
 
 

Delft University of Technology

A theoretical analysis of the optimal electrode thickness and porosity

Haverkort, J. W.

DOI
10.1016/j.electacta.2018.10.065
Publication date
2019
Document Version
Final published version
Published in
Electrochimica Acta

Citation (APA)
Haverkort, J. W. (2019). A theoretical analysis of the optimal electrode thickness and porosity.
Electrochimica Acta, 295, 846-860. https://doi.org/10.1016/j.electacta.2018.10.065

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.electacta.2018.10.065
https://doi.org/10.1016/j.electacta.2018.10.065


lable at ScienceDirect

Electrochimica Acta 295 (2019) 846e860
Contents lists avai
Electrochimica Acta

journal homepage: www.elsevier .com/locate/e lectacta
A theoretical analysis of the optimal electrode thickness and porosity

J.W. Haverkort
Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, the Netherlands
a r t i c l e i n f o

Article history:
Received 25 May 2018
Received in revised form
4 October 2018
Accepted 11 October 2018
Available online 26 October 2018

Keywords:
Porous electrodes
Secondary current distribution
Electrode effectiveness factor
Optimization
E-mail address: J.W.Haverkort@tudelft.nl.

https://doi.org/10.1016/j.electacta.2018.10.065
0013-4686/© 2018 The Author. Published by Elsevier L
a b s t r a c t

Using electrodes or catalytic layers that are porous increases the reactive surface area but also the dis-
tance that ions and electrons have to travel. Thicker electrodes, through their larger surface area, reduce
the activation overpotential but increase the ohmic losses. There will therefore be an electrode thickness
for which the voltage losses are minimal, corresponding to a maximum energy efficiency. Simple
approximate relations are derived here for the value of this optimal thickness, for both Tafel and line-
arised Butler-Volmer kinetics. We additionally optimise the power density of Galvanic cells, the capacity
of battery electrodes, and the porosity of both particulate and foam-like electrodes. For this analysis we
introduce an intuitive new definition of the electrode effectiveness factor. An accurate explicit current-
voltage expression, including the transition from linear to Tafel kinetics and from a single to a doubled
Tafel slope, is obtained. The present analysis is limited to a configuration where ions and electrons enter
and leave at opposite sides of the electrode, as in most stacks, and applies only when mass transfer
effects can be neglected. These results can nonetheless be useful for optimization of various electro-
chemical devices including fuel cells, batteries, flow batteries, electrochemical reactors, and electrolysers.

© 2018 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The most important characteristic of any electrochemical device
is its relationship between cell potential and current. From the
steady-state polarization curve, for example, the energy efficiency,
maximum power density, and limiting current can be obtained.
Great improvement in understanding of the polarization curve was
obtained after the work of Ref. [60] in the context of corrosion
processes. Useful analytical polarization equations for non-porous
electrodes are, for example, provided by the semi-empirical
model of Ref. [14] and the popular empirical correction for PEM
(polymer electrolyte membrane or proton exchange membrane)
fuel cells [36].

For commercial application the reactive surface area is usually
enhanced using porous electrodes, sometimes referred to as three-
dimensional or volumetric electrodes. These are typically made
from metallic or carbon-based particles, solid foams, or from
fibrous materials like cloths, mats, or paper containing catalytic
coatings or dispersed catalytic particles. The potentials and current
densities change over the thickness of such porous electrodes,
requiring a more complex analysis. Newman and Tobias, in their
seminal paper Ref. [49], considered both electronic and ionic losses
td. This is an open access article u
as well as concentration polarization inside a porous electrode.
Mass transfer limitations inside catalytic particles were later also
included in so-called flooded-agglomerate models for gas-diffusion
electrodes [25,53] or pseudo two-dimensional models (P2D) for
lithium-ion batteries [16,23]. Pore models like those of Ref. [11]
added significant understanding of the transient behaviour of
porous electrodes, relevant for the important experimental tech-
niques of cyclic voltammetry and electrochemical impedance
spectroscopy [39].

In the present work we assume Ohm's law holds for both the
ionic and the electronic current density. We do not include con-
centration effects like a spatially varying conductivity, a limiting
current or concentration polarization. For the electrolyte this is a
valid approximation when it has a high or unity transference
number [7,15,17,47]. This holds for example in solid electrolytes like
the ion exchange membranes used in various fuel cells and elec-
trolysers [9,13,22,32,37,37,37,54]. Ohm's law also approximately
holds when supporting electrolytes are used, as in various fuel cells
[31,43], electrolysers [34,51] and (flow) batteries [3,33,56], or when
the electroactive species concentration is high and well-mixed
[26,29]. The concentration of a neutral reactant can often be
assumed constant well below the limiting current and when the
conversion per pass is low [1,2,42,44,68].

In section 2 we introduce the model assumptions, geometry,
used notation, and the definitions and means to calculate the
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Nomenclature

DV Electrode overpotential Fe� ðx ¼ LÞ � Fionðx ¼ 0Þ [V]
A Projected electrode area [m2]
a Volumetric electroactive surface area [m2 per m3 of

total volume]
b Tafel slope RT=aF [V]
F Faraday constant 96485.3329 [C/mol]
i Current density [A/m2]
i� Superficial exchange current density [A per m2 of

electroactive electrode area]
i2b Effective superficial exchange current density in

double Tafel slope regime
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
itot� i sk

sþk
=f

q
[A/m2]

i2 Characteristic current density b2=L [A/m2]

itot� Total superficial exchange current density aLi� [A/m2]
L Electrode thickness [m]
L� Characteristic length-scale i=ai� [m]
L2 Characteristic length-scale b2=i [m]
R Ohmic resistance outside electrodes [U]
Rct Charge-transfer or activation resistance ab=itot� A [U]
Reff Apparent resistance due to ineffectiveness [U]
Rgas Gas constant 8.31446 [J/mol/K]
R2 Ohmic resistance L=A2 [U]
U Open-circuit potential [V]
x Coordinate through porous electrode, see Fig. 1 [m]

Dimensionless variables
h Surface overpotential h=b
k Ionic conductivity k=ðsþ kÞ
F Potential F=b
s Electronic conductivity s=ðsþ kÞ
x Electrode coordinate x=L

i Electronic current density ie�=ix

E Electrode effectiveness factor 1=ði0s0 i
0k
1 Þ (E lin ¼

1=ðsi00 þ ki
0
1Þ)

I Electrode ineffectiveness factor 1=E � 1 (I lin ¼
1=E lin � 1)

f The function f ðl;dÞ≡I =d

Greek variables
a Charge transfer coefficient [-]

d Inverse Wagner number ds þ dk ¼ iL
b

�
1
s þ 1

k

�
[-]

d� Dimensionless current density i=itot� [-]
d2 Inverse Wagner number iL=b2 [-]
ε Volume fraction [m3 per m3 of electrode volume]
h Surface overpotential Fe� � Fion [V]
k Effective ionic conductivity [S/m]
l Conductivity ratio s=kþ k=s [-]
n Defined below Eq. (20) and in Eq. (21) [-]
F Potential [V]

c Value of doptffiffiffiffiffiffi
2sk

p , see Eq. (50) [-]

s Effective electronic conductivity [S/m]
2 A conductivity [S/m]

Subscripts and other notation
0 Derivative d=dx with respect to x
0;1 At x ¼ 0 or x ¼ 1, respectively
� Dimensionless quantity
e� Electronic (electrode)
x Vector component in the x-direction
ion Ionic (electrolyte)
lin Linear(ised) (kinetics)
opt Optimised for energy efficiency
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electrode overpotential and electrode effectiveness factor. [9,52,55]
We added electrode here to distinguish it from the more commonly
used effectiveness factor related to mass transport in catalyst par-
ticles or agglomerates. Besides linear kinetics, section 3 also con-
siders linearised Butler-Volmer kinetics to derive an expression for
the approximate optimal electrode thickness over the whole range
of current densities.

The Tafel analysis of Ref. [49] resulted in an implicit polarization
relationship. Since this requires a numerical root solver it is not
easily amenable to analytical optimization. Section 4 provides a
convenient explicit polarization relation for Tafel kinetics that is
approximate but highly accurate. It is combined with the exact so-
lution for the linear part of symmetric Butler-Volmer kinetics, to give
a solution that is valid over thewhole range of current densities. The
Tafel relation is used to derive expressions for the electrode thick-
ness that maximises the energy efficiency as well as the power
density. Section 5 uses a reaction-zone model to find the most effi-
cient battery electrode thickness and under additional assumptions
the electrode thickness providing the highest capacity. Finally in
section 6 the optimal porosity is considered, where a useful
analytical limiting result is compared to the exact numerical result.
2. Model equations

2.1. Definitions and assumptions

We consider the one-dimensional geometry shown in Fig. 1. By
conservation of charge, in steady-state, the sum of the electronic
and ionic current densities is a constant ie� þ iion ¼ ix. For the
chosen coordinate system, these vector components of the current
density in the x-direction, are negative. We assume Ohm's law
holds for both the electronic potential Fe� in the conducting matrix
of the electrode and the ionic potential Fion in the solution or
polymer constituting the electrolyte

ie� ¼ �s
dFe�

dx
and iion ¼ �k

dFion
dx

: (1)

We consider how the effective electronic and ionic conductiv-
ities s and k may depend on the electrode properties in section 6.

Referring to Fig. 1, the cell potential reads

Vcell ¼ U±ðARiþ DV þ DVcÞ; (2)

with a minus sign for a Galvanic cell and a plus sign for an elec-
trolytic cell. Here U is the open-circuit potential, i≡jixj, A the
geometrical or projected electrode area, and R the ohmic resistance
due to both ionic losses incurred in between the electrodes and the
electronic losses in the current collectors and other circuitry. The
product AR is sometimes referred to as the area-specific resistance.
The energy efficiency of a Galvanic cell and an electrolytic cell are
given by Vcell=U and U=Vcell, respectively. In both cases the effi-
ciency is maximised by minimizing the losses RAiþ DV þ DVc.

The potential difference Fe� ðx ¼ 0Þ � Fionðx ¼ LÞ over the
working electrode, the electrode overpotential is given by



Fig. 1. A schematic illustration of the considered cell configuration, with the electroactive porous electrodes shaded. The ionic potential Fion is measured relative to the (left)
working electrode. For a cathodic working electrode the x-coordinate runs from left to right in the right electrode. The þ and � sign on the bottom right refer to a Galvanic cell or
electrolytic cell, respectively. The cell potential Vcell is given by the difference in potential between the left and right current-collectors.
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DV ¼ jhð0Þj þ DFe� ¼ jhðLÞj þ DFion; (3)

where we use the notation DF ¼ jFðLÞ� Fð0Þj. The surface over-
potential h≡Fe� � Fion is given by the difference between the
electronic potential and the ionic potential measured, using the
same material as the electrode, just outside the diffuse part of the
electric double layer [47]. We thereby do not take into account the
Frumkin correction due to diffuse charge effects [6]. We assume the
reaction kinetics can be described by the Butler-Volmer equation.
This gives the current density in normal to the surface of the pores
inside the electrode, sometimes referred to as the transfer current
density, as

in ¼ i�
�
eh=b � e�h=bc

�
: (4)

Here i� is the superficial exchange current density [A/m2] and
b ¼ RgasT=aF [V] the Tafel slope for the forward reaction under
consideration, with a the corresponding charge transfer coefficient.
For the backward reactionwewrite bc ¼ RgasT=acF. Here aþ ac ¼ 1
and for a ‘symmetrical’ energy barrier a ¼ ac ¼ 1=2 [5]. For the
anodic working electrode considered in Fig. 1, the backward reac-
tion is cathodic and the counter-electrode is the cathode. For a
cathodic working electrode the subscript c should either be
changed to a for anodic, or interpreted as referring to the counter-
electrode and the ‘complementary’ backwards reaction. The ionic
current density increases with increasing x according to

diion
dx

¼ ain ¼ ai�
�
eh=b � e�h=bc

�
; (5)

where ai� is the volumetric exchange current density [A/m3], with a
the electrochemically active volumetric surface area [m2 per m3 of
total electrode plus electrolyte volume] of the electrode.

2.2. Dimensionless notation

The ohmic potential drop due to a current density i traversing a
length L of material with a conductivity 2 is given by iL=2. For Tafel
kinetics, the ratio b=ðiL=2Þ is referred to as the Wagner number
[47,66]. We will use the inverse

d2≡
iL
b2
: (6)

We can write d2 ¼ L=L2 ¼ i=i2 ¼ iAR2=b in terms of a characteristic
length-scale, current density, and area-specific resistance respec-
tively, given by

L2≡
b2
i
; i2≡

b2
L
; AR2≡

L
2
: (7)

Here 2 may for example be the ionic conductivity k, giving dk -
referred to as ε in Ref. [49]. As in Ref. [49] and many later works, we
define d≡dk þ ds which can be written in the form of Eq. (6) as d ¼
d sk
sþk

using the series circuit conductivity 2 ¼ 1=ð1=sþ 1=kÞ ¼ sk=ðsþ
kÞ. We anticipate however that in a porous electrode the ionic and
electronic current pathways are more similar to a parallel circuit
governed by dsþk.

We define

d�≡
i

itot�
; where itot� ≡aLi�: (8)

Here itot� is the total superficial exchange current density, obtained
from i� using the multiplication factor aL, sometimes referred to as
the roughness factor, which represents the total internal surface
area per geometrical electrode surface area. We note that in terms
of the area-specific activation resistance or charge-transfer resis-
tance ARct≡ab=itot� we can write ad� ¼ iARct=b so that ad� is remi-
niscent of an inverse Wagner number. Contrary to d2 defined in Eq.
(6) however, d� decreases with increasing electrode thickness L.
Finally, we introduce the current density-dependent characteristic
length-scale L�≡ai=ai� in terms of which we write d� ¼ aL�=L.

We will use s≡ s
sþk and k≡ k

sþk, so sþ k ¼ 1, to denote the relative
electronic and ionic conductivity, respectively. It will however also
be useful to have a measure of the ratio of s and k that is symmetric
in these conductivities. For this purpose we define l≡s

k þ k
s in terms

of which we can write

lþ 2 ¼ ðsþ kÞ2
sk

¼ 1
s
þ 1

k
¼ 1

sk
¼ l

s2 þ k2
: (9)

Here lþ 2 ¼ 1=U or g in the notation of Refs. [9] and [28],
respectively. Note that lþ 2 ¼ ðsþ kÞð1=sþ 1=kÞ represents the
ratio of the parallel and series conductivity and varies between 4
and infinity for s ¼ k and s=k/∞ or k=s/∞, respectively.

The following relations will also be useful in the analysis
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dsþk ¼ sds ¼ dkk ¼ dsdk
ds þ dk

¼ d

lþ 2
¼ d ffiffiffiffiskpffiffiffiffiffiffiffiffiffiffiffi

lþ 2
p : (10)

Following Ref. [49] we introduce a dimensionless coordinate x≡
x=L and electronic current density i≡ie� ðxÞ=ix ranging from 0 where
the ions enter, or leave in case of a cathode, to 1 at the position of
the electronic connection. We define the dimensionless potentials
Fe� ¼ ±Fe�=b and Fion ¼ ±Fion=bwith a positive sign for an anodic
working electrode and a negative sign for a cathodic working
electrode. With this choice the dimensionless surface overpotential
h≡Fe� � Fion is always positive. Ohm's law, Eq. (1), can therefore be
written in terms of only non-negative quantities as

Fe� ¼ dsi; Fion ¼ dk
�
1� i

�
: (11)

Here we use a prime to denote a derivative with respect to x. The
dimensionless electrode overpotential DV≡DV=b, using Eq. (3),
becomes

DV ¼ h0 þ DFe� ¼ h1 þ DFion; (12)

where we use a subscript 0 or 1 to denote the positions x ¼ 0 and
x ¼ 1, respectively. We can write Eq. (5) as

d�i
0 ¼ eh � e

a�1
a
h: (13)
2.3. Electrode effectiveness factor

Adding s times the first equality to k times the second equality of
Eq. (12) we obtain a more symmetric form

DV ¼ sh0 þ kh1 þ dsþk; (14)

where used Eq. (11) and Eq. (10) to write sDFe� þ kDFion ¼ dsþk.
The very useful Eq. (14) ‘weighs’ the surface activation over-
potentials at x ¼ 0 and 1 with the relative electronic and ionic
conductivities s and k, respectively. The dimensionless ohmic drop
dsþk is that of a parallel circuit.

For sufficiently large surface overpotentials, the second expo-
nential in Eq. (13) can be neglected compared to the first and we
obtain the Tafel equation

d�i
0
zeh ðhT1Þ: (15)

Solving for the overpotential

h ¼ lnd�i
0 ¼ lnd� þ lni

0
: (16)
hlinz

8<
:

ad�
lnd�

asinhd�=2
and n2z

8<
:

d=ad� ðd�≪1; linearÞ
d ðd�[1; linearised TafelÞ

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2=d�Þ2

q
ða ¼ 1=2; linearised generalÞ;

(21)

1 Note from Eq. (16) that when i0≪1 over part of the electrode, the Tafel
approximation hT1 requires d� ¼ i=itot� [1 so that the current density should be
large compared to the total superficial exchange current density itot.
Here the first term represents the activation overpotential, while
the second term arises due to the inhomogeneity of the reaction.
When the ionic conductivity is relatively low, the reaction can take

place preferentially near x ¼ 0 so that i
0
0[1 and i0≪1 in the rest of
the electrode.1 This localization of the reaction increases the acti-
vation overpotential and causes the electrode to be used ineffec-

tively. The characteristic length-scale L=i
0
0 is sometimes referred to

as the ‘penetration depth’ [48,52] and the multiplier 1=i
0
0 as the

effectiveness factor [9,52,55]. It denotes the ratio of the current
density to the current density itot� eh0 that is obtained in the absence
of resistivity. It was introduced initially for packed bed reactors. The
same quantity is also often used in the fuel cells literature, see e.g.
Refs. [35,57,67] where it is sometimes referred to as the (catalyst)

utilization [50.] Ref. [65] considers a similar quantity
���i00 � i

0
1

���,
referring to this as the ‘non-uniformity of the reaction rate’.

Equation (16) allows writing Eq. (14) as

DV ¼ ln
�
d�
E

�
þ dsþk; (17)

where the electrode effectiveness factor

E ¼ 1

i
0s
0 i

0k
1

: (18)

This definition reduces to 1=i
0
0 for s[k but provides a natural

generalization that is symmetric in s and k. The interpretation as
the ratio of the current density to the current density in the absence
of resistivity, is the same. We additionally introduce the electrode
ineffectiveness factor

I ≡
1
E

� 1 ¼ i
0s
0 i

0k
1 � 1; (19)

which ranges between zero when E ¼ 1 and infinity as E tends to
zero.

3. Linearised kinetics

3.1. Linearised rate equation

For low overpotentials h≪1, Eq. (13) can be accurately linearised
around h ¼ 0. For generality we introduce a linearisation around a
value hlin, giving

i0z1þ n2

d
ðh� hlinÞ; (20)

where n2=d ¼
�
ehlin � a�1

a e
a�1
a hlin

��
d�. We followed the suggestion

of Ref. [49] to choose the value of i
0
for h ¼ hlin equal to the average

reaction rate
Z 1

0
i
0
dx ¼ 1. Eq. (13) can in this case be solved exactly

for hlin under the following limiting conditions
�
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where we assumed a to be of order unity. In the linear case
n2 ¼ R sk

sþk
=Rct compares the series ohmic voltage to the voltage drop

due to charge transfer, while in the Tafel case n2 ¼ iR sk
sþk
=b this

voltage is compared to the Tafel slope. The first and second limits of
Eq. (21) are both considered in Ref. [49]. The final result will remain
valid in the transition regime between linear and Tafel kinetics in
case of equal charge transfer coefficients a ¼ ac ¼ 1=2. For large

values of its argument, asinh d�
2zlnd� so that themiddle and bottom

limit of Eq. (21) agree in this case.
Combining Eqs. (20) and (21), the overpotential reads for line-

arised kinetics

hz

8>>>>>>><
>>>>>>>:

ad�i0 ðd�≪1Þ
lnd� þ i0 � 1 ðd�[1Þ

asinh
d�
2
þ i0 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð2=d�Þ2
q ða ¼ 1=2Þ

(22)

The middle expression may be contrasted with the Tafel expression
of Eq. (16).
3.2. Linear electrode effectiveness factor

Inserting the limiting cases of Eq. (22) in Eq. (14) gives

DVzdsþk þ

8>>>><
>>>>:

ad�=E lin ðd�≪1Þ
I lin þ lnd� ðd�[1Þ

I linffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2=d�Þ2

q þ asinh
d�
2

ða ¼ 1=2Þ
: (23)

Here I lin≡1=E lin � 1 and, the linear electrode effectiveness factor

E lin ¼ 1

si
0
0 þ ki

0
1

; (24)

acts as a multiplier of the exchange current density in case of linear

kinetics. When s[k, Eq. (24) reduces to the form E linz1=i
0
0

introduced in previous works. The factor E lin represents the ratio of
the current density to the current density itot� DV=ab obtained in the
absence of resistivity. In the linearised Tafel case, the ineffectiveness
factor I lin appears linearly, similar to a dimensionless resistive
voltage. Alternatively we may write DVzdsþk þ lnðd�eI lin Þ, showing
that e�I lin behaves as an effectiveness factor, multiplying the ex-
change current density, in this case. However, as we will see in
section 4, this exponential form strongly underestimates the actual
electrode effectiveness when I lin is not much smaller than one.

Inserting i
0
0 and i

0
1 from the exact analytical solution of the

current distribution, Eq. (A.3), we obtain using Eq. (9)

E lin ¼ lþ 2
lþ 2=coshn

tanhn
n

z

8>><
>>:

tanh n

n
l[

2
coshn

lþ 2
ln

nT2

: (25)

The top approximation always holds when s[k or k[s. It has the
same form as the effectiveness factor used in heterogeneous
catalysis, in which case n is called the Thiele modulus. See for
example Ref. [41]. This analogy was first explicitly mentioned for
infinite electronic conductivity in Ref. [8]. For n(0:4 we have
E linz1, which for linear kinetics requires d ¼ an2d� to be very
small. In the opposite limit nT2, when l[1 we find E lin ¼ 1=n.
When however l ¼ 2 we find in the same limit an electrode
effectiveness E lin ¼ 2=n that is twice as large. This is because for
s ¼ k there will be two instead of one narrow reaction zones, one
near x ¼ 0 and one near x ¼ 1.

3.3. Linear kinetics

In the linear regime we use Eqs. (23) and (25) with n2 ¼ d=ad� ¼

itot� L
ab

�
1
s þ 1

k

�
¼ L2=L�L sk

sþk
to write

DV ¼ dsþk

�
1þ 2þ l cosh n

n sinhðnÞ
�
: (26)

The dimensionless parameter n can thus be read as a dimensionless
electrode thickness independent of the current density. Fig. 2
shows the dimensionless electrode overpotential - thickness rela-
tionship. For thin electrodes (n(1) the activation overpotential is
dominant, while for thick electrodes (n[1) ohmic losses dominate
the electrode overpotential. Equation (25) shows that for nT2 the
linear electrode effectiveness factor E lin becomes proportional to
1=n so that the activation losses ad�=E lin become independent of
the electrode thickness. At this point, the energy efficiency can no
longer be improved by increasing the electrode thickness and the
electrode overpotential only increase with increasing thickness due
to increasing ohmic losses.

From Fig. 2, therewill be an optimal value for n� 2 for which DV
is a minimum, so that the energy efficiency is a maximum. The

optimal electrode thickness thus reads Lopt ¼ nopt
ffiffiffiffiffiffiffiffiffiffiffiffi
L�L sk

sþk

q
[L�, or

Lopt ¼ nopt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab
ai�

sk

sþ k

s
: (27)

The ohmic term in Eq. (23) increases linearly with increasing L,
while for a hypothetical fully effective electrode with E lin ¼ 1 the
activation overpotential is inversely proportional to L. In this case,
the optimal electrode thickness, obtained by setting the derivative
of DV with respect to L to zero, reads L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L�Lsþk

p
. Comparing with

Eq. (27), we see that including the electrode effectiveness replaces
the parallel conductivity sþ k with the series conductivity

ðs�1 þ k�1Þ�1. In a fully effective electrode, the conversion between
ionic and electronic current can be distributed to minimise the
ohmic potential drop as in the case of parallel resistances. For an
optimally thick electrode, however, this conversion takes place
preferentially near the edges of the electrode. While ohmic in
appearance, the associated additional losses may however equally
well be counted as increased activation losses due to the localiza-
tion caused by ohmic resistance. This shows how these losses are
intimately intertwined for an optimally thick electrode.

For n≪1, we expand Eq. (26) in n to give to first order DVzdsþk þ
ad� þ f d, with f ¼ ðl� 1Þ=3ðlþ 2Þ. This may be written as

DV ¼ A
�
Rsþk þ Rct þ Reff

�
i where we define the area-specific

ineffectiveness-related resistance

AReff ¼
L
3
l� 1
sþ k

: (28)

Using Eq. (9) we obtain ARsþk þ AReff ¼ AR sk
sþk
=3 ¼ Lðsþ kÞ=3sk.

This result has previously been found for a macrohomogeneous
model in, for example, Ref. [22]. In the field of electrochemical
double-layer capacitors, or supercapacitors, this same resistance is



Fig. 2. The scaled dimensionless electrode overpotential for the case of linear kinetics (left) and linearised Tafel kinetics (right) as a function the dimensionless electrode thickness
for different values of l ¼ s=kþ k=s. The black circles indicate the position of the minimum and hence nopt. The ratio add� ¼ L�=L sk

sþk
is independent of L.

Fig. 3. The value of n ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
d=ad�

p
in case of linear kinetics (d�≪1) and n ¼

ffiffiffi
d

p
in case of

linearised Tafel kinetics (d�[1) that minimises the linearised electrode overpotential
DV - as a function of l ¼ s

kþ k
s.
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referred to as the equivalent distributed resistance [24]. When s[

k this expression tends to L=3k, which has been found, for example,
in Ref. [61].2 As mentioned in Ref. [50] this is in agreement with the
result from a transmission line model [12].

Including electrode effectiveness, in this limit of n≪1, thus turns
the parallel resistance Rsþk into one-third of the series resistance,
R sk

sþk
=3. For a homogeneously distributed reactivity, the area-specific

resistance would be L=2sþ L=2k ¼ AR sk
sþk
=2. By the principle of

minimum dissipation [22] the current distributes itself such that an
optimum is found between reducing the activation losses and the
ohmic losses.

For n � 2, Eq. (26) reads DVzdsþkð1þ l=nÞ. With n2 ¼ R sk
sþk
=Rct

wewriteDV ¼ ARsþkiþ l
lþ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R sk

sþk
Rct

q
Ai. The final term can no longer

be written as a sum of activation and resistive losses, illustrating
their strong interaction.

Fig. 3 shows nopt as a function of l, obtained by numerically

minimizing Eq. (26). When l[1 we find analytically3 noptzln2
ffiffiffi
l

p
.

2 For equal ionic and electronic conductivity s ¼ k the area-specific resistance
AReff is halved to L=6k.

3 Neglecting the 2=nsinh term in Eq. (26) and setting the derivative with respect
to n to zero, gives tanhðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=ðlþ 1Þ

p
z1� 1=2l so that e2nz4l.
A good fit for all l to the data shown in Fig. 3 is provided by

noptzln
�
2
ffiffiffi
l

p ��
1þ 1:24

.
l0:84

�
: (29)

For noptT2 we can use doptsþk ¼
ffiffiffiffiffiffiffiffiffiffi
add�

p
nopt=ðlþ 2Þ to write

DVoptz
ffiffiffiffiffiffiffiffiffiffi
add�

p lþ nopt
lþ 2

: (30)

This simplified expression can be useful as a benchmark for the
theoretically lowest possible electrode overpotential.

3.4. Linearised Tafel kinetics

For d�[1 we use Eqs. (23) and (25) with n2 ¼ d ¼ dsþkðlþ 2Þ to
write

DV ¼ dsþk

�
1þ 2þ lcoshn

nsinhn

�
� 1þ lnd�: (31)

Fig. 2 shows a rescaled DV as a function of the dimensionless
electrode thickness n2 ¼ L=L sk

sþk
. We see that again there is an

optimal value noptz2 so that

Loptz
n2optb

i
sk

sþ k
: (32)

The optimal electrode thickness in this regime decreases with
increasing current density i, which takes over the role of itot� in Eq.
(27) as a characteristic current density. Since the linearised Eq. (31)
does not accurately take into account the electrode effectiveness in
the Tafel regime, we have to await the full analysis of section 4 to
see whether Eq. (32) accurately predicts the optimal electrode
thickness.

Fig. 3 shows nopt as a function of l, obtained by numerically
minimizing Eq. (31). We see that nopt increases only slightly with l

and reaches a constant value noptz2:19 when l[1. A good fit to
the curve shown in Fig. 3 is provided by noptzð2:19lþ 9:6Þ=ðlþ 6Þ.

3.5. Linearised general kinetics for a ¼ 1=2

In case of symmetric charge transfer coefficients a ¼ ac, the



Fig. 4. The exact Tafel electrode effectiveness factor E (left) and the relative error in the approximation E z

�
1þ lþ1

lþ10
d
2

��1

of Eq. (38) (right).

4 Equation (38) gives E z1=f d ¼ 2=d for s[k or k[s. When s ¼ k it gives E z

8=d so that the effectiveness seems to be four times higher. We should note how-
ever that d for l ¼ 2 is twice that for l[1 so that the effectiveness really only
doubles as is expected and in agreement with the linear case. Eq. (37) also gives the
same doubling at l ¼ 2 compared to l[1. We note that the effectiveness generally
increases as l decreases. This implies that when e.g. s[k the electrode effective-
ness can actually be improved by decreasing the electronic conductivity. This goes
however at the expense of increased ohmic losses, so that the total electrode
overpotential increases.
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bottom result of Eq. (21) gives n2 ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2=d�Þ2

q
. Equating this to

an optimal value n2opt we find the optimal electrode thickness as

Loptz
L�ffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
2n2opt

L sk
sþk

L�

�2
s

� 1

vuut
z

8>>>><
>>>>:

nopt
ffiffiffiffiffiffiffiffiffiffiffiffi
L�L sk

sþk

q
ðd�≪1Þ

n2optL sk
sþk

ðd�[1Þ

(33)

This general result reproduces the limiting cases of Eqs. (27) and
(32) in case a ¼ 1=2 and provides an expression for intermediate
values of d�. Fig. 3 shows that nopt will be similar in the linear and
linearised Tafel regime formodest values of l, so that in this case Eq.
(33) is a useful approximation valid for all current densities.

4. Tafel kinetics

In most applications, the kinetics will be in the Tafel regime
rather than the linear regime. There is an error associated with the
linearisation used in the previous section. In this section we will
reconsider the electrode overpotential, electrode effectiveness
factor, and optimal electrode thickness without linearising. In A.2
we shortly revisit the original analysis of Ref. [49].

4.1. The Tafel electrode effectiveness factor

Contrary to the case of linearised kinetics we cannot obtain an
exact explicit expression for the effectiveness factor for Tafel ki-
netics. Inserting the analytical expression of Eq. (A.8) in Eq. (19)
gives with Eqs. (9) and (10)

E ¼ 2
d

 
s2 þ

�
2q
d

�2
!�s 

k2 þ
�
2q
d

�2
!�k

: (34)

Here q has to be obtained from the following implicit equation

qtan q ¼ d

2
ð2qÞ2

ð2qÞ2 � dkds
: (35)

Since an explicit expression will be more useful and insightful we
will seek an approximation that is accurate enough for further

analysis. We may approximate tanq by q=ð1� q2=3Þ which has the
same first two terms in a Taylor expansion around q ¼ 0. Solving Eq.

(35) gives ð2qÞ2zð2dþ dkdsÞ=ð1þ d=6Þ, where dsdk ¼ d2=ðlþ 2Þ.
With this expression, Eq. (34) approximates the exact effectiveness
factor obtained numerically with a maximum error of less than 9%.

We can do even better by using tanqzq=ð1� q2=3� q4=45Þ
which captures the first three terms in an expansion around q ¼ 0
exactly. Solving Eq. (35) with this approximation gives

ð2qÞ2z6
d

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10d3

lþ 2
þ 45d2 þ 300dþ 900

s
� 30� 5d

1
A: (36)

Using this in Eq. (34) gives the effectiveness factor with amaximum
error around 3%. Inserted into Eq. (17) the cell voltage has an even
smaller relative error, constituting a nearly exact solution. To
investigate the solution for small d we expand the resulting inef-
fectiveness factor I ¼ 1=E � 1 in terms of d. Both of the above
approximations for q, to first order in d, give I ¼ f d with

fd/0 ¼ 1
3
� sk ¼ 1

3
l� 1
lþ 2

: (37)

Since q is bounded between zero and p, in the limit d/∞ Eq. (34)
gives I ¼ f d, where now

fd/∞ ¼ 1
2

�
sskk

�2
z

1
2

lþ 1
lþ 10

: (38)

The final simple rational approximation in terms of l has the
same limits for l ¼ 2 and l/∞ and approximates the exact pre-
ceding result very well.4

An excellent fit to the numerical result for both l ¼ 2 and l[1
is obtained as



Fig. 5. A Tafel plot of the dimensionless electrode overpotential as a function of the
dimensionless current density, for dk ¼ 10d�, ds ¼ 0:1d� , comparing the approximate
analytical result of Eq. (44) using p ¼ 1 to the numerical solution for symmetric Butler-
Volmer kinetics (solving the boundary value-problem of Eqs. (11), (13) and (14) with
a ¼ 1=2, i0 ¼ 0 and i1 ¼ 1). For d� much larger and smaller than one, respectively, Eq.
(44) tends to Eq. (26) for linear kinetics and Eq. (43) for Tafel kinetics. Using instead
p ¼ 2 or p ¼ 1:75 the analytical and numerical curves are largely indistinguishable. The
grey solid line shows DV ¼ asinhd�=2þ dsþk for a fully effective electrode, showing the
significance of accurately taking into account electrode effectiveness.
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fzfd/0 þ
fd/∞ � fd/0

1þ 3:28=dfd/∞
: (39)

The associated effectiveness factor

E ¼ ð1þ f dÞ�1
; (40)

has in these two cases a maximum error of less than 0.3%. This
nearly-exact solution may be useful for example for validating
numerical codes. For intermediary values of l the behaviour of f
requires the different functional form of Eq. (34) so that the
maximum error is larger at about 7.5%.

Similar to what we did for linear kinetics in Eq. (28), we may
write the overpotential blnð1þ I Þ associated with electrode inef-
fectiveness as AReff i, with AReff ¼ b

i lnð1þ f dÞ.5 When f d≪1 we
obtain again Eq. (28) obtained in the linear case. For s[k the
resulting AReff ¼ L=3k was previously derived from a macro-
homogeneous model in Ref. [50], or from a transmission line model
in, for example, Refs. [12,40]. This effective resistance approach
however only holds in the limit of small d. In general, a lowered
effectiveness appears as an increased activation overpotential
rather than an ohmic drop. As we have seen in the linear case and
will soon derive for the Tafel case, the limit of small d≪1 in which
the effectiveness factor is close to unity, is not necessarily the most
optimal regime to be in from an energy efficiency perspective.
When the electrode is so thin that it is fully utilised, the activation
overpotential is unnecessarily high. In practice a typical PEM fuel
cell catalyst layer, for example, primarily due to ionic resistance, has
an electrode effectiveness much smaller than one [67].

If we do not mind that the limit d/0 is not captured exactly, the
constant value fd/∞ may be used. Fig. 4 compares Eq. (40) and the
approximation in Eq. (38) with the exact numerical result. The
largest error, for intermediate values of ds and dk, is with 14%
acceptable for many purposes. An advantage of this very simple
approximation is that f is in this case independent of d, simplifying
analytical optimization.When a higher accuracy is required Eq. (39)
or Eq. (36) may be used.
4.2. Analytical current-voltage expressions

Inserting Eq. (40) in Eq. (17) gives

DV ¼ lnðd�ð1þ f dÞÞ þ dsþk; (41)

or, re-introducing dimensions

DV ¼ bln
�

i
aLi�

þ fi2

ai�b
sþ k

sk

�
þ iL
sþ k

: (42)

This simple explicit approximation to the exact Tafel kinetics
electrode overpotential will be useful for further optimization from
section 4.4 onward. First we will investigate the behaviour of this
current-voltage curve in more detail.

When l[1, to a very high degree of accuracy fz1
3 þ 1=6

1þ2,3:28=dk
so that we obtain for s[k the nearly exact result:

DVzb ln
�

i
ai�L

�
1þ dk=2þ 6:56=3

1þ 6:56=dk

��
þ iL

s
: (43)
5 Amongst many others Refs. [50,58], considering PEM fuel cell cathodes, write
this ‘effective proton resistance’ as AReff ¼ Lð1=sþ 1=kÞ=ð3þ zÞ, where the
correction factor z ¼ ðd=lnð1þ f dÞÞ � 3 tends to zero for d/0.
This equation clearly shows the transition from f ¼ 1=3 for dk≪1
to f ¼ 1=2 when dk[1. When k[swe can interchange s and k in
this result.

The result of (41) can be matched to the exact linear kinetics
solution of Eq. (26) in case of symmetric charge-transfer co-
efficients (a ¼ ac ¼ 1=2) using, for a constant p>0

DVzasinh
�
d�
2

�
1þ

�
I p þ I p

lin

�1=p��þ dsþk: (44)

Here I ¼ f dwhere f is given approximately Eq. (38) or Eq. (39) and
I lin ¼ 1=E lin � 1 is obtained in exact form from Eq. (25). The Tafel
regime requires 1=d�≪1þ f d in which case I lin � 1=n ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
d�=2d

p
≪

f d and Eq. (44) tends to the Tafel result of Eq. (26). When on the
other hand 1=d�[1þ f dwehave I lin[f d so that Eq. (44) tends to
Eq. (26). Fig. 5 shows, for p ¼ 1, a comparison of Eq. (44) with the
numerical solution for symmetric Butler-Volmer kinetics. It can be
seen that Eq. (26) indeed tends to the correct linear and Tafel ki-
netics limits. In between, the simple addition of ineffectiveness
factors in Eq. (44) slightly overestimates the electrode over-
potential. Using instead p ¼ 1:75 keeps the error below 1% over the
whole range of current densities. For smaller d the lowest
maximum error, typically well below 1%, is generally obtained us-
ing p ¼ 2.
4.3. Tafel slope doubling

Equation (41) may be written as

DV ¼ ln

 
i

itot�
þ i2

i22b

!
þ i
isþk

; (45)

where i22b ¼ itot� i sk
sþk
=f . For low and high current densities, Eq. (45) is

dominated by activation and ohmic losses, respectively, while for



Fig. 7. The dimensionless electrode overpotential as a function of dimensionless electrode thickness 1=d� ¼ dsþk=10 (so the current density varies), for various values of l ¼ s=kþ
k=s. The exact result (solid) for most part overlaps the approximation of Eq. (49) with f from Eq. (38) (dashed). Also shown are lnd� , dsþk and 2lni=i2b in case l ¼ 104 (dotted). The
linearised Tafel optimum of Eq. (32) (empty circles) gives a nearly as low electrode overpotential as the exact optimum of Eq. (50) (solid circles) but with substantially smaller Lopt,
except for l ¼ 2 for which both overlap.

Fig. 6. A Tafel plot of the dimensionless electrode overpotential as a function of the dimensionless current density in case lz207 (left) and lz25 (right). The exact result (solid) and
the approximation of Eq. (45) with f from (38) (dotted) largely overlap. The dashed lines indicate single and double Tafel slopes and the ohmic contribution i=isþk , respectively. The
value of iopt gives the current density for which the electrode overpotential is a minimum with respect to the electrode thickness.

6 With I ¼ f d we obtain beff ¼ bð2� E ð1� d2df =ddÞÞ where, using Eq. (39)
d2dfdd ¼ 3:28ðfd/∞ � fd/0Þfd/∞=ð3:28þ dfd/∞Þ2. In the relevant limit l/∞ this
gives ð3:28=12Þ=ðd=2þ 3:28Þ2 which is less than 0.05.
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intermediate values the mixed losses DVz2lnði=i2bÞ dominate so
that

izi2be
DV=2b

�
i sk
sþk

.
f≪i≪isþk

�
; (46)

In this regimewe find a Tafel slope vDV=vlni ¼ 2b of twice the usual
value b. This ‘Tafel-slope doubling’ has been found theoretically and
was experimentally verified many times in previous works
[4,19,37,53,55,59]. When s[k, a measurement of the exchange
current density in this regime would give an apparent value

i2bz
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2itot� ik

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ai�kb

p
in agreement with Ref. [4]. When k[s the

same expression results, with k replaced by s. Existence of the
doubled Tafel-slope regime can be seen to require l[1, so that
ohmic losses do not obscure its presence.

Fig. 6 shows Eq. (45) for two different values of l, using for f the
approximation of Eq. (38). The higher the value of l, the clearer the
Tafel slope doubling can be distinguished. Also the exact current-
voltage curve is plotted, showing only a very small difference
with Eq. (45). Using the more accurate Eq. (39) or Eq. (36) the
difference would be still smaller.
From Eq. (17) we obtain the slope vDV=vln i ¼ ivDV=vi in a Tafel
plot of DV versus lni as

vDV
vln i

¼ beff þ ARsþki (47)

where

beff ¼ b
�
1þ E d

dI
dd

�
zbð2� E Þ (48)

The final approximation follows from neglecting the weak depen-
dence of f on dwhich is a very good approximation.6 Eq. (48) nicely
shows the transition froma single Tafel slope b forE ¼ 1 to a double
Tafel slope for E ≪1. This transition was considered numerically in
for example Ref. [59]. Compensating for the ohmic drop in Eq. (47),
this relation can be used to determine the effective Tafel slope beff .
Further compensating for effectiveness using Eq. (48), the true Tafel



Fig. 8. The coefficient c ¼ Lopt=L ffiffiffiffiffiffi2sk
p as a function of l ¼ s=kþ k=s obtained from

numerically minimizing the exact electrode overpotential. A good fit is provided by
czl0:36=ðlnlÞ

0:32�0:274.
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slope b and charge transfer coefficienta ¼ RgasT=bF can be obtained.
Note that i2b, and therefore the potential-current relationship

(46), is independent of the electrode thickness L. The reason is that
in this regime the effectiveness factor E z2=d is inversely propor-
tional to the electrode thickness so that increasing the electrode
thickness merely reduces the electrode effectiveness, without
changing the electrode overpotential. We therefore anticipate that
the optimal electrode thickness will be somewhere in this regime.
We will now proceed to derive an explicit relation for this thick-
ness, which we already used in Fig. 6 to show the current density
iopt for which the electrode overpotential is minimisedwith respect
to the electrode thickness.
8 The semi-analytical approach of Ref. [45] assumed an exponential current
distribution 1� i ¼ expð�x=LactÞ where 1=Lact minimises the corresponding elec-
trode overpotential. The resulting expressions for the ‘active thickness’ Lact
4.4. Optimal electrode thickness

Eq. (41) may be written as

DV ¼ ln

 
L�
a

 
1
L
þ f
L sk
sþk

!!
þ L
Lsþk

: (49)

In Fig. 7 this is plotted as a function of the electrode thickness L for
different values of l using the approximation of Eq. (38) for f . Also
the exact numerical result is shown, showing excellent agreement.
The optimal electrode thickness that minimises the electrode
overpotential of Eq. (49) can be obtained analytically as
Lopt ¼ cL ffiffiffiffiffiffi2sk

p 7 or (compare with Eq. (32))

Lopt ¼ c

ffiffiffiffiffiffiffiffi
2sk

p
b

i
; (50)

with cz1. Fig. 8 shows the result for c obtained by numerically
minimizing the exact electrode overpotential obtained from Eqs.
(17), (34) and (35). Formoderate values l(102 we see that cz1 is a
fair approximation. For large values of l we see from Fig. 7 that
there is a range of different electrode thicknesses with similar
electrode overpotential. This corresponds to the double Tafel slope
regime of Eq. (46). Therefore, other arguments likematerial costs or
diffusion limitations of reactants, will often drive the practical op-
timum to smaller values than that predicted by Eq. (50). From Eq.
(49) the ‘plateau’ of electrode thicknesses with similar electrode
overpotential is given by
7 Using Eq. (49) in vDV=vL ¼ 0 gives, neglecting the very weak dependence of f
on d, c ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4f ðlþ 2Þ

p
� 1Þ=f ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8lþ 16
p

, which approximates to cz1=
ffiffiffiffiffi
2f

p
for

both l[1 and l ¼ 2 and always yields values close to 1 for intermediate values of
l. A more consistent notation would use the symbol doptffiffiffiffiffiffi

2sk
p rather than c.
L sk
sþk

.
f(Lopt(Lsþk: (51)

The optimum Loptz4L sk
sþk

of Eq. (32) predicted by the linearised

Tafel analysis is at the lower part of this range and may therefore
be a suitable value when a thinner electrode is desirable. For
comparison, this optimal value is also shown in Fig. 7 and it can
be seen to give only a slightly higher electrode overpotential than
the exact minimum. When s[k, therefore, a sensible strategy is
to choose an electrode thickness � kb=i using the lowest current
density i for which a near optimal efficiency is desired. Up to
current densities of the order of isþk � ðs=kÞi the efficiency will
then be near-optimal. To minimise the electrode or catalyst layer
thickness, i here may also be the maximum attainable current
density since the energy efficiency will be higher for lower cur-
rent densities. For l ¼ 2, Eq. (50) and Eq. (32) predict almost
exactly the same optimum. When s and k are of similar magni-
tude, as is clear from Fig. 7, near-maximum energy efficiency can
be obtained only for a narrow range of current densities for a
given electrode thickness.

Minimizing Eq. (17) with E ¼ 1 gives L ¼ Lsþk. Compared with
Eq. (50), including the electrode effectiveness factor changes the
arithmetic mean conductivity 1

2 ðsþ kÞ to the geometric mean
conductivity

ffiffiffiffiffi
sk

p
. This change implies that both s and k remain

important even when one is much bigger than the other. By
contrast, in the linearised Tafel optimum of Eq. (32) the series
conductivity sk=ðsþ kÞ appears so that the smallest conductivity
determines the optimum: Loptz4Lk for s[k or 4Ls for k[s.8

4.5. Optimally thick electrodes-examples

Inserting Eq. (50) into Eq. (49) gives the electrode overpotential
of an optimally thick electrode as9

DVoptz2 ln

 
i

iopt2b

!
þ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l=2
p ; (52)

where iopt2b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai�c

ffiffiffiffiffiffiffiffi
2sk

p
b=I opt

q
. Equation (52) holds only for the

current density i used to calculate the optimum thickness. Using
the fit10 I optzc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:34þ l=2

p
, Eq. (52) may be useful as a bench-

mark for the lowest value of the electrode overpotential that is
theoretically attainable in the Tafel regime. Note that the optimal
electrode ineffectiveness increases without limit with increasing l.
Inserting instead the linearised Tafel result doptz4 of Eq. (32) in Eq.
(40), gives E ¼ 1=3 when l[1 or E ¼ 2=3 in case l ¼ 2. There-
fore, with this choice the electrode is used much more effectively
while, as discussed in the previous section, the energy efficiency
will be similar.

At this point it may be interesting to see what numerical values
the optimal electrode thicknesses of Eqs. (32) and (50) predict for
different applications. For a typical flow battery with a porous car-
bon electrode and liquid electrolyte, the effective conductivities s
and k are of similar magnitude. With, say s ¼ k ¼ 100 S/m, b ¼
resemble but also differ from the optimal electrode thickness Eqs. (27), (32) and
(50) more rigorously derived here.

9 This shows why in Fig. 6 the current density iopt is found approximately at the
position where the slope vDV=vln i ¼ 2b.
10 The result I optz2fc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l=2

p
, obtained by inserting d ffiffiffiffiffiffi2sk

p ¼ c in Eq. (40),
tends to the same result when l[1 but is less accurate for smaller values of l.



Fig. 9. The fraction, of the total volume fraction 1� ε0 that is available for either ionic or electronic conduction, that should be attributed to ionic conduction to maximise the energy
efficiency of an electrode of optimal thickness, for Tafel kinetics (solid) and linear kinetics (dashed), as a function of the ratio of material electronic and ionic conductivities. In the
limit s=k/∞ we may use Eq. (60), with ms ¼ 1 and mk ¼ m0 ¼ 0 for a particulate electrode (left) and ms ¼ 0:37, mk ¼ 1 for a foam-like electrode (right). For the foam-like
electrode the differences between different values of nk ¼ ns is smaller than for a particulate electrode and therefore omitted for clarity.
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50mV, and i ¼ 0:3 A/cm2, both Eq. (50) and Eq. (32) give
Loptz2:5mm. This is within the range typically employed and in
agreement with the optimum of 2e3mm reported in the
hydrogen-bromine flow battery modeling study of Ref. [69]. We
note from Fig. 7 that for l ¼ 2 there is a relatively narrow range of
electrode thicknesses that give a near-optimal energy efficiency.
Alternative, there is a relatively modest range of current densities
for which a chosen electrode thickness gives near-optimal effi-
ciency. Since in Ref. [69] an ionic and electronic conductivity of
similar magnitude are used, an increased reactivity near the current
collector as well as near the membrane was observed, similar to
Fig. 10. A thinner optimum electrode thickness was found at a
higher state-of-charge, which is explained by Eq. (32) since the
ionic conductivity is lower in this case. A thinner optimum of 0:75�
1mm was also reported at a tenfold increased volumetric surface
area. This can be explained by a transition towards linear kinetics.
Using as a rough approximation the reported reference value
ai�z3,106 A/m3, kz35 S/m and noptz2, Eqs. (27) and (33) both
give Lopt � 1mm.

By contrast, in fuel cell catalyst layers the ionic and electronic
conductivities are very dissimilar. For a typical polymer electrolyte
fuel cell, effective conductivities may be k ¼ 1 S/m and s ¼ 104 S/m
so that with b ¼ 50mV and i ¼ 1 A/cm2, Eq. (32) gives Loptz24 mm,
within the range typically used, with, as just discussed, an effec-
tiveness factor of E z1=3. For performing kinetic measurements a
much higher effectiveness factor close to one is desirable [50] so
that amuch lower thickness has to be used. Amuch larger optimum
thickness of Loptz300 mm is predicted using Eq. (50) but the
associated effectiveness factor of only E optz0:034 indicates a very
inefficient use of material. Also, at this thickness mass transport
will dominate, invalidating this optimum. The top curve in Fig. 7
describes this case of l ¼ 104 and indicates the two different
optimal thicknesses calculated here. The situation is similar in a
typical solid oxide fuel cell and in many (water) electrolysers.
Catalyst layers in fuel cells are typically several times smaller than
the calculated optimum. From Fig. 7, in the considered example this
would increases the electrode overpotential somewhat above its
minimum. Reducing the electrode thickness for example by a factor
four to 6 mm, as may be read off from Fig. 7 or calculated using the
formulas of section 4.1, increases the electrode overpotential by less
than a Tafel slope b, which may be acceptable. The effectiveness
factor is increased to about 0.7 in this particular case. When made
significantly thinner, however, the effectiveness becomes close to
unity and no longer improves. In this case each halving of the
electrode thickness increases the electrode overpotential by
blnð2Þz35mV, through increased activation losses. In some cases
this may still be desirable to reduce the catalyst costs, especially
when diffusion limitations further reduce the electrode
effectiveness.
4.6. Maximum power density

For a Voltaic or Galvanic cell, like a battery or a fuel cell, an
important parameter is the power density P ¼ iVcell. The maximum
power density is obtained at a current density imax for which vP=v
i ¼ 0 so that Vcell ¼ � vVcell=vlni. The electrode thickness that
maximises the power density is obtained by additionally requiring
vP=vL ¼ �ivDV=vL ¼ 0 which gives the same thickness as we ob-
tained by maximizing the energy efficiency. In the previous section
we found that for l[1 an optimally thick electrode is very inef-
fectively used so that Eq. (48) gives vDV=vlniz2b. With Eq. (2) we
then find for a cell consisting of two such optimally thick electrodes
at maximum power

Vcell ¼ 2bþ 2bc þ ARimax: (53)

Often the energy efficiency Vcell=U will be low in this case. Equation
(2), (52), and (53) have to be solved for imax numerically in general.
In the limit of negligible ohmic drop ARimax≪2bþ 2bc

imax ¼ iopt2b e
U�2ðbþbc Þ�c=

ffiffiffiffiffiffiffi
1þl=2

p
2ð1þrÞ (54)

when DVc ¼ rDV . In the opposite limit of negligible electrode
overpotential imaxzU=2RA. The maximum power density
Pmax ¼ Vcellimax is obtained by multiplying with Eq. (53).
5. Optimal battery electrode

In this section we will use the developed expressions to opti-
mise the electrodes of a battery, using a reaction zonemodel similar
to that of Ref. [63]. In batteries, typically the ionic conductivity is
low enough that at a reasonable charge or discharge rate dk[1. In
this case, the reaction is localised in a thin reaction zone, or two if
also ds[1 as illustrated in Fig. 10 and for example Ref. [64]. We



12 This assumes two electrodes with identical material properties. When instead
the voltage of the counter-electrode is negligible we can replace 4b and k =2 in Eq.
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assume that these reaction fronts move with a constant velocity,
leaving behind fully discharged battery material with effective
conductivities sd and kd that may differ from the initial values due
to a change in material or porosity.

By charge conservation, the reaction fronts will be located at
x0 ¼ sð1� fÞ and x1 ¼ 1� kð1� fÞ, where f is the state-of-charge
(SOC).11 The fully discharged regions give additional ohmic losses
iLx0=kd and iLð1� x1Þ=sd, respectively. The effective electrode
thickness reduces over the discharge proportional to f. Replacing L
by fL in Eq. (49) and adding the additional ohmic losses, the
electrode overpotential at a state of charge f is given by

DVðfÞ ¼ lnd� þ ln
�
1
f
þ f d

�
þ ðfþ ð1� fÞldÞdsþk; (55)

where ld≡ s
kd
þ k

sd
will equal l when the effective conductivities

before and after the discharge are equal. Eq. (55), together with Eq.
(2), provides the battery voltage as a function of the state-of-
charge. It may be compared with other generic battery models
deployed in real-time battery management systems like Shep-
herd's, Unnewehr's or Nernst's model [27]. Or with the results from
more comprehensive computational models as used in, for
example, Refs. [10,18,20]. Although the present model contains
more parameters, these all have a clear physical interpretation and
can be obtained from independent experiments.

The average electrode overpotential over the discharge 〈DV〉 is
obtained analytically by integrating Eq. (55) from the final state-of-
charge fd to 1 and dividing by 1� fd. We obtain for a deep discharge
with fd≪1

〈DV〉 ¼ lnd� þ lnð1þ f dÞ þ 1þ ld
2

dsþk: (56)

This average voltage loss can be minimised for the electrode
thickness by setting the derivative with respect to L to zero. This
gives, neglecting the weak dependence of f on d, an optimal value
for d or

Loptzdopt
ksb

iðsþ kÞ; (57)

where dopt � 1
2f

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8f 2þl

1þld

q
� 1

!
and Eq. (38) gives

1=3 � f � 1=2. When s[k; kd, Eq. (57) reads Lopt � doptkb=i with

doptz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k=kd

p � 1. Unless kd≪k this solution does not generally
satisfy the condition d[1 used to derive Eq. (56). The real optimal
value dopt may therefore be several times higher, at which point the
assumption of thin reaction zones will be better satisfied. As an
example we consider k ¼ kd ¼ 0:1 S/m ≪s, b ¼ 50mV, and i ¼
10mA/cm2 which gives doptz1:24 and Loptz62 mm. Equation. (40)
and (39) give for this case a quite high electrode effectiveness factor
E z0:7 so that depletion of reactants occurs only near the end of
the discharge. Therefore the additional ohmic losses due to fully
dischargedmaterial included in Eq. (55) are absent over most of the
discharge and the electrode can be made a few times thicker.

Often battery electrodes are sized to maximise the energy
density or capacity rather than the energy efficiency. The total
energy released is maximised when, at the end of a given discharge
time, the battery reaches its minimum allowable voltage Vt [46].
Ideally, at this point the state-of-charge is small so that the battery
11 With Qmax the maximum charge that can be extracted, the theoretical battery
capacity, we have f ¼ 1� iAt=Qmax after a time t. Often the C-rate is used in which
C=h denotes a full theoretical discharge in h hours so that i ¼ Qmax=3600Ah.
material is used effectively, but not so small that the 1=f term in Eq.
(55) dominates. Solving VcellðfdÞ ¼ Vt with Eq. (2) and Eq. (55)
assuming 1[fdT1=f d≪1 gives, with s[k12

Lz
�
U � Vt � 4b lnði=i2bÞ

i
� RA

�
kd
2
: (58)

In the case of linear kinetics further simplification is possible,
because the activation overpotential h(b can usually be neglected.
This optimization is done in, for example, in Refs. [46,63].

To obtain an even more general battery model we apply the
same procedure used to derive Eq. (55) to Eq. (44) to obtain for
symmetric Butler-Volmer kinetics

DVðfÞ ¼ asinh
�
d�
2

�
1
f
þ
�
I p þ I p

lin

�1
p

��
þ ðfþ ð1� fÞldÞdsþk;

(59)

The assumption of thin reaction fronts requires d; n[1 so that I ¼
fd/∞d and I lin ¼ ln

lþ2 � 1. In section 4.2 we found a value pz1:75�
2 to give the most accurate results. Integration gives for the average
electrode overpotential during a deep discharge hDVi ¼
asinh

�
d�
2 ð1þ ðI p þ I p

linÞ
1=pÞ

�
þ 1þld

2 dsþk.

6. Optimal porosity

In this section we will investigate the optimal porosity of a
flooded porous electrode. More generally, we investigate what
fraction εk of the electrode should ideally be used for ionic con-
duction and what fraction εs for electronic conduction. Commonly,
the dependence of the effective conductivity is taken into account
through the Bruggeman correction factor: k ¼ k0ε

nk
k and s ¼ s0ε

ns
s ,

with nkznsz1:5.13 For generality we allow for a volume fraction ε0
that conducts neither ions nor electrons, like a filler or binder. The
fraction ε0 can also represent a porosity for the transport of neutral
species when, as for example in case of a solid electrolyte, these are
not dissolved in the electrolyte. It then holds that 1 ¼ ε0 þ εs þ εk.

We will write the electrochemically active volumetric surface
area as a ¼ a0ε

mk
k ε

ms
s ε

m0
0 . A monodisperse particulate electrode like

a packed-bed electrode, pocket electrode, or sintered electrode is
described by mk ¼ m0 ¼ 0, ms ¼ 1 and with a0 the area to volume
ratio of a single particle. For spherical particles of diameter d, for
example, a0 ¼ 6=d. For solid-foams, the scaling of Ref. [30] can be
accurately approximated usingm0 ¼ 0,mk ¼ 1,ms ¼ 0:37. If not all
of the surface area is electroactive, a multiplicative correction factor
can be used.

We will now seek the optimal value for εk that maximises the
energy efficiency, assuming that the electrode thickness is also
optimal in the same sense. When s[k, the final term in Eq. (52) is
negligible so that minimizing the electrode overpotential amounts

to maximizing i22b;optz2ai�kb. Solving vðakÞ=vεk ¼ 0 for εk gives,
using the above parametrizations

ε
opt
k

1� ε0
¼ nk þmk

nk þmk þms

�k
s
/0; L ¼ Lopt

�
: (60)
d
(58) by 2b and kd , respectively. In general we have LzðU � Vt � RAi� 2ðblnði=i2bÞ þ
bclnði=ic2bÞÞÞ=ðld=Lsþk þ rlcd=L

c
sþkÞ where r ¼ Lc=L.

13 Here k0 is the electrolyte ionic conductivity for εk ¼ 1, see however [62]. The
factor εnk

k ¼ εk=t, with t the tortuosity. The exponents nk and nk � 1 are sometimes
referred to as Archie's exponent and the Bruggeman exponent, respectively [38].
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With 1� ε0 the volume fraction allowing either ionic or elec-

tronic conduction, the ratio ε
opt
k =ð1� ε0Þ gives the fraction of that

volume which should ideally be attributed to ionic rather than
electronic conduction. For a particulate electrode, with ms ¼ 1 and

ε0 ¼ mk ¼ m0 ¼ 0, we obtain ε
opt
k ¼ nk=ðnk þ 1Þ.14 With the

commonly used value nk ¼ 1:5 this gives an optimal porosity of

ε
opt
k ¼ 0:6.

For a foam-like electrodewith ε0 ¼ 0,ms ¼ 0:37 andmk ¼ 1, we

find a much higher value ε
opt
k ¼ nkþ1

nkþ1:37 which evaluates to 0.87 for

nk ¼ 1:5. The reason is that, while for a particulate electrode the
surface area decreases with increasing εk, for a foam electrode it
increases up to relatively high values of εk. Note that in these two
examples the volumetric surface areas are similar but, due to the
higher porosity, the ionic conductivity of the foam-like electrode is
1.8 times higher than that of the particulate electrode. This gives an
electrode overpotential that, with bz50mV, is bln1:8z30mV
lower.

Fig. 9 shows a comparison between the predicted optimal
porosity εk for a particulate and a foam-like electrode for a range of
conductivity ratios. For linear kinetics, in the limit s[k, Eq. (30)

gives DVoptz
ffiffiffiffiffiffiffiffiffiffiffiffi
adkd�

p
. This expression is also minimised by maxi-

mizing ak so that Eq. (60) will again hold. Fig. 9 shows also the
result from optimizing Eqs. (26) and (29) numerically.

In case of a solid electrolyte, part of the electrode volume has to
be reserved for supply of reactants and products and possibly other
functionalities. Deciding on the optimal value of the fraction ε0 is
beyond the scope of the present analysis. Since we did not include
concentration effects, the present results only hold when mass
transport does not provide significant limitations. For reactants
dissolved in the electrolyte, this will hold at sufficient concentra-
tions or when some advection is present as in the case of flow-
through electrodes.

7. Conclusions

We studied theoretically the voltage losses of a porous electrode
in which the ionic and electronic current enter and leave from
opposite sides, as is common to most monopolar and bipolar stack
configurations. This electrode overpotential is given by Eq. (14) in
general or Eqs. (23) and (17) in case of linearised or Tafel kinetics,
respectively. It consist of an ohmic drop featuring the parallel
conductivity sþ k, and an activation overpotential in which the
exchange current density is multiplied by an electrode effectiveness
factor. We provided simple definitions for this quantity, Eq. (18) and
Eq. (24), valid for all ratios of ionic conductivity k and electronic
conductivity s. For linear kinetics, an exact expression, Eq. (25), and
for Tafel kinetics an approximate expression, Eq. (40), was found.
With Eq. (39) this approximation is accurate to within 7% in gen-
eral, or even 0.3% when s and k are either equal or very dissimilar.
Alternatively, using Eqs. (34) and (36), the maximum error is
around 3% for all values of s and k. The electrode effectiveness
becomes inversely proportional to the electrode thickness so that
the electrode overpotential start to increase beyond a certain
optimal electrode thickness.

For Tafel kinetics, this optimal electrode thickness is given by
Lopt ¼ 2b=i so that at a given current density i the ohmic drop equals

the Tafel slope b. Using 2z
ffiffiffiffiffiffiffiffi
2sk

p
, the theoretically lowest possible

electrode overpotential is obtained. For very dissimilar s and k,
however, the electrode is used very ineffectively with this choice.
14 This same result was also found for the porosity in Ref. [63], when maximizing
the capacity of a battery. The capacity was taken to be proportional to Lεs . With the
optimal thickness L proportional to k this gave same result.
The linearised Tafel analysis resulting in Eq. (32), suggests using
instead 2z4sk=ðsþ kÞ which gives an almost as high energy effi-
ciency, but results in thinner electrodes that use the electrode
material more effectively. Finally, Eq. (57) suggests for a deeply
discharged battery electrode a similar result. In this case additional
ohmic losses due to fully discharged battery material lower the
optimal electrode thickness. When a higher capacity is desired at
the expense of a lower energy efficiency, useful state-of-charge
dependent expressions for the overpotential are provided by Eqs.
(59) and (55).

For linear kinetics, the total superficial exchange current density
takes over the role of the current density i, resulting in the optimal
thickness given by Eq. (27). Equation (33) provides an approxima-
tion for current densities in between the linear and Tafel regimes.
Equation (44) provides a general explicit current-voltage relation
for a porous electrode with symmetric Butler-Volmer kinetics that
reduces to various exact limiting cases and typically has an error of
less than 1%.

Finally we considered what volume fraction of a porous elec-
trode should be used ideally for ionic conduction in case of negli-
gible concentration polarization. The analytical expression of Eq.
(60) for negligible electronic resistivity, predicts an optimal
porosity of 0.6 for a particulate electrode and 0.87 for a typical
foam-like electrode.
Appendix A. Analytical solutions for the current distribution

Appendix A.1 Linearised kinetics

Subtracting the second equality from the first in Eq. (11) gives

h0 ¼ di� dk: (A.1)

Taking the derivative of Eq. (20) with respect to x gives i00 ¼
ðn2=dÞh0. With Eq. (A.1) this gives

i00 ¼ n2
�
i� s

�
: (A.2)

The general solution to Eq. (A.2), with boundary conditions i0 ¼ 0
and i1 ¼ 1 is given by Refs. [21,47,49].

i ¼ sðsinh n� sinh nð1� xÞÞ þ ksinh nx
sinh n

and

i
0 ¼ n

�
scoshðnð1� xÞÞ þ kcoshðnxÞ

sinhn

�
:

(A.3)

For s ¼ 1 and n[1 the solution reads iz1� e�nx. In this case the
ionic current decreases exponentially with an e-folding ‘penetra-
tion depth’ L=n. The effectiveness factor is in this case given by

1=i
0
0 ¼ 1=n. From Eq. (A.3) we obtain the electronic potential drop

as DFe� ¼ ds

Z 1

0
idx ¼ dsþk þ dsði01 � i

0
0Þ=n2. Inserting this into Eq.

(12) gives for the electrode overpotential

DV ¼ hlin þ
dk
�
i
0
0 � 1

�
þ ds

�
i
0
1 � 1

�
n2

þ dsþk: (A.4)

The same result is alternatively obtained using the second equality
of Eq. (12) or, without any knowledge of the current distribution,
inserting Eq. (20) in Eq. (14).
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Appendix A.2 Tafel kinetics

Taking the derivative of Eq. (15) with respect to x gives, with Eq.
(A.1):

i00 ¼ i
0
h0 ¼ i

0�
di
0 � dk

�
(A.5)

A first integration of Eq. (A.5) gives i
0 ¼ i

0
0 þ d

2i
2 � dki so that the

dimensionless reactivity at x ¼ 1 reads

i
0
1 ¼ i

0
0 þ

ds � dk
2

: (A.6)

Ref. [49] first derived the analytical solution to Eq. (A.5), its deriv-
ative, and integral as

di ¼ dk þ 2q tanðqx� jÞ; di
0 ¼ 2q2

cosðqx� jÞ2
and

d

ðx
0
idx ¼ dkxþ ln

 
i
0

i
0
0

! (A.7)

An example solution is shown in Fig.10. Here i0 ¼ 0 requires tanj ¼
dk
2q, and to satisfy i1 ¼ 1 the coefficient 0< q<p has to be obtained
iteratively from Eq. (35). In case of an infinite electronic conduc-
tivity ds ¼ 0 Eq. (35) gives q tan q ¼ dk=2 so that j ¼ q. From the
expression for di0 in Eq. (A.7) we derive, using

1=cosðjÞ2 ¼ 1þ tanðjÞ2 and Eq. (A.6),
Fig. 10. The dimensionless electronic current density i ¼ ie� =ix for Tafel kinetics given
by Eq. (A.7) for ds ¼ 100 and dk ¼ 400 so that d ¼ ds þ dk ¼ 500. The ratio s ¼ dk=d ¼
0:8 determines the current density in the bulk and the fraction of the current con-
verted near x ¼ 0. Electrons involved in the reaction there have to travel over almost
the entire electrode thickness. A fraction k ¼ 0:2 of the ions travel approximately the
entire electrode thickness to or from xz1. The slopes at x ¼ 0 and x ¼ 1 are given by
Eq. (A.8) as i

0
0zd2k =2d ¼ 160 and i

0
1zd2s=2d ¼ 10 giving an electrode effectiveness factor

E ¼ 1=i
0s
0 i

0k
1z1%. We note that for the Tafel approximation, Eq. (15), to remain valid

over the entire domain requires id�T1 for all x.
i
0
0 ¼ d2k þ ð2qÞ2

2d
and i

0
1 ¼ d2s þ ð2qÞ2

2d
: (A.8)

From Eq. (A.7), the electronic DFe� ¼ ds

Z 1

0
idx and ionic

DFion ¼ dk

Z 1

0
ð1� iÞdx potential drops over the electrode read
DFe� ¼ dsþk þ kln

 
i
0
1

i
0
0

!
and DFion ¼ dsþk � sln

 
i
0
1

i
0
0

!
: (A.9)

Inserting Eq. (A.9) into Eq. (12) gives for the dimensionless elec-
trode overpotential Eq. (17), which we obtained without any
knowledge of the current distribution using Eq. (14). See Ref. [48]
for an overview of several publications deriving similar results in
various limits. Also more recently several authors have re-derived
the analytical solution of Eq. (A.7) for the case of an infinite elec-
tronic conductivity. See e.g. Refs. [19,50].
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