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HIGHER-ORDER NONLINEAR SHRINKAGE ESTIMATOR OF
LARGE-DIMENSIONAL PRECISION MATRIX

TARAS BODNAR AND NESTOR PAROLYA

ABSTRACT. This paper introduces a new type of nonlinear shrinkage estimators for
the precision matrix in high-dimensional settings, where the dimension of the data-
generating process exceeds the sample size. The proposed estimators incorporate the
Moore-Penrose inverse and the ridge-type inverse of the sample covariance matrix,
and they include linear shrinkage estimators as special cases. Recursive formulae of
these higher-order nonlinear shrinkage estimators are derived using partial exponen-
tial Bell polynomials. Through simulation studies, the new methods are compared
with the oracle nonlinear shrinkage estimator of the precision matrix for which no
analytical expression is available.

1. INTRODUCTION

Shrinkage estimation has become a widely used approach in both theoretical and
applied statistics, with numerous applications across various scientific fields, particularly
in economics and finance (cf., [26], [25], [31], [16], [5],[17]). In point estimation theory, the
shrinkage approach is employed to reduce the estimation error present in conventional
estimators of model parameters. It was introduced in the seminal paper of Stein (see [42])
as an improved estimator for the mean vector of a normal distribution and was further
extended in [23]. The core idea of this approach is to shrink the sample mean vector,
which is the classical estimator of the population mean vector, towards a deterministic
vector. Although this procedure introduces bias in an estimator, it can significantly
reduce the estimation error. Other shrinkage-based estimators for the mean vector have
been proposed in [20] and [12], among others.

Recently, Stein’s idea has been successfully applied to derive improved point estimators
for other multivariate quantities, such as the covariance matrix ([10], [43], [32]), the
precision matrix ([44], [11], [34]), and expressions involving both the mean vector and
the covariance matrix, such as optimal portfolio weights in financial applications ([25],
[14]). Most of these papers introduce shrinkage estimators in high-dimensional settings,
where the model dimension is of the same order as the sample size, and demonstrate that
these estimators outperform conventional sample estimators.

The double asymptotic regime, also known as the high-dimensional asymptotic regime,
refers to the scenario where both the model dimension and the sample size tend to infinity,
with their ratio (the concentration ratio) approaching a finite number as the sample
size increases (see [2], [19], [46], [7]). Unlike the classical asymptotic regime, where
the dimension of the parameter space is assumed to be fixed and significantly smaller
than the sample size, the high-dimensional asymptotic regime addresses the problem of
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dimensionality. In the derivation of the theoretical results, methods from random matrix
theory are usually used.

Random matrix theory is a rapidly growing branch of probability theory. It studies
the behavior of the eigenvalues of random matrices under high-dimensional asymptotic
settings (see [35], [40], [2], among others). Researchers have discovered that appropriately
transformed random matrices exhibit nonrandom behavior at infinity and have shown
how to determine the limiting density of their eigenvalues. In particular, it was proved
under very general conditions in [40] that the Stieltjes transform of the sample covariance
matrix almost surely converges to a nonrandom function that satisfies a deterministic
equation. This equation was first derived in [35], who demonstrated the connection be-
tween the population covariance matrix and its sample estimator at infinity. Utilizing
results from random matrix theory, the asymptotic distributions of linear spectral sta-
tistics were derived in [1], [47], [37] in high-dimensional settings and they were applied
to hypothesis testing in [9], [8].

The situation becomes more challenging when the model dimension exceeds the sample
size. In this case, the sample covariance matrix is singular and cannot be inverted to
estimate the population precision matrix. A possible solution is to use a generalized
inverse of the sample covariance matrix, with the Moore-Penrose inverse and ridge-type
inverse being the most popular methods (see [30], [44], [28]). However, the asymptotic
properties of these generalized inverses have not been extensively studied in the statistical
literature. Under the assumption of normality, the sample covariance matrix follows a
singular Wishart distribution ([41]), while its Moore-Penrose inverse has a generalized
inverse Wishart distribution ([13]). The upper and lower limits for the mean matrix and
covariance matrix of the Moore-Penrose inverse of the sample covariance matrix were
derived in [28] for the general case. Additionally, the exact mean matrix and covariance
matrix are presented in [21] for the very restrictive special case where the true covariance
matrix is proportional to the identity matrix. Recently, the asymptotic behavior of the
weighted sample traced moments of the Moore-Penrose and ridge-type inverses of the
sample covariance matrix have been derived in [15]. We apply these theoretical findings
in the current paper to derive higher-order nonlinear shrinkage estimators of the precision
matrix.

The rest of the paper is structured as follows. In Section 2, we present the main results
of the paper. Section 2.1 provides a higher-order nonlinear shrinkage estimator based on
the Moore-Penrose inverse, while Section 2.2 develops a higher-order nonlinear shrinkage
estimator based on the ridge inverse. The results of the numerical study are given in
Section 3, and Section 4 summarizes the findings.

2. HIGHER-ORDER NONLINEAR SHRINKAGE ESTIMATOR

Let y1,y2,...,y» be an independent and identically distributed sample from a p-
dimensional distribution with E(y;) = p and Cov(y;) = X for ¢ € 1,...,n and let
Y, = (y1,¥2, -, ¥n) be the pXn observation matrix. In this paper, we derive a nonlinear
shrinkage estimator of the inverse of the covariance matrix 3, known as the precision
matrix in the literature. The findings are deduced in the large-dimensional case, i.e.,
when p > n.

Using the observation matrix Y,,, the sample estimator of the population covariance
matrix ¥ is defined by

1 _ - 1
(2.1) S, = EYnYI — ynyz with y, = EYnln.

The sample estimator S,, presents the starting point of the new nonlinear shrinkage
estimator for the precision matrix, derived in the paper.
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No specific distributional assumption is imposed in the derivation of the theoretical
results. Following the literature in random matrix theory (see [2], [46], among others),
we assume that there exists a p x n random matrix X,, = (x1,X2, ..., X,,) which consists
of independent and identically distributed random variables with zero mean and unit
variance such that

(2.2) Y, <

pl, + 77X,

where 1,, is the n-dimensional vector of ones and the symbol 2 denotes the equality in
distribution. It is further assumed that

(A1) X is a nonrandom positive definite matrix with sup Apq. (%) < 0o and iI;f Amin (X)) >
0. '

(A2) The elements of X,, have bounded 4 + £ moments for some £ > 0.

Assumption (A1) presents a classical technical assumption in random matrix the-
ory (see, e.g., [38], [32]) that ensures that the smallest and largest eigenvalues of the
population covariance matrix ¥ are uniformly bounded in p away from zero and infinity.
Uniform boundedness over p is important since 3 implicitly depends on n through p as it
is assumed throughout the paper that p/n — ¢ > 1 for (p,n) — co. Thus, the dimension
p = p(n) is implicitly a function of the sample size n. Assumption (Al) means in par-
ticular that the only source of the singularity of the sample covariance matrix S,, is the
lack of data, i.e., the sample size n is smaller than the dimension of the data-generating
model p. Assumption (A2) imposes no distributional assumptions and presents another
commonly used condition in random matrix theory (cf., [2], [44], [33]).

In many applications, the precision matrix needs to be estimated from the available
data. For example, the weights of optimal portfolios are functions of the precision matrix
and for the practical implementation of the trading strategy, the population precision
matrix needs to be replaced by its estimator (see, e.g., [16], [5], [14], [17]). Similarly, the
precision matrix is present in prediction theory (cf., [18]). Finally, the precision matrix
is also present in the expression of the minimum variance filter in signal processing (see
24)).

In the high-dimensional case n < p, the most commonly used estimators of the preci-
sion matrix are the Moore-Penrose inverse (see, e.g., [21], [6], [28], [15]) and the ridge-type
inverse (see, e.g., [30] [44], [15]) of the sample covariance matrix, which are defined by

e The Moore-Penrose inverse of the sample covariance matrix S,, is the matrix
S;" that fulfills the following four conditions:
(i) StSnSt =S,
(i) S,S;;S, = S,
(it}) (S£S,)T = S;'S,,
(iv) (S.SH)T =8S,S;.

e The ridge-type inverse of S,, is defined as the matrix S,, (t) given by
S, (1) = (Sn +11,) ",
where I, is the p-dimensional identity matrix and ¢ > 0 is a tuning parameter.

Both the estimators S} and S_ (¢) of the large-dimensional precision matrix 37!
suffer from large amounts of estimation error. To reduce the variability present in S;
and S; (t), linear shrinkage estimators of the precision matrix were developed in [15]
which complement the Moore-Penrose inverse and the ridge-type inverse of the sample
covariance matrix. In this section, we extend the results of [15] by deriving a new
type of shrinkage estimator for the precision matrix, the so-called higher-order nonlinear
shrinkage estimator.
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Let S7(¢) denote a generalized inverse of the sample covariance matrix, either the
Moore-Penrose inverse S; or the ridge-type inverse S (¢), that is S¥(¢) € {S;}, S, (t)}.
Let S7(t) = HDH' be the eigenvalue decomposition of S¥ (¢) where D = diag(dy, ..., d,)
is the diagonal matrix with eigenvalues. Then for any analytical function f(.), it holds
that

(2.3) f(SE(#) =Hf(D)H" = Hdiag(f(d1), ..., f(d,))H.
We consider the Taylor series expansion of f(-) at some point dy > 0 expressed as

> r() )
fay =320 gy

J!

§=0
where fU)(dy) denotes the j-th partial derivative of f(.) computed at point dy with
f©(dy) = f(do). Then, the m-order approximation of f(d) is given by

moor@
)~ fuld) =31
7=0

) .
.]('dO) (d - do)jv

which yields
F(SE @)

m o £(j) ) m )
(2.4) S fj(fl(”<s#<t> L) = a0l + oy (SE() = fu(SED),

%

Hf,(D)H' = Hdiag(fm(d1), ..., fm(d,))HT

3=0 j=1
where aj, j =0,1,...,m, depend on dy and f)(dy), j =0,1,...,m.

The shrinkage intensities a;, j = 0,1,...,m are unknown in practice. Let a =
(g, @1, - - -, ) be the vector of unknown shrinkage intensities. Then, for given m, a is

chosen by minimizing the loss function expressed as [see 27, 29, 45, 44, 11, 34, 15]
1
(2.5) Ly(o) = };l\fm(sf(t))z L%

where || - || is the Frobenious norm which for a matrix A is defined by ||A|r =

\/tr(AT A). The loss function (2.5) is slightly different than the one considered in [11].
This difference is motivated in the discussion of Section 5 in [34], who noted that the
population precision matrix 37! should be avoided in the definition of the loss function
in the large-dimensional case due to potential numerical instabilities.
The optimal shrinkage intensities o is obtained by minimizing the loss (2.5) that can
be rewritten in the following way
2

1 m )
Lnf@) = - aol, + Y a;(SE@) | = -1,
j=1 P

T
1 i , i ,
= —tr (aoIp + Z aj(S#(tDj L-1, aolp + Z aj<S#<t))] -1,
j=1
m

m(m,t) =
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and
p (=] r[SEOEY . L((SH(E)m =Y
S (ST ()27 %t [(S#(t))222] Lir((S# (1)) £
(2.6) M(m,t) = | | ) '
%thS#G))mEQ] %tr[(S#(t))m“EQ} o LSt ()

It is important to note that the matrix M(m,t) is a Hankel matrix. Therefore, to
ensure the unique minimum of L, (c), we must verify that it remains positive definite.
This result is proved in Theorem 2.1.

Theorem 2.1. Under Assumptions (A1) and (A2), the matriz M(m,t) defined in (2.6)
is positive definite.

Proof of Theorem 2.1: Since the elements of M(m, t) are all nonnegative, the application
of the trace inequality (see [39]) applied entrywise to M(m,t) yields

(2.7) A (Z)Mg(m,t) < M(m,t) < A2, (Z)Mq(m,t),

min max
where Ajpin(2) and Ajya. () denote the minimum and maximum eigenvalues of X, re-
spectively. The matrix Mg(m,t) is obtained from M(m,t) by setting X2 = I under the
traces tr((S¥(¢))"*772%2%) fori,j = 1,...,m + 1.
Consequently, the positive definiteness of M(m, t) depends entirely on the positive def-
initeness of Mg(m,t). The latter property is straightforward to establish by recognizing
that Mo(m,t) is a Gram matrix associated with a specific inner product:

{Mo(mat)}ij _ %tr((Sﬁ( z+j 2 Z)\2+J 2 _ Z)\z 1/\] 1

for i,j = 1,...,m + 1. Since the functions A} are linearly independent for all i, the
Gram matrix Mo(m, t) is positive definite. This property, combined with inequality (2.7)
and Assumption (A1) that the minimum and maximum eigenvalues of 3 are uniformly
bounded away from zero and infinity, respectively, confirms that M(m,t) is also positive
definite. O

Hence, it holds that
(2.8)

Lp(a) = (& = M(m,t)"'m(m, t))T M(m,t) (o = M(m,t)”""m(m, 1)) + Ly2(m, t)
with
(2.9) Lio(m,t) =1 —m(m,t) " M(m,t) " 'm(m,1).

As such, we get the following result:

Theorem 2.2. The vector of optimal shrinkage intensities which minimizes the loss
function (2.5) is given by

(2.10) ol (m,t) = M(m,t)"'m(m,t),

where the tuning parameter t is obtained by minimizing Ly.2(m,t) in (2.9).

Although the closed-form expression of optimal shrinkage intensities is derived in The-
orem 2.2, the formula (2.10) cannot be applied directly in practice since both m(m,t)
and M(m,t) depend on the unknown population covariance matrix 3. To derive the
practically relevant, i.e., completely data-driven formula of the optimal shrinkage in-

tensities, we proceed in two steps: (i) First, the large-dimensional asymptotic limit of
o (m,t) will be deduced; (ii) Second, the limit value of o (m,t) will be consistently
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estimated. The corresponding results are derived for the shrinkage estimator based on
the Moore-Penrose inverse in Section 2.1 and on the ridge-type inverse in Section 2.2.

Finally, we note that the second summand in (2.8) has an important interpretation.
The summand Ly.2(m, t) is not only used to determine the tuning parameters m and ¢,
but it also measures the quality of the derived higher-order nonlinear shrinkage estima-
tor of the precision matrix. Similarly to o (m,t), the term L,.2(m,t) depends on the
unknown population covariance matrix. For the computation of the optimal values of
the tuning parameter ¢, we also proceed in two steps: first, we find the limiting value
of Ly.2(m,t) under the large-dimensional asymptotic regime and second, estimate this
limiting value consistently. It is important to note that the proposed approach is not
based on cross-validation whose properties are not studied in high-dimensional settings
to the best of our knowledge.

The partial exponential Bell polynomials (see [3, 4]) are used to formulate the theo-
retical results of the paper. They are defined by
(2.11)

N m! T1\J1 [ xo\ 2 Ton—hit 1 Jm—k+t1
‘Bnukﬁq,vzpn,vmrk+1)—‘2533195443;77;;r (1,) (§T> "'((nz}%+j0! ,

where the sum is taken over all sequences ji, ..., jm—k+1 Of non-negative integers such
that > ;") Bl = k and S F115, = m. In practice, the Bell polynomials can be
easily computed in the R-package kStatistics, see also [22].

2.1. Higher-order nonlinear shrinkage estimator based on the Moore-Penrose
inverse. In the derivation of the bona fide higher-order nonlinear shrinkage estimator
based on the Moore-Penrose inverse, we use Theorem 2.1 in [15] whose application leads
to the following result

Theorem 2.3. Let Y, fulfill the stochastic representation (2.2). Then, under Assump-
tions (A1) and (A2), it holds for 1l = 1,2 that

1 : a.s.
(2.12) ‘ptr [(SH)=!] =55, “30 for p/n—ce(l,00) as n— oo,
where
J +k+1kl _
(2.13) =3 Y R G B (0(0), ().
k=1

where v(0) is the unique solution of the equation

1 “1] e —1 . P
(2.14) i [(U(O)EJrIp) ] - with ¢, = 2,

Cn

1

(2.15) v'(0) =~ |
e -t {[Beoz+1) ]

and v"(0),...,09)(0) are computed recursively by

J
(2.16) v9)(0 (0) > (=) klhys1 By ( '(0), ...,v(j_k+1)(0))
k=2
with
1

(2.17) hi = O

_ cn%tr { [2 (v(0)S + Ip)l]k} . k=1,2,..,
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and
dor = ;tr{[E (W(0)S +1p)1r+1} . Cn[v((l))]kH - h’;“ E=1,2, ..,
doo = ﬁ <;tr{2} - %tr{E (v(0)2 +Ip)‘1}) = ﬁ (;tr{E} - Cni(0)> :
s = ;tr{{z (v(0)S +Ip)‘1} 2}
_ ﬁ (;tr { Beos+1,)7] z} - ptr{[E ((0)3 +1p>—1r“})
_ ﬁ(dk_m Cdey), k=1,2,..

It is interesting to note that h; = 0 by (2.17). In the case S#(¢) = S, we have
that o (m,t), Ly.a(m,t), M(m,t), and m(m,t) do not depend on ¢. To indicate this
observation and that the Moore-Penrose inverse is used in the construction of the higher-
order nonlinear shrinkage estimator, we use the notations without ¢ and indexed with
the sign +. As a direct corollary of Theorem 2.3, the limiting behavior of e (m) and

L:;Q(m) is deduced, and it is presented in Theorem 2.4

Theorem 2.4. Let Y, fulfill the stochastic representation (2.2). Then, under Assump-
tions (A1) and (A2), it holds that

(2.18) ot (m) — o (m)|| 0 with o (m)=M"(m) 'm™(m)
and
(2.19) ||L;2(m) — L3 (m)|| “20 with Li(m)=1—-m"(m) M*(m) 'm*(m)

forp/n — c € (1,00) as n — oo, where ||a|| denotes the Euclidean norm of the vector a
and

%tr[E] %tr[EQ] S12 .- Sma
S1,1 51,2 52,2 e Sm41,2
(2.20) m*(m)= . and MT(m) = "
Sm,1 Sm,2 Sm+1,2 - -- S2m,2

For the specification of the bona fide nonlinear shrinkage estimator, one needs to
estimate the elements of m™(m) and M™(m) consistently. Since the latter objects still
depend on n through p, under consistency here we will always understand the concept of
deterministic equivalents, i.e., the Euclidean distance between the random sequence and
the nonrandom one converges to zero almost surely. Having this in mind, the consistent
estimators of %tr[E] and %}tr[zz] are derived in [15] and they are given by

1 1 1 2
(2.21) G1=-tr[S,] and o= —tr[S;] —cn |-tr[S,]| ,
b b

respectively. Furthermore, consistent estimators of ’U(j)(O) for j = 0,1,... are expressed
as (see [15])

(2.22) 89)(0) = (~1)’ j!cn%tr (551
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Finally, the application of (2.16) and (2.17) leads to the recursive computation of
consistent estimators of h;,1 given by

(2.23)
. ) (0) + 9'(0) 01 (=1)*khy g1 B g (9/(0), ..., 80—+ (0
h‘+1:v (0) +9'( )Zk:Q(A ) Pk q,k('U( )y wes © (0)) for j=2.3....m
! [07(0)HH(=1)7+5!
with
A 1
2.24 g = ———.

Using the above results, we get consistent estimators of at(m) and LJ (m) summa-
rized in Theorem 2.5.

Theorem 2.5. Let Y, fulfill the stochastic representation (2.2). Then, under Assump-
tions (A1) and (A2), it holds that

(2.25) |‘d+(m) —at(m)|| =30 with at(m) = ﬁ+(m)_1rh+(m)
and

(2.26) Hﬁ;(m)—L;(m) 0 with Lf(m)=1— " (m) M*(m) 't (m)

forp/n — c€ (1,00) as n — oo with

q1 q2 51,2 cee Sm,2
311 — 12 822 ... Smi12
(2.27) mt(m) = ) and MT(m) = . . . ) ,
t§m,1 gm,Z §m+1,2 cee <§2m,2
where
j )
A S AV R i
(2.28) EDY %dk,lBj,k (#(0), .. 8975 (0))
k=1 J:
with
5 1 i
2.29) d = - k=1,2,..
( ) k,1 Cn[ﬁ(())]k—i_l Cn 3 9 Ly eeey
1 1 A 1 - R
d = — (¢ - — dpo = —(dp_12—d k=1,2,...
0,2 5(0) (fh cn@(O))7 k2 17(0)( k—1,2 k1), y 2y

where Gy, Gz, 9(0), 9(0),...,50™(0), he, and iLm_H are given in (2.21), (2.22), (2.23),
and (2.24).

The findings of Theorem 2.5 lead to the bona fide higher-order nonlinear shrinkage
estimator of the precision matrix given by

(2.30) S nos =ad L, + > _af(sh),
j=1
where &*(m) = (4f,a7,...,4;)T as in (2.25). Finally, we note that the matrices

M+ (m) and M~ (m) defined in (2.20) and (2.27), respectively, are positive definite, since
they both almost surely converge to the matrix M(m,t) in (2.6) with S#(¢) replaced by
S;7, which is an interior point of the convex cone of positive definite matrices.
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2.2. Higher-order nonlinear shrinkage estimator based on the ridge-type in-
verse. When the ridge-type inverse is used in the construction of a nonlinear shrinkage
estimator for the precision matrix, i.e., S#(¢) = S (¢), the application of Theorem 2.5
in [15] yields

Theorem 2.6. Let Y, fulfill the stochastic representation (2.2). Then, under Assump-
tions (A1) and (A2), for anyt >0 and j =0,1,2,..., 1 € {1,2}, it holds that

(2.31) ’;tr((s ()2 — 550y (t)‘ Y0 for p/n—ce(l,00) as n— o0

where

S (1) = G—)—1 -1 +kk'd B oy (I—k+1)
g+ () = Zt Z kot (8) Bk (v'(2),0" (1), ..., v (t)

(2.32) + t77 7 oy (1)
where v(t) is the unique solution of the equation

1 o 1 :cn—1—|—tv(t)
(2.33) o (wz+1,)7] = 22—,

1
o(t)2 — e Ltr { [2 (v()S + 1,,)1}2}’

(2.34) v(t) = —

and v"(t),...,09) (t) are computed recursively by

J

(2.35) VDt (6) S (—1) ki (1) ]k( (1), ...,v(j_k+1)(t)),

k=2
with

(2.36)  hi(t) = u(®)]~F — cn%tr { [z (W) + Ip)—lr} L k=1,2,...,

and
dor(f) = %tr [Bews+1,)} = Cni(t) - é
dia (1) = ;tr{[z (w(t)= +1p)1r+1} - Cn[vé)]kﬂ - Cnh;l(ﬂ, k=1,2,..,
doa(t) = % (Il)tr{Z} - do,l(t)> ,
dis (t) = %u« { RIEGS +1,,>—1r+1 2}
_ % <1tr { (B + Ip)_lr z} _ %tr { (B wmns+ Ip)—l}k“})
_ %(dk o) —dra(8), k=1,2,...

When S#(t) = S (t), we use the notations a, (m,t), L,.5(m,t), M~ (m,t), and
m~ (m,t). Form Theorem 2.6, we the limiting behavior of a;, (m,t) and L, ,(m,t) is

derived in Theorem 2.7
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Theorem 2.7. Let Y, fulfill the stochastic representation (2.2). Then, under Assump-
tions (A1) and (A2), it holds that

(2.37) ||, (m,t) — o (m, 1) 0 with o (m,t) =M (m,t)"'m~(m,t)

and
(2.38)
| Ly o(m,t) — Ly (m, )| 30 with Ly (m,t) =1—m™ (m,t)" M (m,t)"'m™ (m, )

forp/n — c € (1,00) as n — oo, where

(2.39)
%tr[E] étr[zﬂ %1,2@) ~§m’2(t)
m- (m, t) _ 8171:(75) and M- (m’ t) _ 81)2'(t) Sg}g'(t) . Sm+1‘72(t)
G (1) Sma2(®) Emaro(®) ... Fama(t)

To estimate the elements of m™(m,t) and M~ (m,t) consistently, we use (2.21) and
the results of [15] who proved that consistent estimators of v¥)(¢) for j = 0,1, ... and
t > 0 are given by

(2.40) 00 = (1t (Gur(S70P] -0 L),

Finally, the application of (2.35) and (2.36) leads to the recursive computation of
consistent estimators of hj41(t) expressed as

(2.41)

. o) o =L VkElf (i U=kt

by = O+ (t)ZM([ﬁllztﬁ;fiklﬂgﬁ;!( (t), - ™) e j—23...m
with

(2.42) ha(t) = *f/tt)

Hence, consistent estimators of o™ (m,t) and L; (m,t) are obtained and presented in
Theorem 2.8.

Theorem 2.8. Let Y, fulfill the stochastic representation (2.2). Then, under Assump-
tions (A1) and (A2), it holds that

(2.43) |a=(m,t) —a~(m,t)|| “3 0 with & (m,t) = ﬁ_(m,t)_lrh_(m, t)
and

(2.44)
Hi;(m,t) — Ly (m, t)H 0 with Ly(m,t)=1—1a (m,t) M (m,t)" 't~ (m,1)

for p/n — c € (1,00) as n — oo with
(2.45)
0 @ s12(t) oo Sma(t)

m-(m,t) = 511(75) and ﬁ_(m,t) _ §1=2'(t) 52(t) §m+1'72(t)

S (1) Smo(t) Smir2(t) ... §2m:2(t)
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where
S (t) = Z]:t 1212 l+kk'dka( t) Bk (ﬁl(t)a@”(f),-~~7@(l’k“)(t))
=1 k=1
(2.46) + 77 g (1)
with
(2.47) doa(t) = Lt da(t) = ! - E’““(t), k=1,2,..,

o(t)  cp cn ()] Cn

do.s(t) = — ql—doyl(t)), dpa(t) = —(de12(t) — dpa (1)), k=12, ..,

1

o(t)
where Gy, Ga, 0(t), 0'(t),..., 0 (&), ho(t), and hmyi(t) are given in (2.21), (2.40),
(2.41), and (2.42).

The findings of Theorem 2.8 yield the bona fide higher-order nonlinear shrinkage
estimator of the precision matrix expressed as

(2.48) Snos(t) = dg (D, + ) a5 (1(S; (1)),
j=1

where &~ (m, t) = (&g (t), 45 (t),...,8,,(t))" given in (2.43) and the optimal value of ¢
is found by minimizing L; (m,t) in (2.44). Furthermore, both the matrices M~ (m,t)
and M~ (m,t) in (2.39) and (2 45) are positive definite due to the facts that they both
almost surely converge to the matrix M(m,t) in (2.6) with S#(¢) replaced by S;, () and
M(m, t) is an interior point of the convex cone of positive definite matrices.

3. FINITE SAMPLE PERFORMANCE

In this section, we compare the finite sample performance of the proposed higher-order
nonlinear shrinkage estimators of the precision matrix computed for m € {1,2,3,4,5}
with the state-of-the-art benchmark. The comparison is performed for n € {150,250}
and ¢ € [1.5,5]. Two scenarios of the data-generating model are considered:

(i) Normal distribution: Elements of X,, are gencrated from the standard normal
distribution.

(ii) Scaled t-Distribution: Elements of X,, are drawn from the scaled standard
t-distribution with 5 degrees of freedom and a scale factor of /3/5 to ensure
that the variances of the elements of X,, are all one.

The mean vector p is set to zero. The eigenvectors of the population covariance matrix 3
are simulated from the Haar distribution (see, e.g., [36]), and its eigenvalues are chosen
as follows: 20% of the eigenvalues are equal to one, 40% are equal to three, and the
remaining 40% are equal to ten.
As a performance measure, we use the Percentage Relative Improvement in Average
Loss (PRIAL) defined by
T 2
(3.1) PRIAL(IT) = [ 1 — Bl = Ly | 100%,
E[SiE - L%
where II is an estimator of the precision matrix X ~!. By definition, the PRIAL pro-
vides the percentage improvement of each strategy in comparison to the one based on

the Moore-Penrose inverse. Larger values of the PRIAL indicate better performance.
Moreover, it holds that PRIAL(X~1)= 100% and PRIAL(S; )= 0%.



12 TARAS BODNAR AND NESTOR PAROLYA

As a benchmark, we use the inverse of oracle nonlinear shrinkage estimator of the
covariance matriz which is derived for the loss function considered in [33] and it is given
by

Ay
u;3°u;

(3.2) Sonrsh = Udiag(dy”, ...,do")UT, df" =

u; 3y,
where U = (uy, ...u,) is the matrix with the eigenvectors of S,,. Its inverse is expressed
as

(3.3) I, psn = Udiag(1/dy", ..., 1/dy") U,

with do", ...,CZ](;T given in (3.2). Theoretically, this unattainable benchmark (since it de-
pends on X)) represents the best possible performance in the given setting, since it is
finite-sample optimal. This raises the question: how well can our purely data-driven
higher-order nonlinear shrinkage estimators approximate it? The answer to this ques-
tion is provided in Figures 1 and 2, where the Moore-Penrose inverse was used in the
computation of higher-order shrinkage estimators.

8 o
— —— NL oracle ~ —— NL oracle
MP shrinkage (m=1) MP shrinkage (m=1)
High order m=2 High order m=2
o High order m=3 3 High order m=3
© High order m=4 High order m=4
High order m=5 High order m=5
©
- o - ©
< <
o o
o o<
©
o
~
N
©
=)
)
=}
©
T T T T T T T T T T T T T T
15 2.0 25 3.0 35 4.0 45 5.0 25 3.0 35 4.0 4.5 5.0
Cn Cn
=1 o
— —— NLoracle ~ —— NLoracle
MP shrinkage (m=1) MP shrinkage (m=1)
High order m=2 High order m=2
o High order m=3 8 High order m=3
° High order m=4 High order m=4
High order m=5 High order m=5
©
do o
<8 <
o o
o o <
©
o
~
I
©
=]
©
=}
@
T T T T T T T T T T T T T T
15 2.0 25 3.0 35 4.0 4.5 5.0 25 3.0 35 4.0 4.5 5.0
Cn Cn

FIGURE 1. PRIAL for ¢, € [1.5,5], n = 150 when the elements of X,, are
drawn from the normal distribution (first row) and scale ¢-distribution (second
row). Second column shows the corresponding zoomed figures.

Figure 1 presents the results for the sample size n = 150. The first row corresponds to
the normal distribution, while the second row represents the scaled t-distribution with 5
degrees of freedom. All proposed higher-order shrinkage estimators closely approximate
the oracle nonlinear shrinkage. We consider polynomial orders up to m = 5, as any fur-
ther increase provides only marginal improvement and only increases the computational
time. The leftmost figures show that even with m = 1, the approximation to the oracle is
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quite good, improving rapidly as m increases. The results are similar for both the normal
distribution and the t-distribution, with the latter performing slightly worse. However,
this difference is barely noticeable, even in the zoomed-in versions of the figures.

Figure 2, which corresponds to n = 250, exhibits the same patterns, demonstrating the
robustness of the proposed higher-order shrinkage estimators. Based on this simulation,
m = 4 appears sufficient to achieve reasonable precision and fast computational time.

=1 o
S
— —— NLoracle ~ —— NLoracle
MP shrinkage (m=1) MP shrinkage (m=1)
High order m=2 High order m=2
o High order m=3 8 High order m=3
° High order m=4 High order m=4
High order m=5 High order m=5
©
o — ©
<@ <
o o
o [a ISy
©
o
~
I
R ©
=)
©
=}
@
T T T T T T T T T T T T T T
15 2.0 25 3.0 35 4.0 4.5 5.0 25 3.0 35 4.0 4.5 5.0
Cn Cn
8 NL R
— _— oracle ~ —— NL oracle
MP shrinkage (m=1) MP shrinkage (m=1)
High order m=2 High order m=2
o High order m=3 8 High order m=3
© High order m=4 High order m=4
High order m=5 High order m=5
©
- o - ©
<@ <
@ o
o o
o |
=
e © 7
o | -
)
o |
©
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15 2.0 25 3.0 35 4.0 45 5.0 25 3.0 35 4.0 4.5 5.0
Ch Ch

FIGURE 2. PRIAL for ¢, € [1.5,5], n = 250 when the elements of X, are
drawn from the normal distribution (first row) and scale ¢-distribution (second
row). Second column shows the corresponding zoomed figures.

4. SUMMARY

Estimating the precision matrix is a challenging task in multivariate statistics, es-
pecially in high-dimensional settings where the dimension of the data-generating model
exceeds the sample size. In such cases, the sample covariance matrix becomes singular,
and its inverse does not exist. To address this, generalized inverses like the Moore-
Penrose inverse or the ridge-type inverse are typically employed. However, the impact
of these generalized inverses is not well studied in statistics and probability theory, with
only a few papers examining their properties under very restrictive assumptions.

The recent paper by [15] sheds light on the asymptotic properties of the Moore-Penrose
inverse and the ridge-type inverse of the sample covariance matrix. Additionally, two
linear shrinkage estimators of the precision matrix are suggested in [15] by utilizing the
asymptotic properties of these generalized inverses.

In this paper, we extend the approach of [15] by proposing higher-order nonlinear
shrinkage estimators of the precision matrix. These new approaches leverage the prop-
erties of the Moore-Penrose inverse and the ridge-type inverse of the sample covariance
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matrix, including the two linear shrinkage estimators of [15] as special cases. Further-
more, they complement the existing nonlinear shrinkage estimators of [32] and [34] by
providing analytical expressions for new nonlinear shrinkage estimators that can be eas-
ily implemented in practice. Finally, the finite-sample performance of the proposed
approaches is evaluated through a simulation study and compared to the finite-sample
oracle nonlinear shrinkage estimator.
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