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SUMMARY

Labels are essential for training Deep Neural Networks (DNNs), guiding learning with
fundamental ground truth. Label quality directly impacts DNN performance and general-
ization with accurate labels fostering robust predictions. Noisy labels introduce errors and
hinder learning, affecting performance adversely. High-quality labels aid convergence, op-
timizing DNN training towards accurate data distribution representation. Ensuring label
accuracy is vital for DNNs’ effective learning, generalization, and real-world performance.

Undoubtedly, ensuring the quality of labels is not only critical but also demanding,
often entailing considerable resources in terms of time and cost. As the scale of datasets
grows, methods such as crowdsourcing have gained traction to expedite the labeling
process. However, this approach comes with its own set of challenges, most notably the
inherent susceptibility to errors and inaccuracies. For example, it was observed that the
accuracy of AlexNet in classifying CIFAR-10 images plummeted from 77% to a mere 10%
when labels were subjected to random flips. This stark drop in accuracy exemplifies the
magnitude of influence that corrupted or erroneous labels can exert on the performance
of DNNs. Such instances underscore the critical relationship between accurate labels and
the efficacy of DNNs in understanding and effectively leveraging data.

Ensuring DNN robustness is vital, involving strategies like noise label identification, fil-
tering, and integrating noise patterns into training for resilient models. Architectural and
loss function design also combats label-related challenges, enhancing DNN adaptability
across applications. This thesis investigates the pivotal role of labels in DNN training and
their quality impact on model performance. Strategies spanning noise recovery, robust
learning frameworks, and multi-label solutions contribute to DNN resilience against noisy
labels, advancing both understanding and practical applications. Chapter 1 of this thesis
introduces and explains the crucial elements involved in training DNNs, which include
data, DNN models, and expert participation. It highlights the complexity introduced by
label noise and sets the stage for the diverse methods designed in subsequent chapters to
address these aspects comprehensively.

In Chapter 2, we delve into the complexities posed by label noise in training DNNs.
To tackle this issue, two novel methods are introduced. The first method, named LABEL-
NET, creatively harnesses noisy labels as auxiliary information to improve classification
accuracy. By employing two interconnected networks, Amateur and Expert, LABELNET

effectively transforms noisy labels into a learning advantage. The second method, Trust-
Net, focuses on estimating noise transition matrices using a small set of trusted data.
This approach dynamically adjusts loss weights based on learning confidence, leading
to improved model performance. Through empirical evaluations on various datasets,
including challenging real-world scenarios, both LABELNET and TrustNet demonstrate
their potential in enhancing the robustness of DNNs against noisy labels.

In Chapter 3, the focus shifts to addressing the challenge of learning from noisy
labels under partial data supervision. The novel approach, Golden Symmetric Loss

xi
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(GSL), dynamically weighs regular and reverse cross-entropy based on an estimated
corruption matrix. GSL effectively differentiates difficulty levels of classes and mitigates
noise overfitting, outperforming state-of-the-art methods across various datasets. This
chapter’s contribution lies in the introduction of GSL, a dynamic approach that enhances
the accuracy of deep learning models in the presence of noisy labels by considering noise
rates and patterns, providing valuable insights into the realm of handling noisy labels in
deep learning.

In Chapter 4, the thesis explores learning from noisy labels using oracle supervision.
The proposed approach, Quality-driven Active Learning (QActor), combines quality mod-
els and active learning. QActor effectively filters data into clean and noisy categories,
employing a noise-aware measure known as CENT for informative sample selection and
dynamically adjusting query allocation based on training loss. This innovative framework
achieves high accuracy with minimal oracle queries, surpassing existing methods. The
chapter introduces the design of QActor, the CENT measure, and a dynamic learning
strategy, addressing the dynamic allocation of an active learning budget in the presence
of noisy labels, thereby offering a significant advancement in improving learning from
noisy data.

In Chapter 5, we address label noise through a label aggregation approach. The pro-
posed framework, LABNET, combines DNNs and a label aggregation algorithm to leverage
knowledge from different sources and enhance label quality. The collaborative nature
of LABNET bridges the gap between label aggregation and image classification, enabling
iterative interactions between the two components. The DNN extracts features shared
with the aggregation algorithm to enhance annotated labels, while the aggregated labels
improve DNN training. The Expectation-Maximization algorithm is used for label aggre-
gation, and an algorithm determines the optimal training timing for the DNN. LABNET

demonstrates superior classification accuracy and lower label aggregation error rates on
established image datasets. This chapter’s contributions emphasize the collaborative
essence of LABNET, offering a promising approach for improving classification accuracy
while addressing label noise.

In Chapter 6, we focus on the complex realm of noisy multi-label classification. This
chapter proposes two innovative mechanisms, Trusted Loss Correction for Multi-Label
Learning (TLCM) and Multi-Label Loss Correction against Missing and Corrupted Labels
(MLLSC), to enhance multi-label classifier accuracy in the presence of label noise. TLCM
effectively estimates noise corruption matrices, improving classifier robustness against
noisy labels. MLLSC mitigates the impact of missing and corrupted labels through a
robust loss function. Empirical evaluations demonstrate significant improvements in
mean average precision (mAP) for both methods across diverse datasets. This chapter
extends the thesis’s scope by addressing the challenges of noisy multi-label classification,
providing comprehensive solutions that significantly enhance the accuracy and resilience
of multi-label classifiers in the face of label noise.

Finally, Chapter 7 summarizes the contributions made in this thesis and outlines
future research directions.



SAMENVATTING

Labels zijn essentieel voor het trainen van Deep Neural Networks (DNNs) voor het leren
met fundamentele grondwaarheden. De kwaliteit van labels heeft een directe invloed op
de prestaties en generalisatie van DNNs, waarbij nauwkeurige labels robuuste voorspel-
lingen bevorderen. Labels met ruis introduceren fouten en belemmeren het leren, wat
de prestaties negatief beïnvloedt. Kwalitatief hoogwaardige labels bevorderen de conver-
gentie en de optimalisatie van het trainen van DNNs naar een nauwkeurige representatie
van de distributie. Het garanderen van nauwkeurige labels is essentieel voor DNNs om
effectief te leren, te generaliseren en in de echte wereld te presteren.

Het waarborgen van de kwaliteit van labels is niet alleen kritisch maar ook veeleisend
en vergt vaak aanzienlijke middelen als het gaat om tijd en kosten. Naarmate de omvang
van datasets toeneemt, zijn methodes zoals crowdsourcing populairder geworden om
labelen van data te versnellen. Deze aanpak brengt echter eigen uitdagingen met zich
mee die inherent de gevoeligheid voor fouten en onnauwkeurigheden vergroot. Zo werd
bijvoorbeeld vastgesteld dat de nauwkeurigheid van AlexNet bij het classificeren van
CIFAR-10 afbeeldingen verminderde van 77% naar slechts 10% toen de labels willekeurig
werden omgedraaid. Deze sterke daling in nauwkeurigheid illustreert de grote invloed die
beschadigde of foutieve labels kunnen hebben op de prestaties van DNNs. Dergelijke ge-
vallen onderstrepen de cruciale relatie tussen nauwkeurige labels en de doeltreffendheid
van DNNs bij het begrijpen en effectief benutten van gegevens.

Het waarborgen van de robuustheid van DNNs is van vitaal belang en omvat strate-
gieën zoals labelidentificatie, filteren en integratie van ruispatronen in de training voor
veerkrachtige modellen. Het ontwerp van architecturen en verliesfuncties gaat ook label-
gerelateerde uitdagingen tegen en verbetert de aanpasbaarheid van DNN in verschillende
toepassingen. Dit proefschrift onderzoekt de centrale rol van labels tijdens het trainen
van DNNs en de impact op de modelprestaties. Strategieën voor ruisherstel, robuuste
leerframeworks en multilabeloplossingen dragen bij aan de weerbaarheid van DNNs
tegen labels met ruis, waardoor zowel het begrip als praktische toepassingen worden
verbeterd.

Hoofdstuk 1 van dit proefschrift introduceert en verklaart de cruciale elementen die
betrokken zijn bij het trainen van DNNs, waaronder data, DNN-modellen, en deelname
van experts. Het belicht de complexiteit die labelruis met zich meebrengt en vormt
de basis voor de diverse methoden die in de verdere hoofdstukken uitgebreid worden
toegelicht.

In hoofdstuk 2 gaan we dieper in op de complexiteit van labelruis bij het trainen van
DNNs. Om dit probleem aan te pakken worden twee nieuwe methoden geïntroduceerd.
De eerste methode, genaamd LabelNet, maakt op creatieve wijze gebruik van ruis bij
labels als aanvullende informatie om de classificatienauwkeurigheid te verbeteren. Door
gebruik te maken van twee onderling verbonden netwerken, genaamd Amateur en Expert,
transformeert LABELNET op effectieve wijze labels met ruis in een leervoordeel. De tweede
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methode, TrustNet, richt zich op het schatten van ruis-overgangsmatrices met behulp
van een kleine set vertrouwde gegevens. Deze aanpak past verliesgewichten dynamisch
aan op basis van het leervertrouwen, wat leidt tot betere modelprestaties. Door middel
van empirische evaluaties op verschillende datasets, waaronder uitdagende scenario’s uit
de echte wereld, tonen zowel LABELNET als TrustNet hun potentie aan in het verbeteren
van de robuustheid van DNNs tegen labels met ruis.

In hoofdstuk 3 verschuift de aandacht naar de uitdaging van het leren van labels met
ruis onder gedeeltelijke datatoezicht. De nieuwe aanpak, Golden Symmetric Loss (GSL),
weegt op dynamische wijze reguliere en omgekeerde kruisentropie op basis van een
geschatte corruptiematrix. GSL differentieert op effectieve wijze moeilijkheidsgraden van
klassen en vermindert overfitting door ruis. Hierdoor presteert GSL beter dan state-of-the-
art methoden in verschillende datasets. De bijdrage van dit hoofdstuk ligt in de introductie
van GSL, een dynamische benadering die de nauwkeurigheid van DNNs verbetert in de
aanwezigheid van labels met ruis door rekening te houden met ruispercentages en -
patronen, en die waardevolle inzichten biedt in het omgaan met labels met ruis bij deep
learning.

In hoofdstuk 4 onderzoekt het proefschrift het leren van labels met ruis met behulp
van orakelbegeleiding. De voorgestelde aanpak, Kwaliteitsgestuurd Actief Leren (QAc-
tor), combineert kwaliteitsmodellen en actief leren. QActor filtert gegevens effectief in
schone en lawaaiige categorieën, waarbij gebruik wordt gemaakt van een ruisbewuste
maat die CENT wordt genoemd voor informatieve steekproefselectie en waarbij de query-
toewijzing dynamisch wordt aangepast op basis van het trainingsverlies. Dit innovatieve
framework bereikt een hoge nauwkeurigheid met minimale orakelvragen en overtreft
daarmee bestaande methoden. Het hoofdstuk introduceert het ontwerp van QActor, de
CENT-maatstaf, en een dynamische leerstrategie, die de dynamische toewijzing van een
actief leerbudget aanpakt in de aanwezigheid van labels met ruis. QActor biedt daarmee
een significante vooruitgang in het verbeteren van leren uit data met ruis.

In hoofdstuk 5 pakken we labelruis aan door middel van een benadering op basis
van labelaggregatie. Het voorgestelde framework, LABNET, combineert DNNs en een
algoritme voor labelaggregatie om kennis uit verschillende bronnen te benutten en de
kwaliteit van labels te verbeteren. Het coöperatieve karakter van LABNET overbrugt de
kloof tussen labelaggregatie en beeldclassificatie, waardoor iteratieve interacties tussen
de twee componenten mogelijk worden. Het DNN extraheert kenmerken die worden
gedeeld met het aggregatie-algoritme om geannoteerde labels te verbeteren, terwijl de
geaggregeerde labels de training van DNNs verbeteren. Het verwachtingsmaximalisatie-
algoritme wordt gebruikt voor labelaggregatie en een algoritme bepaalt de optimale
trainingstijd voor het DNN. LABNET laat een superieure nauwkeurigheid zien op classifi-
catie van bekende afbeeldingsdatasets en heeft tevens minder fouten bij labelaggregatie.
De bijdragen in dit hoofdstuk benadrukt de essentie van LABNET en biedt een veelbelo-
vende benadering voor het verbeteren van de classificatienauwkeurigheid terwijl labelruis
wordt aangepakt.

In hoofdstuk 6 richten we ons op de complexe wereld van multi-label classificatie met
veel ruis. Dit hoofdstuk stelt twee innovatieve mechanismen voor, Trusted Loss Correction
for Multi-Label Learning (TLCM) en Multi-Label Loss Correction against Missing and
Corrupted Labels (MLLSC), om de nauwkeurigheid van multi-label classificeerders te
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verbeteren in aanwezigheid van labels met ruis. TLCM schat effectief de ruiscorruptiema-
trices, waardoor de robuustheid van de classificator tegen labels met ruis wordt verbeterd.
MLLSC vermindert de impact van ontbrekende en beschadigde labels door middel van
een robuuste verliesfunctie. Empirische evaluaties laten voor beide methoden, in diverse
datasets, significante verbeteringen zien in gemiddelde precisie (mAP). Dit hoofdstuk
breidt de reikwijdte van het proefschrift uit door de uitdagingen van multi-label classifica-
tie met ruis aan te pakken, door uitgebreide oplossingen te bieden die de nauwkeurigheid
en veerkracht van multi-label classificeerders aanzienlijk verbeteren in het licht van labels
met ruis.

Tot slot geeft hoofdstuk 7 een samenvatting van de bijdragen in dit proefschrift en
schetst toekomstige onderzoeksrichtingen.





1
INTRODUCTION

I n the era of rapidly advancing technology, Deep Learning has become an integral part
of our daily experiences. From powering voice-activated assistants to enabling the

detection of anomalies, facilitating autonomous vehicles, and creating groundbreaking
generative models like GPT and DALL-E, the applications of Deep Learning are diverse
and impactful. At its core, Deep Learning, an advanced branch of Machine Learning,
involves the utilization of sophisticated models trained on vast datasets. These models
learn to discern intricate patterns and capture essential information, allowing them to
generate novel content or accurately classify unseen data. This process has revolutionized
various domains, making it a cornerstone of modern artificial intelligence.

Deep Learning operates on the principle of artificial neural networks, drawing inspi-
ration from the structure and function of the human brain. These networks consist of
layers of interconnected nodes, also known as neurons, where each connection holds
a weight representing the strength of the relationship between two nodes. The process
involves feeding input data into the network, propagating it through the layers, adjusting
the weights based on the model’s predictions, and fine-tuning the entire system through
an iterative learning process. Deep Learning, as a subset of Machine Learning, relies
heavily on substantial amounts of input data. The abundance of data is a critical fac-
tor in enabling these models to discern intricate patterns and relationships, ultimately
enhancing their ability to make accurate predictions and generate valuable insights.

In Deep Learning, labels are important components in guiding Deep Neural Networks
(DNNs) toward intelligence. These labels represent the final inference of DNNs for each
data input and serve as ground truth during training, guiding the network toward accurate
categorical classifications. They provide the network with precise instructions it needs
to recognize meaningful patterns. The quality of the labels directly affects the accuracy
of the DNN. If they are noisy or inaccurate, the network will learn incorrect patterns
and produce poor results. The impact of noisy labels on DNN accuracy can be severe.
In extreme cases, it can lead to the DNN learning completely incorrect patterns and
producing completely useless results. For example, an autonomous vehicle is trained to
identify stop signs. If the training data contains a lot of noisy labels, the vehicle may learn
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to mistake other objects for stop signs, such as traffic cones or pedestrians. This could
lead to the vehicle stopping in the middle of the road, causing a traffic accident.

This thesis aims to enhance the robustness of DNNs against the challenges posed
by noisy labels by leveraging three key elements in training DNNs: data, DNN model,
and expert supervision. We design, implement, and evaluate novel robust mechanisms
that leverage these key elements by considering several aspects. The first aspect explores
the relationship between clean and noisy labels. It involves utilizing DNNs to learn their
correlation, investigating how the quantity of clean labels affects the learning of noise
patterns, and exploring the use of DNN models for recovering correct labels from noisy
ones. The next aspect focuses on training DNNs with noisy and limited clean labels
while ensuring the accuracy of the DNNs remains uncompromised. This is achieved by
leveraging their inherent capabilities, such as robustness in the loss function of DNNs
and DNN models. In the last aspect, we consider the impact of combining key elements.
We explore knowledge transfer between components, such as DNN models and expert
supervision, to enhance the overall robustness of the system. Each mechanism is crafted
to address specific facets of these three key elements, aiming to improve the resilience of
DNNs in the face of label corruption.

1.1. BACKGROUND OF DEEP LEARNING
This thesis discusses various robust mechanisms against noisy labels. Therefore, it is
important to understand how DNNs work, how labels assist models in learning various
patterns within data, and finally how DNNs become noise-resilient.

1.1.1. DEEP NEURAL NETWORKS

Deep Neural Networks (DNNs) have become the workhorse of Machine Learning, par-
ticularly in areas such as computer vision and natural language processing. Their ability
to learn from data and make predictions has made them invaluable tools for solving a
wide range of problems. The fundamental building block of a Deep Learning model is
the neural network layer [1]. It can be categorized into input, hidden, and output layers.
The input layer receives raw data, which is then transformed and processed as it passes
through the hidden layers. The output layer produces the final result, whether it be
a classification, prediction, or generation of new content. During training, the model
learns to recognize patterns and features in the input data by adjusting the weights of
the connections between neurons. This adjustment is guided by a loss function, which
measures the disparity between the model’s predictions and the actual outcomes [1],
[2]. The objective is to minimize this loss by optimizing the weights, a process achieved
through backpropagation and gradient descent algorithms.

Machine Learning encompasses various types of learning paradigms, each serving
distinct purposes in extracting insights from data. Supervised learning involves training
a model on a labeled dataset, where the algorithm learns from both input data and cor-
responding target labels. This type of learning is common in tasks such as classification
and regression. In contrast, unsupervised learning deals with unlabeled data, focusing on
finding patterns or relationships within the input without explicit target labels. Cluster-
ing and dimensionality reduction are typical applications of unsupervised learning [1].
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There are other types of learning, such as semi-supervised learning [3], which combines
elements of both supervised and unsupervised learning. Reinforcement learning [4] is
an interactive learning paradigm where an agent learns to make decisions by receiving
feedback from its environment. Additionally, self-supervised learning [5] is a subset of
unsupervised learning where the model generates its labels from the input data. Instead
of relying on external labels, the algorithm creates its own supervisory signals, often by
defining tasks that are easy to generate from the input. In this thesis, our focus is on
supervised learning.

1.1.2. DEEP LEARNING: APPLICATIONS AND ETHICAL ISSUES

The rapid advancements in Artificial Intelligence (AI), particularly in the domain of DNNs,
have ushered in a new era of innovation and transformation across diverse industries.
In the healthcare sector, the application of DNNs has significantly improved medical
image analysis, identifying abnormalities in medical images, enabling more accurate
disease diagnosis, aiding in the discovery of novel drugs, and contributing to enhanced
patient care and treatment planning [6]. In autonomous vehicles, these models play an
essential role in enabling advanced driver assistance systems, enhancing navigation, and
contributing to the development of self-driving cars [7]. DNNs revolutionize computer
vision tasks like spotting objects, recognizing images, and segmenting scenes. They
power tools that detect objects in real-time and classify images accurately [8], [9]. DNNs
also help in identifying details in images and generating new visuals with specific styles,
making them vital in various applications [10], [11]. Voice assistants, such as those
found in smartphones and smart speakers, leverage Deep Learning for natural language
processing and understanding, facilitating human-computer interaction [12]. In the
field of finance, Deep Learning is employed for fraud detection, risk assessment, and
algorithmic trading, where it can quickly analyze vast amounts of financial data and
identify patterns or anomalies [13].

As AI rapidly evolves, critical discussions surrounding ethical considerations, includ-
ing bias (prejudiced treatment based on certain characteristics), transparency (the ability
to understand how AI systems reach decisions), and the potential for these systems to
perpetuate unfairness, have become increasingly prominent. Biases can be introduced
during the training process when the underlying data disproportionately represents spe-
cific demographics or situations. Training an image recognition system solely on pictures
of cats, the resulting model would likely struggle to identify other animals. Similarly, AI
systems trained on biased data might exhibit discriminatory behavior, potentially im-
pacting high-stakes applications in healthcare, finance, or criminal justice. Mislabeling, a
specific type of bias, occurs when data points are incorrectly labeled. This can happen
unintentionally due to human error or intentionally through malicious manipulation.
Mislabeled data disrupts the learning process, leading the AI system to develop inaccurate
or unfair associations. Transparency in AI necessitates understanding not only the mod-
els’ inner workings but also the quality of their training data. Noisy labels, encompassing
mislabeling, incompleteness, and ambiguity, significantly hinder AI transparency. These
errors introduce confusion during training, making it difficult to grasp how models reach
their conclusions. In this thesis, our main focus lies on enhancing the robustness of DNNs
against noisy labeled data. While we do not explicitly address bias and fairness of models,
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our methods inherently contribute to mitigating these issues by improving the accuracy
of the models. By addressing noisy labels, we indirectly tackle a significant source of
potential bias within the data itself.

1.1.3. DEEP LEARNING: THE ROLE OF LABELS

Labels are essential in supervised learning, as they provide the true reference data that
guide ML models in making precise predictions and adapting to new, unseen information.
In the realm of supervised learning tasks, a range of challenges arises, from straightforward
single-label classification, where instances are assigned a single category, to more complex
scenarios like multiple-label classification (instances with multiple labels), few-shot
learning [14] (tasks with minimal labeled examples), and semi-supervised learning [3]
(combining labeled and unlabeled data). In each case, labels play a central role, acting as
a compass guiding machine learning algorithms towards accurate predictions and robust
model performance. Despite its fundamental role, label collection is labor-intensive and
resource-consuming. Consequently, labels are indispensable for initializing machine
learning models, especially in supervised learning. Ensuring label cleanliness (accuracy)
is imperative for training effective and dependable models.

Two important scenarios in supervised learning are single-label and multi-label learn-
ing. As shown in Figure 1.1(a), single-label classification is the most common form of
supervised learning, where each data instance is associated with a single label represent-
ing its class or category. For example, in image classification, each image is labeled with a
specific category like "cat" or "dog" [15]. Models are trained to predict the correct label for
a given input instance. Multi-label classification (see Figure. 1.1(b)) deals with instances
having multiple labels simultaneously, such as in text categorization. A news article might
be labeled with both "politics" and "economy" if it covers aspects of both subjects [16]. It
involves predicting the presence or absence of multiple labels for each input data point.
In this scenario, the output is represented as a binary vector where each element corre-
sponds to the presence or absence of a specific class or label. Handling multiple labels
poses challenges like label correlation and imbalance, requiring specialized techniques
for accurate predictions.

1.2. LABEL COLLECTION
Label collection can be a challenging and resource-intensive process in ML. Tradition-
ally, labels are obtained through manual annotation by human experts, which is time-
consuming and costly. However, with the advancement of technology, alternative ap-
proaches for label collection have emerged, including crowd-labeling and the use of
machine learning algorithms to generate labels. Thus, there are three methods for data
annotation, as illustrated in Figure 1.2: human annotation, crowdsourcing, and machine
learning-based methods. Each of these methods can introduce errors into the label set,
such as corrupted or missing labels.

Crowd-labeling [17], [18] involves outsourcing the labeling task to a crowd of work-
ers, typically through online platforms. This approach allows for scalability and cost
effectiveness, since multiple workers can annotate data simultaneously [19]. However,
crowd-labeling comes with its own set of challenges, such as ensuring label quality and
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Figure 1.1: Training and inference processes in supervised learning for single-label and multi-label classification.

dealing with potential biases or inconsistencies among workers.
As for machine-generated labels, they can be obtained through various techniques.

For example, in certain scenarios, machine learning algorithms can automatically infer
labels based on patterns, clustering, or similarity measures within the data. This approach
can be particularly useful when dealing with large datasets where manual annotation
would be impractical [20]. It is important to note that machine-generated labeling, while
efficient and scalable, can introduce errors and inaccuracies. Therefore, careful validation
and quality assurance measures are essential to ensure the reliability of these labels.

In terms of cost, the process of label collection can be more expensive than gathering
raw data itself. For instance, the creation of the ImageNet dataset, a widely used bench-
mark in computer vision, involved a significant investment of resources. Over 50,000
hours of human annotation were dedicated to labeling approximately 1.2 million images
across thousands of categories [21], [22]. Another illustration of labeling expenses is
Google Cloud’s AI Platform Data Labeling Service, which offers human labeling for cus-
tom machine learning models. The pricing for this service is determined by the number
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Figure 1.2: The three methods of data annotation with possible erroneous outputs.

of human labelers per data item and varies depending on the labeling task. For example,
object tracking and bounding box labeling cost $86 per 1,000 units per human labeler,
while event labeling in a 30-second video costs $214 per 1,000 units per human labeler [23].
Russakovsky et al. [22] explore the use of crowdsourcing platforms for image annotation
and compare the cost-effectiveness of crowd-labeling with expert annotation. The study
estimates that obtaining a single bounding box annotation can range from $0.03 to $10,
depending on the platform and task complexity. Also, [24] estimate that labeling 1 million
examples using crowd workers can cost approximately $30,000 to $50,000.

1.3. LABEL QUALITY
The quality of labels plays a crucial role in deep learning, significantly influencing the
performance and reliability of models [25]–[27]. Labels can vary in quality, spanning
from noisy labels, which contain errors or inaccuracies, to missing labels, where certain
instances lack annotations altogether. Training accurate and robust models becomes
challenging in the presence of noisy or missing labels [28]. According to IDC and IBM, the
annual cost of bad data amounts to $3.1 trillion in the United States [29]. The high cost
arises from the need for decision-makers, managers, knowledge workers, data scientists,
and others to handle and clean noisy and missing labels, which is both time-consuming
and expensive.

One prominent example highlighting the prevalence of noisy labels is the ImageNet
dataset, a widely used benchmark in computer vision. Despite being a curated dataset, it
is not immune to label quality issues. A study by [30] examines the quality of ImageNet
labels and shows that approximately 5% of the images in the dataset have noisy labels. This
indicates that labels have been annotated incorrectly due to human error or ambiguity in
labeling criteria. The authors also note that certain categories, such as ’horses’ and ’deer’,
have higher error rates compared to others, indicating the difficulty of accurately labeling
similar object categories [30].

One study conducted by [31] analyzes the quality of labels in large-scale image
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datasets, including ImageNet. They find that many images in these datasets are an-
notated with incorrect or inconsistent labels. The authors state, "The results show that
even carefully curated datasets like ImageNet contain a substantial amount of labeling
errors, which may affect the training and evaluation of machine learning models" [31].
Even popular and curated learning datasets include varying degrees of wrong labels, with
bigger sets tending to have higher noise ratios, e.g., 10.12% for the QuickDraw dataset
with 50M samples and 5.83% for the ImageNet dataset with 50K samples [26], [28].

In another investigation by [32], the authors explore the challenges of multi-label clas-
sification and analyze the quality of labels in the MS-COCO dataset, which encompasses
a wide range of object categories. They discover that approximately 6% of the labels in
the dataset are incorrect, emphasizing the importance of addressing label quality issues
in multi-label classification tasks [32].

As mentioned before, machine learning algorithms themselves can contribute to
label generation. Techniques such as weak supervision and active learning enable ML
algorithms to generate labels based on patterns, heuristics, or human feedback. While
these approaches provide scalability and cost-effectiveness, they also introduce the risk
of label errors. For instance, [33] explores weak supervision techniques and highlights the
inherent noise and potential errors in weakly supervised labels [33]. Hence, label quality
varies considerably in machine learning.

1.4. TYPES OF NOISY LABELS
Ground-truth labels refer to the correct labels assigned to each sample in a dataset. These
labels accurately represent the true class or classes to which each sample belongs, as
determined by human annotators or domain experts. However, in practice, obtaining
data samples with ground-truth labels is often impossible, and the available data samples
may contain noisy labels. In the context of label quality, noisy labels can manifest in
different forms, including corrupted labels with symmetries [34], [35], corrupted labels
with asymmetries [36], and missing labels [28] in single-label (multi-class) and multi-label
classification problems. Corrupted labels with symmetries refer to consistent mislabeling
across instances, while corrupted labels with asymmetries involve inconsistent errors.
Missing labels occur when certain labels are absent for specific samples. These challenges
are further compounded in multi-label scenarios due to label skewness, where some
labels appear more frequently than others. To depict the noise patterns on the labels,
we utilize a corruption matrix that denotes the probability that each class is mistakenly
classified as another class (see Figure 1.3).

As illustrated in Figure. 1.3(a), corrupted labels with symmetries refer to situations
where label errors occur with the same probability across all the labels. This means that
all labels are equally likely to be incorrectly assigned to every other class. For example,
in a multi-class image classification task with images of cats, dogs, and cars, corrupted
labels with symmetries would mean any cat image could be mislabeled as a dog or car
with equal probability, and vice versa.

On the other hand, asymmetric label noise (as shown in Figure 1.3(b)) occurs when a
specific class is more likely to be mislabeled into a particular class. In this case, the label
errors are not uniformly distributed across all labels. Instead, certain classes may have a
higher probability of being mislabeled than others. For instance, in the same multi-class
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image classification task, if the ’cat’ class is more likely to be mislabeled as ’dog’ than any
other class, it represents an instance of asymmetric label noise.
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Figure 1.3: Noise corruption matrix for a noise ratio of 0.4, illustrating both symmetric and asymmetric patterns.

Both symmetric and asymmetric label noise pose challenges in single-label and multi-
label classifications. The presence of corrupted labels with symmetries can confuse the
learning process and hinder the model’s ability to accurately predict the true labels for
each instance. Similarly, asymmetric label noise can introduce biases in the learning
process, affecting the model’s performance on specific classes that are more prone to
mislabeling. Consequently, the model will be exposed to a disproportionate amount of
incorrect information for these classes, leading to biased performance.

In multi-label classification, there are two groups of labels for every data point: nega-
tive and positive. Negative labels represent the classes not assigned to the data sample,
indicating their absence [37]–[39]. Conversely, positive labels signify the presence of
a class for a data point. Missing labels are common in multi-label classification when
certain classes are not included in the label set for specific data samples while they should,
resulting in false negative labels. For example, in a multi-label image classification task,
an image containing a "tree" and a "sun" may only have labels for "tree" while the label
for "sun" is missing. Corrupted labels can also occur, where false positive labels are as-
signed to data samples. Continuing with the previous example, a corrupted label could
be assigning the "cloud" label to the image of the "sun" and "tree" (see Figure 1.1(b)).
Another challenge in multi-label classification is label skewness, where some labels appear
more frequently than others. Multi-label learning faces intrinsic label imbalances, as
each image typically contains only a subset of all possible classes. This leads to a higher
number of negative labels than positive labels, creating a label distribution imbalance [40].
Thus the contribution of negative labels to the loss function of DNNs is more significant,
which poses difficulties in achieving accurate multi-label classification.



1.5. IMPACT OF NOISY LABELS ON DNNS

1

9

1.5. IMPACT OF NOISY LABELS ON DNNS
The impact of noisy labels in ML has been extensively studied across different learning
paradigms, including both traditional standard learning approaches and deep learning
models. In the presence of noisy labels, deep learning models are prone to the memoriza-
tion effect, as observed in various studies [41]–[43]. This effect refers to the phenomenon
where deep learning models tend to overfit to the noise present in the labels rather than
capturing the true underlying patterns in the data. Consequently, this phenomenon
leads to reduced generalization performance, as the models struggle to make accurate
predictions on unseen data.

In the case of single-label classification, the presence of noisy labels can significantly
affect model performance. A survey conducted by Zhang et al.[42] highlights the detri-
mental effects of label noise on standard classification algorithms and emphasizes the
need for robust methods to mitigate the impact of corrupted labels and improve the
reliability of learned models. In a study by Zhang et al. [44], it was found that the accuracy
of AlexNet in classifying CIFAR-10 images dropped from 77% to 10% when labels were
randomly flipped with a 40% noise ratio.

As shown in Figure. 1.4, empirical studies demonstrate the impact of bad labels on
learning algorithms. Here, the DNN trained on noisy labels, with and without a regular-
ization term in the loss function to mitigate the impact of noisy labels, achieves 100%
training accuracy but only 50% testing accuracy, indicating overfitting. The significant
performance gap between clean and noisy data highlights the need for robust learning
systems or label recovery methods to improve accuracy.

Figure 1.4: The training (left) and test (right) accuracy over epoch for the WideResNet-16-8 model trained on the
CIFAR-100 dataset with 40% symmetric label noise with noisy data without regularization (’Noisy w/o. Reg.’),
and noisy data with regularization (’Noisy w. Reg.’), and clean data with regularization (’Clean w. Reg.’) using a
standard training method [41].

Moving on to multi-label classification, the impact of bad labels becomes even more
pronounced. In this setting, the presence of corrupted or missing labels can introduce
complexities and affect the accuracy of predictions. A comprehensive survey conducted
by Li et al. [45] delves into the challenges posed by bad labels in multi-label learning,
encompassing issues such as label noise, label imbalance, and missing labels. The survey
explores various techniques and strategies aimed at addressing these challenges and en-
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hancing the performance and reliability of multi-label classification models. Experiments
are conducted on the MS-COCO dataset to empirically evaluate the impact of label cor-
ruption in multi-label learning. Different noise levels are injected into the dataset during
the training of a state-of-the-art multi-label classifier, ASL [38]. The results depicted in
Figure 1.5 demonstrate that the mean Average Precision (mAP), a metric commonly used
to evaluate multi-label classification by measuring the average precision across multiple
classes or categories, significantly degrades with increasing noise levels (for more details,
see §6).

By mitigating label noise, tackling label imbalance, and addressing missing labels, the
overall performance of learning models can be significantly improved, spanning from
standard learning approaches to deep learning paradigms.

Figure 1.5: The mean Average Precision (mAP) of ASL, a multi-label classifier, under various noise fractions
ranging from 0.0 to 0.6 on the MS-COCO dataset (see also Chapter 6).

1.6. LABEL QUALITY CHALLENGES FOR ROBUST LEARNING
Training robust DNNs heavily relies on the quality of labels used to train models. However,
obtaining reliable labels can be challenging due to several factors. Here, the key challenges
associated with label quality for robust learning are listed as follows:

1. High Cost and Time Consumption: Obtaining ground truth labels often requires hu-
man expertise, making the process expensive and time-consuming [21], [22]. This
scarcity of high-quality labels significantly hinders the training of robust models.

2. Diverse and Unpredictable Noise Patterns: Labels can be corrupted by errors or
inconsistencies, resulting in noisy labels that exhibit diverse and unpredictable
patterns. Label noise can manifest in different forms, including symmetric and
asymmetric noise, as well as label imbalance. This diversity complicates the task of
identifying and addressing label noise, as different types of noise require different
strategies for mitigation.
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3. False-Positive and False-Negative Labels in Multi-Label Learning: Multi-label sce-
narios, where a data point can have multiple classes, introduce additional diffi-
culties. False-positive labels (corrupted labels) and false-negative labels (missing
labels) can significantly increase uncertainty during training, impacting the accu-
racy and reliability of the model.

4. Skewed Label Occurrence Distribution: The distribution of label occurrences is
often highly skewed, with certain labels being more prevalent than others. This
skewness can bias the learning process and affect the performance of DNN models,
making it challenging to learn accurate representations of the data.

5. Identifying Samples with Noisy Labels: Determining which samples have noisy
labels that require cleansing is a challenging task. In scenarios where noise patterns
are intricate and diverse, pinpointing specific instances for correction becomes
even more complex.

To address these challenges, robust learning methods have been developed to enhance
the resilience of models to label noise, by both mitigating the impact of label noise and
improving the reliability of learning algorithms. In the next section, we introduce the
current solutions addressing the noisy labels and their challenges.

1.7. HOW TO COPE WITH NOISY LABELS?
The solutions for addressing the impact posed by noisy labels can be broadly categorized
into three approaches: cleansing the labels without learning, cleansing the labels through
learning techniques, and robust architectures of DNNs.

(i) Cleansing the labels without learning: This approach involves addressing the
issue of bad labels without relying on the learning process itself. One common strategy
is to utilize human labeling, where domain experts manually correct or refine the labels.
Human labeling approaches can significantly improve the accuracy of the labels but
can be time-consuming and expensive [46]. For example, Branson et al. [47] proposed a
hybrid human-machine vision system that combines the expertise of human annotators
with machine learning techniques for fine-grained categorization tasks.

Another approach is to leverage generative models to cleanse the labels. Generative
models, such as generative adversarial networks (GANs), can be used to generate synthetic
clean labels or augment the existing dataset with plausible examples. Reed et al. [48]
introduce a generative adversarial text-to-image synthesis model, which can generate
realistic images based on textual descriptions. By generating clean labels or additional
data samples, these generative models can help improve the quality of the training data.

(ii) Cleansing with learning: We categorize this approach into two subgroups: (1)
Data correction, and (2) Data filtering.

The data correction approach focuses on cleansing the labels during the training
process itself. Techniques within the learning framework are incorporated to identify and
mitigate the impact of bad labels [34], [49]–[51]. These techniques often involve iterative
processes, such as bootstrapping [52], [53], self-training [54], or co-training [55]–[57].
Bootstrapping algorithms gradually refine the labels by iteratively selecting confident
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predictions and using them as pseudo-labels for subsequent iterations. Self-training in-
volves using the model’s own predictions as additional labels to train a more robust model.
Co-training leverages multiple views or modalities of the data to mutually reinforce the
training process.

Data filtering approaches [27], [58]–[62] aim to identify and remove noisy samples
or outliers from the dataset. This can be achieved through outlier detection algorithms
or statistical analysis to identify samples with high uncertainty or inconsistencies. By
filtering out noisy samples, the training data becomes more reliable and improves the
model’s performance.

(iii) Robust Architectures of DNNs: DNNs with noise-resilient architecture [49], [63]–
[69] play a crucial role in mitigating the impact of label noise in machine learning models.
These architectures encompass two key strategies: (a) robust loss functions and (b) noise-
tolerant layers. Robust loss functions are specifically designed to address the challenges
posed by label noise during training. These loss functions aim to reduce the influence of
noisy or incorrect labels and enhance the model’s resilience to such noise. For instance,
the Forward Loss Correction proposed by Patrini et al. [70] modifies the loss function to
assign different weights to reliable and noisy samples. By prioritizing reliable samples
and down-weighting the impact of noisy samples, the model becomes more robust to
label noise and can improve its generalization capability. Noise-tolerant layers [71], [72]
are architectural components designed to handle label noise effectively. These layers
are specifically engineered to be less sensitive to noisy labels and aid in improving the
model’s robustness. An example is the Noise-Adaptive Convolutional Layer [73], which
adapts its behavior to handle noisy inputs more effectively. By incorporating such noise-
tolerant layers, the model becomes more resilient to label noise and can maintain better
performance in the presence of noisy data.

The prior art in addressing label noise and robust learning methods has made signifi-
cant progress. However, there are still some limitations that need to be acknowledged,
which are discussed in the next section.

1.8. LIMITATIONS IN CURRENT ROBUST MECHANISMS
Considering the challenges outlined in §1.6 and the current robust mechanisms detailed
in §1.7, we identify several limitations in current approaches for managing noisy labels in
DNNs:

• Heavy Reliance on Ground Truth Labels: Many existing mechanisms require access
to a significant amount of ground truth data, which is clean and accurately labeled.
Unfortunately, obtaining reliable ground truth labels is often an expensive and
time-consuming process, especially for large-scale datasets. This dependence on
clean labels hinders the applicability of these methods in real-world scenarios
where such data may be scarce or costly.

• Limited Noise Pattern Flexibility: Current mechanisms often make simplifying
assumptions about the nature of noise in labels. These assumptions might involve
the noise being symmetric or asymmetric. Real-world noise, however, can be much
more complex and may exhibit intricate patterns that these methods struggle to
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handle effectively. This inflexibility limits the generalizability of existing approaches
and can lead to performance degradation when dealing with unexpected noise
distributions.

• Trade-off in Filtering Methods: One common approach to mitigating label noise
involves filtering noisy samples from the training data. While this strategy aims
to reduce the influence of noisy labels, it inherently faces a trade-off between
sample selection and data exploration. By discarding unselected training examples,
these methods achieve a reduction in the influence of noisy samples. However,
this discarding process may also remove valuable training data containing correct
labels, potentially leading to a decrease in overall model accuracy. Furthermore,
filtering methods can limit the exploration of the training data’s full feature space,
which might hinder the model’s ability to learn complex relationships within the
data.

• False-positive/false-negative Errors in Multi-Label Learning: Existing robust ap-
proaches for multi-label learning often fall short in adequately addressing both
false-positive (FP) and false-negative (FN) errors. In the context of multi-labels,
FP denotes label corruption (incorrectly assigning a label that is not relevant) and
FN signifies missing labels (failing to assign a relevant label). Current approaches
typically focus on either FP or FN errors, with less emphasis on addressing them
simultaneously. Methods designed for binary classification tasks might be applied
to address label noise in multi-label settings, but these methods often overlook the
crucial distinction between FP and FN errors in multi-label learning. This predom-
inant focus on handling these errors individually rather than collectively fails to
capture the intricate nature of label noise in multi-label scenarios, where both FP
and FN errors can coexist and significantly impact model performance.

To gain deeper insights, we translate these challenges and limitations into five research
questions that will guide our investigation in the next section. In response to these
research questions, we propose seven robust mechanisms which are introduced in more
detail in the following section. In Table 1.1, we illustrate the linkage between the research
questions and each proposed mechanism.

1.9. RESEARCH QUESTIONS
This thesis investigates how to enhance the robustness of DNNs by exploring three key
elements of their training process: data utilization across various ground truth ratios in
conjunction with noisy labels, DNN models encompassing architecture and loss func-
tions, and the integration of expert input like human expertise or an oracle. We aim to
comprehend the collective impact of these key elements on the development of robust
DNNs. For this purpose, we formulate the following five specific research questions:

[RQ1] How to effectively cleanse noisy labels? This research question revolves around
finding effective methods to recover from or correct noisy labels when both the noisy
labels and the corresponding ground truth labels are available. The aim is to explore
approaches that leverage the availability of cleansed data to estimate and rectify the noise
in the labels. The focus is on leveraging the information provided by the ground truth
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labels to improve the quality of the training data and mitigate the negative impact of label
noise.

[RQ2] How to effectively learn a robust classifier with only limited cleansed labels?
This research question focuses on learning robust classifiers with minimal reliable data
in the presence of label noise. The challenge is clear: most of our training data contains
labeling errors, but we have only a small amount of accurately labeled data. The goal is to
smartly use this limited correct data to enhance the accuracy and reliability of our deep
learning models. These models should perform well even when facing labeling errors.
This involves techniques like identifying incorrect labels, integrating correct ones into
model training, and designing models that can handle errors without performance loss.

[RQ3] How to effectively leverage active learning and expert intervention mecha-
nisms to handle noisy labels and construct a robust single-label classifier? This research
question involves creating a system that utilizes quality models and active learning to
select the best samples for training while managing the active learning budget wisely. The
main challenge is addressing noisy labels that may require correction by experts (oracle).
We aim to determine the effectiveness of this system compared to existing approaches
and its contribution to enhancing our understanding of learning from noisy data.

[RQ4] How can label aggregation models be combined with DNNs to improve the
accuracy of models trained on noisy labels? This research question delves into improving
annotation quality and reducing errors in noisy labeled datasets through label aggregation.
We are aiming to create methods that harness the power of label aggregation to make
supervised learning models more accurate and dependable. This research contributes to
our knowledge of how label aggregation can enhance learning from noisy data.

[RQ5] How to develop robust multi-label classifiers that are resilient to noisy and
missing labels? This research question aims to develop robust multi-label classifiers that
effectively handle label corruption and missing annotations in multi-label learning. The
goal is to improve the accuracy and reliability of these classifiers in real-world scenarios.
By addressing this question, we aim to advance techniques and approaches that miti-
gate the impact of label noise and incomplete annotations, ultimately enhancing the
performance of multi-label classifiers.

1.10. RESEARCH METHODOLOGY
In this thesis, we use both theoretical and experimental methods for addressing each
research question by designing, implementing, proving, and evaluating a robust mech-
anism capable of effectively handling noisy label data. As to theoretical methods, we
formulate and present proofs of theorems, expanding upon existing ones in this research
domain. In Chapter 2, we derive a closed-form equation that relates test accuracy to the
noise ratio within the data. We utilize the lemmas and theorems introduced by [74] for
our derivation. In Chapter 3, we introduce a novel bound for the noise rate, guaranteeing
a noise-resilient cross-entropy loss function. To prove the new bound, we employ the
method proposed by [75], [76]. Finally, in Chapter 4, we demonstrate that the average
cross-entropy loss for noisy samples consistently exceeds that of clean samples.

On the experimental side, we implement all the mechanisms proposed for enhancing
the robustness of DNNs in this thesis using Python, which is the predominant language
in deep learning. Our primary tools and libraries for implementation include Keras,
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Table 1.1: An overview of the mechanisms proposed, their code bases, and the deep learning frameworks used
for each research question (proposed mechanism) in this thesis.

RQ Mechanism Codebase Reference Deep Learning Framework
1 LABELNET, TrustNet [77] Keras, TensorFlow
2 GSL [78] Torch
3 QActor [77] Keras, TensorFlow
4 LABNET [79] Keras, TensorFlow
5 TLCM, MLLSC [80] Torch

TensorFlow, and Torch. We begin by cloning these state-of-the-art codebases, which serve
as the foundation for our work. Table 1.1 details the specific repositories we clone and the
deep learning framework used. Subsequently, we modify existing code and implement
new functions and classes to develop our methodologies, aligning them with our research
goals. To optimize performance, we then employ exhaustive hyperparameter tuning to
identify the configuration that yields the best results. To ensure the generalizability of
our results, we conduct multiple evaluations of the experiments in each chapter, typically
ranging from 3 to 5 repetitions. We report the mean and standard deviation of these
evaluations. Additionally, for each experiment, we employ a different seed for the random
number generator, which is responsible for initializing the weights within DNNs. Each
chapter includes a detailed description of the experiments we conduct. We train and
deploy all DNNs on a machine equipped with an NVIDIA TITAN X for RQ1 and an NVIDIA
GeForce RTX 2080 Ti for the remaining research questions.

We evaluate the performance of our mechanisms on a diverse set of public and widely
used deep learning datasets. Table 1.2 provides an overview of the datasets employed
in each research question. Since Clothing1M is the only available dataset with noisy
labels, we synthetically generate noisy labels for evaluation in the other datasets in the
table. The specific noise ratios and noise patterns used for each dataset are discussed in
the corresponding chapters. To assess the performance of our proposed mechanisms,
we evaluate their performance using the most common DNN metrics: test accuracy for
single-label learning and mean average precision (mAP) for multi-label learning. We
ensure the reproducibility of our experiments by providing detailed explanations of the
methods in each chapter and making the codes publicly available on the 4TU repository1.

1.11. THESIS OUTLINE AND CONTRIBUTIONS
In Chapters 2-6, we address the five research questions formulated in § 1.9. Figure 1.6
illustrates the seven robust mechanisms introduced in these five chapters, which are
designed considering the three key elements involved in training DNNs and robust
learning systems: data, DNN models, and experts (e.g., human expertise, crowdsourcing,
etc). It shows the relationship between these mechanisms and the role of each key element
in their learning process. In certain mechanisms, we leverage more than one of these
learning elements. The following sections outline the content and contributions of each
chapter.

1https://doi.org/10.4121/b00277a6-9431-47dc-9369-e9a477031e66

https://doi.org/10.4121/b00277a6-9431-47dc-9369-e9a477031e66
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Table 1.2: An overview of public datasets used for the evaluation of each research question (proposed mecha-
nism) and their properties.

RQ Dataset Data type Number of samples Number of classes
1 MNIST Vision (single-label) 60K 10

1, 2, 3, 4 CIFAR-10 Vision (single-label) 60K 10
1, 2, 3, 4 CIFAR-100 Vision (single-label) 60K 100

1, 2 Clothing1M Vision (single-label) 1M 14
2 Twitter Text (single-label) 1827 25
2 Stanford Sentiment Treebank Text (single-label) 9604 2
5 MS-COCO Vision (multi-label) 122K 80
5 NUS-WIDE Vision (multi-label) 269.6K 81
5 MIRFLICKR Vision (multi-label) 25K 38

Data
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Figure 1.6: The seven mechanisms proposed in this thesis, their relation to each chapter, and how they enhance
DNN robustness against noisy labels by leveraging the three key elements.

1.11.1. [CHAPTER 2] RECOVERING NOISY LABELS WITH CLEANSED DATA

SUPERVISION
In this chapter, we address RQ1 and propose two novel mechanisms that leverage cleansed
data, assuming both the noisy labels and the corresponding ground truth labels are
available. By utilizing the ground truth labels, our mechanisms estimate the noise pattern
and correct the noisy labels, thereby enhancing model accuracy.

Our first mechanism, named LABELNET, innovatively utilizes noisy labels as auxiliary
information to enhance classification accuracy. Through the collaboration of two inter-
connected networks, Amateur and Expert, LABELNET effectively leverages clean and noisy
labels, turning them into a learning asset. TrustNet, our second proposed mechanism,
effectively estimates noise transition matrices using a small set of trusted data and LABEL-
NET, and dynamically adjusts the loss weights, leading to improved model performance.
Figure 1.7 shows an overview of our two proposed mechanisms. From our evaluation, we
find that TrustNet surpasses state-of-the-art approaches in challenging scenarios and
performs exceptionally well on large-scale real-world datasets. The combination of these
two mechanisms highlights the significance of considering real-world noise patterns and
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offers a promising solution to enhance the robustness of DNNs against noisy labels. This
chapter is based on the following two publications:

AmirMasoud Ghiassi, Robert Birke, Rui Han and Lydia Y. Chen, "LABELNET: Recover-
ies Noisy Labels", The International Joint Conference on Neural Networks (IJCNN), 2021.
R. Han contributed to the proofreading.

AmirMasoud Ghiassi, Robert Birke, and Lydia Y.Chen, "TrustNet: Learning from
Trusted Data Against (A)symmetric Label Noise", IEEE/ACM International Conference on
Big Data Computing, Applications, and Technologies (BDCAT), 2021.
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Figure 1.7: An overview of the mechanisms LABELNET and TrustNet in Chapter 2. The blue arrow depicts the
training process, while the green arrow is exclusive to the inference process.

1.11.2. [CHAPTER 3] LEARNING FROM NOISY LABELS WITH PARTIAL

CLEANSED DATA SUPERVISION
In this chapter, we address RQ2 and explore learning from noisy labels under partial
cleansed data supervision. Partial cleansed data supervision involves only a small subset
of the training data having trusted labels (clean labels), while most data are affected by
noise, with no corresponding clean labels for each untrusted (noisy) one.

Annotation errors and adversarial attacks introduce inconsistencies in label quality,
leading to reduced model accuracy due to overfitting to the noise structure. Existing
methods employ techniques such as noisy data filtering, robust loss function derivation,
or proactive label correction. Furthermore, there is a lack of methods that consider noise
rates and patterns for weighting the loss for both noisy and clean labels. To overcome
this, we introduce the Golden Symmetric Loss (GSL) (illustrated in Figure 1.8), which
dynamically weighs regular and reverse cross-entropy using the estimated corruption
matrix. GSL utilizes clean data to enhance the accuracy of the corruption matrix estima-
tion. This mechanism tackles highly noisy labels for training deep learning models. By
differentiating class difficulty levels and mitigating noise overfitting, GSL outperforms
state-of-the-art methods across noise ratios in vision and text datasets. This chapter is
based on the following paper:
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Figure 1.8: An overview of the mechanism Golden Symmetric Loss (GSL) in Chapter 3.

AmirMasoud Ghiassi, Robert Birke, and Lydia Y.Chen, "Robust Learning via Golden
Symmetric Loss of (un)Trusted Labels", SIAM International Conference on Data Mining
(SDM), 2023.

1.11.3. [CHAPTER 4] LEARNING FROM NOISY LABELS WITH ORACLE SUPER-
VISION

In this chapter, we address RQ3 and focus on the learning from noisy labels using oracle
supervision. This involves training data with noisy labels that require correction by an
oracle (experts or humans). With a limited budget for obtaining correct labels from
the oracle, it becomes crucial to select the most informative samples that contribute
effectively to the training process.
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Figure 1.9: An overview of the mechanism QActor in Chapter 4.
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We introduce Quality-driven Active Learning (QActor), a mechanism that combines
quality models and active learning (see Figure 1.9). QActor filters data into clean and
noisy categories, employs our novel proposed noise-aware measure called CENT for
informative sample selection, and dynamically adjusts query allocation based on training
loss. Our experimental results show that QActor achieves high accuracy with minimal
oracle queries, outperforming existing methods. Contributions include QActor’s design,
CENT measure, and dynamic learning strategy, addressing the dynamic allocation of an
active learning budget. This study is the first to address the dynamic allocation of an active
learning budget in the presence of noisy labels, further enhancing the understanding
and capabilities of learning from noisy data. This chapter is based on the following
publication:

Taraneh Younesian, Zilong Zhao, AmirMasoud Ghiassi, Robert Birke, Lydia Y.Chen,
"QActor: Active learning on noisy labels", The 13th Asian Conference on Machine Learn-
ing (ACML), 2021. T. Younesian contributed to the idea, the proposed method, proof of
the theorem, evaluation, and writing. Z. Zhao contributed to the evaluation of baselines.
The author of this thesis contributed to the design of the proposed method, the proof of
the theorem, evaluation, and writing.

1.11.4. [CHAPTER 5] LEARNING FROM NOISY LABELS WITH LABEL AGGRE-
GATION APPROACH

In this chapter, we address RQ4 and focus on learning from noisy labels using a label
aggregation approach, which considers multiple sources of labeling with varying capa-
bilities. These sources may provide labels of different quality, some of which might be
correct or corrupted.

...

Unlabeled Samples
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Label 
Aggregator

Classifier

Aggregated 
Labels

Figure 1.10: An overview of the mechanism LABNET in Chapter 5.

To tackle this scenario, we propose a collaborative mechanism called LABNET, which
combines a deep neural network (DNN) model and a label aggregation method to leverage
the knowledge from different sources and provide mutual feedback (see Figure 1.10). LAB-
NET bridges the gap between label aggregation and image classification, enabling iterative
interactions between the two components. The DNN extracts features that are shared
with the label aggregation algorithm to enhance the quality of annotated labels, while the
aggregated labels are used to train the DNN. We employ the Expectation-Maximization
(EM) algorithm for label aggregation, utilizing the softmax output of the DNN as prior



1

20 1. INTRODUCTION

probabilities. Furthermore, we introduce an algorithm to determine the optimal timing
for training the DNN based on the cross-entropy between aggregated labels and previous
predictions. Experimental evaluations on well-known image datasets demonstrate that
LABNET achieves superior classification accuracy and lower label aggregation error rates
compared to existing methods. The key features of this mechanism are rooted in the
collaborative nature of LABNET, which incorporates both features and labels into the
EM algorithm and DNN. Additionally, LABNET introduces an algorithm to determine
the optimal timing for training the deep neural network. This algorithm relies on the
cross-entropy between the aggregated labels and the labels predicted by the DNN in the
previous training round. This chapter is based on the following publication:

AmirMasoud Ghiassi, Robert Birke, and Lydia Y.Chen, "LABNET: A collaborative
method for DNN training and label aggregation", International Conference on Agents
and Artificial Intelligence (ICAART), 2022.

1.11.5. [CHAPTER 6] ROBUST MULTI-LABEL LEARNING

In this chapter, we address RQ5 and delve into the more complex and realistic problem of
noisy multi-label classification. In multi-label learning, each data sample is associated
with a set of labels that may suffer from errors or missing annotations. Our objective
is to address this problem by extending the robustness of multi-class DNN methods to
multi-label classifiers, ultimately enhancing the accuracy of multi-label classification in
the presence of noisy labels (see Figure 1.11).

To achieve this goal, we propose two mechanisms that aim to improve the perfor-
mance of multi-label classification models when dealing with noisy labels. The first
method, known as Trusted Loss Correction for Multi-Label Learning (TLCM), leverages
partially cleansed data and involves estimating the noise corruption matrix. By utilizing a
small fraction of the trusted data, we can estimate the extent of label corruption and ef-
fectively tackle the label imbalance issue commonly encountered in multi-label learning.
This approach specifically addresses the challenges posed by noisy and imbalanced label
distributions, ultimately enhancing the accuracy of multi-label classifiers.

MLLSC
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Ground Truth Set: Cat, Sunglasses, Hat, Coke, 
Popcorn

Given Labels: Person, Sunglasses, Hat, Popcorn
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Figure 1.11: An overview of the proposed mechanisms MLLSC and TLCM in Chapter 6.

The second method we propose is a robust loss function called Multi-Label Loss Cor-
rection against Missing and Corrupted Labels (MLLSC). Unlike traditional loss functions,
MLLSC does not rely on additional data or expert supervision. It is specifically designed to
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mitigate the negative impact of noisy labels in multi-label classification. By incorporating
robustness directly into the loss function, MLLSC improves the model’s resilience to
label noise, enabling enhanced performance even when clean or expert-labeled data is
unavailable.

By combining these two mechanisms, we provide a comprehensive solution for effec-
tively addressing noisy labels in multi-label classification. Our methods leverage both
partial cleansed data supervision through TLCM and the robust loss function of MLLSC,
allowing us to effectively handle label corruption and missing annotations. As a result, we
significantly improve the accuracy and reliability of multi-label classifiers. The research
presented in this chapter is based on the following papers:

AmirMasoud Ghiassi, Cosmin Octavian Pene, Robert Birke, and Lydia Y.Chen,
"Trusted Loss Correction for Noisy Multi-Label Learning", The 14th Asian Conference on
Machine Learning (ACML), 2022. C.O. Pene contributed to the idea, proposed method,
implementation, and evaluation.

AmirMasoud Ghiassi, Robert Birke, and Lydia Y.Chen, "Multi Label Loss Correction
against Missing and Corrupted Labels", The 14th Asian Conference on Machine Learning
(ACML), 2022.
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RECOVERING NOISY LABELS WITH

CLEANSED DATA SUPERVISION

Today’s availability of large-scale datasets from social media and open platforms presents
significant opportunities and challenges for deep learning. However, these datasets often
suffer from label noise and errors. In this work, we propose two novel approaches to enhance
the robustness of deep learning models against noisy labels.

The first approach introduces LABELNET, a framework that leverages noisy labels as learn-
ing features to improve classification performance. LABELNET consists of two components:
Amateur and Expert. Through iterative learning, Amateur, a regular image classifier, re-
ceives feedback from Expert, simulating human expert corrections based on both noisy and
ground truth labels. By effectively utilizing images and their noisy labels, the trained Ama-
teur and Expert collaboratively infer image classes. Experimental evaluations on various
datasets, including noisy versions of MNIST, CIFAR-10, CIFAR-100, and real-world data
(Clothing1M), demonstrate the robustness of LabelNet in achieving accurate classification
even in the presence of noise and with limited training data.

The second approach addresses the challenge of label noise in large datasets and introduces
TrustNet, a framework for robust weakly-supervised classifiers. TrustNet learns the patterns
of noise corruption, including both symmetric and asymmetric patterns, from a small set
of trusted data. It employs a robust loss function that weighs given labels against inferred
labels derived from the learned noise pattern. Additionally, TrustNet dynamically adjusts
the weights based on model uncertainty during training. Evaluations on synthetic label
noise using CIFAR-10, CIFAR-100, and real-world datasets (Clothing1M) demonstrate the
superior robustness of TrustNet across diverse noise patterns, outperforming state-of-the-art
methods.
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2.1. INTRODUCTION
The proliferation of big data systems has brought about a wealth of opportunities for deep
learning. However, the presence of label noise and errors in large-scale datasets poses
significant challenges to the effectiveness of deep learning models [81]. Label noise refers
to the incorrect or corrupted labels associated with training data, which can adversely
affect model performance. Addressing this issue has become a crucial research area,
focusing on developing robust approaches that can handle label noise and improve the
reliability and accuracy of deep learning models.

The first approach introduces the LabelNet framework, designed to enhance the
robustness of deep models against noisy labels [82]. LabelNet consists of two components:
Amateur and Expert. The Amateur component functions as a regular image classifier
trained with feedback from the Expert component. The Expert component emulates
the corrections that human experts would make to the predicted labels generated by
the Amateur using the noise patterns derived from both the noisy and ground truth
labels. By leveraging the images and their noisy labels, the trained Amateur and Expert
collaboratively infer image classes, thereby improving classification performance even in
the presence of label noise.

Meanwhile, the second approach addresses the challenges posed by label noise in
large datasets [83]. The authors present the TrustNet framework, a robust learning ap-
proach specifically tailored for weakly-supervised classifiers. TrustNet starts by learning
the patterns of noise corruption, encompassing both symmetric and asymmetric patterns,
from a small set of trusted data. It utilizes a robust loss function that weighs the given
labels against the inferred labels derived from the learned noise pattern. Additionally,
TrustNet dynamically adjusts the weights based on model uncertainty during training,
further enhancing its resilience against label noise.

While prior research has primarily focused on synthetic noise patterns, such as sym-
metric and asymmetric noise, both approaches acknowledge the importance of address-
ing real-world noise patterns prevalent in big data sets [25], [34], [84]. Real-world noise
patterns often exhibit more intricate and diverse characteristics, necessitating specialized
techniques to accurately model and handle them.

By presenting the first and second approaches, this paper aims to tackle the challenges
of label noise in big data systems and enhance the robustness of deep learning models
against noisy labels. The LabelNet and TrustNet frameworks offer promising solutions by
incorporating the noisy labels as learning features and leveraging noise pattern model-
ing and dynamic weighting strategies. Through comprehensive evaluations on various
datasets, including synthetic label noise and real-world big data sets, both approaches
demonstrate their effectiveness in achieving higher accuracy and robustness compared
to existing state-of-the-art methods [82], [83].

2.2. PROBLEM STATEMENT OF LABELNET
Motivated by the significant impact of noisy labels, the prior art [85] derives different
robust deep networks with a central theme to distill the influence of noisy labels in the
model training process without the knowledge of the label ground truth. As a result,
the learned networks can robustly classify images in a stand-alone manner. D2L [34]
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estimates the Local Intrinsic Dimension (LID) at each epoch as a proxy to indicate the
existence and impact of dirty labels. Co-teaching [61] trains two networks simultaneously
by exchanging the weights updated from possibly clean data. Forward [70] uses a noise-
aware correction matrix to correct labels and train the network. Bootstrap [52] has a loss
function which combines predicted and noisy labels.

While prior art significantly improves the robustness of deep networks, the pre-
assumed scenarios overlook the opportunity of noisy labels. On the one hand, today’s
image data are often bundled with labels of questionable quality and detrimental impact
on the learning. On the other hand, such labels provide auxiliary information which can
compliment the learnt knowledge of deep networks trained solely on image inputs. The
core idea behind visual-semantic models, e.g., DeVise [86], is to combine the learning
capacities of labeled images and annotated data. C-GAN [87] (conditional generative
adversarial network) improves the quality of images synthesized by the generator network
via additional label information and RC-GAN [88] further addresses the challenge of dirty
labels for C-GAN.

In this chapter, we advocate to leverage the noisy labels as an additional feature to
derive a stronger classifier. We consider learning scenarios where at training time both
the ground truth and noisy labels are available, and only noisy labels at inference time. In
particular difficult classification problems, whose labels require a high degree of expertise,
can fit this scenario well. One such example is cancer detection from medical images.
This is a daunting task, and even trained experts are prone to make errors. Hence, these
images are evaluated by multiple doctors of varying expertise. In such a setting, both
noisy (first evaluation by one expert) and true labels (e.g., stemming from a committee or
subsequent in-depth exams) are available at the same time.

We derive a robust network, namely LABELNET, composed of Amateur and Expert,
where the former classifies images based on the feedback from Expert and the latter
learns how to correct the output of Amateur like human experts. Both models are trained
simultaneously at each minibatch. Amateur learns to classify the input images to the
corrected labels from Expert, and the softmax output of Amateur plus the given labels are
inputs to train Expert to match the ground truth. Amateur can be seen as a regular image
classifier, which Expert helps it to be aware of the presence of noisy labels. Such trained
Amateur and Expert can then classify images based on the image and corresponding
noisy label.

We empirically evaluate LABELNET on synthetic noise injected into MNIST, CIFAR-
10 and CIFAR-100, and noise drawn from real world contained in Clothing1M. For a
fair comparison with state-of-the-art robust deep models, we present the classification
accuracy in both Amateur only and complete LABELNET model under different subsets
of training inputs. LABELNET consistently outperforms existing image-only models, i.e.,
D2L, Co-teaching, Forward and Boostrap, especially for CIFAR-100. When using the same
amount of training data, LABELNET can achieve absolute accuracy improvements of 5%
up to 30%. LABELNET reaches similar or higher accuracy than image-only models even
with just 20% of training data in the case of CIFAR-100.

Our contribution can be summarized as follows. First, we derive a novel network
framework, i.e., LABELNET, that turns noisy labels into auxiliary learning advantages
via imitating human experts. Secondly, we significantly improve the robustness of deep
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networks against noisy labels compared to models based on images only.
The problem considered here is as follows. Images collected in the public domain are

tagged with pre-existing noisy labels, whose true classes can be corrupted. We assume
that label noises follow random distribution. We illustrate in Figure. 2.1 (black elements
only) the learning procedure that is commonly deployed by robust deep networks [34],
[52], [61], [70], [89]. The deep networks are trained by a set of images and labels, which
are noisy, meaning with incorrect label classes. The objective of the training process is to
minimize the loss function, which may be modified to be noise tolerant [34]. The network
architecture may consist of different components, e.g., two networks that train each other
in parallel [61] or sequentially [70] via stochastic gradient descent. In the inference phase,
images are then fed into the trained network, and the prediction accuracy is computed
based on true labels. The core idea behind such a learning process is to filter out the
negative impact of noisy labels during training and learn a model from clean information.

In contrast to indirectly learning the noise dynamics of the label, our core idea is to
leverage noisy labels as part of the training and inference input, as shown in Figure. 2.1
(including green elements), to directly learn the noisy label dynamics and incorporate
that as auxiliary input into the training process. To such an end, the ground truth of labels
is assumed from human experts or oracles and provided as part of the training input.
Essentially, the networks are trained by three inputs: images, their noisy labels, and the
ground truth labels. Afterward, the trained network will be tested on images and their
noisy labels. The classifier can then classify images based on image inputs and limited
label info.
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Figure 2.1: Training (left) and inference (right) with noisy labels for regular noise resilient methods (without
green elements) vs. LABELNET (with green elements).

2.3. PROBLEM STATEMENT OF TRUSTNET
Nowadays big data systems allow collecting and processing immense datasets which
shifts the bottleneck for deep learning from computing resources to providing high quality
labels [81]. Big data systems allowed for a surge of massive self-generated data. However,
it is shown that big data training sets collected from the wild can contain corrupted
labels as high as 40% [25]. Even popular and curated learning datasets include varying
degrees of wrong labels with bigger sets tending to have higher noise ratios, e.g., 10.12%
for the QuickDraw dataset with 50M samples and 5.83% for the ImageNet dataset with
50K samples [26], [28]. The high learning capacity of deep neural networks can memorize
the pattern of correct data and, unfortunately, dirty data as well [43]. As a result, when
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training on data with non-negligible dirty labels, the learning accuracy of deep neural
networks can significantly drop [44].

While the prior art deems it imperative to derive robust neural networks that are
resilient to label noise, there is a disparity in which noise patterns to consider and evaluate.
The majority of deep networks robust against dirty labels focuses on synthetic label noise,
which can be symmetric or asymmetric. The former case [74] assumes noise labels can
be corrupted into any other classes with equal probability. The later case [63] assumes
only a particular set of classes are swapped, e.g., truck images are often mislabeled as
automobile class in CIFAR-10. Patterns of noisy labels observed from real-life big data
sets, e.g., Clothing1M [25], exhibit not only high percentages of label noise but also
more complicated patterns mixing symmetric and asymmetric noises. Moreover, there
is disagreement among related work on which noise patterns are more detrimental and
difficult to defend against for regular networks [34], [84].

Noise patterns are commonly captured in transition matrices [74], which describe the
probability of how a true label is corrupted into another fake and observable label. A large
body of prior art estimates such a label transition matrix without knowing the true labels
and incorporates such information into the learning process [70]. Accurate estimation of
the transition matrix can improve the robustness of neural networks, but it is extremely
complicated when lacking the information on true labels and encountering sophisticated
noise patterns [83], [90].

Joint training on clean and adversarial examples with known ground truth is shown
effective [91], [92] to enhance the robustness of deep models against noisy and poisonous
labels. Nonetheless, it is costly to obtain label ground truth. To take advantage of adver-
sarial examples and avoid its high overhead, we advocate to use only a fraction of trusted
data that contain not only given labels but also the expert-validated true labels for the
same. Moreover, we opt to use such small set to mainly supervise the training of transition
matrix, instead of supervising the classifier directly as done in most adversarial learning.

In this paper, we first develop a thorough understanding of the noise patterns, rang-
ing from symmetric and asymmetric. We extend the analysis from [74] and derive the
generalized analysis for classification test accuracy under any given noise pattern. Our
theoretical analysis compares real-world noise patterns against synthetic, symmetric,
and simple asymmetric, noise. Our findings on a diverse set of noise patterns lead us
to focus on challenging cases where existing robust networks [34], [70], [93] may fall
short of defending against. The second contribution of this paper is to introduce a new
robust learning framework TrustNet. Specifically, we adopt the idea in LABELNET [82]
to estimate the noise transition matrix via training on a small set of trusted data, i.e.,
10% of the training data and provide estimated labels – additional label information.
TrustNet extends LABELNET by weighting the loss of the given labels and inferred labels
to enhance the model performance. The specific weights are dynamically adjusted every
epoch, based on the model confidence. Thirdly, we evaluate TrustNet on multiple big
data vision sets. We use the curated CIFAR-10 and CIFAR-100 sets with labels corrupted
by synthetically generated noise transition patterns. TrustNet is able to achieve higher
accuracy than SCL [63], D2L [34], Boostrap [94], Forward [70], and Co-teaching+ [95] in
all most challenging scenarios. We also demonstrate the effectiveness of TrustNet on a
big data vision set collected in the wild, i.e., Clothing1M, again achieving higher accuracy
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than state-of-the-art baselines.

2.4. RELATED WORK
The problem of noisy labeled data has been addressed in several recent studies. We
first summarize the impact of noise patterns, followed by the defense strategies that
specifically leverage noise patterns.

2.4.1. NOISY LABELS IN BIG DATA

The existence of wrong labels in Big Data sets is inevitable [28]. Several studies indicate
the presence of noisy labels in both training sets [96]–[98] and testing sets [22], [26], [28].
The amount of errors, i.e. noise level, varies according to the label collection method,
the annotators expertise, and, most relevantly, the size of the dataset [99]. For instance,
[100] and [97], [101] study the noisy labels in the WebVision and ImageNet datasets,
respectively, two of popular big vision datasets with over 24.M and 14M images. However,
this phenomena goes beyond image labelling. Recent studies [26], [28] find label errors in
many even highly popular learning datasets from diverse domains.

2.4.2. IMPACT OF NOISE PATTERNS

Understanding the effect of label noise on the performance of the learning models is
crucial to make them robust. The impact of label noise in deep neural networks is first
characterized [74] by the theoretical testing accuracy over a limited set of noise patterns.
We generalize the theoretical test accuracy proposed by [74] for different noise patterns
by using a generic transition matrix. [84] suggests an undirected graphical model for
modeling label noise in deep neural networks, indicating the symmetric noise to be
more challenging than asymmetric. Multiple untrusted data sources are studied by [102],
considering label noise as one of the attributes of mistrust. However, it remains unclear
how various kinds of noise patterns impact learning.

2.4.3. NOISE RESILIENT NETWORKS

SYMMETRIC NOISE

The following studies tackle the problem of symmetric label noise, meaning that corrupted
labels can be any of the remaining classes with equal probability. One approach is to
train the network based on noise resilient loss functions. D2L [34] monitors the changes
in Local Intrinsic Dimension (LID) and incorporates LID into their loss function for
the symmetric label noise. [49] introduces a loss correction technique and estimates a
label corruption matrix for symmetric and asymmetric noise. Leveraging two different
neural networks is another method to overcome label noise. Co-teaching [61] and Co-
teaching+ [95] trains two neural networks while crossing the samples with the smallest
loss between the networks for both noise patterns. [85] combats uniform label flipping
via a curriculum provided by the MentorNet for the StudentNet. However, these works do
not explicitly model the noise pattern in their resilient models. Although LABELNET [82]
learns the noise pattern by training a DNN with ground truth and noisy labels, it requires
the ground truth of all the samples. We aim to solve this issue by reducing the dependency
on the ground truth via TrustNet.
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ASYMMETRIC NOISE

Another stream of related work considers both symmetric and asymmetric noise. One key
idea is to differentiate clean and noisy samples by exploring their dissimilarity. [103], [104]
introduce class prototypes for each class and compare the samples with the prototypes to
detect noisy and clean samples. Decoupling [105] uses two neural networks and updates
the networks when a disagreement happens between the networks. Estimation of the
noise transition matrix is another line of research to overcome label noise, introduced
in Masking [106] and Forward [70] to correct the labels. However, these studies fail to
consider the information in the noisy labels to estimate the matrix. Building a robust
loss function against label noise has been studied in the following works, although the
dynamics of the learning model seem to be neglected. SCL [63] and [107] provide robust
loss function by adding regularization term. Bootstrapping [94] combines perceptual
consistency with the prediction objective by using a reconstruction loss. Meta-Weight-
Net [57] uses multi-layer perceptron to re-weight samples during learning process in
the loss function. With the same perspective, [108] re-weights samples based on their
similarity to a clean validation set. The studies [109], [110] changes the architecture of
the neural network to tackle the problem. In this work, we study both symmetric and
various kinds of asymmetric label noise. We leverage the information of the trusted data,
containing both noisy labels and ground truth, to accurately estimate the noise transition
matrix. Furthermore, we benefit from a dynamic update in our proposed loss function to
tackle the label noise problem.

2.5. UNDERSTANDING DNNS TRAINED WITH NOISY LABELS

In this section, we present theoretical analysis on the test accuracy of deep neural net-
works assumed to have high learning capacity. Test accuracy is a common metric defined
as the probability that the predicted label is equal to the given label. We extend prior
art results [74] by deriving test accuracy for generic label noise distributions. We apply
our formulation on three exemplary study cases and verify the theoretical values against
experimental results. Finally, we compare test accuracy curves for different noise patterns
providing insights on their difficulty for regular networks.

2.5.1. PRELIMINARIES

Consider the classification problem having dataset D = {(x1, y1), (x2, y2), ..., (xN , yN )}
where xk denotes the k th observed sample, and yk ∈ C := {0, ...,c −1} the correspond-
ing given class label over c classes affected by label noise. Let F (·,θ) denote a neural
network parameterized by θ, and yF denote the predicted label of x given by the net-
work yF =F (x ,θ). The label corruption process is characterised by a transition matrix
Ti j = P (y = j |ŷ = i ) where ŷ is the true label. Synthetic noise patterns are expressed as
a label corruption probability ε plus a noise label distribution. For example, symmetric
noise is defined by ε describing the corruption probability, i.e. Ti i = 1−ε,∀i ∈C , plus a
uniform label distribution across the other labels, i.e. Ti j = ε

c−1 ,∀i ̸= j ∈C .
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2.5.2. GENERALIZATION OF TEST ACCURACY

To generalize the previous test accuracy [74], we first consider the case where all classes
are affected by the same noise ratio. We then further extend to the case where only a
subset of classes is affected by noise. To derive the following Lemmas we assume that F

is a perfect Deep Neural Network (DNN) having sufficient high capacity to learn the given
pattern with high accuracy. This is the same assumption used by related work, i.e. [44],
[74].

All class noise: All classes are affected by the same noise ratio ε, i.e., meaning only
1−ε percentage of given labels are the true labels.

Lemma 1 For noise with fixed noise ratio ε and any given label distribution with proba-
bility function P (y = j ),∀ j ̸= i , where i ∈C is the true label, the test accuracy is

P (yF = y) = (1−ε)2 +ε2
C∑

j ̸=i
P 2(y = j ) (2.1)

Proof: We have that Ti i = 1−ε,∀i ∈C since all classes are affected by the same noise
ratio. Moreover, the probability of selecting noisy class labels is scaled by the noise ratio
Ti j = ε P (y = j ), j ̸= i ∈C . Now:

P (yF = y) =
C∑
i

P (ŷ = i )P (yF = y |ŷ = i ) =
C∑
i

P (ŷ = i )
C∑
j

T 2
i j

=
C∑
i

P (ŷ = i )[T 2
i i +

C∑
j ̸=i

T 2
i j ] =

C∑
i

P (ŷ = i )[(1−ε)2 +ε2
C∑

j ̸=i
P 2(y = j )].

(2.2)

Since
∑C

i P (ŷ = i ) = 1, we obtain Eq. 2.1. □
Partial class noise: in this pattern only a subset S of class labels are affected by a noise

ratio, whereas the set U =C \ S is unaffected by any label noise.

Lemma 2 For partial class noise with equal class label probability, where S is the set
affected by noise with ratio ε and U is the set of unaffected labels, for any true label i ∈C
and any given label distribution with probability function P (y = j ),∀ j ̸= i , the test accuracy
is

P (yF = y) = |U |
|C | +

|S|
|C | [(1−ε)2 +ε2

S∑
j ̸=i

P 2(y = j )] (2.3)

Proof: We have that for affected labels in S the same noise transition definitions hold,
i.e. Ti i = 1−ε,∀i ∈ S and Ti j = ε P (y = j ), j ̸= i ∈ S. For unaffected labels we have that
ε = 0 hence Ti i = 1,∀i ∈U and Ti j = 0, j ̸= i ∈U . Moreover, P (ŷ = i ) = 1

|C | assuming all
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class labels are equally probable. Now:

P (y f = y) =
C∑
i

P (ŷ = i )P (y f = y |ŷ = i )

=
|U |∑

i
P (ŷ = i )P (y f = y |ŷ = i )+

|S|∑
i ′

P (ŷ = i ′)P (y f = y |ŷ = i ′)

=
U∑
i

P (ŷ = i )
U∑
j

T 2
i j +

S∑
i ′

P (ŷ = i ′)
S∑
j ′

T 2
i ′ j ′

=
U∑
i

P (ŷ = i )[T 2
i i +

U∑
j ̸=i

T 2
i j ]+

S∑
i ′

P (ŷ = i ′)[T 2
i ′i ′ +

S∑
j ′ ̸=i ′

T 2
i ′ j ′ ]

= 1

|C |
U∑
i

[T 2
i i +

U∑
j ̸=i

T 2
i j ]+ 1

|C |
S∑
i ′

[T 2
i ′i ′ +

S∑
j ′ ̸=i ′

T 2
i ′ j ′ ]

= 1

|C |
U∑
i

1+ 1

|C |
S∑
i ′

[(1−ε)2 +ε2
S∑

j ′ ̸=i ′
P 2(y = j ′)]

=|U |
|C | +

|S|
|C | [(1−ε)2 +ε2

S∑
j ′ ̸=i ′

P 2(y = j ′)]

□
The goal of Lemma 1 and Lemma 2 is to generalize the test accuracy proposed by [74]

to noises characterized by a generic transition matrix Ti j .

2.5.3. VALIDATION OF THEORETICAL ANALYSIS
We validate our extension of test accuracy on three various noise patterns for CIFAR-10
under different noise ratios and comparing the theoretical estimation with empirical
accuracy results.

As the first new noise pattern, we consider noisy class labels following a truncated
normal distribution N T (µ,σ, a,b). This noise pattern is motivated by the targeted adver-
sarial attacks [111]. We scale N T (µ,σ, a,b) by the number of classes and center it around
a target class c̃ by setting µ= c̃ and use σ to control how spread out the noise is. a and
b simply define the class label boundaries, i.e. a = 0 and b = c −1. To compute the test
accuracy, we estimate the empirical distribution at the different classes and apply Eq. 2.1.
The second noise pattern extends our previous case. This distribution, referred in short
as bimodal hereon, combines two truncated normal distributions. It has two peaks in
µ1 and µ2 with two different shapes controlled by σ1 and σ2. The peaks are centered on
two different target classes µ1 = c̃1 and µ2 = c̃2. The third noise pattern considers partial
targeted noise where only a subset of classes, [2,3,4,5,9] in our example, are affected by
targeted noise, i.e. swapped with a specific other class. Here we rely on Eq. 2.3 to estimate
test accuracy. This noise pattern has been studied in [63].

Figure. 2.2 summarizes the results. The first row compares the theoretical curves
against the empirical results obtained by corrupting CIFAR-10 dataset with different
noise ratios from clean to fully corrupted data: 0 ≤ ε≤ 1. The highest deviation between
theoretical (lines) and empirical (points) results occurs for truncated normal noise around
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ε= 1.0. Here the theoretical accuracy is 13.46% points worse than the measured accuracy.
For the other two, the deviation is at most 7.69% and 6.73% (without considering ε= 0.0)
for bimodal and partial targeted noise, respectively. Overall, the theoretical and empirical
values match well across the whole range of noise ratios.
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Figure 2.2: Test Accuracy under Different Noise Ratios on CIFAR-10: The top row showcases theoretical (lines)
vs. empirical (points) under varying noise ratios for (a) truncated normal, (b) bimodal, and (c) partial targeted.
The bottom row analyzes noise parameters variation for (d) truncated normal and (e) bimodal patterns, and (f)
compares all patterns to real-world noise comprehensively.

2.5.4. IMPACT OF DIFFERENT NOISE PATTERNS
We conclude by using our theoretical analysis to compare the impact on test accuracy of
different noise patterns. First, we consider different parameters for truncated normal and
bimodal noises and finish with comparing all noise patterns from here, in [74] and the
real-world noise pattern from [25].

Figure. 2.2, the second row shows all results. We start with truncated normal noise
with a fixed target class and different σ. Higher values of σ result in a wider spread of label
noise across adjacent classes as shown in Figure. 2.2(d). Under lower noise ratios, e.g.,
ε< 0.5, the impact of varying σ is negligible, as shown by the overlapping curves. After
that, we see that the most challenging cases are with high values of σ due to the wider
spread of corrupted labels deviating from their true classes. Similarly to the previous
analysis, for bimodal noise, we fix the target classes, i.e., µ1 and µ2, while varying the
variances around the two peaks, i.e.,σ1 andσ2. Overall the results are similar to truncated
normal noise, but we can observe that the sensitivity to σ is lower (see Figure. 2.2(e)) even
if on average test accuracy of truncated normal is higher than bimodal noise. For instance,
in case of ε= 1.0 the difference between σ= 0.5 and σ= 1 is 16.26% for truncated normal,
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but only 11.11% for bimodal. Hence, bimodal tends to be more challenging since lines
for different σ are all more condensed around low values of accuracy with respect to
truncated normal noise.

To conclude, we compare all synthetic symmetric and asymmetric noise patterns
considered against the real-world noise pattern observed on the Clothing1M dataset [25]
(see Figure. 2.2(f)). The measured noise ratio of this dataset is ε = 0.41. To estimate
the test accuracy, we scale the noise pattern to different ε by redistributing the noise,
such as to maintain all relative ratios between noise transition matrix elements per class.
This imposes a lower limit on the noise ratio of ε= 0.36 to be able to keep all elements
within the range [0,1]. As intuition can suggest, partial targeted noise has the least impact
since it only affects a fraction of classes. More interestingly, we see that the decrease in
accuracy for all asymmetric noise patterns is not monotonic. When noise ratios are high,
another class becomes dominant, and thus it is easier to counter the noise pattern. On
the contrary, all curves tend to overlap at smaller noise ratios, i.e., noise patterns play
a weaker role compared to at higher noise ratios. Finally, the real-world noise pattern
almost overlaps with bimodal. This might be due that errors in Clothing1M often are
between two classes sharing visual patterns [25].

2.6. LABELNET METHODOLOGY
Consider the classification problem having training set T =
{(x1, y1, ŷ1), (x2, y2, ŷ1), ..., (xN , yN , ŷN )} where xi denotes the i th observed sample,
and ŷi ∈ {0,1}K and yi ∈ {0,1}K the corresponding label vectors over K classes represent-
ing the clean ground truth and noisy given classes, respectively. Traditional classification
problems only use the sample xi and its true label ŷi . However, real-world datasets are
typically affected to various degrees by label noise. Hence, for some samples, the given
label yi is different from the true label ŷi even in the training set. The core contribution
of the paper is a model, named LABELNET, which leverages both xi and yi to predict ŷi ,
instead of only xi . Using this additional information enables the model to significantly
boost the accuracy.

2.6.1. LABELNET ARCHITECTURE

We address this problem via LABELNET comprising two neural networks complete with a
traditional softmax output layer named Amateur A and Expert E . Figure. 2.3 shows how
the two networks are interconnected. The goal of the Amateur is to predict the label ŷA

i
of an observed sample xi while Expert aims at correcting, if necessary, this prediction
based on the output of the Amateur and the given label yi . The label corrected by the
Expert ŷE

i is provided as feedback to the Amateur during training closing the loop.

Expert acts as a supervisor which reviews and corrects the predictions of Amateur by
comparing it to another label source: the given labels y . We need Expert because both
label sources are affected by errors stemming from an imperfect model for the former and
from label noise for the latter. From this point of view, we can consider the given labels
y as the output of a second external independent imperfect model which is prone to
make different errors than Amateur. The idea of having Expert is to leverage not only the
intrinsic properties of single models, as most related work does, but also the differences
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Figure 2.3: LABELNET Architecture including Amateur and Expert networks.

across the models. In the simplest case, if model A is good at classifying dogs and model B
in classifying cats, we could learn to trust more model A when predicting dogs and model
B when predicting cats. However, cases are rarely as easy, and we resort to the Expert
model to learn these patterns.

To decide the type of information to exchange between Amateur and Expert, we
consider that the output layer of neural networks is traditionally a softmax transformation
σ(zk ) = ezk /

∑K
j=i ez j . This ensures that the output vector elements are all in the range

z j ∈ 0,1, j = 1...K and their sum is
∑K

j=1 z j = 1 satisfying the properties of a probability
distribution. This probability distribution is more informative about the correctness of
the prediction [91] because it intrinsically includes information on how confident, i.e.
how sharp, or how insecure, i.e. spread out, the model is on the prediction of the most
likely class. Hence, we use this as the input to Expert from Amateur rather than the sole
predicted class.

The task of Amateur is to classify images. This fits well the classic state-of-the-art
DNN vision-models. In our evaluation, we use the CNN defined in [112] having three
blocks of two convolutional layers plus one pooling layer followed by a fully connected
layer and the softmax output layer. Instead, the task of Expert is to decide the correct label
based on the concatenation of the class probability and given label vectors. Here we use a
shallower multilayer perceptron.

2.6.2. LABELNET TRAINING

Let FA (·;θA ) parameterized by θA and F E (·;θE ) parameterized by θE be the prediction
functions. FA () and F E () output the class probabilities predicted by the final softmax
layer of Amateur and Expert, respectively. The training loss functions can be written as
follows:

lA = min
θA

N∑
i=1

L (F E (<FA (xi ), yi >;θE ),FA (xi ;θA )) (2.4)
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Algorithm 1: Training LABELNET

Input :Training set T made of: Observed samples x , Given labels y , True labels ŷ
Output :Trained Amateur A and Expert E

1 Initialize A and E with random θA and θE

2 for training iteration do
3 for each batch B{x , y, ŷ} from T do
4 ŷA := Predict label probabilities of x by A

5 z := concatenate < ŷA , y >
6 Train E with pair (z , ŷ) updating θE

7 ŷE := Predict corrected label probabilities from z by E

8 Train A with pair (x , ŷE ) updating θA

9 end
10 end

lE = min
θE

N∑
i=1

L (ŷi ,F E (<FA (xi ), yi >;θE )) (2.5)

where < ·, · > is the concatenation function of two vectors and L the loss over the K
classes. For both networks we use L equal to the cross-entropy loss fitting well the
probabilistic output of softmax layer. L increases as predicted probability diverges from
expected label.

To train the model we use the alternating minimization approach on batches of data.
We first train the Expert based on the output of the Amateur then the Amateur based on
the feedback from the Expert. Algorithm 1 details this process. After random initialization
of the weights θA and θE (Step 1) for each training step and data batch, we use A to
predict the labels ŷA of the observed images x (Step 4). ŷA is concatenated with the
given labels y (Step 5) as input to train E together with the true labels ŷ (Step 6). After that
in turn we use E to predict the corrected labels ŷE (Step 7) and train A based on the pair
(x , ŷE ) (Step 8). We use stochastic gradient descent with momentum and learning rate
decay to update θE and θA .

2.7. TRUSTNET METHODOLOGY
In this section, we present our proposed robust learning framework, TrustNet, featuring
on a light weight estimation of noise patterns and a robust loss function.

2.7.1. TRUSTNET ARCHITECTURE
Consider extending the classification problem from Preliminaries section with a set of
trusted data, T = {(x1, y1, ŷ1), (x2, y2, ŷ1), ..., (xN , yN , ŷN )}. T is validated by experts and
has for each sample x both given y and true ŷ class labels. Hence, our classification
problem comprises two types of datasets: T and D, where D has only the given class
label y . The given class labels y in both data sets are affected by the same noise pattern
and noise ratio. Further, we assume that T is small compared to D, i.e. |T | << |D|, due
to the cost of experts’ advise. Corresponding to the two datasets, TrustNet consists of two
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Figure 2.4: Overview of the TrustNet architecture and integration with LABELNET for generating estimated
labels.

training routines highlighted by the top and bottom halves of Figure. 3.3.

First (top half), we adopt the architecture of LABELNET [82] and leverage the trusted
dataset to learn the underlying noise transition matrix. TrustNet uses LABELNET to learn
the noise transition matrix and estimate the true labels for the untrusted data. LABELNET

is a deep neural network jointly trained on the given and true labels, however, it requires
the ground truth of all the data. Since acquiring the ground truth of the data in real-world
scenarios is extremely expensive and time consuming, we reduce this cost by modifying
LABELNET via introducing a weighted loss function, which we describe in § 2.7.3.

Second (bottom half), the trained LABELNET is used to derive a dataset D′ from D by
enriching it with estimated class labels ỹ inferred by LABELNET (blue path). Hence D′ =
{(x1, y1, ỹ1), (x2, y2, ỹ2), ..., (xN , yN , ỹN )}. Then, we train a deep neural network, F (·,θ), on
D′ using the proposed robust loss function from Noise Robust Loss Function section. We
note that the trusted data is used only to train LABELNET, not F (·,θ).

As we mentioned in § 2.5, the proposed Lemma 1 and Lemma 2 show an extension
of the DNN memorization effect on test accuracy [44], [74] to the noise patterns used to
evaluate TrustNet. TrustNet intends to reduce the memorization effect for noise with a
two-stage approach. The first stage corrects the noisy labels and the second stage uses a
weighted loss function on the given and the corrected labels.
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2.7.2. ESTIMATING NOISE TRANSITION MATRIX
As we mentioned in § 2.6 during training, first Amateur provides for a sample xk a predic-
tion of the class probabilities yA

k to Expert. Expert uses yA
k concatenated with the given

class label yk to learn to predict the ground truth class label ŷk . In turn, the predicted
label from Expert yE

k is provided as feedback to train Amateur. In summary, training
tries to minimize recursively the following two loss functions for Amateur, described by
FA (·,θA ) and Expert, described by F E (·,θE ):

min
θA

L (FA (xk ,θA ), yE
k ) (2.6)

min
θE

L (F E (< yA
k , yk >,θE ), ŷk ) (2.7)

where < ·, · > represents vector concatenation.
The trained LABELNET can estimate the true label from an image xk :

ỹk =F E (<FA (xk ,θA ), yk >,θE ). (2.8)

Specifically, we use the trained LABELNET to enrich and transform D in D′ by incorporat-
ing for each image xk the inferred class label ỹk . Subsequently, we use D′ to train F (·,θ)
via the loss function robust to noise from Noise Robust Loss Function section.

2.7.3. NOISE ROBUST LOSS FUNCTION
The given labels are corrupted by noise. Directly training on the given labels results in
highly degraded performance as the neural network is not able to easily discern between
clean and corrupted labels. To make the learning more robust to noise, TrustNet proposes
to modify the loss function to leverage both given labels y and inferred labels ỹ from
LABELNET to train F (·,θ).

The predicted label of F (·,θ) is compared, e.g., via cross-entropy loss, against both
the given label and inferred label. The challenge is how to combine these two loss values.
Ideally, for samples for which LABELNET and F (·,θ) are highly accurate, the inferred label
can be trusted more. On the contrary, for samples for which LABELNET and F (·,θ) have
low accuracy, the given labels can be trusted more. Specifically, TrustNet uses a weighted
average between the loss of the predicted label from F (xk ,θ) against both the given label
yk and the LABELNET’s inferred label ỹk with per sample weights αk and (1−αk ) for all
samples xk in D′. Moreover, TrustNet dynamically adjusts αk after each epoch based on
the observed learning performance of F (xk ,θ).

In detail we use cross-entropy H as standard loss measure to train our deep neural
network F (xk ,θ):

H (F (xk ,θ), yk ) =−
c−1∑
i=0

1(yk ,c) logF (xk ,θ) (2.9)

where 1(yk ,c) is an indicator function equal to 1 if yk = c and 0 otherwise. For each data
point xk in D′, we assign weights of αk and (1−αk ) to the cross-entropy of the given yk

and inferred ỹk labels, respectively. We let αk ∈ [0,1]. Hence, we write the robust loss
function Lr obust as following:

Lr obust (F (xk ,θ), yk , ỹk ) =αk H (F (xk ,θ), yk )

+ (1−αk ) H (F (xk ,θ), ỹk ).
(2.10)
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When the weight factor is low, we put more weight on the cross-entropy of inferred labels,
and vice versa. In the following, we explain how to dynamically set αk per epoch.

DYNAMIC αk

Here we adjustαk based on the uncertainty of TrustNet and LABELNET. When the learning
capacities of LABELNET and TrustNet are higher (lower values of loss function), we have
more confidence on the inferred labels and put more weight on the second term of
Eq. 2.10, i.e., smaller αk values. As a rule of thumb, at the beginning αk values are high
since TrustNet experiences higher losses at the start of training. Then αk values gradually
decrease with the growing capacity of TrustNet.

Let αk,e be the weight of the k th image at epoch e. We initialize αk,0 based on the
entropy value S from inferred class probabilities ỹk of LABELNET:

S(ỹk ) =−
c−1∑
i=0

ỹ i
k log ỹ i

k

where c is the number of classes and ỹ i
k is the i th class probability of ỹk . We use LABELNET

since we do not have yet any predictions from TrustNet’s own neural network.
For subsequent epochs, e > 0, we switch to TrustNet as source of entropy values. We

gradually adjustαk,e based on the relative difference between current and previous epoch
values:

αk,e =αk,e−1 · (1+ S(yF
k (e))−S(yF

k (e −1))

S(yF
k (e −1))

) ∀e > 0, (2.11)

where yF
k (e) are the class probabilities predicted by F (·,θ) for the k th image at epoch e.

When the entropy values decrease, we gain more confidence in TrustNet and the weights
on the inferred labels (1-(1−α)) increase.

We summarize the training procedure of TrustNet in Algorithm 2. Training LABELNET

consists of training two neural networks: Expert, F E (·,θE ), and Amateur, FA (·,θA ),
using the trusted data T for ELABELNET epochs (line 1-4). Then we need to compute the
inferred labels for all data points in D to produce D′ (line 5). Finally, we train TrustNet
for ETr ust Net epochs (line 6-14). The initialization of αk is via the entropy of the inferred
labels (line 9) and then updated by the entropy of predicted labels (line 11). The robust
loss function is computed accordingly (line 13).

2.8. LABELNET EVALUATION

2.8.1. EXPERIMENTS SETUP
Datasets. Our evaluation is based on four benchmarking datasets: MNIST [113], CIFAR-
10 [114], CIFAR-100 [115] and Clothing1M [25]. MNIST consists of 28×28-pixel black-
and-white images of handwritten digits from zero to nine. The dataset contains 60000
training and 10000 validation images. CIFAR-10 and CIFAR-100 include 32×32-pixel
color images organized in 10 and 100 classes, respectively. The image classes range from
animals to vehicles. Both datasets contain 50000 training and 10000 validation images.
Clothing1M contains images collected from the Internet classified into 14 classes based
on the surrounding text. It is representative of real world noise (average noise rate of
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Algorithm 2: TrustNet training

Input :Trusted dataset T , Untrusted dataset D; Epochs ELABELNET,ETr ust Net .
Untrusted dataset D made of: Observed samples x , Given labels y
Trusted dataset T made of: Observed samples x , Given labels y , True
labels ŷ

Output :Trained TrustNet F (x ,θ)
1 Initialize FA and F E with random θA and θE

2 for e = 0, 1, ..., ELABELNET on T do
3 Train F E and FA #LabelNet training
4 end
5 D′ =D extended with ỹ =F E (<FA (x ,θA ), y >,θE ) #LabelNet inference
6 Initialize F with random θ #TrustNet training
7 for e = 0, 1, ..., ETr ust Net on D′ do
8 if e == 0 then
9 αk,0 = S(ỹk )

10 else

11 αk,e =αk,e−1 · (1+ S(yF
k (e))−S(yF

k (e−1))

S(yF
k (e−1))

)

12 end
13 Train F (x ,θe ) with αk,e H (F (xk ,θe ), yk )+ (1−αk,e ) H (F (xk ,θe ), ỹk ) for each

sample k
14 end

39.5%). Here we use the cleansed training, validation and testing sets of 47K, 14K and 10K
samples, respectively.

Label noise. For MNIST, CIFAR-10 and CIFAR-100 we use the original labels as true
labels t . We generate the noisy given labels y by injecting symmetric label noise where
the original label is flipped to one of the other classes with uniform probability. We use
different noise ratios corresponding to flipping probabilities of 0.2, 0.3, 0.4, and 0.5. Such
generating principles are applied for both training and inferences images. Since the
ground truth of 1 million training image labels in Clothing1M is not available, we use
cleansed labels (47K samples) available in the dataset and then generate given (noisy)
labels by using the estimated noise confusion matrix which is provided by [25].

LABELNET parameters. For MNIST, CIFAR-10 and CIFAR-100 Amateur is the 12-
layer CNN architecture used in [112] with ReLU activation functions. Expert is a feed-
forward 4-layer neural network with Leaky ReLU activation functions in the hidden layers
and sigmoid in the last layer. Both networks are implemented using Keras v2.2.4 and
Tensorflow v1.13 and trained using stochastic gradient descent with momentum 0.9,
weight decay 10−4, and learning rate 0.01. We train our model for 100, 120 and 200 epochs
for MNIST, CIFAR-10 and CIFAR-100, respectively. For Clothing1M, we resize each image
to 256×256 pixels and crop the center to 224×224. We use ResNet50 for Amateur with
SGD optimizer and momentum of 0.9. The weight decay factor is 5×10−3, and the batch
size is 16. The initial learning rate is 0.002 and decreased by 10 every 5 epochs. The total
training epochs are 50. The Expert architecture remains the same. All experiments run on
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servers equipped with 8-cores @ 2.4GHz, 64GB of RAM, and an NVIDIA TITAN X GPU.

2.8.2. COMPETING METHODS
We consider the following four methods, which aim to filter out the (impact of) noisy
labels by altering the loss function, selecting the clean labels, and inferring the noise
transition matrix. Competing models are based on their original code and settings.

D2L [34]: uses the Local Intrinsic Dimensionality (LID) to detect points of noisy
data and modifies the loss function based on the LID score.
Co-teaching [61]: uses two neural networks to teach each other by selecting and
exchanging the more informative data batches where the selection leverages the
memory effect of neural networks.
Bootstrap [52]: uses a weighted combination of the original label and prediction of
the model as the final prediction.
Forward [70]: uses the noise transition matrix to correct the labels before training.

Comparison modes For a fair comparison, we compare the competing models against
LABELNET under the two following scenarios:

• LABELNET: This is the complete system. Here we use the given labels y both during
training and inference and the predictions are taken from the output of Expert.

• LABELNET-NGL: This is a reduced system: LABELNET No Given Labels (NGL). Here
we forgo the use of the given labels (and Expert) during inference. The given labels
and Expert are used only during training. In this case the predictions are taken from
the output of Amateur.

Additionally, we evaluate the effect of decreasing amounts of training data which range
from randomly selected 100% to 20% of the training samples for each dataset. Experiment
across competing models all use the same training and validation sets.

Metrics of interests We present the inference accuracy of LABELNET, LABELNET-NGL
and all four competing methods. As a performance metric, we use the accuracy evaluated
on the validation data computed as the ratio of the number of correct predictions, i.e.
equal to the original true labels t , divided by the total number of validation samples. Such
convention are used in Table 2.1, 2.2 and 2.3. The difference between the accuracy values
of LABELNET and LABELNET-NGL represents the auxiliary learning capacity of Expert.

2.8.3. RESULTS
MNIST Among all three benchmarks, MNIST is the easiest dataset due to a smaller number
of classes and image complexity. Results in Table 2.1 show that LABELNET achieves
exceptional inference accuracy, i.e., consistently above 95% even in the case of 50% noise
and just 20% training available. The difference between LABELNET and LABELNET-NGL
is rather modest, as the learning capacity of trained Amateur (via the guidance of Expert)
is sufficient to distill the impact of noise labels. The other four baselines can infer the
images classes with high accuracy, when the training data is 100%, but do not necessarily
sustain good accuracy with the reduction of training data.

Under large amounts of training data and low noise LABELNET, LABELNET-NGL, Co-
Teaching, and Forward all reach an almost perfect accuracy score. Specifically, LABELNET,
LABELNET-NGL and Co-teaching are the models which are least affected by noise and
diminishing amounts of training data. Even in the worst case, with 50% noise and 20%
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Table 2.1: Testing accuracy (%) of LABELNET and LABELNET-NGL compared to 4 baselines under varying label
noise ratios and sizes of training data on MNIST.

Noise Ratio = 20%
Training data LABELNET LABELNET-NGL D2L Co-Teaching Bootstrap Forward

100% 99.31 99.18 89.69 97.59 87.83 97.76
80% 99.36 99.09 89.40 97.40 84.70 94.43
60% 99.16 99.01 89.47 97.29 78.11 81.08
40% 99.22 98.72 88.94 96.67 60.27 61.49
20% 98.38 97.66 88.59 96.04 10.04 15.17

Noise Ratio = 30%
100% 99.38 99.13 86.15 95.72 79.47 95.33
80% 99.14 98.99 82.33 95.95 72.09 86.05
60% 99.12 98.90 81.01 95.79 58.31 63.64
40% 98.82 98.66 80.11 95.22 28.61 48.84
20% 97.84 97.41 69.83 94.89 5.13 9.80

Noise Ratio = 40%
100% 99.08 98.97 74.52 95.11 68.30 93.01
80% 98.94 98.86 72.78 94.72 58.09 71.05
60% 98.83 98.75 70.39 94.55 37.59 42.84
40% 98.52 98.31 71.02 94.00 10.11 15.09
20% 97.70 96.08 70.61 92.79 3.15 9.45

Noise Ratio = 50%
100% 98.90 98.45 70.47 93.42 62.71 90.85
80% 98.68 98.21 70.13 93.02 55.41 68.25
60% 98.56 98.02 69.49 92.76 33.36 39.78
40% 98.24 97.68 68.32 92.41 10.01 14.26
20% 97.38 95.78 67.83 92.06 3.12 9.11

training data, the accuracy is above 97% and 95% for LABELNET and LABELNET-NGL,
respectively. Co-teaching follows with 92%. Moreover, even if D2L and LABELNET-NGL
share the same CNN architecture, LABELNET-NGL outperforms D2L by 10%+ growing
with the level of noise. This underlines how effective the feedback from Expert is even if
used only during training.

Finally, we highlight the exceptional results of LABELNET by comparing its inference
accuracy achieved by a small fraction of training data, i.e., 20%, with competing methods
that are trained on 100% training data. LABELNET is still able to outperform them across
all noise ratios by up to 35 percent points.

CIFAR-10 We report accuracy results under all noise levels and amounts of training
data in Table 2.2. Starting with 100% training data, one can see that LABELNET achieves
the accuracy of 89.23%, 88.30%, 84.36%, and 80.73% for the cases of 20%, 30%, 40%, and
50% noise ratio. These results are significantly better than the competing image-only
models. The accuracy of LABELNET is 1.79% to 11.92% higher under all considered noise
ratios. We attribute the superior accuracy to the Expert that leverages well the information
from both Amateur and the given labels. If the given labels are not available, the simpler
LABELNET-NGL still benefits from the feedback of Expert during training. As a result, even
the simpler LABELNET-NGL is able to compete well and surpass some of the competing
models. For the same scenarios, LABELNET-NGL alone still achieves the accuracy of
82.29%, 81.85%, 79.53%, and 76.45% consistently beating Forward and Bootstrap and
sometimes Co-teaching.

In case of reduced training data, the accuracy of LABELNET decreases with the amount
of data. However, LABELNET is still the best across all competing models. Even with more
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training data, e.g. 60% data and 20% noise, we achieve 86.27% and 79.18% accuracy in
LABELNET and LABELNET-NGL, respectively. The best rival achieves only 79.73%. In
an extreme case, with only 20% training data, LABELNET is significantly better than all
others. For fair comparison, we summarize the training data required by LABELNET to
reach similar or higher accuracy than the four competing methods each trained with
100% training data. LABELNET achieves this using only 40%, 40%, 60%, and 80% training
data under 20%, 30%, and 40% and 50% noise, respectively. One effect of diminishing
training data is that the difference between LABELNET and LABELNET-NGL becomes
more significant. We interpret this as the lower the amount of available data, the more
one should use any possibly source of information, e.g., the given labels, even during
inference. The training loss for both Amateur and Expert converge to a lower bound, but
the evolution of Expert loss is smoother than its Amateur equivalent. This indicates that
LABELNET makes it easier for Expert to correct labels than for Amateur to classify images.

Our proposed LABELNET not only has excellent accuracy but with diminished training
data also shorter training times than competing models. Fig. 2.5(a) shows the different
training times under two percentage of training data. The bar represents the mean while
the whiskers the standard deviation across three repetitions. The closest competitors of
LABELNET are D2L and Co-teaching. However both are slower to train than LABELNET by
a factor 1.7x to 4.1x. Therefore, we achieve high accuracy with faster training time.

Table 2.2: Testing accuracy (%) of LABELNET and LABELNET-NGL compared to 4 baselines under varying label
noise ratios and sizes of training data on CIFAR-10.

Noise Ratio = 20%
Training data LABELNET LABELNET-NGL D2L Co-Teaching Bootstrap Forward

100% 89.23 82.29 84.75 82.45 81.80 83.11
80% 88.61 81.74 82.85 81.57 79.98 81.43
60% 86.27 79.18 79.73 79.30 74.19 75.40
40% 86.01 75.11 77.94 77.09 63.82 60.31
20% 82.23 67.45 70.47 70.37 23.82 31.35

Noise Ratio = 30%
100% 88.30 81.85 82.45 80.29 77.14 81.68
80% 85.83 79.87 81.27 79.16 75.60 79.38
60% 86.32 77.73 79.14 76.87 70.09 68.35
40% 82.12 71.88 75.68 72.87 35.13 37.87
20% 75.44 61.06 70.78 67.37 20.99 28.99

Noise Ratio = 40%
100% 84.36 79.53 80.69 77.28 72.44 78.12
80% 81.76 76.16 79.11 75.74 71.50 72.76
60% 79.33 73.35 76.63 73.95 58.02 55.67
40% 74.78 67.32 71.84 70.47 25.11 31.88
20% 67.88 56.33 67.96 63.08 18.91 21.16

Noise Ratio = 50%
100% 80.73 76.45 78.94 74.47 70.14 76.23
80% 78.48 72.24 76.43 71.52 57.84 63.33
60% 75.06 69.91 73.73 68.80 31.98 37.01
40% 69.34 61.86 68.63 64.25 22.95 26.87
20% 61.37 50.96 59.08 57.11 15.63 17.89

CIFAR-100 is significantly more difficult than CIFAR-10. First, the number of classes
increases by a factor 10. Second, the training samples per class reduce by a factor 10.
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Consequently, the achieved accuracy scores shown in Table 2.3 are lower. Even so LA-
BELNET achieves 86.72%, 79.92%, 73.87%, and 66.11% for noise ratios of 20%, 30%, 40%,
and 50%, respectively. Moreover, the advantage of using Expert as guidance is more
pronounced. Not only no other model except LABELNET is able to reach 60% accuracy,
but also LABELNET-NGL consistently reaches similar performance as D2L except under
amounts of training data below 60%. However, LABELNET-NGL is in line with Forward.
Another positive result is that LABELNET seems to be the least affected by diminishing
training data. Unfortunately, the same does not hold for increasing noise levels. For a fair
comparison, we identify the minimum required training data for LABELNET to achieve
similar or higher accuracy as the other four approaches that leverage 100% training data.
Under all noise ratios, LABELNET only needs to have 20% training data to outperform other
methods by large margins, ranging from 15% to 27% absolute accuracy improvements.
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Figure 2.5: Training time comparison of LABELNET and baselines using 100% training samples (in black) and
60% of training samples (in gray) on CIFAR-10 and CIFAR-100 datasets.

LABELNET achieves remarkable inference accuracy in the presence of noise labels
on significantly smaller sets of training data, compared to state-of-the-art methods. The
effective design of LABELNET is particularly evident for more difficult benchmarks, such
as CIFAR-100. The combination of Amateur and Expert outperforms other methods even
when learning from just 20% of training data used for the others.

Finally, Fig. 2.5(b) compares the training times. All models take longer to train than
under CIFAR-10, but LABELNET, while being the most accurate, is still faster than D2L
and Co-Teaching. Here especially D2L takes long to train: 68 hours on average. For
comparison, LABELNET takes a little under 1.5 hours. Moreover, the training time of
LABELNET can be further reduced by decreasing the training data.

Clothing1M We summarize results in Table 2.4 with full training data and randomly
selected 50% data. When using all the training set, LABELNET achieves 83.42% accuracy,
which is 13 points higher than the second best approach, i.e., Forward at 70.04%. This
is due to the capacity of Expert to learn the real world noise pattern. When halving
the training set, LABELNET still achieves 69.83%, which is roughly the result the four
competing methods reach using 100% training data. In other words, having the ground
truth for half of the data LABELNET can still outperform other approaches which do not
leverage the knowledge of noise patterns. LABELNET has the best relative performance on



2

44 2. RECOVERING NOISY LABELS WITH CLEANSED DATA SUPERVISION

Table 2.3: Testing accuracy (%) of LABELNET and LABELNET-NGL compared to 4 baselines under varying label
noise ratios and sizes of training data on CIFAR-100.

Noise Ratio = 20%
Training data LABELNET LABELNET-NGL D2L Co-Teaching Bootstrap Forward

100% 86.72 59.24 55.70 52.74 52.58 59.87
80% 85.38 54.56 51.26 50.01 48.95 55.51
60% 84.85 50.01 48.33 42.82 41.62 50.76
40% 82.51 44.13 42.48 36.75 32.68 48.04
20% 80.74 31.11 31.19 27.93 24.01 32.65

Noise Ratio = 30%
100% 79.92 56.87 51.13 45.68 44.99 54.18
80% 78.61 52.98 48.26 44.36 41.47 53.66
60% 76.18 46.34 43.79 39.71 35.46 48.46
40% 73.05 39.87 40.28 33.83 30.21 47.71
20% 71.72 26.45 27.98 24.21 21.78 29.77

Noise Ratio = 40%
100% 73.87 53.04 49.50 41.87 40.11 49.44
80% 71.06 49.91 45.17 39.88 37.24 47.23
60% 68.80 41.76 39.89 33.54 30.63 44.22
40% 64.33 34.96 36.82 28.33 22.77 41.35
20% 61.89 23.12 24.33 19.92 18.45 26.66

Noise Ratio = 50%
100% 66.11 48.65 43.65 35.89 39.84 46.06
80% 63.45 43.61 37.98 33.69 33.79 41.23
60% 58.56 35.55 33.37 29.14 28.98 37.05
40% 53.02 25.51 30.76 23.96 15.80 34.27
20% 51.01 16.87 17.54 16.85 10.54 21.87

CIFAR-100, followed by Clothing1M, and CIFAR-10, reflecting the decreasing importance
and difficulty to learn the noise patterns. Clothing1M results further accentuate the
idea of LABELNET that learning from both images and (noisy) labels can strengthen the
robustness and data efficiency of deep neural networks.

2.8.4. DISCUSSION ON LABELNET
The core idea of LABELNET is to leverage a fraction of the ground truth of noisy labels
and imitate how experts correct such noise data. However, in the real world scenarios,
noisy labels exhibit dynamic patterns, i.e., the noise ratios fluctuate. This presents a new
challenge to LABELNET on how to select representative noisy data in both training and
testing phase, reflecting truthfully the reality. To cope with such scenarios, we envision to
rely on transfer learning to generalize the learnt models.

We apply transfer learning by, first, training LABELNET under a base noise ratio. Sec-
ond, we freeze the weights of both Expert and Amateur of all hidden layers except the last
one. Third, we fine tune the weights of the last layer by training on data from a different
target noise ratio.

We transfer the trained models of CIFAR-10 and CIFAR-100 from 20% to 40% noise
ratios and summarize the results in Table 2.5 under different amounts of retraining data.
The performance of the base model without transfer learning is included as reference.
One can see that applying a model to a different noise ratio degrades the performance sig-
nificantly. For CIFAR-10, applying the 20% noise base model yields only 81.02% accuracy
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Table 2.4: Test accuracy (%) of LABELNET compared to various baselines, utilizing 50% and 100% of the training
data on the real-world noisy dataset Clothing1M.

Methods
Accuracy(%)

Training data = 50% Training data = 100%

LABELNET 69.83 83.42
D2L 49.05 69.43

Co-Teaching 50.11 69.92
Forward 51.26 70.04

Bootstrap 48.94 68.77

Table 2.5: Test accuracy (%) and training time [sec/epoch] for the Transfer Learning (TL) scenario, initially
trained on a 20% noise ratio and transferred to a 40% noise ratio. The ’Retraining data’ in the table indicates
the percentage of additional data used for retraining the transfer learning model under 40% noise. The ’No TL’
column represents the scenario without Transfer Learning.

Dataset Retraining data No TL 5% 10% 20% 100%

CIFAR-10
Accuracy (%) 81.02 87.15 87.24 87.51 88.04

Time [s/epoch] - 0.84 1.69 3.45 17.32

CIFAR-100
Accuracy (%) 58.67 74.65 75.44 76.68 78.04

Time [s/epoch] - 0.88 1.74 3.55 17.51

instead of 84.36% achieved by applying the 40% noise base model for CIFAR-10 (shown in
Table 2.2). Similarly, such a degradation can be observed for CIFAR-100, i.e., dropping
from 73.87% (shown in Table 2.3) to 58.67%. However, with even little, e.g., 5%, retraining
data, we are able to adapt the model to the 40% noise ratio bringing up the accuracy to
87.15% and 74.65% for CIFAR-10 and CIFAR-100, respectively. Moreover, these accuracy
values surpass the performance achieved by their base model counterparts by 2.8% and
0.8%. Increasing the amount of retraining data improves the results, but only marginally.

In addition to a better generalization of the base models, transfer learning also signifi-
cantly decreases the training time (see average time per training epoch in Table 2.5). The
reason is twofold. First, it is sufficient to train on fewer data as seen previously and the
training time per epoch scales linearly with the amount of data. Second, we only train
the weights of the last layer of Amateur and Expert, all others being frozen. Using 100%
data and compared to the training of the corresponding base models, fine tuning offers a
speed up of 1.6x for both CIFAR-10 and CIFAR-100.

2.9. TRUSTNET EVALUATION
In this section, we empirically compare TrustNet against the state of the art noise, under
both synthetic and real-world noises. We aim to show the effectiveness of TrustNet via
testing accuracy on diverse and challenging noise patterns.

2.9.1. EXPERIMENTS SETUP
We consider three datasets: CIFAR-10 [114], CIFAR-100 [115] and Clothing1M [25]. For
CIFAR-10 and CIFAR-100, we assume that 10% of the training set forms the trusted
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data with access to the clean labels used as ground truth. We use this trusted set to
learn the noise transition via LABELNET. In turn, LABELNET infers the estimated labels
for the remaining training data. The whole training set is then used to train TrustNet.
Clothing1M contains 1 million images scrapped from the Internet which we resize and
crop to 224×224 pixels. These labels are affected by real-world noise stemming from
the automatic labelling. Out of the 1 million images, a subset of trusted expert-validated
images contains the ground truth labels. This subset consists of 47K and 10K images for
training and testing, respectively. As for CIFAR-10 and CIFAR-100, we use the trusted
set to train LABELNET and infer the estimated labels for the rest of the dataset to train
TrustNet. Note that for all three datasets, only training set is subject to label noise, not
testing set.

The architecture of Expert consists of a 4-layer feed-forward neural network with Leaky
ReLU activation functions in the hidden layers and sigmoid in the last layer. This Expert
architecture is used across all datasets. TrustNet and Amateur use the same architecture,
which depends on the dataset. For CIFAR-10 TrustNet and Amateur consist in an 8-layer
CNN with 6 convolutional layers followed by 2 fully connected layers with ReLU activation
functions as in [112]. For CIFAR-100 both rely on the ResNet44 architecture. Finally,
Clothing1M uses pretrained ResNet101 with ImageNet. TrustNet (LABELNET) is trained
for 120 (150) and 200 (180) for CIFAR-10 and CIFAR-100, respectively, using SGD optimizer
with batch size 128, momentum 0.9, weight decay 10−4, and learning rate 0.01. Finally,
Clothing1M uses 50 (35) epochs and batch size 32, momentum 0.9, weight decay 5×10−3

and learning rate 2×10−3 divided by 10 every 5 epochs.
Our target evaluation metric is the accuracy achieved on the clean testing set, i.e.

not affected by noise. We compare TrustNet against six noise resilient networks from
the state of the art: SCL [63], D2L [34], Forward [70], Bootstrap [94], Co-teaching+ [95],
and Co-teaching [61]. We do not compare TrustNet to LABELNET because primarily
LABELNET requires labels in the inference process and training. Moreover, LABELNET

needs accessing the ground truth for the whole data samples. All training uses Keras
v2.2.4 and Tensorflow v1.13. We use 10% of the dataset as the trusted samples for the
pre-training of baselines to have a fair comparison.

2.9.2. SYNTHETIC NOISE PATTERNS

For CIFAR-10 and CIFAR-100, we inject synthetic noise. We focus on asymmetric noise
patterns following a truncated normal and bimodal distribution, and symmetric noise, as
discussed in Understanding DNNs. section. We inject noises with average rates ε= 0.4, 0.5
and 0.6. For truncated normal the target classes and variances are class 1 with σ= 0.5 or
σ= 5 and 10 with σ= 1 or σ= 10 for CIFAR-10 and CIFAR-100, respectively. For bimodal
we use µ1 = 2, σ1 = 1 plus µ2 = 7, σ2 = 3 and µ1 = 20, σ1 = 10 plus µ2 = 70, σ2 = 5 for
CIFAR-10 and CIFAR-100, respectively. We illustrate the noise transition matrix of these
noise patterns in Figure 2.6.

CIFAR-10
We summarize the results of CIFAR-10 in Table 2.6. We report the average and standard
deviation across three runs. Overall the results are stable across different runs as seen
from the low values of standard deviation.
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Figure 2.6: Transition matrices illustrating four different noise patterns on CIFAR-10 with a noise ratio of 0.5
across 10 classes.

TrustNet achieves the highest accuracy for bimodal noises, which is one of the most
difficult noise patterns based on Understanding DNNs. section. Here the accuracy of
TrustNet is consistently the best beating the second best method by increasing 2.4%,
21.1%, and 27.2% for 40%, 50%, and 60% noise ratios, respectively. At the same time,
TrustNet is the second best method for symmetric and truncated normal asymmetric
noise. Here the best method is often SCL, which also leverages a modified loss function
to enhance the per class accuracy using symmetric cross-entropy. This design targets
direct symmetric noise where SCL outperforms TrustNet. Considering the asymmetric
truncated normal noise, the difference is smaller and decreasing with increasing noise
ratio. At 60% noise SCL is only marginally better by, on average, 2.9%. Finally, test accuracy
variations are not noticeable with increasing σ values. All other baselines perform worse.
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Table 2.6: Test accuracy (%) of TrustNet compared to baselines on clean testing set for CIFAR-10 under 0.4 and
0.6 noise rates and patterns: i) symmetric, ii) bimodal with µ1 = 2, σ1 = 1, µ2 = 7, σ2 = 3 and iii) truncated
normal with µ= 1, σ= [0.5,5]. The best results are in bold.

CIFAR-10

Methods
Symmetric Bimodal Asymmetric Truncated Normal Asymmetric

ε= 0.4 ε= 0.6 ε= 0.4 ε= 0.6
ε= 0.4 ε= 0.6

σ= 0.5 σ= 5 σ= 0.5 σ= 5
TrustNet 77.03±0.32 61.22±0.66 72.67±0.3372.67±0.3372.67±0.33 42.18±0.6142.18±0.6142.18±0.61 74.21±0.69 73.88±0.78 66.48±0.61 67.23±0.57

SCL 81.50±0.2281.50±0.2281.50±0.22 73.13±0.1273.13±0.1273.13±0.12 69.07±1.17 15.00±0.67 80.93±0.5080.93±0.5080.93±0.50 80.90±0.1480.90±0.1480.90±0.14 68.67±0.9668.67±0.9668.67±0.96 70.90±0.6770.90±0.6770.90±0.67
D2L 75.87±0.33 60.54±0.44 70.59.±0.11 34.67±0.36 70.01±0.21 71.22±0.57 59.62±0.13 62.35±0.43

Forward 68.40±0.36 51.27±1.11 61.03±0.61 33.27±0.53 67.83±0.86 68.63±0.65 50.90±0.99 51.53±0.74
Bootstrap 71.03±0.85 56.47±1.18 61.10±0.54 31.17±0.59 70.80±0.78 71.07±0.78 54.87±0.50 55.80±1.23

Co-teaching+ 72.44±0.37 60.08±0.48 55.33±0.19 38.37±0.77 57.02±0.45 59.81±0.72 41.11±0.36 43.16±0.29
Co-teaching 72.04±0.61 58.78±0.32 53.89±0.25 37.51±0.18 55.41±0.19 58.31±0.41 40.06±0.69 41.95±0.61

Table 2.7: Test accuracy (%) of TrustNet compared to baselines for CIFAR-100 under 0.4, and 0.6 noise rates and
patterns: i) symmetric, ii) bimodal with µ1 = 20, σ1 = 10, µ2 = 70, σ2 = 5, and iii) truncated normal with µ= 10,
σ= [1,10]. The best results are in bold.

CIFAR-100

Methods
Symmetric Bimodal Asymmetric Truncated Normal Asymmetric

ε= 0.4 ε= 0.6 ε= 0.4 ε= 0.6
ε= 0.4 ε= 0.6

σ= 1 σ= 10 σ= 1 σ= 10
TrustNet 41.23±0.43 29.11±0.1229.11±0.1229.11±0.12 45.01±0.1445.01±0.1445.01±0.14 32.32±0.3032.32±0.3032.32±0.30 37.66±0.3637.66±0.3637.66±0.36 44.56±0.4244.56±0.4244.56±0.42 23.96±0.3823.96±0.3823.96±0.38 33.29±0.4133.29±0.4133.29±0.41

SCL 42.30±0.3642.30±0.3642.30±0.36 28.43±0.69 43.57±0.42 30.70±0.88 37.63±0.62 43.50±0.45 19.20±0.57 31.93±0.39
D2L 41.01±0.21 21.41±0.12 32.47±0.43 10.55±0.19 10.66±0.16 10.32±0.21 10.11±0.38 10.05±0.14

Forward 36.40±0.37 16.00±0.80 38.80±0.28 19.03±0.69 34.03±0.33 39.80±0.33 10.27±0.47 22.90±0.00
Bootstrap 28.40±0.16 6.70±0.59 32.17±0.62 10.10±0.94 27.23±0.71 34.17±0.96 6.10±0.16 12.53±1.84

Co-teaching+ 39.35±0.35 26.32±0.54 34.64±0.59 26.52±0.58 34.17±0.24 36.59±0.32 18.24±0.71 26.61±0.33
Co-teaching 37.82±0.22 25.44±0.71 33.76±0.54 26.12±0.33 32.02±0.56 33.85±0.62 16.99±0.32 25.33±0.12

CIFAR-100
Table 2.7 summarizes the CIFAR-100 results over three runs. CIFAR-100 is more challeng-
ing than CIFAR-10 because it increases tenfold the number of classes while keeping the
same amount of training data. This is clearly reflected in the accuracy results across all
methods, but TrustNet overall seems to be more resilient. Here, TrustNet achieves the
highest accuracy for both asymmetric noise patterns under all considered noise ratios.
On average, the accuracy of TrustNet is higher than SCL, the second best solution, by 2%.
The improvement is higher for higher noise ratios and lower variation, i.e., σ = 1. SCL
outperforms TrustNet on symmetric noise of low and middle intensity, i.e., ε= [0.4,0.5],
but the difference diminishes with increasing noise, and at 60% TrustNet performs better.
Different from CIFAR-10, test accuracy variations become noticeable for truncated nor-
mal noise with increasing σ values producing a positive effect across most baselines. All
other baselines perform worse.

2.9.3. REAL-WORLD NOISY DATA: CLOTHING1M
We use the noise pattern observed in real world data from the Clothing1M dataset to
demonstrate the effectiveness and importance of estimating the noise transition matrix
in TrustNet. Table 2.8 summarizes the results on the testing accuracy for TrustNet and
the six baselines. The measured average noise ratio across all classes is 41%. Here,
TrustNet achieves the highest accuracy, followed by SCL and Forward. Forward is another
approach trying to estimate the noise transition matrix. The better accuracy of TrustNet
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Table 2.8: Test accuracy (%) of TrustNet compared to baselines on clean testing set of real-world noisy Cloth-
ing1M.

Methods TrustNet SCL D2L Forward Bootstrap Co-teaching+ Co-teaching

Accuracy(%) 73.06 70.78 69.43 70.04 68.77 70.33 70.10

is attributed to the additional label estimation from LABELNET learned via the trusted
data and dynamically weighting the loss functions from given and inferred labels. The
promising results here confirm that the novel learning algorithm of TrustNet can tackle
challenging label noise patterns appearing in real-world datasets.

2.9.4. DISCUSSION ON TRUSTNET

In this section, we discuss testing accuracy on clean and noisy samples. The analysis
derived in § 2.5 consider testing on labels affected by the same noise as training data. This
is due to the fact that the ground truth of labels is usually assumed unknown and not even
available in the typical learning scenarios. However, the accuracy measured from the
noisy testing data provides no information about how effective resilient networks defend
the training process against the noisy data. Hence, related work on noisy label learning
tests on clean samples, which show different trends as hinted in the evaluation section.
Figure. 2.7 compares the two approaches across different noise patterns empirically. In
general, in the case of clean test labels, the testing accuracy decreases with increasing
noise ratios almost linearly. As for noisy labels, testing accuracy shows a clear quadratic
trend, first decreasing before increasing again. Specifically, the lowest accuracy happens at
noise ratio of 0.6 and 0.8 in the case of the truncated normal noise example with µ= 1 and
σ= 0.5 (Figure. 2.7(a)), and the bimodal noise example with µ1 = 2,σ1 = 0.5,µ2 = 7,σ2 = 5
(Figure. 2.7(b)), respectively. The reason is that specific class examples with erroneous
labels become more numerous than examples with the true class, e.g., more truck images
are labelled as an automobile than automobile images. Such an effect is missing when
testing on clean labels.
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Figure 2.7: Empirical testing accuracy of DNNs on CIFAR-10, comparing clean and noisy labeled test data under
different noise ratios for both truncated normal (a) and bimodal (b) noise patterns.
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2.10. CONCLUSION
In this work, we have addressed the challenge of label noise in the context of big data sys-
tems through the presentation of two novel and effective learning algorithms: LABELNET

and TrustNet. These approaches aim to improve the robustness of deep learning mod-
els against noisy labels and enhance classification performance by leveraging auxiliary
information of noisy labels.

The first approach, LABELNET, is motivated by the prevalence of noisy labels in pub-
licly available images. It utilizes two networks, Amateur and Expert, to infer images by
incorporating both inputs of images and noisy labels. Amateur, a deep CNN, is trained
alongside Expert, which simulates the process of human experts correcting Amateur’s
output using ground truth labels. Through this training process, LABELNET effectively
relabels and classifies images, transforming noisy labels into a learning advantage. Ex-
perimental results demonstrate the generalizability and effectiveness of LABELNET in
extensive and challenging scenarios, outperforming existing robust network classifiers on
MNIST, CIFAR benchmarks, and real-world datasets.

Building upon the insights gained from analyzing synthetic and real-world noise
patterns, the second approach, TrustNet, presents a learning framework for noise-resilient
classification. TrustNet first learns a noise transition matrix using a small set of trusted
data and LABELNET. By combining the estimated labels inferred from LABELNET, TrustNet
computes a robust loss function from both given and inferred labels, incorporating
dynamic weights based on learning confidence, measured by the entropy. Evaluations
on diverse datasets, including CIFAR-10, CIFAR-100, and Clothing1M, demonstrate that
TrustNet effectively learns the noise transition and enhances the robustness of the loss
function against noisy labels, achieving higher testing accuracy compared to state-of-the-
art resilient networks.

Despite these contributions, the main limitation of LABELNET is the need to have
both noisy labels and corresponding clean data for training, which is very expensive.
While transfer learning can alleviate this, obtaining paired clean and noisy labels remains
challenging. Additionally, TrustNet’s performance is directly tied to LABELNET, as the
latter is used within the TrustNet architecture. This dependency means that any issues
faced by LABELNET in handling noisy labels can negatively impact TrustNet’s overall
accuracy and robustness.

In conclusion, the two presented approaches, LABELNET and TrustNet, contribute
to the advancement of handling label noise in big data systems. By effectively lever-
aging noisy labels as learning features and employing robust loss functions, these ap-
proaches offer promising solutions for enhancing the reliability and accuracy of deep
learning models in the presence of label noise. The empirical evaluations across various
datasets underscore the effectiveness and potential of LABELNET and TrustNet in improv-
ing classification performance and handling real-world noise patterns, furthering the
understanding and applicability of robust deep learning models in challenging big data
scenarios.
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LEARNING FROM NOISY LABELS

WITH PARTIAL CLEANSED DATA

SUPERVISION

Learning robust deep models against noisy labels becomes ever critical when today’s data
is commonly collected from open platforms and subject to adversarial corruption. The
information on the label corruption process, i.e., corruption matrix, can greatly enhance
the robustness of deep models but still fall behind in combating hard classes. In this paper,
we propose to construct a golden symmetric loss ( GSL) based on the estimated corruption
matrix as to avoid overfitting to noisy labels and learn effectively from hard classes. GSL
is the weighted sum of the corrected regular cross entropy and reverse cross entropy. By
leveraging a small fraction of trusted clean data, we estimate the corruption matrix and
use it to correct the loss as well as to determine the weights of GSL. We theoretically prove
the robustness of the proposed loss function in the presence of dirty labels. We provide
a heuristics to adaptively tune the loss weights of GSL according to the noise rate and
diversity measured from the dataset. We evaluate our proposed golden symmetric loss
on both vision and natural language deep models subject to different types of label noise
patterns. Empirical results show that GSL can significantly outperform the existing robust
training methods on different noise patterns, showing accuracy improvement up to 18% on
CIFAR-100 and 1% on real world noisy dataset of Clothing1M.
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3.1. INTRODUCTION
Diverse datasets collected from the public domain which power up deep learning models
present new challenges – highly noisy labels. It is not only time consuming to collect
labels but also difficult to ensure a consistent label quality due to various annotation
errors [70] and adversarial attacks [111]. The large capacity of deep learning models
enables effective learning from complex datasets but also suffers from overfitting to the
noise structure in the dataset. The curse of memorization effect [85] can degrade the
accuracy of deep learning models in the presence of highly noisy labels. For example,
in [44] the accuracy of AlexNet to classify CIFAR-10 images drops from 77% to 10%, when
there are randomly flipped labels.

Designing learning models that can robustly train on noisy labels is thus imperative.
To distill the impact of noisy labels, the related work either filters out suspiciously noisy
data, derives robust loss functions or tries to proactively correct labels. Symmetric Cross
entropy Loss (SCL) is shown effective in combating label noise especially for hard classes
by combing the regular with the reverse cross entropy. The former avoids overfitting
and the latter is resilient to label noise. Given its promising results, there is yet to have
a clear principle on how to weight the regular and reverse cross entropy terms, e.g., at
different noise rates and patterns. In contrast, Distilling [116] and Golden Loss Correction
(GLC) [49] advocate to use a small clean data to improve the estimated corruption matrix.
Specifically, GLC trains the deep model on both a clean and noisy set, whose loss is
corrected through the corruption matrix. While the clean set is evenly chosen from all
classes, the corrupted labels may appear unevenly across classes depending on the noise
pattern [25], [117]. As the corrected loss of GLC does not differentiate the difficulty of
classes, it may not learn those hard classes effectively.

We propose GSL to construct the golden symmetric loss that dynamically weights
regular/reverse cross entropy and corrects the label prediction based on the estimated
corruption matrix. Similar to GLC, GSL leverages clean data to estimate the corruption
matrix which is used to correct labels and decide the weights of the golden symmetric
loss. As such, GSL can effectively differentiate the difficulty level of classes by adjusting
the weights and mitigate the impact of noise overfitting via the golden symmetric cross
entropy. Specifically, we use the noise rate and noise diversity to adaptively tune the
weights of modified cross entropy and reverse cross entropy. We prove that modified
cross entropy by using corruption matrix is noise tolerant same as the reverse cross
entropy. Empirical evaluation on vision and text datasets shows that GSL outperforms the
state-of-the-art methods under tested noise ratios from 0% to 100% for text datasets and
noise ratios 30% and 60% for vision datasets. In addition, we illustrate that combining
symmetric loss function and the corruption matrix estimation with correct dynamic
weighting function is the best combination of robust methods against noisy label data.

The contributions of this chapter are summarized as follows:
• We design a noise resilient method that estimates the corruption matrix using a

small proportion of trusted data and then corrects the wrong prediction into the
symmetric cross-entropy loss function.

• Using noise properties, including rate and diversity, we design a weighting function
for the symmetric loss function to adjust the weights of improved cross-entropy
and reverse cross-entropy adaptively.
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(a) Corruption matrix
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(b) GLC
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(c) SCL

0 1 2 3 4 5 6 7 8 9
Given label

0
1

2
3

4
5

6
7

8
9

Tr
ue

 la
be

l

0.0

0.2

0.4

0.6

0.8

1.0

(d) GSL

Figure 3.1: Analysis of Label Corruption Matrix on CIFAR-10 Dataset. (a) displays the original corruption matrix
with 0.6 symmetric label noise, while (b), (c), and (d) depict the estimated matrices using Golden Loss Correction
(GLC), Symmetric Correction Loss (SCL), and Golden Symmetric Loss (GSL) methods, respectively.

• We compare GSL against state-of-the-art methods under noisy labels on the real-
world dataset and synthetic vision and text datasets.

3.1.1. COMPARATIVE ANALYSIS OF NOISE-HANDLING STRATEGIES: A
CIFAR-10 CASE STUDY

We demonstrate the advantages and disadvantages of GLC and SCL, and the their com-
bination (the proposed GSL) through the example of learning convolution networks on
CIFAR-10 injected with 60% symmetric noise. The experimental setup is detailed in §3.6.
Figure 3.1 shows the corruption matrix of the injected noise and the confusion matrices
from the predictions of SCL, GLC, and GSL. Even if the injected noise is symmetric across
all classes (see Figure 3.1(a)), prediction errors are distributed asymmetrically across the
classes (see Figure 3.1(b), Figure 3.1(c) and Figure 3.1(d)). Though GLC can achieve a
lower average error rate than SCL (reflected in darker diagonal elements on average),
it performs worse in hard classes, e.g., class 4 (cat) and class 6 (dog) (difference in blue
shades across the diagonal elements). By setting up proper weights for two types of cross
entropy, GSL is able to achieve both superior average and per class accuracy.

3.2. RELATED WORK
Enhancing the robustness of deep models against noisy labels is an active research area.
The massive datasets needed to train deep models are commonly found corrupted, [112],
severely degrading the achievable accuracy, [44]. The impact of label noise on deep
neural networks is first characterized by the theoretical testing accuracy over a limited
set of noise patterns [74]. [118] suggest an undirected graph model for modeling label
noise in deep neural networks and indicate symmetric noise to be more challenging than
asymmetric. Current solutions can be categorized into three directions: (i) filtering out
noisy labels: [61], [119]; (ii) correcting noisy labels: [49], [70], [82], [93], [116]; and (iii)
deriving noise resilient loss functions: [102], [120], [121].

3.2.1. NOISE RESILIENT LOSS FUNCTION
The loss function is modified to enhance the robustness to label noise by introducing new
loss functions, [63], [75], or adjusting the weights of noisy data instances, [34], [102], [122].
Mean Absolute Error (MAE) [75], [123] and General Cross Entropy loss [123] are proposed
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as a noise resilient alternative but at the cost of slow convergence. To avoid overfitting to
noise, D2L [34] uses the subspace dimensionality to assign weights to each data point,
whereas Konstantinov [102] determines the loss weights based on the trustworthiness
level of data sources. [63] propose symmetric cross-entropy loss that combines a new
term of reverse cross entropy with traditional cross entropy via constant weights on both
terms. Meta-Weight-Net [57] re-weights samples during optimizing loss function in the
training process by using a multi-layer perceptron to predict the weight of each sample.
With the same perspective, [108] uses the similarity of samples to the clean instances in
the validation set for re-weighting them in loss function.

3.2.2. LABEL CORRECTION

To avoid the data reduction caused by filtering, label correction methods adjust the
predicted/given labels by using only noisy labels [70], [124], [125] or jointly with a small
fraction of trusted data [49], [116], [126], [127]. [94] train the classifier by the “new”
labels combining the raw and predicted labels without access to label ground truth. [70]
estimate the noise corruption matrix by first training a classifier on the noisy labels
and then using the softmax probabilities. [126] acquire human-verified labels to train a
cleaning network for correcting noisy labels of multi-label classification problems. [127]
estimate the noise transition probability by incorporating human assistance. [116] and
[49] leverage a small set of clean data to estimate noise corruption matrix from the clean
and noisy sets, respectively. DivideMix [128] is a semi-supervised method, including two
networks and Gaussian Mixture Model for sample selection.

The proposed GSL combines resilient loss function and label correction by curating a
small fraction of trusted data. We solicit a subset of informative data instances to estimate
the corruption matrix and provide a minimum supervision on noisy labels. We also
provide a heuristic to adaptively tune the weights of golden symmetric loss according to
the noise characteristics of the dataset.

3.3. GOLDEN SYMMETRIC LOSS

Consider the classification problem having dataset D̃ = {(xn , ỹn)}N
n=1 where xn ∈X ⊂Rd

denotes the nth observed sample, and ỹn ∈Y := {1, ...,K } the corresponding given label
over K classes. Hereon n is ignored for the simplicity. ỹ is affected by label noise. The
label corruption process is characterised by a corruption matrix Ci j = P (ỹ = j |y = i ) for
i = 1, . . . ,K and j = 1, . . . ,K where y is the true label. Synthetic noise patterns are expressed
as a label corruption probability ε plus a noise label distribution. Let g (·,θ) denote a
neural network-based classifier parameterized by θ. For each data point x , f (·,θ) predicts
the probability for each class label k: p(k|x) = ezk∑K

j=1 e
z j where z j are the logits.

3.3.1. SYMMETRIC CROSS ENTROPY

Let q(k|x) denote the ground truth probability distribution over the K class labels where
q(k|x) = 1 for k equal to the true class y and q(k|x) = 0 for all k ̸= y . The cross entropy
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loss (ℓce ) and reverse cross entropy loss1 (ℓr ce ) for x are:

ℓce =−
K∑

k=1
q(k|x) log p(k|x), (3.1)

ℓr ce =−
K∑

k=1
p(k|x) log q(k|x). (3.2)

[63] combine cross entropy and reverse cross entropy into the symmetric cross en-
tropy:

lsl =αℓce +β ℓr ce . (3.3)

where α and β are hyperparameters. On the one hand cross entropy loss is not robust to
noise [75] but achieves good convergence [123]. On the other hand reverse cross entropy
is tolerant to noise [63].

3.3.2. ESTIMATING NOISE CORRUPTION MATRIX

We estimate the noise corruption matrix as in [49]. The method fosters training a first
classifier g (·,θ) on noisy data to approximate the elements Ci j of the noise corruption
matrix via a small fraction of trusted data D with known true label y . Practically given Ai

the subset of trusted data with label of class i {Ai ⊂D : y = i }, the elements of C can be
approximated by:

Ĉi j = P (ỹ = j |y = i ) ≈ 1

|Ai |
∑

x∈Ai

g (ỹ = j |x ,Θ) (3.4)

where g (ỹ = j |x ,Θ) denotes predicted probability of x having class label j . That is Ĉi j is
computed as the mean predicted probability of class j for all trusted data points having
true label of class i .

3.3.3. TRAINING WITH CORRECTED LABELS

Let Ĉ be the estimated noise corruption matrix. Using the method in [70], we increase
the noise resilience by correcting the predictions of the classifier using Ĉ . Let p̂ be the
corrected predicted probabilities p̂ = Ĉ T p, i.e. for data point x : p̂(k|x) =∑K

i=1 Ĉi k p(i |x)
for k = 1, . . . ,K . We enhance the regular cross entropy term. Applying the prediction
correction to both terms holds lower benefits. We evaluate this empirically with extensive
experiments on datasets of text, i.e. Twitter in Figure 3.2(a), and images, i.e. CIFAR-100 and
CIFAR-10 in §3.8. Experiment details can be found in §3.7. We consider different datasets,
noise rates, noise types and fractions of trusted data. We see that in all cases, except one
with a difference < 0.3%, correcting only the cross entropy (ce-only) holds better results
than correcting only the reverse cross entropy (rce-only) or correcting both. Focusing on
Figure 3.2(a), ce-only improves accuracy by up to 5% and 8% for bimodal and symmetric
noise, respectively. In case of CIFAR-10 and CIFAR-100 datasets the improvements are
more pronounced with up to 11% and 50% respectively.

1To avoid problems with the logarithm, zero values of q are replaced by a small positive value, i.e. 10−4.
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Figure 3.2: Test accuracy (%) of a 2-layer FC network with different loss corrections (a) and loss weights (b)
across epochs on Twitter data.

3.3.4. GOLDEN SYMMETRIC LOSS
Towards a more effective and robust learning we propose to leverage the estimated noise
corruption matrix Ĉ to tune the two loss terms based on the observed noise pattern.
α and β can significantly impact the final model accuracy. Tuning these parameters
is essential since various datasets affected by different noise patterns require different
optimal values [63]. Again we show this behavior by training a 2-layer FC neural network
on the Twitter dataset under eleven different (α, β) combinations and two noise patterns
with 80% noise. Figure 3.2(b) reports for each noise pattern the evolution over the training
epochs of the test accuracy for the best and worst (α, β)-pair. For bimodal noise even with
a small number of trials, the impact of (α, β) ranges from an accuracy close to 60% all the
way down to almost 0%. Moreover only few (two out of eleven) (α, β)-pairs hold accuracy
close to 60%. For symmetric noise the tuning impact is lower (limited between 70% and
80%) but the best and worst (α,β)-pair differ from the bimodal noise case. This underlines
both the importance and difficulty of tuning (α, β). Motivated by the high impact of α
and β, we propose to dynamically weight the regular and reverse cross entropy terms. Let
A(·) and B(·) be weighting functions mapping Ĉ −→R we define a new loss function:

ℓGSL = A(Ĉ ) ℓce +B(Ĉ ) ℓr ce (3.5)

We call this new loss function golden symmetric loss. A(·) and B(·) should capture not
only the intensity of the noise pattern, but also the diversity of the noise pattern (see
Figure 3.2(b)).

3.3.5. DETERMINING WEIGHTS OF GOLDEN SYMMETRIC LOSS (A(·), B(·))
In general the more intense and asymmetric the noise pattern, the lower the weight
values should be. Since the final loss function learns from both dirty and clean data
(see the next paragraph), lower values of α and β reduce the influence of dirty data
over that of clean data. Hence, we design A(·) and B(·) to capture both noise intensity
and diversity. The intensity is given by the noise rate ε ∈ [0, . . . ,1], i.e. one minus the
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Figure 3.3: Overview of the training process for the Golden Symmetric Loss (GSL) divided into two steps: 1)
estimating the confusion matrix and 2) training a robust network.

average of the diagonal elements of Ĉ . The diversity is measured via Jain’s fairness index
J(x1, x2, . . . , xn) ≜ (

∑n
i=n xi )2/n

∑n
i=n x2

i . We choose J because it bounds the diversity on a
similar scale as ε between 1 (all equal, full symmetry) down to 1/n (highest asymmetry).
We apply J on all the K (K −1) noise, i.e. off the diagonal, elements of Ĉ :

J =
(
∑K

i=1

∑K
j=1, j ̸=i Ĉi j )2

K (K −1)
∑K

i=1

∑K
j=1, j ̸=i Ĉ 2

i j

(3.6)

For symmetric noise J = 1, the more asymmetric the smaller J . Final weights proportional
to J ,ε.

3.3.6. PUTTING IT ALL TOGETHER
As a final step, to maximize the utility of the trusted data, we foster D as additional trusted
training data for f (·). Since D contains the true labels y no prediction correction is applied.
Hence, the overall loss function for data points from both D and D̃ is:

for x ∈ D̃,

l =− A(Ĉ )
K∑

k=1
q(k|x) log(

K∑
i=1

Ĉi k p(i |x))

−B(Ĉ )
K∑

k=1
p(k|x) log q(k|x) (3.7)

and for x ∈D,

l =−
K∑

k=1
q(k|x) log p(k|x). (3.8)

Figure 3.3 summarises visually the training process divided into two main steps: (i)
estimating noise corruption matrix through the first network g trained on untrusted
dataset D̃ and (ii) training classifier f on both untrusted D̃ and trusted D through the
golden symmetric loss.
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3.4. GSL ALGORITHM
The concrete procedure of the GSL framework is described in Algorithm 3. During the
algorithm, we train two DNNs g (·;θ) and f (·,θ) as the corruption matrix estimator and
a noise resilient network, respectively. First, g (·,θ) is trained by untrusted data D to be
used to approximate p(ỹ |y) [49] (line 1). According to GLC [49], the corruption matrix
Ĉ is estimated by using the trusted data D and the trained network g (·) (line 3-10). Now
with Ĉ , we try to train a new DNN f (·;θ) via untrusted data D to construct a robust
symmetric loss function against noisy label data. As we mentioned before, the Golden
symmetric Loss includes cross-entropy (ℓce ) and reverse cross-entropy (ℓr ce ) with their
corresponding weights A(·) and B(·), respectively. To adjust the weights of cross-entropy
and reverse cross-entropy, we design a weighting function based on Jain’s fairness index.
The weighting function determines the weights of ℓce and ℓr ce by considering the noise
intensity and diversity represented in the corruption matrix Ĉ (line 12). ε̂ denotes the
noise intensity estimation of the training data (ε̂) via taking average of diagonal elements
of Ĉ (line 13). By considering the noise intensity (ε̂) and the value of Jain’s fairness index,
the weights of A(·) and B(·) are calculated (line 14-20). Finally, the weighted symmetric
loss function with label correction on cross-entropy is used for training DNN f (·;θ) on
untrusted data D (line 22). For the label correction and weight calculation, the estimated
corruption matrix plays an important role. In addition to use untrusted data, f (·;θ) is
trained directly with the available trusted data (line 23).

3.5. THEORETICAL ANALYSIS
We prove that the cross entropy loss with label correction is noise tolerant under the
definition put forth by [75], [76], extending prior results.

Let the risk of classifier f and loss function ℓce under clean labels be R( f ) =
Ex ,y [ℓce ( f (x), y)] and the risk under noise rate ε be Rε( f ) = Ex ,ỹ [ℓce ( f (x), ỹ)]. E indi-
cates the expectation taken over the random variables indicated as its subscripts. With
prediction correction via C , the risk becomes Rε( f ,C ) = Ex ,ỹ [ℓce (C T f (x), ỹ)]. Let f ∗ and

f ∗
ε be the global minimizers of R( f ) and Rε( f ), respectively, and C∗ = p(ỹ |y) and Ĉ be

the true and estimated noise corruption matrices, respectively.

Theorem 3.5.1 In a multi-class classification problem, the cross-entropy loss with predic-
tion correction (ℓce ) is noise-tolerant:

• Under symmetric label noise, if the noise rate ε satisfies:

ε< K −1

K − ∆A
∆R

,

where ∆A = ∑K
k=1ℓce (C∗T f (x),k)−∑K

k=1ℓce (Ĉ T f (x),k), and ∆R is the difference
in risk minimization between the optimal classifier and f .

• Under flip noise if the noise rate εyk for each class y satisfies:

εyk ≤ (1+ ∆Wy

∆Wk
)−εy (1+ ∆Wy

∆Wk
),

where 1−εy and εyk are the correct and flipped class probabilities, respectively.
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Algorithm 3: Golden Symmetric Loss

Input :Trusted data D = {x , y}, Untrusted data D̃ = {x , ỹ}, Epoch Emax , loss ℓce ,
loss ℓr ce

Output :Trained network f (x ,θ)
1 Train network g (x) = p̂(ỹ |x ;Θ) ∈RK on D̃

2 Fill Ĉ ∈RK×K with zeros
3 for k = 1,2, . . . ,K do
4 num_tr ust_samples = 0
5 for (xi , yi ) ∈D such that yi = k do
6 num_tr ust_samples += 1

7 Ĉk• += g (xi ) {add g (xi ) to kth row}
8 end
9 Ĉk• /= num_tr ust_samples

10 end
11 Initialize new model f (x) = p̂(y |x ;Θ)

12 J (Ĉ ) = (
∑K

i=1

∑K
j=1, j ̸=i Ĉi j )2

K (K−1)
∑K

i=1

∑K
j=1, j ̸=i Ĉ 2

i j

13 ε̂ = 1 - AV G(di ag (Ĉ )) ; // noise ratio estimation based on corruption
matrix diagonal

14 if ε̂≤ 0.5 then
15 A(Ĉ ) = J (Ĉ )ε̂

16 B(Ĉ ) = J (Ĉ )(1− ε̂)
17 end
18 else
19 A(Ĉ ) = J (Ĉ )(1− ε̂)

20 B(Ĉ ) = J (Ĉ )ε̂
21 end
22 Train with A(Ĉ )ℓce (Ĉ f (x), ỹ)+B(Ĉ )ℓr ce ( f (x), ỹ) on D̃

23 Train with ℓce ( f (x), y) on D

The proof is based on the risk minimization framework aiming to show under which
condition Rε( f ∗,C∗)−Rε( f ,Ĉ ) ≤ 0, i.e. the loss function is robust to noise. The condi-
tion ε< K−1

K− ∆A
∆R

is a generalization of the previous bound ε< K−1
K by [75]. Without label

correction ∆A = 0 which corresponds to the previous result. Label correction improves
the robustness by allowing higher noise rates, i.e. with label correction ∆A

∆R ≥ 0 and hence
K−1

K ≤ K−1
K− ∆A

∆R
. Similar observations hold for flip noise bound.

Proof: For symmetric noise:

Rε( f ,Ĉ ) = Ex ,ỹ [ℓce (Ĉ T f (x), ỹ)] = ExEy |xEỹ |x ,y [ℓce (Ĉ T f (x), y)]

= Ex ,y [(1−ε)ℓce (Ĉ T f (x), y)]+Ex ,y [
ε

K −1
(
∑

k ̸=y
ℓce (Ĉ T f (x),k))] (3.9)
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= Ex ,y [(1−ε)ℓce (Ĉ T f (x), y)]+Ex ,y [
ε

K −1
(

K∑
k=1

ℓce (Ĉ T f (x),k))]

−Ex ,y [
ε

K −1
(ℓce (Ĉ T f (x), y))] = (1−ε)R( f ,Ĉ )

+ ε

K −1
(

K∑
k=1

ℓce (Ĉ T f (x),k)−R( f ,Ĉ ))

= R( f ,Ĉ )(1− εK

K −1
)+ ε

K −1
(

K∑
k=1

ℓce (Ĉ T f (x),k))

Let A (Ĉ T f (x), y) =∑K
k=1ℓce (Ĉ T f (x),k). Then we can rewrite (3.9) as Rε( f ,C ) = (1−

εK
K−1 )R( f ,C )+ ε

K−1 A (C T f (x), y), thus:

Rε( f ∗,C∗)−Rε( f ,Ĉ ) = (1− εK

K −1
)(R( f ∗,C∗)−R( f ,Ĉ ))︸ ︷︷ ︸

∆R

+ ε

K −1
(A (C∗T f ∗(x), y)−A (Ĉ T f (x), y))︸ ︷︷ ︸

∆A

(3.10)

where ∆R ≤ 0, because f ∗ is the global minimizer for R and C∗ the optimal
noise corruption matrix. Similarly, ∆A ≤ 0 because for the optimal case we can say
A (C∗T f ∗(x), y) ≈ 0. ℓce with label correction is robust to noise when Rε( f ∗,C∗) −
Rε( f ,Ĉ ) ≤ 0. This is true when:

Rε( f ∗,C∗)−Rε( f ,Ĉ ) = (1− εK

K −1
)∆R + ε

K −1
∆A

=∆R − εK

K −1
∆R + ε

K −1
∆A ≤ 0

∆R≤0−−−−→

1− εK

K −1
+ ε

K −1

∆A

∆R
≥ 0 −→

ε

K −1
(K − ∆A

∆R
) ≤ 1 −→ ε≤ K −1

K − ∆A
∆R

(3.11)

With no label correction, C is missing in ∆A and the two terms become equal, i.e.
∆A = 0. In this condition the bound becomes ε< K−1

K as found by [75] for cross-entropy
without label correction. ∆R is non-positive because it is defined as the risk difference
with respect to an optimal solution minimizing the risk. Similarly, ∆A is non-positive
because defined as the difference with respect to an optimal solution and an optimal
corruption matrix. Hence, the ratio of ∆A

∆R must be non-negative. Since ∆A
∆R ≥ 0, ε< K−1

K ≤
K−1

K− ∆A
∆R

the new bound can be seen as generalization of the previous bound. ∆A
∆R should

also be less than one to ensure a meaningful bound on ε, avoiding scenarios of noise rate
greater than 1.

For asymmetric flip noise, 1−εy is the probability of a label being correct (i.e., k =
y), and the noise condition εyk < 1− εy generally states that a sample x has a higher
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probability (1−εy ) of being classified correctly as class y , rather than the probability (εyk )
of being classified incorrectly as class k ̸= y .

Rε( f ,C ) = Ex ,ỹ [ℓce (C T f (x), ỹ)] = ExEy |xEỹ |x ,y [ℓce (C T f (x), y)]

= Ex ,y [(1−εy )ℓce (C T f (x), y)]+Ex ,y [
∑

k ̸=y
εykℓce (C T f (x),k)]

= Ex ,y [(1−εy )
K∑

k=1
ℓce (C T f (x),k)]−Ex ,y [(1−εy )

∑
k ̸=y

ℓce (C T f (x), y)]

+Ex ,y [
∑

k ̸=y
εykℓce (C T f (x),k)]

= Ex ,y [(1−εy )
K∑

k=1
ℓce (C T f (x),k)]+Ex ,y [

∑
k ̸=y

(1−εy −εyk )ℓce (C T f (x),k)]

(3.12)

Similar to the symmetric case we require that Rε( f ∗,C∗)−Rε( f ,Ĉ ) ≤ 0 for the loss to
be robust to noise:

Rε( f ∗,C∗)−Rε( f ,Ĉ ) = Ex ,y [(1−εy )(
K∑

k=1
ℓce (C∗T f ∗(x),k)−ℓce (Ĉ T f (x),k))︸ ︷︷ ︸

∆Wy

+ ∑
k ̸=y

(1−εy −εyk )ℓce (C∗T f ∗(x),k)−ℓce (Ĉ T f (x),k)︸ ︷︷ ︸
∆Wk

] ≤ 0
(3.13)

where ∆Wy ≤ 0 and ∆Wk ≤ 0 because C∗ is the optimal noise corruption matrix. Rewriting
(3.13):

Ex ,y [
K∑

k=1
(1−εy )∆Wy +

∑
k ̸=y

εyk∆Wk ] ≤ 0 −→

K∑
k=1

(1−εy )∆Wy +
∑

k ̸=y
(1−εy −εyk )∆Wk ≤ 0 −→

∆Wy −εy∆Wy ≤−∆Wk +εy∆Wk +εyk∆Wk
∆Wk≤0−−−−−→

∆Wy

∆Wk
−εy

∆Wy

∆Wk
≥−1+εy +εyk −→ ∆Wy

∆Wk
−εy (

∆Wy

∆Wk
+1) ≥ εyk −1

(3.14)

According to (3.14), the bound is εyk ≤ (1+ ∆Wy

∆Wk
)−εy (1+ ∆Wy

∆Wk
). With no label correction

∆Wy = 0 and the bound becomes εyk < 1−εy as found by prior art.
□

3.6. EXPERIMENTAL SETUP

3.6.1. DATASET, ARCHITECTURE AND PARAMETERS
We consider two types of datasets: vision and text analysis. For vision, we use convo-
lutional neural networks (CNN) to classify CIFAR-10 and CIFAR-100 with injected label
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noise and Clothing1M as real world noisy dataset. For text, we use fully connected neural
networks to classify noisy Twitter and Stanford Sentiment Treebank (SST). In principle,
we use the same network architecture on all comparative approaches across different
noise resilience techniques. In addition, we test the original network from the respective
papers too and report the best results among the two.

• CIFAR-10 [129]: It contains 60K images classified into 10 classes: 50K as a training
set and 10K as validation set. We use the architecture of Wide-ResNet by [130] with
depth 28 and a widening factor 10 and train it with SGD with Nesterov momentum
and a cosine learning rate schedule [131]. For GSL, we first train g for 75 epochs to
obtain the noise corruption matrix. Then we train f for 120 epochs.

• CIFAR-100 [129]: It contains 60K images classified into 100 classes: 50K as training
set and 10K as the validation set. We use the same Wide-ResNet architecture used
for CIFAR-10. For GSL, we train the g and f networks for 75 and 200 epochs,
respectively.

• Clothing1M [25]: This is a real world dataset with label noise. It includes clothing
images scrapped from the Internet classified into 14 categories. We resize and
crop each image to 224×224 pixels. This dataset contains 1 million noisy labeled
samples that we use for training as our untrusted data. Besides, it consists of 57K
human-annotated images, which we take 47K images as our trusted examples and
10K images for testing. These two sets have both given (scrapped) and true (human-
checked) labels. We use ResNet-50 pretrained with ImageNet and further train for
10 epochs with batch size 32, SGD optimizer, momentum 0.9, weight decay 10−3,
and learning rate 10−3 which is divided by 10 after 5 epochs.

• Twitter [132]: The Twitter dataset includes 1,827 tweets annotated with 25 POS tags
split in 1000 tweets as training set, 327 tweets as development set and 500 tweets as
test set. We add development set to training set, and consider it as a training set.
We use a 2-layer fully connected network with 256 hidden neurons each and GELU
nonlinearity as activation function. We train g with Adam for 15 epochs with batch
size 64 and learning rate of 0.001. We train f for 25 epochs. To regularize all linear
output layer, we use ℓ2 weight decay with λ= 5×10−5.

• Stanford Sentiment Treebank [133]: The SST dataset includes single sentence
movie reviews. We use the 2-class version, including 6911 reviews in the training set,
a development set with 872 reviews, and 1821 reviews in the test set. We augment
the training set by using development set. We learn 100-dimensional word vectors
from scratch for a vocab size of 10000. We train a word-averaging model with an
affine output layer using Adam optimizer for 5 epochs for network g and 10 epochs
for network f . The batch size and learning rate are 50 and 0.001, respectively. To
regularize all linear output layer, we use ℓ2 weight decay with λ= 1×10−4.

3.6.2. NOISE CORRUPTION

We consider symmetric noise and two different asymmetric noises, namely flip and
bimodal. Symmetric noise corrupts the true label into a random other labels with equal
probability based on the noise rate. The flip noise is generated by flipping the original
label to a paired other class with a specific probability. The bimodal noise imitates
targeted adversarial attacks [111]. Specifically, the true labels are corrupted into two
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neighborhoods centered on two targeted classes, each of which follows truncated normal
distribution, N T (µ,σ, a,b). µ specifies the target and σ controls the spread. a and
b simply define the class label boundaries. For CIFAR-10 we target class 3 and 7, for
CIFAR-100 class 30 and 70, for Twitter class 6 and 18, and for SST class 0 and 1. Instead,
Clothing1M is already affected by real world label noise and left untouched.

3.7. EVALUATION
In this section, we empirically compare GSL against state of the art noise resilient net-
works on noisy vision and text data. We aim to show the effectiveness of GSL via testing
accuracy on diverse and challenging noise patterns. Our target evaluation metric is the
accuracy achieved on the clean testing set, i.e. not affected by noise.

3.7.1. VISION ANALYSIS

We compare GSL against ten noise resilient networks from the state of the art: GLC [49],
SCL [63], FORWARD [70], BOOTSTRAP [94], CO-TEACHING+ [119], DIVIDEMIX [128], GFOR-
WARD, SGFORWARD, TMATRIX and STMATRIX. As the proposed loss of golden symmetric
cross entropy is general and can be combined with different resilient networks, we hence
use following four variations of loss correction and symmetric cross entropy on the exist-
ing work:

• Forward gold (GFORWARD): we replace the estimation of the corruption matrix by
the identity matrix on trusted samples and apply loss correction through the matrix.

• True corruption matrix (TMATRIX): we use the true corruption matrix and apply
loss correction through it.

• Forward gold with symmetric cross entropy (SGFORWARD): we extend the corrected
loss of GFORWARD to the corrected symmetric cross entropy as in the GSL.

• True corruption with symmetric cross entropy (STMATRIX): we apply golden sym-
metric cross entropy and the true corruption matrix instead of the estimated matrix.

For training GSL, CO-TEACHING+, SGFORWARD, GFORWARD, TMATRIX, STMATRIX, DI-
VIDEMIX and GLC, we use PyTorch v1.4.0. For all other methods, we use Keras v2.2.4
and Tensorflow v1.13.0. All experiments run on Alienware Aurora R11 equipped with an
NVIDIA GeForce RTX 2080 Ti, 32 GB RAM, and Core i9 CPU @ 3.70 GHz.

We assume 10% of trusted data is available for GSL, GLC, GFORWARD and SGFORWARD.
Table 3.1 summarizes the testing accuracy for all combinations of noise patterns and
comparative approaches.

For CIFAR-10, we report the average and standard deviation across three runs in
Table 3.1. GSL achieves the highest accuracy among all resilient networks except for flip
noise with 30% noise rate. DIVIDEMIX, STMATRIX and SGFORWARD are the closest rivals
to GSL. GSL and SGFORWARD both use the same mechanism in the loss function. Besides,
GSL has 2 to 8% higher accuracy than GLC, demonstrating the benefit of introducing
symmetric cross-entropy, especially in high noise rates. In terms of comparison between
GSL and SCL, the accuracy difference is even more visible, implying the benefit of using
corruption matrix to assign weights on two terms in symmetric cross-entropy. We note
that SCL uses an 8-layer CNN with 6 convolutional layers followed by 2 fully connected
layers instead of a Wide ResNet because of the superior results. SCL performs particularly
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Table 3.1: The average test accuracy (%) of GSL on CIFAR10/CIFAR100 and real-world noisy Clothing1M
compared to the baselines corrupted with 30% and 60% noise with three different patterns symmetric, bimodal,
and flip (Best results in bold).

CIFAR-10

Noise
Rate

Noise
Pattern

GSL GLC SCL FORWARD BOOTSTRAP SGFORWARD CO-TEACHING+ DIVIDEMIX GFORWARD TMATRIX STMATRIX

30% Sym. 92.90±0.24 89.94±0.36 83.50±0.28 74.28±0.20 75.62±0.15 90.81±0.22 76.70±0.72 91.68±0.28 79.76±0.92 90.66±0.19 91.09±0.36
30% Bimodal 92.81±0.18 90.18±0.91 83.06±0.21 73.42±0.54 75.69±0.12 91.10±0.45 75.21±0.54 84.13±0.18 78.45±0.49 89.95±0.31 90.59±0.24
30% Flip 90.30±0.36 91.15±0.17 81.53±0.33 78.72±0.19 78.51±0.38 90.54±0.42 79.83±0.78 86.01±0.43 81.18±0.51 88.79±0.71 89.29±0.73
60% Sym. 89.10±0.19 82.24±0.59 72.71±0.86 53.48±0.79 57.56±1.86 88.02±0.56 63.33±0.93 88.27±0.76 60.62±0.61 87.31±0.14 88.07±0.53
60% Bimodal 87.75±0.24 84.98±0.16 60.76±0.82 47.49±0.69 48.18±1.01 86.29±0.52 57.82±0.73 81.45±0.37 58.93±0.46 84.33±0.62 86.79±0.21
60% Flip 86.23±1.10 80.40±0.32 55.84±0.70 59.99±0.47 59.66±0.45 82.19±0.43 65.31±0.36 79.76±0.67 62.04±0.63 81.88±0.37 84.91±0.37

CIFAR-100

Noise
Rate

Noise
Pattern

GSL GLC SCL FORWARD BOOTSTRAP SGFORWARD CO-TEACHING+ DIVIDEMIX GFORWARD TMATRIX STMATRIX

30% Sym. 75.80±0.12 61.81±1.19 58.01±0.71 42.33±1.34 41.51±1.54 72.31±0.77 54.04±0.33 72.73±0.22 52.64±0.73 70.42±0.71 73.04±0.69
30% Bimodal 76.25±0.35 61.77±0.91 46.88±0.63 45.22±0.13 42.14±0.38 73.65±0.29 55.42±0.65 74.21±0.18 54.69±0.82 72.07±0.32 74.41±0.22
30% Flip 75.80±0.21 66.55±0.52 55.46±0.47 54.92±0.25 54.44±0.59 75.83±0.42 58.46±0.61 74.16±0.39 58.32±0.20 73.11±0.14 75.15±0.43
60% Sym. 68.49±0.16 52.23±0.85 29.00±0.54 18.56±1.11 16.22±0.81 66.32±0.79 38.15±0.94 66.81±0.66 39.32±0.33 63.48±0.22 66.87±0.44
60% Bimodal 65.39±0.48 50.33±1.05 29.12±0.77 18.79±0.82 10.32±0.63 63.03±0.66 34.09±0.15 64.88±0.38 41.65±0.79 63.84±0.53 64.29±0.23
60% Flip 69.60±0.42 66.58±0.43 41.37±0.66 40.18±1.34 37.27±0.75 67.42±0.38 40.68±0.36 65.09±0.86 42.77±0.14 65.21±0.66 67.38±0.44

Clothing1M

Noise GSL GLC SCL FORWARD BOOTSTRAP SGFORWARD CO-TEACHING+ DIVIDEMIX GFORWARD TMATRIX STMATRIX

Real World 74.86 73.91 70.78 70.04 67.87 73.96 70.33 74.29 70.95 72.04 72.41

worse in 60% bimodal noise because this is a more challenging pattern and has no access
to the corruption matrix. Also, we achieve higher accuracy than DIVIDEMIX which is one
of the accurate state-of-the-art. Moreover, our method can still obtain 11 to 30% higher
test accuracy than CO-TEACHING+ that uses two deep networks concurrently.

CIFAR-100 is more challenging than CIFAR-10 due to the larger number of classes and
results are summarized over three runs in Table 3.1. GSL achieves the highest accuracy
except for flip noise with 30% rate, and same as CIFAR-10, STMATRIX, DIVIDEMIX, and
SGFORWARD are the closest competitors. Although for flip noise with 30% rate SGFORWARD

performs better than GSL, the improvement of GSL is more significant than SGFORWARD

compared to the CIFAR-10 dataset. The largest difference (more than 2%) in accuracy
between the GSL and SGFORWARD methods is with bimodal noise, and between GSL and
STMATRIX is with flip noise. In case of 60% symmetric noise, GSL achieves the accuracy
of 68%, whereas GLC and SCL trail far behind. Moreover, given the difficulty of training
a robust classifier for CIFAR-100 with 60% label noise, it is worth mentioning that SCL
can achieve similar performance as GLC that is given 10% of trusted data in case of 30%
symmetric noise. This also indicates the effectiveness of symmetric cross entropy in
learning hard classes even without trusted data. However, when facing extremely noisy
labels and patterns, the small amount of trusted data can greatly improve the robustness
of the classifier but not necessarily the symmetric cross entropy.

Seen from the high accuracy compared to GLC, SCL, GFORWARD and SGFORWARD,
GSL effectively uses the trusted data to correct symmetric cross entropy loss and improve
the learning on the hard classes. GSL performs slightly better with symmetric noise than
with bimodal and flip noise that is more challenging for CIFAR-10. In the CIFAR-100, GSL
works better on the asymmetric noise rather than symmetric.

For Clothing1M dataset, as shown in Table 3.1, GSL obtains the highest test accuracy
compared to other methods. Same as CIFAR-10 and CIFAR-100, DIVIDEMIX achieves
a relatively good performance. The difference between GSL and SCL comes from the
effectiveness of corruption matrix that makes the regular cross entropy robust.
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3.7.2. TEXT ANALYSIS
We evaluate GSL on text datasets of Twitter and SST, against resilient networks that
leverage corruption matrix, namely GLC and FORWARD. Both GSL and GLC use the
trusted data for estimating the corruption matrix, wheres the original FORWARD [70] relies
solely on the noisy data.

We extensively evaluate GSL, GLC GFORWARD, TMATRIX, SGFORWARD, SCL, FOR-
WARD, BOOTSTRAP, CO-TEACHING+, DIVIDEMIX and STMATRIX on Twitter and SST, with
label corruption ranging from 0% to 100%. We also vary the percentage of trusted data
among 1% and 5%. We summarize the average accuracy across 11 noise rates and three
runs in Table 3.2.

Table 3.2: The average test accuracy (%) across the entire range of noise rates [0,100] of GSL compared to the
baselines on the Twitter and SST datasets for the noise patterns symmetric, bimodal and flip (Best accuracy in
bold).

Noise
Pattern

Percent
Trusted

GSL GLC GFORWARD TMATRIX SGFORWARD STMATRIX FORWARD SCL BOOTSTRAP CO-TEACHING+ DIVIDEMIX

Tw
it

te
r

Sym. 1 79.30±0.11 65.41±0.90 53.21±0.17 76.61±0.37 78.39±0.18 78.24±0.24 52.25±0.25 62.77±0.63 50.59±0.12 65.79±0.22 76.95±0.76
Sym. 5 81.94±0.29 77.20±0.17 59.61±0.44 79.63±0.33 81.20±0.16 81.33±0.17 59.07±0.54 63.53±0.31 52.04±0.30 67.67±0.34 78.73±0.42

Bimodal 1 75.92±0.29 67.15±0.28 52.53±0.19 77.64±0.56 75.49±0.34 76.73±0.39 50.13±0.40 62.31±0.24 49.11±0.25 63.89±0.54 75.06±0.27
Bimodal 5 84.35±0.39 78.45±0.37 60.63±0.28 80.58±0.32 80.41±0.88 80.73±0.19 54.64±0.72 66.87±0.31 53.87±0.38 68.94±0.32 81.95±0.62

Flip 1 82.75±0.63 83.13±0.24 39.52±0.22 86.13±0.31 73.89±0.41 73.28±0.18 48.21±0.31 60.63±0.15 48.87±0.28 62.66±0.29 84.66±0.26
Flip 5 84.75±0.31 85.49±0.38 48.42±0.61 87.04±0.21 79.48±0.36 80.20±0.18 53.87±0.65 64.74±0.39 51.88±0.18 66.19±0.29 86.29±0.42

SS
T

Sym. 0.1 75.18±0.55 73.47±0.28 72.15±0.29 73.55±0.29 72.22±0.09 73.66±0.49 70.13±0.31 71.36±0.26 70.03±0.42 71.84±0.33 74.07±0.17
Sym. 1 75.96±0.46 72.62±0.28 73.47±0.25 75.48±0.36 72.93±0.19 75.42±0.34 72.52±0.27 72.86±0.39 71.31±0.22 72.13±0.29 74.93±0.29

Bimodal 0.1 74.97±0.24 74.70±0.31 72.75±0.14 74.19±0.44 72.63±0.51 74.16±0.38 70.02±0.18 71.22±0.16 70.21±0.21 72.25±0.15 73.93±0.31
Bimodal 1 74.88±0.41 74.53±0.32 72.10±0.13 74.34±0.29 71.79±0.42 73.60±0.30 72.67±0.29 72.13±0.41 71.38±0.19 72.93±0.31 74.01±0.16

Flip 0.1 75.38±0.29 74.07±0.25 49.40±0.51 74.83±0.22 49.50±0.34 74.81±0.16 70.79±0.54 72.52±0.12 70.79±0.41 72.14±0.27 74.54±0.30
Flip 1 76.59±0.14 74.51±0.32 50.21±0.43 76.33±0.13 49.81±0.23 75.49±0.43 73.04±0.17 73.76±0.51 71.78±0.14 72.83±0.10 74.99±0.25

TWITTER

As shown in Table 3.2, GSL consistently achieves the highest average accuracy in most
cases. Compared to GLC, GSL has significant higher accuracy for Twitter corrupted with
symmetric and bimodal noises, but the difference diminishes with increasing amounts of
trusted data. When the percent of trusted data is low, say, 1%, GLC is unable to estimate
the corruption matrix accurately nor to correct the loss, seen by the difference between
GLC and TMATRIX.

SST
Here, the classification involves only two classes and turns out to be less challenging than
the Twitter case. The results in Table 3.2 show that the difference among the different
comparative approaches considered is smaller than for Twitter. For instance, though
GSL consistently achieves the best average accuracy in almost all cases, the difference
between GSL and GLC is around 1-3%. Again, we see that GSL visibly outperforms GLC
on low amounts of trusted data because of using cross entropy and the difference among
them becomes limited. We note that TMATRIX and GFORWARD collapse under Flip noise.
We plot an extension of Table 3.2 for analysis on text datasets for varying noise rates in
the next part.

TEXT ANALYSIS ON TWITTER AND SST DATASETS WITH VARYING NOISE RATES

Figure 3.4 and Figure 3.5 show how the accuracy changes with respect to different noise
rates on the Twitter and SST datasets. The noise pattern is symmetric. GSL and GLC
are provided with one percent trusted data. In contrast, GSL can effectively use the
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symmetric cross entropy to overcome the limitation of low trusted data. This also explains
why STMATRIX always trails closely behind GSL by using the true corruption matrix and
symmetric entropy loss. One may further improve STMATRIX by using the optimal weights
of A and B according to the true corruption matrix, instead of estimated corruption matrix
of GSL. The Twitter dataset highlights well the differences (see Figure 3.4). The SST dataset
is an easier problem with only two classes and all methods are able to perform equally
well (see Figure 3.5).
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Figure 3.4: Test accuracy (%) of GSL compared to six baselines on the Twitter dataset with noise rates [0, 100]
using 1% trusted Data.
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Figure 3.5: Test accuracy (%) of GSL compared to six baselines on SST dataset with noise rates [0, 100] using 1%
trusted data.

3.8. DISCUSSION
Here we present the extensive results of our empirical evaluation on training with cor-
rected labels for the vision datasets in Table 3.3 and Table 3.4, respectively. This com-
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plements the results presented in §3. We compare the impact of correcting labels only
on the cross entropy term (ce only), only on the reverse cross entropy term (rce only), or
both. Table 3.3 shows the achieved accuracy for CIFAR-100, under two noise rates, 30%
and 60%, three different noise types, symmetric, bimodal and flip, and three fractions of
trusted data, 5%, 10% and 15%. For each noise scenario the best case is highlighted in
bold.

Table 3.3: Accuracy (%) of GSL with different label correction into the loss under noise rates of 30% and 60% for
three noise patterns (bimodal, symmetric, and flip) of varying gold fractions (5-15%) on CIFAR-100.

Noise rate = 30%

Label correction
Bimodal Symmetric Flip

5% 10% 15% 5% 10% 15% 5% 10% 15%
ce only 71.66 73.90 75.20 71.69 74.24 75.11 74.78 75.46 77.01
rce only 25.90 61.44 67.15 26.15 61.19 67.14 23.75 59.68 65.33

both 23.37 57.52 64.30 23.58 57.36 63.76 19.74 54.50 61.20

Noise rate = 60%

Label correction
Bimodal Symmetric Flip

5% 10% 15% 5% 10% 15% 5% 10% 15%
ce only 58.42 66.96 69.41 55.22 66.87 69.46 65.20 68.33 70.41
rce only 54.35 67.24 69.41 24.90 58.72 64.39 14.43 46.09 68.75

both 24.35 55.18 61.19 25.62 55.16 61.46 12.46 36.76 50.83

ce only achieves the highest accuracy in all cases except one. Under 60% bimodal
noise on CIFAR-100 with 10% trusted data rce only is slightly better by 0.28 percent points.
More in general, rce only typically performs second best and both achieves the worst
accuracy. Focusing on ce only over the other two, the gain tends to increase with the
difficulty of the noise scenarios, i.e. with higher number of classes, higher noise rates
and less trusted data. ce only outperforms the other two by up to 51.03 percent points for
CIFAR-100. Same as CIFAR-100 results, ce only outperforms the other two by up to 11.74
percent points for CIFAR-10 in Table 3.4.

Table 3.4: Accuracy (%) of GSL with different label correction into the loss under noise rates of 30% and 60% for
three noise patterns (bimodal, symmetric, and flip) of varying gold fractions (5-15%) on CIFAR-10.

Noise rate = 30%

Label correction
Bimodal Symmetric Flip

5% 10% 15% 5% 10% 15% 5% 10% 15%
ce only 90.06 91.50 92.53 90.17 91.70 92.50 89.96 91.27 92.58
rce only 84.67 88.46 89.30 84.82 88.11 89.98 81.70 86.79 88.40

both 83.25 87.45 89.30 83.43 87.70 89.46 78.00 85.42 88.21

Noise rate = 60%

Label correction
Bimodal Symmetric Flip

5% 10% 15% 5% 10% 15% 5% 10% 15%
ce only 83.06 88.43 90.52 85.79 89.19 90.19 80.03 82.64 85.80
rce only 81.73 86.86 89.07 81.54 86.63 88.98 68.29 80.22 84.35

both 79.83 85.79 88.63 80.27 86.22 88.53 63.63 82.19 83.18

3.9. CONCLUSION
To enhance the robustness of deep models against by label noise, we propose GSL that
features on correcting the symmetric cross entropy loss by the noise corruption matrix.
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GSL uses a small fraction of trusted data to accurately estimate the corruption matrix,
and further determine the weights applied on regular and reverse cross entropy. GSL
learns deep networks from trusted samples through regular cross entropy and from
untrusted noisy samples through golden symmetric cross entropy. We prove that the
cross entropy corrected by the corruption matrix is noise robust. To adapt to noise
patterns of dataset, we heuristically set the weights of golden symmetric loss based on
the corruption matrix. We extensively evaluate GSL on vision and text analysis under
diversified noise rates and patterns. Evaluation results show that GSL can achieve a
remarkable accuracy improvement, i.e., from 2 to 18% on CIFAR benchmarks and real
world noisy data, compared to methods that either correct loss or leverage symmetric
cross entropy.

Despite the effectiveness of this approach, one limitation arises in the weighting
mechanism for cross-entropy and reverse cross-entropy terms. We employ the Jain
fairness index to assign these weights based on the noise pattern, and although this yields
strong results with GSL outperforming competitors, other potential functions could be
studied to optimize this weighting process. Further research could focus on finding
an optimal function for this mechanism and developing mathematical proofs to better
understand the properties of these weight assignments for achieving optimal results.



4
LEARNING FROM NOISY LABELS

WITH ORACLE SUPERVISION

Noisy labeled data is more the norm than the exception for self-generated content continu-
ously published on the web and social media by non-experts. Active querying experts are
conventionally adopted to provide labels for the informative samples which don’t have
labels, instead of possibly incorrect labels. The new challenge that arises here is how to
discern the informative and noisy labels which benefit from expert cleaning. In this paper,
we aim to leverage the stringent oracle budget to robustly maximize learning accuracy.
We propose a noise-aware active learning framework, QActor, and a novel measure CENT,
which considers both cross-entropy and entropy to select informative and noisy labels for
an expert cleansing. QActor iteratively cleans samples via quality models and actively
querying an expert on those noisy yet informative samples. To adapt to learning capacity
per iteration, QActor dynamically adjusts the query limit according to the learning loss for
each learning iteration. We extensively evaluate different image datasets with noise label
ratios ranging between 30% and 60%. Our results show that QActor can nearly match the
optimal accuracy achieved using only clean data at the cost of only an additional 10% of
ground truth data from the oracle.

69
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4.1. INTRODUCTION
We are in the era of big data, which are continuously generated on different web platforms,
e.g., social media, and disseminated via search engines often in a casual and unstructured
way. Consequently, such a big data analysis suffers from diversified quality issues, e.g.,
images tagged with incorrect labels, so-called noisy labels. According to [134], noisy data
costs the US industry more than $3 trillion per year to cleanse or to mitigate the impact of
derived incorrect analyses. While the learning models conveniently leverage such a free
source of data, its quality greatly undermines the learning efficiencies and their associate
utilities [135]. For instance in [44], using an image classifier trained from data with highly
noisy labels can significantly degrade classification accuracy and hinder its applicability
on different domains.

Noisy label issue has been a long-standing challenge [93], from standard machine
learning (ML) models to deep neural networks (DNN), whose large learning capacities
can have detrimental memorization effects on dirty labels [44]. The central theme here is
to filter out the suspicious data which might have corrupted labels via quality estimates.
The drawback of filtering approaches is the risk of dropping informative data points
which can be influential for the underlying learning models. It might be worthwhile to
actively cleanse such data due to its high potential in improving the learning tasks, even
at a certain expense.

Active learning (AL) techniques [136] are designed to query extra information from
an oracle for the data whose (true) labels are not readily available. Such an oracle is
assumed to know the ground truth, but at high costs, e.g. a human expert. Hence, only the
informative/uncertain data is queried within a certain query budget. The efficacy of active
learning relies on uncertainty measurements of learning tasks, e.g., class probability [137],
entropy value [138] or posterior predictive densities [139].

As the majority of active learning approaches focus on the unsupervised scenarios
and constant budget, it is not clear how the active query approach can be adopted when
encountering noisy data - a kind of noisy supervision.In the noisy labeled data scenario
different from traditional active learning, the sample selection process ought to identify
both informative and noisy samples. Using a limited query budget to cleanse clean
samples leads to the waste of queries. Such a noisy supervision calls for a new measure
that asks for the expert query on highly informative and noisy samples and retain the
clean samples.

In this chapter, we focus on a challenging multi-class learning problem whose labels
are extremely noisy. Our objective is to enhance the noise-resiliency of the underlying
classifier by selectively learning from good data as well as noisy labels that are critical
for training the classifier. In order to turn the noisy labels into a learning advantage, we
resort to the oracle for recovering their label ground truth under a given query budget.
Ultimately, we aim to optimize classification accuracy with a minimum number of oracle
queries.

To such an end, we design an active learning framework termed Quality-driven Active
Learning (QActor), which marries quality models with active learning. Upon receiving
new data instances, QActor first filters it via the quality model into “clean” and “noisy”
categories. Second, we propose a novel measure noise-aware informative measure, CENT,
combining cross-entropy and regular entropy, to identify erroneous and informative
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samples and send them for oracle cleansing. Another unique feature of QActor is that the
overall query budget is fixed but the number of queries per batch is dynamically adjusted
based on the current training loss value. Our results show that in the presence of very
large label noise, i.e., up to 60% corrupted labels, QActor can achieve remarkable accuracy,
i.e., almost match the optimal accuracy obtained excluding all noisy labels, at the cost of
just a small fraction of oracle information, i.e., up to 10% oracle queried labels. Moreover,
compared to state of the art on noise resilient DNN, QActor achieves higher accuracy by
15% and 8% for CIFAR-10 and CIFAR-100, respectively.

Our contributions are threefold. We design a novel and efficient learning framework,
termed QActor, whose core combines a quality model with active learning. Secondly, we
propose a novel noise-aware informative measure, CENT. Thirdly we propose a dynamic
learning strategy that can adapt to the dynamic nature of iterative active learning and
achieve better results than the static one. To the best of our knowledge, this is the first
study on the dynamic allocation of an active learning budget.

4.2. RELATED WORK
Human error and careless annotators result in unreliable datasets with mistakes in labels
available in public domains [140], [141]. Adversaries are another source of label noise
attacking the performance of (deep) learning systems [142]. Corresponding to the con-
tribution of QActor, we categorize the related work of learning from noisy supervision
into two categories: (i) noise resilient models that filter the noise or alter the loss function
without ground truth, (ii) active learning from the oracle supervision.

Noise resilient model. Learning with noise in the labels with no quality filtering
shows the effect of noise in the degradation of the classification accuracy of deep neural
networks [82]. As mentioned in [44], the accuracy of using trained AlexNet to classify
CIFAR-10 images with random label assignment drops from 77% to 10% due to network
memorization of the noisy samples. Co-teaching [61] trains two neural networks simulta-
neously on two different data and exchanges the model information trained by the data
causing the lowest loss. RAD and its extensions [143], [144] cascadically train two models
to find out "clean" data. They also use the help of external experts to verify the labels and
optimize the cost with a limited budget. On the other hand, the study in [70], Forward,
assumes there is a noise transition matrix to cleanse the noisy labels for a deep neural
network. Furthermore, D2L [34] uses the Local Intrinsic Dimension (LID) as a measure
to filter the noisy labeled instances during training. Re-weighting samples based on their
similarity to a clean set to increase the robustness against label noise has been studied
in [145]. Noise confusion matrix estimation is another method to improve learning on
corrupted data [117].

Active learning. Active learning has been employed at a growing rate in recent studies
with deep networks due to the expenses of large dataset collection. Various studies
focus on the identification of informative data instances. The studies in [146], [147]
consider geometrical approaches to select the data instances, i.e. the core-set, that is the
representative of the data space. Meanwhile, [148] uses deep Bayesian neural networks
with monte-carlo dropout to identify the most uncertain samples for labeling. Following
the same framework, [149] argues the effectiveness of batch labeling via a expert in a
deep neural network. Furthermore, [150] uses the probability output of the convolutional
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neural network to label the instances based on discrete entropy and best-vs-second-best.
A relevant line of research in active learning is to deal with noisy oracles which can not
accurately provide the labels. For instance, [151] benefits from the disagreement of a
committee of models with the given label. In [152] the goal of the active learner is to
identify the informative noisy instances and ask the oracle their true label. [153] assumes
that a strong labeler is sided by a weak labeler, termed quality model which is cheaper
than an expert, and only queries the oracle when the two labelers disagree. However, these
studies fail to consider the noisy data characteristic in their query selection strategies.

4.3. QUALITY-AWARE ACTIVE LEARNING QACTOR

4.3.1. PROBLEM STATEMENT
We consider multi-class classification problems that map data inputs x of K features
into labels y of C classes, x ∈ XN×K into y ∈ C = {1, . . . ,C}. We assume that given dataset
D = {(x j , ŷ j ), j = 1, ..., N } has noisy labels, i.e. the label of a fraction of the data is altered
from its true label. A small set of initial data instances with clean labels used as the initial
seed is given, together with a testing set for evaluation. A clean data instance refers to a
sample whose given label is properly annotated, without any alteration. In this paper, η
shows the noise rate which indicates the ratio of the noisy label data to the entire dataset
size.

The goal is to identify the noisy labeled data samples and clean their labels by an
expert labeler, i.e the oracle1, within a limited budget. Since expert labeling is expensive,
we aim to identify informative noisy labeled data and it to send the oracle for relabeling.
In the end, the evaluation is done by training a classifier on the filtered and cleansed data.
In the following section, we demonstrate the procedure of the introduced method QActor.

4.3.2. ARCHITECTURE AND METHODOLOGY OF QACTOR
Figure 4.1 depicts the architecture. The main components are the following: 1)quality
model Q : x → ỹ ∈ C where ỹ is the predicted label by the quality model, 2) the label
comparator which discerns noisy from clean labels, 3) the active leaner which determines
which and how many data instances to send to the oracle, and 4) the classifierC : x̃ → ỹ ∈ C.
X̃ = {x̃} is a subset of X defined below.

We use Deep Neural Networks (DNN) as the classifier since they have shown extremely
promising results in classifying complex image datasets [142]. Due to the high training
costs of deep neural networks, to reduce the computational burden, instead of having
two different models for Q and C, we leverage the time difference between data arrivals to
use the previously trained C as Q for the following time period, i.e., Q(t ) =C(t −1). This
optimization allows us to train only one model per time period.

At each iteration t the data x is first sent to the quality model from the previous time
instance Q(t −1) which predicts their labels ỹ . If the predicted labels are the same as the
given ones, i.e. ỹ = ŷ , the label comparator marks them as clean, denoted as xc (t ) ∈ X c (t );
otherwise as suspicious, xs (t) ∈ X s (t). After this filtering step, the goal is to efficiently
clean the suspicious data. Since single sample relabeling is very inefficient for the training
process of deep neural networks, we relabel a batch of informative samples at each

1In this paper, we interchangeably use terms of expert and oracle.
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Figure 4.1: Overview of QActor: workflow of quality model, active learner, and classifier.

iteration as [149]. To this end, the suspicious data samples are sent to the active learner
to rank them based on their informativeness and select a batch of o(t) data instances
X o(t ) to send to the oracle to query their true label. Note that o(t ) is limited by the given
available budget B , i.e.,

∑
t o(t ) ≤ B . Since o(t ) is typically much smaller than the number

of noisy data instances, i.e. o(t ) ≪|X s (t )|, instances are ranked and selected based on an
uncertainty metric. Highly uncertain samples indicate high informativeness and thus we
argue that re-labeling these samples would increase the performance of the classifier.

The clean and relabeled instances are denoted by X̃ (t ) = (∪t
τ=1X o(τ))∪X c (t ) and used

to re-train C(t) and Q(t). We repeat this procedure again for a few iterations until the
budget is exceeded or the performance reaches to a desired level. To avoid pitfalls in
learning we monitor the accuracy on a small hold-out of the initial set. If performance
drops by more than a we roll back the model before processing the next data batch.

In the following section, we explain our proposed noise-aware informativeness mea-
sure that identifies the useful samples to be relabeled by the oracle.

4.3.3. NOISE-AWARE INFORMATIVE MEASURE: CENT

Since relabeling all the data in the suspicious set is an expensive and time-consuming
task, we aim to identify the most informative and useful samples to relabel by the oracle.
We argue that in noisy labeled data settings different from traditional active learning
where no label information is available, relabeling is more effective if the budget is spent
on informative and noisy data. To overcome this issue, we introduce a novel noise-aware
active learning measure, CENT, which consists of two parts, informative data identifi-
cation, and clean/noisy separation. CENT queries the oracle to relabel an informative
noisy set, and furthermore, identifies the informative clean set within the suspicious set
and keeps their own label and then adds to clean set X c (t ). The motivation behind this
strategy is to leverage the clean data that is mistakenly categorized as noisy and is then
discarded by the traditional AL methods for their lack of informativeness.

To measure the informativeness of the data, first, we calculate the entropy of the
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suspicious set:

LE (xs
i ) =−

C∑
c=1

p(y = c|xs
i ) log p(y = c|xs

i ) (4.1)

where p is the neural network’s softmax prediction output for each class label c: p(c|x) =
ezc∑C

j=1 e
z j where z j are the logits.

Entropy is an information-theoretic measure and the higher this value, the higher in
information in the data sample is. We pick 2 ·o(t ) samples with the highest LE value and
put them in the informative set X I (t). Although entropy is a popular informativeness
measure in active learning literature where the data is unlabeled, in noisy labeled data
problems it doesn’t necessarily identify the noisy informative data. Therefore, we employ
another metric, cross-entropy, which can distinguish between noisy and clean data:

LC E (xI
i , yi ) =−

C∑
c=1

q(c|xI
i ) log p(y = c|xI

i ) (4.2)

where q(c|xi ) denotes the given label probability distribution over the C class labels
where q(c|xi ) = 1 for c equal to the given class ŷi and q(c|xi ) = 0 for all c ̸= ŷi . We show
in Theorem 4.3.1 that the higher values of CE are the indication of noisy labeled data.
Therefore, we pick the o(t) data with the highest CE values among X I (t) as X o(t) and
send them to the oracle to relabel. Moreover, since smaller values of CE represent the
clean data among the informative set, we pick the other half of X I (t ) that have the lowest
CE values and call them the semi-clean data X semi−c (t ) to add to the clean set, keeping
their own labels. Algorithm 4 shows the overview of our proposed method.

Theorem 4.3.1 With uniform label noise with the rate η and the accuracy A of the classifier
in a C class classification task, the average of LC E (x, ŷ) for noisy samples is higher than
LC E (x, ŷ) for clean samples with the given label ŷ , if (1−A)

A+(1−A)γ
η

(1−η) <C −1 where γ<< 1 is
a positive number.

Proof: Let ŷ and ỹ be the given (noisy) and the predicted label for the true label y .
We show the clean and noisy set as Ω = {(x j , ŷ j )|ŷ j = y j } with |Ω| samples and Φ =
{(xi , ŷi )|ŷi ̸= yi } with |Φ| samples respectively. We argue that the average LC E value for
the noisy samples is higher than the clean samples:

Ex∼Ω(x,ŷ)LC E (x, ŷ) < Ex∼Φ(x,ŷ)LC E (x, ŷ) (4.3)

According to equation 4.2, since q is a one-hot vector of the labels, LC E (xi , ŷi ) =
− log p(ŷi |xi ). By removing logarithm from both sides, we have:

Ex∼Φ(x,ŷ){p(ŷ |x)} < Ex∼Ω(x,ŷ){p(ŷ |x)} (4.4)

where p is the neural network’s softmax prediction output. Consider Figure 4.2 which
categorizes the clean and noisy data based on the noise ratio and the classifier’s accuracy.
With the uniform noise patter, the probability of the noisy label being equal to the pre-
dicted label is 1

C−1 , and C−2
C−1 otherwise. Therefore, the inequality above is equivalent to

the following:
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Figure 4.2: Categorization of the data D based on the true, given and predicted labels. TP and FP indicate true
and false positives and, TN and FN indicate true and false negatives respectively, where noisy and clean data are
considered positive and negative respectively.

AηEx∼Φ(x,ŷ){p(ŷ |x, ỹ = y)}+ (1− A)η

C −1
Ex∼Φ(x,ŷ){pmax (x)}+

(1− A)(C −2)η

C −1
Ex∼Φ(x,ŷ){p(ŷ |x, y ̸= ỹ ̸= ŷ)} <

A(1−η)Ex∼Ω(x,ŷ){pmax (x)}+ (1− A)(1−η)Ex∼Ω(x,ŷ){p(ŷ |x, ỹ ̸= ŷ = y)}

(4.5)

where pmax for the data x j is the maximum value of prediction vector for x j , associated
with ỹ . The inequality will hold by omitting the rest of the p values in the left hand side
which are significantly smaller than pmax . Moreover, on the right had side, we can use
Ex∼Ω(x,ŷ){p(ŷ |x, ỹ ̸= ŷ = y)} = γEx∼Ω(x,ŷ){pmax (x)} where γ<< 1. Therefore we will have:

(1− A)η

C −1
Ex∼Φ(x,ŷ){pmax (x)} < (1−η)(A+ (1− A)γ)Ex∼Ω(x,ŷ){pmax (x)} (4.6)

Since Ex∼Φ(x,ŷ){pmax (x)} ≤ Ex∼Ω(x,ŷ){pmax (x)}, therefore, the inequality holds when:

(1− A)

A+ (1− A)γ

η

(1−η)
<C −1 (4.7)

□4.3.4. ACTIVE LEARNER QUERY POLICIES
The aforementioned uncertainty measures are used by the active learner in combination
with two different policies on how to deplete the query budget over time:

Static policy. The active learner asks a constant number o(t) = M ,∀t of queries at
every iteration of learning. Essentially, for each iteration, the active learner queries the
most uncertain M data instances that are considered noisy by the quality model.

Dynamic policy. The active learner dynamically adjusts o(t ) based on the value of the
loss function of the quality model. The rationale behind this is to increase the number of
queries when the quality model has a low learning capacity, reflected by high loss function
values, and to decrease the number of queries when the loss function converges to lower
values. Specifically, we propose to adjust o(t ) as following:

o(t ) = o(t −1)(1− LQ(t −2)−LQ(t −1)

LQ(t −1)
) (4.8)
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Algorithm 4: Quality Driven Active Learning.

Input :Initial Dataset D I , Noisy Labeled Dataset D = {(x j , ŷ j )}, Budget B , Total
Number of Iterations T

Output :Quality model Q, Classifier C
1 Train Q and C with D I

2 while iteration t < T do
3 ỹ j := Predicted label by Quality model Q for x j

4 X c (t ) = {∀x j ∈ D, ỹ j = ŷ j }
5 X s (t ) = {∀x j ∈ D, ỹ j ̸= ŷ j }
6 o(t ) = Query size according to Section 4.3.4
7 if Informativeness Measure is CENT then
8 X I (t ) = The first 2o(t ) high entropy samples selected from X s (t )

9 Sort X I (t ) based on their CE value

10 X o(t ) = The o(t ) samples from X I (t ) with the highest CE

11 X semi−c (t )= The o(t ) samples from X I (t ) with the lowest CE
12 else
13 X o(t ) = The o(t ) samples with the highest informativeness from X s (t )
14 end
15 Send X o(t ) to the oracle to relabel

16 Train Q and C with X̃ (t ) = (∪t
τ=1X o(τ))∪X c (t )∪X semi−c (t )

17 end

where

LQ(t ) = −1

|x̃(t )|
∑

xi∈x̃

C∑
c=1

p(y = c|xi ) log p(y = c|xi ) (4.9)

is the average entropy loss across all training samples used at period t . Since the re-
training of the model(s) happens after the oracle querying, we use the loss from the
periods t −1 and t −2. Finally, we note that the number of active queries is capped by the
given budget B , i.e. the number of active queries used is min(B −∑t−1

τ=1 o(τ),o(t )).
Standard active learning studies query one instance at a time and train the model by

adding that instance to the training set. Then the learner queries the next instance based
on the retrained model and repeats the procedures recursively until all the budget is spent
or the desired performance is achieved. However, it is computationally too expensive to
retrain the model after each oracle query and repeat for the next one. Therefore, we decide
to query o(t ) instances per round. This applies to both policies: static and dynamic.

4.4. EXPERIMENTAL SETUP
Here we describe the datasets, the model parameters and the baselines used for compari-
son.

Datasets. We consider image datasets using the pixel values as inputs. In particular
we use the well-known CIFAR-10 and CIFAR-100 datasets [129]. These datasets try to
classify colored 32×32-pixel images into ten and hundred classes, respectively. CIFAR-100
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is more complex due to both the higher number of classes and lower number of data per
class. For both dataset we use 50000 samples for training and the rest 10000 samples for
testing.

Label Noise. We inject label noise into the training set by corrupting the label of ran-
domly sampled data instances. We term the sampling probability as noise rate. Corrupted
samples are subject to symmetric noise, e.g., the true label is exchanged with a random
different label with uniform probability. We consider noise rates of 30% and 60%. Test
data is not subject to label noise.

Baselines. To better show the overall effectiveness of our proposed QActor method we
compare it two sets of baselines. First we compare against different active query selection
baselines:

• No-Sel: uses all samples that arrive in the batch to train the classifier without
filtering.

• Q-only: in this case the quality model filters the suspicious samples but there is no
active learner to relabel the informative noisy instances. Therefore the classifier
will train only on the clean data instances identified by the quality model.

• Opt-Sel: which assumes a perfect quality model able to identify all the true clean
and noisy samples and uses all the clean samples for training the classifier without
active learning.

• Entropy (ENT): ranks the data based on their entropy value, i.e.
∑C

c=1 p(y =
c|xs

i ) log p(y = c|xs
i ). Entropy is an information theoretic measure and the higher

this value, the higher in information in the data sample is.
• Re-Active: based on the idea discussed by [152], where a weighted average of

entropy and cross-entropy values are use for informative sample selection, i.e.
(1−α)LE +αLC E .

• Random: among the suspicious set, randomly selects o(t ) samples in each iteration
to be relabeled by the oracle.

• Semi-Random: among the suspicious set, randomly selects 2o(t ) samples in each
iteration, one half to be relabeled by the oracle and another half to be added directly
to the clean set keeping their own label.

Second we put QActor in the context of other noise-resistant techniques drawn from
the related work on learning with noise. For a fair comparison we have used extra clean
data also when training the noise resilient baselines, so that they have the same number
of initial clean data during their training processes.

• D2L [112]: estimates the dimensionality of sub-spaces during training to adapt the
loss function. This approach allows for a more tailored loss landscape, which can
enhance model performance in the presence of noisy labels.

• Forward [70]: corrects the loss function based on the noise transition matrix. This
method effectively maps the probabilities of true labels to observed labels, providing
a more accurate representation of the training signal.

• Bootstrap [154]: using convex combination of the given and predicted labels for
training. This strategy helps in smoothing the label noise by leveraging the model’s
predictions as a secondary source of information.

• Co-teaching [61]: exchanges mini-batches between two networks trained in parallel.
This technique allows each network to learn from the other, thereby reducing the
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impact of noisy labels by emphasizing the most confident predictions.
• Re-weighting [145]: Trains the neural network with a weighted loss function per

sample, where the weights are learned based on the similarity of the data to a
clean set. This adaptive weighting mechanism enables the model to focus more on
high-quality examples while down-weighting the influence of noisy labels.

4.4.1. MODEL PARAMETERS

As QActor classifier for CIFAR-10 and CIFAR-100 we use the Convolutional Neural Network
(CNN) architectures defined in [112] with ReLU and softmax activation functions as image
classifier and cross-entropy as loss function. We train the models by using stochastic
gradient descent with momentum 0.9, learning rate 0.01, and weight decay 10−4. QActor
and all baselines are implemented using Keras v2.2.4 and Tensorflow v1.12, except Co-
teaching and Reweight. They are based on PyTorch v1.1.0, and we reproduce the same
CNN structure in PyTorch as we use for other baselines implemented with Keras.

With CIFAR-10 QActor is trained initially with clean 1000 instances and 40 epochs.
We inject noise for the remaining 49000 instances with 30% (60%) rate. Under static
policy, in each iteration we query o(t ) = {100,300} samples actively from the oracle and
retrain the model for 10 epochs for 50 iterations which adds up to 540 epochs overall.
Similarly, the dynamic policy uses B = 5000 which is equal to the budget used in the static
policy with o(t) = 100. At the end of each batch, we test the model with the test set of
10000 instances. Rollback uses a = 20%. For CIFAR-100 we increase the initial set size
to size to 5000 and 100 epochs per batch to cope with the higher complexity. We also
lower the total training iterations for CIFAR-100 to 30, but the epochs per iteration and
o(t) stay the same, which would be 400 epochs overall. For fair comparison, baselines
are also trained under the same initial set and the same CNN structure. Therefore, we
change Re-weighting neural network from Wide-ResNet to our own network structure. All
baselines use the same parameters as from their papers except for D2L. Here we reduce
the dimensionality estimation interval to 40 and 10 for the initial and subsequent batches,
respectively. This keeps roughly the original ratio against the overall training period.
We repeat each experiment for 3 times and for each experiment we report the average
accuracy of the last 5 iterations. It is worth mentioning that for hyperparameter tuning,
we employed grid search to optimize the model performance.

4.5. RESULTS
Here we present the accuracy achieved by QActor on the CIFAR-10 and CIFAR-100 datasets.
We first compare QActor against six noise-resistant models (without using active learning
strategies) from four state-of-the-art related papers, followed by the analysis over the
uncertainty metrics. Finally, we reveal our model sensitivity analysis and eventually show
the effect of the dynamic policy.

4.5.1. NOISE-RESISTANT MODELS

We compared our proposed QActor with the measure CENT, with the noise-resistant
described in Section 4.4. Table 4.1 summarizes the results for different noise-resistant
prior arts and QActor. For a fair comparison, we use the same initial clean set and neural
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Table 4.1: Accuracy (%) of different noise resilient networks under 60% label noise.

Methods
Baselines Our

D2L Forward Co-teaching Bootstrap soft Bootstrap hard Re-weighting QActor(100) QActor(300) QActor D (100)

CIFAR-10 69.33 62.89 35.45 64.46 69.20 46.36 76.94 81.26 77.83
CIFAR-100 37.35 39.52 6.92 38.51 29.99 8.54 47.63 50.57 48.40

network architecture to train all models. As the results illustrate, QActor is outperforming
all the prior arts significantly by relabeling only 10% of the data. Although these state-of-
the-art models are successful in classification tasks of samples affected by label noise, they
don’t benefit from an expert labeler during their training procedure. The best performance
is achieved by D2L and Bootstrap hard which however are still 15 percent points lower
than our QActor with 100 active queries per iteration for CIFAR-10. Increasing the active
queries to 300 per iteration increases the gap by another 6 percent point. The other
models, i.e. Co-teaching, Forward, Bootstrap soft, and Re-weighting only achieve at best
about 46% accuracy. This underlines how our method copes very well with noisy labeled
data. For CIFAR-100, Forward and Bootstrap soft are best performing models while being
almost 9% and 12% below QActor with only 100 and 300 queries per iteration respectively.
As the last row of the table demonstrates, dynamic allocation of the budget boosts the
accuracy of QActor with 100 up to one more percent. We will analyze this dynamic policy
with more details in section 4.5.4.

4.5.2. INFORMATION METRICS

Here we compare the effect on the accuracy obtained on the test set when changing the
underlying uncertainty measure.

In particular, we consider the uncertainty measures CENT, highest Entropy (ENT),
and random baselines Random and Semi-Random to select samples from the noisy set
to be queried for their labels. Moreover, we also analyze the methodology discussed
by [152] and we set α = 0.8. Figure 4.3 summarises the results on CIFAR-10 for 60%
noise and o(t) = 100 over 50 iterations. As the figure shows, CENT is outperforming
all the baselines over the iteration particularly in the earlier stages. As the number of
queried samples grows, the performance of all the methods converges close to each other
except for Semi-Random. The reason is that in the final iterations a large number of
cleaned samples weigh more than the informativeness of them which is observed in all
AL studies. Comparing ENT and CENT overtime shows the that leveraging the ability
of CE function to detect the clean samples in the suspicious set and training on them is
beneficial especially with small query number in the early stages. Moreover, results show
the weighted average of entropy and cross-entropy values in Re-Active is not a suitable
measure for informativeness. Analyzing the performance of Random, however, shows
that random selection of samples to be cleaned by the oracle is less effective than smartly
querying the informative samples.

The decline in the performance of Semi-Random over time is due to the selection
of the noisy samples as the semi-clean data and adding them to the training pool. The
reason is that Semi-Random randomly chooses samples from the informative suspicious
set and directly sends them to the training set without cleaning, while CENT chooses
these samples based on their low CE value. This comparison shows the effectiveness of
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Table 4.2: Accuracy (%), clean sample percentage in active set, and False Discovery Rate (FDR) (%) of our
informative measure (CENT) compared to baselines on CIFAR-10 and CIFAR-100 with 60% noise and 100
queries over 50 and 30 iterations, respectively. FP and TP represent false and true positives in the suspicious set
where positive denotes noisy data.

Dataset Method Accuracy(%) Clean(%) in Active Set FDR = FP/(FP+TP)(%)

CIFAR-10

CENT 76.94 9.58 11.62
ENT 75.77 39.92 11.27
Re-Active 73.62 1.16 12.67
Random 75.37 12.56 13.01
Semi-Random 71.52 12.04 11.55

CIFAR-100

CENT 47.63 9.06 27.34
ENT 45.80 38.07 26.98
Re-Active 47.00 1.97 26.75
Random 47.59 25.24 26.50
Semi-Random 46.76 26.99 26.41

using CE values to distinguish between clean and noisy samples.

Table 4.2 shows the detailed statistics of clean samples in the active for CENT and the
sample selection baselines for both CIFAR-10 and CIFAR-100. Observing the last column
that indicates the ratio of the FP (samples that are clean but have been considered noisy
in the suspicious set by the quality model) to the suspicious set size, shows the total ratio
of the clean samples in the suspicious set. This number is close to the Semi-Random clean
ratio which shows the Semi-Random fails smartly select clean samples for the semi-clean
set. Moreover, to see the effect of the semi-clean set in CENT, we compare the percentage
of the clean samples in that set with the same value with Semi-Random strategy, where the
data in the semi-clean set is selected randomly. For CIFAR-10 this number is 63.24% while
it is only 11.98% for Semi-Random. The numbers are 73.86% and 26.24% for CIFAR-100
respectively. This illustrates how the cross-entropy value helps CENT to select mostly
clean samples as the semi-clean set.

Furthermore, comparing the number of clean samples in the active set for ENT and
CENT validates our argument over the ability of CE value to recognize noisy samples. It
should be noted that although Re-Active is successful in including mostly noisy samples
in the active set, the selected samples are the least helpful for the performance. Our
detailed analysis indicates that this measure results in selecting the data mainly from a
few classes instead of a more homogeneous selection. The high value of clean samples in
the active set for ENT indicates that over half of the budget is being wasted on the samples
that, although informative, were already clean. As mentioned earlier, our motivation to
introduce CENT, was to overcome this waste and have a measure that focuses on both
informativeness and noisiness of the samples that are being selected to be relabeled. As
the experimental results confirm, we believe having such a measure is essential in active
learning applications on noisy labeled data.

4.5.3. QACTOR MODEL SENSITIVITY ANALYSIS

Here we present the results using the static policy termed QActor(100) and QActor(300)
with constant 100 and 300 queries per iteration, respectively. We compare our QActor
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Figure 4.3: QActor accuracy under five different noise-aware informative measures on CIFAR-10 with 60% noise
where 100 queries are labeled by the oracle at each iteration.
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Figure 4.4: Accuracy (a) and the number of queries (b) of QActor with static (blue) and dynamic (red) querying
strategies on CIFAR-10 with 60% noise.

using CENT with the selection baselines from Section 4.4 with the different numbers
of active queries and noise rates. Table 4.3 summarises the results. As expected, No-
Sel which directly learns from the data has the worst results in the presence of noise,
achieving at most 68.11% accuracy. Note that the accuracy of No-Sel declines over time
and we reported the highest accuracy that the model achieved over epochs. However, our
static QActor with CENT with only 100 active querying per iteration from the oracle comes
remarkably close to Opt-Sel, where the model is trained with only the clean samples.

Applying either sample selection or active querying alone achieves intermediate
results compared to No-Sel. Q-only alone is more efficient driving up the accuracy to
approximately 78% for CIFAR-10. However, Q-only has very poor performance for CIFAR-
100. This comparison shows the effectiveness of both the quality model and active
learning since neglecting any of both would result in a decrease in the accuracy. Moreover,
we can observe with the increase in the number of the active query per iteration the
performance increases over time.
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Table 4.3: Accuracy (%) of QActor using a 100-query budget compared to three alternative approaches on
CIFAR-10 and CIFAR-100 under 30% and 60% noise ratios.

Dataset Noise Opt-sel No-sel Q-only QActor(100) QActorD (100)

CIFAR-10 30% 88.52 68.11 78.74 86.24 86.31
60% 85.19 64.86 75.04 76.94 77.83

CIFAR-100 30% 59.29 50.50 36.52 54.28 54.74
60% 52.67 33.71 35.75 47.63 48.40

4.5.4. DYNAMIC QACTOR

We compare our dynamic policy QActorD using a given budget of B = 5000 with our
static policy QActor (100) that queries over the whole time horizon the same number of
instances. Figure 4.4(a) and Table 4.3 summarize the accuracy results for CIFAR-10. Using
dynamic query allocation policy (red line) of the budget across the batches leads to a
better performance of 77.83% than the static policy (blue line) 76.94%. This increase in
performance is more visible in higher noise rate as it is more crucial to clean more samples
by the oracle. Looking at the evolution, we observe a higher performance compared to
the static policy particularly in the first iterations.

This result stems from the fact that the dynamic model queries more in the earlier
batches when the model is less accurate and confident. Figure 4.4(b) shows the evolution
of the number of active queries used in QActorD across the time periods. We see that
indeed in the beginning the number of queries increases goes above the static assignment
(100). In later batches, the number of queries goes then near and lower than the static
case. The fluctuation of the query number per iteration shows how this number imitates
the model’s overall performance. Eventually all the budget is used over the whole time.

4.6. CONCLUSION
In this paper, we consider the challenging problem of image classification with corrupted
labels. We propose QActor, a learning algorithm for very noisy label datasets, introducing
an active learning methodology suited for noisy labeled data called CENT. The core of
QActor is composed of a quality model that filters out noisy labels and an active learner
that smartly selects informative noisy instances to be relabeled by an oracle. The unique
feature of QActor is its noise-awareness while selecting informative data and its dynamic
query allocation over training iterations based on the training loss. The flexible design
enables QActor to be generalized on both standard and deep learning models that have
limited clean data labels. Our extensive evaluation on CIFAR-10 and CIFAR-100 shows that
QActor can effectively combine the merits of the quality model and active learning when
encountering extremely noisy labels, i.e., up to 60%. Compared to the state-of-the-art
addressing noisy labels, QActor achieves higher accuracy by at least 8% at the cost of
querying the oracle to cleanse 10% of suspicious images.

Despite these contributions, several limitations must be acknowledged. First, while
future work could explore different types of deep neural network models, such as Bayesian
neural networks, to enhance prediction accuracy, this aspect remains unaddressed in
the current study. Additionally, we assume that the oracle provides perfect labels, which
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may not reflect real-world scenarios. A more general approach would consider the
oracle providing labels with associated confidence levels and probabilities of correctness.
Furthermore, the proposed method and its informativeness strategy are designed for
single-label learning, which may limit its applicability in multi-label learning contexts.
These aspects represent opportunities for future research to refine and broaden the
effectiveness of QActor.
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LEARNING FROM NOISY LABELS

WITH LABEL AGGREGATION

APPROACH

Today, to label the massive datasets needed to train Deep Neural Networks (DNNs), cheap
and error-prone methods such as crowdsourcing are used. Label aggregation methods aim
to infer the true labels from noisy labels annotated by crowdsourcing workers via labels
statistics features. Aggregated labels are the main data source to train deep neural networks,
and their accuracy directly affects the deep neural network performance. In this paper, we
argue that training DNN and aggregating labels are not two separate tasks. Incorporation
between DNN training and label aggregation connects data features, noisy labels, and
aggregated labels. Since each image contains valuable knowledge about its label, the data
features help aggregation methods enhance their performance. We propose LABNET an
iterative two-step method. Step one: the label aggregation algorithm provides labels to
train the DNN. Step two: the DNN shares a representation of the data features with the label
aggregation algorithm. These steps are repeated until the converging label aggregation
error rate. To evaluate LABNET we conduct an extensive empirical comparison on CIFAR-10
and CIFAR-100 under different noise and worker statistics. Our evaluation results show
that LABNET achieves the highest mean accuracy with an increase of at least 8% to 0.6%
and lowest error rate with a reduction of 7.5% to 0.25% against existing aggregation and
training methods in most cases.

85



5

86 5. LEARNING FROM NOISY LABELS WITH LABEL AGGREGATION APPROACH

5.1. INTRODUCTION
The remarkable success of Deep Neural Networks (DNNs) in supervised learning models,
e.g., in computer vision, natural language processing, and recommender systems, is
mainly dependent on data annotated by human knowledge [155]. It is drastically time-
consuming and expensive to label each instance by a human expert for massive datasets.

Crowdsourcing platforms have emerged as an efficient and inexpensive solution for
the label annotation task. Since workers in the crowd might have different expertise
levels, the quality of annotated labels is not remarkable [140], [156]. Because the data
labeled by crowdsourcing is used to train DNNs, the label quality has a direct impact on
the performance and accuracy of the trained models. Label aggregation methods aim to
infer the correct labels from noisy annotated data such as stemming from crowdsourcing.
In other words, label aggregation methods try to provide high quality labels for training
DNNs. We need to mention here, our focus is on image classification tasks, but our
method has the ability to apply to all datasets that contain data features. The current
solutions consider label aggregation and image classification as two separate tasks. At the
first step, the label aggregation algorithm performs data labeling to enhance the quality
of the labels generated by crowdsourcing workers. Next, the provided dataset, including
sample and annotated label by label aggregation method, is used to train DNN.

The critical point in the process of labeling, then learning, is the lack of connection
between label aggregation and the DNN training. In addition, the current label aggre-
gation, as its name says, only uses label information to find the correct labels without
considering the data features and samples themselves.

In contrast to the current solutions we consider the label aggregation and DNN train-
ing in a collaborative and interrelated manner. In our proposed framework named
LABNET, label aggregation algorithms and classification tasks work together iteratively
and exchange useful knowledge. As mentioned before, label aggregation algorithms work
based on label information without taking into account data features. The data features
are used to train DNNs, but their information can be used to aggregate labels. Since our
method is a collaborative process between training DNN and labels aggregation, DNN
extracts a representation of data features to share with the label aggregation algorithm as
additional information for increasing the quality of annotated labels. Aggregated labels
are used to train DNN as training data, and DNN performs the classification task besides
features extraction for aggregation. In other words, our proposed method interleaves
label aggregation and classification tasks such that the feature extraction part can be
useful to both simultaneously.

The majority of label aggregation methods are iterative-based algorithms. One
of the most well-known method is Expectation–Maximization [157]. The Expecta-
tion–Maximization (EM) algorithm is commonly used in aggregation via maximizing
the likelihood of the data. Prior probabilities are an essential part of calculating the data
likelihood. Numerous probabilistic and statistics models [158] have studied the impact
of different priors on maximum likelihood and, consequently, EM algorithms. The error
rate of aggregated labels directly depends on prior probabilities. Hence choosing the
wrong prior probability leads to poor performance of the EM algorithm, and as a result,
the number of incorrectly aggregated labels increases.

In LABNET, DNN has two tasks: 1) the traditional classification and, 2) features extrac-
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tion for aggregation algorithm. We use the output of the last layer of the DNN, which is
a softmax layer, to map data features into a probability vector. In other words, LABNET

links data features and labels via the DNN softmax output and aggregated labels. Hence
LABNET consists of a classifier and label aggregator. The label aggregator works based
on the EM algorithm, and the classifier is a DNN, e.g., for image classification. At each
iteration, the aggregator provides labels for input images to train the image classifier. In
addition to learning the image classifier, the classifier represents each data sample by
a softmax vector, which is considered as the prior probability in the label aggregation
algorithm.

Since training the classifier at each iteration of the EM algorithm would be extremely
time-consuming, we design an algorithm for deciding when to train the DNN with the
latest aggregated labels. After each iteration of the EM algorithm, we use cross-entropy
function to evaluate the difference between aggregated labels and the classifier prediction
at each iteration. At each iteration, the value of cross-entropy is compared to cross-
entropy in the previous iteration. After comparing the cross-entropy of two consecutive
iterations, the training classifier and label aggregation algorithm will be performed for
the next iteration if the difference is ascending. Otherwise, only label aggregation will be
performed.

We evaluate LABNET on two popular image datasets [129] with synthetic label noise
for each worker. We consider three noise patterns including uniform, bimodal, and flip
noise under different miss rates for workers. We compare LABNET performance including
classifier accuracy and aggregated labels error rate against three standard methods for
aggregation, i.e., EM algorithm without using softmax as the prior, Minimax Entropy and
Majority Voting. Our results show that LABNET achieves both high classification accuracy
and low label aggregation error rate against baselines methods under various scenarios
with different worker numbers, noise patterns, and noise ratios. LABNET outperforms
other baselines accuracy 2% and 3% on average for CIFAR-10 and CIFAR-100, respectively.
In terms of label aggregation error rate, LABNET reduces error rate by 1% and 3% on
average against the baselines for CIFAR-10 and CIFAR-100, respectively.

The contributions of this chapter are summarized as follows.
• LABNET leverages an interactive method for training DNN and aggregating labels.

LABNET considers the two as collaborative task. Each step sends its feedback to
each other one to improve the performance of the whole framework, i.e., high DNN
accuracy and low aggregation error rate.

• We estimate the prior probability to use in the EM algorithm via the softmax output
of the DNN which benefits of using features and labels together.

• We design an algorithm to decide when to train the DNN based on the cross-entropy
between the aggregated labels and the labels predicted by the DNN in the previous
training round.

5.2. RELATED WORK
Robust training DNNs and label aggregation are well-studied subject areas. Most of
the existing robust learning methods do not take into account collaboration with label
aggregation algorithms.

Robust DNNs consider three different approaches to distill the impact of wrong labels,
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including filtering wrong labels [61], [119], estimation of noise confusion matrix [49],
[70] and noise tolerant loss function [57], [63]. Robust training methods [57], [82], [85],
[93], [128] mainly focus on the learning task considering robust architecture and loss
adjustment. In robust training, it does not matter how the data is labeled and by what
process. Hence, in robust training label aggregation is considered as an entirely separate
task.

Label aggregation methods mostly use unsupervised solutions. As an example, [159]
introduces an unsupervised method using two neural networks including a classifier and
re-constructor for label aggregation. We can categorize the aggregation methods into
two groups. The first group relies on probabilistic inference models [160], [161], which
study the impact of latent variables on the likelihood of noisy label samples. [162]–[165]
develop a probabilistic graphical model for label aggregation, and a confusion matrix is
considered for evaluating each worker. [166] works based on prior approximation via
variational inference.

The second group encompasses confusion matrix based methods. The focus is to
find how correct labels are corrupted to noisy labels by each worker [157]. GLAD [167]
is a binary labeling method that infers the true label and difficulty of each sample at the
same time. Also, Zhou et al. [168], [169] design a framework that uses minmax entropy
estimator and assigns a different probabilistic distribution to each sample-worker pair.

Another aspect of label aggregation is to use a deep neural network for aggregating
crowdsourced responses. As opposed to the existing unsupervised method, DeepAgg [170]
is a supervised model. DeepAgg, instead of using Bayesian algorithms, the label aggrega-
tion model relies on DNNs to encode required information for statistical models. Another
aggregation method is based on a disagreement between the provided labels by workers
and predictions of learning algorithm [171].

The aforementioned studies are limited to label aggregation without taking into
account feature space. In this paper, we show that the use of data representation in
the label aggregation algorithm reduces the error and increases the quality of the output
labels. Besides, prior arts do not consider the training process and relation with the
aggregation algorithm. In other words, there is useful knowledge that can be shared
between the label aggregation and the training processes. LABNET is the first study
that focuses on model interaction between label aggregation and training a deep neural
network to the best of our knowledge.

5.3. METHODOLOGY
Consider the classification and label aggregation problem having training set with N
samples D = {(xi , yi )}N

i=1, where xi is the feature vector of the i th sample and yi =
{y1

i , y2
i , . . . , y w

i , . . . , yK
i } is the set of labels from different workers w = {1,2, . . . ,K } for the

i th instance. y w
i ∈ {0,1}C is the corresponding label vector generated by worker w in the

crowdsourcing setting and C denotes the number of classes.

To label data, it is common practice to use crowdsourcing. Crowdsourcing is a cheap
and fast method to label massive data sets compared to labeling by human experts, but
it is less accurate. The accuracy of a crowd system depends on the ability of inexperi-
enced workers to identify the correct label. Label aggregation algorithms are proposed
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Figure 5.1: The label aggregation and training DNN scenario in LABNET.

to increase the accuracy of crowd labels. Thus the aggregated labels are more accurate
than the label sets provided by single workers. After aggregation process, the aggregated
labels Ŷ = {ŷ1, ŷ2, . . . , ŷN } are used to train a classifier network. We denote the classifier
network prediction as f (x ;θ) where θ are the weights of the classifier network. Since the
aggregated labels together with the samples constitute the training data for the neural
network, the accuracy of the trained neural network predictions depends directly on the
accuracy of the aggregated labels.

We propose a method that leverages a direct cooperative approach between the
classifier network and the label aggregator. The method first aggregates labels using the
estimated probabilities by the classifier via the softmax layer. After label aggregation using
the softmax output as the prior knowledge in the aggregation algorithm, the network is
trained via the aggregated labels. In other words, the label aggregation algorithm and
the classifier exchange helpful knowledge iteratively. As a result, both the accuracy of the
classifier network and the accuracy of the aggregated labels increase.

We illustrate the procedure of aggregation and training the classifier in Figure 5.1. At
the beginning, each worker assigns a label to each instance based on its expertise level. In
the next step, the label aggregator performs the aggregation task using the EM algorithm.
In the first iteration since we have no prior estimated by the classifier, we use majority
voting algorithm to aggregate the labels with which we train the classifier. After training
the classifier, we use it to infer the softmax vector output for each sample, to be used
as prior by the EM-based aggregation algorithm. EM-based algorithms are commonly
used for label aggregation. EM needs knowledge of the prior data distribution to estimate
the probability of correctness of a label generated by a worker. pc denotes the prior
probability of class label c. In LABNET, we estimate pc via the predicted class probability
by the softmax layer of the neural network. Hence the inferred softmax probability vector
from each instance is useful knowledge for the EM algorithm. Vice versa, to train the
DNN, we use the labels provided by the EM algorithm, which selects the labels having
maximum likelihood among the labels provided by the workers.
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5.3.1. LABEL AGGREGATION

We consider the scenario shown in Figure 5.1. To each data sample xi corresponds a
set of labels yi = {y1

i , y2
i , . . . , yK

i } from K different crowd workers. The label aggregator
uses the EM algorithm to estimate the correct labels. The EM algorithm is an iterative
algorithm, including an E- and an M- step. In the E-step for each instance i , the algorithm
first calculates the probability that the aggregated label ŷi equals t given that the label y w

i
generated by worker w equals l . Pw (ŷi | y w

i ) denotes this probability. Therefore we have
the following expression

Pw (ŷi = t | y w
i = l ) =

∑N
j=11(ŷi = t & y w

j = l )∑C
c=11(ŷi = t & y w

i = c)
(5.1)

where 1(.) is the indicator function. In Equation (5.1), We count the number of times that
worker k labels item i to l when the aggregated label is t over the number of classes are
labeled by worker k when the aggregated label is t .

The next stage of the EM algorithm needs the prior probability of each class. In the
classic EM algorithm these probabilities are calculated as pc = 1

N

∑N
i=11(ŷi = c) where ŷi

is the aggregated label and c is the class label. Thus P = {p1, p2, . . . , pc , . . . , pC } is the set of
prior probabilities for each class.

In our proposed method, we replace the prior class probabilities to make them de-
pendent on the features extracted by the classifier. As anticipated in Figure 5.1, we use
the softmax output of the classifier prediction f (x ;θ) as set of prior probabilities. The
softmax vector is computed based on image features. Hence, the prior probabilities from
the softmax vector contain information on the features of the sample data because the
softmax vector is a representation of the input data in the form of a probability vector. For
label aggregation,we use as prior the predicted class probability across all samples:

pc = 1

N

N∑
i=1

fc (xi ;θ). (5.2)

where fc (x ;θ) denotes the softmax value of class c by the classifier f (x ;θ). After finding
the prior probability based on the proposed method, the EM algorithm begins maximizing
the data likelihood. In the M-step, the likelihood qi ,c of each instance i being of class c is
computed as:

qi ,c = pc

K∏
w=1

Pw (ŷi = c | y w
i ). (5.3)

which leverages the Bayes’s theorem. Qi = {qi ,1, qi ,2, . . . , qi ,C } denotes the set of likelihoods
for each data instance i for all C classes. The aggregated label is the class c having
maximum likelihood:

ŷi = argmax
c

Qi . (5.4)

After the M-step the label aggregator passes the set of aggregated labels Ŷ = {ŷ1, ŷ2, . . . , ŷN }
to the training of the classifier network.



5.3. METHODOLOGY

5

91

5.3.2. CLASSIFIER TRAINING
The data to train the classifier f (x ;θ) includes features vector xi and aggregated labels
vector ŷi from the aggregator. Hence the loss functions for training can be written as
follows:

ℓ= min
θ

1

N

N∑
i=1

LC E ( f (xi ;θ), ŷi ) (5.5)

where LC E (., .) is the cross entropy loss function:

LC E =−
C∑

j=1
ŷ j log f j (xi ) (5.6)

where ŷ j is the aggregated label and f j (xi ) is the softmax probability for the j th class.
These probabilities represent the data features and are fed back to EM algorithm via
Equation (5.2).

5.3.3. MAKING DECISION TO TRAIN DNN
Training the DNN at each iteration of the EM algorithm would be extremely computation
intensive and unpractical. Therefore, we need to carefully decide when to train to reduce
the computational load while guaranteeing the accuracy of the classifier and correctness
of the aggregated labels. At the end of each round of the EM algorithm we measure
the (dis)agreement between the DNN predicted labels and the aggregated labels. If the
disagreement increases with respect to the previous iteration, we triggers the training of
the DNN to prevent further drifts between the predicted and aggregated labels.

More in detail at each iteration we calculate the disagreement using the cross-entropy
function as :

H t =− 1

N

N∑
i=1

ỹi log f (xi ;θ) (5.7)

Equation (5.7) measures the distance between DNN predicted and the aggregated labels.
Therefore, if the value of H increases between iteration rounds the predicetd and aggre-
gated labels are diverging. Hence, we trigger training of the DNN with the new aggregated
labels. Likewise, if the value of H does not increase between iteration rounds, there is no
need to train DNN at the next iteration.

5.3.4. END-TO-END TRAINING PROCEDURE
Our framework aims to jointly aggregate labels with low label error rate and train a DNN
with high accuracy. We describe the whole LABNET and collaboration between DNN
and label aggregator in Algorithm 5. In this scenario, we have multiple workers which
provide labels for each data instance, thus the input dataset is D = {x ,Y } (line 1). To
initialize the algorithm we need some aggregated labels to start with. We derive these
via simple Majority Voting (line 2). Before label aggregation, we calculate the number of
labels obtained from each class after aggregation from each worker named LC×K×C (line
4-6) and force training of the classifier f (x ,θ) (line 7). At the beginning of each iteration
if the train flag is true, the classifier f (x ,θ) is trained with the aggregated labels Ŷ (line
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10-12), then we use the softmax output of f (x ,θ) as the prior (line 13-14). In case of train
is false, the prior probability for c th class in P vector equals to the average number of
occurrence of class c into aggregated label set (line 16-17). In each iteration, we calculate
the need to train based on Equation (5.7) (line 18-23). Ỹ denotes the one-hot vectors of
aggregated labels Ŷ , and ỹi ∈ Ỹ is the one-hot vector for aggregated label of sample i .
The label aggregator method works based on an EM algorithm that starts with E-step via
finding the conditional probability of aggregated labels given each worker’s generated
label (line 24-26). The M-step includes finding the likelihood of each instance and class
label (line 27-29). Finally, the aggregated label is the class with maximum probability
among all classes (line 30). This procedure repeats for each iteration. The aggregated
labels are used to train the DNN and the DNN softmax output used as prior.

5.4. EVALUATION

5.4.1. EXPERIMENT SETUP

Dataset. We consider two different vision datasets in our experiments to evaluate the
performance of our algorithm against other methods.

• CIFAR-10 [129]: contains 60K 32×32 pixels samples. The labels are classified into
10 categories. Here we use 50K samples as training data and 10K for testing data.

• CIFAR-100 [129]: is similar to CIFAR-10 except that its labels are grouped into 100
categories.

Noise and workers. To simulate workers with different level of expertise for annotating
images, we use three different noise patterns in our experiments.

• Uniform: This noise corrupts the true label into another random label with equal
probability.

• Bimodal: This noise corrupts the original class label around two other targeted
classes, each following truncated normal distribution. The N T (µ,σ, a,b) includes
µ that specifies the target and σwhich controls the spread. a and b denote the class
label boundaries.

• Flip: This noise is generated by flipping the original class label to another class with
a specific probability.

Baselines. We consider three different baselines for comparison.
• Majority Voting (MV): is a basic label aggregation method which chooses the label

with the highest consensus.
• Expectation Maximization (EM) [157]: is an iterative method to estimate the con-

fusion matrix of workers by maximizing the likelihood of observed labels. The
diagonal elements show the probability of aggregated label.

• Minimax Entropy (ME) [168]: This method considers a confusion matrix for work-
ers and encodes their labeling expertise. In addition, the ME assigns a vector to
items and encodes their labeling difficulty. It uses a minimax entropy approach to
estimate the confusion matrix and vector together.

We implement all algorithms in Python programming language using Keras version 2.2.4
and TensorFlow version 1.12.

Parameters. To conduct our experiments on CIFAR-10 and CFAR-100, we use an 8-
layer CNN with 6 convolutional layers followed by 2 fully connected layers, and ResNet-44,
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Algorithm 5: LABNET

1 Input: training set D = {x ,Y }, Epoch Emax , Iteration Imax Initialize randomly θ

2 Ŷ = MajorityVoting(Y ) /* Yi , j denotes i th instance from j th worker */
3 Output: The aggregated labels Ŷ , Trained network f (x ,θ)
4 for i = 1,2, . . . , N do
5 for w = 1,2, . . . ,K do
6 L[ŷi ][w][yi ]+= 1

7 train = True
8 H0 = 0
9 for each iteration t = 1,2, . . . , Imax do

10 if train then
11 for each e = 1,2, . . . ,Emax do
12 Train f (x ,θ) with (x , Ŷ );

13 for each c = 1,2, . . . ,C do
14 Pc = 1

N

∑N
i=1 fc (xi ;θ);

15 else
16 for each c = 1,2, . . . ,C do
17 Pc = 1

N

∑N
i=11(ŷi = c)

18 Ỹ = ONE-HOT(Ŷ )

19 H t =− 1
N

∑N
i=1 ỹi log f (xi ;θ)

20 if H t −H t−1 > 0 then
21 train = True

22 else
23 train = False

24 for i = 1,2, . . . , N do
25 for w = 1,2, . . . ,K do

26 Pw (ŷi | y w
i ) =

∑N
j=1 L[ŷ w

i ][w][y w
j ]∑C

c=1 L[ŷ w
i ][w][c]

27 for i = 1,2, . . . , N do
28 for c = 1,2, . . . ,C do
29 Qi ,c =Pc ×∏K

w=1 Pw (ŷi = c | y w
i )

30 Ŷ = argmax
c

Q
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respectively. All networks train with SGD with momentum 0.9, weight decay 5×103 and an
initial learning rate of 0.1. For CIFAR-10 in each iteration, we train the DNN for 120 epochs,
and the learning rate is divided by 10 after 40 and 80 epochs. For CIFAR-100, the total
number of epochs is 150, and the learning rate is divided by 10 after 80 and 120 epochs.
For the EM algorithm, the maximum number of iterations is 10. For bimodal noise, the
center of the distribution around classes µ1 = 3.0, µ2 = 7.0 with varianceσ1 = 1.0, σ2 = 0.5.
For flip noise in CIFAR-10, we flip similar classes including bird → airplane, truck →
automobile, deer → horse and dog ↔ cat. For CIFAR-100, the 100 classes are categorized
into 20 super-classes. Each super-class consists of 5 sub-classes. We randomly select two
sub-classes in each super-class and flip labels between sub-classes. The results presented
are based on five independent runs to ensure the reliability and robustness of the findings.

Evaluation Metrics. To evaluate the performance of our proposed model against the
baselines, we use as metric the label aggregation error rate and accuracy of the trained
neural network.

• Aggregation Error Rate: is the percentage of inferred labels which differ from the
true labels. The true labels are used only for evaluation not for training.

• Accuracy: Test accuracy is the percentage of correct predictions by the DNN on the
testing data.

5.4.2. NUMBER OF WORKERS IMPACT

CIFAR-10
We summarize the results of CIFAR-10 in terms of DNN’s accuracy and aggregation error
rate for a different number of workers in Figure 5.2 and Figure 5.3, respectively. According
to Figure 5.2(a), our method outperforms all competitors through various numbers of
workers for the uniform noise pattern. When the noise pattern is bimodal in Figure 5.2(b),
LABNET is the most accurate method against MV, EM, and ME except for the case of 3
workers that Minimax Entropy is the best one and our method is the second best result.
Also, for the flip noise in Figure 5.2(c), LABNET achieves the highest accuracy by 65.59%
and 70.12% when numbers of workers are 9 and 12, respectively. In the case of 3 and 6
workers, Minimax Entropy achieves the best accuracy by 38.88% and 64.24% test accuracy.
Another observation worth mentioning is that the test accuracy increases with the number
of workers for all cases. In general for LABNET, increasing the number of workers has
the highest and lowest impacts on the classifier accuracy for the flip and uniform noise
patterns, respectively.

We compare aggregation label error rate in Figure 5.3 for three different noise patterns
over various numbers of workers. For uniform noise pattern shown in Figure 5.3(a),
LABNET achieves the lowest error rate against other rivals by 58.93%, 36.87%, 27.74% and
19.53% for 3, 6, 9 and 12 workers, respectively.

The direct impact of aggregation error rate on DNN accuracy is shown in Figure 5.3(b)
and Figure 5.3(c). The Minimax Entropy has lowest error rate with 3 workers in bimodal
noise pattern and the highest DNN accuracy in Figure 5.3(b) and Figure 5.2(b), respectively.
Also LABNET achieves the best error rate results for 6, 9 and 12 workers against the
baselines. Furthermore, we see the same pattern for flip noise in Figure 5.2(c) and
Figure 5.3(c) which in Minimax Entropy performs better than other baselines when the
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Figure 5.2: Accuracy (%) for different numbers of workers in LABNET compared to three baselines on CIFAR-10
under 60% noise ratio for three noise patterns: a) uniform, b) bimodal, and c) flip and missing ratio of 30%.
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Figure 5.3: Label aggregation error rates for different numbers of workers in the LABNET, compared to three
baselines, on CIFAR-10 under a 60% noise ratio for three noise patterns: a) uniform, b) bimodal, and c) flip, with
a missing ratio of 30%.
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number of workers equals 3 and 6. In addition, the worst results belong to MV that is the
least accurate trained DNN among all baselines. For the case of 9 and 12 workers, LABNET

achieves 32.45% and 25.20% aggregation error rate, respectively, which is the best method
compared to MV, EM, and Minimax Entropy. The highest impact of increasing workers on
error rate belongs to the flip noise pattern with a reduction of 39.59% for LABNET.

CIFAR-100
CIFAR-100 is more challenging than CIFAR-10 due to the higher number of classes. The
accuracy of DNN and label aggregation error rate results are shown in Figure 5.4 and
Figure 5.5, respectively. The first important observation through the results is the poor
performance of Minimax Entropy for CIFAR-100 because, for a large number of classes,
this method easily converges to the wrong local optimum. According to Figure 5.4, the
bimodal noise pattern is the most straightforward pattern, and flip noise is the most
complex one for classification and labels aggregation. As shown in Figure 5.4(a), LABNET

achieves the best accuracy among all methods. The highest difference between the
accuracy of LABNET and second best method is 1.5% for 12 workers and the least one
is 0.4% for 9 workers. For bimodal noise in Figure 5.4(b), LABNET achieves the highest
accuracy for all the scenarios with different numbers of workers. The best accuracy of
LABNET equals 64.28% with 12 workers. In addition, the test accuracy for 3, 6, and 9
workers are 17.80%, 58.90%, and 63.98%, respectively. Since the flip noise is the most
difficult noise pattern, the best accuracy of LABNET is 24.73% with 12 workers. Based
on the Figure 5.4(c), LABNET outperforms all the baselines. In LABNET, increasing the
number of workers from 3 to 12 improves the classifier accuracy 46.48% for the bimodal
noise significantly rather than 13.81% and 14.56% for the uniform and flip noise patterns,
respectively.

Figure 5.5 summarizes the aggregation error rate of our proposed method and other
baselines over different numbers of workers. With respect to the test accuracy results in
Figure 5.4, the most accurate method has the lowest label aggregation error rate in all the
cases with different noise patterns and numbers of workers. For uniform noise, LABNET

achieves 50.01% error rate in the case of 3 workers, which is the lowest among all methods,
although performance of each method is close to each other. As we mentioned before,
Minimax Entropy suffers from poor performance on dataset with large number of classes
under bimodal and flip noise patterns which is shown in Figure 5.5(b) and Figure 5.5(c).
Through all the noise patterns and different number of workers, LABNET performs as the
best method against baselines with gaps of 7.33%, 3.23% and 54.21% error rate under
uniform, bimodal and flip noise pattern with 12 workers, respectively. According to the
results of LABNET in Figure 5.5, increasing the number of workers has the most effect on
reducing the error for bimodal noise pattern.

5.4.3. IMPACT OF MISSING RATE ON DNN ACCURACY AND LABEL AGGREGA-
TION ERROR RATE

We extensively evaluate LABNET, MV, EM, and Minimax Entropy on CIFAR-10 and CIFAR-
100, with label missing rates ranging from 0.0 to 0.3. The missing rate is the probability
that a worker does not assign a label to a sample, resulting in the missing label. We also
consider two different numbers of workers: 3 and 9. We summarize the average test
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Figure 5.4: Accuracy (%) for different numbers of workers in LABNET compared to three baselines on CIFAR-100
under 60% noise ratio for three noise patterns: a) uniform, b) bimodal, and c) flip and missing ratio of 30%.
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Figure 5.5: Label aggregation error rate for different numbers of workers in LABNET compared to three baselines
on CIFAR-100 under 60% noise ratio for three noise patterns: a) uniform, b) bimodal, and c) flip and missing
ratio of 30%.
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accuracy and label aggregation error rate across three runs for CIFAR-10 and CIFAR-100
in Table. 5.1 and Table. 5.2, respectively.

Table 5.1: Accuracy and error rate of LABNET compared to MV, EM, and Minimax Entropy for three noise
patterns (uniform, bimodal, and flip) with different numbers of workers and missing rates on CIFAR-10 with a
60% noise ratio.

LABNET MV EM Minimax Entropy
# of Workers Missing rate

Accuracy (%) Error rate (%) Accuracy (%) Error rate (%) Accuracy (%) Error rate (%) Accuracy (%) Error rate (%)

Noise pattern = Uniform

3
0.0 74.62±0.32 54.51±0.10 71.48±0.29 55.93±0.0 66.17±0.33 59.07±0.12 72.25±0.31 54.87±0.16
0.1 74.11±0.40 56.59±0.05 71.31±0.22 56.75±0.0 70.15±0.38 57.58±0.05 74.17±0.52 56.28±0.08
0.3 73.02±0.25 58.91±0.03 70.44±0.19 60.28±0.0 63.26±0.28 61.17±0.08 71.26±0.19 58.99±0.10

9
0.0 83.59±0.52 20.75±0.04 81.75±0.38 21.26±0.0 82.12±0.42 20.88±0.05 81.70±0.62 21.15±0.04
0.1 83.31±0.15 20.84±0.03 81.07±0.22 20.96±0.0 82.51±0.13 21.16±0.02 70.85±0.66 21.47±0.09
0.3 81.35±0.19 27.71±0.04 78.72±0.21 33.31±0.0 80.05±0.31 27.71±0.11 80.21±0.27 27.98±0.02

Noise pattern = Bimodal

3
0.0 76.69±0.31 34.09±0.06 72.44±0.42 44.63±0.0 52.18±0.26 50.71±0.08 78.05±0.38 31.76±0.05
0.1 76.24±0.15 34.49±0.02 73.40±0.37 43.77±0.0 47.03±0.43 54.14±0.07 77.22±0.27 33.79±0.04
0.3 75.39±0.37 35.15±0.03 71.83±0.17 44.92±0.0 48.29±0.36 52.81±0.03 76.44±0.56 33.94±0.11

9
0.0 87.75±0.21 4.19±0.02 84.43±0.33 11.56±0.0 85.05±0.20 8.51±0.05 86.05±0.18 5.43±0.02
0.1 87.44±0.11 4.2±0.02 83.84±0.34 11.76±0.0 84.55±0.31 8.72±0.04 85.42±0.29 6.37±0.02
0.3 85.52±0.38 7.53±0.01 81.83±0.46 22.86±0.0 84.88±0.25 7.56±0.03 84.47±0.30 9.41±0.04

Noise pattern = Flip

3
0.0 40.47±0.34 59.17±0.05 30.75±0.29 64.79±0.0 34.73±0.25 64.78±0.02 51.34±0.49 50.39±0.09
0.1 39.89±0.16 59.32±0.03 31.07±0.39 64.79±0.0 32.19±0.10 64.78±0.09 45.76±0.67 55.89±0.08
0.3 38.92±0.37 60.93±0.01 25.15±0.66 68.03±0.0 31.34±0.26 64.80±0.07 38.82±0.41 60.95±0.04

9
0.0 64.65±0.10 28.56±0.03 18.20±0.43 73.37±0.0 64.39±0.23 30.62±0.02 64.78±0.36 28.43±0.09
0.1 64.64±0.31 29.56±0.02 21.93±0.32 73.37±0.0 64.19±0.53 30.64±0.08 64.21±0.22 29.95±0.12
0.3 64.89±0.69 31.45±0.08 27.94±0.19 70.96±0.0 63.01±0.40 32.33±0.04 63.54±0.37 32.29±0.08

CIFAR-10. As shown in Table. 5.1, in the case of uniform noise pattern, LABNET

achieves the highest accuracy in all cases. As we expect, variation of label missing rate
affects DNN accuracy and label aggregation error rate. Increasing the missing rate reduces
the accuracy of DNN and increases the label aggregation error rate. In addition, more
workers enhance the DNN accuracy. According to the results, we observe an 8.97%, 9.2%,
and 8.33% increase in accuracy by adding six workers to our method for the missing
rate 0.0, 0.1 and 0.3 under uniform noise pattern, respectively. For the case of bimodal
noise, Minimax Entropy is the best method when three workers are available. However,
with nine workers, LABNET outperforms all baselines in terms of accuracy and error rate.
According to the results in Table. 5.1, LABNET performs better aggregation on higher
missing rate under flip noise pattern. Consequently, the accuracy of DNN is higher than
other methods in the higher missing rate.

CIFAR-100. Since CIFAR-100 contains a more significant number of classes than
CIFAR-10, label aggregation is a challenging task. According to the results in Table. 5.2,
LABNET achieves the highest DNN accuracy and the lowest aggregation error rate against
other baselines under uniform, bimodal, and flip noise patterns. The impact of missing
rate variation on accuracy and error rate for CIFAR-100 is the same as the impact of
missing rate on CIFAR-10. Another observation worth mentioning is the significant
enhancement in Bimodal noise accuracy when the number of workers changes from 3 to
9. Also, the difference between LABNET accuracy and other baselines for CIFAR-100 is
significantly higher than the results on CIFAR-10. There exist the same observations for
labels aggregation error rate. In other words, our proposed model is significantly more
accurate on a more complex dataset under bimodal and flip noise. Furthermore, Minimax
Entropy performs label aggregation poorly for various missing rates equal to 0.0, 0.1, and
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Table 5.2: Accuracy and error rate of LABNET compared to MV, EM, and Minimax Entropy for three noise
patterns (uniform, bimodal, and flip) with different numbers of workers and missing rates on CIFAR-100 with a
60% noise ratio.

LABNET MV EM Minimax Entropy
# of Workers Missing rate

Accuracy (%) Error rate (%) Accuracy (%) Error rate (%) Accuracy (%) Error rate (%) Accuracy (%) Error rate (%)

Noise pattern = Uniform

3
0.0 48.83±0.28 49.53±0.05 42.89±0.53 50.48±0.0 48.21±0.35 50.37±0.04 39.64±0.28 51.12±0.02
0.1 48.62±0.18 49.55±0.03 42.50±0.29 50.58±0.0 48.03±0.42 50.41±0.06 39.85±0.35 50.92±0.03
0.3 49.65±0.18 50.02±0.03 42.48±0.47 50.64±0.02 48.05±0.59 50.39±0.04 39.31±0.33 51.09±0.03

9
0.0 64.20±0.16 8.17±0.02 62.14±0.38 8.35±0.0 63.43±0.27 8.33±0.03 62.19±0.14 8.34±0.02
0.1 63.35±0.31 8.19±0.01 61.72±0.41 8.38±0.0 63.21±0.28 8.36±0.02 62.15±0.25 8.38±0.05
0.3 61.16±0.22 15.34±0.02 60.53±0.25 15.42±0.0 60.73±0.39 15.40±0.03 59.78±0.46 15.52±0.05

Noise pattern = Bimodal

3
0.0 19.34±0.21 54.72±0.03 11.21±0.16 62.86±0.0 11.19±0.36 62.86±0.03 1.05±0.12 92.73±0.04
0.1 18.93±0.27 55.18±0.02 11.85±0.48 62.89±0.0 11.91±0.31 62.87±0.06 1.09±0.17 95.37±0.03
0.3 17.82±0.24 58.49±0.03 4.12±0.31 62.88±0.0 11.32±0.42 62.89±0.04 1.04±0.29 95.38±0.03

9
0.0 64.89±0.43 3.15±0.03 64.11±0.26 3.19±0.0 64.15±0.28 3.16±0.04 1.03±0.10 98.86±0.02
0.1 64.53±0.14 3.15±0.02 63.20±0.43 3.18±0.0 63.82±0.37 3.17±0.02 1.04±0.09 98.91±0.03
0.3 63.98±0.29 5.76±0.02 62.27±0.36 5.89±0.0 62.48±0.42 5.87±0.02 1.03±0.11 98.39±0.02

Noise pattern = Flip

3
0.0 11.43±0.28 64.53±0.03 8.88±0.16 64.54±0.0 8.95±0.43 64.54±0.02 10.02±0.33 81.84±0.02
0.1 10.65±0.42 64.53±0.03 9.12±0.28 64.55±0.0 9.14±0.37 64.54±0.01 9.92±0.10 81.84±0.03
0.3 9.98±0.25 64.83±0.02 6.14±0.31 64.91±0.0 8.99±0.20 64.90±0.01 9.76±0.41 81.85±0.09

9
0.0 25.68±0.46 61.87±0.02 22.06±0.24 63.64±0.0 22.63±0.16 63.62±0.05 9.38±0.57 84.06±0.04
0.1 25.05±0.17 61.95±0.02 21.49±0.40 63.65±0.0 22.58±0.39 63.63±0.02 9.18±0.21 84.07±0.03
0.3 24.65±0.26 62.11±0.01 21.11±0.33 63.77±0.0 22.38±0.14 63.72±0.04 9.17±0.52 83.27±0.03

0.3 because of getting stuck in the local optimum for the case of the biased dataset with a
large number of classes to a specific class. In case of bimodal and flip noise patterns, EM
achieves second best results in terms of accuracy and error rate.

5.5. CONCLUSION
Motivated by the need for accurate data labeling of crowd workers and using the provided
labels for training DNNs, we design an iterative method for label aggregation and training
DNN together. The prior art performs label aggregation and training classifier in two
separate processes. We propose LABNET that considers aggregation and training in
contact with each other. In our model, the classifier extracts the prior knowledge for
passing to the aggregation algorithm. Also, the estimated correct labels by aggregation
algorithm are used to train the classifier. In addition, we design an algorithm to decide
when DNN needs to be trained through the aggregation algorithm iteration. Compared
to the baselines, LABNET outperforms in most scenarios, especially for in challenging
scenarios with large number of classes.

Despite its strengths, the proposed method has some limitations. One limitation is
that we only consider one type of DNN for image classification, leaving the impact of
other network architectures unexplored. Furthermore, the classifier does not incorporate
any robust mechanisms, highlighting a potential area for future research to explore the
integration of robust DNNs and aggregation algorithms capable of addressing label noise,
as well as their collaborative effects. In LABNET, we demonstrate that this collaborative
approach can significantly enhance the robustness of both the DNN and the label aggre-
gator. Therefore, adding additional robustness mechanisms to both components could
further improve overall robustness.





6
ROBUST MULTI-LABEL LEARNING

In this chapter, we tackle the challenging and realistic problem of noisy multi-label classifi-
cation, where each data sample is associated with a set of labels that may suffer from errors
or missing annotations. The goal is to enhance the accuracy of multi-label classification
models in the presence of noisy labels. To achieve this objective, we propose two innovative
methods, Trusted Loss Correction for Multi-Label Learning ( TLCM), and Multi-Label
Loss Correction against Missing and Corrupted Labels ( MLLSC), that aim to improve the
performance of multi-label classifiers when dealing with label noise.

TLCM leverages partial data supervision to estimate the noise corruption matrix and
address the challenges posed by noisy and imbalanced label distributions in multi-label
learning. By utilizing a small fraction of trusted data, we estimate the extent of label
corruption and effectively handle label imbalance, resulting in enhanced accuracy for
multi-label classifiers.

On the other hand, MLLSC introduces a robust loss function specifically designed to
mitigate the negative impact of noisy labels in multi-label classification. Unlike traditional
loss functions, MLLSC does not rely on additional data or expert supervision. Instead, it
incorporates robustness directly into the loss function, enhancing the model’s resilience
to label noise and improving performance even when clean or expert-labeled data is
unavailable.

By designing TLCM and MLLSC, we provide comprehensive solutions for effectively ad-
dressing noisy labels in multi-label classification. These approaches leverage partial data
supervision and a robust loss function to handle label corruption and missing annotations,
resulting in significantly improved accuracy and reliability for multi-label classifiers.

Empirical evaluations on real-world vision and object detection datasets, including MS-
COCO, NUS-WIDE, and MIRFLICKR, demonstrate the effectiveness of our methods under
medium and high corruption levels, outperforming state-of-the-art multi-label classifiers,
ASL, and MPVAE, by a substantial margin in terms of mean average precision (mAP) points.
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6.1. INTRODUCTION
This chapter of the thesis delves into the challenging and realistic problem of noisy multi-
label classification, where each data sample is associated with a set of labels that may
contain errors or missing annotations. The main goal is to extend the robustness of multi-
class deep neural network (DNN) methods to multi-label classifiers, with the ultimate
objective of enhancing the accuracy of multi-label classification in the presence of noisy
labels.

Real-world datasets, often collected from diverse resources like social media and
web search engines, are prone to label noise issues due to crowd-based annotation
processes [172], [173]. In multi-label learning, where each sample can have multiple
objects and complex object-label mappings, label noise becomes an even more significant
obstacle to learning accurate classifiers [174]. Such datasets may contain both false-
positive and false-negative labels, making the problem even more intricate [175].

Label noise and its impact on the performance of DNNs have been widely studied in
single-label classification [172], [176], [177]. It is shown that DNNs can overfit to noise
degrading their performance significantly [178] due to the memorization effect [179]. In
multi-label learning, where each sample may include several corrupted labels as shown
in Figure 6.1(a), label noise becomes a more consequential obstacle to learn accurate clas-
sifiers [174]. We empirically evaluate the effect of label corruption by injecting different
noise levels on the MS-COCO dataset1 used to train a state-of-the-art multi-label classifier,
i.e., ASL [38]. In Figure 6.1(b), one can clearly see that the mean Average Precision (mAP)
significantly degrades with increasing noise levels.

Also, from another perspective, the focus of prior art in multi-label learning is on
missing labels [180], [181] foregoing the effect of wrong labels. In reality each image can
contain some correct labels (true-positives), miss some others (false-negatives), and the
annotator can add some wrong labels (false-positives). Hence, different from previous
work, we consider annotators that can simultaneously produce missing labels (marked
red Figure 6.2(a)) and wrong labels (marked orange in Figure 6.2(a)) for each image.

We empirically evaluate the separate and combined impact of false-positives and
false-negatives on a multi-label classifier using binary cross-entropy loss by injecting
missing and corrupted labels in the MIR-FLICKR dataset. In Figure 6.2(b), one can clearly
see that the mean Average Precision (mAP) significantly degrades in the case of false-
positives only and false-negatives only, but even more in the presence of both. Due to the
memorization effect [182], [183], all curves in Figure 6.2(b) first raise (learn correct labels)
then degrade (overfit to wrong labels) in terms of mAP.

With both missing and corrupted labels the mAP of Binary Cross Entropy (BCE) is
reduced from 75.73% (highly curated dataset) to 54.91%. For real world applications it
is thus vital to have loss functions robust to concurrent false-positive and false-negative
labels.

Previous research in multi-label learning has focused on addressing missing labels,
neglecting the simultaneous presence of both false-positive and false-negative labels [180],
[181]. To tackle these challenges, we propose two innovative methods, namely Trusted
Loss Correction for Multi-Label Learning (TLCM) and Multi-Label Loss Correction against

1The details of noise injection process can be found in Section 6.5.1
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Figure 6.1: Wrong labels and their impact in multi-label classification.

Missing and Corrupted Labels (MLLSC).
TLCM leverages partial data supervision and involves estimating the noise corruption

matrix, addressing label imbalance issues commonly encountered in multi-label learning
scenarios. On the other hand, MLLSC introduces a robust loss function that directly
incorporates resilience to label noise, making it suitable for both missing and corrupted
labels without requiring additional expert supervision.

To cope with label corruption in multi-label learning, we first propose a novel ap-
proach (TLCM) which uses gold loss correction leveraging a small fraction of trusted
(gold) data for estimating the label corruption matrix. Although the gold loss correction
has been used effectively against single-label corruption [172], noisy multi-label data
needs an accurate method to estimate the corruption matrix handling the label mapping
complexity and the label unbalance difficulty. We overcome these challenges by taking
advantage of trusted single-labels to regulate the estimation of the multi-label corruption
matrix. In other words, we introduce single-label regulators to correct the captured matrix
on the miss classification behavior of the trained model on noisy multi-label samples. It
is worth mentioning, having a small amount of trusted data, i.e. clean single-label and
multi-label data, is common practice because we use clean label data in the validation
and testing process. Therefore, it is possible to curate a small amount of training data.
To the best of our knowledge, our method is the first that estimates the label corruption
matrix in multi-label classification considering the labels dependence and unbalance.

Furthermore, to cope with simultaneous missing and corrupted labels, we design
MLLSC that distinguishes the false-positive (false-negative) from true-positive (true-
negative) by using the knowledge of a multi-label classifier. We use the predicted proba-
bility for each label of a DNN as a confidence value and as an indicator for false or true
positive (negative) detection. After that, we compute the suitable loss based on being
true/false positive (negative) since the loss value calculation for positive labels differs
from negative labels in multi-label learning to counter label imbalance. Unlike methods
that require a small amount of correct labels [49], [82], [117], this efficient and effective
loss correction works properly without using any ground truth labels against both missing
and corrupted labels. Furthermore, our proposed method can be applied to different
kinds of multi-label loss functions, e.g. BCE, Focal [37] and ASL [38] to make them robust
against corrupted and missing labels. MLLSC protects the underlying loss function from
the negative impact of missing and corrupted labels with only a slight modification.

The combination of TLCM and MLLSC provides comprehensive solutions for effec-
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Ground Truth Set = {Cat, Eyeglasses, 
Tablet, Laptop, Coffee, Phone, Plant} 

Given Label Set = {Phone, Coffee, Cat, 
Plant, TV, Pen, Paper} 
 
Missing: Laptop, Tablet, Eyeglasses   
 

(a) Example of image with corrupted and missing labels
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Figure 6.2: Wrong labels and their impact in multi-label classification.

tively addressing noisy labels in multi-label classification. TLCM leverages partial data
supervision through the estimation of the label corruption matrix, while MLLSC incor-
porates robustness directly into the loss function, enabling enhanced performance even
in the absence of clean or expert-labeled data. To demonstrate the effectiveness of our
proposed methods, we conduct extensive empirical evaluations on various multi-label
datasets, such as MS-COCO, NUS-WIDE, and MIRFLICKR, under different noise levels.
We evaluate the performance of TLCM and MLLSC against state-of-the-art classifiers
like ASL and MPVAE [38], [184]. The contributions of this chapter can be summarized as
follows:

• We propose two innovative methods, TLCM and MLLSC, to address noisy labels
in multi-label classification, leveraging partial data supervision and a robust loss
function, respectively.

• The combination of TLCM and MLLSC provides a comprehensive solution for effec-
tively handling label corruption and missing annotations, enhancing the accuracy
and resilience of multi-label classifiers.

• Through extensive empirical evaluation, we demonstrate the superior performance
of our approach compared to state-of-the-art methods on various multi-label
datasets under different noise levels, establishing its effectiveness in real-world
applications.

6.2. RELATED WORK
Multi-label classification is a well-studied problem [38], [185], [186] across a wide range
of learning applications, e.g., object detection [187], [188], speech recognition [189], [190],
natural language processing [191], and image classification [37], [38]. However, all of
these methods perform well under the assumption of clean and complete labels for
each training sample. Multi-label classifiers robust against noisy labels have recently
received attention from literature compared to robust single-label classifiers. We first
investigate learning methods addressing the multi-label classification task, and then
study the methods robust against missing and noisy label data.
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6.2.1. MULTI-LABEL LOSS FUNCTIONS

In multi-label learning, designing a loss function demands to take into account the label
imbalanced label issue because, in practice, the impact of negative (missing) labels is
higher than positive (present) ones [38]. The classic loss function commonly used in
multi-label learning is Binary Cross-Entropy (BCE). BCE is agnostic to the imbalance
issue and weighs negative and positive labels equally. Focal loss [37] tries to solve the
imbalance problem by using different weights for negative and positive labels in the loss
function. ASL [38] computes the weights asymmetrically by shifting the label probability
to ensure no loss for negative labels with very low probability. Query2Label [185] is a
transformer based multi-label classifier that leverages decoder structures to query the
presence of certain labels.

6.2.2. ROBUST MULTI-LABEL LOSS FUNCTIONS

The standard multi-label methods only consider the label imbalance issue foregoing
any corruption in the training data. Hence, they cannot perform well in the presence of
data with label noise, i.e. missing or corrupted labels [180]. The label corruption can be
categorized into three different scenarios. First, false-negative labels that represent the
missing label problem [181], [192], [193]. Second, false positive labels which represent
wrongly added labels leading to partial label learning [194]–[196]. Finally, the last and
most complex scenario considers the coincident presence of both false negative and false
positive labels [184].

[180] proposes a loss re-weighting method for negative labels to solve the missing
label problem termed Hill. This method does not take into account the false positive
labels. In addition [180] introduces a self-paced loss correction (SPLC) method using
the confidence value of the model under training to regularize the negative and positive
labels. Again, SPLC cannot handle false positive labels. Role [181] considers the scenario
in which only one positive label is provided. Role uses a combination of BCE loss and
loss regularization based on the expected positive labels for each sample. The drawback
of Role is that the single positive label must be correct, and the average number of
positive labels for each data sample must be known. The Multivariate Probit Variational
AutoEncoder (MPVAE) [184] has been observed to remain robust against a median level
of false positive and false negative labels. It is worth mentioning that the primary goal of
MPVAE is not robustness against noisy labels.

In contrast to the above, TLCM aims to leverage single-label regulators together
with a small fraction of trusted data to avoid overfitting to noisy labels in multi-label
classification. also, MLLSC is a robust multi-label learning method that leverages the
knowledge of the trained model during the learning process to avoid overfitting the loss
to false-positive and false-negative labels.

6.3. TLCM METHODOLOGY

Consider the multi-label dataset D comprising N tuples (x , ỹ) where x ⊂Rd denotes one
sample with d features and ỹ = [ỹ1, ..., ỹk , ..., ỹK ] denotes the corresponding label vector
over K classes with binary elements ỹk ∈ [0,1]. The label vectors are affected by noise,
hence a ỹk can be the true (yk ) or a corrupted (ȳk ) label. We assume that a subset of
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the data, i.e., the gold dataset G ⊂D, can be trusted having no (or for practical purposes
negligible) corrupted labels. We refer to the rest of the data with potentially corrupted
labels as silver dataset S =D−G . We define the trusted fraction as the ratio η= |G |

|G |+|S | .
Furthermore, we assume that a small dataset of clean single-label images GS is available.
We use G and GS to estimate a K ×K noise corruption matrix Ĉ characterizing the label
noise. Each element ĉi j of noise corruption matrix Ĉ represents the probability of a label
of class i to be flipped into a label of class j , formally:

ĉi j = p(ỹ j = 1∧ ỹi = 0|y j = 0∧ yi = 1)

Finally, similar to related work, e.g. [38], we treat the multi-label classification problem as
a series of binary classification tasks, one for each label class.

6.3.1. OVERVIEW OF TLCM
We propose a novel Trusted Loss Correction for Noisy Multi-Label Learning (TLCM) ap-
proach for noise resilient multi-label training. To address the challenge of noisy multi-
labels, TLCM uses a gold loss correction which uses a small set of trusted (gold) samples
to estimate the noise corruption matrix used to correct the model predictions during
training. The gold loss correction has been shown to be highly effective against single-
label noise. However, multi-label noise exacerbates the difficulty to estimate the noise
corruption matrix. The fact that each sample can have an arbitrary number of labels
leads to two main challenges. First, single-label classification assumes conditional in-
dependence of y given x . In the single-label setting this assumption holds since y is
deterministic in x . Due to having an arbitrary number of labels and possible correlation
between labels, this assumption does not hold in the multi-label setting which makes
it hard to separate out which label or labels lead to a specific corrupted label. Second,
the frequency distribution of labels across samples is harder to control. This leads to
intrinsically higher label unbalances in multi-label datasets. For example, the popular
and commonly used single-label CIFAR datasets have equal numbers of samples for each
class. On the contrary, the ratio between the most (person) and least (toaster) frequent
label in the MS-COCO dataset is 1197.4. This unbalance influences the noise. The more
common a label, the higher the impact of that label on the noise characteristics.

Both the lack of conditional label independence and the label unbalance lead to
poor estimates of multi-label noise corruption matrices. To overcome this and estimate
the true multi-label noise corruption matrix, TLCM introduces the use of single-label
regulators. These capture the miss classification behavior of a model trained on noisy
data for specific labels and are used to correct the estimation of the multi-label noise
corruption matrix.

Figure 6.3 presents an overview of the TLCM method for noise resilient multi-label
classification. It includes three main steps. Step 1: we train a silver classifier f (·;θ) on the
noisy samples in S . Step 2, the heart of TLCM, consists of two substeps. First, we capture
the single-label noise characteristics in C̃ using f on the trusted single-label samples
in GS . Second, we use f on the trusted samples in G to compute a multi-label noise
corruption matrix Ĉ regularized by C̃ to counter the detrimental effect of multi labels on
noise estimation. Step 3: we train the gold classifier g (·;φ) on the samples from S with
label predictions corrected via the noise corruption matrix Ĉ , plus the samples from G , to
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Figure 6.3: Overview of the training process for the Trusted Loss Correction for Noisy Multi-Label Learning
(TLCM) mechanism.

maximize the impact of the trusted data.

6.3.2. NOISE CORRUPTION MATRIX ESTIMATION
Silver classifier. Before starting the estimation of the multi-label corruption matrix, we
need to train a silver classifier f (x ;θ) = p̂(ỹ |x) on S . Given the labels in S are potentially
corrupted, f is not a reliable classifier for our final predictions. However, we can use f for
our multi-label noise corruption matrix estimation.

It is worth mentioning that our estimation method for multi-label noise corruption
matrix is independent of the loss and network types used to train f (·;θ). Here, we consider
asymmetric loss [38] due to its superior performance to counter the detrimental effect of
irrelevant class labels in multi-label datasets. For each class (we omit the class index k for
brevity) the loss is:

LASL =
{

L+ = (1−p)γ+ log(p), yk = 1
L− = (pm)γ− log(1−pm), yk = 0

where L+ and L− are the positive and negative loss parts used for relevant and irrelevant
labels, respectively, p is the network output probability and γ+,γ− are the focusing param-
eters. The focusing parameters control the weights of positive and negative labels. Finally,
pm = max(p −m,0) denotes the shifted probability where the margin m is a tunable
hyper-parameter controlling the contribution of irrelevant labels introduced by [38].

Noise corruption matrix. Once we trained the silver classifier f (·;θ) on S we can
start the multi-label noise corruption matrix estimation. First, we use f on the samples in
GS to capture the single-label noise characteristics via the single-label noise corruption
matrix C̃ . For each label k ∈ K the corresponding row of C̃ is given by the averaged softmax
output of f for all samples x ∈GS with yk = 1:

C̃k··· =
1

Nk

∑
x∈GS ,yk=1

ζ( f (x))

where C̃ ⊂RK×K , C̃k··· denotes the k th matrix row, Nk the number of samples with yk = 1,
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Figure 6.4: The multi-label corruption matrix of the MS-COCO dataset with 40% symmetric noise (a), along with
the estimated corruption matrices by TLCM (b) and GLC (c).

and ζ(·) the softmax function. We scale the output via softmax to enhance the training
since here we only consider single-label samples.

Next we use C̃ to regulate the label correlations from the multi-label samples in G . To
do this we compute the multi-label noise corruption matrix using f on the samples in G

while regulating each time the output of f via C̃ . For each label k ∈ K the corresponding
row of Ĉ is given by the averaged sigmoid output of f for all samples x ∈G having yk = 1
regulated by the difference in the single-label corruption probabilities of label k and the
other labels present in x :

Ĉk··· =
1

Nk

∑
(x ,y)∈G ,yk=1

(
σ( f (x))+ ∑

∀l ̸=k,yl=1

(
C̃k···−C̃l ···

))
(6.1)

where σ(·) denotes the sigmoid function.

Figure 6.4 compares the multi-label corruption matrix estimated by TLCM for 40%
symmetric label noise against the one injected –ground truth–, and the one estimated
without regularization. The latter corresponds to equation (6.1) without the internal
summation term for rows of C̃ . The comparison highlights the benefits of single-label
regularization. This can be seen from the darker, closer to the truth, diagonal values and
the more pronounced difference with respect to the off-diagonal values. Algorithm 6
depicts our novel noise corruption matrix estimation method.

Gold classifier. With the estimated multi-label noise corruption matrix Ĉ , we finally
train the robust gold classifier g (·;φ). We correct labels of the samples in S via Ĉ while
leveraging samples in G as is. The loss function follows as:

ℓ =LASL(Ĉ Tσ(g (x)), ŷ), ∀x ∈S

ℓ =LASL(σ(g (x)), y) ∀x ∈G .

Algorithm 7 depicts our TLCM algorithm.
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Algorithm 6: TLCM Ĉ estimation

Input :Noisy data S , trusted single-label data GS , silver classifier f , Number of
epoch Emax

Output :Estimated Ĉ
1 for e = 1, ...,Emax do
2 for (x , ŷ) ∈S do
3 Train f (·;θ) with ℓ=LASL( f (x), ŷ)
4 end
5 end

/* Single-label noise matrix */
6 Fill C̃ ∈RK×K with zeros
7 for k = 1, ...,K do
8 Nk = 0
9 for (x , y) ∈GS , yk = 1 do

10 Nk += 1

11 C̃k··· += fso f t (x)
12 end
13 C̃k··· = 1

Nk
C̃k···

14 end
/* Multi-label noise matrix */

15 Fill Ĉ ∈RK×K with zeros
16 for k = 1, ...,K do
17 Nk = 0
18 for (x , y) ∈G , yk = 1 do
19 Nk += 1

20 Fill r ∈RK with zeros
21 for l = 1, ...,K , l ̸= k, yl = 1 do
22 r += C̃k···−C̃l ···
23 end
24 Ĉk··· +=σ( f (x))+ r
25 end
26 Ĉk··· = 1

Nk
Ĉk···

27 end
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Algorithm 7: TLCM

Input :Multi-label corruption matrix Ĉ (Algorithm 6), Untrained classifier g ,
Noisy data S , trusted multi-label data G , Number of epochs Emax

Output :Trained robust classifier g
1 for e = 1, ...,Emax do
2 for (x , y) ∈G do
3 Train g (·;φ) with ℓ=LASL(σ(g (x)), y)
4 end
5 for (x , ŷ) ∈S do
6 Train g (·;φ) with ℓ=LASL(Ĉ Tσ(g (x)), ŷ)
7 end
8 end

6.4. MLLSC METHODOLOGY

In this section, we first discuss standard losses in multi-label learning that are not
equipped with any mechanism to deal with false-positive and false-negative labels. Next,
we introduce our method called MLLSC, which is a robust loss function against missing
and corrupted labels in multi-label learning. Furthermore, we show that our technique
can be applied to all multi-label losses and improve their performances compared to the
original ones.

6.4.1. PRELIMINARY

Let D be a multi-label dataset of pairs of features x ∈ Rd and corresponding labels ỹ
∈ [0,1]K where K is the number of classes. The presence or absence of label of class k
for instance i is represented by ỹ i

k = 1 and ỹ i
k = 0, respectively. Since we consider false-

positive and false-negative labels in our problem, we use y i to represent the ground truth,
i.e., the correct label vector for instance i . ỹ i can contain both correct and corrupted class
labels.

The aim is to classify an input instance using a deep neural network f :Rd −→ [0,1]K

which is trained through the learning iteration. We define f to be a classifier with param-
eters θ and sigmoid activation function at the last layer which denotes the probability
of each label for input instance xi as pi = f (x i ) = 1

1+e−xi . The common loss function for

multi-label classification is binary cross-entropy which is defined as

ℓ=− 1

N

N∑
i=1

[
K∑

k=1
(ỹ i

k log p i
k + (1− ỹ i

k ) log (1−p i
k ))] (6.2)

where N denotes the number of samples in the training set. According to equation. 6.2,
the positive and negative labels losses equal to log p i

k and log(1−p i
k ), respectively. In the

rest of the paper for simplicity we ignore the instance superscript i and consider the loss
of each instance. Hence we have:
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L =−
K∑

k=1
(ỹk log pk︸ ︷︷ ︸

L +
k

+(1− ỹk ) log (1−pk )︸ ︷︷ ︸
L −

k

) (6.3)

The BCE loss does not provide any mechanism to handle the imbalance issue of
multi-label data. Hence, Focal loss [37] is proposed to cope with the imbalance issue of
negative and positive labels by weighting differently positive and negative losses. The
Focal loss is defined as:

LFocal =−
K∑

k=1
ỹk (α+(1−pk )γ log pk )︸ ︷︷ ︸

L +
k

+(1− ỹk ) (α−pγ

k log (1−pk )︸ ︷︷ ︸
L −

k

)) (6.4)

where α−,α+ ∈ [0,1] are weighting factors for balancing the impact of positive and
negative labels on the training loss. γ represents the focusing parameter that controls
the model focus on hard and easy instances during training. For instance, by setting
γ> 0, samples with pk << 0.5 are the easy negative labels, and their loss contributions
are reduced.

To weight positive and negative labels differently, ASL [38] recently proposed asymmet-
ric multi-label loss to diminish the positive-negative imbalance issue, which is introduced
as:

LASL =−
K∑

k=1
ỹk ((1−P ′

k,m)γ+ log P ′
k,m)︸ ︷︷ ︸

L +
k

+(1− ỹk ) (P ′γ−
k,m log (1−P ′

k,m)︸ ︷︷ ︸
L −

k

) (6.5)

where γ− and γ+ are focus parameters for negative and positive labels, respectively,
which control the weights of negative and positive labels and γ− > γ+. Also, P ′

k,m =
max(pk −m,0) denotes the shifted probability where m is the probability margin.

6.4.2. LEARNING FROM NOISY LABELS
A multi-label classifier when trained with corrupted and missing labels under one of
the mentioned losses, e.g., BCE, Focal, and ASL, tends to overfit the false-positive and
false-negative labels and model accuracy drops significantly. As shown in L +

k and L −
k

(see equation. 6.4), there is no loss correction mechanism to alleviate the impact of
false-positive and false-negative labels. We propose MLLSC as a robust multi-label
loss correction method that can be applied to all kinds of multi-label loss functions to
provide a shield against corrupted and missing labels. MLLSC is inspired by the design
of SPLC [180], which is a loss correction method only for the problem of missing labels.
First, we consider the BCE loss as a Maximum Likelihood (ML) estimation problem. The
idea of using BCE for multi-label learning (without any corruption and missing labels)
can be seen as an ML approximation problem under the Bernoulli distribution:

P (y) =
K∏

k=1
p yk

k (1−pk )1−yk (6.6)
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where P is the likelihood for each instance i . By taking log and finding the optimal
value of equation. 6.6, the BCE loss is inferred. Now, we consider equation. 6.6 in presence
of false-positive and false-negative labels. Let qk ∈ [0,1] be the probability of the corre-
sponding class k being truly positive, and q ′

k ∈ [0,1] is the probability of the corresponding
class k being truly negative. In other words, qk denotes the probability that the ground
truth and given labels both assign the same positive labels and q ′

k is the probability of a
true negative means ground truth and given labels are both negative labels. Hence the
probability of being false-positive and false-negative are 1−q ′

k and 1−qk , respectively.
Then, we can propose the likelihood of each instance for the new setting as the following:

P (ỹ , s, t ) =
K∏

k=1
{(qk pk )sk ((1−q ′

k )(1−pk ))(1−sk )}ỹk × {(q ′
k (1−pk ))tk ((1−qk )pk )(1−tk )}1−ỹk

(6.7)
where sk ∈ {0,1} is the indicating variables of true and false positives, and tk ∈ {0,1} is
the indicating variables of true and false negatives. Besides, s and t are the vectors
of indicating variables, i.e., sk and tk . Hence we can derive the optimal loss from the
likelihood in equation. 6.7:{

L +
k = sk log (pk )+ (1− sk ) log (1−pk )

L −
k = tk l og (1−pk )+ (1− tk ) l og (pk )

(6.8)

In equation. 6.8, in the case of positive label loss L +
k , if the label is a true positive

sk = 1 and the loss function behaves this sample same as for positive labels. If the label
is a false positive, i.e., sk = 0, the loss only considers the negative label term log (1−pk )
because this label is corrupted thus the original label was negative. The same scenario
happens the other way around for the case of negative labels loss L −

k . When the label is
true negative tk = 1, the negative BCE loss is calculated, while if the label is false negative
tk = 0, then the positive label BCE loss is computed.

To compute our proposed loss in equation. 6.8, we need to determine s and t for
distinguishing false and true positive/negative labels. Since the given label set ỹ is the
only available information, and the value of s and t are not known, we leverage the
knowledge of the deep neural network itself. We use the predicted label probabilities as a
proxy of the model’s certainty of each label. Then, we define two thresholds τ,τ′ ∈ (0,1) to
detect whether a label should be considered a true positive or false positive and a true
negative or false negative, respectively. After training f (·,θ) at each step, we use the model
prediction probability pk = fk (·,θ) as the confidence value of the DNN for each specific
class k based on the input instance. For a given positive label yk = 1, if pk > τ it would
be a true positive label, otherwise it is a false positive. Also, for the case of yk = 0, the
true negative and false negative can be determined by pk < τ′ and pk > τ′, respectively.
Hence we can write the new robust losses for positive and negative labels based on new
thresholds τ,τ′ as follows{

L +
k =1(pk > τ) log (pk )+ (1−1(pk > τ)) log (1−pk )

L −
k =1(pk < τ′) log (1−pk )+ (1−1(pk < τ′)) log (pk )

(6.9)

where 1(·) denotes the indicator function. equation. 6.9 shows the general form of



6.5. TLCM EVALUATION

6

115

positive and negative losses when we use BCE as the base multi-label loss function.The
complete form of MLLSC for multi-label classification is

LMLLSC =−
K∑

k=1
ỹkL +

k + (1− ỹk )L −
k (6.10)

where L +
k and L −

k are the proposed losses in equation. 6.9 which are equipped with
false-negative and false-positive detection mechanisms to select the proper loss term and
alleviate the impact of coincident missing and corrupted labels.

The strength of MLLSC is the easy applicability to different multi-label loss functions.
equation. 6.10 and equation. 6.9 are based on the BCE loss. Applying our method to Focal
loss gives:

{
L +

k =1(pk > τ)α+ (1−pk )γl og (pk )+ (1−1(p > τ))α− pγ

k l og (1−pk )

L −
k =1(pk < τ′)α− pγ

k log (1−pk )+ (1−1(pk < τ′))α+ (1−pk )γlog (pk )
(6.11)

with the same hyper-parameters defined in equation. 6.4 and equation. 6.9.
Inspired by ASL [38] and SPLC [180], to emphasize more the uncertain classes, i.e.,

0.4 < pk < 0.6, we make use of Focal margin loss for positive labels instead of Focal loss
due to its superior performance in multi-label classification [37], [180]. More specifically,
we define MLLSC loss based on Focal margin loss as

{
L +

k =1(pk > τ) (1−Pk,m)γlog (Pk,m)+ (1−1(pk > τ)) P
γ

k,m l og (1−Pk,m)

L −
k =1(pk < τ′) pγ

k log (1−pk )+ (1−1(pk < τ′)) (1−pk )γl og (pk )
(6.12)

where Pk,m = fk (x −m) and m is the margin parameter. For the case of m = 0, the
Focal margin loss collapses into the Focal loss. It is worth mentioning that throughout this
paper we have used Focal margin loss for all experiments. To initialize the knowledge of
the DNN, we initially train it for two epochs with uncorrected Focal loss, before switching
to the MLLSC corrected loss (equation. 6.11). This is because DNNs learn easy (correct)
labels first, before overfitting to missing and corrupted labels due to the memorization
effect [49], [63], [179]. Switching losses allow us to leverage the easy labels for the initial
epochs and afterward actively cope with false-negative and false-positive labels.

6.5. TLCM EVALUATION

6.5.1. EXPERIMENT SETUP

Datasets. We evaluate TLCM using three popular multi-label vision and object detection
datasets, i.e. MS-COCO [197], NUS-WIDE [198] and MIRFLICKR [199].

• MS-COCO is a popular real-world dataset of common objects in context widely used
for evaluation of multi-label classification. The training and validation datasets
contain 82K and 40K images, respectively. Each image is tagged on average with 2.9
labels belonging to 80 classes.
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• NUS-WIDE is a web image dataset with 269.6K manually annotated samples in 81
visual concepts. In our experiments, since some URLs have been eliminated, we
were able to download 218K images and split into 186K as training and 32K testing
samples. Images have 2.9 labels on average.

• MIRFLICKR is an open image collection with 25K images annotated in 38 cate-
gories. The training and testing sets include 23,300 and 1,700 images, respectively.
Here, the average labels per image is 8.9.

To explicitly test TLCM in the more challenging multi-label setting, we remove all
single label images from both the training and validation datasets. This does not only elicit
a more reliable evaluation, but it also allows to collect single-label samples to construct
GS . After filtering the number of images per class label varies from 1, for unpopular
classes, to 1,234, for the most popular class with an average of 210.2 images per class for
MS-COCO and from 4 to 40,026 and from 112 to 9,613 for NUS-WIDE and MIRFLICKR,
respectively. More single-label samples allow to estimate more accurate regulators which
in turn leads to a more robust classifier. Finally, we split the training data into a gold (G )
and a silver (S ) datasets. As the base, we use 10% as gold data, leading to 6.5K clean
samples and 58.7K samples injected with noisy labels for MS-COCO. Similarly we have
7.5K clean and 67.5K noisy samples for NUS-WIDE and 2K clean and 18K noisy samples
for MIRFLICKR.

Label Noise. Label noise in multi-label data is more complex than in a single-label con-
text since each sample has an arbitrary number of labels. We follow previous works [200],
[201] and inject symmetric noise, but with an extra step. Specifically, we select a fraction
η, i.e. the noise ratio, of labels and flip them to another class with uniform probability.
This corresponds to a noise corruption matrix C having elements ci j as follows:

ci j =
{ 1−η if i = j

η

K −1
if i ̸= j

In order to ensure wrong label injection, we test whether or not the new label is already
associated with the image. If it does, we repeatedly elect a new label until we select one
which is not yet present. In order to evaluate how robust TLCM is to noise, we test our
method against multiple noise ratios –from 0% to 60%.

Evaluation Metrics. For a comprehensive and reliable evaluation, we follow conven-
tional settings and report the following metrics: mean average precision (mAP), average
per-class F1 (CF1) and average overall F1 (OF1). These metrics have been widely used in
literature to evaluate multi-label classification [38], [202], [203] and have been shown to
dramatically decrease with label noise [174]. Note that only the training set is affected by
noise, whereas the evaluation metrics are computed on the clean testing set.

DNN Architecture. As base architecture for the DNN, we use TResNet [204]. TResNet
network is a high performance GPU-dedicated architecture based on ResNet50 designed
to increase the model prediction performance without increasing training or inference
time. The TResNet network is pre-trained on the ImageNet-21K dataset for better gener-
alizability and increased prediction accuracy [205]. In particular we use the TResNet-M
version with input resolution 224 for MS-COCO and MIRFLICKR datasets. We use the
TResNet-L version with input resolution 448 for NUS-WIDE dataset. The encoder and
decoder use the structure from [184], i.e, 3-layer fully connected neural networks with
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ReLU activation function. Moreover, we set the hyper-parameters to the default values
provided in [184] for each dataset.

Baseline. We compare the performance of TLCM against MPVAE [184] which is
a noise resilient multi-label model, and ASL [38] which is one of the state-of-the-art
multi-label learning algorithms.

• MPVAE [184] proposes a variational autoencoder based method that encodes the
features and labels to Gaussian subspaces and then decodes the samples from the
subspaces into multivariate probit to predict the image labels.

• ASL [38] introduces new asymmetric loss for multi-label classification to reduce
the impact of irrelevant labels in focal loss [206] and balance the weights of relevant
and irrelevant labels.

For a fair comparison, we test ASL, MPVAE and TLCM on the same datasets with the
same label noise. TLCM assumes access to a small subset of clean samples. Thus the
only additional knowledge of our method is which labels are trusted, i.e., belonging to the
small golden dataset G , and which labels are potentially corrupted.

Implementation Details. We use PyTorch v1.9.0 for all the methods, and the default
parameters provided in [38], [184] except that we always take the last trained model due
to the memorization effect. The number of training epochs is an important parameter
for a reliable evaluation, especially in a noisy setting. DNNs are shown to present the
so-called memorization effect [179], [207], [208] benefiting in general from this factor to
achieve a better prediction performance in atypical samples. However, [209] suggests
that with noisy data, DNNs prioritize learning simple patterns first. From preliminary
experiments we see that 80 epochs are enough for the learning to stabilize.

6.5.2. RESULTS

In this subsection we empirically compare the performance of TLCM to two rivals, i.e.,
ASL and MPVAE under 0.0 to 0.6 symmetric noise ratios. We aim to show the effectiveness
of our TLCM in robustly learning from noisy data.

Figure 6.5 shows the comparison results. The performance of all systems decreases
under increasing noise levels, but TLCM is significantly more robust. In terms of mAP
TLCM consistently outperforms ASL and MPVAE for all noise ratios (see Figure 6.5(a)).
After TLCM the best mAP performance is achieved by ASL followed finally by MPVAE,
under all noise levels. Without noise, i.e. η= 0.0, the mAP of TLCM and ASL are extremely
close, but MPVAE performance is still significantly lower. Since MPVAE uses a Variational
Auto Encoder based method and the network architecture is less deep and complex than
ASL and TLCM, the MPVAE can not perform well. It is worth mentioning that the network
architecture is taken from [184]. ASL’s performance drops an average of 5.34% points with
each 10% noise, while TLCM’s performance decreases by only 3.29% points. Also the mAP
degradation for MPVAE is 1.28% points. Under severe noise, i.e. η= 0.6, the gap between
TLCM and ASL is more than 24% points and only 14.01% points worse than without noise.
In comparison ASL drops by 38.1% points from 0.0 to 0.6 noise ratio. This shows that
TLCM is robust even to high noise levels. Similar results apply for both CF1 and OF1, see
Figure 6.5(b) and Figure 6.5(c), respectively. Even if ASL is slightly close to TLCM in the no
noise case, the performance quickly degrades with additional noise. At 60% noise TLCM
is better than ASL by 21.73% and 20.59% points for CF1 and OF1, respectively. Moreover,
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the CF1 and OF1 for MPVAE slightly degrade from 29.0% and 46.8% to 24.5% and 43.3%,
respectively, over increasing noise ratios.
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(d) Memorization effect (40% noise)

Figure 6.5: Mean Average Precision (mAP) (a), Average per-class F1 (CF1) (b), and Average Overall F1 (OF1) (c) vs.
noise fraction of TLCM, ASL, and MPVAE on MS-COCO with symmetric label noise using 10% of trusted data.
(d) Specifically explores the mAP (%) to underscore the Memorization effect under 40% symmetric label noise.

To reliably assess the correctness of TLCM, we also investigate the observed mem-
orization effect for TLCM (depicted in Figure 6.5(d)). Both TLCM and ASL follow the
same trend. First they learn the easy patterns, achieving a high accuracy after just a
few epochs. However, afterwards the performance slowly degrades over training effort
and finally stabilizes after approximately 60 epochs. But the mAP trend for MPVAE is
different. It slightly increases over the training epoch and then reaches a steady-state
which however is significantly lower than TLCM and ASL. The figure clearly shows the
advantage of TLCM over ASL and MPVAE in the different levels at which they plateau.
Moreover, one can observe that TLCM has a slight delay in learning at the beginning
of the training, i.e. TLCM peaks at epoch 10, while ASL at epoch 6. This observation
indicates that TLCM does not help in terms of learning speed nor in reaching a higher
performance during training, but by preventing overfit to the noisy labels. This makes
the DNN more resistant to wrong label information. Furthermore, this suggests that our
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method can also be applied to other existing classifiers and domains.
Table 6.1 summarizes the mAP of TLCM, ASL and MPVAE for the NUS-WIDE and

MIRFLICKR datasets under 0.0, 0.3, and 0.6 label noise ratios. As illustrated in Table 6.1,
the mAP of TLCM, ASL and MPVAE for NUS-WIDE under all noise ratios are significantly
lower than for MS-COCO (as well as MIRFLICKR, see Table 6.1). NUS-WIDE includes
images with bigger sizes, one additional class and higher label imbalance. This makes
NUS-WIDE a more complex dataset for multi-label classification. TLCM is still able to
provide robustness for training against label noise and beats both baselines. ASL and
TLCM perform similarly at 0.0 noise ratio but ASL degrades faster under increasing noise.
MPVAE is less affected by increasing noise but plateaus at a significantly lower level. By
using only 10% trusted samples, TLCM obtains 38.7% mAP under severe label corruption,
i.e., η= 0.6, while ASL and MPVAE only achieve 22.6% and 14.2% mAP, respectively. Across
the different noise ratios TLCM achieves on average 7% and 16% points higher mAP
compared to ASL and MPVAE, respectively. Overall we conclude that while NUS-WIDE is
a more challenging dataset the trends are similar to MS-COCO.

Table 6.1: Mean Average Precision (mAP) (%) of TLCM compared to two baselines on noisy NUS-WIDE and
MIRFLICKR corrupted with 0.3 and 0.6 noise ratios (η)

NUS-WIDE MIR-FLICKR
Method

Percent
Trusted η= 0.0 η= 0.3 η= 0.6 η= 0.0 η= 0.3 η= 0.6

ASL - 60.15 43.59 22.64 80.85 63.06 35.26
MPVAE - 17.55 15.67 14.21 41.01 39.03 35.68

TLCM
5 59.91 46.62 34.11 80.90 65.72 46.37

10 60.23 48.56 38.68 80.88 67.34 53.86
15 60.66 48.79 38.89 80.91 68.83 54.05

Furthermore, Table 6.1 analyzes the performance of TLCM compared to ASL and
MPVAE on MIRFLICKR. This dataset is less challenging than MS-COCO and NUS-WIDE
because it only uses about half, i.e. 38, the number of label classes. As a consequence
all three multi-label classification methods achieve higher mAP compared to two other
datasets. Again TLCM is robust to noise and the best of the three methods achieving on
average across all noise levels 7.6% and 28.8% points higher mAP than ASL and MPVAE,
respectively, using 10% trusted samples. While the general trends are similar to the
previous two datasets, interestingly, for η= 0.6 MPVAE performs slightly better than ASL.
This emphasizes that MPVAE is less sensitive to noisy labels. Still MPVAE’s mAP is 18.2%
points lower than TLCM.

6.5.3. ABLATION STUDY
To better understand the performance of TLCM, we perform extra ablation studies to
investigate the effects of: i) errors in the noise corruption matrix estimation; ii) impact of
the gold dataset size (both studied in experiment I); and iii) impact of number of single-
label images (studied in experiment II). The base setup of the experiments is the same as
in Section 6.5.1 with only the changes specifically mentioned.

Experiment I: Figure 6.4 shows visually the difference between the true and our esti-
mated noise corruption matrix. To assess also quantitatively how good our estimation
method works, we train classifier g with the true corruption matrix. Figure 6.6(a) com-
pares the achieved mAP results on MS-COCO under 40% noise. g trained with the true
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Figure 6.6: Mean Average Precision (mAP) of TLCM compared to three baselines with different trusted data
fractions (a) and mAP of TLCM with different numbers of single-label images per class (10 and 50 images) (b)
on MS-COCO.

corruption matrix represents the upper performance bound achievable by noise corrup-
tion matrix estimators. Since TLCM uses trusted data to estimate the noise corruption
matrix and train the robust classifier g , we expect the size of G to have an impact on the
estimation accuracy and consequently on model performance. We investigate this effect
by repeating the previous experiments with halve the fraction of trusted data, i.e. 5%.
This corresponds to 3,263 clean samples and 62,005 samples injected with noisy labels.
Figure 6.6(a) shows these results via the two different bar plot groups.

Estimating the noise corruption matrix with TLCM, we reach 68.7% and 69.9% mAP
under 5% and 10% of trusted data, respectively. Using the true noise correction matrix
increases these numbers to 69.1% and 70.3%. The difference between TLCM and the
upper bound (True-Correction) is below 0.5% points in both cases. This shows that our
noise estimation can capture almost perfectly the impact of the noise corruption matrix,
and that it works even with a reduced amount of trusted data. The difference of 1.2%
points when using the true noise correction matrix stems from including G to train the
gold classifier g (·,φ).

Similar trends hold also in the other two datasets (see Table 6.1). Increasing the size
of the trusted data achieves higher mAP scores. This gain increases with the amount of
label noise but decreases with the amount of trusted data. For 30% label noise, moving
from 5% trusted data to 10% increases the mAP for NUS-WIDE/MIRFLICKR by 1.9%/1.6%
points, but from 10% to 15% only by 0.2%/1.5% points. Instead for 60% label noise, the
respective gains are 4.6%/7.5% points and 0.2%/1.1% points. Also gains are generally
higher for MIRFLICKR than for NUS-WIDE. MIRFLICKR has fewer classes which eases the
noise corruption matrix estimation. Even on different datasets, TLCM is able to provide
good performance gains even with little trusted data.

Experiment II: To assess the impact of trusted single-label images on the estimation
of the corruption matrix, we conduct two extra experiments with varying images per class
for MS-COCO. In addition to the previous case using all single-label images, we limit the
number of single-label images per class to at most 50 and 10, referred to as TLCM-L50 and
TLCM-L10, respectively. This results in a total of 2824/721 single-label images used for
TLCM-L50/TLCM-L10. Figure 6.6(b) shows the impact on the mAP over training epochs.
One can observe that limiting the number of single-label images has only a minor impact
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on the performance of TLCM. Hence our proposed method is not only robust to wrong
labels in multi label learning but it also can estimate an accurate noise corruption matrix
by using only a small proportion of trusted single-label data. In other words, TLCM has a
limited dependency on the amount of clean single-label data.

6.6. MLLSC EVALUATION
In this section, we first explain the details of the experiment setup, evaluation metrics,
and baselines. Then present the evaluation results of the performance of our proposed
MLLSC on two well-known datasets: MS-COCO [197] and MIR-FLICKR [199].

6.6.1. EXPERIMENTAL SETTINGS

DATASETS

We use MS-COCO, and MIR-FLICKR as datasets for evaluating the performance of MLLSC
(more detailed in §. 6.5.1).

FALSE NEGATIVE AND FALSE POSITIVE LABELS

Both MS-COCO and MIR-FLICKR are highly curated datasets. We use the original labels
as ground truth and synthetically inject corrupted and missing labels. We follow previous
work [201] with minor modifications to adapt it to the multi-label scenario and inject
both false-positive and false-negatives labels into the training data. We flip one positive
class to other classes with uniform probability η. It is worth mentioning that changing to
a new label is acceptable only when the new label is not a member of the original label
set. Under such noise, we change a positive label to a negative label (missing label/false
negative) and create one false positive label (corrupted label). Thus, the corresponding
transition matrix C having ci , j elements for the mentioned missing and corrupt labels
injection is as follows:

ci j =
{ 1−η if i = j

η

K −1
if i ̸= j

In order to evaluate the performance of MLLSC, we test our method against multiple
missing and corruption probabilities, i.e., in the range [0.0,0.6].

BASELINES

We compare the performance of MLLSC against BCE, Focal [37], ASL [38], Hill [180],
SPLC [180], and MPVAE [184].

• Binary Cross Entropy (BCE) is a standard simple loss function for multi-label
classification introduced in equation. 6.2.

• Focal re-weights the positive and negative terms using the model output probabil-
ity and weighting factor in the loss to reduce the impact of label imbalance (See
equation. 6.4).

• ASL introduces an asymmetric loss to better address the label imbalance issue for
multi-label classification (See equation. 6.5).

• Hill is mainly designed to address the missing label problem (false-negatives). It
re-weights the Mean Squared Error (MSE) loss term for negative labels. The loss
term for positive labels remains the same as BCE.
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• SPLC is a loss correction method for false-negative labels which uses the output
probability of the multi-label classifier to distinguish false-negative from true-
negative labels.

• MPVAE is a multi-label classification model that works based on variational autoen-
coder. This method encodes the features and labels to Gaussian subspaces and
then decodes the samples from the subspaces into a multivariate probit to predict
the image labels.

EVALUATION METRICS

To evaluate the performance of our proposed method under all aspects against the base-
lines, we consider and report the following metrics: mean average precision (mAP), aver-
age per-class F1 (CF1), and average overall F1 (OF1). These metrics have been commonly
used in the related art [38], [180] to evaluate the performance of multi-label classification
models. We report the average and standard deviation across three runs for Table 6.2 and
Table 6.3.

DNN CONFIGURATIONS

As a base model we consider a ResNet50 pre-trained on the ImageNet-21K dataset [205]
which has been widely used in vision classification problems. The DNN architecture
is the same for all the baselines according to default values provided in [37], [38], [180]
except MPVAE, which is an auto-encoder based method. The encoder and decoder use
the structure from [184], i.e., 3-layer fully connected neural networks with ReLU activation
function. Moreover, we set the hyper-parameters to the default values provided in [184]
for each dataset. We perform all the experiments using PyTorch v1.9.0, and we train all the
methods for 60 epochs except MPVAE which trains for 200 epochs. To train with MLLSC,
we set the batch size, learning rate, and weight decay to 32, 0.0001, and 10−4, respectively.

6.6.2. COMPARISON WITH BASELINES
In this section, we evaluate the performance of our proposed method against baselines
on the MIR-FLICKR and MS-COCO datasets under three different ratios of η, i.e., {0.0, 0.3,
0.6}.

For MIR-FLICKR, we report the mAP, CF1, and OF1 of MLLSC against baselines in
Table 6.2. MLLSC achieves the highest mAP among all the methods except for η= 0.0.
In this case, MLLSC is the second best with only Focal reaching a higher score of 75.50.
SPLC is the closest rival to MLLSC with 1.28 and 2.02 percents mAP difference under
η= 0.3 and η= 0.6, respectively. Besides, the MLLSC achieves the highest CF1 compared
to all the baselines for all cases. Since MPVAE uses a Variational Auto Encoder-based
method and the network architecture is less deep and complex than other baselines, the
MPVAE can not perform well for the case of η= 0.0 and η= 0.3. However, it is also a robust
method against false-positive and false-negative labels, because the difference between
the mAP at η = 0.0 and η = 0.6 is the lowest compared to other methods. Our method
significantly improves robustness with respect to Focal. Under a severe ratio of missing
and corrupted labels, i.e., η= 0.6, its mAP score is 11.46% points higher.

MS-COCO is more challenging than MIR-FLICKR due to the larger number of classes
and higher label imbalance. The results are summarized in Table 6.3. Here MLLSC obtains
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Table 6.2: Mean Average Precision (mAP) (%), average per-class F1 (CF1) (%), and average overall F1 (OF1) (%) of
MLLSC compared to six baselines on MIR-FLICKR under ratios η of false-negative and false-positive labels.

η= 0.0 η= 0.3 η= 0.6
Method

mAP CF1 OF1 mAP CF1 OF1 mAP CF1 OF1

BCE 74.79±0.14 74.85±0.07 78.20±0.15 60.56±0.52 62.76±0.20 68.07±0.16 35.43±0.39 33.46±0.07 38.41±0.18
Focal 75.50±0.26 74.34±0.18 77.39±0.13 60.73±0.09 61.53±0.12 68.50±0.32 33.87±0.06 31.34±0.26 36.76±0.23
ASL 74.86±0.56 71.80±0.11 74.99±0.17 51.90±2.02 26.83±1.84 26.78±0.89 34.24±0.29 40.40±0.22 42.68±0.33
Hill 74.79±0.53 74.43±0.06 77.68±0.16 59.23±0.42 62.48±0.18 67.81±0.14 33.04±0.38 35.19±0.21 39.47±0.19

SPLC 73.72±0.04 72.35±0.24 75.98±0.14 63.81±0.05 68.50±0.18 71.55±0.33 43.31±0.23 55.23±0.16 59.95±0.08
MPVAE 41.32±0.27 37.64±0.16 48.85±0.15 39.23±0.19 36.26±0.21 47.39±0.27 35.37±0.29 31.87±0.11 41.72±0.14
MLLSC 75.38±0.24 75.20±0.19 77.72±0.19 65.09±0.19 68.98±0.05 71.88±0.12 45.33±0.25 56.35±0.15 60.48±0.24

Table 6.3: Mean Average Precision (mAP) (%), average per-class F1 (CF1) (%), and average overall F1 (OF1) (%) of
MLLSC compared to six baselines on MS-COCO under ratios η of false-negative and false-positive labels.

η= 0.0 η= 0.3 η= 0.6
Method

mAP CF1 OF1 mAP CF1 OF1 mAP CF1 OF1

BCE 65.72±0.15 64.23±0.27 66.29±0.14 43.66±0.24 41.26±0.25 47.31±0.28 19.40±0.31 18.07±0.21 23.41±0.28
Focal 66.77±0.24 63.91±0.17 65.92±0.21 42.73±0.21 36.54±0.29 42.46±0.18 20.67±0.23 20.58±0.14 26.29±0.27
ASL 68.52±0.23 46.72±0.14 60.36±0.27 50.53±0.38 22.74±0.32 51.49±0.38 22.66±0.21 16.70±0.26 40.66±0.22
Hill 63.76±0.14 61.50±0.31 65.78±0.23 48.61±0.24 51.89±0.14 56.50±0.34 27.79±0.20 32.50±0.24 36.42±0.37

SPLC 64.77±0.28 61.71±0.16 65.51±0.33 60.65±0.23 56.68±0.14 61.36±0.42 49.39±0.21 56.87±0.15 57.67±0.16
MPVAE 39.98±0.24 29.71±0.15 46.82±0.23 29.83±0.42 26.58±0.32 46.20±0.16 26.33±0.24 24.72±0.19 43.51±0.24
MLLSC 68.83±0.28 63.58±0.32 69.83±0.14 65.69±0.28 61.89±0.18 68.75±0.13 51.68±0.16 55.57±0.46 58.60±0.25

the highest mAP among all baselines under all three ratios of missing and corrupted labels.
For the case of η= 0.0, our proposed method outperforms all the rivals achieving 68.83%
mAP. ASL is the second best with a 0.31% points lower mAP. Under η > 0, i.e., 0.3 and
0.6, SPLC is the closest competitor since it alleviates the impact of missing labels using a
self-paced loss correction method for negative labels. The most considerable difference
in mAP between MLLSC and SPLC methods is 5.04% with η= 0.3. Here MLLSC and SPLC
reach 65.69% and 60.65% mAP, respectively. In the case of η= 0.6, MLLSC achieves the
highest mAP, and OF1, whereas the baselines trail far behind. According to the results,
not only can the MLLSC withstand missing and corrupted labels, but it also mitigates
the impact of imbalance labels even for MS-COCO, which contains a high variation of
classes [210]. Besides, the performance of all the multi-label losses, i.e., BCE, Focal, and
ASL, significantly drops with increasing ratios of false-negative and false-positive labels
in the training set.

6.6.3. INVESTIGATING FALSE-POSITIVE AND FALSE-NEGATIVE LABELS IN

TRAINING WITH MLLSC
To provide insights on MLLSC and evaluate the ability of our proposed method to distin-
guish false-positive (FP) and false-negative (FN) labels, we monitor the number of FN and
FP during the training process. We compute FP and FN labels by considering the whole
label vector of each predicted image and comparing it to the ground truth. Note that the
ground truth is only used to compute these statistics but not for training. Figure 6.7 plots
the number of FP and FN labels during training for BCE, Focal, SPLC, and MLLSC over
80 epochs on MIR-FLICKR under η= 0.3. At the beginning of training, the number of FN
labels is high because there is no knowledge to detect and correct labels. On the contrary,
the number of FP labels is low because the model refrains from predicting any labels due
to low confidence. With increasing training epochs, the number of FN labels decreases,
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and the number of FP labels increases for both BCE and Focal until they reach a steady-
state (see Figure 6.7(a) and Figure 6.7(b)). Since BCE and Focal are not equipped with any
mechanism to make them robust against FP and FP, they overfit to missing and corrupted
labels and reach a steady-state in which the ratio of FP and FP labels are both equal to the
η in use. In contrast SPLC and MLLSC use resilient losses against FP and FN. Thus they
reduce the impact of label errors and reach different steady-state values. Comparing SPLC
and MLLSC to BCE and focal shows that the number of FN labels significantly decreases
with training epochs. Moreover, the end values for MLLSC and SPLC are approximately
87.5K and 80K less, respectively. MLLSC and SPLC share the same trend for the number
of FP labels, but our proposed method incurs about 43K FP labels which is approximately
7K FP labels less than SPLC (see Figure 6.7(c) and Figure 6.7(d)). The loss term for positive
labels in SPLC is margin Focal loss which is not equipped with a robust mechanism to
alleviate the impact of false-positive labels. Hence, the number of false-positive is higher
than for MLLSC. Although the number of FP labels in BCE and Focal are slightly less than
SPLC and MLLSC, handling both FP and FN labels simultaneously in MLLSC improves
the mAP significantly compared to the baselines (see Table 6.3 and Table 6.2).
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Figure 6.7: Number of false-positive and false-negative labels of BCE (a), Focal (b), SPLC (c), and MLLSC (d)
multi-label losses during training under a noise ratio of 0.3 on the MIR-FLICKR dataset.



6.6. MLLSC EVALUATION

6

125

Table 6.4: Mean Average Precision (mAP) (%), average per-class F1 (CF1) (%), and average overall F1 (OF1) (%) of
multi-label classifiers under missing and corruption ratio of 0.4 for different loss functions on MIR-FLICKR

Method mAP CF1 OF1

SPLC + BCE 50.10 60.49 61.94
SPLC + ASL 48.60 42.91 47.59
SPLC + margin Focal 59.24 66.17 69.14
MLLSC + BCE 59.22 67.23 70.31
MLLSC + ASL 59.15 66.30 69.39
MLLSC + margin Focal 60.61 66.92 70.87

6.6.4. ANALYZING THE PERFORMANCE OF MLLSC WITH VARIED LOSS

FUNCTIONS
In this part, we complement our method and SPLC with three different multi-label losses,
i.e., ASL, Focal, and BCE, to evaluate their improvements under η= 0.4 on the MIR-FLICKR
dataset. The detailed formula of MLLSC with ASL loss is given in the supplementary
material due to space reasons. Focal loss with margin shows the best performance
improvement combined with both SPLC and MLLSC compared to ASL and BCE (see
Table 6.4). Moreover, the mAP of MLLSC outperforms SPLC when using BCE, ASL and
Focal loss functions by 9.12%, 10.55% and 1.37% point difference, respectively. Although
ASL can deal well with label imbalance compared to BCE, it can not handle missing and
corrupted labels appropriately.

6.6.5. ABLATION STUDY

IMPACT OF THE HYPER-PARAMETERS (τ,τ′)
To distinguish false-positive and false-negative labels correctly, we need to find the best
threshold values τ and τ′ used to compute the correct loss term. We empirically evaluate
the best combination of (τ, τ′). Table 6.5 presents the mAP of MLLSC under different
τ,τ′ ∈ [0.4,0.7] using Focal margin loss under a ratio of missing and corrupted labels of
η= 0.4 on MIR-FLICKR. Here we keep one of the two parameters fixed while changing
the other one to determine the effect on mAP. All other parameters use their default
values, i.e., τ′ = 0.6 when varying τ, and τ = 0.55 when varying τ′. From Table 6.5, one
can see that the mAP of MLLSC is more sensitive to τ′ than τ because the difference
between the highest and lowest mAPis 39.92% and 0.56%, respectively. This sensitivity is
due to the predominant number of negative labels compared to positive labels in each
image. A wrong threshold for negative labels, i.e., τ′, creates a more significant number of
false label identifications. Thus it influences the performance of MLLSC more. Higher
thresholds (τ, τ′) make substantial restrictions for true-positive and true-negative label
detection, and consequently, in the case of uncertain labels, the number of false-negative
and false-positive labels increases. Overall we identify as best values for τ and τ′ to detect
false-positive and false-negative labels via the model output confidence to be 0.55 and
0.6, respectively. We also consider two extremes for (τ, τ′) when we change both values at
the same time. We can see that the mAP degrades significantly, i.e., 35.36% points, when
we increase τ from 0.4 to 0.7 and decrease τ′ from 0.7 to 0.4.
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Table 6.5: Mean Average Precision (mAP) (%) of MLLSC under missing and corruption ratio of 0.4 for different
threshold values (τ, τ′) in the loss function on MIR-FLICKR

Threshold (τ)
τ 0.4 0.45 0.5 0.55 0.6 0.65 0.7

mAP 60.05 60.30 60.53 60.61 60.32 60.29 60.26
Threshold (τ′)

τ′ 0.4 0.45 0.5 0.55 0.6 0.65 0.7
mAP 20.69 26.76 50.26 59.74 60.61 58.74 56.14

Thresholds (τ,τ′)
(τ, τ′) = (0.4, 0.7) (τ, τ′) = (0.7, 0.4)

55.91 20.55

Table 6.6: Mean Average Precision (mAP) (%) of MLLSC under missing and corruption ratio of 0.4 for different
margin parameter of focal loss (m) on MIR-FLICKR

m 0.0 0.5 1.0 1.5 2.0
mAP 55.69 59.87 60.61 59.38 55.73

IMPACT OF m ON MLLSC WITH FOCAL MARGIN LOSS

To assess the impact of the margin parameter (m) of the Focal loss on MLLSC, we vary its
value from 0.0 to 2.0 in Table 6.6. Since the margin manages the attention of the loss on
positive labels, a small value of m concentrate more on hard positive labels. As shown
in Table 6.6, for the case of m = 0, i.e., standard Focal loss, MLLSC achieves 55.69%
mAP, while when increasing the margin, MLLSC can achieve 60.61% mAP when m = 1.
Increasing the value beyond this shifts the focus of the loss function from hard positives
to semi-hard positive labels, which leads again to an mAP reduction. Hence, we set m = 1
in all the experiments.

IMPACT OF γ ON MLLSC WITH FOCAL MARGIN LOSS

Here, we evaluate the sensitivity of MLLSC to the focus parameter (γ) of the Focal margin
loss (see equation. 6.12). γ controls the weights of positive and negative labels. With
γ below 2.0, the loss can not bring down the weight of easy negative labels, and this
degrades the performance of MLLSC by 9.14% and 0.66% points when is γ = 0.0 and
γ= 1.0, respectively (see Table 6.7). A large value of γ causes a significant weight reduction
of positive labels which are rarely seen in the training data. According to the empirical
study, we set γ= 2.0 through the experiments for best mAP performance.

Table 6.7: Mean Average Precision (mAP) (%) of MLLSC under missing and corruption ratio of 0.4 for different
values of the focus parameter (γ) of the focal margin loss on MIR-FLICKR

γ 0.0 1.0 2.0 4.0
mAP 51.47 59.95 60.61 59.03

6.7. CONCLUSION
In summary, we addressed the problem of noisy multi-label classification and proposed
two innovative approaches to enhance the accuracy of multi-label classifiers in the pres-
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ence of label noise.
The first approach, Trusted Loss Correction for Multi-Label Learning (TLCM), effec-

tively estimated the noise corruption matrix and improved the robustness of multi-label
classifiers against noisy labels. Our evaluations on real-world datasets showed that TLCM
achieved significant improvements in mean average precision (mAP) compared to state-
of-the-art classifiers, ranging from 2.7% to 36.7% and 10.7% to 38.2% under different
levels of label corruption.

The second approach, Multi-Label Loss Correction against Missing and Corrupted
Labels (MLLSC), effectively mitigated the negative impact of both missing and corrupted
labels without requiring additional ground truth labels. Our experiments demonstrated
that MLLSC outperformed state-of-the-art baselines by 9.33% to 19.48% and 8.88% to
23.85% in terms of mAP under various noise ratios.

By proposing TLCM and MLLSC, we provided comprehensive solutions to effectively
address noisy labels in multi-label classification, significantly improving the accuracy
and resilience of multi-label classifiers. Overall, our work contributes valuable insights
and innovative methods to tackle the challenges of noisy multi-label classification in
real-world scenarios, offering robust and accurate solutions for practical applications.

Despite these contributions, there are some limitations worth noting. For the TLCM
method, training two separate networks—one on untrusted data and another on corrected
data—can be resource-intensive, making it challenging in environments with limited
computational resources. Additionally, obtaining a small portion of clean single and
multi-label datasets simultaneously can be difficult. Regarding MLLSC, determining the
best threshold values to reduce the impact of corrupted and missing labels in the loss
function presents a challenge. Moreover, we rely on the model’s confidence to decide
on the correctness or missingness of labels, which is not the most optimal solution.
Addressing these limitations could further enhance the performance and generalizability
of these approaches.





7
CONCLUSION

In this thesis, we investigate the robustness of deep neural networks (DNNs) against
noisy labels by exploring three key elements: data, DNN models, and expert supervision.
Through a combination of these elements, we design seven robust mechanisms. Initially,
we emphasize the importance of data and DNN models, introducing two novel mech-
anisms: LABELNET and TrustNet. LABELNET utilizes fully supervised data to estimate
noise patterns and correct noisy labels, thereby enhancing model accuracy. Conversely,
TrustNet addresses the complex noise patterns found in real-world datasets by effectively
estimating noise transition matrices using a small set of trusted data and dynamically
adjusting loss weights to improve model performance. Furthermore, we address noisy
label learning under partial data supervision, proposing the Golden Symmetric Loss
mechanism to mitigate noise overfitting and outperform state-of-the-art methods. To
study the impact of expert supervision, we present QActor, a mechanism that combines
quality models and active learning to select informative samples and improve DNN ac-
curacy in the presence of noisy labels. Additionally, LABNET introduces a collaborative
mechanism that integrates DNNs and label aggregation to handle corrupted and missing
labels in multi-label learning effectively. Finally, we explore a more challenging problem:
noisy multi-label data, and we design two innovative mechanisms, TLCM and MLLSC,
to enhance multi-label classifiers’ performance against corrupted labels (false positives)
and missing labels (false negatives).

7.1. CONCLUSIONS
The main conclusions of this thesis are as follows:

1. In Chapter 2, we introduce two novel learning algorithms, LABELNET and TrustNet,
to address label noise in big data systems. LABELNET effectively leverages noisy
labels as learning features, transforming them into a learning advantage by em-
ploying two networks, Amateur and Expert. The approach outperforms existing
robust network classifiers across diverse datasets. LABELNET has two advantages:
first, the model is robust against noisy label data, and second, it recovers correct
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labels from noisy data. Additionally, TrustNet, presents a noise-resilient classifi-
cation framework, achieving higher testing accuracy compared to state-of-the-art
resilient networks. TrustNet is a robust mechanism that leverages LABELNET and
a small proportion of noisy label data. We find that these mechanisms contribute
to handling label noise, enhancing the reliability and accuracy of deep learning
models in challenging big data scenarios. Empirical evaluations underscore their ef-
fectiveness in improving classification performance and handling real-world noise
patterns.

2. In Chapter 3, we introduce Golden Symmetric Loss (GSL), a mechanism dedicated
to enhancing the robustness of deep models against label noise using clean data and
a modified loss function. GSL focuses on correcting the symmetric cross-entropy
loss using the noise corruption matrix. By leveraging a small fraction of trusted data,
we accurately estimate the corruption matrix and determine weights for regular
and reverse cross-entropy. Our approach involves learning deep networks from
trusted samples through regular cross-entropy and from untrusted noisy samples
through golden symmetric cross-entropy. Our findings highlight the inherent noise
robustness of the cross-entropy corrected by the corruption matrix. Additionally, we
adapt to noise patterns by heuristically setting the weights of the golden symmetric
loss based on the corruption matrix. Through extensive evaluations in vision and
text analysis across varied noise rates and patterns, GSL consistently achieves a
remarkable accuracy improvement over baselines on CIFAR benchmarks and real-
world noisy data. This notable enhancement distinguishes GSL from methods
focusing solely on correcting loss or leveraging symmetric cross-entropy.

3. In Chapter 4, we introduce QActor, a novel learning mechanism specifically de-
signed for very noisy labeled datasets. QActor incorporates a dual-purpose ap-
proach: a quality model that effectively filters out the noise, and an active learning
component, CENT, that strategically selects informative noisy instances for oracle
relabeling. The distinctive characteristic of QActor lies in its noise-aware selection
of informative data. This selection process dynamically adapts query allocation
throughout the training iterations based on the observed training loss. This flexible
design allows QActor to be seamlessly integrated with both standard and deep
learning models, even in scenarios with limited access to clean labels. We find
that QActor effectively handles the challenge of learning from datasets with cor-
rupted labels using human experts in the loop of training. Notably, QActor proves
advantageous in addressing highly noisy labels, achieving a significant accuracy im-
provement on CIFAR-10 and CIFAR-100. This straightforward yet robust approach
positions QActor as an effective solution for improving classification performance
in the presence of noisy label datasets.

4. In Chapter 5, we introduce LABNET, a novel iterative mechanism that addresses the
inherent challenges associated with accurate data labeling by crowd workers and its
subsequent utilization for training deep neural networks (DNNs). Unlike traditional
approaches that perform label aggregation and DNN training in isolation, LABNET

fosters a collaborative environment where these processes interact synergistically.
Our framework leverages the DNN’s ability to extract valuable prior knowledge,
which is then fed into the label aggregation algorithm to enhance its accuracy. Con-
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versely, the aggregation algorithm’s estimated correct labels are utilized to refine
the DNN’s training process. Furthermore, LABNET incorporates a sophisticated
algorithm that dynamically determines when the DNN requires retraining based
on the ongoing label aggregation iterations. This iterative approach fosters mutual
improvement between the DNN’s training and label aggregation processes, leading
to superior performance compared to existing baselines. Notably, LABNET demon-
strates its greatest efficacy in challenging scenarios characterized by a large number
of classes.

5. In Chapter 6, we introduce two novel and effective mechanisms to enhance the
robustness of multi-label classifiers in the presence of label noise. The first mecha-
nism, Trusted Loss Correction for Multi-Label Learning (TLCM), leverages a metic-
ulously estimated noise corruption matrix to significantly improve the resilience
of multi-label classifiers against label noise. The second mechanism, Multi-Label
Loss Correction against Missing and Corrupted Labels (MLLSC), tackles the even
more complex challenge of mitigating the detrimental effects of both missing and
corrupted labels. This mechanism does so without requiring any additional ground
truth labels. By introducing TLCM and MLLSC, we provide a comprehensive suite of
solutions for effectively addressing noisy labels in multi-label classification. These
mechanisms significantly enhance the accuracy and resilience of multi-label classi-
fiers, paving the way for improved performance in real-world applications.

Following is the general conclusion of the thesis:
• Except for MLLSC, all proposed mechanisms leverage the combined effect of at

least two key elements (see Figure 1.6). This synergistic approach enhances the
robustness of DNNs against noisy labels compared to mechanisms that focus on a
single key element.

7.2. FUTURE DIRECTIONS
We outline opportunities for future directions extending beyond each chapter, focusing
on advancing the robustness of deep learning models and addressing challenges related
to noisy labels.

1. In Chapter 2, we have proposed novel learning algorithms, LABELNET and TrustNet,
to effectively handle noisy labels in image classification tasks, achieving improved
accuracy by leveraging auxiliary information of noisy labels and estimating noise
transition matrices from a small set of trusted data. To enhance the robustness
of LABELNET in handling noisy labels, future investigations may explore more
complex DNN architectures and regularization techniques. Additionally, there is
potential for leveraging additional sources of auxiliary information, e.g., oracle, and
aggregation algorithms, in TrustNet, leading to more accurate noise estimation and
correction. Beyond image classification, the application of TrustNet and LABELNET

to other domains such as natural language processing or speech recognition, can
be investigated.

2. In Chapter 3, we have introduced the Golden Symmetric Loss Correction (GSL)
approach, dynamically weighing regular and reverse cross-entropy based on the
estimated corruption matrix to handle noisy labels. In future work, the potential
of GSL can be explored in diverse domains beyond image classification, such as
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audio or sensor data, to assess its generalization. Investigating hybrid methods
by combining GSL with other noise-resilient approaches may further enhance
accuracy in noisy label scenarios. Fine-tuning GSL’s loss function with different
weighting strategies based on the corruption matrix can optimize its performance.
Additionally, extending GSL for semi-supervised settings could prove valuable for
handling limited labeled data effectively.

3. In Chapter 4, we have designed the Quality-driven Active Learning (QActor) frame-
work, combining quality models and active learning to effectively address noisy
labels by selecting informative samples for relabeling while minimizing the re-
liance on oracle queries. QActor could be extended to explore its potential in
semi-supervised and transfer learning contexts. Integration with advanced deep
learning models like Bayesian neural networks might enhance oracle query effi-
ciency. Evaluating QActor’s performance in scenarios with high label noise levels
would provide insights into its capabilities and limitations, especially when dealing
with untrusted oracles that occasionally provide incorrect labels.

4. In Chapter 5, we have introduced LABNET, a collaborative mechanism that inte-
grates DNN training and label aggregation. LABNET’s innovative approach involves
bidirectional interactions between the classifier and aggregation algorithm, enhanc-
ing label quality and classifier performance simultaneously. In the future, LABNET’s
potential can be expanded by accommodating various forms of noisy annotations
beyond label noise, ensuring adaptability to real-world situations involving at-
tribute or instance noise. Additionally, investigating LABNET’s performance with
restricted trusted data would shed light on its capabilities when only a small por-
tion of accurate labels is accessible. The integration of LABNET with advanced
deep learning architectures and aggregation algorithms could further enhance its
effectiveness across diverse datasets and applications.

5. In Chapter 6, we have proposed two innovative mechanisms, Trusted Loss Cor-
rection for Multi-Label Learning (TLCM) and Multi-Label Loss Correction against
Missing and Corrupted Labels (MLLSC), to enhance the accuracy of multi-label
classifiers in the presence of label noise. TLCM effectively estimates noise corrup-
tion matrices and enhances classifier robustness, while MLLSC introduces a robust
loss function to mitigate the impact of noisy labels without requiring additional
ground truth. Future research directions outlined in Chapter 6 include exploring
ensemble models formed by combining TLCM and MLLSC with other multi-label
learning methods. The goal is to enhance the robustness of multi-label classifiers
against label noise even further. Extending the application of TLCM and MLLSC
to diverse multi-label learning tasks beyond image classification, including text
categorization and document tagging, will provide insights into their generalization
capabilities across various data domains. Furthermore, exploring the integration
of TLCM and MLLSC into Graph Neural Networks (GNNs) with noisy labels can
significantly enhance the performance and reliability of GNNs in tasks involving
multi-label graph data.
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