, it is recommended that
a wakefield be specified at the inflow boundary while the vortex center is rotated
about the propeller shaft axis.

• The current research simulates a rotating flow on a Cartesian grid. Thus, it is also
recommended to repeat the simulation with an O-grid topology.

• The current research simulated two cavitating vortex cases. It is recommended
that a larger number of cavitating vortices be simulated to generate data which
correlates vortex features and acoustic emissions. The dataset can be used to train
machine learning models that predict acoustic spectrum of infinite vortices. This
could be a step towards a physics driven tip-vortex acoustic model which can be
used for optimization of propellers.

• The current research provides a qualitative insight into sources of uncertainties in
predicting the vortex core radius. It is recommended that more cavitating vortices
be simulated to quantify the uncertainties as well.
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4
DYNAMIC OPTIMIZATION

This chapter introduces a machine learning approach for optimizing propellers. The method
aims to improve the computational cost of optimization by reducing the number of eval-
uations required to find solutions. This is achieved by focusing search towards design
clusters with good performance, i.e. high propulsive efficiency and low cavitation. Three
types of clusters are expected. The first cluster constitutes designs with performance of
interest, i.e. high efficiency and low cavitation. The second cluster constitutes designs
with performance not of interest, i.e. low efficiency and high cavitation. The third cluster
constitutes designs whose performance cannot be estimated with the Boundary Element
Methods (BEM) that is used in this study. In simple cases with single objective optimiza-
tion to maximize efficiency, these clusters can be identified a-priori with unsupervised
classifiers provided that orthogonally independent parameters are used as demonstrated
in this chapter. For multi-objective constrained optimization to maximize efficiency and
minimize cavitation, supervised classifiers may be required to learn the clusters. Clas-
sical design variables such as chordlength, pitch, skew, rake, thickness distribution and
camber of hydrofoils cannot be used to identify these clusters because of multicollinearity.
Thus, a new orthogonal parametric model is proposed where the parameters are directly
derived from the propeller blade mesh. As the blade surface mesh is used as boundary
conditions to solve the governing equations, the orthogonal parameters are expected to
have a strong correlations with performance predictions of BEM or Computational Fluid
Dynamics (CFD) compared to classical design variables. It is demonstrated that design
clusters with good performance can be identified with few BEM evaluations. Furthermore,
the method synergises explainable supervised and unsupervised learning to advice search
algorithms and quickly guide them to lucrative regions in the design space. However, re-
ducing the cost of optimization results in a trade-off with completeness of the search; this
is also investigated in this chapter. The method is demonstrated on a simple fully wetted
flow case of the benchmark Wageningen B-4 70 propeller with P/D=1.0, as the geometry
and open-water curves are readily accessible allowing back of the envelope verification
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and validation of our results 1.

4.1. INTRODUCTION
The maritime industry has embraced its responsibilities towards the environment and
is making active efforts to reduce GHG emissions. The IMO aims to achieve a 50% re-
duction in GHG emissions by 2050 compared to 2008 levels [70]. In addition to im-
proving thermodynamic efficiency, transitioning to cleaner fuels, and adopting better
propulsion architectures, realising this goal requires significantly improving the propul-
sive efficiency. For modern vessels, propulsive efficiency is typically between 29-35%
[80]. Improving the hydrodynamic efficiency of propellers is an important area of fo-
cus as it plays a critical role in determining the total propulsive efficiency. Optimizing
propellers to improve efficiency and cavitation behaviour is computationally expensive
even in the preliminary design phase. This is especially the case for clean-slate designs
which do not use legacy propeller series. Traditional preliminary design of propellers
involves two steps [84]: In the first step, systematic open-water studies of legacy pro-
peller series are performed to identify the main design parameters. In the second step, a
D&O problem is solved to numerically determine specific design parameters. Currently,
the maritime industry is transitioning to shape adaptive propellers [97] and also aims
for hydroacoustic optimization [64]. Designers may need to start from fresh propeller
geometries whose open water curves are not available. Consequently, methods to nu-
merically determine design parameters, i.e. D&O are starting to become the first step in
preliminary design. Therefore, it is very important to the improve the reliability of D&O
and also reduce its computational cost.

Optimization methods primarily focus on improving efficiency and cavitation be-
haviour. In addition to efficiency and cavitation objectives, propeller optimization must
also account for constraints on hull excitation [88], cavitation erosion [111], ship speed,
thrust, and strength. Typically, the lower computational cost of Boundary Element Meth-
ods (BEM) motivates their use in the preliminary design phase to predict the efficiency
and cavitation behaviour of a blade geometry. To generate the blade geometry, most
methods rely on (a) classical design variables - pitch, diameter, hydrofoil camber, thick-
ness distribution, skew and rake [6, 66], (b) control points of splines or coefficients of
equations that define propeller families [62, 67, 85] and, (c) free-form control points [68].
Preliminary design methods typically use classical design variables as their values also
communicate design specifications. However, classical design variables do not always
lead to a good formulation of the optimization problem. An optimization problem is well
formulated if design variables can be considered orthogonally independent. In the case
of classical design variables, changing a single design variable perturbs multiple nodes
on the mesh. Since, the surface is often defined with splines, the translation in mesh
nodes is strongly correlated and also predictable. Furthermore, in most cases, multiple
classical design variables tend to change the same mesh nodes. This results in multi-
collinearity, i.e. two or more variables being strongly correlated [2]. Thus, it is difficult to

1The research in this chapter has been approved by reviewers of the journal of Applied Ocean Research. Edi-
tor’s decision is expected soon.
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isolate the impact of individual design variables on objectives and constraints.

Consider the objective
max f = η(

~M(~s)
)

, (1)

where the blade geometry is defined by classical design variables ~s, η is the hydrody-
namic efficiency and ~M is the generated mesh for a blade geometry (see Eq. 11). The
optimization problem is well formulated if~s can be considered orthogonally indepen-
dent. The Jacobian of f by chain rule is

Jf = J1 · J2 =
[
∂ f
∂m0

· · · ∂ f
∂mq

]
·


∂m0
∂s0

· · · ∂m0
∂sr

...
. . .

...
∂mq

∂s0
· · · ∂mq

∂sr

 , (2)

where J1 is the Jacobian of f with respect to to the mesh ~M ∈Rq and J2 is the Jaco-
bian of the mesh with respect to the design vector~s ∈Rr . ~s can be considered orthog-

onally independent if J2 is an orthonormal matrix, i.e. ∂~M
∂si

· ∂~M∂s j
= 0. Because changing a

single classical variable perturbs multiple nodes of the mesh and multiple classical de-

sign variables tend to change the same mesh nodes, ∂
~M
∂si

· ∂~M∂s j
6= 0. Thus,~s cannot be con-

sidered orthogonally independent. This is also the case for other objectives/constraints
such as Suction side cavity volume (Vcav,b), Pressure side cavity volume (Vcav, f ) and tip-
vortex cavity radius for a propeller blade. Hence, the relation between η, Vcav,b , Vcav, f ,
rc and classical design variables is obscured.

Often, in the preliminary design phases, the use of BEM results in relatively low com-
putational cost but comes with high uncertainties [83]. Thus, the relation between ob-
jectives, constraints and mesh (J1 in Eq. 2) is also obscured to an extent. Hence, opti-
mization problems depending on classical design variables and BEM may require more
evaluations than necessary to identify lucrative regions in the design space. This is irre-
spective of whether a gradient descent or gradient free search algorithm is used.

In this chapter, the computational cost of optimization is demonstrated to be re-
duced by (a) addressing the challenge of multicollinearity which affects J2 in Equation

(2), with a set of orthogonal parameters~x such that ∂
~M

∂xi
· ∂~M∂x j

= 0 and, (b) applying explain-

able machine learning to model the uncertainties in predictions made by BEM, which
affects J1 (Equation (2)) in the preliminary design phase.

The orthogonal parameters are derived from SVD of a data matrix populated with
variations of the blade geometry. There are two comparable applications of SVD. The
first is for the symbolic reformulation of design and optimization problems [78] and the
second is for the dimension reduction in single- and multi- disciplinary hull form opti-
mizations [21]. In both cases, relatively small data sets with large dimensionality are re-
duced to very few dimensions. In [78], optimization problems are even clustered based
on symbolic similarities.
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BEM typically tends to predict similar performance, i.e. efficiency and cavitation
behaviour, for comparable blade geometries. Thus, three clusters are expected during
design and optimization. The first cluster constitutes of designs with performance of
interest, i.e. high efficiency and low cavitation. The second cluster constitutes of de-
signs with performance not of interest, i.e. low efficiency and high cavitation. The third
cluster consists of designs whose performance cannot be estimated accurately due to
limitations of the BEM used in this study. The latter two clusters as designs not of in-
terest. Thus, designs of interest are assigned the label yc = 1 and designs not of interest
are assigned the label yc = 0. With the use of the proposed orthogonal parameters, it is
expected that these clusters are discernable as the relation between Hydrodynamic effi-
ciency (η), Vcav,b , Vcav, f and rc are not obscured. In simple cases with single objective
optimization, these clusters can be identified a-priori with unsupervised classifiers as
demonstrated in this chapter. Thus, fewer evaluations are required to identify lucrative
regions in the design space. For multi-objective constrained optimization, supervised
classifiers are required to learn the clusters and focus search in lucrative regions. The
multi-objective constrained optimization with supervised classifiers is demonstrated in
a separate chapter 5. In both chapters, explainable classifiers are used [3] as they provide
insight into why a prediction is made.

The resulting optimization method - Dynamic Optimization - is elaborated in Sec-
tion 5.2. The method is called Dynamic Optimization because the parameters are de-
rived from the blade meshes that become boundary conditions for the equations gov-
erning the dynamics of the flow. Subsections 4.2.1-4.2.5 detail the building blocks of the
method. Section 4.3 details the demonstration setup and modelling of uncertainty. Sec-
tion 5.3 presents the results on reliability and performance of the orthogonal parameters,
supervised and unsupervised classifiers. The trade-offs between efficiency, complete-
ness and optimality for Dynamic Optimization is demonstrated in Subsection 4.4.3. The
conclusions are provided in Section 4.5.
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4.2. DYNAMIC OPTIMIZATION
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Figure 4.1: Dynamic Optimization workflow
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Algorithm 1 Dynamic Optimization - Single Objective

Input: f1, g1, g2, ..., gm ,λ, N ,σ2

Output:ηmax ,~ssol

1: procedure DYNAMIC OPTIMIZATION - SINGLE OBJECTIVE

2: S, X ←;
3: ηmax ← 0
4: S ← SEARCH(*params)
5: for i ← (0 → N ) do
6: ~s ← Si

7: Generate geometry and mesh ( ~M∗) for~s
8: ~x∗ ← PROJECTION(Ror tho ,k ′, ~M∗) . See Algorithm

5
9: X ← X ∪~x∗

10: X ← NORMALIZE(X )
11: C 0,C 1 ←GET _C LU ST ERS(X ,λ) . See Algorithm 7 in Appendix,

λ ∈ (0,100.0]
12: C f i r st ,Csecond ,ηmax ,~ssol ← BEST _C LU ST ER(C 0,C 1) . See Algorithm 8 in

Appendix
13: #At this point λ/100×N designs have been evaluated and the better cluster is known.
14: Xnb ← {xi |i ∈C 0∪C 1}
15: GNB ← GAUSSIAN-NB(Xnb , yc ) . yc = 1 for C f i r st and yc = 1 for

Csecond

16: X ′ ← X −Xnb

17: if S′ 6= ; then
18: for i ← (0 → len(X ′)) do
19: if GNB(xi ) == 1 then
20: η∗← EVAL(si ) . BEM or CFD.
21: if η∗> ηmax then
22: ηmax ,~ssol ← η∗, si

23: else
24: Pass . Skipped an evaluation and reduced cost of optimization.

25: return ηmax ,~ssol

Dynamic Optimization (DO) is a constraint respecting design method, where search
agents are advised by classifiers. The workflow is described in Figure 4.1 and the imple-
mentation of DO is detailed in Algorithm 1. In the figure each element of the method
is labelled. At the start, objectives, constraints and design variables are specified (Block
1-2, Fig. 4.1). Then a search/sampling strategy based on systematic, random or pseudo-
random sampling or another search agent is chosen (Block 3). Based on the sampling,
the geometry is generated (Block 4, Fig. 4.1). After modelling, a set of orthogonal pa-
rameters (~x∗) that define the design are computed. These orthogonal parameters are
projections of the propeller mesh ~M∗ in a k ′ dimensional hyperspace (Ror tho). Section
4.2.4 details the derivation of orthogonal parameters. These parameters are defined to
address the limitations of traditional parametric models. In the first step, based on the
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normalized orthogonal parameters (X ), the unsupervised classifier finds two clusters
(C 0,C 1) within which features are comparable (Block 6a, Fig. 4.1). It is also possible to
increase the number of clusters; the number of clusters can be determined by the num-
ber of objectives, constraints and also the expected variance in the propeller geometry.
Next, the designer needs to specify the percentage of designs (λ) to sample from each
each cluster Ci for which the detailed analysis is performed with BEM or CFD (Block 7a,
Fig. 4.1). The results of analysis indicates the cluster with best designs (C f i r st ). C f i r st

contains the solution (~ssol ) with the best efficiency (ηmax ). At this point λ percentage of
designs have been evaluated and the best design is known. All the evaluated designs Xnb

and corresponding cluster labels yc are used to train the supervised explainable Naive-
Bayes classifiers (GN B , Algorithm 1:L15 and Block 6b, Fig. 4.1). Based on learnt labels,
the classifiers guide search agents to lucrative clusters in the design space while passing
on designs that are not in the better cluster (Block 8, Fig. 4.1). False positives are caught
with evaluations. The effect of false negatives can be controlled by increasing λ. Thus,
the trade-off with completeness of optimization is controlled by the designer via the pa-
rameter λ. Finally, if all convergence criteria are satisfied, the design method reports the
optimum else it is proposed to explore new regions of the design space. The subsequent
sections detail the critical blocks of DO. For the method to be successful, the reliability
of Blocks 5, 6a and 6b (emphasised in Figure 4.1) are of critical importance.

4.2.1. OBJECTIVE, CONSTRAINTS AND DESIGN VARIABLES
Propeller design and optimization is a complex problem which requires numerous con-
siderations. One of the primary objectives is to maximise efficiency (η). The problem
is constrained by target thrust T0 at a specified ship speed (vshi p ). Other constraints
to consider are cavitation, noise, hull induced pressure fluctuations and structural in-
tegrity.

Figure 4.2: Hydrofoil cross-sections and their locations

In this demonstration, the single objective is to maximise the open-water hydrody-
namic efficiency (η) of a Wageningen B4-70 propeller blade. Our starting geometry is
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a blade with P/D=1.0. The propeller is modelled with 10 hydrofoil cross-sections as il-
lustrated in Figure 4.2. The constraints are (a) target thrust T0 = 27kN and (b) constant
vshi p = 1.72ms−1. From the B4-70 series charts, B4-70 P/D=0.8 is a better starting point
for the chosen operating point. However, the baseline is chosen to be B4-70 P/D=1.0 as
it is further away from a known local optimum or known optimal search direction. This
increases the chances of finding new search directions. In our optimization, the thrust
is maintained by modifying the rotation rate of the propeller. The geometry is varied
by modifying the pitch distribution, hence, the mean pitch also changes. Therefore, the
pitch distribution is not restricted to that of the Wageningen B4 series. The baseline per-
formance is listed in Table 4.3.

(a)

(b)

Figure 4.3: (a) Mid-chord vector (~ri ) and, (b) schematic illustrating pitch modification

There are four primary reasons for defining a simplified optimization problem. Firstly,
the simplicity of the problem enables a clear demonstration and better testing of each
component of DO. In order to be applied to realistic problems (Part-II), DO must first
work for simple propeller optimization problems. Secondly, the open-water curves of
the propeller are thoroughly investigated and also publicly available [61]. Thus, the
results of the current optimization can be quickly verified and validated with existing
open-water curves. Thirdly, the geometry has been published and is readily available
without knowledge embargo. Finally, the analysis tool PROCAL [82] has been validated
for the open-water fully wetted flow case of this propeller.

Classical design variables such as diameter (D), pitch distribution and camber cor-
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relate with η. A larger propeller tends to be more efficient and the upper-bound for di-
ameter is often determined by hull-integration, tip-speed, hull induced pressure fluctu-
ation and cavitation constraints. At the maximum possible diameter, it is possible to im-
prove efficiency by modifying the pitch distribution. Cavitation behaviour is improved
by modifying camber. As the primary objective of the demonstration case is efficiency,
the aim is to find the optimal pitch distribution.

To modify the blade pitch, the parameter θ is used. Figure 5.4b illustrates the change
in geometry when θ is varied. θ is modified from the 4th-10th cross-sections i.e. mid
section to blade tip. The target cross-section is rotated by∆θ about the Mid-chord vector
(~ri ). ~ri is the vector parallel to z-axis which points to the midpoint of the LE-TE line as
illustrated in Figure 5.4a. Pitch is expected to be sensitive to ∆θ. An increase in θ results
in a higher pitch exposing the blade to higher inflow angles thus also higher loading.
Note that ∆θ < 0 implies that the cross-section was depitched. Otherwise the cross-
section’s pitch either stayed the same or it increased. While θ may influence skew (γ)
and rake (τ), they are not expected to be very sensitive to θ.

4.2.2. HALTON SAMPLING
To demonstrate the existence of clusters, the Halton sequence [69] is used to generate
samples. The sequence is chosen as it is a systematic, repeatable and quasi random
sampling method. A possible strategy to improve hydrodynamic efficiency is to reduce
rotational losses by off-loading the blade [79]. Thus, pitches from the 4th-10th cross-
sections are chosen as design variables. They are perturbed from the baseline design by
∆θp,i =±0.150.

Within the stated bounds, 200 points are sampled with the Halton sequence to gen-
erate the sample data matrix

S =

∆θ1,4 · · · ∆θ1,10
...

∆θN ,4 · · · ∆θN ,10

 . (3)

The sequence is characterised by low-discrepancy and low-dispersion compared to
random sampling methods when k < 10, where k is dimensionality of the sampling
space [72]. The modified geometries are constructed with B-Splines as detailed in the
following section.

4.2.3. GEOMETRY
The blade geometry is defined by a single B-Spline surface [75] defined as

~p(u, v) =
m∑

i=0

n∑
j=0

Ni ,d1 (u)N j ,d2 (v)~Pi , j , (4)

where u, v ∈ [0.0,1.0] are knots in the u and v directions; ~Pi , j is the control point of
the i-th row and j-th column; m +1 and n +1 are the number of rows and columns the
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control points are organized in; d1,d2 are the degree of the B-Spline in u and v directions
respectively and; Ni ,d1 and N j ,d2 are the basis function in u and v directions respectively.
The surface is fitted to hydrofoil cross-sections in Cartesian coordinates at different ra-
dial locations. In our case d1 = 3 as the spline is closed in u direction and d2 = 8 to find
an optimal fit for a hydrofoil with camber and thickness distribution with fewer control
points. The basis functions (N (t )) for each directions are defined as

Ni ,0(t ) =
{

1; ti ≤ t < ti+1

0;other wi se
, (5)

Ni ,d = t − ti

ti+d − ti
Ni ,d−1(t )+ ti+d+1 − t

ti+d+1 − ti+1
Ni+1,d−1(t ). (6)

where t is the knot value and d is the degree of the spline. Based on the geometry,
the orthogonal parameters are derived.

4.2.4. ORTHOGONAL PARAMETRIC MODEL
The primary objective of the proposed parametric model is to alleviate the limitations
of classical design variables. Thus, the parametric model must (a) accurately quantify

geometric variations, (b) yield orthogonally independent parameters, i.e. ∂~M
∂xi

· ∂~M∂x j
= 0

and, (c) be generalized for all possible geometries. To satisfy the above requirements,
the parametrisation is based on the coordinates of the blades’ surface mesh such that
all possible variations of all possible families are represented and the relation between
geometry and design objectives is not obscured. The orthogonal parameters xi ∈ ~x of
the proposed parametric model are derived by projecting the surface mesh of propellers
in an orthonormal hyperspace Ror th to ensure that the parameters are orthogonally in-
dependent. Defining Ror th involves four steps.

The first step is to ensure that the mesh used for the analysis of each design is compa-
rable. Thus, the surface mesh is generated by uniformly discretising the B-Spline surface
in the B-Spline parametric space, i.e. along the u and v directions of the spline surface.
The mesh M∗ consisting of discrete nodes in the B-Spline parametric space is defined in
Equation (10), where m is the number of nodes on the hydrofoil cross-section and n is
the number of cross-sections along the diameter. Thus, the mesh for the i-th propeller
~Mi ∈Rk

car t with dimensionality k = 3×m ×n is

M∗
m×n =



(0.0,0.0) · · ·
(
0.0,

( j −1)

(n −1)

)
· · · (0.0,1.0)

...
. . .

...(
(i −1)

(m −1)
,0.0

) (
(i −1)

(m −1)
,

( j −1)

(n −1)

)
...

...
. . .

...
(1.0,0.0) · · · · · · · · · (1.0,1.0)


, (7)

~Mi = {p(m∗
i j )|m∗

i j ∈ M∗
m×n}. (8)

The second step is to build the data matrix M by stacking meshes of all N sampled
propellers and then transforming them into cylindrical coordinates:
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M̃ =


~M1
...
~MN

 , (9)

M = T (M̃),T :RN×k
car t →RN×k

c yl . (10)

This pre-processing step of stacking and transforming the meshes into cylindrical co-
ordinates reduces the variance in M(:,i )∀i ∈ {0,3,6...} as cross-sections are defined at a
constant radius from the propeller axis. Thus, variance in form and shape of the blade is
emphasised in the data matrix.

The third step is to define the origin of Ror th . The origin is chosen to be the mean

~µ=
∑N

i=1
~Mi

N
, (11)

of all N propeller meshes, leading to the translated data matrix

M ′ =


~M1 −~µ

...
~MN −~µ

 . (12)

The fourth step is to factorise M ′ using thin SVD [81], that is,

M ′
k×N =Uk×N ·ΣN×N ·V ′

N×N . (13)

This yields the left singular vectors U , the singular values Σ and the right singular
vectors V. The product of the k ′ left and k ′ right singular vectors yields the orthonormal
reference frame

Ror th =Uk×k ′ ·V ′
k ′×k ′ . (14)

Ror th is defined by k ′ orthonormal vectors and any surface mesh ~M can now be
projected in Ror th . Thus the surface mesh can be represented as

~M =
k ′∑

i=0
Mcos(xi )R̂or th:,i (15)

where M = |~M |, R̂or th:,i is the i-th unit basis vector of the reference frame Ror th and
xi is the projection angle of the mesh on the i-th unit basis vector. Thus, the orthogonal
parameters proposed are xi . The orthogonal parameters can be represented by~x ∈Rk ′

.

Note that ∂~M
∂xi

· ∂~M∂x j
= 0 for all values of k ′.

The procedure to project the mesh in Ror tho and compute the orthogonal parame-
ters is detailed in Algorithm 5. This algorithm then yields the Parameter Matrix (X ) with
values for each vector ~x. As k ′ << k, it is possible to significantly reduce the number of
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parameters while not obscuring the relation between the geometry and the mesh, thus
also the solution. Hence, it is ensured that this parametrisation also opens doors for di-
mension reduction.

One limitation of the proposed parametric model is that perturbing orthogonal pa-
rameters results in non-conformal projections in the orthonormal spaces. These pro-
jection are non-conformal because they may not result in smooth splines which are re-
quired for propeller blade geometries. Thus, models similar to conformal deformation
proposed for Free Form Deformation (FFD) [74] need to be formulated for orthogonal
parameters as well. Another possibility is to establish a one-to-one map between or-
thogonal parameters and classical design variables to allow for conformal modifications
of the geometry. In the current demonstration, classical design variables are used to
modify the geometry and orthogonal parameters are used as features for classifiers and
regressors.

Algorithm 2 Subspace Projection

procedure PROJECTION

MN×k ← Data matrix of designs to analyze
Compute Ror tho

R←Ror tho

X ← 0N ,k ′+1

for i = 1 to N do
for j = 1 to N ′ do

Xi , j ← cos−1
(

Mi ,:·R:, j

|Mi ,:||R:, j |
)

return XN ,k ′+1

4.2.5. CLASSIFIERS
Both supervised and unsupervised classifiers are employed. Explainable machine learn-
ing models are opted for because they provide insights into why certain predictions are
made. The goal of the unsupervised classifier is to identify existing clusters in the de-
sign space with comparable geometries and the goal of supervised classifiers is to learn
which cluster of geometries are lucrative. Once trained, the supervised classifiers can
guide search algorithms towards more lucrative regions in the design space thus reduc-
ing the number of required evaluations. Implementations of supervised and unsuper-
vised classifiers in SciKit-Learn [107] are used.

The classifiers use orthogonal parameters (X ) as features given that they capture ge-
ometric variance reliably. In principle, the orthogonal parametric model is expected to
satisfy the i.i.d assumption; thus, classifiers based on both generative models p(X |yc )
and discriminate models p(yc |X ) are applicable. In the following sections, a concise de-
scription of the classifiers is provided. For more details, the readers are advised to read
the references in the respective subsections.
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UNSUPERVISED CLASSIFIER

In the zero-th design iteration, since the number of clusters is pre-determined and clus-
ters are expected to differ in shape and share boundaries, Gaussian Mixture Models
(GMM) with full covariance matrices [63] is employed. The GMM classifier predicts class
labels yc as

yc = argmax j π j p(~xi |µ j ,σ2
j ), (16)

where j maximizes the probability of ~xi occurring. In Equation (16), π j = n j /N is
the ratio of the number of designs in the j-th cluster (n j ) to the total number of designs
N , thus it is also the cluster probability. The means µ j and variance σ2

j for the j-th clus-

ter are found using the Expectation-Maximisation algorithm with a Euclidean distance
based K-Means centroid initialisation.

SUPERVISED CLASSIFIERS

Naive-Bayes (NB) with kernel approximations of Support Vector Classifiers (SVC) [18]
and Gaussian Process Classifiers (GPC) [76] are compared. The classifiers are as follows:

NAIVE-BAYES

The Naive-Bayes classifier predicts labels as

yc = argmax j π j p(~xi |~µ j , ~σ2
j ), (17)

where j maximizes the probability of~xi occurring. In Equation (18), the probability

(p)s of~xi occurring given the mean and variance~µ j , ~σ2
j for the j-th cluster is

p(~xi |µ j ,σ2
j ) =

k ′∏
d=1

1√
2πσ2

j ,d

.exp

(
−|xi ,d −µ j ,d |2

2σ2
j ,d

)
. (18)

k ′ is the number of orthogonal parameters, xi ,d is the d-th parameter in~xi , µ j ,d and
σ2

j ,d are the mean and variance of X :,d .

SUPPORT VECTOR CLASSIFIER

The decision function for SVC predicts the label yc as

yc = sg n

(
N∑

n=1
yiαi k∗+ρ

)
, (19)

where yiαi are the dual coefficients, k∗ is the correlation vector andρ is the intercept.
For our comparison study, the i-th components of the correlation vector are computed
with the RBF kernel,

ki (xi , x∗) = exp(−|xi −x∗|2). (20)

Multi-label classifications are implemented with an one-against-one approach [71].
In Equation (19), the dual coefficients (yiαi ) are solutions to the dual problem of SVCs
primal problem [18]. The dual problem defined as
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minα
1

2
αT Qα−1Tα, (21a)

subject to yTα= 0;0 ≤αi ≤C ; (21b)

where C > 0 is the upper bound, Qi j = yi y jφ(xi )φ(x j ) andφ(xi ),φ(x j ) are the feature
map of input xi , x j .

GAUSSIAN PROCESS CLASSIFIER

The Gaussian Process Classifier (GPC) is based on the Laplace approximation method
described by Rasmussen et. al [76]. The posterior prediction (π̄∗) for a query x∗ is

π̄∗ =
∫
σ( f∗)p( f∗|X , y, x∗)d f∗. (22)

Multi-label predictions can be made with both one-against-one and one-against-rest
approaches.

In Equation (22), the first term, σ( f∗) = σ( f (~x∗)) = σ(xT w). GPC places a GP prior
with a RBF kernel, Equation (20), on a latent function f (~x) = xT w . The range of f (~x) is
(−∞,+∞). Mapping the range to [0,1] allows it to be interpreted as probability of labels
in soft classification between two classes yc ∈ {0,1}. Thus the range of f (~x) is squashed
through the logistic link function

σ( f (~x)) = 1

1+exp(− f (~x))
, (23)

that maps the domain (−∞,+∞) onto [0,1].

In Equation (22), the second term p( f∗|X , y, x∗) can be approximated with the Laplace
approximation method. The term can be expanded as

p( f∗|X , y, x∗) =
∫

p( f∗|X , x∗, f)p(f|X , y)df, (24)

where p(f|X , y) = p(y |f)p(f|X )/p(y|X ). In the Laplace approximation method, a Gaus-
sian approximation q(f|X , y) to the posterior of the latent function p(f|X , y) is utilized.
The Gaussian approximation is obtained by doing a second order Taylor expansion of
log(p(f|X , y)) around the maximum of the posterior as defined below:

q(f|X , y) =N (f|f̂, A−1) ≈ exp(−1

2
(f− f̂)T A(f− f̂)), (25)

where f̂ = argmaxfp(f|X , y) and A =−∇∇log p(f|X , y |(f = f̂)) is the Hessian of the neg-
ative log posterior at the point.
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CLASSIFICATION LABELS (yc )
Designs of interest are labelled yc = 1 and designs not of interest are labelled yc = 0. yc is
determined as

yc =
{

0 η̄∗(~s,T0) ∈ [ηmi n ,ηmi n +δ]

1 η̄∗(~s,T0) ∈ [ηmi n +δ,ηmax ]
. (26)

Note that the labels are based on posterior efficiency prediction η̄∗ and a parameter
δ = (ηmax −ηmi n)(2/3), where ηmax , ηmi n are the maximum and minimum efficiencies
of all designs in the samples. yc = 1 indicates a lucrative cluster where search is to be
focused.

UNCERTAINTY IN EARLY DESIGN

The posterior efficiency prediction η̄∗ is made by modelling the uncertainties in BEM
predictions [83]. Typically, uncertainties are addressed in the detailed design stage. Those
resulting from geometry and operational parameters are dealt with Robust Design meth-
ods [73], where the primary objective is to reduce the parameter dependent variance
in performance. Uncertainties resulting from modelling and discretisation errors are
dealt with higher-fidelity CFD. However, delayed consideration of uncertainties results
in lower marginal gains in performance. Thus, there is a need to account for uncertain-
ties already in preliminary stages of design. For this purpose, Gaussian Process Regres-
sion is employed as detailed in this sub-section.

There are two primary sources of uncertainty. The first is the use of BEM for which
performance predictions could have uncertainties as high as 15% [83]. The second is
uncertainties resulting from regression itself. Both uncertainties are accounted for in a
linear regression model with Gaussian noise as described by Rasmussen et. al [76]:

y = f (s)+ε, (27a)

f (s) =φ(s)T w, (27b)

ε∼ N (0,σ2
n). (27c)

Equation (27a) describes the response y with noise ε. Note that ε models both anal-
ysis and regression uncertainties. The function f (~s) : RN → R is assumed to be linear as
described in Equation (27b). The inputs~s ∈ RN are projected onto feature spaces by the
function φ. The vector space of the feature vector is the feature space. The noise ε is
assumed to be an i.i.d Gaussian distribution with µ= 0 and variance σ2

n as described in
Equation (27c) is used. The posterior prediction of mean and variance are

f̄∗ = kT
∗ (K +σ2

n I )−1y, (28a)

V[ f∗] = k(s∗, s∗)−kT
∗ (K +σ2

n I )−1k∗. (28b)

In Equations (28a) - (28b), K is the Gram matrix and k∗ is the correlation vector. In
this study, the components of the correlation vector and Gram matrix are computed with
an RBF kernel, see Equation (20).
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4.3. DEMONSTRATION SETUP
As a benchmark case, the Wageningen B4-70 propeller with P/D=1.0 is chosen. The ge-
ometry and mesh is illustrated in Figure 5.2a.

Figure 4.4: Wageningen B4-70 propeller

Figure 4.5: PROCAL validation and Gaussian Process Regression results of open-water curve with modelled
uncertainties

Table 4.1 Operational Parameters
Parameter Units Value

Open-Water Speed ms−1 [0.18-3.6]
Free-stream density kg .m−3 1025

Absolute atmospheric pressure Pa 102500
Propeller rotation speed r ev · s−1 15

PROCAL is validated for the operating parameters listed in Table 4.1. The validation
results are illustrated in Figure 4.5. The experimental data (Exp.) in Figure 4.5 is bundled
and shipped with PROCAL. It can be observed that the PROCAL efficiency predictions
match well with experimental observations up-to J ≈ 0.9 and thereafter uncertainties
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increase. In this demonstration, the hub is not modelled. However, PROCAL predictions
for hydrodynamic efficiency are comparable to experimental observations. This could
be because of weak blade-hub interactions. One limitation of the current approach is
that root cavitation is not captured during the optimization and if blade-hub interac-
tions are strong the uncertainties in performance predictions could also be higher.

In the current setup, the resulting uncertainties in performance prediction are ac-
counted for with the GPR estimator. The posterior efficiency prediction (η̄∗) (-) and con-
fidence interval is estimated with the Gaussian Process Regression (GPR) model defined
in Equations 28a-28b. The variance is estimated to be 20% of the response η. This yields
a 95% confidence interval that encapsulates predictions, experimental observations as
well as uncertainties resulting from regression. For the GPR estimator, the mean predic-
tion (-) would coincide with the experimental observations if the variance is assumed
to be 0%. However, assuming a variance of 0% implies that PROCAL predictions do not
differ from experimental observations, which is not the case.

For varied geometries and operational conditions the residuals of the panel method
can be different. Thus, the variance expected can be different from the estimated 20%
in this demonstration. For the sake of simplicity, the expected variance is assumed to
be a constant. However, the trends in variance w.r.t geometries, operational conditions
and residuals of numerical methods, if available, can also be considered in the GPR es-
timator during training (Block 7b in Figure 4.1). This could lead to better cluster predic-
tions made by the supervised classifier (Block 6b in Figure 4.1). Better cluster predictions
could reduce the number of iterations required to convergence.

4.4. RESULTS
For DO to be successful, orthogonal parametric model (Block 5) and classifiers (Block 6a-
6b in Figure 4.1) need to be effective and reliable. The orthogonal parametric model is
deemed reliable if it (a) is able to identify spatially discernible clusters and, (b) preserves
the geometric correlations. The unsupervised classifiers are deemed reliable when they
identify existing clusters. The supervised classifiers are deemed reliable if they direct
search to lucrative clusters while continuously learning. The following sections report
the results of reliability tests for the critical blocks and DO itself.

4.4.1. ORTHOGONAL PARAMETRIC MODEL RELIABILITY
In this section, the results of the tests on reliability of the orthogonal parametric model
are discussed. The ability of the orthogonal parametric model to yield spatially dis-
cernible clusters are determined with silhouette scores. The silhouette score [77] indi-
cates whether there are spatially separated clusters in the data. The score for a design~xi

is defined as

S(~xi ) = b(~xi )−a(~xi )

max{a(~xi ),b(~xi )}
, (29a)
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a(~xi ) = 1

|Ci |−1

∑
j∈Ci ,i 6= j

d(i , j ), (29b)

b(~xi ) = minl 6=i
1

|Cl |
∑

j∈Cl

d(i , j ), (29c)

where a(~xi ) is the average dissimilarity of~xi with all other designs in the same cluster
and b(~xi ) is the minimum value of average dissimilarity with another cluster. This results
in S(~xi ) ∈ [−1,1], with -1 indicating wrong labels, 0 indicating similarities between de-
signs from different clusters thus, no clearly discernible clusters, and 1 indicating clearly
distinguished clusters. Discerning clusters in a high-dimensional hyperspace is chal-
lenging. However, if clusters do exists, they would be discernible in combinations of any
two parameters, si , s j ∈~s or xi , x j ∈~x. Thus, silhouette scores are calculated for all possi-
ble combinations of two parameters in~s and~x.

Figure 4.6: Silhouette Scores for 2 parameter combinations with k ′ ∈ [2,15]

The maximum score of all possible parameter pairs is a good indicator of perfor-
mance and is plotted in Figure 4.6. The orthogonal parameters tend to perform signif-
icantly better than classical design variables with 4 times higher silhouette scores. It is
also observed from Figure 4.6 that the score does not improve anymore for k ′ > 11. This
indicates that most of the variance is captured in the first 10 orthonormal vectors defin-
ing Ror th . Thus, representing the designs in higher dimensions does not yield more
distinguished clusters.

Figure 4.7 illustrates the clusters generated by classical and orthogonal parameters
for thrust requirement T0 = 27kN . Note that s(1) = ∆θ4, thus in Figure 4.7a, s(3), s(5)
represent normalised ∆θ for the 7th and 9th cross-section respectively. For classical de-
sign variables, it is observed in Figure 4.7a that there are no clearly distinguishable de-
sign clusters. However, it is observed in Figure 4.7b that orthogonal parameters result in
marginally overlapped clusters with one of the two containing lucrative designs.

4.4.2. CLASSIFIER PERFORMANCE
In this section, the results of reliability tests for the classifiers (Block 6a-6b) are presented
and discussed. The ability of the unsupervised classifier - Gaussian Mixture Model Clas-
sifier - to identify existing clusters with orthogonal parameters and classical design pa-
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(a) (b)

Figure 4.7: Best spatial clustering parameter combinations at T0 = 27kN for (a) Classical design variables ∆θ7
and ∆θ9, s({∆θ7,∆θ9}) = 0.1007. (b)Orthogonal design parameters x4, x5 when k ′ = 13, s({x4, x5}) = 0.4206.

(a) (b)

Figure 4.8: GMM classifiers confidence ellipsoides for (a) Classical design variables {∆θ7,∆θ9} and (b)
Orthogonal parameters {x4, x5}, when k ′ = 13.

rameters is tested. Thereafter, the supervised classifiers’ reliability in predicting whether
a design is efficient or otherwise is tested with precision scores.

GAUSSIAN MIXTURE MODEL (GMM)
The GMM classifier is used in the zero-th design iteration when no performance infor-
mation is available yet. The classifier’s ability to generalise depends strongly on the pres-
ence of discernible clusters. Testing the classifier’s reliability via validation studies is not
possible in principle as the ground truth is not known. Thus, the reliability is often im-
plied from the posterior silhouette scores.

From the silhouette scores (Figure 4.6), it is observed that certain parameter combi-
nations have high silhouette scores. Thus, for parameter combinations with high scores,
confidence ellipsoids of the trained unsupervised GMM classifier are plotted in Figures
4.8a - 4.8b . It is observed that for classical parameters, the confidence ellipsoids of the
classifier significantly overlap. This is clear indication that a-priori clustering of designs
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is not possible with classical parameters. On the contrary, there is no overlap in the con-
fidence ellipsoids of orthogonal parameters indicating that a-priori clustering of designs
is possible.

SUPERVISED CLASSIFIERS

The reliability of the NB classifier, SVC and GPC is evaluated with precision scores. The
labels (yc ) for the training and testing samples are detailed in Section 4.2.5. The precision
score for a classifier

A = t p

t p + f p
, (30)

is the ratio of true positive (tp) predictions to the sum of true positive and false positive
(fp) predictions. This scoring is a reliable indicator when the number of members in each
class for the testing set are disproportionate. Precision scores, A > 0.5 indicate that the
classifier predictions had more true positives than false positives. The machine learn-
ing models used in DO aim to maximize true positives and the optimization method is
designed to catch false positives thus improving reliability. Weighted average precision
scores for all class labels are determined with 10 fold stratified cross validation studies.
This reduces the risk of missing false negatives.

Figure 4.9: Mean precision scores for stratified 10 fold cross validation studies of supervised classifiers

Figure 4.9 illustrates the results of the cross validation study for the classifiers. The
plots show the mean cross-validation precision score for predicting yc = 0, i.e. for an
inefficient design. It is observed that all classifiers have p > 0.5. Thus, true positive pre-
dictions are more likely than false positive predictions.

It is observed that precision scores for classifiers using orthogonal parameters are
typically higher than those using classical design variables. However, SVC with orthog-
onal parameters tends to perform better than SVC with classical parameter only for
5 < k ′ < 11. This could be because the RBF kernel for SVC tends to be a good feature
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map for classical design variables in the current demonstration case. Among the classi-
fiers, NB has the highest precision score with p = 0.9433 for k ′ = 8 when using orthogonal
parameters. For 6 ≤ k ′ ≤ 11, all classifiers using orthogonal parameters outperform their
counterparts that use classical design variables. For the domain k ′ > 11, it is inferred
from silhouette scores that there is no additional geometric information, however, the
dimensionality of the problem increases. This adversely affects classifier performance.
Nonetheless, it is observed that NB with orthogonal parameters is the most reliable clas-
sifier for the identification of in-efficient designs. The reliability of NB with orthogonal
parameters for multi-objective constrained optimization with supervised classifiers is
demonstrated in a separate publication [86]

The precision scores indicate that orthogonal parameters are better able to capture
geometric variations and not obscure the relation between geometry, mesh and pre-
dicted performance. This addresses the first problem of multicollinearity. Furthermore,
it enables more training and deploying more reliable machine learning models.

4.4.3. DYNAMIC OPTIMIZATION PERFORMANCE
To test the effectiveness of orthogonal parameters in identifying clusters of designs, it is
run 50 times on the same Halton sample set. The goal of the test is to quantify possi-
ble gains of using orthogonal parameters versus classical design variables. The tests are
run for two setups. In Setup 1, GMM in DO uses classical design variables for a-priori
cluster identification and in Setup 2, it uses orthogonal parameters. In both setups, the
supervised classifier is chosen to be the Naive-Bayes classifier due its high reliability. The
following sections describe the optimum and the results of the test.

OPTIMUM

Table 4.2 Optimum in Halton samples - Parameters

Optimum (rad)
∆θp,4 -0.0409
∆θp,5 -0.0577
∆θp,6 -0.0794
∆θp,7 -0.0868
∆θp,8 -0.0978
∆θp,9 -0.1086
∆θp,10 -0.1113

The optimal solution in the Halton samples is shown in Figure 4.10a. The design pa-
rameters are listed in Table 4.2. Note that ∆θp,i < 0.0, this implies that the blade pitch
has been reduced from the 4th-10th cross-section. ∆θ is also the magnitude of depitch-
ing in radians. Thus, the optimum is found by depitching the blade.
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Table 4.3 Optimum in Halton samples - Performance

Units B4-70, P/D=1.0 B4-70, P/D=0.8 Optimum
J - 0.4035 0.3353 0.3553
n rps 1.9800 2.3910 2.2500
Kt - 0.3133 0.2374 0.2439
Kq - 0.0493 0.0308 0.0315

T (eq. constraint) kN 27.0000 27.0000 27.0000
η (objective) - 40.77 % 41.18 % 43.74 %

(a) (b)

(c) (d)

Figure 4.10: Comparison of the optimum and baseline (a) geometry overlaid with the baseline Wageningen
B4-70 P/D=1.0 blade (green), (b) percentage change in pitch distributions of optimum, baseline and B4-70
P/D=0.8 blade (c) delta skew distribution for baseline and optimum, (d) delta rake distribution for baseline

and optimum.

The performance details are listed in Table 4.3. It is observed that the optimum de-
livers the target thrust of 27kN for the specified vshi p = 1.72ms−1 with higher efficiency
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(a) (b)

Figure 4.11: Super-velocities (a) baseline and, (b) optimum.

Figure 4.12: Open water curves of optimum in Halton samples and baseline design. The markers are the point
of operation for vshi p = 1.72ms−1,To = 27kN .

than the baseline. The gains in efficiency are possible when axial, rotational and viscous
losses are reduced [79]. Figure 4.10a-5.17f compares the optimum to the baseline. The
optimum’s pitch distribution is also compared with a Wageningen B4-70 P/D=0.8 blade
as its efficiency at the operating point is better than the baseline. Furthermore, its open-
water efficiency curve is closest to that of the optimum in the B4-70 series as shown in
Figure 4.12.

Figure 5.17c shows that the pitch for the optimum is reduced at the mid-section and
tip compared to the baseline. However, the pitch for the optimum at the root is higher
than the Wageningen B4-70 P/D=0.8 blade and similar at the tip. Due to the depitch-
ing, a reduction in rotational losses is expected. In order to generate the required thrust,
the depitched propeller operates at a slightly higher rotation rate. As illustrated in Fig-
ure 4.11a-4.11b, despite the slightly higher rotation rate, the depitching results in lower
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super-velocities at the blade tip. This is particularly visible at the leading edge. The
term super-velocity is used in aerospace design for regions where the flow is accelerated
to higher velocities than incoming flow or moving geometries. Consequently, the skin
friction is also lower reducing viscous losses. The resulting open-water curves and the
operating point for the propellers are shown in Figure 4.12.

Figures 5.17d-5.17f show that skew and rake distribution for both propeller are very
close. The differences are expected to result from the (a) B-Spline curve fit to the coordi-
nates and, (b) surface lofting operation through the various fit curves. By having stricter
convergence criteria for the B-Spline fit and lofting, it may be possible to reduce the dif-
ference even further.

Note, as indicated in Section 4.3, the results can quickly be verified and validated
by using open-water curves of the Wageningen B4-70 propeller, which are readily avail-
able [61]. The baseline geometry corresponds to the Wagenginen B4-70 propeller with
P/D=1.0. Thus, at the operating point propellers with a P/D < 1.0 can be found to be
more efficient. Similarly, DO finds a better propeller by reducing the effective P/D of
the baseline geometry. It is recognized that the optimum in the sample set may not be
the global optimum and that it is possible to choose a better starting P/D for the current
operating point. Nonetheless, this is not expected to affect the comparison between or-
thogonal parameters and classical design variables.

DO PERFORMANCE RESULTS

(a) (b)

Figure 4.13: Dynamic Optimization performance results for (a) Classical design variables - Setup 1 and (b)
Orthogonal parameters - Setup 2. λ= (si /s)/100.0.

Figure 4.13 illustrates the results for the design and optimization case with both clas-
sical and orthogonal design parameters. The x-axis shows the percentage of represen-
tative designs selected by the unsupervised classifier from each design cluster. The bars
represent the ratio of the number of required iterations to the number of samples N =
200. The number at the head of each bar indicates the percentage of times the optimum
design reported in Section 4.4.3 is found. The line indicates the mean performance in-
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crease of found solutions compared to the baseline design in percentage points.

It is observed that DO always finds designs that have an efficiency greater than the
baseline Wageningen B4-70 propeller for both classical and orthogonal design variables
within the Halton samples. DO performs better with orthogonal parameters. It tends to
find the optimum design more often than its classical counterpart. Furthermore by eval-
uating under 30% (λ= 20%) of the samples, solutions with an increase in efficiency of 3
percentage points are found. When (λ> 30%), DO with orthogonal parameters finds the
optimum in the Halton samples with a probability of 100%. On the other hand, DO with
classical counterparts needs more than 50% of representative designs to be selected in
order to find the optimum with 100% probability.

Figure 4.13 also contains information regarding convergence of DO. After λ is spec-
ified, the designs to evaluate from each cluster are determined at random. This makes
DO for single objective optimization stochastic. Therefore, the optimization is repeated
50 times for each specified λ. From Figure 4.13 it can be inferred that the number of
iterations to convergence depends on λ. Low values of λ result in quicker convergence,
however, the probability of missing the lucrative cluster increases. For sufficiently high
values ofλ the number of iterations to convergence increases and the probability of find-
ing the lucrative cluster and design also increases.

The results indicate that DO with orthogonal parameters is able to identify design
clusters and also able to guide search to lucrative clusters more efficiently than when
using classical design variables. This is expected to be an outcome of orthogonal param-
eters addressing the problem of multicollinearity. Furthermore, the orthogonal parame-
ters enable more reliable machine learning models to be trained and deployed.

4.5. CONCLUSION
A new design and optimisation method - Dynamic Optimization - is proposed that syn-
ergises supervised and unsupervised learning for the efficient design and optimisation
of propellers. Compared to a standard DoE based search, DO is almost 50 % more effi-
cient in the current demonstration case. Furthermore, DO with orthogonal parameters
tends to be more efficient than DO with classical design parameters. This gain in ef-
ficiency is attributed to the reliability of its two core components - (a) an orthogonal
parametric model and, (b) classifiers. The orthogonal parameters are demonstrated to
address the challenge of multicollinearity thus preserving the correlation between ge-
ometry, mesh and performance. They also enable more reliable classifiers to be trained
and deployed. Reliable and explainable classifiers are able to guide search algorithms
to lucrative regions in the design space with fewer design evaluations thus reducing the
computational cost of optimization. However, it is noted that improving efficiency of
design and optimisation is accompanied by a trade-off with completeness and optimal-
ity of search as demonstrated on a D&O problem of the benchmark Wageningen B4-70
propeller. Nonetheless, for the current thrust and ship speed constrained open-water
efficiency objective, DO finds designs that have a higher efficiency than the Wagenin-
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gen B4-70 propeller at a much lower cost than standard DoE based optimisation meth-
ods. Furthermore, the results can be quickly verified and validated with the open-water
curves of Wageningen B4-70 propeller. As a next step, the method is to be demonstrated
on cavitating propellers in a wake-field as a representative design problem in the follow-
ing chapter.

4.6. RECOMMENDATIONS
• It is recommended that the trade-off study between completeness, optimality and

computational cost also be repeated for coefficients of polynomials that define
pitch distribution. The coefficients are not as numerous as classical design vari-
ables which could reduce computational cost of optimization. Furthermore, more
insight can be gained into trade-off of computational cost of optimization with
completeness and optimality for different parametric models.

• The orthogonal parameters are derived from SVD. It is recommended that the ap-
plicability of Gappy POD also be investigated in deriving orthogonal parameters.
Gappy POD preserves smaller variations in geometry potentially leading to bet-
ter correlations between orthogonal parameters and cavitation, flow separation or
adverse pressure gradients on the blade.

• The orthogonal parametric model is able to identify lucrative regions in the design
space however, they cannot be directly used to generate new geometries. In this
case, classical design variables are still required to generate geometries. Thus, fur-
ther investigation is recommended into using orthogonal parameters to generate
propeller geometries.

• The study assumes that uncertainty in performance prediction is about 20 % of
response η. While this is true for operational regimes near the upper and lower
bounds of advance ratios, 20 % uncertainty may be too high for other operational
regimes. Thus, a better model for uncertainty is also required. The model de-
veloped must depend on the propeller geometry, operational parameters and the
analysis tool used to predict performance.

• Given that the Wageningen B4-70 propeller is (a) in the public domain, (b) its
open-water performance is well documented and, (c) PROCAL is validated for
its open-water curves, the geometry was chosen for demonstration. It is recom-
mended that the study be repeated with other propeller families such as the Wa-
geningen C-series as well as ducted propellers.

• This study investigates the use of orthogonal parameters with explainable ma-
chine learning models in propeller design and optimization. Thus, it is recom-
mended that deep learning with orthogonal parameters also be investigated in
propeller design and optimization.

• The study utilizes BEM to predict propeller performance. Higher fidelity simula-
tions such as Reynolds Averaged Navier Stokes (RANS), Large Eddy Simulations
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(LES) may lead to different or more detailed trends in predicted performance and
also different levels of uncertainties. It is recommended that the impact on com-
putational cost of optimization resulting from use of orthogonal parameters be in-
vestigated in cases where high fidelity simulations predict propeller performance.
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5
MULTIOBJECTIVE DYNAMIC

OPTIMIZATION

An optimization method that uses a machine learning approach to solve multi-objective,
constrained propeller optimization problems is proposed and analyzed. The method uses
an online learning strategy where explainable supervised classifiers learn the location of
the Pareto front and advise search strategies. The classifiers are trained with orthogonal
features that capture geometric variation in radial distribution of pitch, skew, camber and
chordlength. Based on orthogonal features, the classifiers predict whether or not a design
lies on the Pareto front. If the design is predicted to lie on the Pareto front, the method ver-
ifies this with an evaluation. If the design is predicted to not lie on the Pareto front with a
high confidence level, then the design is ignored. This skipped evaluation reduces the com-
putational effort of optimization. The method is demonstrated on a cavitating, unsteady
flow case of the Wageningen B-4 70 propeller with P/D=1.0 operating in the Seiun-Maru
wake. Compared to the classical NSGA-III the optimization method is able to reduce 30 %
of evaluations per generation while reproducing a comparable Pareto front. Trade-offs be-
tween suction side, pressure side, tip-vortex cavitation and efficiency are identified from
the Pareto front. The non-elitist NSGA-III search algorithm in conjunction with the ex-
plainable supervised classifiers also find very diverse solutions. Among the solutions, a
design with no pressure side cavitation, low suction side cavitation and reasonable tip-
vortex cavitation is found 1.

5.1. INTRODUCTION
Global trade is expected to increase the traffic density of shipping lanes on seas, oceans,
and also rivers. Consequently, the GHG, NOx, SOx, and noise emissions from shipping
will increase making it more difficult to meet stricter emission regulations [106] and

1The research in this chapter has been approved by two of four reviewers of Applied Ocean Research. Two
reviewers had very minor comments which have been incorporated and the paper has been resubmitted.
Editor’s decision is expected soon.
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noise reduction guidelines [105]. The IMO aims to achieve a 50% reduction in GHG
emissions by 2050 compared to 2008 levels [70] and ports have also started to incen-
tivize silent ships with harbour due rate discounts [102]. Against this background, there
is strong emphasis on making ship propellers more quiet and more efficient.

For vessels there are various sources of airborne and underwater noise [4]. Com-
pared to air, noise travels faster and farther in water. Underwater noise is generated
by water flow on vessels, auxiliary machinery and equipment, diesel generators, prime
movers, electric motors and propellers; however, cavitating propellers are expected to be
the dominant source of underwater noise. Averson et. al [8] report the underwater ra-
diated noise for M/V Overseas Harriette at different ship speeds (propeller rpm). It was
found that after cavitation inception, the noise hump between 50-100 Hz gets more pro-
nounced with increasing speed. This noise hump is typically associated with the broad
band spectrum of tip vortex noise [108] which is often the dominant source of under-
water radiated noise. Thus, one opportunity to make propellers quieter is by reducing
noise radiation of tip-vortex cavities.

To improve efficiency and reduce tip-vortex cavitation noise, an optimal blade load-
ing is required. Blade loading plays an important role in propeller design as blade sec-
tions are continuously exposed to different angles of attack in the non-uniform wake-
field they operate in. For a rigid propeller, the blade loading distribution is optimized
by modifying the geometry. Traditionally, in addition to efficiency objectives, indirect
noise constraints as a limit on cavitation volume or area have been implemented [64, 93].
Acoustic objectives have been considered but the focus has been limited to radiated
sound power at blade passage frequencies [101]. The hydroacoustic design and opti-
mization problem of propellers is of immense strategic importance and is most likely
well researched in defence. However, there is limited knowledge and reporting in the
public domain. Access to specialized simulation software, models based on propri-
ety data and intellectual property restrictions (due to sensitivity or embargo) result in
hydroacoutic optimization of propellers being tractable to very few academic research
groups. In North America, Yin Lu Young’s group at Michigan University focuses on flex-
ible composite propellers [113] as a way towards designing quieter and more efficient
propellers. One of the focus areas at the group is to design shape adaptive propellers,
which have a bend twist coupling to optimize propeller loading [97, 100, 109] and im-
prove efficiency. Given the challenging structural modelling for composites [98], cavita-
tion and noise constraints are secondary considerations. In Europe, MARIN has focused
on developing and demonstrating tools for hydroacoustic design and optimization of
propellers [27, 95]. Rickard Bensow’s group at Chalmers University has investigated al-
gorithms, strategies and methods for hydrodynamic optimization of propellers with cav-
itation considerations [26, 84, 112]. In Asia, Nakashima propellers, for example, have fo-
cused on achieving better cavitation behaviour and improved efficiency for large vessels
[110]. Better cavitation behaviour is expected to result in lower cavity volume fluctua-
tions and thus lower pressure fluctuations and noise.

Up to approximately 2015, the focus in the aforementioned studies was predom-



5.1. INTRODUCTION

5

71

inantly on optimizing for efficiency and controlling sheet cavitation. In parallel, ef-
forts were underway to better predict tip-vortex cavitation behaviour with simulations
[29, 96, 104]. Thus, while propellers with better sheet cavitation behaviour were de-
signed and introduced, the dominant source of noise was tending to be the cavitating
tip-vortex. However, predicting tip-vortex cavitation on propellers continues to be too
resource intensive for optimization. Recently, Bosschers .J [15] proposed an Emperical
Tip Vortex (ETV) model which offers one approach to hydroacoutic optimization of pro-
pellers with tip-vortex considerations. In addition to noise and efficiency design objec-
tives, propeller design must also account for constraints on hull excitation [88], cavita-
tion erosion [111], ship speed and thrust. State of the art optimization methods are able
to tackle this multi-objective constrained problem; however, there are three challenges
which make them computationally expensive [91]:

The first challenge is that most optimization methods tend to approach the opti-
mization problem with classical design variables. However, they could lead to multi-
collinearity [2] which makes it difficult to isolate the impact of changing individual de-
sign variables on objectives and constraints. By solving multicollinearity, there is an
opportunity to reduce computational cost of optimization by reducing the number of
objective/constraint evaluations to isolate the sensitivities of individual classical design
variables. Consider a function

φ= f (~M(~s)), (1)

where ~M represents the mesh and~s is the design vector. By chain rule,

∂ f

∂s
= ∂ f

∂~M
· ∂
~M

∂~s
= J1 · J2, (2)

where J1 is the Jacobian of the function with respect to the mesh and J2 is the Jacobian
of the mesh with respect to the design variables. The optimization problem is free of
multicollinearity if both J1 and J2 are orthonormal matrices. The orthonormality of J1

is determined by the flow physics and J2 by the chosen design variables. Any design
variable which affects multiple nodes on the mesh will lead to J2 which is not orthonor-
mal. This is because the blade surface is often defined with splines and changes in mesh
nodes are strongly correlated. Different classical design variables also tend to change the
same mesh nodes. Thus, it is difficult to isolate the impact of individual design variables
on objectives and constraints.

The second challenge is that in the preliminary design phase, BEM and ETV model
tend to have uncertainties [83]. These uncertainties results from numerical methods,
domain discretization and physical models. In specific regions in the design space, these
uncertainties could lead to the similar efficiency or cavitation performance being pre-
dicted by BEM and ETV for very different designs. Consequently, optimization meth-
ods could converge to solutions whose operational performance is significantly different
from predicted performance.

The third challenge is that the computational cost of optimization for realistic cases
is relatively high even in the preliminary design phase. Most commonly Artificial Neural
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Networks, Krigging, iKrigging, Cascading Neural Networks [112] have been used to re-
duce the cost of optimization. More recently Deep Learning [94] has also gained traction
in propeller design and optimization [99]. In addition, explainable machine learning
approaches [3] presents very interesting opportunities to provide or extrapolate perfor-
mance guarantees, which is not possible with other approaches for propeller manufac-
turers. These developments are relatively new in the maritime industry. However, the
models used in explainable machine learning such as Gaussian mixture models and
Naive-Bayes are fundamental methods which are well known. Explainable machine
learning can be used to predict where lucrative designs may be found in the design space
and also provide insight into why the regions are lucrative.

To address the first challenge of multicollinearity, an orthogonal feature set is used.
The orthogonal features have been demonstrated to capture geometric variations more
accurately than classical design variables [91]. To address the second challenge and to
account for uncertainties in preliminary design phases, performance predictions are as-
sumed to have a mean and variance. Solutions dominate, i.e., lie on the Pareto front only
when the mean is high and there is no overlap in the 95 % confidence intervals of per-
formance with compared solutions. This reduces the risk of false positives on whether a
solution dominates or not. Consequently, D&O strategies are expected to yield a range
of solutions whose predicted performance does not differ significantly from operational
performance. To address the third challenge of computational cost, soft explainable su-
pervised classifiers with online training are used. The classifiers are taught the location
of the Pareto front and, when sufficiently trained, they could potentially exclude designs
which lie meaningfully away from the Pareto front, making the optimization method ef-
ficient.

In this paper, an optimization method is proposed to solve multi-objective constrained
optimization problems based on the above machine learning strategies. The method re-
ferred to as DO is detailed in Section 5.2. It is demonstrated on a case with the start-
ing point as a Wageningen B-4 70 propeller with P/D=1.0 operating in the Seiun-Maru
wakefield. Subsections 5.2.1-5.2.6 detail the modules of DO. Section 5.3 compares the
performance of classical NSGA-III optimization with DO. the results are summarized in
Section 5.4.
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Figure 5.1: Dynamic Optimization flowchart.
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Dynamic Optimization is a method for multiobjective, constrained propeller opti-
mization problems where search agents are advised by supervised classifiers. The method
is detailed in Algorithm 3 and the flowchart in Figure 5.1. As inputs, the method takes
the objectives, constraints and iteration limits. When the optimization begins, for the
i -th iteration, an objective driven search strategy such as NSGA-II, NSGA-III [90], PSO,
Nelder-Mead (NM) or others generate samples Si . For each sample~s ∈ Si , the geometries
and meshes are generated. A set of orthogonal features ~x∗ ∈Rk ′

which are projections
of the i-th mesh in a k ′ dimensional hyperspace is computed. Until there are sufficient
samples to train and validate, the classifier is not used. When the classifier is not used,
designs~s ∈ Si are analysed with CFD or BEM. After each design is analysed they are as-
signed a label. Interesting designs are labelled as yc = 1 and clearly inferior designs are
labelled yc = 0. If the design lies on the Pareto front and has an efficiency greater than
a ×ηmax , where a = 0.85 is an input parameter. With a, it is possible to control the ex-
plore/exploit bias. A higher value of a makes the search more exploitative. For details on
assigning labels see Algorithm 6.

After the first two samples are evaluated, the supervised classifier is trained with or-
thogonal parameters (~x) as features and target labels (yc ∈ [0,1]). After at least 10 samples
are evaluated, it is possible to validate the classifier with 10-fold cross-validation studies.
In such a case, if the classifier has a mean 10-fold cross-validation score of 75% or higher
the classifier is used. Weighted average precision scores are used for cross-validation. In
iterations where the classifier is used, design labelled as yc = 1 are analysed to confirm
the prediction. Else, the design is not analysed when p(~x|µ0,σ2

0) ≥ pth(~x|µ0,σ2
0), where

pth(~x|µ0,σ2
0) is the threshold for the probability that yc = 0. A high threshold indicates

a high confidence that the design is much further away from the Pareto front. Thus, by
skipping analysis of designs which lie away from the Pareto front, computational cost of
optimization is reduced. In our demonstration pth(~x|µ0,σ2

0) = 0.9. The method catches
most false positives. However, there is a risk that false negatives are missed. This risk can
be mitigated by increasing pth(~x|µ0,σ2

0). If after an iteration or generation the conver-
gence criteria are met, the optimizer reports the Pareto front and exits. Else, it continues
to the next iteration or generation.

5.2.1. OBJECTIVE AND CONSTRAINTS

For demonstration of DO, the Wageningen B-4 70 propeller with P/D=1.0 is chosen as the
starting point. The blade is operating in the effective wake of the Seiun-Maru vessel with
vshi p,0 = 10.80m/s and T0 = 577.4kN [38]. The full scale measurements for flow charac-
teristics around the hull and resulting propeller inflow and turbulence are reported by
ITTC [92]. Particulars of the Seiun-Maru vessel are also provided in [114].

The optimization problem has multiple objectives and constraints. Table 5.1 lists
and describes the objectives and constraints. The goal is to maximize efficiency and
minimize (a) cavity volume, (b) cavity volume acceleration, (c) vortex cavity radius and
(d) peak pressure. The efficiency and cavitation behaviour are predicted with PROCAL
[82]. The radius of the vortex cavity is predicted with the ETV-2 model [16]. In addition
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Algorithm 3 Dynamic Optimization for multi objective applications

Input: f1, f2, ..., fn , g1, g2, ..., gm ,max_iter, thresh_iter
Output:Spar eto

1: procedure DYNAMIC OPTIMIZATION

2: Spar eto ,S,F ←;
3: i ← 0
4: use_clf ← false
5: while i ≤ max_iter do
6: Si ← SEARCH(*params)
7: S ← S ∪Si

8: for j ← (0 → l en(Si )) do
9: ~s ← Si , j

10: Generate geometry and mesh ( ~M∗) for~s
11: ~x∗ ← PROJECTION(Ror tho ,k ′, ~M∗) . See Algorithm 5
12: if use_clf then
13: if f (~x∗) = 1 AND p(~x∗|µ0,σ2

0) ≤ 0.90 then . The classifier

f : ~Rk ′
or tho →R

14: Analyse design~s

15: F ← F ∪


 f1

...
fn




16: else
17: continue . Skipped an evaluation, thus reduced cost of

optimization

18: else
19: Analyse design~s

20: F ← F ∪


 f1

...
fn




21: Train Supervised Classifier, f : ~Rk ′
or tho →R

22: if min(10-k Cross Validation) ≤ 0.75 AND i ≥ thresh_iter then
23: use_clf ← true
24: else
25: use_clf ← false
26: if Converged then
27: break
28: ~yc ← L ABELS(F,ε) . See Algorithm 6
29: Spar eto ← Spar eto ∪ {si |S[~yc == 1]}
30: return Spar eto
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Table 5.1 Objectives and Constraints.

Obj./Cons. Description
max f1(~s) = η Maximize efficiency
min f2(~s) =Vcav,b Minimize suction surface

cavity
min f2(~s) =Vcav, f Minimize pressure surface

cavity

min f4(~s) = ∂2Vcav
∂2t

Minimize cavity volume ac-
celeration

min f5(~s) = max (rc ) Minimize tip vortex cavity
radius

min f6(~s) = max (|Cp |) = max

(∣∣∣∣∣ p−pr,∞
1
2ρ∞

(
v2

shi p+2πωr 2
)
∣∣∣∣∣
)

Minimise peak pressures.
ω is the propeller rotation
rate in revolutions per sec-
ond. p∞ = 1.01325e5Pa,
ρ∞ = 1025kg m−3.

g1(~s) = T −T0 = 0 Thrust constraint. Note
that this is not changed
during optimization.

g2(~s) = vshi p − vshi p,0 = 0 Ship speed constraint.
Note that this is not
changed during opti-
mization.

g3(~s) = max
(∥∥∥ sθ,i−sθ,i+1

sθ,i+1

∥∥∥)
−0.3 ≤ 0 Fairing constraint for pitch

g4(~s) = max
(∥∥∥ sγ,i−sγ,i+1

sγ,i+1

∥∥∥)
−0.3 ≤ 0 Fairing constraint for skew

g5(~s) = max
(∥∥∥ schor d ,i−schor d ,i+1

schor d ,i+1

∥∥∥)
−0.3 ≤ 0 Fairing constraint for

chord-length

g6(~s) = max
(∥∥∥ scam,i−scam,i+1

scam,i+1

∥∥∥)
−0.3 ≤ 0 Fairing constraint for cam-

ber

to thrust and ship-speed constraints, fairing constraints are specified to guide search to-
wards solutions without high geometric variations along the radius. In order to match
the thrust requirement, the propeller rotation rate is modified while the ship-speed is
maintained a constant.

It is recognized that the skewed Seiun-Maru propeller is a good starting point for the
demonstration. In the scope of this research, to demonstrate DO in an explore biased
optimization, we prefer to start from a design much further away from a known local
optimum. In the current demonstration, the baseline propeller is the Wageningen B-4
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70 propeller with P/D=1.0. The baseline performance is detailed in Section 5.3.1. This
starting point implies a more challenging task for the optimization algorithm. At the
same time, it increases the chances of finding new design solutions and search direc-
tions, compared to starting from an already more optimal design. The starting propeller
geometry, effective wake and operating conditions are illustrated in Figure 5.2.

(a) (b)

Figure 5.2: (a) Wageningen B4-70 propeller base geometry and (b) Effective wakefield of Seiun-Maru vessel,

Ve =
√

V 2
x +V 2

y +V 2
z . The wakefield was provided by MARIN for this research and is available on request.

5.2.2. DESIGN VARIABLES

Table 5.2 Bounds of design variables.

Variable Lower Bound Upper Bound
∆θ (rad) -0.36 036
∆γ (rad) -0.063 0.063
scamber (rad) -0.045 0.045
schor d (-) 0.76 1.24
n (rps) 0 inf

The blade is parametrised with four equispaced hydrofoil cross-sections at locations
[0, span

3 , 2span
3 , span]. Four parameter [θ,γ, schor d , scamber ] are used as design variables

to modify the cross-sections. They are intended to change pitch, skew, chordlength and
camber respectively. While θ,γ are modified for all four cross-sections, scamber , schor d

are modified for the last three cross-sections. The modifications are in the sequence θ,
γ, schor d and scamber . The fifth design variable is the propeller rotation rate n(r ps).

The baseline geometry and the location of the hydrofoils is illustrated in Figure 5.3.
The bounds of the 14 design variables are listed in Table 5.2. The bounds result from the
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Figure 5.3: Blade hydrofoils

applicability range for PROCAL. The found solution lies away from the bounds (see Table
5.5) thus, it is demonstrated that the applicability bounds of PROCAL are not restrictive.

The schemes for geometry modification are detailed below.

(a) (b)

Figure 5.4: (a)~ri , (b) change in geometry resulting from ∆θ.

Parameter θ: Figure 5.4b illustrates the change in geometry when θ is varied. The target
cross-section is rotated about a vector parallel to z-axis passing through the midchord of
the section. An increase in θ results in the blade experiencing a higher inflow angle thus
also higher loading. Pitch is expected to be very sensitive to θ. It is also possible that θ
influences the camber of the hydrofoil.

Parameter γ: Figure 5.5 illustrates the change in geometry when γ is varied. The target
cross-section is rotated at the mid-chord vector about the x-axis. Skew is expected to be
very sensitive to γ. The proposed parameter helps control the rate at which loading on
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Figure 5.5: Change in geometry resulting from ∆γ.

the blade increases in the wake-field. By doing so, it helps regulate cavity volume accel-
eration.

Figure 5.6: Change in geometry resulting from ∆λ.

Parameter λ: Figure 5.6 illustrates the change in geometry when λ is varied. The target
cross-section is modified by rotating~ri about the y-axis. Rake is expected to be very sen-
sitive to λ.

Camber: The schematic for modifying hydrofoil camber is illustrated in Figure 5.7. Cam-
ber is modified by rotating each of the coordinates defining the hydrofoil about the x-
axis. The angle of rotation is

φ= φ′2si n(φ′)scamber,i

c
, (3)

where c = 3.9453 is a smoothing constant that can be defined by the designer and
φ′ = x−xte

xle−xte
·π. Note that the camber modification does not influence the leading edge

or trailing edge thus, pitch is not expected to be impacted by changes in scamber . The
coordinates of the cross-section are transformed as
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Figure 5.7: Schemetic illustrating camber modification.

~p ′ = [
px py pz

]1 0 0
0 cosφ −si nφ
0 si nφ cosφ

 . (4)

Increasing camber for the cross-section is expected to increase loading while also
shifting the centre of pressure for the blade. For flexible propellers, increased loading
could introduce bending forces on the blade. Furthermore, the shift in centre of pres-
sure could lead to a twisting moment about the inertial axis.

(a) Step 1 - Scaling hydrofoil along
the mid-chord vector

(b) Step 2 - Translating back to initial
radial location

Figure 5.8: Schemetic illustrating chordlength modification.

Chord-length: The schematic for modifying hydrofoil chord-length is illustrated in Fig-
ure 5.8. Chord-length is modified in two steps. The first step, illustrated in Figure 5.8a,
involves scaling the hydrofoil along the mid-chord vector by schor d . The coordinates of
the cross-section are transformed as
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~p ′ = [
px py pz

]schor d 0 0
0 schor d 0
0 0 schor d

 . (5)

The second step, illustrated in Figure 5.8b, involves translating it back to the initial
radial location as

~p ′ =


0 0 0 δx
0 0 0 δy
0 0 0 δz
0 0 0 1




px

py

pz

1

 , (6)

where [δx,δy,δz] =~r −~rscaled .

One limitation of the above proposed parameters is that the pitch, skew and rake
are indirectly influenced. Furthermore, the sequence in which the parameters are var-
ied could determine whether skew and rake are preserved or not. It is also possible that
modifying θ could impact the camber. However, it is to be noted that even with very care-
fully considered and more robust alternatives, J2 in Equation 2 will not be orthonormal
if varying one parameter influences multiple mesh nodes on the discretized blade geom-
etry. Consequently the parametrisation is not orthogonally independent. This problem
will be tackled in Section 5.2.5, where a set of orthogonal parameters are derived.

5.2.3. NSGA-III
For the current multi-objective constrained optimization problem NSGA-III is chosen,
as it is an established method on 3 to 15 objective optimization problems with convex,
concave, disjointed and differently scaled Pareto fronts [90]. The framework of NSGA-III
is similar to that of NSGA-II with modifications to mating selection and survival [87].

Algorithm 4 details the selection of the survivors set (S) for NSGA-III. At the t-th gen-
eration, the selection procedure takes as inputs (a) R t = P t ∪Q t , where P t is the parent
population, Q t is the offspring population, (b) the population size N , (c) the reference
directions Z and, (d) ẑ∗ and ẑnadi r which are bounds to normalise individuals in the
selection set S. The output is P (t+1) = S. The first step involves non-dominated sorting
of merged population R t into hierarchical fronts (F1,F2, ...). The fronts are sequentially
appended to the initially null set S until |S|+ |Fi | ≤ N . When |S|+ |FL | > N , the splitting
front FL is identified. Individuals in S and FL are then normalised by using ẑ∗ and the
nadir point estimation ẑnadi r as lower and upper bounds respectively. The individuals
in S̄, F̄L are assigned to a reference direction πk with the shortest perpendicular distance
dk . The reference directions are generated based on the Riesz s-energy concept to ob-
tain a well-spaced distribution over the optimal Pareto front [11]. The niching method
selects N −|S| individuals based on niche counts (ρ), πk and dk and appends them to S.
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Algorithm 4 NSGA-III survival selection

Input: R t , N , Z , ẑ∗, ẑnadi r

Output:P (t+1)

procedure SURVIVORS

(F1,F2, ...) ← non_domi nated_sor t
(
R t

)
S =;, i = 1
while |S|+ |Fi | ≤ N do

S ← S ∪Fi

i = i +1
FL ← Fi

if |S|+ |FL | > N then
S̄, F̄L , ẑ∗, ẑnadi r ← nor mali ze

(
S,FL , ẑ∗, ẑnadi r

)
ρ,π,d ← 0
for k ← 1 to |S| do

πk ,dk ← associ ate
(
S̄k , Z

)
ρπk ← ρπk +1

S ← S ∪ ni chi ng
(
F̄L ,n −|S|,ρ,π,d

)
P (t+1) ← S
return P (t+1)

5.2.4. GEOMETRY & MESH
The blade geometry is defined by a single B-Spline surface defined as

~p(u, v) =
m∑

i=0

n∑
j=0

Ni ,d1 (u)N j ,d2 (v)~Pi , j , (7)

where u, v ∈ [0.0,1.0] are knots in the u and v directions; ~Pi , j is the control point
of the i-th row and j-th column; m + 1 and n + 1 are the number of rows and columns
the control points are organized in; d1,d2 are the degree of the B-Splines in u and v
direction respectively and; Ni ,d1 and N j ,d2 are the basis functions in the u and v direction
respectively. The surface is fitted to hydrofoil cross-sections in Cartesian coordinates at
different radial locations. In our case d1 = 3 as the spline is closed in u direction and
d2 = 8 to find an optimal fit for a hydrofoil with camber and thickness distribution with
fewer control points. The basis functions for each directions are defined as

Ni ,0(t ) =
{

1; ti ≤ t < ti+1

0;other wi se
, (8)

Ni ,d = t − ti

ti+d − ti
Ni ,d−1(t )+ ti+d+1 − t

ti+d+1 − ti+1
Ni+1,d−1(t ). (9)

where t is the knot value and d is the degree of the spline. The surface mesh is gen-
erated by uniformly discretising the B-Spline surface in the B-Spline parametric space.
The discrete nodes in the B-Spline parametric space are
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M∗
m×n =



(0.0,0.0) · · ·
(
0.0,

( j −1)

(n −1)

)
· · · (0.0,1.0)

...
. . .

...(
(i −1)

(m −1)
,0.0

) (
(i −1)

(m −1)
,

( j −1)

(n −1)

)
...

...
. . .

...
(1.0,0.0) · · · · · · · · · (1.0,1.0)


, (10)

where m is the number of nodes on the hydrofoil cross-section and n is the number of
cross-sections along the radius. The nodes correspond to the mesh for the i-th propeller
~Mi ∈R3×m×n

car t

~Mi = {p(m∗
i j )|m∗

i j ∈ M∗
m×n}. (11)

5.2.5. ORTHOGONAL PARAMETERS
The primary objective of the proposed parametric model is to alleviate the limitations
of classical design variables. Thus, the parametric model must (a) accurately quantify
geometric variations, (b) yield orthogonally independent parameters and, (c) be gener-
alized for all possible geometries. To satisfy the above requirements, the parametrisation
is based on the coordinates of the blades’ surface mesh such that all possible variations
of all possible families are represented and the relation between geometry and design
objectives is not obscured. The parameters of the proposed model are derived by pro-
jecting the surface mesh of propellers in an orthonormal hyperspace Ror th to ensure
that the parameters are orthogonally independent. An orthonormal hyperspace Ror th

is defined with a geometry variance study where pitch, skew, rake, chord-length and
camber are individually varied within the bounds listed in Table 5.3. Chord-length and
camber are varied for the last three hydrofoils. 100 equispaced samples are taken within
the bounds for each variable.

Table 5.3 Bounds for variance study.

Variable Lower Bound Upper Bound
∆θ (rad) -0.6 0.6
∆γ (rad) -0.2 0.2
scamber (rad) -0.10 0.10
schor d (-) 0.60 1.40
∆λ (rad) -0.10 0.10

Our data matrix M is stacked with meshes of all propellers in the variance study and
then transformed into cylindrical coordinates:

M̃ =


~M1
...
~MN

 , (12)

M = T (M̃),T :RN×k
car t →RN×k

c yl . (13)
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Algorithm 5 Subspace Projection

Input: Ror tho ,k ′, ~M∗
Output:~x

procedure PROJECTION

R←Ror tho

~x∗ ← 0k ′+1

~x∗
k ′+1 ← |~M∗|

for j = 1 to k ′ do

~x∗
j ← cos−1

(
~M∗·R:, j

|~M∗||R:, j |

)
return~x∗

The origin of Ror th is chosen to be the mean of all propeller meshes,

~µ=
∑N

i=1
~Mi

N
, (14)

thus, the translated data matrix is

M ′ =


~M1 −~µ

...
~MN −~µ

 . (15)

M ′ is factorized using thin SVD

M ′
k×N =Uk×NΣN×N V ′

N×N . (16)

In this worked example, the orthonormal reference frame is defined as the product
of k ′ = 10 right and left singular vectors.

Ror th =Uk×k ′ ·V ′
k ′×k ′ . (17)

Algorithm 5 details the procedure to project ~M∗ sampled by NSGA-III inRor tho yield-

ing the orthogonal parameters~x∗. For the orthogonal parameters, ∂
~M
∂~x is an orthonormal

matrix. This is expected to solve the problem of multicollinearity.

5.2.6. NAIVE-BAYES CLASSIFIER
Explainable supervised classifier are used to guide search towards more lucrative regions
in the design space. Naive-Bayes classifier was demonstrated to work reliably [91] and is
also considered in this demonstration. The Naive-Bayes classifier predicts labels as

yc = argmax j π j p(~xi |~µ j , ~σ2
j ), (18)

where j maximizes the probability of ~xi occurring. The probability of ~xi occurring

given the mean and variance~µ j , ~σ2
j for the j-th cluster is



5.2. DYNAMIC OPTIMIZATION

5

85

p(~xi |µ j ,σ2
j ) =

k ′∏
d=1

1√
2πσ2

j ,d

.exp

(
−|xi ,d −µ j ,d |2

2σ2
j ,d

)
. (19)

Where k ′ is the number of orthogonal parameters, xi ,d is the d-th parameter in ~xi ,
µ j ,d and σ2

j ,d are the mean and variance of X :,d . Implementations in SciKit-Learn [107]
are used.

Algorithm 6 Assign Labels
Input: F,ε
Output:~yc

procedure LABELS

N ← len(F )
~yc ← [0, ..., N −1]
next_poi nt ← 0
σ ← εF
Flow ← F −1.96 σp

N
. Lower bound of 95%confidence interval

Fhi g h ← F +1.96 σp
N

. Upper bound of 95%confidence interval

while next_poi nt < N do
mask ← {y |Fhi g h[i ] < Flow [next_poi nt ] ∀i ∈ [0, N −1]}
mask[next_poi nt ] ← 1
~yc ←~yc [mask]
F ← F [mask]
Flow ← Fl ow [mask]
Fhi g h ← Fhi g h[mask]

next_poi nt ←∑next_poi nt−1
i=0 mask[i ]+1

~yc ← {y |~yc [i ] = 1 AND Fi ≥ 0.85ηmax ∀i ∈ [0, N −1}
return~yc

For the worked optimization problem in this paper, it is assumed that the clusters are
fundamentally of two types (a) interesting designs and (b) un-interesting designs. The
former lies on the Pareto front and the latter either lies meaningfully away and/or cannot
be evaluated due to limitations of the numerical method. The expectation for propeller
design is that the current hypothesis of the two fundamental cluster types holds for most
cases. It is, however, recognized that propeller design is a complex problem. It is quite
possible that the set of interesting designs will be spread out over multiple clusters with
additional constraints/requirements which define an acceptable design. In such cases,
One-vs-Rest (OvR) multiclass strategies [103] must be employed to have reliable classi-
fier performance.

The labels yc ∈ [0,1] are determined by whether the designs lie on the Pareto front
and whether they have a high efficiency. To account for uncertainties, it is assumed that
designs have a mean and variance in performance. A design dominates when the mean
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of the predicted performance is higher and there is no overlap in the 95 % confidence
interval with the compared solution. The 95 % confidence interval is based on the as-
sumption that there is a 15 % uncertainty in predicted performance [83]. Algorithm 6
detail the procedure to assign labels. As inputs it takes objective function values and as-
sumed uncertainty (ε). It returns the labels for all sampled points.

5.3. RESULTS
The Pareto fronts resulting from classical NSGA-III and DO optimization are compared.
The trade-offs in objectives as observed from the Pareto front are detailed. A solution
with minimal suction surface cavitation, no pressure surface cavitation and moderate
tip-vortex cavitation is identified and described.

5.3.1. BASELINE PERFORMANCE
The performance of the baseline Wageningen B-4 70 P/D=1.0 propeller operating in the
wake of Seiun-Maru is estimated by PROCAL. For this worked example, the baseline per-
formance prediction has local discontinuities in the pressure and velocity fields at the
blade tip as illustrated in Figure 5.9. Thus, it is difficult to interpret the results to identify
sources of energy losses and cavitation behaviour. These discontinuities are expected to
result from panels being relatively more skewed at the blade tip. Consequently, DO is
also tasked with identifying designs which can be analysed reliably by PROCAL.
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(a) (b)

(c) (d)

Figure 5.9: B4-70 propeller (a) inviscid velocity distribution, (b) pressure field on blade, (c) skin friction

coefficient and, (d) fraction of cavitating vertices on mesh panel. |~v | =
√

v2
x + v2

y + v2
z and

IsCav ∈ [0.00,0.25,0.50,0.75,1.00].
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5.3.2. PARETO FRONT

(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Comparison of Pareto fronts of classical NSGA-III optimization (left) with DO (right) after 7
generations. The high dimensional Pareto front is illustrated as a combinations of efficiency vs. Vcav, f , Vcav,b

and Cavity volume acceleration ( ∂
2Vcav
∂2t

)

Both classical NSGA-III optimization and DO are iterated through 7 generation with
72 individuals in the population. For DO the classifier is used to guide search from the
second generation onwards. Figure 5.10-5.11 compares the Pareto front after the 7-th
generation for classical NSGA-III and DO. The high dimensional Pareto front is plotted
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(a) (b)

(c) (d)

Figure 5.11: Comparison of Pareto fronts of classical NSGA-III optimization (left) with DO (right) after 7
generations. The high dimensional Pareto front is illustrated as a combinations of efficiency vs. Maximum

vortex cavity radius (rc,max ) and max(Cp ).

with η as the abscissa and Vcav,b , Vcav, f , Cavity volume acceleration ( ∂
2Vcav
∂2t

), Maximum
vortex cavity radius (rc,max ), max(Cp ) as ordinates to illustrate the trade-off with effi-
ciency. Blue dots represent designs which lie on the Pareto front (yc = 1) and the red
crosses represent dominated solutions (yc = 0). It is observed that the Pareto fronts are
comparable for both NSGA-III and DO.

Figures 5.10a-5.10d illustrate the trade-off between Vcav,b , Vcav, f and η. It is observed
that improving efficiency over 52% is always accompanied by a cavitation penalty. This
is because up to η = 52%, efficiency can be increased without significantly loading the
mid section of the propeller however, the tip is heavily loaded. This leads to larger tip-
vortices as shown in Figure 5.11a. In this region, whereη ∈ [40%,52%] , lower mid-section
loading also suggests lower supervelocities at the mid-section compared to the tip. Con-
sequently, higher rotational losses are expected. Furthermore, up to η = 52%, viscous
losses are expected to be reduced since, the gain in efficiency does not lead to an expo-
nential cavitation penalty, . Thus, for region η > 52%, gain in efficiency is expected to
result from reduced rotational losses.
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(a) (b)

(c) (d)

Figure 5.12: Trade-off between Vcav and rc,max as found by NSGA-III optimization (left) and DO (right). The
Pareto front visualized with (a,b) Vcav,b as abscissa and, (c,d) Vcav, f as abscissa.

From Figures 5.10e-5.10f, it is observed that the cavity volume acceleration is better
contained despite a growth in cavity volume. This is likely because skew is also opti-
mized. From Figures 5.11c-5.11d it can be observed that reducing max(Cp ) results in
more efficient propellers. This is because higher peak pressures lead to higher induced
losses which can be modelled in BEM. In addition to induced losses, higher peak pres-
sures may also lead to flow separation which requires scale resolving simulations, such
as LES or Dynamic Eddy Simulations (DES).

Figures 5.11c-5.11d also show that very high values of max(Cp ) are observed. The
bounds of max(Cp ) are determined by the stagnation pressure at the leading edge and
the vapour pressure due to cavitation. Excessively high values of max(Cp ) may indicate
numerical artefacts, which are often observed at nodes on the leading edge when BEM is
used. By specifying the minimization of max(Cp ) as an objective, search algorithms are
encouraged to minimize these unrealistic spikes. However, since same panel distribu-
tion is used for each propeller, the relative ranking of the designs is expected to remain
unaffected.

From Figures 5.11a-5.11b, it is observed that rc,max can be reduced down to 4cm and
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efficiency can be increased suggesting a reduction in rotational losses. However, further
reducing rc,max results in an efficiency penalty. The penalty is expected to result from
growth in cavity volume both on the pressure and suction surface of the propeller. Fig-
ure 5.12 illustrates the trade-off between Vcav and rc,max . It is observed from Figures
5.12a-5.12b that reducing rc,max results in a higher Vcav,b . This suggests that a trade-off
exists between higher tip v/s higher mid-section loading.



5

92 5. MULTIOBJECTIVE DYNAMIC OPTIMIZATION

5.3.3. NAIVE-BAYES CLASSIFIER

(a)

(b)

(c)

Figure 5.13: Evolution of Naive-Bayes label predictions over generations, with blue dots (yc = 1) indicating
solutions that lie on the Pareto front. In all plots, the x-axis is x0 and y-axis is x11. The plots are for (a)

Generation I, (b) Generation IV and (c) Generation VII. Left: Ground reality, Center: The label predicted by
Naive-Bayes classifer, Right: The cluster probabilities.

Figure 5.13 illustrates the label predictions made by the trained Naive-Bayes classi-
fier. In Figures 5.13a-5.13c, the left most subplot illustrates the ground reality. Interesting
designs which lie on the Pareto front have yc = 1. The centre subplot illustrates the label
predicted by the trained classifier and the right most subplot illustrates the p(~x|µ0,σ2

0).
It is observed that the classifier learns the location of the Pareto front by the first gen-
eration visible as a light blue band in Figure 5.13a. The learning is reinforced in further
generations, i.e. the classifier gets more confident of the location of the Pareto front.
This is visible as the blue band intensifies. This is also observed from the so-called con-
fusion matrix whose values are plotted in Figure 5.14. It is observed that the true positive
predictions(tp) for designs that lie on the Pareto front steadily increases generation over
generation. As the model becomes more accurate in predicting the location of the Pareto
front, it is possible to reduce evaluations of designs which are expected to lie meaning-
fully away from the Pareto front reducing the computational cost of optimization.
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Figure 5.14: Values of the confusion matrix, tp - True Positive, tn - True Negative, fp - False Positive, fn - False
Negative

Figure 5.15: Percentage of evaluations reduced per generation

Figure 5.15 shows the percentage of reduced evaluations per generation as the opti-
mization progresses. From the third generation onwards the classifier reduces at least 30
% of evaluations. With online learning, the classifier is better able to identify the Pareto
front as the optimization progresses and the percentage of reduced evaluations increases
steadily to 40 %.

5.3.4. PARETO SOLUTIONS
Figure 5.16 shows the so-called Parallel Coordinate plot for explored designs (-) and
the designs of interest that lie on the Pareto front with Vcav, f = 0.0m3 (-). There are
19 diverse designs of interest. Among the designs, increasing efficiency comes with a
trade-off with either increasing suction side cavitation, higher cavity volume accelera-
tion or tip-vortex radius as detailed in Subsection 5.3.2. In the Parallel Coordinate plot,
if ∆θ,∆γ, scamber < 0, the pitch, skew and camber for the hydrofoil cross-section have
reduced. Otherwise, they have remained the same or increased compared to the base-
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line geometry. If schor d < 1.0, the hydrofoil chord-length has reduced. Otherwise, the
chord-length has either remained the same or increased.

Figure 5.16: Parallel coordinate plot of explored designs and designs that lie on the Pareto front.

Table 5.4 Predicted objective function values.

fi Units Value
η - 5.2023e1 %
Vcav,b m3 3.2972e−4
Vcav, f m3 0.0000
∂2Vcav
∂2t

m3s−1 1.7486e−1
rc,max m 5.761e−2
max(Cp ) - 8.2648e1
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Table 5.6 Design parameters and performance for the least cavitating design.

Variable Units Value
∆θ1 rad 4.1000e−2
∆θ2 rad −1.8405e−1
∆θ3 rad 7.5432e−2
∆θ4 rad 2.7701e−1
∆γ1 rad 3.5201e−1
∆γ2 rad 1.3164e−1
∆γ3 rad 3.6064e−1
∆γ4 rad −2.2871e−1
schor d ,2 - 1.1440
schor d ,3 - 9.8151e−1
schor d ,4 - 1.0800
scamber,2 - 1.9978e−2
scamber,3 - −3.7130e−4
scamber,4 - 2.0544e−3

For the current operating point, a cavitation free solution was not found. Although
the maximum efficiency is max(η) = 63.49%, the corresponding solution has a large suc-
tion surface cavity. Solutions without pressure side cavitation and much lower suction
surface cavitation are found on the Pareto front. Among solutions without pressure side
cavitation, the design with the minimum suction side cavitation is illustrated in Figure
5.17. Figure 5.17c compares the pitch distribution of this optimized design and base-
line. Compared to the baseline design, the pitch at the root section is slightly decreased
while the pitch at the blade tip has been increased substantially. Figure 5.17d compares
the skew distribution of the optimized design and baseline. The skew at the mid-section
and at the tip has been increased. Figure 5.17e compares the chordlength distribution
of this optimized design and baseline. The chordlength is measured for the expanded
hydrofoil. It is noted that the chordlength of the mid-section has increased substantially.
The chordlength of the tip-section has reduced compared to the baseline. From Figure
5.17f it is observed that the rake of the blade has also changed from the baseline while λ
has not been varied. As mentioned in Section 5.2.2, the change most likely results from
the sequence in which θ,γ, schor d , scamber are varied. Furthermore, it could also result
from residuals in fitting of B-Spline curve to the cross-section and lofting operation of
a B-Spline surface through the fit curves. Table 5.5 lists the design parameters. In the
table, the design parameters provide insight into how the geometry has changed. The
chordlength at the root and tip has reduced while that at the mid-section has increased.
The camber of the hydrofoil has been reduced at the root and mid-section while it has
increased at the tip.

Figure 5.18 illustrates the pressure, velocity, skin-friction coefficient and cavitation
behaviour resulting from the previously mentioned changes to the baseline. Table 5.4
lists the objective function values. It is observed that the blade loading is optimized to
eliminate discontinuities at the blade tip in velocity and pressure field when compared
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(a) (b)

(c) (d)

(e) (f)

Figure 5.17: Design solution with minimum suction side cavitation volume:(a) geometry, (b) comparison with
baseline geometry, (c) pitch distribution of baseline and design, (d) skew distribution of baseline and design

and, (e) chordlength distribution of baseline and design and, (f) rake distribution of baseline and design.
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(a) Inviscid velocity distribution (b) The pressure field on the blade

(c) Skin friction approximation. (d) Fraction of cavitating vertices on the panel.

Figure 5.18: Design 1 (a) inviscid velocity distribution, (b) pressure filed on the blade, (c) skin friction

coefficient and, (d) fraction of cavitating mesh panels. |~v | =
√

v2
x + v2

y + v2
z and

IsCav ∈ [0.00,0.25,0.50,0.75,1.00].

with the baseline. Nonetheless, Design 1 seems to have mitigated adverse pressure gra-
dients. However, suction pressure at the blade root and along the leading edge indicate
a risk of cavitation. It is observed observed that loading on the mid-section is reduced
as the blade is de-pitched and camber is reduced. In order to meet the thrust constraint,
the loading is shifted more towards the blade tip by increasing the tip pitch and cam-
ber. Consequently, Vcav,b is reduced and rc,max increases. Due to higher tip loading the
torque requirement and rotational losses increases resulting in lower hydrodynamic ef-
ficiency.

5.4. CONCLUSION
An optimization method to solve multi-objective, constrained optimization problems
based on machine learning strategies is proposed. The method referred to as Dynamic
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Optimization is demonstrated on the hydrodynamic optimization of Wageningen B-4
70 propeller with P/D=1.0 operating in the Seiun-Maru wakefield. It has been demon-
strated that compared to classical NSGA-III optimization, DO is able to reduce at least 30
% of evaluations per generation while reproducing a comparable Pareto front. The gain
in computational efficiency of optimization is achieved with an online learning strat-
egy using the Naive-Bayes classifier, which identifies the location of the Pareto front and
designs that are located close to the front. Both classical NSGA-III and DO identify sim-
ilar trade-offs between suction side, pressure side, tip-vortex cavitation and efficiency.
For the current demonstration case, improving efficiency is accompanied by a cavita-
tion penalty. It is possible to reduce suction side cavitation and eliminate pressure side
cavitation fully. Reducing suction side cavitation requires a higher tip loading resulting
in a larger tip vortex. Nonetheless, a non-elitist search strategy results in a Pareto front
with very diverse designs.
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CONCLUSIONS AND

RECOMMENDATIONS

6.1. CONCLUSION
The hydro-acoustic optimization of a propeller blade can be characterized as a multi-
objective, constrained optimization problem. The preferred solution often has an opti-
mal blade loading which maximizes efficiency and minimizes acoustic emissions. Even
in the preliminary design phase finding solutions is computationally expensive. Thus,
there is a requirement to improve the efficiency of optimization while achieving a rea-
sonable trade-off with completeness and number of design variables. To meet the re-
quirement, this research has investigated (a) a new parametric model to quantify geo-
metric variation accurately, (b) machine learning strategies to model and account for un-
certainties, (c) assessment of sources of uncertainties in acoustic emission predictions
by semi-empirical models and, (d) machine learning strategies to improve efficiency by
learning the location of lucrative regions in the design space.

At the heart of the proposed parametric model is Singular Value Decomposition (SVD).
It is demonstrated to enable reducing the number of samples in Design of Experiments
and classify design variables based on their magnitude of influence on the geometry. For
a propeller blade case SVD of the geometry probe data matrix enabled the classification
of variables based on the magnitude of influence on the geometry. In the case of the air-
foil, it was possible to identify from SVD of the geom probe data matrix that classification
of variables is not viable. Furthermore, it was also possible to reduce the number of sam-
ple points by 50% while still capturing the performance trends in the design space. This
is because the proposed method to select sample points preserve some of the smaller
dimensions/modes.

In order to account for uncertainties, it is important that uncertainties in perfor-
mance predictions of design tools are quantified. Uncertainties for efficiency predic-

99
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tions made in BEM have been extensively investigated. However, sources of uncertain-
ties in acoustic emission predictions made by ETV-2 are yet to be investigated. Thus,
in this research, the dynamics of an isolated cavitating vortex without forced excitation
is simulated. Similar to Bosscher’s observations (Bosschers J., 2018), our simulations
find that kinematics of the vortex differ significantly up to the viscous core from the
Proctor-Winkelmans vortex model. The Proctor-Winkelmans model is suited for fully
wetted vortices. However, the kinematics of cavitating vortices differs from that of a fully
wetted vortex. It is observed that the model under-predicts tangential velocity at the
core and over-predicts the tangential velocity up to the viscous core. Furthermore, the
model does not account for inflection in the tangential velocity. The inflection results in
Kelvin-Helmholtz instabilities that grow to excite the vortex. Compressibility effects are
expected to play a limited role in determining vortex dynamics or cavity radius as water
tends to behave as an incompressible fluid. The cavitating core of the vortex tends to be-
have as a compressible fluid but given that the density of the vapour is several orders of
magnitude lower than that of water, the vapour core is less likely to influence vortex dy-
namics. Given that the ETV-2 model makes assumptions on the centre frequency of the
broad-band hump and is trained on empirical data from specific test cases, the acoustic
emission predictions made are expected to have high uncertainties. Based on the simu-
lations, it is expected that the uncertainties in predicting radius of the tip-vortex cavity is
also relatively high. However, there is more actionable insight in sources of uncertainty
in kinematics. Hence, in this research ETV-2 is applied to minimize noise indirectly with
the objective to minimize tip-vortex cavity radius. A smaller cavity is expected to have
lower cavity volume acceleration and a weaker breakdown due to lower potential energy
thus, it is also expected to have a lower Sound Pressure Levels. However, smaller cavities
tend to have higher resonant frequencies, thus the acoustic emissions are also likely to
be at higher frequencies.

Two machine learning strategies to improve the efficiency of optimization are pro-
posed. The first is demonstrated on a constrained single objective optimization of pro-
pellers. The optimization method referred as Dynamic Optimization synergises super-
vised and unsupervised learning. Compared to a standard DoE based search, DO is
almost 50 % more efficient in the current demonstration case due to the proposed or-
thogonal parametric model and applied classifiers. There is a trade-off between efficient
optimization and completeness, nonetheless DO provides sufficient flexibility to inter-
vene and manage the trade-off.

The second optimization method is based on online learning strategies. It is demon-
strated on the multi-objective, constrained propeller optimization problem for a pro-
peller operating in a wakefield. It has been demonstrated that compared to classical
NSGA-III optimization, DO is able to reduce atleast 30 % of evaluations per generation
while reproducing a comparable Pareto front. Dynamic Optimization identifies trade-
offs between suction side, pressure side, tip-vortex cavitation and efficiency. Comple-
mented by a non-elitist search strategy results, it yields a Pareto front with a large variety
in possible design solutions.
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6.2. RECOMMENDATIONS
This research is intended to have a societal and ecological impact with a method to de-
sign and optimize green and quiet propellers. The necessary building blocks and pre-
requisites for such a method are investigated and findings reported in the chapters of this
thesis. For recommendations and possible follow-ups specific to the building blocks, the
reader is advised to the bulleted recommendations at the end of each chapter. In this
section, the author recommends investigating new ideas or concepts to design green
and quite propellers.

In addition to shape optimization of rigid propellers another very promising oppor-
tunity is to design shape adaptive propellers which passively deform to achieve optimal
loads. There are two strategies to achieve this. The first is with metal or alloy propellers
whose topology has been optimized to shift the inertial axis ahead of the loading axis.
This allows for depitching under peak load. Similar examples are available in aerospace
engineering, where the wing-box of a swept wing tends to have an inertial axis ahead
of the loading axis which tends to depitch the wing. Manufacturing blades with such
internal structures is a challenging problem, however additive manufacturing offers in-
teresting opportunities to manufacture such blades. The second strategy is via compos-
ite propellers with bend-twist coupling. Composite propellers allow for depitching of
heavily loaded blades to achieve optimal loads. Both these strategies need to be further
investigated to identify opportunities and risks. Nonetheless, the optimization methods
proposed in this research need to be extended to handle design and optimization of de-
formable propellers.

The first proposed extension is for the orthogonal parametric model. It must be built
from both geometric and structural data. For topology optimization, a flattened material
density field ρ(u, v, w), where ρ is the material density at equivalent coordinates u, v, w
in the solid, can be appended to the geometric design vector. Thus, a design vector will
consist of both geometry and structural information. For composite structures, the lam-
inate details need to be appended to the design vector. Laminate properties such as fibre
orientation at u, v, w may be sufficient. However, further investigation is required to see
if such a design vector correlates well with strains under load.

The second proposed extension is for the ETV-2 cavitation model. Extensions are re-
quired to account for deviations in tangential velocity from the kinematic models. This
would allow for better estimation of the tip vortex cavity radius. Consequently, the un-
certainties in hydroacoustic performance predictions would reduce.

The third proposed extension is for an uncertainty model which can be used as the
error term (ε= N (0,σ2)) in Gaussian Process Regression. The uncertainty model can be
developed by computational experiments where geometry, structure and design points
for propellers are perturbed to identify regions where simulations tend to diverge or are
known to have high uncertainties. The model can be used to identify the boundaries of
application for performance prediction methods such as BEM to focus search in areas
where the uncertainties are low.
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By extending (a) the orthogonal parametric model to account for structural vari-
ables, (b) improving the kinematic model and extending ETV-2 to make dynamic acous-
tic prediction for deforming blade tips and, (c) interfacing machine learning models with
physics in performance prediction tools, the framework of DO can be improved and ap-
plied to optimize deformable propellers. This makes green and quiet deformable pro-
pellers more accessible.
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APPENDIX

APPENDIX I

Algorithm 7 Clustering Algorithm

Input: X ,λ
Output:L0,L1

1: procedure GET_CLUSTERS
2: unsup_cl f ← GaussianMixture(n_clusters=2, initialization=kmeans)
3: unsup_clf.train(X)
4: yc,unsup ← unsup_cl f .pr edi ct (X )
5: l1, l 2 ←;
6: for i ← (0 → len(X )) do
7: if yc,unsup == 0 then
8: l 1 ← l 1∪ i
9: else

10: l 2 ← l 2∪ i
11: L0 ← RandomChoiseWithoutReplacement(l 1, i nt (l en(l1)∗λ/100)) . Getting

Indices between 0 and N
12: L1 ← RandomChoiseWithoutReplacement(l 2, i nt (l en(l2)∗λ/100))

return L0,L1
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APPENDIX II

Algorithm 8 Best Cluster
Input: C 0,C 1
Output:C _ f i r st ,C _second ,ηmax ,~ssol

1: procedure BEST_CLUSTER
2: ~η0,~η1 ←~0len(C 0),~0len(C 1)

3: ηmax ← 0.0
4: ηtr ,Str ←;
5: for i ←~η0,0....~η0,len(C 0) do
6: η0,i ← EV AL(si )
7: ηtr ← ηtr ∪η0,i

8: Str ← Str ∪ si

9: for i ←~η1,0....~η1,len(C 1) do
10: η1,i ← EV AL(si )
11: ηtr ← ηtr ∪η1,i

12: Str ← Str ∪ si

13: η̄∗,V[η∗] ← GPR(X = Str , y = ηtr , var =σ2) . See Equations 28a - 28b
14: if max η̄ in C 0 then
15: C _ f i r st ,C _second ←C 0,C 1
16: else
17: C _ f i r st ,C _second ←C 1,C 0

18: ηmax ← maxηtr return C _ f i r st ,C _second ,ηmax ,~ssol .~ssol corresponds to
design with maximum efficiency.
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