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1. INTRODUCTION



A magnetic compass needle aligns itself with the earth’s magnetic field.
This is one of the many applications of the familiar property of ferromag-
nets that they can exert an attractive or repulsive force on each other.
Magnetism also plays an interesting and important role in electronics and
currently a lot of research is aimed at understanding the fundamental sci-
ence and at finding applications of magnetic components in electronic cir-
cuits.

1.1 Ferromagnetism

What makes a material ferromagnetic? A magnetic moment is associated
with the spin (intrinsic angular momentum) and orbital motion of electrons.
Ordinary metals do not have a net magnetic moment, but the spins in a
ferromagnetic material (like iron) align. The regions in which this align-
ment is frozen in are called domains. When a magnetic field is applied, the
magnetic dipoles experience a torque that tries to line them up with the
magnetic field. At the domain boundaries there is a competition between
domains with different magnetization directions, and domains with mag-
netization more parallel to the magnetic field can grow. This results in a

Fig. 1.1: a) Density of states for majority and minority spin in ferromagnetic
nickel. This figure shows results from Ref. [1] (1 Ry=13.6 eV).
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ferromagnet with a large total magnetic moment.
The eigenstates of electrons are characterized by the electron spin. In

a ferromagnet, electrons with majority and minority spin have a different
density of states. As an example, the result of an electronic structure
calculation for ferromagnetic nickel is shown in Fig. 1.1. Because of the
spin-dependence of the electronic structure and the scattering cross section
of impurities, the electron mobility in a ferromagnet is spin dependent.
The larger part of the current is carried by the high-mobility carriers, and
therefore the current is spin polarized.

When the scattering processes that change the spin of the electrons (so-
called spin-flip processes) are sufficiently weak, the electron transport can
be described by a two-channel resistance model, in which the currents of
spin-up and spin-down electrons flow in two separate channels with unequal
resistances (See Fig. 1.2).

Fig. 1.2: a,b) Schematic picture of a ferromagnetic (F) layer between two normal-
metal (N) leads and the corresponding effective circuit model. The resis-
tance for spin-up electrons is R↑ and the resistance for spin-down elec-
trons is R↓.

1.2 Magnetoelectronics

Magnetoelectronics [2] studies hybrid systems consisting of ferromagnetic
metals, paramagnetic metals and insulators. It is a subfield of spintronics,
which is more generally concerned with the manipulation of spin degrees of
freedom in solid-state systems.

A current that is passed through a ferromagnet-normal metal (FN)
contact can inject spins into the normal-metal region [3]. A non-equilibrium
magnetization (also called spin accumulation) then builds up. As a result,
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there is a difference in chemical potential for the spin-up and spin-down
subbands. Spin-flip relaxation, which can be parametrized by a spin-flip
time τsf , causes the spin accumulation to decay. For a disordered system,
the length scale over which the spin accumulation decays is characterized
by the spin-flip diffusion length lsd =

√
Dτsf (see Ref. [4]), where D is the

diffusion constant. For copper at 4.2K, lsd is about 1 µm [5].
We now give a short overview of some important developments in mag-

netoelectronics. An essential concept in magnetoelectronics is the magne-
toresistance, which is the property that a resistance can be changed by
application of a magnetic field. The anisotropic magnetoresistance effect
(AMR), by which the resistivity of a bulk ferromagnet depends on the
relative orientations of the magnetization and the direction of flow of the
charge current, has been known for well over a century [6]. In 1975, the
tunneling magnetoresistance effect (TMR) was discovered [7], i.e. the resis-
tance of systems with ferromagnets separated by an insulator was found to
depend on the relative orientations of the magnetizations of the ferromag-
nets. Since the TMR persists at room temperature [8], the effect can be
applied in non-volatile, so-called magnetoresistive random access, memories
(MRAM) [9].

An important discovery was the non-local exchange coupling in mul-
tilayers with alternating ferromagnetic and non-magnetic layers [10]. By
this effect, the energy of these magnetic multilayers depends on the relative
directions of the magnetizations. Another prominent advance in the field
was the discovery of the giant magnetoresistance (GMR) in magnetic mul-
tilayers in 1988 [11, 12]. This effect (see Sec. 1.3) was much larger than the
AMR, and soon after its discovery the GMR effect was applied as magnetic
field sensor, e.g. in read heads for hard-disk drives [9].

It is now well-established that a spin-polarized current passing through
a thin ferromagnetic film can induce switching or precession of the magne-
tization [13, 14, 15]. The mechanism responsible for this, the spin-transfer
torque, was predicted by Berger [16] and Slonczewski [17] and will be dis-
cussed in Sec. 1.5.

Besides metal-based magnetoelectronics, there is also a lot of activity
in semiconductor spintronics [18]. It is now possible to manipulate single
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spins in quantum dots [19] and there are investigations into the possibility
to perform quantum computations based on the electron spin [20].

1.3 Spin valves

An example of a system that shows magnetoresistance is the perpendicular
spin valve, which is schematically shown in Fig. 1.3. A spin valve consists
of two ferromagnetic elements connected by a layer of normal-metal mate-
rial. When a bias voltage V is applied over this system, the current flowing
through the FN contacts generates a spin accumulation Vs in the normal
metal. The size and direction of this spin accumulation vector depend on
the directions of the two magnetizations (m1 and m2), and affect the elec-
tron transport. When the two ferromagnets have a different coercive field
(for example because they have a different shape), the magnetizations can
be controlled independently by an external magnetic field. In this way the
current can be modulated. The transport is governed by the spin-dependent
contact resistances when these are much larger than the resistance of the
layers, e.g. in the case of tunneling barriers or thin layers. The measure

Fig. 1.3: A schematic picture of a spin valve. The magnetizations of the two
ferromagnets, m1 and m2, make an angle θ. Vs is the spin accumulation
in the normal metal.

for the magnetoresistance is MR ≡ (RAP − RP )/RP . This is the change
of the resistance when the magnetizations are switched from parallel (P)
to antiparallel (AP) normalized by the resistance in the parallel configu-
ration. More information is contained in the dependence of transport on
an arbitrary angle θ between the magnetization directions (angular magne-
toresistance). This angular dependence of the giant magnetoresistance of
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CPP multilayers was measured by Urazhdin et al. [21]. In this experiment
one of the two ferromagnetic layers could be rotated with a magnetic field
in the plane of the films, while the other remained pinned.

1.4 Magnetoelectronic circuit theory

Electronic circuit theory provides a powerful method to analyze conduct-
ing circuits. Focusing on the stationary state, the voltage distribution in a
circuit can be found from Ohm’s law and the conservation of charge (the
Kirchhoff laws). Circuit theory cannot straightaway be applied to hybrid
systems with ferromagnetic and normal metal elements, but there is a gen-
eralization in the form of magnetoelectronic circuit theory [22, 23]. This
theory allows to study spin and charge transport in disordered or chaotic
systems with arbitrary noncollinear magnetizations. For a detailed expla-
nation we refer to a recent review [2].

A magnetoelectronic circuit may be analyzed by the following steps.
First, the system has to be divided into large reservoirs and “nodes” that
are connected by resistive junctions. In the stationary state, each of the
nodes is characterized by a charge potential and a spin accumulation, which
have to be determined from the equations for the conservation of charge
and spin.

Every FN contact is completely specified by a set of four conductance
parameters: the conductance for spin-up electrons G↑↑, the conductance
for spin-down electrons G↓↓ and a complex “mixing conductance” G↑↓ =
ReG↑↓ + iImG↑↓. These conductance parameters are defined as

Gss′ ≡ e2

h

∑
nm

(δnm − rnm
s (rnm

s′ )∗) , (1.1)

in terms of spin-dependent reflection coefficients rnm
↑ and rnm

↓ (s, s′ ∈ {↑
, ↓}). Here n and m denote the transport channels in the normal metal.
The contact parameters can in principle be calculated from a microscopic
description of the contacts [24]. It is convenient to introduce a total con-
ductance G = G↑↑+G↓↓ and a contact polarization P = (G↑↑−G↓↓)/(G↑↑+
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G↓↓). To give an idea of the order of magnitude, a value of P ∼ 0.7 was
found for Co/Cu interfaces [25].

The charge current through an FN contact depends on the charge bias
voltage V = VF −VN , as well as on the projection of the spin accumulation
vector Vs in the normal metal on the magnetization m. It reads:

I = GV − PGm ·Vs. (1.2)

The spin current flowing into the normal metal is given by

Is =(PGV −GVs ·m)m

+ 2ReG↑↓m× (Vs ×m) + 2ImG↑↓ (Vs ×m) . (1.3)

When the spin accumulation and the magnetization are collinear, only the
first term of this expression remains. This describes the spin injected by the
spin-polarized current through the contact. The second term, depending
on ReG↑↓, relaxes the component of the spin accumulation perpendicular
to m. The last contribution, which depends on ImG↑↓, is a non-dissipative
term that causes a precession of the spin accumulation around the mag-
netization vector. The action is identical to that of an external magnetic
field parallel to m and is sometimes considered to be due to an “effective
exchange field”.

Using the above expressions for the charge and spin currents, a set of
linear equations can be found that incorporates the conservation of charge
and spin in a given node. Spin-flip can be taken into account as well in terms
of a leakage current of spin angular momentum out of the electronic system.
By solving this set of equations, the voltage and spin accumulation for
each node can be determined. From these the quasi-equilibrium transport
characteristics of the entire circuit can be found.

When magnetoelectronic circuit theory is applied to a symmetric spin
valve, the following expression for the conductance is obtained [23]:

Gsv (θ) =
G

2

(
1− P 2 tan2 θ/2

κ+ tan2 θ/2

)
, (1.4)
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where

κ =
2(ReG↑↓)2 + 2(ImG↑↓)2

ReG↑↓G
. (1.5)

This result is valid for spin valves that are symmetric in the sense that
the two contacts are described by equal conductance parameters Gss′

. In
Fig. 1.4 we show the spin-valve conductance as a function of the angle
between the magnetizations. The conductance curves for κ = 1 show co-
sine behaviour with a minimum determined by the polarization P . The
spin accumulation that builds up for non-aligned magnetizations impedes
the transport of electrons, and this effect is maximal in the antiparallel
configuration (at θ = π). For larger values of κ, the suppression of the con-
ductance near the antiparallel configuration is sharper, since the relaxation
and precession described by the larger mixing conductance can reduce the
spin accumulation for non-collinear magnetizations.

Fig. 1.4: Angular dependence of the conductance of a spin valve with equal con-
tacts. Curves are shown for P = 1, κ = 1 (solid line), P = 1, κ = 10
(dash-dotted), and P = 0.5, κ = 1 (dashed).
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1.5 Magnetization dynamics

To describe magnetization dynamics, we can often use the Landau-Lifschitz-
Gilbert (LLG) equation [26, 27, 28]. A very small (single-domain) ferromag-
netic particle has a uniform vector magnetization. The total energy of the
system depends on the size and direction of the magnetization vector. The
dependence of the energy on the direction of the magnetization is, among
others, determined by the shape of the ferromagnet and the magnetocrys-
talline anisotropy. The shape anisotropy follows from the shape dependence
of the magnetostatic self-energy. The magnetocrystalline anisotropy spec-
ifies how, due to the spin-orbit interaction, it is easier to magnetize the
crystal in some direction compared to others. These effects and an ad-
ditional external magnetic field can be lumped together into an effective
magnetic field Heff , the functional derivative of the energy density with
respect to the magnetization direction. The LLG equation is:

ṁ = −γm×Heff + αm× ṁ (1.6)

The parameter α is the Gilbert damping constant which takes into account
energy dissipation mechanisms such as coupling of the magnetization to
spin waves, lattice vibrations, magnetic disorder, spin-orbit interaction etc.
(for a discussion, see Ref. [29]). When no energy is supplied to the system,
the precession will be damped continuously and the magnetization will relax
to an energy minimum.

The transverse component of a spin current cannot penetrate a ferro-
magnet. Instead, this component is absorbed within a few atomic layers
from the interface. The absorption takes place because spins noncollinear
to the magnetization are a coherent superposition of spin-up and spin-down
states which have different Fermi wavevectors k↑F and k↓F . As the electron
moves, the up- and down-component obtain different phases and a rapid
precession of the spin around the magnetic exchange field occurs. For a
contact with a large number of modes, there is destructive interference
from electrons following different paths and the transverse component of
the spin current disappears on a length scale λsc = π/ | k↑F − k↓F |, which
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is called the transverse spin-coherence length [2]. The spin angular mo-
mentum that is absorbed in this way is transferred to the ferromagnet.
The total angular momentum is conserved. This generates a torque on the
magnetization vector called the spin-transfer torque [16, 17]. When a spin
current Is flows into the ferromagnet, the effect of the spin-transfer torque
on the magnetization m can be written as (see e.g. Ref. [30]):

ṁtorque = −(γ/MS)m× Is ×m, (1.7)

where MS is the total magnetic moment of the ferromagnet and γ is the
gyromagnetic ratio. The spin-transfer torque can switch the direction of a
magnetization, provided that it is strong enough to overcome the anisotropy
energy barrier and the damping torque.

The thermal fluctuations of a single-domain ferromagnet were discussed
by Brown [31]. A random torque on the magnetization can be added to
the LLG-equation to describe stochastic agitations of the magnetization at
finite temperatures.

ṁfluct = m× h, (1.8)

where h is a stochastically fluctuating field with correlation function

〈hi(t)hj(t′)〉 =
2γαkBT

MS
δijδ(t− t′), (1.9)

in which α appears as a consequence of the fluctuation-dissipation theorem
[31].

1.6 Single-electron transistors

As magnetoelectronic devices are becoming smaller and smaller, electron-
electron interaction effects become increasingly important. The energy
needed to charge a system with a single electron can to a good approx-
imation be expressed in terms of an effective capacitance C. When the
characteristic energy scale e2/2C is larger or comparable to the thermal
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Fig. 1.5: Effective circuit model of the single-electron transistor.

energy kBT , electric transport becomes strongly modified [32, 33]. For a
discussion of single-electron effects see the review in Ref. [34].

A standard system to study charging effects is the single-electron tran-
sistor (See Fig. 1.5). It consists of a normal metal island contacted to
two leads by tunnel junctions with a resistance larger than the resistance
quantum RQ = h/e2. The island is only weakly connected to the leads, and
when the charging energy is the dominant energy scale (e2/2C � kBT, eV )
the number of electrons on the island nN is quantized. The charge on the
island changes by e when an electron tunnels into or out of the leads. When
the island is small enough that the energy level splitting is larger than the
thermal energy, it is possible to observe individual levels in transport mea-
surements. Such islands are often called “quantum dots” [35].

A gate voltage VG can be used to shift the potential of the island relative
to that of the leads. We will assume that the gate capacitance CG is much
smaller than the contact capacitances C1 and C2. The effective capacitance
of the island is then C ∼ C1 + C2. The Coulomb interaction can often be
described very well within the “orthodox model” as

Hch =
e2 (nN − CGVG/e)

2

2C
. (1.10)

Whether an electron can tunnel through the contacts is determined by the
change of electrostatic energy associated with the tunneling process. In the
“Coulomb blockade” electrons are not transmitted because the amount of
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energy needed for the transitions is not available. This Coulomb block-
ade can be lifted by a shift of the gate voltage. The low-bias conductance
shows periodically repeating conductance peaks as a function of gate volt-
age called “Coulomb oscillations”. Measurements of the differential con-
ductance versus gate- and bias voltage typically show “Coulomb diamond”
patterns. The diamonds, regions in which electron transport is blocked,
are bounded by lines indicating the threshold bias voltage at which current
starts to flow. Fig. 1.6 (reproduced from Ref. [36]), shows an example of
such a measurement for a carbon-nanotube quantum dot attached to leads.
Besides Coulomb diamonds, several additional lines can be seen that indi-
cate where higher excited states of the quantum dot start to participate in
transport.

Fig. 1.6: Differential conductance of a carbon-nanotube quantum dot between
leads from Ref. [36]. Carbon nanotubes are long cylindrical molecules
made of carbon. The black color indicates dI/dV ∼ 0.

Many experiments have been carried out on all-normal metal single-
electron transistors. In chapter 2 we discuss transport through so-called
spin-valve single-electron transistors (SV-SET’s), which have ferromagnetic
instead of normal-metal leads. In an SV-SET the effects of Coulomb block-
ade and magnetoresistance effects occur simultaneously, which allows to
study the interplay of spin- and charging effects.
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1.7 Noise

Often it is satisfactory to simply characterize a current by its average value.
But the random fluctuations around this mean value (“noise”) are a field
of study in itself and noise measurements can give interesting additional
information about nanostructures [37].

We consider a current I(t) with a time average given by

〈I〉 ≡ lim
T→∞

1
T

∫ T/2

−T/2
dtI (t) (1.11)

We can quantify the noise in terms of the squared deviation from this
average ∆I (t) ≡ I (t)− 〈I〉 or its Fourier transform

S (ω) =
∫
dteiωt 〈∆I (t) ∆I (0)〉 , (1.12)

S (ω) is the so-called power spectrum of the noise.
Several types of noise play a role in mesoscopic conductors. Firstly,

there is thermal noise (also called Johnson-Nyquist noise) [38]. It origi-
nates from thermal fluctuations around the average distribution functions,
which are always present at nonzero temperature. For low frequencies
(~ω � kBT ), this thermal noise is “white”: the noise power is frequency
independent. The noise power depends only on temperature and electrical
resistance R, and for the case of two terminals it is given by S = 4kBT/R.
Shot noise [39, 37, 40] arises in the presence of a finite (average) current
bias from the discreteness of the electron charge.

Due to the intrinsic spin angular momentum of the electron, a fluctuat-
ing current is always associated with a fluctuating spin current. In Sec. 1.5
we introduced the spin-transfer torque on a ferromagnetic particle, which
depends on the spin current. A fluctuating spin current will then result
in a randomly fluctuating torque. The effect of this fluctuating torque on
the magnetization can be examined by solving a stochastic equation for
the dynamics. In particular, a Fokker-Planck partial differential equation
can describe the evolution of the probability density for the magnetization
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directions [31]. In chapter 3 we discuss how the use of a noisy current
for current-induced magnetization switching can be used as a strategy to
reduce the switching times.

1.8 Spin-orbit interaction in a two-dimensional electron gas

Spin-orbit interaction is a relativistic effect that describes how the spin of an
electron is affected by an effective magnetic field when it moves through an
electric field. This effect gives a spin-orbit splitting of the electron energy
states. Two-dimensional electron gas structures are influenced the spin-
orbit interaction, and there are two dominating contributions to the spin-
orbit Hamiltonian to leading (linear) order in k close to the Brillouin zone
center or conduction band minimum. The Dresselhaus term [41] results
from a the absence of inversion symmetry (bulk inversion asymmetry), and
the Rashba term [42] is related to structure inversion asymmetry, which
occurs for asymmetric quantum wells or in deformed bulk systems. Both
give a spin splitting of the conduction band that is to leading order linear
in k. The Hamiltonian for a two-dimensional electron gas with spin-orbit
interaction reads:

H =
~2k2

2m
Î +HR +HD (1.13)

with

HR =
α

~
(σ̂xky − σ̂ykx) (1.14)

HD =
β

~
(σ̂xkx − σ̂yky) . (1.15)

In these expressions the σi (i ∈ x, y, z), are the Pauli matrices and α and
β are the Rashba and Dresselhaus spin-orbit coupling strengths.

For convenience we introduce ξ(k) ≡ (β + iα) kx/~+(α+ iβ) ky/~. The
eigenstates of the Hamiltonian, denoted by wavevector k and s ∈ {+,−},
are then given by (cf. Ref. [43]):

φk,s =
1√
2L2

eik·r
(
s
ξ(k)
|ξ(k)|

, 1
)T

, (1.16)
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and the corresponding eigenenergies are Ek,s = ~2k2

2m + s|ξ(k)|. The spin of
the eigenstates sk,s is given by

sk,s =
(
s
Reξ(k)
ξ(k)

,−s Imξ(k)
ξ(k)

)T

. (1.17)

For s = + the spins of the eigenstates point in the direction of the effective
magnetic field. In Fig. 1.7 we schematically show the spin direction of
the eigenstates at the Fermi energy, for different values of the two spin-
orbit coupling parameters. We see that when the Rashba and Dresselhaus
coupling strengths are exactly equal (Fig. 1.7c), the effective magnetic field
is always in the same direction for any k. A lot of research was stimulated by

Fig. 1.7: The spin direction of the eigenstates at the Fermi level for a two-
dimensional electron gas. The values of the Rashba and Dresselhaus
spin-orbit coupling parameters are a) α > 0, β = 0, b) α = 0, β > 0, and
c) α = β > 0.

the proposal of a spin field effect transistor by Datta and Das in 1990 [44].
It is based on coherent spin rotation in media with spin-orbit coupling. The

21



transistor has a drain and a source with a narrow one-dimensional channel
in between through which electrons move ballistically. The source and the
drain are ferromagnets that inject and detect the electron spin. In the
transport channel there is an effective magnetic field that arises from the
spin-orbit coupling in the substrate material, the confinement geometry and
the potential of a nearby gate. This effective magnetic field, and thereby
the precession of the electron spins, can be modulated by the gate voltage.
Because the transmission of electrons is spin dependent, the conductance
of this device depends on the total precession phase during the transport
and can therefore be controlled by the gate voltage. This scheme has not
been implemented yet. The main difficulty is that the injection of spin into
a normal metal 2DEG is limited by the conductance mismatch [45, 46].

In chapter 4 we study a spin-valve system with a two-dimensional elec-
tron gas between ferromagnetic leads. The special characteristics of the
effective magnetic field when the spin-orbit coupling strengths α and β are
equal result in an anisotropy of the spin relaxation [47]. We discuss how
this can be observed in the transport through this system.

1.9 Luttinger liquids

According to the Fermi-liquid paradigm [48] the elementary excitations in
three-dimensional metals are weakly-interacting quasiparticles with spin
and charge of the bare electron. In spite of the very high electron density
and consequently strong Coulomb repulsive forces, conventional metals are
therefore very well described by a gas of noninteracting quasiparticles.

For one-dimensional metals, however, Fermi-liquid theory is known to
break down. Instead of a gas of non-interacting quasiparticles, the physics
of interacting fermions in one dimension is closer to that of pearls on a
string. Sufficiently weak excitations can be described with Luttinger-liquid
theory [49, 50, 51, 52]. This theory applies to systems in which electrons are
quantum confined in two directions with only one remaining translational
degree of freedom. Examples are single wall metallic carbon nanotubes
[53], spin chains [54], and quantum wires [55]. The collective many-body
excitations that govern the low-energy physics of Luttinger liquids are plas-
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mons that obey boson statistics. One-dimensional plasmons of charge or
spin character propagate independently and with different velocities. This
is often referred to as spin-charge separation, which has been observed in
tunneling experiments [55]. The progress in spin injection from ferromag-
netic leads into carbon nanotubes [56, 57, 58] might provide another route
to measure this phenomenon.

It is often helpful to use bosonization techniques to study fermionic Lut-
tinger liquids [59], i.e. to transform the interacting fermionic hamiltonian
into an equivalent one of which the excitations are noninteracting bosons.

Interaction effects in Luttinger liquids can have a strong and distinc-
tive influence on electronic transport. For example, the density of states
for tunneling into a Luttinger liquid is suppressed by a power law with an
exponent depending on the strength of the Coulomb interaction [60]. Non-
Fermi liquid effects can also influence spin transport and spin injection from
ferromagnets into a Luttinger liquid [61, 62]. The angular magnetoresis-
tance of a Luttinger liquid attached to ferromagnetic contacts is affected
by the interaction in a characteristic way [63, 64].

1.10 Outline

In this thesis we discuss the influence of interaction effects on electronic
transport for a number of different physical systems. A common feature of
these systems is that they show magnetoresistance based on the spin-valve
concept.

In chapter 2 we study the interplay of spin and Coulomb-interaction
effects for single-electron transistors with ferromagnetic leads, so-called
single-electron spin-valve transistors. We examine how exchange through
the F|N tunnel contacts acts on the spin accumulation in the island. The
linear conductance depends on the angle between the two lead magnetiza-
tion directions. It can also be controlled with a nearby gate and externally
applied magnetic fields.

In chapter 3 we present a proposal to improve the efficiency of current-
induced magnetization switching in F|N|F spin-valve systems. Switching
occurs because an electric current that is polarized by a “fixed” ferromag-
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netic layer exerts a spin-transfer torque on the second ferromagnet. Ex-
ternally generated current fluctuations result in a fluctuating spin-transfer
torque on the free magnetization. By solving a stochastic equation for
the magnetization dynamics, we find how the switching time and power
dissipation depend on the noise level.

Chapter 4 discusses the effect of spin-orbit coupling on electronic trans-
port in a spin valve consisting of a two-dimensional quantum dot con-
tacted to two ferromagnetic leads. When the Rashba and Dresselhaus
spin-orbit coupling strengths are tuned properly, a giant anisotropy in the
spin-relaxation times can affect the angular magnetoresistance and the spin-
transfer torque.

For one-dimensional systems the Fermi-liquid picture breaks down. A
Luttinger-liquid description is then appropriate. In chapter 5 we discuss
a single-electron spin-valve transistor with a Luttinger-liquid island. In-
teraction effects and spin-charge separation can have a large influence on
transport. We restrict the discussion to a regime in which the charging
energy is the dominant energy scale and find the dependence of transport
on the magnetic configuration. We then compare the results for Luttinger-
liquid and Fermi-liquid islands.
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2. EXCHANGE EFFECTS ON ELECTRON TRANSPORT
THROUGH SINGLE-ELECTRON SPIN-VALVE TRANSISTORS

Wouter Wetzels, Gerrit E.W. Bauer, and Milena Grifoni

We study electron transport through single-electron spin-valve transistors
in the presence of non-local exchange between the ferromagnetic leads and
the central normal-metal island. The Coulomb interaction is described with
the “orthodox model” for Coulomb blockade and we allow for noncollinear
lead magnetization directions. Two distinct exchange mechanisms that
have been discussed in the literature are shown to be of comparable strength
and are taken into account on equal footing. We present results for the
linear conductance as a function of gate voltage and magnetic configuration,
and discuss the response of the system to applied magnetic fields.1

1 This chapter has been published as: Wouter Wetzels, Gerrit E. W. Bauer, and Milena
Grifoni, Exchange effects on electron transport through single-electron spin-valve transis-
tors, Phys. Rev. B 74, 224406 (2006).



2.1 Introduction

Downscaling magnetoelectronic devices to the nanometer regime implies
that electron-electron interaction effects become prominent, as has been
amply demonstrated by many experimental studies on the Coulomb block-
ade in double tunnel junctions with ferromagnetic elements. Measurements
were done on systems with nonmagnetic islands contacted to ferromagnetic
leads [1, 2, 3, 4, 5, 6] as well as for all-ferromagnetic systems.[7, 8, 9] Much
of the theoretical work focuses on F|N|F spin valves, in which the island is a
normal metal (N) and the contacts are ferromagnets (F) with variable mag-
netization directions. Initially, the interest was mainly focused on the giant
magnetoresistance, i.e. the difference in the transport properties for paral-
lel or antiparallel magnetizations.[10, 11, 12, 13, 14] More recently, the in-
terplay between spin and interaction effects for noncollinear magnetization
configurations has attracted quite some interest. Besides spin-valve systems
with quantum-dot islands [15, 16, 17, 18, 19, 20, 21], also islands consisting
of metallic clusters[22], Luttinger liquids[23, 24], and nanomagnets[25] were
studied.

A single-electron spin-valve transistor (SV-SET) is an F|N|F spin valve
with a sufficiently small normal-metal (N) island that is coupled to the
ferromagnetic leads by tunnel barriers. When the electrostatic charging
energy of the island is larger than the thermal energy, charge transport can
be controlled at the level of single electron charges by varying bias and gate
voltage, as is well known for nonmagnetic SET’s.[26] With spin-dependent
electron tunneling rates and sufficiently long spin-decay lifetimes, a spin
accumulation (or nonequilibrium magnetization) that strongly affects elec-
tron transport may build up in the nonmagnetic island.

In this paper, we discuss the transport characteristics of metallic SV-
SETs in the Coulomb blockade regime, allowing for arbitrary, noncollinear
magnetization directions. We obtain results to leading order in the trans-
mission matrix elements, and therefore higher-order cotunneling processes
are not taken into account. In particular, we examine the influence of ex-
change effects through F|N tunnel contacts on the spin accumulation in the
center island, presenting a more complete discussion compared to that in

31



Ref. [22]. We argue that two separate exchange effects have to be taken into
account. On one hand, there is the nonlocal interface exchange, let us call
it “X1” in the following. In scattering theory for noninteracting systems
it is described by the imaginary part of the spin-mixing conductance,[27]
while in the context of current-induced magnetization dynamics X1 acts as
an “effective field.”[28] Such an effective field has been found experimen-
tally to strongly affect the transport dynamics in spin valves with MgO
tunnel junctions.[29] This effect has recently also been involved to explain
magnetoresistance effects in carbon nanotube spin valves[5] and called spin-
dependent interface phase shifts.[30] The second exchange term (“X2”) is
an interaction-dependent exchange effect due to virtual tunneling processes
that is absent in noninteracting systems. It has been considered for islands
in the electric quantum limit, in which transport is carried by a single
quantized level only.[15] The X2 effect is potentially attractive for quan-
tum information processing, since it allows to switch on and off effective
magnetic fields in arbitrary directions just by a gate electric potential. We
compute here X2 for a metallic island in which size quantization is not
important. We find that both exchange effects are of comparable magni-
tude and affect the transport properties in a characteristic way, but can be
separated in principle by employing the gate dependence of X2.

The paper is organized as follows. In Sec. 2.2 we introduce the model
system for the SV-SET. In Sec. 2.3 the two relevant types of exchange
processes are discussed. Charge and spin transfer rates are determined in
Sec. 2.4. Finally, we present results for the transport characteristics as a
function of magnetic configuration, gate voltage and applied magnetic field
in Sec. 2.5.

2.2 Model system

An SV-SET [see Fig. 2.1(a)] is composed of a small metallic cluster in
contact with two large ferromagnetic electron reservoirs in thermal equi-
librium characterized by magnetization directions −→m1 and −→m2 with −→mα =
(sin θα, 0, cos θα) (for α = 1, 2), where θ1 = θ/2 and θ2 = −θ/2.

The Fα|N contacts are tunneling barriers with conductances that de-
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Fig. 2.1: (a) The spin-valve single-electron transistor: A small normal-metal is-
land tunnel-coupled to two large ferromagnetic leads. The unpaired spin
angular momentum on the island is denoted by ~s. (b) The magnetization
directions in the leads define an angle θ.

pend on the electron spin, G↑↑
α for the majority and G↓↓

α for the minor-
ity spin in the ferromagnet. The total conductance for contact α is then
given by Gα ≡

(
G↑↑

α +G↓↓
α

)
and the contact polarization is defined as

Pα ≡
(
G↑↑

α −G↓↓
α

)
/
(
G↑↑

α +G↓↓
α

)
. The resistances Rα = 1/Gα are taken

to be much larger than the resistance quantum RQ = h/e2, which, at low
enough temperatures and bias voltages, allows us to study the blockade
of transport by the Coulomb interaction. The electron tunneling rates are
governed by the change of electrostatic energy of the whole circuit upon
transfer of an electron. The capacitances of the junctions Cα determine the
charging energy of the island.

We limit our considerations to islands formed by metallic clusters for
which the thermal energy (kBT ) is much larger than the average single-
particle energy separation (reciprocal density of states) δ = 1/ρN , but much
smaller than the single-electron charging energy. Therefore, many levels on
the island participate in the transport and we may treat the electronic
spectrum as continuous. For a gold cluster with a diameter of 10 nm, δ
approximately corresponds to a temperature of 2 K. The Kondo physics of
quantum dots connected to ferromagnetic leads[31, 32, 33, 2] is suppressed
in this regime.
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Since the currents flowing into and out of the cluster are spin polarized,
the island may become magnetized. The number of unpaired spins on the
island is limited by spin-flip scattering, which we parametrize by a spin-flip
relaxation time τsf . There is evidence from several experiments that the
spin-flip times in metallic nanoparticles can be much longer than in bulk
systems, which implies that the effects of a spin accumulation on the island
should be taken into account.[9, 6, 4] For later convenience we introduce
the spin-flip conductance parameter Gsf ≡ ρNe

2/ (2τsf). We assume that
the energy relaxation on the island is fast compared to the electron dwell
time.

The total Hamiltonian for the SV-SET is

H = HN +
∑

α=1,2

(HFα +HTα +Hexα) , (2.1)

where HN is the Hamiltonian for the normal metal cluster in the “orthodox
model” [26] for the Coulomb blockade,

HN =
∑
ks

εkc
†
kscks +

e2 (nN − CGVG/e)
2

2C
. (2.2)

Here c†ks is a creation operator for an electron state with orbital index k and
spin s ∈ {↑, ↓}, where the z axis is chosen as spin quantization axis. The
Hamiltonian includes an electrostatic interaction energy which depends on
the junction capacitances Cα, the gate voltage VG, and the excess number of
electrons on the island nN . The gate voltage shifts the potential and induces
a charge CGVG. We assume that the gate capacitance CG � C1, C2, and
in the following we use C1 = C2 = C/2. The energy levels in the two
ferromagnetic leads (denoted by α = 1, 2) are spin dependent:

HFα =
∑
ks

εαksa
†
αksaαks. (2.3)

The operators a†αks create electrons with spin s in the spin-quantization
axis along −→mα.
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It is convenient to introduce annihilation operators cαks for electrons in
the normal metal defined for a quantization axis in the direction of −→mα.
The relation between operators in the two bases is then cαks = Ûss′ (θα) cks′ ,
expressed in terms of the spin 1

2 rotation matrix

Û (θα) = eiσyθα/2 =
(

cos θα/2 sin θα/2
− sin θα/2 cos θα/2

)
. (2.4)

Then, for each contact, a tunneling Hamiltonian

HTα =
∑
kqs

Tα
kqsa

†
αkscαqs +H.c. (2.5)

describes the coupling to the island. The tunneling coefficients are as-
sumed to not significantly depend on energy on the scale of the charging
energy. We discuss the exchange contribution, represented by the Hamil-
tonian Hexα, in the next section.

2.3 Exchange effects

Here we discuss two different exchange effects that affect the electrons in
the normal metal island attached to magnetic contacts. These two flavors
arise when the transport properties for an SV-SET are determined to lowest
order in the tunneling probabilities.

2.3.1 Nonlocal interface exchange (X1)

The nonlocal exchange coupling between ferromagnetic films through a
normal-metal spacer is an important effect that determines the ground
state of magnetic multilayers (see Ref. [34] for a recent review). Elec-
trons in a normal metal that are reflected at a contact to a ferromagnet
pick up a phase depending on the electron spin relative to the magnetiza-
tion direction. In sufficiently clean and narrow F|N|F structures, quantum
well states are formed in N whose energy depends on the magnetic config-
uration through the spin-dependent phase. By a rotation of the magneti-
zation directions the energy spectrum and Fermi energy varies, causing the
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ground-state energy to depend on the relative angle θ. In metallic mul-
tilayers with a suitable spacer thickness, this can lead to an antiparallel
ground state, which displays the celebrated giant magnetoresistance when
the magnetizations are forced into a parallel direction by a magnetic field.
Even when the ground state energies are not significantly affected by the
exchange coupling, configuration-dependent quantized states can still be
observed in transport. This has been shown for high-quality planar tunnel
junctions[35] as well as spin valves in which the node is formed by single
carbon nanotubes with a quantized energy spectrum.[5, 36] In Ref. [30] the
effect of interfacial phase shifts on the magnetoresistance of ballistic quan-
tum wires between ferromagnetic leads was calculated. The spin-dependent
phase shifts give rise to a slightly different quantization condition, which
can spin-split the energy levels. Since we are here interested in classical
islands with a continuous electron spectrum, we calculate energy shifts for
a semiclassical island using the Bohr-Sommerfeld quantization rule in Ap-
pendix 2.8.

Here we consider the limit of tunnel junctions between a normal-metallic
island and ferromagnetic electrodes. The torques on the ferromagnets are
then very small. The exchange coupling does not significantly disturb the
ferromagnets in this limit, but persists to affect transport. The present
study focuses on the charge transport properties in the limit of small tun-
neling matrix elements, thus from the outset excluding resonant tunneling,
co-tunneling or Kondo-type physics. The states on the island may be size
quantized, i.e. the energy level spacing exceeds the thermal energy (“quan-
tum dot”), or, in the opposite limit, better described by a semicontinuous
density of states (“classical dot”). Here we concentrate on the latter, i.e.
semiclassical, diffuse, or chaotic islands, for which it can be shown quite
generally that equilibrium spin currents are suppressed.[37] The state of
the island is then characterized by a semiclassical charge and spin distribu-
tion function that has to be determined self-consistently as a function of the
junction parameters and the applied voltages. For noninteracting systems,
the spin and charge currents through an F|N interface are determined not
only by the conventional conductances G↑↑

α and G↓↓
α introduced above, but
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also by the complex spin-mixing conductances G↑↓
α ,[27] which are discussed

in Sec. 2.4. The real part ReG↑↓
α is the material parameter that is pro-

portional to the spin-transfer torque.[39, 38] The imaginary part ImG↑↓
α

reflects the spin-dependent interface phase shifts and affects the magneti-
zation and spin accumulation dynamics as an effective exchange magnetic
field parallel to the magnetization direction.[40, 28, 38] ImG↑↓

α is relatively
small for intermetallic interfaces,[41] but is in general comparable in mag-
nitude to the other conductance parameters.[40, 45] The nonlocal interface
exchange has been discussed in similar terms for spin valves consisting of
Luttinger liquids with ferromagnetic contacts.[23]

The blocking of transport by the Coulomb charging is usually described
by Fermi’s Golden Rule (see below), which employs a probability (squared
matrix elements) and energy conservation. As long as the charging energy
is much smaller than atomic energy scales (like the Fermi energy), the
junction parameters such as the interface transparency and spin-mixing
conductance are unaffected and the Coulomb blockade is governed by the
energy conservation criterion only. This implies that the exchange effect
can be described by the ImG↑↓

α of the bare junction.
It remains to parametrize the exchange in the limit of the tunneling

Hamiltonian, i.e. to lowest order in the interface transmission. We show
below that this is achieved by adding the following exchange term Hexα to
the Hamiltonian for the two leads:

Hexα =
∑
ks

∆εαksc
†
αkscαks. (2.6)

The energy shifts ∆εαks, see Eq. (2.42), are proportional to the inverse
density of states, but they remain relevant for small level splitting because
the dwell time is inversely proportional to the average energy-level separa-
tion or inverse density of states δ = ρ−1

N . This Hamiltonian is an effective
Zeeman splitting caused by an exchange magnetic field in the direction of
the magnetization, see Sec. 2.4.2.
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2.3.2 Virtual tunneling processes (X2)

The interface exchange term X1 is a property of the separate interfaces and
they contribute independently. The second type of exchange (X2) felt by
the spins on the island is a property of the entire device. It originates from
virtual tunneling processes, corresponding to single-electron transfer from
and to the cluster. In the tunneling regime, this process can be treated and
understood in terms of perturbation theory. In the absence of tunneling,
the number of electrons on the island is a good quantum number. The
perturbation by the contact to the electrodes allows mixing in of states in
which the number of electrons on the island is changed by unity, at the cost
of the charging energy. In second-order perturbation theory this results
in an energy gain represented by a sum over (virtually) excited states in
which the Coulomb energy appears in the denominator and the tunneling
probability in the numerator. When the leads are nonmagnetic, these vir-
tual processes correspond to a quantum correction to the average charge
on the central electrode.[42, 43] This effect depends strongly on the applied
gate voltage. When the unperturbed N + 1 (N − 1) particle ground state
is tuned in energy just above the N particle state, the quantum correction
will be large and positive (negative). At the degeneracy point, perturbation
theory breaks down, but the ensuing divergence can be controlled by taking
into account finite temperatures.

When the tunneling probabilities to the ferromagnetic contacts are spin
dependent, the deviations from the exact quantized charge on the island
become spin dependent, and therefore lead to a net excess of spins in the
ground state that depends on the configuration of the contact magnetiza-
tions. For a symmetric spin valve it is easy to see that the island ground
state magnetization due to these virtual processes X2 is maximal for parallel
magnetizations and vanishes for antiparallel ones.

The additional exchange affects nonequilibrium electron transport, in
contrast to higher-order so-called co-tunneling processes, to the same order
as the in- and out-tunneling processes. For a quantum-dot island with a
single quantized level, König and Martinek[15] showed that in the case of
noncollinear magnetizations the nonequilibrium spins on an island injected
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by a finite source-drain voltage are dephased by precessing around the ef-
fective exchange field. This effect was also discussed for few-level quantum
dots.[20] Since X1 discussed in Sec. 2.3.1 is a material constant, the gate
voltage dependence of X2 provides a handle for an experimental discrim-
ination of the two effects. We derive an expression for the effective X2
exchange field for a classical SV-SET in Sec. 2.4.2.

2.4 Charge and spin transport

We compute the transport characteristics of the SV-SET in lowest-order
perturbation theory[44] for a diffusive or chaotic island in the sequential
tunneling regime. The rate equations lead to a probability distribution for
the excess number of charges nN . The excess spin accumulation ~s contains
a large number of spins and we are interested in its average value in the
steady state that is found from the condition 〈d~s/dt〉 = 0.

2.4.1 Charge transfer

The operators for the excess number of electrons on the island and on
the two leads are nN =

∑
ks c

†
kscks and nFα =

∑
ks a

†
αksaαks, respectively.

The unpaired spin angular momentum on the cluster is written as ~s =
(~/2)

∑
kss′ c

†
ks~σss′cks′ , where ~σ = (σx, σy, σz) is the vector of Pauli spin

matrices. It is convenient to introduce a vector chemical potential
−→
∆µ in

the island, with size
∣∣∣−→∆µ∣∣∣ = 2 |〈~s〉| / (ρN~) (see also Ref. [13]), where ρN

is the density of states at the Fermi energy. We can take into account
Stoner enhancement intra-island exchange effects in terms of the static
susceptibility χs, and we may also write ∆µ = 2µ2

B |〈~s〉| / (χs~). We denote
the unit vector in the direction of the spin accumulation by ŝ.

The charge current is equal to the expectation values for the rate of
change of nN . In terms of the tunneling Hamiltonian HT = HT1 +HT2 the
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time evolution is given by

dnN

dt
=
i

~
[HT , nN ]

=
i

~
∑
αkqs′

Tα
kqs′a

†
αks′cαqs′ +H.c.. (2.7)

We use the interaction representation, and write the total Hamiltonian as
H = H ′ +HT . To second order in HT we have

〈
dnN (t)
dt

〉
=
i

~

t∫
−∞

dt′
〈[

dnN (t)
dt

,HT

(
t′
)]〉

◦
, (2.8)

where 〈..〉◦ denotes an expectation value with respect to Hamiltonian H ′.
The electrochemical potentials of the two reservoirs are µcF1 = eV/2 and
µcF2 = −eV/2. It is convenient to introduce grand canonical Hamiltonians
including the chemical potentials as[23, 44]

KN = HN − ~−1−→∆µ · ~s, (2.9)
KFα = HFα − µcFαnFα . (2.10)

The time dependence cks (t) = e(i/~)KN tckse
−(i/~)KN t can be formulated in

terms of the projection operators

û↑ (ŝ) =
1
2

(I + ŝ · −→σ ) , (2.11)

û↓ (ŝ) =
1
2

(I − ŝ · −→σ ) , (2.12)

where I is the unit matrix, by making use of the equality

e(i/~2)
−→
∆µ·~stcps′e−(i/~2)

−→
∆µ·~st =

∑
s′′

[
e−(i/~)(∆µ/2)tû↑ (ŝ)

+e(i/~)(∆µ/2)tû↓ (ŝ)
]
s′s′′

cps′′ . (2.13)
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The leads and the island are supposed to be in thermal equilibrium, so
that 〈c†ks′ck′s′′〉◦ = f (εks′) δkk′δs′s′′ , with Fermi-Dirac distribution f (ε) ≡(
1 + eβε

)−1, where β is the inverse temperature. Using the expression for
the matrix elements[

U (θα)us′′
(ŝ)U (θα)†

]
s′s′

=
1
2
(
1 + s′s′′ŝ · −→mα

)
,

with s′, s′′ ∈ {↑, ↓} = {+,−}, (2.14)

the rate of change of the number of electrons on the island reads〈
dnN

dt

〉
nN=m

=
∑
αs′′

1
2e2

(
Gα + s′′PαGαŝ · −→mα

)
×[

−F
(
−Em−1 + Em − µcFα + s′′

∆µ
2

)
+F

(
Em − Em+1 + µcFα − s′′

∆µ
2

)]
, (2.15)

where F (ε) ≡ ε
(
1− e−βε

)−1 and Em ≡ e2 (m− CGVG/e)
2 /2C. The rela-

tion between the up and down spin conductances (G↑↑
α and G↓↓

α ) and the
tunneling coefficients is Gss

α =
(
πe2/~

)
ρNρFαs |Tα

s |
2, where |Tα

s |
2 is the

value of |Tα
kqs|2 at the Fermi energy averaged over all the modes. ρFαs is

the spin-dependent density of states in ferromagnet α.
In the low-bias regime considered here we can linearize Eq. (2.15) in

∆µ and µcFα. The resulting expression for the rate for electron tunneling
through contact α, increasing the excess number of electrons nN from “0”
to “1, ” is denoted by Γ0→1

α . The analogous rate for removing one electron
when nN is “1” is Γ1→0

α . Explicitly, we find
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Γ0→1
α (V, VG,

−→
∆µ) =

Gα

e2
F (E0 − E1) +

Gα

e2
F ′ (E0 − E1)×(

−µcFα +
∆µ
2
Pαŝ · −→mα

)
, (2.16)

Γ1→0
α (V, VG,

−→
∆µ) =

Gα

e2
F (E1 − E0)−

Gα

e2
F ′ (E1 − E0)×(

−µcFα +
∆µ
2
Pαŝ · −→mα

)
. (2.17)

Now that we have determined the tunneling rates we can write down
the master equation for electron transport in the orthodox model. We con-
sider a regime in which eV � kBT � e2/2C, and restrict ourselves to a
gate voltage range for which the excess number of electrons nN alternates
between “0” and “1”(0 < CGVG < e), knowing that the results will peri-
odically repeat with this period. The center of the Coulomb oscillation for
transitions between nN = “0” and “1” electrons is at CGVG = e/2.

The steady state on the island is characterized by a constant spin ac-
cumulation (to be determined below) and the probabilities p0 and p1 that
there are “0” or “1” excess electrons. We have p0 + p1 = 1. The rate
equation for the probabilities is

dpn/dt = −pn

(
Γn→n+1 + Γn→n−1

)
+ pn+1Γn+1→n + pn−1Γn−1→n. (2.18)

From the condition of detailed balance, p0Γ0→1 = p1Γ1→0, we find

p0(V, VG,
−→
∆µ) =f (E0 − E1) +

βf (E0 − E1) f (E1 − E0)
G1 +G2

×∑
α

(
GαµcFα − PαGα

∆µ
2
ŝ · −→mα

)
. (2.19)

The expression for the conductance of the SV-SET as a function of the spin
accumulation can now be calculated and reads

G(V, VG,
−→
∆µ) = −ep0Γ0→1

1 + ep1Γ1→0
1 (2.20)

=
G1G2

G1 +G2

β (E0 − E1)
2 sinhβ (E0 − E1)

[
1− ∆µ

2eV
ŝ · (P1

−→m1 − P2
−→m2)

]
.
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2.4.2 Spin accumulation

The steady-state spin accumulation is found by setting the total rate of
change of ~s to zero. There are several contributions to the dynamics of the
spin accumulation:〈

d~s

dt

〉
= p0

〈
d~s

dt

〉
nN=0

+ p1

〈
d~s

dt

〉
nN=1

+
∑
α

〈
d~s

dt

〉
exα

+
〈
d~s

dt

〉
magn

+
〈
d~s

dt

〉
sf

. (2.21)

The first two terms are due to the tunneling processes, the remaining ones
to exchange, external magnetic fields, and spin flip. We start from

d~s

dt
=
i

~
[HT , ~s] , (2.22)

with an expectation value that to second order in HT reads

〈
d~s (t)
dt

〉
=
i

~

t∫
−∞

dt′
〈[

d~s (t)
dt

,HT

(
t′
)]〉

. (2.23)
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The spin current (rate of change of the spin angular momentum) due to
tunneling when m excess electrons are on the island reads [cf. Eq. (2.15)]〈

d~s

dt

〉
nN=m

=
~

4e2
∑
αs′′

(
Gαs

′′ŝ+ PαGα
−→mα

)
×[

−F
(
−Em−1 + Em − µcFα + s′′

∆µ
2

)
+F

(
−Em+1 + Em + µcFα − s′′

∆µ
2

)]
(2.24)

+
~

4πe2
∑
αs′′

PαGαs
′′ (−→mα × ŝ)×∫ dε1

∫ ′
dε2

f (ε1) (1− f (ε2))(
ε2 − ε1 + Em−1 − Em + µcFα − s′′∆µ

2

)
−
∫
dε1

∫ ′
dε2

f (ε2) (1− f (ε1))(
ε2 − ε1 + Em − Em+1 + µcFα − s′′∆µ

2

)
 ,

where the prime denotes a principal value integral. Here we used the rela-
tion:[

U (θα)us′′
(ŝ)σiU (θα)†

]
s′s′

=
1
2
s′′ŝ+

1
2
s′−→mα +

1
2
is′s′′ (−→mα × ŝ) , (2.25)

with s′, s′′ ∈ {↑, ↓} = {+,−}.

To first order in the small induced energy shifts the exchange Hamilto-
nian Hexα modifies the unpaired spins as

d~s

dt

∣∣∣∣
exα

=
i

~
[Hexα, ~s (t)] , (2.26)

which results in a precession:〈
d~s

dt

〉
=

1
~M

∑
m

(∆εαm↑ −∆εαm↓) 〈~s〉 × ~mα, (2.27)
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where M is the number of transport channels in the normal metal and the
energy shifts ∆ε are found in Eq. (2.42).

The conductance parameters of an F|N contact are[27]

Gss′
α ≡ e2

h

∑
nm

(δnm − rnm
sα (rnm

s′α )∗) , (s, s′ ∈↑, ↓). (2.28)

Here n and m denote the transport channels in the normal metal and rnm
↑α

and rnm
↓α are the corresponding spin-dependent reflection coefficients. The

contact conductances for spin-up and spin-down electrons are G↑↑
α and G↓↓

α

and the mixing conductance G↑↓
α governs the transverse spin currents that

are absorbed and reflected by the ferromagnet α. The current polarized
normal to the magnetization but in the plane of ~s and ~mα is proportional
to ReG↑↓

α and describes the spin transfer to the magnet, thereby dissipat-
ing the spin accumulation. In the case of tunnel junctions ReG↑↓

α → Gα/2.
The out-of-the ~s,~mα plane spin current is caused by reflection processes
that make spins precess around ~mα and is proportional to ImG↑↓. This
mixing conductance has been evaluated from first principles for various
contact materials and is small for intermetallic interfaces because positive
and negative contributions in the space spanned by the transport channels
average out.[41] However, there is no general reason that ImG↑↓ should be
smaller than G or ReG↑↓. It is known to be quite large for the Fe|InAs
interface[45] and found to be very significant for the magnetization dy-
namics of MgO magnetic tunnel junctions.[29] For a simple model barrier
discussed in Appendix 2.9, we find the value ImG↑↓/G = −0.26. Using the
relation between the reflection phases and the energy shifts as derived in
Eq. (2.42), we can rewrite the contribution given in Eq. (2.27) in terms of
the imaginary part of the mixing conductance as (cf. Ref. [22])〈

d~s

dt

〉
exα

=
ImG↑↓

α

ρNe2
−→mα × 〈~s〉 . (2.29)

The spin accumulation can also be affected by a magnetic field ~B, which
can either be externally applied, a stray field from the ferromagnets, or an
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internal anisotropy field. The spin accumulation induced by this magnetic
field can safely be neglected, but the induced precession of the spin accu-
mulation is relevant, and is given by〈

d~s

dt

〉
magn

=
gµB

~
~B × 〈~s〉 . (2.30)

Finally, spin-flip relaxation in the normal metal is taken into account
by spin-accumulation decay with a spin-flip relaxation time τsf ,〈

d~s

dt

〉
sf

= −〈~s〉
τsf
. (2.31)

Combining the terms in Eq. (2.21), the spin accumulation should fulfill
the stationary state condition:〈

d~s

dt
(V, VG)

〉
=

~
2e2

β (E0 − E1)
2 sinhβ (E0 − E1)

[
G1G2

G1 +G2
eV (P1 ~m1 − P2 ~m2)

− (G1 +G2)
∆µ
2

(
ŝ+

(
ŝ ·~b

)
~b
)]

+
gµB

~
~Beff × 〈~s〉 −

〈~s〉
τsf

= 0, (2.32)

where

~b ≡ P1G1

G1 +G2

−→m1 +
P2G2

G1 +G2

−→m2. (2.33)

The total effective magnetic field ~Beff consists of the external magnetic field
and contributions from the exchange effects X1 and X2, and reads

~Beff(VG) = ~B + ~BX1 + ~BX2 (VG) , (2.34)
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with ~BX1 =
~

ρNgµBe2

∑
α

ImG↑↓
α
−→mα, (2.35)

~BX2 (VG) = − ~
2ρNgµBe2

(G1 +G2)~b (2.36)[
1
π
f (E0 − E1)

∫
dεf ′ (ε) η

(
ε+ E0 − E−1,

e2

C

)
+

1
π
f (E1 − E0)

∫
dεf ′ (ε) η

(
ε+ E1 − E0,

e2

C

)]
.

Here we introduced[15]

η (ε, U) ≡
∫ ′

d$

(
1− f ($)
$ − ε

+
f ($)

$ − ε− U

)
(2.37)

= −Re
[
Ψ
(

1
2

+
iβε

2π

)
−Ψ

(
1
2

+
iβ (ε+ U)

2π

)]
,

where Ψ (z) is the Digamma function. In appendix 2.10 we discuss the
derivation of the expression for ~BX2 in more detail and comment on the
differences compared to the case of a single-level quantum dot.

2.5 Results and discussion

Figure 2.2 shows the magnitude of the total effective magnetic field ~Beff

as a function of gate voltage (solid line) for a symmetric spin valve with
parallel magnetizations (it vanishes for the antiparallel configuration) and
a polarization P1 = 0.7. The X1 term is a constant that does not depend on
gate voltage (dotted line). ~BX2 vanishes when CGVG equals 0, e/2 and e.
At these points, contributions from incoming and outgoing electrons cancel
each other (see Appendix 2.10). The curve repeats as a function of gate
voltage with period e/CG. The spin accumulation on the island found from
Eq. (2.32) tends to suppress the current through the system. Spin-flip and
exchange effects that dissipate or dephase the spin accumulation therefore
increase the conductance. As a reference we list here the conductance G (θ)
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Fig. 2.2: The effective magnetic-field strength
∣∣∣ ~Beff

∣∣∣ as a function of gate voltage
(solid line) for a spin valve in the parallel configuration. The parameters
are G1 = G2, P1 = P2 = 0.7, ImG↑↓

1 = ImG↑↓
2 = G1/4, and e2/ (2C) =

10kBT . The imaginary part of the mixing conductance gives a constant
offset (dotted). The dot-dashed and dashed curves show the effective
field for zero and one excess electron on the island.

for a spin valve without interaction, with equal conductance parameters for
the left and the right tunneling barrier G1 = G2, P1 = P2:

G (θ) =
G1

2

1−
P 2

1G1 (G1 + 2Gsf ) sin2 θ/2

[G1 + 2Gsf ]2 +
[
2 cos(θ/2) ImG↑↓

1

]2
 . (2.38)

The final result for the symmetric spin-valve with interaction can be ob-
tained simply from this expression by the substitutions

G1 →
β (E0 − E1)

2e sinhβ (E0 − E1)
G1, (2.39)

ImG↑↓
1 → e2

~
ρNgµBBeff

2 cos(θ/2)
. (2.40)
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For nonmagnetic contacts (P1 = 0) this result reduces to the known ex-
pression for normal-metal single-electron transistors.[46]

Fig. 2.3: (a) Coulomb oscillations at fixed angle θ = π/2 for a symmetric SV-SET
with ratio ImG↑↓

1 /G1 = 0 (solid), 0.25 (dashed), and 1 (dotted) in units
of G1. The polarization P is 0.7 and Gsf = 0. (b) Conductance as
a function of the angle for the same parameters as in (a), with CGVG

fixed to 0.5. (c) Conductance as a function of θ with ImG↑↓
1 /G1 = 0.25.

Results are shown for CGVG equal to 0.45 (dashed), 0.5 (solid), and 0.55
(dotted).

As shown in Fig. 2.3(a), changing the relative strengths of X1 and X2,
or, since the X2 contribution is proportional to the polarization of the leads,
ImG↑↓

α /PαGα, qualitatively modifies the current profile of the Coulomb
oscillations. The constant offset given by BX1 skews the exchange field
around CGVG = e/2, causing asymmetric conductance curves. When the
offset starts to dominate the symmetry gets restored. The X2 contribution
vanishes when the Coulomb blockade is lifted (CGVG = e/2), so the angular
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dependence of the conductance for different values of ImG↑↓
1 /G1 in Fig.

2.3(b) reflects only the X1 effect. The curve is a simple cosine for ImG↑↓
1 =

0, but is sharpened for larger ImG↑↓
1 because of the dephasing of the spin

accumulation occurring for noncollinear angles. In Fig. 2.3(c) ImG↑↓
1 /G1 is

fixed to 0.25 and curves are plotted for different values of the gate voltage.
It can be seen that the angular dependence differs because the X2 depends
on VG in an asymmetric way around CGVG = e/2.

As can be seen in Fig. 2.4, the shape of the Coulomb oscillation can
develop minima when the polarization is high and the magnetizations are
nearly antiparallel. At the values of gate voltage where the X1 and X2
exchange effects cancel, the spin accumulation is not dephased and the
conductance is suppressed.

Fig. 2.4: Conductance as a function of gate voltage for a symmetric SV-SET with
θ = 0.9π, ImG↑↓

1 /G1 = 0.15, andGsf = 0. Curves are shown for P1 = 0.7
(solid), P1 = 0.85 (dashed), P1 = 1 (dotted).

Figure 2.5 shows results for the conductance and spin accumulation as
a function of applied magnetic field in the x (solid line), y (dashed), and z
(dotted) directions. The spin valve is again symmetric with P1 = 0.7 and
ImG↑↓

1 = G1/4. The angle θ is fixed to π/2 and CGVG = e/2. The con-
ductance then depends only on the x component of the spin accumulation
[see Eq. (2.20)]. Without applied magnetic field, the spin accumulation has
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components in the x and y directions, while ~Beff is in the y direction. The
results can be understood in terms of the dephasing of the spin accumu-
lation by the magnetic-field induced precession that, for sufficiently large
and noncollinear magnetic fields, quenches the spin accumulation. This
“Hanle” effect is responsible for the conductance minimum at negative ap-
plied magnetic field in the y direction. In Fig. 2.5(c) only two curves
are visible because the curves for magnetic fields in the x and y directions
overlap.

2.6 Summary

We studied the transport properties of single-electron spin valve transistors
as a function of the magnetization configurations in the orthodox model
of the Coulomb blockade. Two types of exchange effects between the spin
accumulation on the island and the lead magnetizations play a role: a non-
local interface exchange effect (X1) and exchange due to virtual tunneling
processes (X2). For metallic dots these two effects are found to be of com-
parable magnitude. We predict that a line-shape analysis of the Coulomb
oscillation peaks should help to experimentally disentangle the two contri-
butions. Additional information can be obtained by the Hanle effect.
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2.8 Energy shifts

Let us consider a normal-metal island in contact to a ferromagnet by a
tunnel barrier (see Fig. 2.6) without Coulomb interaction. We wish to
calculate the spin-dependent shifts of the energy levels due to the presence
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Fig. 2.5: (a) Conductance as a function of a magnetic field applied along the x
(solid), y (dashed) or z (dotted) direction in units of G1. The SV-
SET has symmetric junction parameters, with polarizations P1 = 0.7,
ImG↑↓

1 = G1/4 and Gsf = 0. The magnetizations are fixed to −→m1/2 =
(±1, 0, 1)/

√
2, yielding an angle θ = π/2 and CGVG = e/2. (b)-(d) The x,

y, and z components of the spin accumulation for the same parameters.
The curves in (c) for magnetic fields in the x and y directions overlap.

of the F|N contact. In Ref. [30] an analogous calculation was done for a
ballistic one-dimensional quantum wire. Here we consider an island in the
quasiclassical regime, i.e. the de Broglie wavelength is much smaller than
the size of the island.
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The Bohr-Sommerfeld quantization rule [47]

1
~

∮
pm (x) dx+ φm

0 + φm
s = 2π

(
n+

1
2

)
(2.41)

can be used to find the energy shifts, where pm (x) is the classical momen-
tum for an electron in mode m, and n is an integer. The integral is over a
whole period of the classical motion in the quasiclassical region. The total
phase shift due to the reflections at the turning points is φm

0 + φm
s , where

φm
0 is the spin-independent phase shift picked up during the reflections from

the boundaries for an isolated island without contact to the ferromagnet.
The small spin-dependent phase shift φm

s � 1 arises from the weak cou-
pling to the ferromagnet. The phase shifts have to be computed quantum
mechanically via the spin-dependent reflection coefficients rmm

s for mode m
at an interface that is assumed to be specular (see also Appendix 2.9).

Fig. 2.6: A normal-metal island with tunnel contact to a ferromagnetic lead.

From Eq. (2.41), we see that increasing the quantum number n by one
corresponds to introducing an extra phase period that increases the kinetic
energy by M/ρN , where ρN is the density of states of the island and M
is the number of modes. The energy shift for an electron in mode m is
therefore, to linear order in φm

s ,

∆εms = −M
ρN

φm
s

2π
. (2.42)

The effect of the interface on the island states can be taken into account
by introducing an effective Hamiltonian as in Eq. (2.6). In the case of a
spin-independent tunneling barrier to a ferromagnet, the spin splitting of
the energy levels is small, of the same order as the transmission probability
(see Appendix 2.9).
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2.9 Rectangular barriers

Here we evaluate the spin-mixing conductance G↑↓ for a model barrier,
giving more details of the results of Ref. [22]. We consider a smooth rect-
angular barrier between a normal metal and a Stoner-model ferromagnet.
The solution of the Schrödinger equation for spin s in the normal metal,
ψm

s (x, y, z) can be used to determine the reflection coefficients rmm
s for each

mode m. It reads

ψm
s (x, y, z) =

χm (x, y, z)√
km

N

(
eik

m
N x + rmm

s e−ikm
N x
)
, (2.43)

where χm (y, z) is the transverse wave function and km
N is the longitudinal

wave number for mode m in the normal metal. In terms of the wave num-
bers in the normal metal km

N , barrier km
B , and ferromagnet km

Fs for a given
energy, the reflection coefficient for mode m at the barrier reads

rmm
s = ρ(km

N , k
m
B ) + e2iakm

B τ(km
N , k

m
B )ρ(km

B , k
m
Fs)τ(k

m
B , k

m
N ), (2.44)

where a is the barrier thickness and

τ (k1, k2) ≡
2
√
k1k2

k1 + k2
, (2.45)

ρ (k1, k2) ≡
k1 − k2

k1 + k2
. (2.46)

For a tunneling barrier, km
B is imaginary and the spin-dependent correction

to the reflection coefficient is exponentially small in the barrier thickness.
For a numerical estimate we use a Fermi energy in the normal metal of

2.6 eV, a barrier height of 3 eV and barrier thickness of a = 1 nm. The
Fermi momenta in the ferromagnet are taken to be kF↑ = 1.09Å−1 and
kF↓ = 0.42Å−1 (characteristic for Fe, see Ref. [39]). For the spin-mixing
conductance G↑↓, Eq. (2.28), we find that ImG↑↓/G = −0.26 for this
choice of parameters. The effective field due the interface exchange effect
is therefore not negligible compared to the conductance parameters. More
realistic electronic structure calculations[45] should be carried out to obtain
better estimates.
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2.10 X2 exchange in classical dots

Here we present more details concerning the derivation of Eq. (2.36) for
the effective exchange field X2 in classical SV-SET’s, that complement the
derivation in Refs. [15] for single-level quantum dots. Since the model is
periodic in the gate voltage with period e/CG, we restrict our discussion to
the range 0 < CGVG < e. From Eq. (2.21), the contributions from virtual
tunneling processes to the rate of change of ~s then read〈

d~s

dt

〉
X2

= p0

〈
d~s

dt

〉
X2,nN=0

+ p1

〈
d~s

dt

〉
X2,nN=1

. (2.47)

Using the spin currents from Eq. (2.24), we obtain, e.g.〈
d~s

dt

〉
X2,nN=0

=
~

4πe2
∑
αs′′

PαGαs
′′ (−→mα × ŝ)× (2.48)∫ dε1

∫ ′
dε2

f (ε1) (1− f (ε2))(
ε2 − ε1 + E−1 − E0 + µcFα − s′′∆µ

2

)
−
∫
dε1

∫ ′
dε2

f (ε2) (1− f (ε1))(
ε2 − ε1 + E0 − E1 + µcFα − s′′∆µ

2

)
 .

The first term in brackets describes virtual processes in which an electron
tunnels out of the island, and the second term corresponds to incoming
electrons. The expressions for the energy differences are given by

E−1 − E0 = (CGVG + e/2) e/C, (2.49)
E0 − E1 = (CGVG − e/2) e/C. (2.50)

Because of the periodicity in the gate voltage〈
d~s

dt

〉
X2,nN=1

=
〈
d~s

dt

〉
X2,nN=0

with VG → VG − e/CG. (2.51)
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We can now rewrite Eq. (2.48) in terms of the function η (ε, U), defined in
Eq. (2.37). The probabilities p0 and p1 are taken from Eq. (2.19). After
linearization in V and ∆µ, we arrive at the expression Eq. (2.36).

We note the differences with the results for single-level quantum dots;[15]
our expression includes an additional integral over the island states. For
a single-level quantum dot, X2 is active only when exactly one electron
resides on the dot, since there is no unpaired spin in an empty or doubly
occupied dot. In contrast, a net spin accumulation can reside on our clas-
sical dot for all numbers of electrons. The effective magnetic field is a sum
weighted with the probabilities for “0” and “1” electrons on the dot, which
leads to a partial cancellation of the contributions for different nN , as is
shown in Fig. 2.2.
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3. EFFICIENT MAGNETIZATION REVERSAL WITH NOISY
CURRENTS

Wouter Wetzels, Gerrit E. W. Bauer, and Oleg N. Jouravlev

We propose to accelerate reversal of the ferromagnetic order parameter
in spin valves by electronic noise. By solving the stochastic equations of
motion we show that the current-induced magnetization switching time
is drastically reduced by a modest level of externally generated current
(voltage) noise. This also leads to a significantly lower power consumption
for the switching process.1

1 This chapter has been published as: Wouter Wetzels, Gerrit E. W. Bauer, and Oleg
N. Jouravlev, Efficient Magnetization Reversal with Noisy Currents, Phys. Rev. Lett.
96, 127203 (2006).



3.1 Introduction

The dynamics of the ferromagnetic order parameter persists to pose a chal-
lenging problem of fundamental and applied nature [1]. With increasing bit
density of mass data storage devices and emergence of the magnetic ran-
dom access memory (MRAM) concept, the speed and energy dissipation of
the magnetization switching process have become important issues. In the
present MRAM generation, magnetic bits are written by spatially extended
Ørsted magnetic fields, which sets limits to bit size and power consump-
tion. An attractive alternative method is the current-induced magnetiza-
tion switching predicted by theoreticians [2, 3] and confirmed experimen-
tally in nano-pillar devices [4, 5, 6]. In these spin valves, which consist
basically of an electrically connected ferromagnetic|normal|ferromagnetic
metals sandwich, the electric current is polarized in a “fixed” layer of high
magnetic coercivity and exerts a “spin-transfer torque” on the second mag-
netically soft ferromagnet as sketched in Fig. 1. Recently, time-resolved
measurements of the current-induced magnetization dynamics have been
reported [7]. Advanced theoretical models for the spin and charge trans-
port in magnetic devices [10, 8, 9] lead to a reasonable description of the
magnetization dynamics within the macro-spin model, in which the mag-
netization is assumed to move rigidly under external magnetic field and
spin-transfer torques [11, 12]. We should note that in larger devices evi-
dence has been found for spin waves and more complicated excitations that
require full micromagnetic simulations [13].

The main obstacle that prevents wide application of current-induced
switching is the high critical current needed to reverse the magnetization.
There are proposals on how to reduce the critical current by sample de-
sign [12] and optimizing the switching process by a precessional switching
strategy [14]. Since the spin-transfer torque vanishes for the collinear stable
point of a spin valve, the switching time depends strongly on processes that
induce a canting between the magnetizations such that the spin-transfer
torque starts to kick in. This happens for example by increasing tempera-
ture, and is the basic idea of the pre-charging strategy by Devolder et al.
[15]. More advanced strategies used in conventional magnetization switch-
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ing require pulse-shaped microwaves [16] and rely on precise knowledge of
the magnetization dynamics with proper feedback.

Electrical and magnetization noise usually degrades device and system
performance and often efforts have to be undertaken to reduce it as much
as possible. In nonlinear systems intentionally added noise may e.g. en-
hance the quality of signal transmission by the phenomenon of stochastic
resonance. Noise generators find useful application, for example to test
the response of a system to noise, to generate random signals for use in
in encryption or to minimize the effect of quantization errors by a method
called dithering. In this Letter, we propose a simple method to improve
the energy-efficiency of current-induced magnetization switching by adding
noise to the electric circuit connected to the device. We demonstrate that
this leads to a reversal process with increased switching speed and less
energy dissipation.

Fig. 3.1: Schematic picture of the spin valve under consideration. The applied
potential on the left/right side is ±V/2. The charge current I flows
clockwise and G is a noise generator.

3.2 Magnetization dynamics

The magnetization dynamics in the macro-spin model for a small magnetic
grain is described by the Landau-Lifshitz-Gilbert (LLG) equation [17]

ṁ = −γm×Heff + αm× ṁ (3.1)
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where γ is the gyromagnetic ratio and α the Gilbert damping constant. The
magnetization direction m = (cosϕ sin θ, sinϕ sin θ, cos θ) is parameterized
by the angles θ and ϕ, and we consider switching between θ = 0 (magnetiza-
tion pointing up) and θ = π (down). When a current bias is applied to the
device in Fig. 3.1, the LLG equation for the free layer Ffree needs to be mod-
ified to include the spin-transfer torque ṁtorque = −(γ/MS)m× Ifree×m,
where MS is the total magnetic moment of the ferromagnet. The elec-
tric charge and spin currents driven through the system fluctuate due to
thermal and shot noise [18]. Here we wish to investigate the effect of inten-
tionally applied current fluctuations with spectral density and bandwidth
controlled by an external noise generator. The fluctuating (spin) current
through the interfaces of Ffree creates a fluctuating spin torque that can
be taken into account by adding a fluctuating torque to the LLG equa-
tion, ṁfluct ≡ m × (h×m) , where we introduced an effective random
field h = hθθ̂ + hφφ̂ + hrr̂ in spherical coordinates, with 〈hi (t)〉 = 0 and
〈hi (t)hj (t′)〉 = µijδij (t− t′) for i, j ∈ {θ, φ, r}. Such a model befits an
electromagnetic environment with a large number of degrees of freedom
that generates Gaussian noise with correlation times much shorter than
the magnetization response time. At room temperature, shot noise does
not have to be taken into account [18]. The LLG equation in the presence
of random magnetic fields leads to a stochastic equation for the three com-
ponents of the unit vector m, which can be reduced to the Fokker-Planck
equation [17]. This allows us to access the magnetization reversal time as
a function of applied switching current and current noise.

The switchable ferromagnet is assumed to be a prolate spheroid with
easy axis along z, i.e. Heff = HA cos θẑ and an eventual uniaxial crystal
anisotropy with the same symmetry. For thermal stability of the equilib-
rium magnetization the ratio of the height of the effective energy barrier and
the thermal energy should be high, i.e. HAMS � kBT . For a magnet with
a combination of easy-plane and uniaxial anisotropy, the switching times
behave very similar after taking into account that the weaker anisotropy
governs the energy of the saddle point [11].

We use the formalism developed in [8] to find the charge and spin cur-
rents through the spin valve. The ferromagnet-normal metal contacts are
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assumed to have identical spin-dependent conductances g↑↑ and g↓↓ (in
units of the conductance quantum e2/h) with p =

(
g↑↑ − g↓↓

)
/
(
g↑↑ + g↓↓

)
.

We approximate the mixing conductance g↑↓, the interface-specific param-
eter for the spin-transfer torque, by

(
g↑↑ + g↓↓

)
/2, which is sufficiently

accurate for our purposes. The spin accumulation in the normal metal
in quasi-equilibrium can be found by using current conservation and spin
conservation in the normal metal. Spin-flip in the normal metal is disre-
garded, while that in the ferromagnet is absorbed in the spin-dependent
conductances. Under an applied voltage bias V , we then find a charge
current

I

eV
=

e

2h

(
g↑↑ + g↓↓

)(
1− p2 sin2 θ

2

)
, (3.2)

and a spin current leaving the free ferromagnetic layer for the normal metal
node

Ifree

eV
=
g↑↑ − g↓↓

16π

(
−2m cos2

θ

2
+ θ̂ sin θ

)
. (3.3)

By inserting this expression into ṁtorque, we find for the spin torque con-
tribution to the dynamics

ṁtorque = γJS sin θ θ̂, (3.4)

JS =
(
g↑↑ − g↓↓

)
eV/(16πMS). (3.5)

Since this torque vanishes at θ = 0, π, the absence of (temperature-induced)
fluctuations would imply an infinite switching time. Combining all con-
tributions discussed above, and disregarding an angle-dependence of the
Gilbert damping due to spin pumping [19], the LLG equation reduces to

θ̇ = −γαHA cos θ sin θ − γJS sin θ + hθ , (3.6)
ϕ̇ = γHA cos θ + αγJS sin θ + hϕ/ sin θ . (3.7)

In the following we focus on the effect of current fluctuations ∆I (t) =
I (t)− 〈I〉 with spectrum

S (ω) =
∫
dteiωt 〈∆I (t) ∆I (0)〉 , (3.8)
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that are generated externally on top of the thermal noise. The noise spectral
density is taken to be a constant Sw over a bandwidth ∆ω that depends
on the typical time scales of the system: the system is not sensitive to
fluctuations slower than the timescale of the magnetization dynamics (the
inverse Larmor frequency) or faster than the electron transfer time defined
by voltage. Let us define the fluctuations of spin currents (where σ =↑, ↓ for
a chosen quantization axis), ∆Iσ (t) = Iσ (t)− 〈Iσ〉 and the corresponding
noise power

Sσσ′
=

1
2

〈
∆Iσ (t) ∆Iσ′ (

t′
)

+ ∆Iσ′ (
t′
)
∆Iσ (t)

〉
. (3.9)

Since I (t) = I↑ (t) + I↓ (t), the charge noise power can be written as
Sch =

∑
σ,σ′=↑,↓ S

σσ′
. The spin current polarized perpendicular to m trans-

fers angular momentum to the ferromagnet almost instantaneously at the
interface. Taking the spin quantization axis in the direction of θ̂, i.e.
perpendicular to the magnetization of Ffree, there is therefore no corre-
lation between the (transverse) spin currents Iσ

r (t) on both sides (r =
L,R) of Ffree. The component of the field h relevant for our discussion
is hθ, transverse to the magnetization, and can be expressed as hθ (t) =∑
r=L,R

(γ~/2eMS)
(
I↑r (t)− I↓r (t)

)
.

3.3 Results and discussion

We describe the switching process in the Néel-Brown model of thermally
assisted magnetization reversal [17]. We consider a statistical ensemble of
particles on the unit sphere that represents the probability density for the
magnetization direction. Under the influence of the (random) forces these
particles diffuse over the sphere. A Fokker-Planck equation describes the
evolution of the probability density P (θ, ϕ, r) to find the magnetization
vector in a certain direction [17, 11].

∂P

∂t
= − ∂

∂θ
AθP +

1
2
∂2

∂θ2
BθθP −

∂

∂ϕ
AϕP +

1
2
∂2

∂ϕ2
BϕϕP, (3.10)
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with Aθ = −γαHA cos θ sin θ − γJS sin θ + 1
2µθθ cot θ, Bθθ = µθθ, Aϕ =

γHA cos θ + αγJS sin θ and Bϕϕ = µϕϕ/ sin2 θ. The diffusion constant µθθ

is affected by the noise power Sw.We consider the limit of small polarization
p in which µθθ becomes independent of θ. The value of µϕϕ is then equal
to µθθ, but is not relevant for the calculation of the switching time. The
new diffusion parameter can then be written in terms of Sw:

µθθ = µthermal +
1
2

(
γ~
eMS

)2

Sw, (3.11)

where
µthermal =

2γαkBT

MS
(3.12)

is the Néel-Brown diffusion constant.
We introduce the surface probability current j (θ, ϕ) defined as ∂W/∂t =

−∇· j in terms of the surface probability density W (θ, ϕ) = P (θ, ϕ) / sin θ.
In the steady state

j · θ̂ = AθW − 1
2 sin θ

∂

∂θ
BθθW sin θ ≡ 0. (3.13)

Since W does not depend on ϕ,

W (θ) ∝ w (θ) = exp
−γαHA sin2 θ + 2γJS cos θ

µθθ
. (3.14)

In Fig. 3.2 the probability density is shown for some combinations of current
and noise power. It can be seen that applying a current results in an
asymmetric distribution because the spin torque drives the magnetization to
the second well, whereas an increased noise power broadens the distribution
in the wells.

For high barriers, Kramer’s method can be applied to find the switching
time of the magnet. In that limit equilibrium is attained separately in the
regions 0 ≤ θ ≤ θ1 and θ2 ≤ θ ≤ π (potential well 1 and 2). The effective
potentials at θ1 and θ2 should be separated from the potential minimum
by several thermal energies kBT to ensure that the probability to find the
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Fig. 3.2: The probability density for the magnetization direction in the steady
state as a function of the angle θ. The density in the absence of a current
is shown for a noise spectral density of Sw = 3.0 · 10−20C2s−1 (solid)
and Sw = 1.0 · 10−19C2s−1 (dotted). The asymmetry in the dashed
curve is caused by a current of 0.1 mA with noise spectral density Sw =
3.0 · 10−20C2s−1.

magnetization in the middle region is low. The probability current Im in
this middle region defined as j · θ̂ = Im/ (2π sin θ) , is then small and does
not disturb the equilibrium distribution in the two wells significantly. In
the region θ1 ≤ θ ≤ θ2 (see Fig. 3.2) then

ṅ1 = −ṅ2 = −n1

τ1
+
n2

τ2
= −Im, (3.15)

where nς is the probability to be in well ς = 1, 2. The escape time from
well 1,

τ1 =
2
µθθ

θ1∫
0

dθw (θ) sin θ

θ2∫
θ1

dξ [w (ξ) sin ξ]−1 (3.16)
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is a good estimate for the switching time. When 2γαHA/µD, |αHA/JS |
� 1, we can calculate the integrals using Taylor expansions up to second
order in θ and approximating sin θ by θ (Ref. [17]):

τ1 =
√

πµθθ

γαHA

1
γαHA + γJS

exp
γαHA (1− JS/αHA)2

µθθ
. (3.17)

We see that the spin-transfer torque reduces the effective barrier height
[11], while the fluctuations increase the effective temperature, exponen-
tially reducing the escape time. Because of the uniaxial symmetry τ2 → τ1
with JS → −JS . When a clearly preferred switching direction is required,
µθθ should be kept smaller than γJS . But when current and noise can be
switched off immediately after a change in the magnetoresistance signifies
that switching has occured, this is no longer a constraint. By combining Eq.
(3.17), (3.12) and (3.11) we can establish an analytical relation between the
applied noise power, current and switching time. We use Eq. (3.16) to eval-
uate the switching time as a function of current and noise spectral density
(see Fig. 3.3). The model is here at room temperature with parameters typ-
ical for real spin valves. The ferromagnet Ffree is specified by an anisotropy
field HA = 50 mT and total magnetic moment MS = 10−17Am2. The
interface resistances are taken to be 1 Ω, the polarization of the contacts
p = 0.2, and the damping constant α = 0.02. A typical noise generator
power is 15 dB higher than the thermal noise power of a 50 Ω resistor at
295 K. This gives a value of Sw = 1.0 · 10−20 J/Ω. Higher noise powers,
corresponding to a thermal noise at thousands of Kelvins, can be readily
generated.

From Fig. 3.3 we see that by keeping the current fixed and increasing
the noise, the switching time can be reduced by orders of magnitude. The
contours in the inset to the figure show how the current can be reduced
by increasing the noise when the switching time is kept fixed. The power
dissipated by the system is proportional to

〈
I (t)2

〉
, which increases with

external noise by Sω∆ω/π. Since the typical bandwidth ∆ω is of the order
of 1 GHz, the main contribution to the power consumption comes from

69



the average switching current. We observe that the power can be reduced
by an order of magnitude when a clearly preferred switching direction is
necessary and can be reduced even further otherwise.

The calculations presented here are restricted to the high-barrier ap-
proximation, which sets limits to the currents and effective temperatures.
Still, the mechanism of noise-assisted magnetization switching should be
useful in other regimes as well. The experimental realization of this mech-
anism might face some difficulties such as enabling the high-frequency ex-
ternal fluctuations to reach the system. For instance, in the case of a large
environmental capacitance between the leads, the impedance mismatch to
the device might require additional measures. Another application of this
system would be the measurement of the noise level: by calibration of the
device, an unambiguous relation between current, switching time and noise
power can be established. We also note that the same mechanism can be
used as well to accelerate magnetic-field induced switching. An advantage is
then that individual bits can be addressed by an unpolarized noisy current,
which makes the need for localization of the magnetic field less stringent.

3.4 Conclusions

In conclusion, we propose an energy-efficient scheme for current-induced
magnetization switching that is assisted by noise. Our approach is based
on solving stochastic equations depending on the spectral density of an
external noise source. The solution of the corresponding Fokker-Planck
equation gives the dependence of the switching time on current and noise
level. The current necessary to switch the magnetization can be reduced by
applying externally generated current fluctuations. Without importantly
complicating the device architecture the efficiency of spin-transfer torque
devices can be improved by exponentially reduced switching times and an
order-of-magnitude smaller power consumption. This could make the dif-
ference for the attractiveness of the current-induced switching mechanism
for real-life applications.

This work is supported by the “Stichting voor Fundamenteel Onderzoek
der Materie” (FOM), and the “Nederlandse Organisatie voor Wetenschap-

70



Fig. 3.3: Switching time as a function of noise spectral density for several values
of the current. Inset: Equal-switching-time contours as a function of
current and applied noise spectral density.
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4. CHARGE AND SPIN TRANSPORT IN SPIN VALVES WITH
ANISOTROPIC SPIN RELAXATION

Henri Saarikoski, Wouter Wetzels, and Gerrit E. W. Bauer

We investigate effects of spin-orbit splitting on electronic transport in a
spin valve consisting of a large quantum dot defined on a two-dimensional
electron gas with two ferromagnetic contacts. In the presence of both struc-
ture inversion asymmetry (SIA) and bulk inversion asymmetry (BIA) a gi-
ant anisotropy in the spin-relaxation times has been predicted. We show
how such an anisotropy affects the electronic transport properties such as
the angular magnetoresistance and the spin-transfer torque. Counterintu-
itively, anisotropic spin-relaxation processes sometimes enhance the spin
accumulation.1

1 This chapter has been published as: Henri Saarikoski, Wouter Wetzels, and Gerrit
E. W. Bauer, Charge and spin transport in spin valves with anisotropic spin relaxation,
Phys. Rev. B. 75, 075313 (2007).



4.1 Introduction

Conventional microelectronics makes use of the electron charge in order
to store, manipulate and transfer information. The potential usefulness
of the spin, the intrinsic angular momentum of the electron, for electronic
devices has been recognized by a large community after the discovery of
the giant magnetoresistance (GMR) in 1988.[1, 2, 3] The integration of
the functionalities of metal-based magnetoelectronics with semiconductor-
based microelectronics is an important challenge in this field. [4]

A central device concept in magnetoelectronics is a spin valve consist-
ing of a normal conductor (N) island that is contacted by ferromagnets
(F) with variable magnetization directions. An applied bias injects a spin
accumulation into the island that affects charge and spin transport as a
function of the relative orientation of the two magnetizations.

We consider here a spin-valve structure in which the island is a large
semiconductor quantum dot, i.e. a patch of two-dimensional (2D) electron
gas, weakly coupled to the ferromagnetic contacts. In order to observe
spin-related signals the injection of spins from the ferromagnet into the
quantum dot must be efficient and the injected spin accumulation must
not relax faster than the dwell time of an electron on the island.

Spin injection from ferromagnets into metals has first been achieved
by Johnson and Silsbee in 1988 (Ref. [5]), but early attempts to fabri-
cate devices based on injection of spins from metallic ferromagnets into
semiconductors have not been successful.

The reason for these difficulties turned out to be inefficient spin in-
jection in the presence of a large difference between the conductances of
the metallic ferromagnet and the semiconductor, i.e. the conductance mis-
match problem. [6]

These technical difficulties, however, appear to be surmountable.[7] Ef-
fective spin injection into a semiconductor can e.g. be achieved using a
magnetic semiconductor.[8] Schottky or tunneling barriers to a metallic fer-
romagnet can overcome the conductance mismatch problem,[9, 10, 11] as
has been confirmed by using optical techniques.[12, 13, 14, 15, 16] Recently,
all-electric measurements of spin injection from ferromagnets into semicon-
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ductors have been reported. Chen et al. used a magnetic p-n junction
diode to measure the spin accumulation injected from a ferromagnet into a
bulk n-GaAs via a Schottky contact.[17] Spin accumulation in a GaAs thin
film has been injected and detected by Fe contacts in a non-local 4-point
configuration.[18]

Spin-relaxation mechanisms lead to decay of the spin accumulation
and restore the equilibrium on the island. The main origin for spin-flip
scattering in n-doped quantum well structures [4] is the Dyakonov–Perel
mechanism[19] due to spin-orbit interaction, which is efficient when the spa-
tial inversion symmetry is broken causing the spin-orbit coupling to split
the spin-degenerate levels.[20] The relaxation arises because spins are sub-
ject to a fluctuating effective magnetic field due to frequent scattering. The
inversion symmetry may be broken by a bulk inversion asymmetry (BIA) of
the zinc-blende semiconductor material such as GaAs[21] or structure inver-
sion asymmetry (SIA) in the confinement potentials of heterostructures[22]
that can be modulated externally by gate electrodes.[34, 35] The SIA and
BIA induced spin-orbit coupling terms linear in the wave vector often dom-
inate the transport properties of electrons in III–V semiconductors and are
known as Bychkov–Rashba and Dresselhaus terms, respectively. Their rel-
ative importance can be extracted e.g. from spin-resolved photocurrent
measurements.[23] The growth direction of the quantum well affects the
strength of the spin-orbit coupling terms. This gives rise to differences in
spin-relaxation times as observed for GaAs quantum wells using optical
measurements.[24] In general, the spin-relaxation processes in semiconduc-
tor quantum wells are anisotropic, i.e. the spin-relaxation rate depends on
the direction of the spin accumulation. When the coupling constants in the
Bychkov–Rashba and Dresselhaus terms in [001] grown quantum wells are
equal, the interference of the spin-orbit interactions give rise to suppression
of the Dyakonov–Perel spin-relaxation mechanism for the [110] crystallo-
graphic direction. This leads to a giant anisotropy in the spin lifetimes
of up to several orders of magnitude.[26, 27, 25] The phenomenon can be
rationalized in terms of a SU(2) spin rotation symmetry that protects a
spin helix state.[28] Similar behavior is expected for the [110] Dresselhaus
model.[28]
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Datta and Das proposed a spin-transistor based on the coherent rotation
of spins by the SIA spin-orbit interaction that is tuned by a gate field.[29] An
alternative transistor concept that relies on a gate-controlled suppression
of the spin-relaxation by tuning of the SIA vs. BIA spin-orbit interaction is
believed to work for wider channels and to be more robust against impurity
scattering than the original Datta–Das proposal.[30, 31] A review of the
effect of spin-orbit interactions on transport can be found in Ref. [32].

In the present work we use magnetoelectronic circuit theory [33] to cal-
culate the transport properties of spin valves in the presence of anisotropic
spin-relaxation processes. Circuit theory has been found to be applicable
in both metal and semiconductor-based magnetoelectronics. It was used to
describe the spin transfer through a Schottky barrier between a ferromag-
netic metal and a semiconductor.[38] In this work we find that anisotropic
spin-relaxation processes leave clear marks on the transport properties such
as the angular magnetoresistance and the spin-transfer torque. We ob-
tain, e.g., the counterintuitive result that anisotropic spin relaxation may
enhance rather than destroy the current-driven spin accumulation on the
island. In Section 4.2 we introduce our model system and the theories
of spin transport and relaxation. In Section 4.3 we identify the electrical
signatures of anisotropic spin relaxation. The enhancement of spin accumu-
lation due to anisotropy is discussed in Section 4.4. We present conclusions
in Section 4.5.

4.2 Model for spin and charge transport

The spin valve in this work consists of a large quantum dot island be-
tween two ferromagnets. The quantum dot is assumed to be in contact
with the ferromagnets by tunneling barriers, with contact resistances much
larger than the resistance of the island. We derive the transport equa-
tions for a general case, and as an example discuss a quantum dot made
in a [001] grown quantum well in GaAs/AlGaAs. The Dyakonov–Perel
mechanism becomes then the leading source of spin relaxation and emer-
gence of a giant anisotropy in spin relaxation has been predicted in such
systems.[26, 27] A gate electrode on top of the quantum dot can be used
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to tune the relative strengths of the SIA and BIA spin-orbit interactions
which effectively changes the degree of anisotropy in the system. The model
device is sketched in Fig. 4.1.

We model the spin and charge transport in the spin valve using the
magnetoelectronic circuit theory,[33] which describes spin-dependent trans-
port in an electronic circuit with ferromagnetic elements. The contacts
between metallic or ferromagnetic nodes are parametrized as 2× 2 conduc-
tance tensors in spin space. Their diagonal elements are the conventional
spin-dependent conductances G↑ and G↓, whereas the non-diagonal ones
are occupied by the complex mixing conductance G↑↓ (and its conjugate).
The mixing conductance is the material conductance parameter that gov-
erns spin currents transverse to the magnetization and becomes relevant
when magnetization vectors are not collinear. The electric currents driven
through the system are small and current-induced spin polarizations [36]
may be disregarded. The island should be diffuse or chaotic, such that its
electron distribution function is isotropic in momentum space. The quan-
tum dot is supposed to be large enough so that Coulomb charging effects
can be disregarded, although the calculations can be readily extended to
include the Coulomb blockade, at least in the orthodox model.[37]

We focus here on a symmetric spin-valve device, i.e. the conductances
of the majority and minority spin channels G↑ and G↓ and the polarization,
defined as P = (G↑−G↓)/(G↑ +G↓), are the same for both the source and
the drain contacts to the dot. In the tunneling regime, the real part of the
mixing conductance ReG↑↓ → G/2, where G = G↑+G↓ is the total contact
conductance.

The imaginary part of the mixing conductance is believed to be signifi-
cant for ferromagnet-semiconductor interfaces.[38]

The charge current Ic,i into the quantum dot through contact i = 1, 2
is[33]

Ic,i/G = Vc − Vi + PVs ·mi, (4.1)

where Vi is the potential of reservoir i, Vc and Vs are the charge and spin
potentials in the quantum dot, and m1 and m2 are the magnetizations of
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Fig. 4.1: Schematic picture of the spin-valve structure. A voltage bias V = V1−V2

drives charge and spin currents through a layered ferromagnet-quantum
dot-ferromagnet system. The magnetizations m1 and m2 point in arbi-
trary directions in the 2D plane of the large quantum dot. The ferromag-
nets inject a spin accumulation Vs into the dot. The coordinate system
is chosen so that x-axis is parallel to m1 and z is perpendicular to the
plane of the quantum dot.

the left and right ferromagnet, respectively. Equations for the spin currents
through the interfaces into the island read (in units of A) [33]

Is,i =mi [Vs ·mi + P (Vc − Vi)]G

+ 2 ReG↑↓mi × (Vs ×mi) + 2 ImG↑↓ Vs ×mi. (4.2)

A transverse spin current cannot penetrate a ferromagnet but they are
instead absorbed at the interface and transfer the angular momentum to
the ferromagnet. This gives rise to the spin-transfer torques[39]

τi =
~
2e

mi × (mi × Is,i) (4.3)

on the magnetization mi. If the spin-transfer torque is large it may cause
a switching of the magnetization direction.

The charge and spin conservation in the steady state implies that∑
i=1,2

Ic,i = 0, (4.4)

79



dVs

dt
=
∂Vs

∂t

∣∣∣∣
precess

+
∂Vs

∂t

∣∣∣∣
relax

+
∑
i=1,2

Is,i/2e2D = 0, (4.5)

where D is the density of states at the Fermi energy of the quantum dot,
which is assumed to be constant and continuous on the scale of the ap-
plied voltage and the thermal energy. The Bloch equation[40, 4] Eq. (4.5)
describes changes in the spin accumulation due to spin precession and spin-
relaxation processes and the spin currents. In the standard approach, spin
relaxation is parametrized in terms of an isotropic, phenomenological spin-
flip relaxation time. However, when the spin is coupled to orbital and
structural anisotropies, spin relaxation can be anisotropic. Anisotropic
spin-relaxation processes can be taken care of by replacing the spin-flip
relaxation-rate constant by a tensor Γ, that, given a spin-orbit coupling
Hamiltonian and disorder, can be calculated with perturbation theory. In
the presence of anisotropic spin-relaxation processes and external magnetic
field B the terms in the Bloch equation (4.5) read

∂Vs

∂t

∣∣∣∣
precess

= γg(Vs ×B),
∂Vs

∂t

∣∣∣∣
relax

= −Γ ·Vs, (4.6)

where γg is the electron gyromagnetic ratio. Comparison of Eqs. (4.2)–(4.5)
with Eq. (4.6) show that the imaginary part of the mixing conductance
ImG↑↓ acts like a magnetic field and gives rise to a precession around the
direction determined by the magnetization vectors mi.

The quantum dot and the magnetizations are supposed to be in the
xy-plane. The spin accumulation can have a component perpendicular to
the quantum dot (z-direction) by the imaginary part of the mixing con-
ductance. The spin-relaxation tensor Γ is diagonal in a coordinate system
defined by U = (ul,us,uz), where (column) vector ul denotes the direction
corresponding to the longest spin lifetime τsf,l in the plane of the quantum
dot, us denotes the direction where the in-plane spin lifetime τsf,s is shortest
and uz denotes the direction perpendicular to the system with spin lifetime
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τsf,z. In the xyz-coordinate system the Γ tensor then reads

Γ = U∆UT = U

 1/τsf,l 0 0
0 1/τsf,s 0
0 0 1/τsf,z

UT . (4.7)

We introduce a spin-flip conductance, which is effectively a measure of
the spin-relaxation rate, as

Gsf,i =
e2

2
D
τsf,i

. (4.8)

for i ∈ s, l, z. The spin-valve effect depends non-monotonously on the
contact resistance. When the resistance is too small, the magnetoresistance
is suppressed by the conductance mismatch. When it is too large, all spins
relax because the dwell time is longer than the spin-flip times[10], i.e. when
G � Gsf,i. Defining the dwell time as G = e2D/(2τdwell), we require that
τdwell � τsf,i, i.e. the spin lifetime must be long enough so that at least one
component of the spin persists before the electrons tunnel out of the dot.

We discuss now the special case of a large quantum dot defined on a
gated 2D electron gas in GaAs. We assume a [001] growth direction and use
an effective mass m∗ = 0.067me and an electron density N = 4×1011/cm2.
In the [001] quantum wells ul = 1√

2
(1, 1, 0) and us = 1√

2
(−1, 1, 0) when the

electric field points in the [001] direction.[41, 27] Analytic expressions for
the spin-relaxation rates in quantum wells dominated by the Dyakonov–
Perel spin-relaxation mechanism are given by Averkiev et al.[41] They used
a Hamiltonian with linear spin-orbit coupling terms

H =
~2k2

2m∗ +
α

~
(σxky − σykx) +

β

~
(σxkx − σyky), (4.9)

where α and β are SIA and BIA spin-orbit coupling constants and m∗

is the effective electron mass. A variational calculation for a triangular
model potential and the perturbation theory was then used to extract the
spin-relaxation rates. In the case of short-range scattering and degenerate
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electron gas they found

1
τ±

=
2τtr
~2

[
k2

F (±α− β)
(
±α− β +

γ

2
k2

F

)
+
γ2k6

F

8

]
, (4.10)

1
τz

=
4τtr
~2

[
k2

F (α2 + β2)−
γβk4

F

2
+
γ2k6

F

8

]
, (4.11)

where +,− and z denote [110], [1̄10] and [001] directions, respectively, and
τtr denotes the transport relaxation (scattering) time. The material param-
eter γ = β/〈k2

z〉 = 27 eV Å3 for GaAs. The calculations leading to (4.10)
and (4.11) are valid only when the mean free path l = vFτtr, where vF is
the Fermi velocity, is much smaller than the size of the quantum dot.

The Bychkov–Rashba term is expected to be linearly dependent on the
gate-electrode induced electric field E = Ez so that α = α0eE, where α0 =
5.33 Å2 for GaAs/AlGaAs. The E dependence of the expectation value for
the perpendicular component of the wave vector 〈k2

z〉 = 0.78(2m∗eE/~2)2/3

in triangular asymmetric quantum wells.[42] Eq. (4.10) shows a signif-
icant reduction for the spin-relaxation rate for the [110] direction when
α ' β, whereas the spin-relaxation rate for [1̄10] is not reduced. The spin-
relaxation process is thereby strongly insotropic in this regime. A more
accurate numerical analysis of the anisotropy based on a self-consistent
calculations in a multiband envelope-function approximation has been car-
ried out by Kainz et al. and gives qualitatively similar results.[27] When
α ' β, the most stable spin direction [110] can have a lifetime that is sev-
eral orders of magnitude longer than in the [1̄10] and [001] directions, i.e.
τsf,l � τsf,s and τsf,l � τsf,z.

As shown in Eqs. (4.10) and (4.11) the spin-relaxation rate of the
Dyakonov–Perel mechanism is proportional to the transport relaxation time.
Spin-relaxation times are therefore expected to increase with temperature
and disorder in the sample. The enhancement of spin-relaxation times
with temperature has been recently demonstrated experimentally.[43] For
τtr = 0.1 ps, Averkiev et al. predicted that the spin-relaxation times in
GaAs typically range from picoseconds to nanoseconds.[41]
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4.3 Signatures of anisotropy

Eqs. (4.1)–(4.5) can be solved analytically, but general expressions are
lengthy. We therefore study transport in the limiting case of strong anisotropy

Gsf,s � G� Gsf,l. (4.12)

By fixing the direction of the magnetization of the left ferromagnet along
the x-axis the problem contains only two variables, the angle θ between the
magnetizations and angle φ between the x-axis and ul, i.e. the eigenvector
of the spin-relaxation rate matrix (4.7) corresponding to the most stable
spin-accumulation direction. We present here the results for the spin-valve
angular conductance, spin-transfer torque, and spin accumulation on the
island and identify signatures of the anisotropy which could be probed in
all-electric measurements. In experiments the dependence of the currents on
the angle between the magnetizations and the orientation of the anisotropy
axes could be probed, e.g., by depositing strips of ferromagnets at different
angles on the same sample wafer. Alternatively, the magnetization of a
magnetically soft ferromagnet can be rotated using a magnetic field.

Fig. 4.2 shows the current of the device versus the angle θ with anisotropic
and isotropic spin-relaxation processes in the central island.

The results are compared to the current IOhmic = GV/2 through two
non-magnetic interfaces with conductance G in series. For isotropic spin-
relaxation the curve is symmetric with a single minimum at the center
(Fig. 4.2(a)). The θ dependence is gradually suppressed when the spin-
relaxation rate increases and in the limit of very fast spin relaxation the
transport is governed solely by interface conductances. In the presence
of anisotropic spin-relaxation processes the magnetoconductance depends
strongly on the relative orientations of the magnetization axes with respect
to the anisotropy axis. When one of the magnetizations is oriented perpen-
dicular to the axis of the fastest relaxing spin component us (i.e. φ = π/2)
the magnetoresistance shows two minima in the limit of strong anisotropy
(Fig. 4.2(b)). When the spin is injected along a stable magnetization direc-
tion (φ = 0) the shape of the magnetoresistance curve only weakly depends
on the spin-relaxation rate in the perpendicular direction (Fig. 4.2(c)). For
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Fig. 4.2: The charge current through the device relative to IOhmic = GV/2. a)
In the case of isotropic spin relaxation the magnetoresistance shows a
single minimum. b) When the spin is injected parallel to the axis of the
most short-lived spin orientation (φ = π/2) the rapid relaxation of spin
accumulation near θ = π causes a shift of current towards IOhmic. c)
When φ = 0 the spin accumulation persists and there is little change in
the charge current. d) In the case of strong anisotropy and 0 < φ < π/2
the magnetoresistance generally shows two minima with unequal heights.
In (b–d) Gsf,l = 0, P = 1 and the curves are plotted for different relative
spin-flip conductances Gsf,s/G.

0 < φ < π/2 the magnetoresistance generally contains two minima of un-
equal heights (Fig. 4.2(d)). Thus, the formation of a double minimum is a
characteristic signature of the anisotropy in the system. It should be noted
that such a double minimum is also possible in a system with isotropic spin
relaxation, but only when the contact polarizations of the spin valve are
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significantly different.[44]
Since the spin relaxation affects the spin currents, anisotropic spin re-

laxation is expected to change the spin-transfer torque on the magnetiza-
tion as a function of the relative orientation of the magnetizations and the
anisotropy axes. The torque on the right ferromagnet τ2 in the case of
strong anisotropy (4.12) is shown in Fig. 4.3. Eqs. (4.2) and (4.3) show

Fig. 4.3: The spin torque on ferromagnet 2 as a function of the angle θ between
left and right magnetization in the absence of spin relaxation processes
(solid line) and in the the presence of giant spin-relaxation anisotropy
with Gsf,s = ∞, Gsf,l = 0 (dashed and dash-dotted lines). In the latter
case the left ferromagnet injects spin parallel to ul (φ = 0, dashed line)
or us (φ = π/2, dash-dotted line), respectively. The polarization is here
P = 1 and ImG↑↓ = 0.

that the spin torque on the ferromagnet i is proportional to |mi × Vs|.
When the left ferromagnet injects spin parallel to the axis of the longest
spin lifetime the spin-transfer torque increases compared to the case of no
spin relaxation. On the other hand, when the left ferromagnet injects spin
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Fig. 4.4: Calculated current through a device as a function of gate voltage in-
duced electric field E for three different dwell times τdwell and using
spin-relaxation rates as given by Eqs. (4.10) and (4.11). The magneti-
zations of the left and right ferromagnetic contacts are in the [110] and
[1̄10] directions, respectively. The polarization is set to P = 50% and
ReG↑↓ = G/2. The solid lines correspond to ImG↑↓ = −G/2 and the
dashed lines correspond to ImG↑↓ = 0.

perpendicular to this direction the spin torque decreases as a consequence
of the loss of spin accumulation. Moreover, in this configuration the spin
torque is found to change sign at θ = π/2. This effect is due to decay of
the perpendicular component of the spin accumulation. At θ = π/2 the
magnetization m2 is therefore parallel to Vs and τ2 = 0.

Another way to detect anisotropy electrically is by modulating the spin-
relaxation rates via the spin-orbit interaction. We discuss this within the
model system introduced in Sec. 4.2 and use the spin-relaxation times
Eqs. (4.10) and (4.11) to calculate charge current as a function of gate-
voltage induced electric field E (Fig. 4.4). The magnetizations of the left
and right ferromagnets are set in the ul and us directions, respectively, to
maximize the effect of the spin-orbit interaction. We have used ReG↑↓ =
G/2 and ImG↑↓ = −G/2 for the ferromagnet-semiconductor interface as
suggested by ab initio studies of Fe–InAs interfaces.[38] Since the spin-
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relaxation time perpendicular to the plane of the quantum dot τz is of
the same order of magnitude as τsf,s a finite imaginary part of the mixing
conductance is detrimental to the spin accumulation. The results as shown
in Fig. 4.4 are not particularly sensitive to the values of these parameters,
however. By setting ImG↑↓ = 0 the result differs significantly only in low
gate fields E < 200 kV / cm as shown by the dashed lines in Fig. 4.4. Due to
rapid spin relaxation in the [1̄10] and [001] directions the spin accumulation
is along the [110] direction to a good approximation for E > 200 kV / cm.
At the dip in the current the contributions from the SIA and BIA spin-orbit
couplings are approximately equal (α ' β), and the anisotropy is largest.

We focus now on the analytical expressions which can be obtained in
the limit of weak polarization (P � 1) and ImG↑↓ = 0. As a consequence
the z-component of the spin accumulation vanishes. The spin accumulation
to lowest order in P reads

Vs =
V P

2

(
sin(φ+ θ

2) sin( θ
2)

1 + 2Gsf,l/G
ul −

cos(φ+ θ
2) sin( θ

2)
1 + 2Gsf,s/G

us

)
+O(P 3). (4.13)

Eqs. (4.1) and (4.4) give the charge current through the system

Ic =
G

2
(V − PVs · (m1 −m2)) . (4.14)

This can be combined with (4.13) to obtain the charge current to the second
order in P . The GV/2 term in (4.14) is given by Ohm’s law for two non-
magnetic interfaces and the second term gives the lowest order correction.
These results help to develop an intuitive picture of the effects of anisotropic
spin-relaxation processes on transport. To linear order in P the components
of the spin accumulation along ul and us depend only on the spin-relaxation
rates along these directions but do not depend on the spin-relaxation rates
along perpendicular directions.

This lowest-order result explains the physics when the polarization is
small. When the polarization is larger, the current and spin accumulation
have a more complicated interdependence.
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4.4 Enhancement of spin accumulation due to anisotropy

Fast spin-relaxation is supposed to be detrimental for the spin accumulation
in the central node of a spin valve. In anisotropic systems, however, this
is not necessarily the case. Anisotropic spin-relaxation processes can also
enhance the spin accumulation when there is at least one direction with
a long spin lifetime. We demonstrate this in a spin-valve configuration
in which the injected spin accumulation is dominantly along the stable
direction. Spin relaxation in the perpendicular direction then may enhance
the spin accumulation.

In the absence of spin-relaxation processes the angle dependence of the
x-component of the spin accumulation is

Vs,x(θ, P ) =
V P

2
sin2(θ/2) (4.15)

as shown by dashed lines in Fig. 4.5. Assume now that a fast spin-relaxation
process is switched on in the y-direction only and the x-component of
the spin accumulation does not decay, i.e. us = (0, 1, 0), τsf,s = 0 and
ul = (1, 0, 0), τsf,l = ∞. The decay of the spin accumulation in the y-
direction induces a larger current through the system for the same bias
voltage. This implies a larger spin current and, as a consequence, an en-
hanced spin accumulation in the x-direction. Since to linear order in the
contact polarization circuit theory predicts no enhancement of the spin ac-
cumulation (Eq. 4.13), we have to work out the solution for arbitrary P .
In the above limit of Gsf,s = ∞ and Gsf,l = 0, the solution to the set of
equations (4.1)–(4.5) is

Vs,x(θ, P ) =
2V P (cos θ − 1)

P 2(cos θ + cos 2θ + 3)− 8
, (4.16)

as shown by solid lines in Fig. 4.5. The results prove that spin accumulation
in the x-direction may be enhanced due to spin relaxation in the y-direction.
The y component of the spin accumulation decays but the total modulus of
the spin accumulation vector may increase as a result of the spin relaxation.
The enhancement of the spin accumulation is substantial in the limit of high
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Fig. 4.5: a–c) The component of spin accumulation in the direction of the injecting
magnetization Vs,x is enhanced in the presence of fast spin relaxation in
the perpendicular direction (φ = 0, Gsf,s = ∞). The solid line presents
the results from the circuit theory (4.16) and the dashed line shows the
spin accumulation in the linear-order approximation (4.13). The spin
accumulation is not assumed to decay in the direction of the injecting
magnetization (Gsf,l = 0). The enhancement of the spin accumulation
strongly depends on the magnetization polarization P . d) Enhancement
of the spin accumulation is also reflected by the spin-transfer torque on
the right ferromagnet as shown here for P = 1.

polarization P > 0.9. At lower polarizations, the increased spin current and
reduced y-component of the spin compete and the phenomenon disappears
in the low P limit in Eq. (4.13). In the limiting case of 100% polarization
the spin enhancement is discontinuous at θ = 0 (Fig. 4.5c). There is
no spin accumulation at θ = 0, in line with the results from collinear
circuit theory, but infinitely close to this point the spin accumulation jumps
to 1/2 of the maximum value at θ = π. The enhancement of the spin
accumulation has an impact on the spin-transfer torque on the ferromagnets
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as well. Fig. 4.5(d) shows an increase in the spin torque on ferromagnet
2 at P = 1 compared to the spin torque calculated from the linear-order
approximation (4.13).

4.5 Conclusions

Magnetoelectronic circuit theory has been used to calculate the spin and
charge transport through a spin valve with a diffuse or chaotic quantum
dot in the presence of anisotropic spin-relaxation processes. Analytical ex-
pressions for charge current, spin accumulation and spin-transfer torques in
the tunneling regime illustrate the sensitivity of the charge current on the
relative orientation of the anisotropy axes and the magnetizations of the
ferromagnets. Signatures of anisotropy have been identified in the magne-
toresistance. The anisotropy can be probed either by rotating the magneti-
zation directions of the ferromagnets or alternatively by using a gate elec-
trode to change the spin-relaxation rates. Counterintuitively, anisotropic
spin-relaxation processes may enhance the spin accumulation. This effect is
attributed to an increased charge current due to removal of one component
of the spin, which increases the spin-injection rate in the perpendicular di-
rection. The enhancement was found to be remarkably large in the limit of
high polarization.

This work has been supported by Stichting FOM and NWO. One of us
(H.S.) acknowledges support from the Academy of Finland.
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5. ELECTRON TRANSPORT THROUGH A
SINGLE-ELECTRON SPIN-VALVE TRANSISTOR WITH A

LUTTINGER-LIQUID ISLAND



5.1 Introduction

Electronic transport in one-dimensional systems has received a lot of at-
tention because it offers the possibility to study non-Fermi liquid physics.
The low-energy properties of interacting one-dimensional electron systems
are described by Luttinger-liquid theory. In this chapter we consider a
single-electron spin-valve transistor with a Luttinger-liquid island. The one-
dimensional island is attached to two noninteracting ferromagnetic leads,
which have magnetization directions that can be either parallel or antipar-
allel. The Luttinger-liquid correlations in the island affect the tunneling
rates, and thereby the transport through the system as a whole. Transport
through Luttinger-liquid quantum dots attached to normal-metal contacts
was studied in Ref. [1, 2, 3, 4, 5]. Results were also found for Luttinger liq-
uids contacted to ferromagnetic contacts outside of the Coulomb blockade
regime [6, 7, 8].

Several energy scales play a role in this system. For a one-dimensional
wire with a length L, the single-particle level spacing is given by ε0 =
π~vF /L. There is also a charging energy Ec. The energy scale for the exci-
tations of charge plasmons in the Luttinger liquid is ερ = ε0/g, where g is
the Luttinger parameter. Repulsive interactions are characterized by g < 1,
whereas g = 1 for noninteracting electrons. Here we restrict the discussion
to the regime Ec � kBT � ερ, ε0. For this hierarchy of energy scales,
the charging energy is dominant and the single-electron transistor is in the
Coulomb blockade regime. Since the thermal energy is much larger than
the single-particle level spacing and the plasmon excitation energies, we can
consider the bosonic excitations in the island to be thermalized. This regime
is relevant for Luttinger liquids with a Luttinger parameter g � 1 [9]. It is
not relevant for carbon nanotubes, since the Luttinger parameter for nan-
otubes is typically in the range of 0.2 to 0.3, with g ≈ (1 + 2Ec/ε0)

−1/2

[10]. For a discussion of the Luttinger-liquid energy scales for carbon nan-
otubes, see Ref. [11]. The regime discussed here gives additional insight
into the effect of Luttinger-liquid correlations compared to studies taking
into account the details of the low-energy spectrum. Luttinger liquids in
the limit ε0 � kBT � ερ, so-called spin incoherent Luttinger liquids, are
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reviewed in Ref. [12].
In this chapter we present results for the transport in the linear re-

sponse regime (eV � kBT ) to leading order in the transmission matrix
elements. The thermal length scale ~vF /(kBT ) is shorter than the length
of the wire, which means that incoherent sequential tunneling processes
govern the transport. We include spin flip in the Luttinger liquid by in-
troducing a phenomenological spin-flip time τsf . The X1 and X2 exchange
effects do not play a role here because the magnetizations are collinear and
the transport is only determined to leading order in perturbation theory
(see Sec. 2.3). In Refs. [6, 7] it was concluded that magnetoresistance
effects for this system in the limit kBT � Ec are strongly suppressed for
noncollinear configurations, since the spin accumulation can be relaxed ef-
ficiently by the X1 and X2 exchange effects.

5.2 Model system

The Hamiltonian for this system is

H = HLL +
∑

l=S,D

(Hl +HT l) , (5.1)

where HLL describes the Luttinger-liquid island. In a bosonized represen-
tation it is given by (Cf. Ref. [13]):

HLL =
1
2
EC (nc − CGVG/e)

2 +
1
4
ε0 (nc − 1)2 +

1
4
ε0n

2
s

+
∞∑

mc=1

mcερa
†
mc
amc +

∞∑
ms=1

msε0a
†
ms
ams . (5.2)

The terms in the first line can be considered as the fermionic part of the
Hamiltonian that accounts for the energy due to the Coulomb interaction
and the Pauli principle. The operator nc counts the excess number of
electron charges on the island, and ns counts the excess number of spins.
The second line describes the charge and spin density waves, which are
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bosonic excitations with a charge and spin character. a†mc and a†ms are
creation operators for these charge and spin excitations.

The noninteracting leads are described by the Hamiltonians Hl (for
l ∈ {S,D} = {source, drain}), which are given by Hl =

∑
kσ εlkσc

†
lkσclkσ.

The operator c†lkσ creates a quasi-particle with orbital index k and spin
σ ∈ {↑, ↓} in lead l. A tunneling Hamiltonian HT accounts for the coupling
between the leads and the island. We assume that the tunneling occurs at
the end points of the Luttinger liquid, positioned at xS = 0 and xD = L.

HT =
∑

l=S,D

∑
σ=↑,↓

Tlσψ
†
σ (xl) cσl (xl) + h.c. (5.3)

To calculate the transport characteristics we use a density matrix formalism
as used in Ref. [4, 5]. An exposition of density-matrix theory is given by
Blum [14]. The density matrix for the whole system, including the leads
and the island, is ρI(t). We use the interaction picture with the tunneling
Hamiltonian HT as perturbation. The equation of motion for the density
matrix is:

i~
∂ρI (t)
∂t

=
[
HI

T (t) , ρI (t)
]
. (5.4)

The large leads are only weakly coupled to the island and are treated as
reservoirs in thermal equilibrium. The density matrix can now be factor-
ized as ρI (t) = ρI

LL (t) ρleads [14]. The reduced density matrix ρI
LL (t) can

then be obtained by tracing out the lead degrees of freedom, ρI
LL (t) =

Trleadsρ
I (t). The density matrix ρleads = ρSρD is time-independent. The

expression for the individual density matrix of lead l is ρl = e−β(Hl−µlNl)/Zl,
where Zl is the partition function and Nl is the number of electrons in lead
l.

Using the solution for the equation of motion

ρI (t) = ρI (t0)−
i

~

t∫
t0

dt′
[
HI

T

(
t′
)
, ρI
(
t′
)]
, (5.5)
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we find

i~
∂ρI

LL (t)
∂t

= Trleads

[
HI

T (t) , ρI (t0)
]

− i

~
Trleads

HI
T (t) ,

t∫
t0

dt′
[
HI

T

(
t′
)
, ρI (t)

] . (5.6)

The first term on the right hand side vanishes because 〈cσl〉 = 0. In the sec-
ond term, ρI (t′) was replaced by ρI (t). This is the Markov approximation
[14], which is valid when the density matrix does not change significantly
during the correlation time of the leads, i.e. the time after which the cor-
relations in the leads vanish. We set t0 → −∞ and have

∂ρI
LL (t)
∂t

= − 1
~2

Trleads

∞∫
0

dt′′
{
HI

T (t)HI
T

(
t− t′′

)
ρI (t)

−HI
T (t) ρI (t)HI

T

(
t− t′′

)
+ h.c.

}
. (5.7)

We now assume that the bosonic degrees of freedom are thermalized as
well. The reduced density matrix can be factorized into a fermionic (f)
and a bosonic (b) part as ρI

LL (t) = ρI
LLf (t) ρLLb, and the bosonic degrees

of freedom are traced out. The lead operators can be moved by using the
anticommutation relations, and we also make use of the cyclic property of
the trace. The result for the dynamics of the fermionic part of the reduced
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density matrix is

∂ρI
LLf (0)
∂t

= − 1
~2

∑
σl

|Tσl|2

2L

∞∫
0

dt′′ {

+
〈
cσl(0)c†σl(−t

′′)
〉

th

〈
ψ†σ(xl, 0)ψσ(xl,−t′′)

〉
b
η†σ(0)ησ(−t′′)ρI

LLf(0)

+
〈
c†σl(0)cσl(−t′′)

〉
th

〈
ψσ(xl, 0)ψ†σ(xl,−t′′)

〉
b
ησ(0)η†σ(−t′′)ρI

LLf(0)

−
〈
c†σl(−t

′′)cσl (0)
〉

th

〈
ψσ(xl,−t′′)ψ†σ(xl, 0)

〉
b
η†σ(0)ρI

LLf(0)ησ(−t′′)

−
〈
cσl(−t′′)c†σl(0)

〉
th

〈
ψ†σ(xl,−t′′)ψσ(xl, 0)

〉
b
ησ(0)ρI

LLf(0)η†σ(−t′′)

+ h.c.} . (5.8)

This expression can be evaluated at t = 0 since we are not considering
any transient effects. The Klein factors ησ are operators that reduce the
excess number of charges nc by one and take ns to (ns − σ) [15]. The
time dependence of the Klein factors is determined by the equation i~ .

ησ =
[ησ,HLL], which has a solution

ησ (t) = e−
i
~ [Ec(nc+

1
2
−CGVG/e)+ 1

2
ε0(nc−σns)]tησ (0) . (5.9)

We introduce a basis of eigenstates |κ〉 of the fermionic system, that are
characterized by the excess number of charges κ ∈ N . It is not necessary
to use the number of spins on the island as an additional quantum number
because the fluctuations of the number of spins are negligible compared to
the average value [16] (see also Ch. 2). We use a static quasi-equilibrium
value for the spin accumulation. In this basis, the elements of the density
matrix are ρI

LLfκλ (t) = 〈κ| ρI
LLf (t) |λ〉. We now define rates Γ for the change

of the density matrix elements as:

∂ρI
LLf (0)κλ

∂t
≡
∑

κ′λ′lσ

Γκ′λ′→κλ
lσ ρI

LLf (0)κ′λ′ −
∑

κ′λ′lσ

Γκλ→κ′λ′
lσ ρI

LLf (0)κλ .

(5.10)
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In the Coulomb blockade regime and for small bias voltage it suffices to
consider transitions between the states with nc = 0 and nc = 1 (see Ch. 2).
We can evaluate the rate

Γ00→11
lσ =

1
~2

|Tlσ|2

2L

∞∫
0

dt′′
{
e−

i
~ [Ec(

1
2
−CGVG/e)+ 1

2
ε0σns]t′′×

〈
ψσ(xl, 0)ψ†σ(xl,−t′′)

〉
b

〈
c†σl(xl, 0)cσl(xl,−t′′)

〉
th

+ h.c.
}

(5.11)

=
πρlσ |Tlσ|2

L~

∞∫
−∞

dεf(ε)ρLLσ

(
ε− Ec(1/2− CGVG/e)−

1
2
ε0σns + µl

)
The expression for the correlation function in the leads is〈

c†lσ
(
xl, t

′′) cl′σ′ (xl′ , 0)
〉

th
= δσσ′δll′

∞∫
−∞

dερlσe
i
~ εt′′f (ε− µl) , (5.12)

where f(ε) is the Fermi-Dirac distribution and ρlσ is the spin-dependent
density of states in lead l. The tunneling density of states for the Luttinger
liquid is

ρLLσ (ε, x) =
1

2π~

∫ ∞

−∞
dt
〈
ψσ(x, 0)ψ†σ(x, t)

〉
e

i
~ εt, (5.13)

which for the end contacts is given by the expression [17, 18, 19]

ρLLσ (ε, xl) = Aeε/2kBT (kBT/D)
1
2
(1/g−1)

∣∣∣∣Γ(1
4
(1 + 1/g) + iε/2πkBT

)∣∣∣∣2 ,
(5.14)

where A is an arbitrary constant and D is a large cut-off energy. The quasi-
equilibrium state can now be found from the detailed balance condition
∂ρI

LLf00/∂t = 0, the condition that ρI
LLf00 +ρI

LLf11 = 1 and the conservation
of spin in the island

∂ns

∂t
=
∑
lσ

σΓ00→11
lσ ρI

LLf00 −
∑
lσ

σΓ11→00
lσ ρI

LLf11 −
ns

τsf
= 0, (5.15)
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in which spin-flip is taken into account. The expression for the current from
the source to the drain contact is

I = e
∑

σ

Γ00→11
Sσ ρI

LLf00 − e
∑

σ

Γ11→00
Sσ ρI

LLf11. (5.16)

5.3 Results

We now present linear-response results for the conductance as a function
of gate voltage for a symmetric spin-valve system. The conductance in the
parallel configuration is given by

GP (VG) = (γ↑ + γ↓) (kBT/D)
1
2
(1/g−1) H

′(−∆)H(∆) +H ′(∆)H(−∆)
H(∆) +H(−∆)

,

(5.17)

where ∆ = Ec(1/2−CGVG/e). For compactness of notation we have intro-
duced γs = πAρs |Ts|2 /(2L~) for (s =↑, ↓). The function H (ε) is defined
as

H (ε) =
∫ ∞

−∞
dε′f

(
ε′ + ε

)
eε

′/2kBT

∣∣∣∣Γ(1
4
(1 + 1/g) + iε′/2πkBT

)∣∣∣∣2 .
(5.18)

The Luttinger-liquid correlations cause a power-law suppression of the tun-
neling density of states in the island. From Eq. 5.17 we see that for strong
interaction (g � 1) the conductance is strongly suppressed when kBT � D.
The conductance maximum of the Coulomb oscillations exhibits power-law
behavior as a function of temperature with an exponent 1

2(1/g − 1). The
conductance in the anti-parallel configuration is given by

GAP (VG) = GP (VG)
(

1− P 2

1 + 2Gsf/GP (VG)

)
, (5.19)
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where we have defined a polarization P = (γ↑−γ↓)/(γ↑+γ↓) and a spin-flip
conductance parameterGsf ≡ e2/ (2ε0τsf). In the antiparallel configuration,
a spin accumulation can reduce the conductance. Spin-flip processes relax
this spin accumulation efficiently when τsf is short compared to the dwell
time, which is defined as τdwell(VG) ≡ e2/(ε0GP (VG)).

The shape of the Coulomb oscillations is affected by the Luttinger-
interaction effects as well. In Fig. 5.1 we plot the conductance versus gate
voltage for a Luttinger-liquid island characterized by a Luttinger param-
eter g = 0.05 for parallel as well as antiparallel lead-magnetization direc-
tions. For comparison, the shape of a Coulomb oscillation for a symmet-
ric spin-valve with a Fermi-liquid island, which is given by the expression
GP (VG) = GPmax2β∆/sinh(2β∆), is shown in the same figure (cf. Sec.
2.5). In the case of a Luttinger-liquid island, the peak has a broader shape
because correlations suppress tunneling most effectively at the conductance
maximum.

Coulomb blockade effects cause a reduction of the tunneling currents,
and thereby diminish the spin accumulation. To observe magnetoresistance
effects, the spin-flip time τsf will have to be much larger for an interacting
Luttinger-liquid island than for a noninteracting island. The curves for the
parallel and antiparallel configurations converge with increasing detuning
from the current maximum because spin flip prevents build-up of a spin
accumulation.

In conclusion, we have discussed electronic transport through a single-
electron spin-valve transistor with a Luttinger-liquid island for a regime
in which the charging energy is the dominant energy scale. The bosonic
degrees of freedom of the Luttinger liquid are thermalized. Transport re-
sults were obtained by means of a density-matrix method to leading or-
der in perturbation theory. We find that the Luttinger-liquid correlations
and the Coulomb blockade both suppress the tunneling in the anti-parallel
configuration and therefore suppress the spin accumulation and resistance
contrast compared to a parallel configuration. A comparison of the shape
of the Coulomb oscillations for Luttinger-liquid and Fermi-liquid islands
shows that the peak shape is broadened by the Luttinger correlations.

This work is supported by the “Nederlandse Organisatie voor Weten-

103



Fig. 5.1: Conductance as a function of gate voltage for a symmetric SV-SET with
a Luttinger-liquid island, normalized with respect to the conductance at
CGVG = e/2. Curves are shown for g = 0.05 for parallel (solid line) and
antiparallel (dashed line) magnetization configurations. The charging en-
ergy Ec = 10kBT , the polarization P = 1, and the spin-flip conductance
Gsf = GPmax/5. The shape of a Coulomb oscillation for a single-electron
spin-valve transistor with a Fermi-liquid island in the parallel configura-
tion is shown for comparison (dotted line).
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SUMMARY

Interaction effects in spin-valve structures

Wouter Wetzels

Most applications in electronics are based on manipulation of the elec-
tron charge. Currently, there is also a lot of research into the possibility
to make use of the electron spin, for example in magnetoelectronics. This
field of research studies hybrid systems consisting of ferromagnetic metals,
paramagnetic metals and insulators. An important breakthrough in mag-
netoelectronics was the discovery of the Giant Magnetoresistance (GMR)
effect, which is already applied widely, e.g. in magnetic-field sensors in read
heads for hard disk drives.

In this thesis we present a theoretical description of a number of physical
structures whose operation is based on the spin-valve principle. A spin valve
consists of two ferromagnetic elements with a non-magnetic material in
between. The electrical resistance of a spin valve can be varied by changing
the angle between the magnetization directions of the two ferromagnets. In
experiments an external magnetic field is usually used to do this.

We are interested in effects of the interaction between electrons on elec-
tronic transport in spin-valve structures. As the experimentally studied
structures are getting smaller, interactions play an increasingly important
role. Often, theoretical investigations in magnetoelectronics are restricted
to systems with magnetization directions that are either parallel or antipar-
allel. In most parts of this thesis we study how the electronic transport
properties depend on an arbitrary angle between the magnetization direc-
tions. The so-called magnetoelectronic circuit theory turns out to be an



efficient and transparent instrument. This theory can be used to determine
the transport properties of electronic circuits containing ferromagnetic ele-
ments with arbitrary magnetization directions.

In the introduction we present an overview of important concepts and
recent developments in magnetoelectronics. In chapter 2 we discuss the
transport properties of a specific system, namely the so-called single-electron
spin-valve transistor. In single-electron transistors, the charge current can
be controlled by external gates up to the level of single electron charges.
We discuss a single-electron transistor with ferromagnetic contacts that is
the subject of increasingly successful experimental investigations. To de-
scribe the Coulomb interaction we use the “orthodox” model for Coulomb
blockade, and we calculate the spin and charge current through the tun-
nel contacts by means of perturbation theory. In particular, we focus on
two different exchange interaction mechanisms between the spin accumu-
lation and the ferromagnetic contacts. One is caused by virtual tunneling
processes, the other is an interface scattering effect that exists also in non-
interacting systems. We determine the conductance of the system in the
quasi-stationary state as a function of gate voltage and the angle between
the magnetization directions. We also discuss the possibility to observe
the Hanle effect, i.e. relaxation of the spin accumulation by an external
magnetic field.

The current-induced magnetization reversal in spin valves based on the
spin-transfer torque mechanism is by now well established. In chapter 3
we discuss the effect of current fluctuations that cause a fluctuating spin-
transfer torque on the magnetization. We predict that the switching times
can be shortened and that less energy is needed for the switching pro-
cess. We find these results by solving a stochastic differential equation, the
so-called Fokker-Planck equation. We use the Kramers method to derive
explicit expressions for the reduced switching times.

Datta and Das proposed a scheme for a spin-field effect transistor that
makes use of the spin-orbit interaction that stimulated a lot of research on
spin-injection into a two-dimensional electron gas. In chapter 4 we con-
sider a spin-valve system consisting of a small island in a two-dimensional
electron gas attached to ferromagnetic contacts. The Rashba as well as the
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Dresselhaus spin-orbit interaction play a role here, and others have found
before that in this case a large anisotropy in the relaxation of the spin
accumulation can occur. Using magnetoelectronic circuit theory, we find
characteristic signatures of this anisotropy on the charge transport prop-
erties of this system as a function of the magnetic configuration as well as
the spin accumulation and the spin-transfer torque.

Finally, in chapter 5 we consider single-electron transistors with a one-
dimensional island that can be described as a Luttinger liquid. Also in this
system, there are two ferromagnetic contacts that inject and detect spin.
We use a density matrix method to determine the tunnel currents between
the island and the contacts. The system is in the Coulomb blockade regime,
and we consider a hierarchy of energy scales in which the Coulomb charging
energy is the most important and the level splitting is negligible compared
to the thermal energy. In earlier publications it has been claimed that
spin-charge separation has a characteristic influence on the conductance
as a function of the angle between the magnetizations. The results for
the conductance show that Luttinger-liquid effects and Coulomb blockade
effects are both important for the system under consideration.
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SAMENVATTING

Interactie effecten in spinventiel structuren

Wouter Wetzels

De meeste toepassingen in de elektronica zijn gebaseerd op manipulatie
van de lading van het elektron. Tegenwoordig is er ook veel onderzoek
naar de mogelijkheid om gebruik te maken van de elektronspin, onder an-
dere in de magnetoelektronica. Dit vakgebied bestudeert hybride systemen
bestaande uit ferromagnetische metalen, paramagnetische metalen en iso-
latoren. Een belangrijke doorbraak in de magnetoelektronica was de ont-
dekking van het reuze magnetoweerstand effect (GMR effect) dat nu al op
grote schaal wordt toegepast, bijvoorbeeld in magnetisch-veld sensoren in
leeskoppen voor harde schijven.

In dit proefschrift geven we een theoretische beschrijving van een aan-
tal fysische structuren waarvan de werking gebaseerd is op het principe
van een spinventiel. Een spinventiel bestaat uit twee ferromagnetische ele-
menten met daartussen een niet-magnetisch materiaal. De elektrische weer-
stand van een spinventiel is te variëren door de hoek tussen de magneti-
satierichtingen van de twee ferromagneten te veranderen. In experimenten
wordt daarvoor doorgaans een extern magnetisch veld gebruikt.

We zijn gëınteresseerd in de invloed van interactie tussen elektronen
op elektronentransport in spinventiel structuren. Omdat de structuren die
experimenteel bestudeerd worden steeds kleiner worden spelen interactie-
effecten namelijk een steeds belangrijkere rol. Vaak beperkt theoretisch on-
derzoek in de magnetoelektronica zich tot systemen met magnetisatierichtin-
gen die parallel dan wel antiparallel zijn. In het grootste gedeelte van



dit proefschrift bestuderen we hoe elektronische transporteigenschappen
afhankelijk zijn van een willekeurige hoek tussen de magnetisatierichtingen.
De zogenaamde magnetoelektronische netwerktheorie blijkt een efficiënt en
transparant hulpmiddel. Deze theorie is geschikt om de transporteigen-
schappen te bepalen van elektronische circuits met daarin ferromagnetische
elementen met willekeurige magnetisatierichting.

In de introductie geven we een overzicht van belangrijke concepten en
van de ontwikkelingen die in de magnetoelektronica hebben plaatsgevon-
den. In hoofdstuk 2 bespreken we de transporteigenschappen van een spec-
ifiek systeem, namelijk de zogenaamde enkel-elektron spinventiel transis-
tor. In enkel-elektron transistoren is de ladingsstroom met externe gates
te controleren tot op het niveau van individuele elektronladingen. Wij
beschouwen een enkel-elektron transistor met ferromagnetische contacten
dat ook experimenteel met toenemend succes wordt bestudeerd. Om de
Coulomb wisselwerking te beschrijven gebruiken we het “orthodoxe model”
voor Coulomb blokkade, en berekenen we de spin- en ladingsstroom door de
tunnelcontacten met storingstheorie. We gaan in het bijzonder in op twee
mechanismen voor exchange wisselwerking tussen de spin accumulatie en
de ferromagnetische contacten. Daarvan wordt er één bepaald door virtuele
tunnel processen en het andere is een grensvlakverstrooiingseffect dat ook
bestaat voor niet-wisselwerkende systemen. We bepalen de geleiding van
het systeem in de quasi-evenwichtstoestand als functie van de gate-spanning
en de hoek tussen de magnetisatierichtingen. Ook bespreken we de mogeli-
jkheid tot observatie van het Hanle effect, d.w.z. relaxatie van de spin
accumulatie door een extern magnetisch veld.

Stroomgëınduceerde magnetisatie schakeling in spinventielen gebaseerd
op het mechanisme van het spinoverdrachtsmoment is nu overtuigend vast-
gesteld. In hoofdstuk 3 bespreken we het effect van fluctuaties in de stroom
die zorgen voor een fluctuerend spinoverdrachtsmoment op de magnetisatie.
We voorspellen dat op deze manier de schakeltijden kunnen worden verkort
en dat er minder energie nodig is voor het schakelproces. Deze resultaten
vinden we door het oplossen van een stochastische differentiaalvergelijking
voor de magnetisatie dynamica, de zogenaamde Fokker-Planck vergelijk-
ing. We gebruiken de methode van Kramers om uitdrukkingen voor de
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schakeltijden te bepalen.
Datta en Das hebben een voorstel gedaan voor een spin veldeffect tran-

sistor die gebruik maakt van de spin-baan wisselwerking. Dit voorstel
heeft tot veel onderzoek gericht op het injecteren van spins in een twee-
dimensionaal elektronengas geleid. In hoofdstuk 4 beschouwen we een spin-
ventiel systeem dat bestaat uit een klein eiland in een twee-dimensionaal
elektronengas met ferromagnetische contacten. Zowel Rashba als Dressel-
haus spin-baan interactie spelen hierbij een rol, en het is door anderen al
eerder gevonden dat er in dat geval een grote anisotropie in de relaxatie
van de spin accumulatie kan bestaan. Met behulp van de magnetoelek-
tronische netwerktheorie vinden we de karakteristieke signatuur van deze
anisotropie op de ladingstransport eigenschappen van dit systeem as func-
tie van de magnetische configuratie, en voor de spin accumulatie en het
spinoverdrachtsmoment.

Tenslotte beschouwen we in hoofdstuk 5 enkel-elektron transistoren met
een één-dimensionaal eiland dat beschreven kan worden als een Luttinger
vloeistof. Ook in dit systeem zijn er twee ferromagnetische contacten die
spin kunnen injecteren en detecteren. We gebruiken een dichtheidsma-
trix methode om de tunnelstromen tussen het eiland en de contacten te
bepalen. Het systeem is in het Coulomb blokkade regime en we beschouwen
een hiërarchie van energieschalen waarin de Coulomb ladingsenergie het
belangrijkste is en de niveausplitsing verwaarloosbaar is ten opzichte van
de thermische energie. In eerdere publicaties is al beweerd dat de spin-
ladingsscheiding een karakteristieke invloed heeft op de geleiding als functie
van de hoek tussen de magnetisaties. Uit de resultaten voor de geleiding
blijkt dat Luttinger vloeistof effecten én Coulomb blokkade van belang zijn
voor het beschouwde systeem.

112



CURRICULUM VITAE

June 19, 1978 Born in Tilburg, the Netherlands

1990-1996 Gymnasium van het Bernardinuscollege, Heerlen. Cum Laude

1996-2002 Master of Science, Physics, Utrecht University. Cum Laude

2002-2007 PhD research under supervision of prof. dr. ir. G. E. W. Bauer
and prof. dr. M. Grifoni, Delft University of Technology



PUBLICATIONS

Henri Saarikoski, Wouter Wetzels, and Gerrit E. W. Bauer, Charge and
spin transport in spin valves with anisotropic spin relaxation, Phys. Rev.
B. 75, 075313 (2007).

Wouter Wetzels, Gerrit E. W. Bauer, and Milena Grifoni, Exchange effects
on electron transport through single-electron spin-valve transistors, Phys.
Rev. B 74, 224406 (2006).

Wouter Wetzels, Gerrit E. W. Bauer, and Oleg N. Jouravlev, Efficient
Magnetization Reversal with Noisy Currents, Phys. Rev. Lett. 96, 127203
(2006).

Wouter Wetzels, Gerrit E. W. Bauer, and Milena Grifoni, Noncollinear
single-electron spin-valve transistors, Phys. Rev. B 72, 020407(R) (2005).

Nick van Eijndhoven and Wouter Wetzels, In-event background and signal
reconstruction for two-photon invariant-mass analyses, Nucl. Instr. and
Methods A 482, 513 (2002).



ACKNOWLEDGEMENTS

First of all, I want to thank my two promotors. Gerrit, for always being
ready to discuss and help with quick insights and good ideas. He’s a cheerful
head of the group and without his patience and persistence this thesis
would never have been completed. Thanks also for the encouragement to
see something of the world (as you make sure to do yourself). Milena gave
me a good start in Delft and I have learned a lot from her. I am glad she
succeeded so well in putting together a nice group in Regensburg, which
I very much enjoyed to visit. Thanks for all the good discussions, your
personal dedication and the fun of running sessions under extreme weather
conditions.

It has been very important for me to be able to work together with
others. I’m happy that I could collaborate so well with Oleg, and about
all the (mostly welcome) distractions from work when we shared an office
(which continued thanks to Skype). Who would have thought you would
end up in my PhD committee? I am also grateful for the hard work of
Henri, who has made an important contribution to this thesis. I really
enjoyed our frequent discussions and negotiations.

The enthusiasm of the staff for working with students creates a positive
atmosphere in the group. I benefited a lot from the torrents of interruptions
during (sometimes two-hour long) talks and all the help I got, and I enjoyed
the wide-ranging discussions at coffee breaks with Jos, Henk, Miriam (it’s
good to see you attract so many students), Yaroslav, Yuli and Yvonne (well,
thanks not for questions during talks, but all the more for the rest).

Both at the university and outside, I have shared a lot with a great group
of people. It was always good to talk to Sijmen, who, after unnerving me
with his final struggle, will now start a wonderful new chapter, Fabian, it’s



amazing how you always get us into trouble with night trains, I’m really
impressed by your determination to get everything out of life, Omar, always
fun to be with, full of amusing provocations, and very efficient (in making a
big mess), Jeroen, who, with an unconventional and positive attitude, can
be relied on to keep the theory group together in the future, Xuhui, the
poker fanatic, for all the entertaining conversations and curious blog entries,
Jens, for all the movies in Lumen, whose always-changing enthusiasms have
brought him very far already, and Alex, always with an original perspective,
who offered me the exceptional privileges of being invited to his wedding
and to help him move.

Two very friendly new roommates (having little in common besides
their prompt bicycle incidents after arriving) changed the atmosphere in
the room completely (although this depended on the international political
situation). Moosa, who doesn’t choose the easy way and is always willing
to explain and make me understand, and Vitaly, with whom I enjoyed to
play badminton and who has made such an impressing effort in order to
never have to do the dishes again. I hope Kevin will have a really good
time in the group. For all the nice dinners, parties and friendship, I also
want to thank Vika (learn Dutch soon!), Saverio and Monica (I really hope
you will find a way to both continue your careers), Anna (for an excellent
Sinterklaas celebration), Antonio and Vera.

It was really nice and interesting to get to know so many different people
from all over the world during my time in the group, and I wish all the
best to Jiang (you’re welcome to stay over again when moving into another
apartment that is still too messy to live in), Dima F. (who, one day, brought
cake without wanting to tell the reason), Freek (who did his PhD the really
hard way, I’m glad everything turned out alright), Gabriele, Wataru, Babak
(we would have liked to see more of you), Joël, Izak, Hongduo, Marnix,
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