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ABSTRACT 
 
In this study, the application of the Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) method for 
cislunar satellite formations is investigated considering range only and range-rate only measurements. The LiAISON 
method provides an autonomous orbit determination solution solely using satellite-to-satellite measurements such as 
range and/or range-rate. This paper presents a comparison between range only and range-rate only measurements in 
satellite formations at cislunar space including the Earth-Moon L!, L" and Lunar orbits by presenting the results of Monte 
Carlo simulations and observability analysis. The results show that range observations in general provide better state 
estimations than range-rate observations for cislunar satellite formations in the autonomous navigation applications. 
However, range-rate only measurements could be an alternative to range-only measurements if range measurements are 
not precise and high precise range-rate measurements could be collected on-board. It has been found that range only 
measurements could be good enough to meet the orbit determination requirements for certain small satellite missions and 
allow to simplify the communication system design and reduce power usage.  
 
INTRODUCTION 
 
Interest in cislunar exploration with small satellites is increasing due to piggyback launch opportunities and data relay 
satellites in lunar orbit. In the near future, Artemis 1 will provide an opportunity for exploring cislunar space to thirteen 
6U sized CubeSats which have a variety of unique mission objectives on the way to the Moon [1,2]. All these small 
satellite missions plan to use traditional ground-based navigation methods. However, this approach could be expensive, 
while the development of small satellites is expected at a low cost. Considering this and all other challenges such as on-
board power limitations, autonomous navigation would be a possible solution for small satellites. Also, orbit 
determination requirements of certain cislunar small satellite missions [2,3] are, in general, on the order of kilometres and 
centimetres per second level for position and velocity, respectively. Up to now, there have been many solutions proposed 
in literature and one of them, the Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) method, uses 
satellite-to-satellite observations, such as range and/or range-rate to estimate absolute states when at least one of the 
satellites has an orbit with unique size, shape, and orientation [4-6]. The characteristics of the acceleration function 
determine whether solely inter-satellite range or range-rate measurements can be used to estimate the absolute and relative 
spacecraft states. Extensive studies have showed the capabilities of LiAISON over the past decade and cislunar and deep 
space missions (e.g., around asteroid) could benefit from this navigation technique [4-8].  
 
The orbit determination performances of LiAISON depend on various factors, such as measurement precision, accuracy, 
frequency, observation type and others. Regarding crosslink measurements, previous studies have considered precise 
ranging typically less than 3 m (1𝜎) and 1 mm/s (1𝜎) for range and range-rate measurements, respectively. However, for 
small satellites with limited on-board power available, ranging and data-transfer are affected by the limited contact time 
and the ranging signal further reduces the power available for telemetry. For such cases, telemetry-based and time-derived 
ranging methods have been proposed [2,9,10]. However, these methods are not as precise as conventional pseudo-noise 
or tone-based techniques, achieving typically 150 m (1𝜎) ranging error at 10 kbps data-rate [10]. In the LUMIO mission, 
for example, the inter-satellite uplink and downlink data rates are expected to be 1 kbps and 4 kbps respectively [3]. 
However, it is possible to reach 10 kbps data rate with a large antenna. It is also expected that on-board Doppler 
measurements performed on inter-satellite links are not as accurate as measurements on ground systems due to the limited 
complexity of satellite communication equipment as compared to typical ground receiver. The coherent Doppler tracking 
also requires linear amplifiers which reduce the overall link efficiency and making it unfeasible in practical cases. This 
study aims at providing a realistic comparison between range only and range-rate only measurements using LiAISON at 
cislunar space by showing the results of the observability and Monte Carlo analysis. By doing so, the possibility of 
simplifying the communication system design will be investigated. In this study, first of all, a dynamical model is 



provided. Orbit determination models are introduced including the observability analysis and a comparison between 
observation types. Thereafter, the navigation simulation setup and results are presented. Finally, conclusions are drawn.  
 
DYNAMICAL MODEL 
 
In this section, the orbital dynamics model used in this paper is introduced. The dynamic models used in this study are 
formulated based on the Circular Restricted Three-body Problem (CRTBP). The CRTBP assumes that there are two 
massive bodies, Earth and Moon, in orbit about their mutual barycenter as can be seen in the Fig.1. Further, the motion 
of 𝑃" relative to 𝑃! is assumed to be circular. The coordinate frame has its origin at the barycenter of the two bodies, 𝑃! 
and 𝑃". The positive 𝑥-direction points from barycenter to 𝑃". The positive 𝑦-axis is parallel to the velocity vector of 𝑃" 
and the 𝑧-axis is perpendicular to the orbital plane. The three-body gravitational parameter 𝜇 is 
 

𝜇 =
𝑚"

𝑚! +𝑚"
(1) 

 
Fig. 1. Formulation for the CRTBP 

 
where 𝑚! is the mass of 𝑃!, and 𝑚" is the mass of 𝑃". The non-dimensional Length Unit (LU) is equal to the distance 
between the two primaries, so the distance along the 𝑥-axis from the origin to 𝑃!, is −𝜇 LU. The Time Unit (TU) is 
defined such that orbital period of 𝑃" with respect to 𝑃! is 2𝜋 TU. For the Earth-Moon system, gravitational parameter 𝜇, 
time conversion and length conversion parameters are 0.01215, 4.343 days/nondim time and 384747.96 km/nondim 
length, respectively. The equations of motion for the CRTBP [6] are 
 

�̈� − 2�̇� = 𝑥 − (1 − 𝜇)
𝑥 + 𝜇
𝑟!#

− 𝜇
𝑥 + 𝜇 − 1

𝑟"#
(2) 

 

�̈� + 2�̇� = ;1 −	
1 − 𝜇
𝑟!#

−
𝜇
𝑟"#
=𝑦	 (3) 

 

�̈� = ;
𝜇 − 1
𝑟!#

−
𝜇
𝑟"#
= 𝑧 (4) 

 
where 𝑟! = >(𝑥 + 𝜇)" + 𝑦" + 𝑧" and 𝑟" = >(𝑥 + 𝜇 − 1)" + 𝑦" + 𝑧". 
 
ORBIT DETERMINATION  
 
Autonomous crosslink navigation uses solely inter-satellite measurements. In this study, inter-satellite observations, such 
as range and range-rate, are collected via radiometric measurements: measuring the round-trip light time in general is 
based on phase measurements of a ranging signal. And, in this way, the internal clock would cause a measurement bias 
which can be measured along by the navigation filter or can be calibrated. The measurement model in here, referred as 
pseudorange, involves the geometric range, the overall clock bias, and other error sources. In the Fig.2, the concept of the 
two-way range measurement can be seen. Basically, Spacecraft A transmits a ranging signal at time 𝑡! and receives it 
back at time 𝑡$. During this measurement interval, both spacecraft move to their final relative position, so there are 
changes in line-of-sight direction which can be modeled as ∆𝜌. In the end, the geometric range can be given as: 
 

𝑅	 = 	
1
2 	𝑐

(𝑡$ − 𝑡!) + 𝛥𝜌 (5) 



By assuming the speed of light is greater than the spacecraft relative velocity, i.e., 𝑐 ≫ 𝑣, and ignoring the light-time 
correction, the geometric range can be modeled as: 
 

𝑅	 = 	>(𝐫! − 𝐫") ∙ (𝐫! − 𝐫") = >(𝑥! − 𝑥")" + (𝑦! − 𝑦")" + (𝑧! − 𝑧")"	 (6) 
 
Then the pseudorange observations can be modeled as: 
 

𝜌	 = 	𝑅 + 𝑐	J𝜓%! −𝜓%"L + 𝑐	(Δ%& − Δ'&) + 𝑐Δ%'& + 𝜌()*+, (7) 
 

𝜌	 = 	>(𝑥! − 𝑥")" + (𝑦! − 𝑦")" + (𝑧! − 𝑧")" + 𝜌-*.+ + 𝜌()*+, (8) 
 
Where 𝜓%!and 𝜓%" are the on-board clock states at 𝑡$ and 𝑡!respectively. Δ%& and Δ'& are the transponder transmit and 
receive line delays, respectively and Δ%'& is the line delay on the spacecraft transponding the ranging signal. All these 
terms are combined as 𝜌-*.+ and 𝜌()*+, representing the unmodelled error sources. 
 

 
Fig. 2. Illustration of the crosslink ranging process. 

 
Range-rate, �̇�, measurements can be modelled as: 
 

�̇� =
𝝆 ∙ �̇�
𝜌 =

(𝑥! − 𝑥")(�̇�! − �̇�") +	(𝑦! − 𝑦")(�̇�! − �̇�") + (𝑧! − 𝑧")(�̇�! − �̇�")
>(𝑥! − 𝑥")" + (𝑦! − 𝑦")" + (𝑧! − 𝑧")"

+ �̇�-*.+ 	+ �̇�()*+,	 (9) 

 
Considering the formation formed by two spacecraft, the state vector being estimated consists of the position and velocity 
components of both spacecraft is given as: 
 

𝐗 = [𝑥! 𝑦! 𝑧! �̇�! �̇�! �̇�! 𝑥" 𝑦" 𝑧" �̇�" �̇�" �̇�"]/ (10) 
 
where the subscripts denote the spacecraft number. In this study, the Extended Kalman Filter (EKF) is adopted as a 
common method used in real-time navigation. The integration for the reference trajectory and the state transition matrix 
from 𝑡01! to 𝑡0 is based on 
 

�̇�∗ = 𝑭(𝐗∗, 𝑡), 𝐗∗(𝑡31!) = 𝐗U31! (11) 
 
The state transition matrix is obtained by integrating 
 

�̇�(𝑡, 𝑡31!) = 𝑨(𝑡)𝚽(𝑡, 𝑡31!), 𝚽(𝑡01!, 𝑡31!) = 𝑰 (12) 
 
 where 
 

𝑨(𝑡) = Y
𝜕𝑭(𝐗, 𝑡)
𝜕𝐗 [

∗

(13) 

 
and error covariance matrix 𝑷] 
 

𝑷]3 = 𝚽(𝑡, 𝑡31!)𝑷31!𝚽𝐓(𝑡, 𝑡31!) + 𝑸 (14) 



 
where 𝑷]3 is the error covariance matrix (time updated) at time 𝑡3. State noise compensation is introduced by adding a 
matrix 𝑸 which can be constructed for each spacecraft as [5]: 
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where Δ𝑡 is time interval between measurements and 𝜎8 is a standard deviation of unknown acceleration which has been 
tuned in the study until having a realistic error covariance matrix.  
 
The observations can be related to the states using the observation-state matrix 
 

𝑯g3 =
𝜕𝑮(𝑿3∗ , 𝑡3)

𝜕𝑿3
(16) 

 
In this study, the crosslink range 𝜌 and range-rate �̇� are considered observations in different scenarios so that 𝑯g3 is given 
 

𝑯g3
9 = Y

𝜕𝜌
𝜕𝐗[ , 𝑯g3

9̇ = Y
𝜕�̇�
𝜕𝐗[ (17) 

 
Considering the observation errors are modelled as white Gaussian noise with standard deviation 𝜎9 for range and 𝜎9̇ for 
range-rate, weighting the matrix 𝑾1! can be used to weight observations as 𝑊 = 𝜎9" and 𝑊 = 𝜎9̇" for range and range-
rate observations respectively and the Kalman gain matrix can be calculated as: 
 

𝑲3 = 𝑷]3𝑯g3/	m𝑯g3𝑷]3𝑯g3/ +𝑾3n
1! (18) 

 
Measurement and error covariance update become 
 

𝒙3 = 𝑲3𝒚3 (19) 
 

𝑷3 = [𝑰 − 𝑲𝒌𝑯g3]𝑷]3 (20) 
 

𝐗U3 = 𝐗3∗ + 𝒙3 (21) 
 
In the end, 𝑡0 becomes 𝑡01! and the process continues till the end of the observations. 
 
Observability 
 
Observability analysis is a tool that can be used to relate orbit determination performances and measurement type, 
frequency, and accuracy. This tool provides whether the navigation parameters could be determined by the observation 
data, but cannot evaluate the estimation accuracy. Actually, the degree of observability can be used alone to evaluate the 
estimation performances. The standard approach to measure the observability is to check the observability rank condition, 
but this approach only provides information whether the system is observable or not. The degree of observability can be 
checked, for example, via the observability Gramian. For the discrete time, the time-varying observability Gramian can 
be written as: 



𝑵 =r𝚽𝐓(𝑡0 , 𝑡<)𝑯g3/𝑯g3𝚽(𝑡0 , 𝑡<)
=

3>!

(22) 

 
By using (22), the singular value decomposition can be performed as 
 

𝑵 = 𝐔𝚺𝐕𝐓 (23) 
 
where 𝐔 and 𝐕 are unitary matrices and 𝚺 is a matrix of singular values. The condition number and the unobservability 
index can be derived from 𝚺 in (23). The local condition number, which is the ratio of the smallest singular value to the 
largest singular value, and unobservability index, which is the reciprocal of the smallest singular value, are two main 
parameters used to measure the degree of observability or unobservability of a system. The smallest values for the 
unobservability index represent the states that are less difficult to be estimated from the output. If the index is large, then 
observation noise can have a large impact on the estimation error [11]. 
 
Observation Type Comparison 
 
In this study, range and range-rate observations have been compared in terms of their effects on the navigation 
performances. Basically, a careful selection of the observation type is required which provides better orbit determination 
performances for the same radio measurement system. In this section, the relation between radiometric observables will 
be given from the measurement precision point of view. In one of the previous studies [12], a quantitative approach is 
given and a similar method has been used in this section. A signal-to-noise (SNR) criterion for an observable ℎ	(𝜌	or	�̇�) 
and estimated states 𝐗 can be given as: 
 

𝑆𝑁𝑅?,3 = {
1
𝜎?
𝑯0{ , 𝑯0 = 𝑯g3𝚽(𝑡0 , 𝑡<) (24) 

 
Where 𝜎? is the noise level of the measurement ℎ. Basically, we define the following figure of merit to compare the 
relative sensitivity of range and range-rate observables to estimated states, 𝐗: 
 

ΞA8 =
𝑆𝑁𝑅9
𝑆𝑁𝑅9̇

=
𝜎9̇
𝜎9
}
𝐻3
9,8

𝐻3
9̇,8} (25) 

 
where 𝜎9 and 𝜎9̇ are the noise level of the range and range-rate measurements, respectively and 𝑖 represents the state 
component. If Ξ𝐗 < 1, it can be said that range-rate observations would become a feasible alternative to range observation 
for estimating 𝐗. The approach given here can be considered as a ratio of the observability Gramian at each time epoch, 
and multiplying by a realistic relative measurement error parameter. Before making a comparison, we need to find the 
relation between range and range-rate observation errors, in other words the relative error parameter. As a first step, the 
ranging error will be defined. In case a conventional tone ranging is used for ranging operations, the following can be 
used to calculate the phase error on the major tone: 

𝜎9 =
𝜆
2𝜋 𝜎' =

𝜆
2𝜋�

2𝐵C

2 𝑆𝑁<

(26) 

where 2𝐵C, is the bi-lateral loop bandwidth, 𝑆/𝑁<, the signal-to-noise ratio in dB Hz. As an example, a 30 dB Hz signal-
to-noise ratio on the major tone with 0.1 Hz loop bandwidth would result in a 0.32 m ranging error. On the other hand, 
Doppler data noise can be expressed by the phase noise in radians and converted to range-rate noise by the following 
equation [13]: 
 

𝜎9̇ =
√2𝑐

2	𝐺	𝑓%	𝑡D
𝜎E
2𝜋 (27) 

 
being 𝑐 the speed of light, 𝐺 the transponding ratio, 𝑓%, the transmitted frequency, 𝑡D, the integration time, 𝜎E the phase 
noise in radians. As an example, for an S-band system, a 1 m ranging error would be equivalent to 0.3 mm/s range-rate 



error with 1 s integration on the same ranging/Doppler unit. In brief, by using (25), it is possible to compare range only 
and range-rate only navigation systems in a realistic way.  
 
NAVIGATION SIMULATIONS 
 
In this study, various orbital configurations have been considered. These include four different orbits at the Earth-Moon 
L! and L" points with orbital periods between 11.81 to 12.09 days for L! orbiters (Jacobi constant 𝐶F between 3.06 and 
3.10) and between 13.87 to 14.35 days for L" orbiters (Jacobi constant 𝐶F between 3.09 and 3.12) and a lunar orbiter with 
an orbital period of 0.93 days. True and estimated states are generated by using the ODE113 solver in Matlab. If not 
explicitly mentioned, range and range rate errors have been set to 1 m (1𝜎) and 0.3 mm/s (1𝜎) respectively. No bias is 
further assumed for measurements and the measurement interval has been set to 5e-3 TU. Simulations last for one orbital 
period defined by the longest period in the formation. The initial covariance matrix is set to diagonal for each position 
and velocity component as 1 km (1𝜎) and 1 cm/s (1𝜎), respectively. The initial position and velocity in each component 
have an error of 500 m and 1 mm/s for both spacecraft, respectively. During the simulations, in each 𝑘th time step, the 
RMS error for the 𝑁th case of the Monte Carlo simulation is calculated by using the following metric:  
 

𝑅𝑀𝑆𝐸3 = �
1
𝑁rJ𝑥8,3 − 𝑥�8,3L

"
G

=>!

(28) 

 
where 𝑥8,3 and 𝑥�8,3 are 𝑖th components of state vector and its estimate, respectively. The 3D position and velocity errors 
are derived by taking the norm of the corresponding states.  
 
Simulation Results 
 
This section presents the simulation results. In order to not confuse the reader with all the results, at first the EML"-Lunar 
orbiter scenario is presented. In this scenario, one spacecraft orbits around the EML" point and other one around the 
Moon. EML" Halo orbiter has a period of 14.35 days with the Jacobi energy 𝐶F=3.12. Lunar orbiter has a period of 0.93 
days. In Fig.3, the RMS position and velocity errors are derived for 100 Monte Carlo simulation runs via range only and 
range-rate only. It can be seen that during the almost 14.35 days of simulation, the range only case (blue) provides slightly 
better position and velocity estimations than range-rate only case (red) for both spacecraft in case 1 m (1𝜎) and 0.3 mm/s 
(1𝜎) measurement errors are assumed. Fluctuations in the estimations for the lunar orbiter are related to the relative 
geometry between satellites. It converges when the satellite approaches the periselene which is the closest point the Moon 
(high velocity region). Basically, the range only case provides better state estimations when satellite approaches the 
aposelene during the very first seven days.  

 
Fig. 3. EML"-Lunar orbiter scenario, RMS position and velocity error (100 Monte Carlo runs) via range only and 

range-rate only. 
 

In addition to 1 m (1𝜎) and 0.3 mm/s (1𝜎) and the EML"-Lunar orbiter case, other geometries and measurement precisions 
have also been investigated. In the Fig. 4 and Fig. 5, Earth-Moon L!, L", and Lunar orbiter RMS position errors are 
derived from 100 Monte Carlo simulation runs considering various range-only and range-rate only. As it can be seen, 
range errors vary between 1 m to 100 m and range-rate errors vary between 0.1 mm/s to 10 mm/s. In position estimation, 
1 m (1𝜎) range error and 0.1 mm/s (1𝜎) range-rate error cases give similar results for the link between Lagrangian point 
orbiters and the Lunar orbiter. However, range data provide better position estimation for the crosslink between L! and 



L" orbiters even if high error measurements are considered. On the other hand, if sub-mm/s level precision could be 
achieved on-board, range-rate only measurements could be an alternative to a range-only system. Basically, the sub-mm/s 
cases give better results than less precise range-only cases which could be from range measurements obtained with 
telemetry-based or time-derived methods. Also, as it can be seen from the Fig.5, high measurement errors do not bring 
valuable state estimation for the crosslink between Lagrangian point orbiters.  

 
Fig. 4. (left) EML! – Lunar Orbiter RMS Position Error considering various range-only and range-rate only cases. (right) 
EML" – Lunar Orbiter RMS Position Error considering various range-only and range-rate only cases. 

 
Fig. 5. Earth-Moon L! – L" RMS Position Error considering various range-only and range-rate only cases. 

 
In addition to the Monte Carlo simulations, an observability analysis has been performed. Also, Ξ𝐗 given in (25) is 
computed for various geometries. Table 1 presents the corresponding results: ΞH,.( is computed by taking the mean value 
of all individual Ξ𝐗 representing the overall performance. As it can be seen,  ΞH,.( > 1 for all mission scenarios with 
range only measurements with 1 m (1𝜎) error provides better state estimation than the range-rate only case with 0.3 mm/s 
(1𝜎) error. In Fig.6, the ratio Ξ for the full 12 states of the Earth-Moon L!–Lunar scenario can be seen.  

 
Fig. 6. Ratio Ξ𝐗 values for the full states of the Earth-Moon L!–Lunar scenario 

 
During the simulation, at certain time intervals, the ratio Ξ for certain states becomes less than unity, Ξ < 1, which means 
that the range-rate only case provides more valuable information to estimate the corresponding states than the range only 
case. But still, this is not sufficient for the range-rate only case to have the same overall performances with respect to the 
range only case, as ΞH,.( = 93.22. Also, the Earth-Moon L!- L" formation has higher values for both the condition 
number and the unobservability index than the crosslink between the Lagrangian orbiters and the Lunar orbiter, results 



that are similar to the ones given in the Monte Carlo simulations presented in Fig. 3-5. In this type of application, condition 
number has to be less than 10!I for the problem to be observable [6]. As it can be seen that all the different orbital 
configurations give the condition number around on the order of 10!<. In general, for both observation types, the system 
is achieving better observability if halo orbits have shorter orbital periods. Lagrangian orbiters with shorter periods are in 
general close to the Moon and their orbital plane becomes planar, allowing to collect more information in the x-y plane.  
 

Table 1. ΞH,.(, condition number, and unobservability index for various scenarios. 
 

 EM𝐋𝟏/ 𝐋𝟐 EM𝐋𝟏 / Lunar EM𝐋𝟐 / Lunar 
Halo Period 

(TU) 
2.78 / 
3.30 

2.77 / 
3.27 

2.75 / 
3.24 

2.72 / 
3.19 2.78 2.77 2.75 2.72 3.30 3.27 3.24 3.19 

Ξ#$%& 
(1m/0.3mm/s) 75.87 71.29 76.32 89.11 93.22 113 79.74 69.99 64.60 63.36 83.87 71.01 

cond(𝑵) 𝜌 1.33e11 5.52e10 1.02e11 1.26e10 1.35e10 1.15e10 9.96e9 7.56e9 1.10e10 1.15e10 1.25e10 1.37e10 
�̇� 5.75e10 1.55e10 3.33e9 7.39e8 2.27e10 1.76e10 1.63e10 1.46e10 2.61e10 1.44e11 3.11e10 3.41e10 

1/min eig(𝑵) 
𝜌 5330 4830 1.92e4 5203 373 332 295 264 201 213 233 265 
�̇� 487 322 164 87 0.20 0.16 0.16 0.17 0.17 0.19 0.21 0.24 

 
CONCLUSIONS 
 
This study investigated the application of LiAISON for cislunar satellite formations considering range only and range-
rate only measurements. A comparison has been made between range only and range-rate only measurement cases for 
cislunar spacecraft formations at the Earth-Moon L!, L" and Lunar orbits. The results from Monte Carlo simulations and 
observability analysis results have been presented. The results show that range observations in general provide better state 
estimation than range-rate observations for cislunar satellite formations performing autonomous navigation. However, 
range-rate only measurements could be an alternative to range-only measurements if less precise ranging methods are 
used (typically in the order of 100-meter error) and better than 1 mm/s range-rate precision could be collected on-board. 
On the other hand, even range-only measurements with high errors could be good enough to meet the orbit determination 
requirements for the certain cislunar small satellite missions. This would simplify the communication system design and 
reduce the on-board power required.  
 
Future research might study the effects of clock bias and drift on the navigation performances. In addition, high fidelity 
dynamical model-based simulations are needed to compare results obtained from circular restricted three-body dynamics. 
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