
 
 

Delft University of Technology

Workflow Automation for Cycling Systems

Oliver, Hilary; Shin, Matthew; Matthews, David; Sanders, Oliver; Bartholomew, Sadie; Clark, Andrew;
Fitzpatrick, Ben; Haren, R. van; Hut, R.; Drost, Niels
DOI
10.1109/MCSE.2019.2906593
Publication date
2019
Document Version
Final published version
Published in
Computing in Science & Engineering

Citation (APA)
Oliver, H., Shin, M., Matthews, D., Sanders, O., Bartholomew, S., Clark, A., Fitzpatrick, B., Haren, R. V.,
Hut, R., & Drost, N. (2019). Workflow Automation for Cycling Systems. Computing in Science &
Engineering, 21(4), 7-21. Article 8675433. https://doi.org/10.1109/MCSE.2019.2906593

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MCSE.2019.2906593
https://doi.org/10.1109/MCSE.2019.2906593


Workflow Automation
for Cycling Systems
The Cylc Workflow Engine

Hilary Oliver
The National Institute of Water and Atmospheric

Research, New Zealand (NIWA)

Matthew Shin
Met Office

David Matthews
Met Office

Oliver Sanders
Met Office

Sadie Bartholomew
Met Office

Andrew Clark
Met Office (the U.K.’s National Weather and

Climate Service)

Ben Fitzpatrick
Met Office

Ronald van Haren
Netherlands eScience Center

Rolf Hut
Delft University of Technology

Niels Drost
Netherlands eScience Center

Abstract—Complex cycling workflows are fundamental to numerical weather prediction

(NWP) and related environmental forecasting systems. Large numbers of jobs are

executed at regular intervals to process new data and generate new forecasts.

Dependence between these forecast cycles creates a single never-ending workflow, but

NWPworkflow schedulers have traditionally ignored this—at the cost of efficiency when

running “off the clock”—by enforcing a simpler nonoverlapping sequence of single-cycle

workflows. Cylc (“Silk”)1–3 is designed to manage infinite cycling workflows efficiently

even after delays in real-time operation, or in historical runs, when cycles can typically

interleave for much-increased throughput. Cylc is not actually specialized to

environmental forecasting, however, and cycling workflowsmay also be useful in other

contexts. In this paper, we describe the origins andmajor features of Cylc, future plans for

the project, and our experience of Open Source development and community engagement.

& MODERN WEATHER FORECASTING systems are

based on large, complex cycling workflows of

macroscopic applications, known in the industry

as suites. At regular intervals, ad infinitum, vast

quantities of meteorological observation data are
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gathered and processed for assimilation by large

atmospheric model ensembles (or increasingly,

coupled ocean-atmosphere models), and screeds

of output data are processed to generate forecast

products. These workflows, or parts of them,

typically run on large high performance comput-

ing (HPC/supercomputing) platforms to support

the massive resource-hungry scientific models.

Figure 1 shows one example of a real weather

forecastingworkflow.

Cylc development began in 2008 in response

to perceived deficiencies of existing NWP work-

flow schedulers. Interestingly, each run of a fore-

cast model has to be partly initialized by a

previous forecast because there is not enough

information in the new observations alone to

determine the model state. This warm cycling of

the model, as well as any other cross-cycle

dependence, technically creates a single never-

ending workflow rather than a never-ending

sequence of single-cycle workflows. In normal

clock-limited real-time operation this does not

matter much because the workflows are

designed to fit the available compute resource

with room to spare, so that each cycle finishes

well before the next batch of data is ready. But it

can be a major impediment after delays that

cause one cycle to run into another, or when

processing historical data. Then, tasks from mul-

tiple cycles may be able to run concurrently

without violating dependencies (in practice it is

never the case that the first task in one cycle

depends on the last task in the previous cycle).

In the mid-late 2000s NIWA’s new forecasting

system ran into exactly this problem. Con-

strained to run whole cycles in sequence on an

aging, over-subscribed supercomputer, it fre-

quently took many hours to catch up from delays

(see NIWA Case Study below). Sequential cycling

was taken for granted by the leading production

Figure 1. Small section of the initial cycle of a global weather forecasting workflow implemented in Cylc.

Each graph node represents an application (a script, program, or large scientific model) that executes on HPC

nodes or other servers in the Met Office operations center.
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NWPworkflow schedulers of the time such as the

scheduler monitoring system (SMS) from the

European Center for Medium-Range Weather

Forecasts (ECMWF), to the extent that we could

not find any published discussion of the problem.

But expert users and documentation convinced

us that this was a fundamental limitation. Further

afield, it seemed that other systems could not

help either, although it was difficult to be sure

because the problem was simply not addressed

in the literature. Most managed finite workflows

with no cycles. Others such as Kepler4 allowed

loops over tasks or parts of a workflow. Expen-

sive commercial systems did real-time schedul-

ing of single workflows, but that is not the same

as cycling either, at least not in the sense

described here, and they were not used in HPC.

The scientific tools also seemed more suited to

research than production, by our requirements.

So we elected to build a newworkflow engine.

The primary design imperatives for Cylc

were efficient scheduling of infinite cycling

workflows without imposing an artificial barrier

between cycles; compatibility with HPC plat-

forms and workload managers like the Portable

Batch System (PBS); efficient workflow

configuration for scientists and modelers rather

than software developers, in a text-based for-

mat conducive to version control and collabora-

tive development; to be light-weight and

entirely application-agnostic in order to work

with a vast and varied ecosystem of bespoke

scientific software; and to be easy to use for

researchers as well as NWP production centers.

Cylc was written in Python and built around a

new scheduling algorithm, described below,

that can manage infinite workflows of cycling

tasks without a sequential cycle loop. At any

point during workflow execution, it is only

dependence between the individual tasks that

matters, regardless of their respective cycle

points. As a result, Cylc can catch up from

delays very quickly, and it can automatically

and seamlessly transition between catch-up

and clock-limited real-time operation as

required. Off the clock, it can sustain inter-

leaved cycling indefinitely. Figure 2 shows the

dramatic effect this can have on job

throughput.

Ten years later, workflow management sys-

tems continue to proliferate; a prominent list on

the internet records 238 of them.5 In the NWP

Figure 2. Efficient scheduling of a clock-limited real-time cycling workflow during catch-up from a delay. The upper left

diagram shows two cycles of a highly simplifiedmultimodel environmental forecasting workflow: sea-state and (b) storm-

surgemodels driven by (a) a weather model, and (d)–(f) product generation tasks. The star-shaped nodes are date-time

clock triggers, and the dotted arrows show cross-cycle dependence (themodels are initialized in part by their own previous

forecasts). Vertical stacking in the upper right diagram shows concurrency during two consecutive cycles of the normal job

schedule, for some assumed job run lengths in hours. The green badges label tasks with a common cycle point. In the lower

diagram catch-up from a delay by sequential cycling is shown below the axis, and with optimal cycle-interleaving by Cylc

above it. Gray coloring corresponds to normal “on the clock” operation and redness to the size of the delay.
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arena, SMS has been replaced by ecFlow,6 which

handles cycling just like its predecessor.Whether

or not others can do what Cylc does is something

of a moot point now that Cylc is established at

some major weather forecasting institutions7 but

we have not seen evidence that they can or pub-

lished solutions to the sequential cycling prob-

lem. The popular Apache Airflow, for example,

can do repeat real-time scheduling of workflows.8

When deliberately put in “catchup”mode it disre-

gards the schedule and runs them one after the

other with no overlap—i.e., sequential cycling.

Since its release under an Open Source

license (GNU GPL v3) Cylc has developed rapidly

as a collaboration between NIWA, Met Office and

the international Unified Model Partnership, ESi-

WACE (the Centre of Excellence in Simulation of

Weather and Climate in Europe),9 the U.S. Naval

Research Laboratory (NRL),10 Altair Engineer-

ing,11 and others. Cylc has been widely adopted7

for weather, climate, and environmental fore-

casting applications, although it is not techni-

cally specialized to these domains. Cycling

workflows can also be useful elsewhere, e.g., for

splitting long simulations into shorter chunks

(common in climate and earth-system model-

ing); multirun iterative statistical optimization of

model parameters12; processing many datasets

with as much concurrency as possible; and even

implementing classical pipelines (below).

HOW CYLC MANAGES CYCLING
WORKFLOWS

A workflow can be represented as a directed

acyclic graph (DAG), with nodes as tasks and

edges for dependence between them. If executed

repeatedly with any cross-cycle dependence, the

result can be interpreted as a potentially infinite

non-cycling single DAG composed of cycling

tasks, rather than a graph with cycles, as illus-

trated by Figure 3. Cylc decomposes a depen-

dency graph like this at start-up to determine

prerequisites and outputs for each task with

respect to other tasks and relative to cycle point.

For example, task A at a particular cycle point

might depend on the automatic “job succeeded”

output of task B and a custom “file-1 completed”

output of task C, at the same cycle point. Proxy

objects created to represent the first instance of

each cycling task can submit their jobs to run

when prerequisites are satisfied, and update

their outputs in response to job status mes-

sages. The scheduling algorithm then matches

unmet prerequisites with completed outputs to

determine when tasks can run, advances the

workflow by spawning new task proxies

Figure 3. Representing a cycling workflow as a never-ending non-cycling graph of cycling tasks. In this toy

example themodel task represents a forecast model that depends on its own previous run; post does model

post-processing; prod computes forecast products; and cmp compares model output with some quantity

derived from the previous forecast. On the left, more cycles are added, then the boxes drawn around them are

removed to make it clear that this is really a never-ending monolithic graph. On the right, at runtime Cylc

manages an adaptive window on the infinite workflow: solid green nodes represent running tasks, blue waiting

(for their prerequisites to be satisfied), and gray succeeded. White nodes are not yet active (ahead) or are no

longer needed (behind). Here, tasks from cycle points 5, 6, and 7 are running concurrently.
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individually to subsequent cycle points, and

removes spent tasks from the tail end of the

workflow. If a task fails or is delayed by resource

contention, others not downstream of it can con-

tinue to advance as if nothing was wrong. Quick-

running tasks can be held back by restricting the

number of active cycle points if they are not oth-

erwise constrained by clock triggers, external

triggers, or dependence on other tasks. In this

way, Cylc manages an adaptive window that

moves along the potentially infinite workflow

graph.

For completeness, we note that finite work-

flows of this kind, if they are not too large, can

be managed without dynamic cycling by

parameterizing the entire run in advance so

that every job is in effect represented by a dif-

ferent logical task, rather than a new instance

of a cycling task. Climate simulation experi-

ments are handled in this way by Autosub-

mit,13 for example. Cylc can do this too, but

the larger the workflow the more important

dynamic cycling becomes. To run a workflow

of 10 tasks per cycle for 100 cycles the work-

flow engine only has to be aware of 10 tasks at

once in the dynamic case, or all 1000 of them if

parameterized.

Workflow Configuration

Workflows can be defined by abstract depen-

dencies (task B depends on task A); or by specify-

ing the concrete inputs and outputs of each task.

Recent authors have tended to favor the latter

“data-modeling” approach14 but each has its

advantages. Abstract dependencies expose the

structure of a workflow, they make it easy to trig-

ger off of events and state changes, and artificial

dependence can sometimes be useful; but depen-

dency semantics are delegated to task configura-

tions. Data dependencies allow workflows to

dynamically self-assemble, and they make auto-

matic data management possible; but other kinds

of triggeringmay be harder to accommodate, and

structure remains implicit in the workflow defini-

tion. Cylc workflows are internally self-assem-

bling and early releases exposed this, but we now

decompose dependency graphs to automatically

define inputs and outputs for each task, as

described above. Large ensemble postprocessing

suites have recently emerged in our field,

however, that need to radically reconfigure them-

selves according to the products selected, and

these have led us to consider providing an alter-

native data-modeling interface in the future.

A workflow definition is primarily a configura-

tion of the workflow engine, so Cylc uses a

straightforward human-readable configuration

file format for this purpose. This can be validated

against a specification, it encourages consistency

of form, and it allows collaborative development

of complex workflows with version control power

tools like git. The base file format is augmented

with task parameterization, inheritance of task

runtime settings through a family hierarchy,

Python-like Jinja2 or EmPy templating, and a

cycling graph configuration language. For most

users and most use cases this is easier than cod-

ing to an application programming interface

(API), but we do intend to provide a Python API as

well for advanced use in the future.

In suite definition files, first, a scheduling sec-

tion determines when tasks run, with a depen-

dency graph “drawn” in text form, clock triggers,

external triggers, and internal queues. Then a

runtime section dictates what, where, and how

tasks run, including job command or scripting,

environment, host, batch system and resource

directives, automatic retry configuration, and

event handling. And finally, graph styling can be

configured in an optional visualization section

(used to produce most of the images in this

paper).

In NWP suites like that of Figure 1, an ensem-

ble of many atmospheric models is executed in

each forecast cycle, each from different initial

conditions consistent with current meteorologi-

cal observations, in order to characterize uncer-

tainty in the resulting forecasts. There is

typically a large amount of common configura-

tion in such a system. For instance, closely

related ensemble members may have identical

settings apart from a fewmember-specific details;

tasks that share a job host will have technical set-

tings in common; and there will be many shared

files and IO workspace locations. To avoid ending

up with a maintenance nightmare it is important

to efficiently share rather than duplicate these

common settings. Figure 4 illustrates one way to

achieve economy of workflow definition in Cylc: a

multirun multimember ensemble suite is

July/August 2019 11



generated automatically by simply parameteriz-

ing a single-model base workflow over members

and runs. Only the base tasks need to be explic-

itly configured in the suite definition, and the

structure of the resulting workflow can still be

understood at glance. Jinja2 or EmPy templating

can also be used to define variables once for use

throughout the workflow definition, and this can

be pushed as far as the programmatic generation

of entire workflows using conditional expres-

sions, loops, etc. Finally, any task configuration

can be shared, with no duplication at all, through

a multiple inheritance hierarchy of task families.

Templating and inheritance cannot be shown

here due to space limitations, but they are

heavily used in almost all Cylc suites.

For cycling systems, multiple graph seg-

ments associated with different bounded (or

unbounded) cycling sequences combine, with

an offset notation for dependence across cycles

and between sequences, to make a pattern for

generating concrete graphs over any given range

of cycle points. Figure 5 illustrates this with a

classical pipeline implemented by integer

cycling, and Figure 6 shows a small date-time

cycling workflow with special behavior at several

cycle points. Both examples rely on Cylc auto-

matically ignoring dependence on tasks prior to

the initial cycle point, for convenience, but exact

start-up dependencies can also be written down.

Cycling sequence configuration is based on ISO

8601 standard date-time recurrence expressions,

with some abbreviations and extensions allowed

in the Cylc context, and analogous expressions

for integer cycling. Of several recurrence forms,

themost commonly used is R[n]/<start-point>/

P<interval> where R means Run and n is an

optional limit on the number of cycles. So,

Figure 4. Noncycling multirun multimember ensemble suite (bottom) generated by automatically replicating

parts of a single-model workflow (top) over parameters r (runs) andm (members). The base tasks initialize a

workspace (init), retrieve inputs (fetch), run a model (model), postprocess outputs (post), generate

products (prod), and tidy up (clean). Arrow symbols in the graph strings represent dependence between

tasks: “init ¼ > fetch” means, by default triggering semantics, that fetch can trigger once init has

successfully completed. Task configuration, represented here by placeholders under the runtime section, is

described in the main text. Cylc passes parameter values to the jobs of parameterized tasks to allow

appropriate specialization, e.g., formodel_c_m2 to identify its run-c andmember-2 specific inputs. Real

ensemble suites typically have many more tasks and a cycling workflow.

Incorporating Scientific Workflows in Computing Research Processes

12 Computing in Science & Engineering



for example, R/^/P1 defines a never-ending

sequence with an integer interval of one,

beginning at the suite initial cycle point ^.

Similarly, R5/^þPT6H/PT6H defines a five-cycle

bounded sequence with a six-hour interval, from

six hours past the initial cycle point. Date-time

arithmetic, with time zones and several special

calendars for climate applications, is supported

by our custom ISO 8601 date-time library.15

To properly distinguish date-time cycling from

real-time scheduling it should be noted that cycle

point values are just labels that distinguish task

instances and anchor dependencies, and may be

used by jobs to set the start date formodel simula-

tions, for example, or to identify the cycle-specific

files being processed. They have no connection to

real time except where (and if) date-time clock

triggers are attached to particular tasks.

Aspects of Cylc workflow configuration not

covered in this paper include conditional trig-

gers; explicit task state triggers (e.g., to depend

on failure of another task); message triggers;

family triggers; clock triggers; inter-workflow

triggers; external triggers (via arbitrary user-sup-

plied plugin functions); configurable retry on fail-

ure; and comprehensive event handling (to send

emails, or execute custom scripts in response to

suite and task events). The Cylc User Guide16

should be consulted for full documentation, and

advice on clean and portable Cylc workflow

design.

SOFTWARE ARCHITECTURE
Unusually for a production NWP workflow

scheduler, Cylc has no central server to man-

age all workflows for all users. Instead, a new

Figure 5. Cylc suite configuration for a linear pipeline “A ¼ > B ¼ > C” implemented with integer cycling.

The workflow ensures that one instance each of A, B, and C runs concurrently and the pipeline is kept full:

when A.1 has finished processing the first dataset, A.2 can start on the second one at the same time as B.1

begins processing the output of A.1, and so on. The recurrence expressions that determine graph cycling

sequences are described in the main text. HereR/^/P1 defines an integer sequence with interval 1, starting at

the suite initial cycle point. The artificial cross-cycle dependence “A[-P1] ¼ > A” ensures that only one

instance of A can run at a time; and similarly B and C. The graphs show five iterations of the workflow, with

cycle point boxes added for clarity on the left. If available compute resource supports more than three

concurrent jobs just remove the cross-cycle dependence and Cylc will run many cycles at once. The task

runtime configuration is omitted, but it would likely involve retrieving datasets by cycle point and processing

them in cycle point-specific shared workspaces under the self-contained suite run directory.
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lightweight ad hoc server program starts to

manage each workflow. Both servers and cli-

ents (jobs, UIs, etc.) run as the user. Any exe-

cutable script or program can be utilized

unmodified as a task job and executed locally

or remotely (via ssh), in the background or via

a workload manager such as PBS. Task configu-

ration is encapsulated transparently in job

scripts, just as the user would do it, but with

some boilerplate code added to trap signals

and errors and send status messages to the

server REST API. Server-polling is also sup-

ported as a job-tracking mechanism, if return

routing for task messages is not allowed. This

simple architecture has low administrative

overheads, a relatively small security footprint

(everything runs as the user), it scales horizon-

tally, and large production systems can be

upgraded to new Cylc versions one workflow

at a time.

Cylc is currently being rearchitected to sup-

port a web UI and integration with site identity

management systems, as shown in Figure 7. This

is a significant change because the current UIs

access the local system in ways that browsers

cannot do. A major new system component is

inspired by and may leverage JupyterHub:17 a

privileged hub that acts as a single point of

access for users, handles authentication, spawns

workflow services (suites) as the user, and prox-

ies network requests to them.

RUNNING WORKFLOWS
Cylc’s user interfaces handle everything from

suite validation to run-time monitoring and con-

trol. The current GUI is shown in Figure 8. The

command line interface makes workflows script-

able and provides advanced intervention capabil-

ity. A single command can, for example, retrigger

every failed task that matches some name and/or

cycle point pattern, or dynamically broadcast

settings and information (via environment varia-

bles) to selected groups of tasks.

Figure 6. Cylc suite configuration for a toy monthly cycling workflow: a warm-cycled atmospheric model

(model) is followed by postprocessing (post), forecast verification (ver), and product generation (prod)

tasks; and to show a little more of what’s possible, a task check compares some verification metric against

products from two cycles earlier. The “R1/^” heading puts the first graph segment in once at the suite initial

cycle point. For the second segment, “R/^/P1M” defines an ongoing monthly sequence starting at the initial

cycle point. And finally, “R2/^þP2M/P1M” generates exactly two cycle points with a one month interval

between them, two months after the initial point. The previous-instance dependence of each model run is

determined by “model[-P1M] ¼ >model” in the main graph string. The task runtime configuration is

omitted.
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Figure 8. Two screenshots, to give an impression of what the current Cylc desktop GUI looks like. On the left,

a detailed view of job ID, batch system, host, timing, etc.; on the right, a live dependency graph view. Different

colors represent different task states: waiting, queued, submitted, running, succeeded, failed, etc. Views can

be filtered by task state and name, and collapsed on families. Users can click on tasks to query, kill, and

retrigger jobs, or view their log files, etc. Another desktop GUI displays summary states for many workflows,

and there is a web interface for quick access to thousands of job logs. Work is under way to replace the

desktop GUIs with a web interface.

Figure 7. Target Cylc-8 architecture supporting a web UI and integration with site identity management. This

is work in progress at the time of writing; some details may change during implementation. The diagram

depicts a shared multiuser multinode (and potentially multicluster) platform. The privileged hub (left) is a

single point of access for users, spawning Cylc workflow services (right) as user processes. A single user may

have suites (and jobs) on multiple hosts. Yellow boxes show the various technologies and protocols involved.

Current Cylc-7 client-server architecture is much like the “user A” box on the right, although the

communications protocols are changing and the UI Server will replace current desktop GUIs.
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Suite server programs can be very long-run-

ning, and sometimes their host servers fail or need

downtime for maintenance. Cylc can select, based

on load metrics, which of a pool of available hosts

to start a new server on, and running servers can

self-migrate to another host if their current host is

marked as condemned. State checkpoints are writ-

ten to a database so that workflows can be

restarted at any point, and at restart job hosts are

queried to infer the fate of jobs that were orphaned

when the server went down (are they still queued

or running, or did they succeed or fail already?)

The performance of suite server programs

depends primarily on the number of tasks per

cycle in the workflow, potentially multiplied by

the number of active cycles if running off the

clock. GUI performance also depends on the num-

ber of tasks displayed, which can be reduced by

restricting it to active tasks, but the graph view

becomes impractical in very large suites as the

Graphviz layout engine begins to struggle.We gen-

erally recommend that single workflows be kept

to a manageable size, perhaps 1000 tasks per

cycle, but with sufficientmemory suite server pro-

grams scale well to tens of thousands of tasks, and

50 000 has been demonstrated. Single-suite NWP

ensemble postprocessing systems are rapidly

approaching 100 000 jobs per cycle, however, and

that currently requires splitting the problem into

multiple suites or bunching multiple jobs into sin-

gle tasks. Planned enhancements should allow

Cylc to scale better to these levels in the future.

Cylc does not have built-in support for cloud

platforms at this stage because usage to date

has been largely confined to traditional HPC.

However, Cylc servers can run in the cloud, and

cloud instances can be used as job hosts (given

ssh access) and even spun up by custom tasks

in the workflow. We will consider built-in sup-

port for this kind of thing in the future as our

user base grows more interested in augmenting

HPC with Cloud computing.

CASE STUDY: NIWA
Early incarnations of NIWA’s 24/7 environmen-

tal forecasting operation in the mid-late 2000s con-

sisted of a data-assimilating regional weather

model driven by a global model feed from the Met

Office, with downstream sea state, storm surge,

tide, and river flow models, and several hundred

associated processing tasks. These ran four times

daily on an aging supercomputer with just an hour

of downtime between cycles. If anything went

wrong, which it frequently did, catching up from

delays by sequential cycling could take 24 hours

or more. Under Cylc from mid-2010, each task job

could run as soon as its own prerequisites were

satisfied, regardless of cycle point or the state of

other tasks. This spectacularly reduced catch-up

time from about 24 hours to about 30 minutes, just

as in the toy example of Figure 2.

Today NIWA’s forecasting system comprises

30 interdependent suites that run “out of the

box” in distinct research, test, and production

environments, so that the research-to-produc-

tion transition is now a matter of straightforward

working practice rather than (as is commonly

the case) a fiendishly difficult porting exercise.

Cylc is also used in other contexts at NIWA

including satellite data processing, climate simu-

lation, and earth system modeling.

CASE STUDY: MET OFFICE
In 2011, the Met Office began a project to

update its workflow capability for HPC-based

forecast application suites. The existing in-house

systems, which were over 15 years old, allowed

weather workflows to be programmed with some

flexibility but they had become difficult to main-

tain, climate workflows were fixed, suites con-

tained many site-specific assumptions, and there

was a leakage of logic between the workflowman-

ager and its applications.

Cylc was trialed against ECMWF’s SMS, identi-

fied as the leading weather workflow scheduler at

the time. The decision to migrate to Cylc in 2012

was driven by the openness of the project, ease of

Python development, portability and generality

(Cylc is entirely agnostic to the applications it man-

ages, for instance), and a strategic desire to unify

the handling of cycling workflows for weather and

climate, aswell as research and operations.

Following themigration, Cylc enabled users to

develop workflows tailored for increasingly com-

plex requirements. A more powerful cycling syn-

tax based on ISO 8601 date-time recurrence

expressions (and integer cycling too) was intro-

duced for flexibility in weather applications, with

alternate calendars for climate simulations.

Robustness was enhanced to ease recovery from

Incorporating Scientific Workflows in Computing Research Processes
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system outages. After migrating to a new HPC in

2014 with minimal effort, Cylc’s job management

subsystem was further developed to handle the

large increase in capacitymore efficiently.

Today, the entire research and production

workload, more or less, of the 460000 core Met

Office HPC is controlled by Cylc, with a pool of ten

moderately spec’d VMs routinely hosting 600–700

suite server programs for several hundred active

users at any one time. Cylc’s robustness has been

put to the test by two major unscheduled power

outages in the computer hall. In both cases, the

workflows were easily brought back up, with no

problems attributed to Cylc.

CASE STUDY: eWATERCYCLE
The eWaterCycle project18,19 at the Netherlands

eScience Center and Delft University of Technology

aimed to demonstrate that a system predicting

flood and drought events ten days in advance,

worldwide and at unprecedented high resolution,

can be constructed fromOpen Source components.

The resulting global hydrological forecasting frame-

work uses Cylc to orchestrate an ensemble of data-

assimilating hydrological models, forced by a

weather forecast ensemble, to predict river dis-

charge and quantify uncertainty in the forecasts.

The eWaterCycle team found Cylc’s cycling work-

flow configuration to be compact, readable, and

powerful. Features such as clock triggers, event trig-

gers, configurable retries, and event handlers

allowed the team to design a system that waits for

its input data to become available in each cycle,

and can automatically retry failed tasks or choose

alternate paths through the workflow. Cylc’s man-

ual intervention capabilities also proved helpful, in

recovering from unusual or unexpected problems.

The current eWaterCycle II project aims to build a

more portable, community multimodel environ-

ment for hydrological experiments and analyses.

To inform this effort, in the small EOSCPilot-funded

“FAIRifying eWaterCycle” project (FAIR: findability,

accessibility, interoperability, and reusability) the

eWaterCycle team created a reproducible version

of their system thatwill be easier for other research-

ers to set up and use. To improve portability the

team relied on Docker containers, and the common

workflow language (CWL)20—a specification for

describing analysis workflows and tools in a way

that is portable and scalable across a variety of soft-

ware and hardware environments. CWL does not

support cyclic workflows, however, so the team

opted to only describe the workflow steps in CWL,

and to continue orchestrating the cycling system

with Cylc. Since CWL is not directly supported by

Cylc, each CWL step is run with the CWL reference

runner. Figure 9 shows the architecture of the FAIRi-

fied eWaterCycle system, andCylc’s place in it.

COMMUNITY ENGAGEMENT

Sites

Cylc’s Open Source license has proved impor-

tant for institutional uptake because it allows sites

to protect their large investment in workflow auto-

mation by getting involved in the project and influ-

encing its direction. On the other hand, the open

development model can be challenging for sites

with a strong security focus and business managers

Figure 9. FAIRified eWaterCycle Cylc suite combines Cylc with use of CWL for a fully reproducible cyclic

workflow. Global data is downloaded each day from various sources, in several steps. The pipeline first

preprocesses the data, followed by a forecast run in which a number of instances of the same model are

combined into an ensemble. In postprocessing, the output of the ensemble is combined into a single

prediction and finally uploaded to an online archive for subsequent visualization and analysis.
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who rightly or wrongly see Open Source software

as risky. To counter this, we can promote the

well-known advantages of Open Source, and ensure

that sound open development practices are fol-

lowed at all times. Altair Engineering now also offers

commercial packaging and support for Cylc along-

side the PBS Professional workloadmanager.

Developers

Cylc has received contributions from about 30

developers to date, although most significantly

from a core of fewer than 10. We manage the code-

base with git, on GitHub, using the straightforward

GitHub Flow model for collaborative development.

Significant changes are discussed and agreed in

GitHub Issues before implementation. Code contri-

butions are developed on feature branches in devel-

oper forks and posted as Pull Requests for review

by the maintainers. If accepted, they are merged to

the repository master branch under a contributor

license agreement. Every commit to the project trig-

gers a large battery of tests with coverage reporting

and comprehensive static code analysis.

Users

Early versions of Cylc were focused on the

new scheduling algorithm for cycling systems,

with aminimal user interface and scant documen-

tation. The project’s evolution since then can be

characterized largely as a process of user- and

usage-driven enhancement in the face of rapidly

evolving workflow automation requirements.

Uptake has been strongest, unsurprisingly,

where an institutional decision was made to use

Cylc, and where the complexity of the work

being done makes automation an obvious neces-

sity. Elsewhere, we have observed that it can be

difficult to wean some people from their manual

and ad hoc scripted working practices, but we

have seen rapid increases in productivity and in

the nature of work that is possible when users

do take the plunge.

Feedback, bug reports, and feature requests

tend to come directly to development team mem-

bers at the main Cylc sites, or via GitHub Issues.

We also have a traditional mail forum for release

announcements and remote users, but we are

looking at ways to replace that and centralize all

discussions. At the largest Cylc site (Met Office) a

community of practice known as the Suites Guild

has arisen independently of the development

team, for user-driven discussion of workflow

design and other topics. A Suite Design working

group has also been convened within the interna-

tional Unified Model Partnership’s Technical Infra-

structure Programme, with quarterly meetings

focused largely on the collaborative development

of site-portable weather and climate workflows.

SUMMARY AND LESSONS LEARNED
We have described a new way of managing

cyclic workflows as potentially never-ending

non-cycling graphs of repeating tasks. With no

global loop to artificially constrain the workflow,

cycles can interleave naturally for greater sched-

uling efficiency during “off the clock” operation.

The Cylc Workflow Engine, which implements

this algorithm, has been widely adopted for

weather, climate, and environmental prediction

workflows7. Cylc drives large-scale production

forecasting systems at the Met Office and interna-

tionally across the Unified Model Partnership.

These same sites, and the Center of Excellence

in Weather and Climate Simulation in Europe9,

have funded the Cylc project to date, and deep

integration with critical forecasting infrastructure

provides assurance of continued investment.

Workflow automation requirements continue to

expand and evolve, and there is now more to do

on the Cylc project than ever before (see FUTURE

DIRECTIONS, for example). Software that is still in

use will never really be finished!

Cylc’s Open Source license is crucial to many

sites. It allows them to participate fully in the

project and to influence its strategic direction.

For those that would rather not rely solely on in-

house expertise and community support, how-

ever, Altair Engineering offers commercial pack-

aging and support for Cylc alongside the PBS

Professional workload manager, with additional

tools to help manage large production systems.

We have found that it is important to listen to

users who run real-world workflows. Communi-

cating effectively with diverse and widely distrib-

uted groups remains a challenge, however, and

we are currently reviewing our use of email,

chat, discussion, and development platforms.

One problem brought to our attention recently

is that a tendency to emphasize new develop-

ments and advanced usage can lead to an
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impression of complexity that, warranted or not,

may be off-putting to new users with more mod-

est requirements. In fact, Cylc remains very easy

to use for smaller workflows, but it seems we

need to put more effort into showing how Cylc

scales down as well as up.

Users may find it a difficult leap from tutorial

examples to complex real-world workflows. The

UM Partnership therefore maintains a large online

repository of suites that can be shared and

adapted by others. Groups working in different

areas can often help each other by cross-pollina-

tion too. Discussions within the Suite Design work-

ing group of the Unified Model Partnership and

the Met Office Suites Guild have been informative.

For instance, we have seen that common style,

design, and practice is helpful when constructing,

maintaining, or supporting complex workflows.

This motivated the addition of a large “Suite

Design” appendix to the Cylc User Guide16. Porta-

ble workflows that run “out of the box” at different

sites or on different platforms have also been a

hot topic. These can save huge amounts of dupli-

cated effort but can be difficult to achieve when

close collaboration is needed, porting best prac-

tice is somewhat subjective, and workflows evolve

quickly as the science progresses.

Finally, true interoperability with other work-

flow management tools is not (currently) feasible

if your raison d’être is cycling—but in principle

we are interested in pursuing this in the future.

FUTURE DIRECTIONS
Our immediate goals are to port Cylc to Python

3, move to standard Python packaging, and

replace the current simple client-server architec-

ture and native desktop GUIs with a new web

architecture and UI as described above. Work on

this is well under way at the time of writing. We

expect to make the first official Cylc-8 release at

the end of 2019. Progress can be followed at the

Cylc organization onGitHub2.

We will then target performance for antici-

pated increases in workflow size and complex-

ity into the exascale computing era. Plans

include a Python API for advanced workflow

configuration and better modularity, a data-

modeling interface as an alternative to abstract

dependencies, automatic job batching, and a

lightweight event-driven scheduler kernel that

can be used inside tasks to make hierarchical

workflows more practical.

As noted in the eWaterCycle Case Study above,

Cylc does not support CWL20 because CWL does

not understand cycling, and that is fundamental to

our primary use cases. However, we may consider

collaborating to extend CWL in the future if the

community is interested.
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