
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Reinforcement
Learning for Spiking
Neural Networks
Recurrent Reinforcement Learning with Surrogate
Gradients

Master Thesis Control and Simulations
Korneel Van den Berghe

Reinforcement
Learning for Spiking

Neural Networks
Recurrent Reinforcement Learning with

Surrogate Gradients

by

Korneel Van den Berghe

Student Name Student Number

Korneel Van den Berghe 5022878

Instructors: G.C.H.E. de Croon, S. Stroobants
Project Duration: March, 2024 - October, 2024
Faculty: Faculty of Aerospace Engineering, Delft

Cover: Cover image generated by pollinations.ai with prompt: Can you
create a figure that displays the interconnection between rein-
forcement learning and spiking neural networks aiming to repre-
sent the temporal dynamics and temporal learning capabilities?

Preface

I began my master’s degree in September 2022. Although I had always told myself I would take a gap
year between my bachelor’s and master’s to go surfing, I couldn’t gather the courage to put my studies
on hold to pursue this dream. This left me with a strange feeling—I no longer was fully enjoying my
studies, yet I couldn’t imagine doing anything else.

Things changed after receiving an email announcing the inauguration of Professor Guido de Croon. I
had never attended an event such as this, nor thought I would ever attend one in the foreseen future, so
I decided to go. Sitting in TU Delft’s Aula, I found myself to experience an almost childlike excitement
as Guido demonstrated the bio-inspired optical flow based drone landing. A new wave of curiosity and
enthusiasm struck me.

Since then, I’ve been fortunate to explore my interests with incredible support along the way.

Firstly, I want to thank Professor Guido de Croon for his endless enthusiasm and guidance. Beyond
supervising this thesis project, he supported me during my time as visiting researcher at Harvard Uni-
versity and helped me publish a research poster at ICNCE 2024.

I also owe gratitude to Stein Stroobants for his daily supervision, which allowed me to present this
work. Thanks to his guidance, I’ve been able to navigate the world of neuromorphics and research.
His kindness and helpfulness have made this thesis—and the projects leading up to it—a truly exciting
experience.

I thank Professor Vijay Janapa Reddi for his supervision at the Edge Computing Lab, teaching me how
to critically evaluate my work, refine my research focus and prepare for a future in academia. I extend
my thanks to Erik van der Horst, who taught me flight testing performance and debugging real robotics.

To my peers at the Edge Computing Lab, for welcoming me into the lab and making my time in Boston
a truly unforgettable experience, I am grateful. Similarly, to my MAVLab colleagues, with whom I spent
countless late nights in the Cyberzoo, I thank the help, the laughter and the good pizza.

I thank my friends in Delft for standing by me over the past years, with whom I’ve made incredible
memories—from coffee breaks to travelling the world together.

Lastly, I want to thank my family for supporting me in anything I do, have done and will do in the future.

I am lucky to have met all of you on my path.

Thank you.

Korneel Van den Berghe
Delft, December 2024

i

Summary

Reinforcement learning (RL) has emerged as a promising approach for achieving intelligence through
experience, rather than relying on fitting models to datasets. This is particularly relevant in robotic
applications, where learning from experience is crucial for developing true intelligence and enabling
continuous training of robots in real-world deployments. However, current RL methods often assume
the framework of Markov Decision Processes (MDPs), which may not align with real-world scenarios
where rich temporal information is involved. To adapt to this, a time-history is typically appended to the
state observations, but this introduces two key challenges. First, it increases computational demands
due to the expanded input dimensions. Second, it requires prior knowledge of the specific time-history
needed to effectively solve a task. Another challenge is the high computational complexity of artificial
neural networks. Deploying these networks often necessitates expensive and heavy hardware, making
them less energy efficient and limiting the scope of AI applications in robotics. Neuromorphic computing
has emerged as a brain-inspired computing paradigm, which promises large energy efficiency gains.
Spiking neural networks (SNNs) are a type of neural networks which use brain-inspired spiking neuron
models rather than conventional activation functions. While this spiking behavior is largely responsible
for their energy efficiency, they introduce a number of challenges while training. SNNs, inspired by
the brain, use spiking neuron models to mimic biological neural communication. Unlike traditional
artificial neural networks, which transmit information continuously, SNNs encode information in discrete
spikes, akin to the electrical impulses found in biological systems. This design not only enhances
the computational capabilities of individual neurons but also improves overall energy efficiency. By
leveraging the timing and frequency of spikes, SNNs can process information more efficiently, making
them particularly well-suited for resource-constrained applications like drone control, where energy
consumption is a critical factor.

This report addresses temporal learning in RL and aims to establish an understanding of the effect
of hyperparameters in spiking neural networks in an RL context. Next, a new reinforcement learning
method is introduced. A method that integrates several RL concepts to enable the temporal training
of deep spiking neural networks. An asymmetric actor-critic setup is used to train a spiking actor,
but using a non-spiking critic for increased stability. By utilizing a privileged teacher actor, a neural
network which can solve the task at hand with state information which is only available in simulation,
one can roll in a spiking actor smoothly. The main advantage is that the sequences used to teach the
spiking actor are now of usable length to learn temporal relations. Especially in situations where the
length of an interaction is determined by the ability of the controller to actually solve the task, such as
stabilization tasks. The method is specifically applied to an end-to-end drone control task. The task
involves processing input data, including position, velocity, orientation, and angular velocity information,
and generating the desired RPM settings for each motor.

In addition to proposing this method, the report compares two offline RL approaches: Twin Delayed
Deep Deterministic Policy Gradient (TD3) with Behavioral Cloning (BC) and native BC, both of which
use existing flight data. Finally, a network is trained using online TD3, which requires explicit state
history at the expense of energy efficiency, reflecting the current approach of training SNN using RL.
With the training framework in place, the potential of neuromorphic spiking neural networks (SNNs) is
explored in detail. This analysis explores how SNNs can be integrated into the proposed RL framework,
offering a promising solution to both computational complexity and energy efficiency challenges in drone
control systems. It is found that the surrogate gradient settings, used to backpropagate through the
network, plays an important role in RL. While this setting controls the scope of the weights that is
updated, this comes at the cost of noisy training. Where in supervised training methods, injecting noise
in training is usually undesirable, in RL, this can act as an exploration mechanism.

The results show that the proposed method, TD3+BC+JSRL, which combines elements from online
TD3 and offline TD3+BC and bridges them using Jump-Start RL (JSRL), outperforms other approaches
in terms of computational efficiency—measured using the NeuroBench benchmarking suite—and over-

ii

iii

all performance, as indicated by the total return achieved during flight. The spiking neural network is
compared to existing solutions. The comparison reveals that while the spiking network achieves simi-
lar performance to the non-spiking alternative, it offers improved energy efficiency, albeit with reduced
reliability.

Finally, the ability to bridge the reality gap is analyzed, as visualized on Figure 1. The trained network
is deployed on the CrazyFlie drone. This 27 grams micro aerial vehicle serves as an excellent testbed
for the proposed solution due to its restrained computational capabilities and its fast dynamics due to
its size. It is found that the controller can successfully control the drone in hover and during maneuvers.
The network, is then deployed on three different CrazyFlie setup, varying the propellers and motors, all
of which can successfully fly.

(a) The controller can successfully navigate in a figure 8 in simulation.
(b) When deployed on the real CrazyFlie, the spiking network can

successfully navigate circles.

Figure 1: Spiking neural networks trained with reinforcement learning can be deployed in the real world. On Figure 1a, the
drone is flying in simulation, tracking an eight figure. On the right Figure 1b, the network is deployed on the Crazyflie and

demonstrates flight in the real world.

Contents

Preface i

Summary ii

Nomenclature vi

1 Introduction 1

2 Neuromorphic Computing 2
2.1 Spiking Neural Networks . 2

2.1.1 Terminology . 2
2.1.2 Neuron Models . 2
2.1.3 Input Encoding and Output Decoding . 4

2.2 Training Spiking Neural Networks . 4
2.2.1 Local Learning Rules . 4
2.2.2 ANN to SNN Conversion . 5
2.2.3 Backpropagation in SNN . 5

2.3 Neuromorphic Hardware . 5
2.3.1 Neuromorphic Accelerators . 6
2.3.2 Event Cameras . 6

2.4 Neuromorphics in Robotics . 6

3 Reinforcement Learning 8
3.1 The Basics of Reinforcement Learning . 8

3.1.1 Online vs Offline Reinforcement Learning . 8
3.1.2 On-Policy and Off-Policy Learning . 9
3.1.3 Value-based and Policy-based Methods . 9

3.2 Introduction to Deep Reinforcement Learning Theory and Algorithms 10
3.2.1 Exact Solution Methods . 10
3.2.2 Approximate Solution Methods: Value-based . 12
3.2.3 Approximate Solution Methods: Policy-based . 13

3.3 Reinforcement Learning for Partially Observable Environments 17
3.4 Reinforcement Learning for Spiking Neural Networks . 17

3.4.1 Conventional Reinforcement Learning . 17
3.4.2 Biologically Inspired Reinforcement Learning . 18

4 Scientific Article 19
4.1 Additional Work . 38

4.1.1 Neuron Model Selection . 38
4.1.2 Parallelizable Simulator . 38
4.1.3 Soft Actor-Critic . 39
4.1.4 Evolutionary Learning . 39
4.1.5 Open-Source Code . 40

5 Conclusion 42

References 43

A Appendix 48
A.1 Using A2C for spiking neural networks . 48
A.2 Deploying SNN on the Bebop Parrot 2 . 58

iv

List of Figures

1 Spiking neural networks trained with reinforcement learning can be deployed in the real
world. On Figure 1a, the drone is flying in simulation, tracking an eight figure. On the
right Figure 1b, the network is deployed on the Crazyflie and demonstrates flight in the
real world. iii

2.1 As can be seen on the figures, second order neurons allow for effects of inputs beyond
its spike release, due to the leaking synaptic current. 3

2.2 The step function, surrogate function and its gradient. 5
2.3 Standard camera output compared to event camera output. Where standard cameras

capture frames at fixed time intervals, event cameras continuously stream changing pixel
brightness. Therefore, the event camera does not suffer from motion blur, and only
transmits motion data. The figure is taken from [45], and an animated version can be
found on www.youtube.com/watch?v=LauQ6LWTkxM . 6

3.1 Diagram explaining the basic structure of most reinforcement learning algorithms. . . . 9
3.2 The values of the grid world example with a penalty of -1 for each step taken, a discount

factor of 0.9 is visualized. 11

4.1 Comparison of First-Order and Second-Order Neuron Models in Spiking Neural Net-
works for Drone Control. The first-order neuron model demonstrates higher loss com-
pared to the second-order neuron model. This indicates that the second-order model is
better at learning the mapping from state information to motor commands, resulting in
more effective control of the drone. 38

4.2 Evolutionary strategies (CEM-RL[54]) rapidly converge to a reasonable but suboptimal
performance. 40

v

Nomenclature

Abbreviations
Abbreviation Definition

A2C Advantage Actor-Critic
A3C Asynchronous Advantage Actor-Critic
ACER Actor-Critic with Experience Replay
AI Artificial Intelligence
ANN Artificial Neural Network
BC Behavioral Cloning
BPTT Backpropgation Through Time
DDPG Deep Deterministic Policy Gradient
DDQN Double Q-Learning
DQN Deep Q-Learning
DVS Dynamic Vision Sensor
ES Evolutionary Strategy
eProp Eligibility Propagation
IMU Inertial Measurement Unit
JSRL Jump-Start Reinforcement Learning
LIF Leaky-Integrate and Fire
MAV Micro Aerial Vehicle
MDP Markov Decision Process
PGQ Policy Gradient with Q-learning
PPO Proximal Policy Optimization
RDPG Recurrent Deterministic Policy Gradient
RL Reinforcement Learning
RPM Revolutions Per Minute
R-STDP Reward-modulated Spike-Timing-Dependent Plas-

ticity
SAC Soft Actor-Critic
SARSA State-Action-Reward-State-Action
SNN Spiking Neural Network
STDP Spike-Timing-Dependent Plasticity
TD3 Twin Delayed DDPG
TRPO Trust Region Policy Optimization
UAV Unmanned Aerial Vehicle

Symbols
Symbol Definition

a Action
A Advantage function
A Set of all actions
b(s) Baseline in advantage calculation
DKL Kullback–Leibler divergence
ĝ Sample-based estimate of the policy gradient
H Time horizon of a task

vi

List of Figures vii

Symbol Definition

H(π) Entropy of policy, π
Iin Input Current
Isyn Synaptic Current
m number of samples
Q(s, a) Q-value function, Q-value at state, s, for action, a
R Reset Mechanism
R(s′, a, s) Immediate reward of the transition
R(τ) Return of trajectory τ
s Spike in context of neuromorphics, state in context

of RL
s′ Next state
S Set of all states
U Membrane Potential
Uthr Threshold Membrane Potential
U(θ) Loss as function of θ
V (s) Value function, value at state, s

α Synaptic Current Decay Factor
β Membrane Potential Decay Factor
ϵ Small threshold
γ Discount factor for return calculation
π Policy
ϕ Critic parameters
θ Actor or policy parameters
τ Trajectory, a sequence of state, action, pars
ζ Weighing factor

1
Introduction

The combination of AI and robotics has given rise to a new era of embodied intelligence, where ma-
chines are able to autonomously perceive, reason, and control their actions. Among the various ap-
proaches of AI, reinforcement learning (RL) has emerged as a very strong method for teaching agents
optimal behaviors through interactions with an environment. It has demonstrated capabilities beyond
human performance in solving tasks from strategic games, such as Go [65], up to control problems in
robotics [32]. However, the computational requirement and energy inefficiency of traditional artificial
neural networks (ANNs) pose vital bottlenecks for practical implementations, especially in resource-
constrained scenarios such as aerial robotics.

Neuromorphic computing potentially provides a powerful means of overcoming these challenges by
emulating the efficient and flexible mechanisms of information processing in the brain.

Spiking neural networks (SNNs), a critical component of neuromorphic architectures, mimic the unique
spiking patterns of biological neurons. This mimicry enables energy-efficient processing and tempo-
ral dynamics that are well-suited for real-world robotic applications. However, integrating SNNs into
RL frameworks poses unique challenges. These include the difficulties of training networks with non-
differentiable spike functions and leveraging their temporal properties effectively. Existing approaches
omit the temporal properties to leverage existing frameworks [10, 11, 74]. This thesis aims at these
challenges by developing new methods of applying RL to SNNs, with a focus on the potentials of SNNs
in providing end-to-end control in robotics tasks that rely clearly on temporal learning and are subject to
severe energy efficiency constraints. The approach entails a new framework for the training of SNNs
for drone control with both offline and online RL. The suggested framework utilizes an asymmetric actor-
critic architecture that merges the stability property of non-spiking networks with the energy efficiency
offered by spiking actors.

The contributions of this thesis are threefold. First, it makes a comprehensive analysis of the role of
hyperparameters in SNNs in the context of RL and points out the trade-offs between stability, energy
efficiency, and exploration. A novel hybrid reinforcement learning approach is introduced to reconcile
the conventional and neuromorphic paradigms of learning. Finally, it confirms the proposed techniques
with extensive experiments on the Crazyflie drone platform that also demonstrates the feasibility of em-
ploying SNN-based controllers in simulated and real environments. This work tries to advance the
current state of the art in reinforcement learning for SNNs and open a pathway toward the general
adoption of neuromorphic approaches in autonomous systems. Combining the convergence of bio-
logical inspiration and engineering principles helps to push forward sustainable, intelligent machines,
which can operate effectively under more complex and dynamic environments.

First, an introduction to neuromorphics is described in chapter 2. This is followed by an overview of
current RL approaches in chapter 3. This chapter serves as a primer to the theory and reasoning of the
method proposed in chapter 4, which includes the scientific paper. Finally, three additional experiments
are described in section 4.1.

1

2
Neuromorphic Computing

Modern computer architecture is largely based on the von Neumann architecture. Here, the processing
and memory are separated into distinct blocks, requiring significant data transfer. This data transfer
is largely responsible for the power consumption in modern computing [3]. Neuromorphic engineering
originally aimed at building processing systems that emulate the bio-physics of neurons and synapses
[41], bringing the compute and memory closer together. Today, the exact definition of neuromorphic
computing remains a topic of debate within the neuromorphic community. However, in general, it en-
compasses either time-, event- or data-driven computation. For this work, we will focus on spiking
neural networks (SNNs).

2.1. Spiking Neural Networks
Spiking neural networks (SNNs) are often referred to as the third generation of neural networks [37].
Unlike conventional artificial neural networks (ANNs), which communicate information through contin-
uous values between nodes, SNNs convey information using discrete spikes or pulses over time. This
distinction introduces unique concepts for modeling and learning in SNNs.

2.1.1. Terminology
Early research into these networks has largely come from the neuroscience community. Therefore,
the terminology used in neuromorphic research often differs slightly from what is found in conventional
machine learning research. For starters, within neuromorphics, the term synapse is often used to
describe a connection between two neurons. A synapse connects a pre- and post-synaptic neuron,
and transmits current from one neuron to the other.

In SNN, neurons are modelled as spiking units that emit discrete voltage spikes, or action potentials
when their membrane potentials reach a threshold. This membrane integrates inputs from other neu-
rons that are connected to the current neuron through synapses, as membrane potential. and transmits
a current spike from one neuron to the other. The synapses have weights that determine the magnitude
of influence a presynaptic spike has on increasing or decreasing the postsynaptic neuron’s membrane
potential.

2.1.2. Neuron Models
Where the learning of non-linear functions in ANN is enabled by continuous activation functions, SNN
utilizes brain-inspired neuron models. These neuron models are usually described by a set of differen-
tial equations, where a membrane potential gets charged with incoming current and where the neuron
outputs a spike in case the membrane potential exceeds a threshold. Many different neuron models
have been demonstrated, ranging from computationally heavy accurate neuroscientific models, to less
complex models that are commonly used in robotic and edge computing applications.

One popular and accurate neuron model is the Hodgkin-Huxley model, described in 1952 [31]. This
model was originally developed to describe the mechanism for propagation of action potentials found

2

2.1. Spiking Neural Networks 3

in a squid giant axon. It was rewarded with the 1963 Nobel Prize in Physiology or Medicine. This model
closely resembled the observations from the squid giant axon, and was modelled with a simple electric
circuit. However, this model is computationally complex to simulate and therefore is not commonly
used in practical SNNs.

A widely used model is the Leaky-Integrate and Fire model (LIF). The LIF neuron is a first-order neuron
model where the input current, Iin directly charges the membrane potential, U . This potential energy
leaks over time at a rate β, the leakage parameter. When the membrane potential exceeds a threshold,
Uthr, the neuron spikes and the membrane potential is reset. Several reset mechanisms are widely
used, including soft reset, where the threshold is subtracted from the membrane potential, or hard
reset, where the membrane potential is reset to zero after a spike. The charging and resetting of the
membrane potential can be modeled using the following equation:

U [t+ 1] = βU [t] + Iin[t+ 1]−R · Uthr (2.1)

Where R is 1 whenever the membrane potential exceeds the threshold and 0 otherwise. The spiking
behavior can be modeled as:

s =

{
1, if U [t+ 1] > thr

0, otherwise
(2.2)

Next, second order neuron models such as synaptic models account for synaptic conductance. The
synaptic current is charged by the input current, which subsequently charges the membrane potential,
after which similar behavior as the LIF can be observed. Concretely, the following equations model
these dynamics.

Isyn[t+ 1] = αIsyn[t] + Iin[t+ 1] (2.3)
U [t+ 1] = βU [t] + Isyn[t+ 1]−RUthr (2.4)

The spiking behavior for this neuron is the same as the LIF neuron described above. Thanks to the
decaying current, the second order model is able to learn longer time horizons.

To illustrate the effect of the decaying synaptic current, a simulation of both neurons is provided on
Figure 2.1. An important difference between the first and second order neurons is the fact that the
maximum membrane potential after an incoming spike occurs at the exact time of the incoming spike
for first order models, while for second order models, this maximum is observed with a delay. Therefore,
the effect of an incoming spike can accurately be timed to affect the output, where first order models
will only indirectly carry information through time, due to the decay in membrane potential.

(a) Response of a LIF neuron to an incoming spike train. (b) Response of a Synaptic neuron to an incoming spike train.

Figure 2.1: As can be seen on the figures, second order neurons allow for effects of inputs beyond its spike release, due to the
leaking synaptic current.

2.2. Training Spiking Neural Networks 4

2.1.3. Input Encoding and Output Decoding
Information processing within spiking neural networks is done through communication of spikes. While
SNNs can process continuous values as incoming current, direct encoding, one often encodes the
continuous values to spike trains and subsequently decodes the output spikes to continuous readings
for further processing. This allows us to use neuromorphic accelerators that are optimized for spike
information transfer. Encoding information to spikes can lead to significant energy efficiency gains as
one would be able to exploit the full capabilities of popular neuromorphic accelerators, which often do
not support continuous value information transfer. Various methods for spike encoding and decoding
have been proposed [13, 70, 33, 2].

Rate Coding
Rate coding techniques are often employed in SNNs, where a continuous value is transformed into a
sequence of spikes or a spike train. In this method, higher frequencies of spikes correspond to higher
continuous values. One of the key advantages of this approach is its error tolerance. Even if a single
spike is missing or misplaced in the spike train, it doesn’t necessarily compromise the overall signature
or pattern of the complete spike train. This resilience to minor errors can enhance the robustness and
reliability of the network [17].

Temporal Coding
Temporal encoding is another method utilized in SNNs, where continuous values are transformed into
specific spike timings. In this approach, the focus shifts from the quantity of spikes to the precise timing
of a spike in a neuron. This shift in focus results in fewer spikes being required for data encoding,
thereby making this method more energy-efficient. Additionally, temporal encoding tends to outpace
rate coding in terms of speed. This is because it doesn’t necessitate waiting for the completion of an
entire spike train to identify the encoded value. Instead, the timing of individual spikes can provide
immediate information, leading to faster data processing [17]. Furthermore, the usage of exact spike
timing opens up another dimension of temporal processing.

Population Coding
Population coding is also widely used in SNNs [80]. In this approach, the collective activity of a group
of neurons is used to represent an input signal. This method is advantageous due to its speed, as
it allows for immediate encoding or decoding based on the spikes occurring at a specific time step.
However, the range and precision of the encoding and decoding processes are reliant on the number
of neurons available to represent continuous information. As such, this method may necessitate the
use of large hidden layers to effectively capture and represent the complexity of the input data. This
could potentially increase the computational complexity of the network, but it also allows for a more
robust and detailed representation of the input signal.

2.2. Training Spiking Neural Networks
The discrete nature of the spikes that are outputted by the neurons raises an additional challenge.
Therefore, the backpropagation algorithm [58], which has been central in the training of ANN, is not
directly applicable to SNN. Alternative training methods have been explored, which can roughly be
divided in three categories.

2.2.1. Local Learning Rules
First, there are local learning rules. Local learning rules change individual synapses, which are the
connections between two neurons, based on a local rule. Often these rules are based on a principle
originating from neuroscience research [5]. Hebbian learning [29] states that repeatedly and persis-
tently co-active neurons should increase their connective strengths as a means of storing a memory
trace, often explained by the phrase: those who fire together, wire together. Later, this rule evolved
to what is currently known as spike-timing-dependent plasticity (STDP) [66]. STDP builds on top of
Hebbian learning by introducing spike timing. When a pre-synaptic neuron spikes before the post-
synaptic neuron spikes, the strength of the synapse is increased. However, when the post-synaptic

2.3. Neuromorphic Hardware 5

neuron spikes before the pre-synaptic neuron, the strength should be decreased. Other methods such
as three-factor rules [19, 23, 60, 4] build further on these ideas. They introduce a third factor, such
as the timing between the pre- and post-synaptic spike timing or an eligibility trace, which acts as an
additional factor in the calculation of the weight change.

2.2.2. ANN to SNN Conversion
While backpropagation and local learning rules allow training SNNs directly, another common approach
is to convert pre-trained artificial neural networks (ANNs) to spiking neural networks (SNNs) [53, 9, 16,
57]. This conversion process leverages techniques to train ANN, while taking advantage of SNN spe-
cific properties such as event-based communication between layers. A pre-trained ANN is converted
by translating its weights and activations into a functional SNN. The continuous-valued activations are
encoded into spike rates or spike timing for the SNN. Common encoding methods include rate coding
where firing rates are proportional to activations, threshold coding where activations are converted to
spike times by thresholding, and latency optimization which finds spike times to minimize latency.

2.2.3. Backpropagation in SNN
Third, there is backpropagation for SNN. Arguably the most popular backpropagation method for SNNs
is the surrogate gradient technique [46]. Discrete spikes are used in the forward pass, but one approx-
imates the spike function with a smooth, differentiable surrogate for the purposes of backpropagation.
Typically, a smoothed version of the step function is used, such as the sigmoid or tanh functions. Where
the spiking behavior of the neurons is governed by a step function that has a zero gradient for all values
except the transition value, where it has an infinite gradient, Figure 2.2 shows that using a sigmoid as
an approximation for this step function results in a bounded gradient.

Figure 2.2: The step function, surrogate function and its gradient.

Eligibility propagation (eProp) [4], propagates the error signal from a loss function throughout the net-
work. It accumulates effects of spiking activity over a temporal window. This allows to approximate the
behavior of backpropagation through time (BPTT) and allows the network to maintain memory.

2.3. Neuromorphic Hardware
Next to the algorithmic developments, neuromorphic hardware has been proposed as well. This ranges
from bio-inspired vision sensors [38] to accelerators for spiking neural networks.

2.4. Neuromorphics in Robotics 6

2.3.1. Neuromorphic Accelerators
Neuromorphic accelerators implement neuron dynamics and synapses in dedicated analog, digital or
mixed-signal circuits. Furthermore, accelerators exist for a wide range of scales to serve a wide range
of applications. This ranges from cloud services, such as multi-chip platforms like Loihi [14] and SpiN-
Naker [40], to embedded sensing intelligent systems, such as Speck [67] and SNP [34]. While most
neuromorphic accelerators focus on large energy improvement gains, by leveraging the sparse and,
often binary, event-based communication in neuromorphic algorithms.

2.3.2. Event Cameras
Sensors that take inspiration from nature and work on an event-based principle allow us to incorporate
them with neuromorphic algorithms and accelerators, while taking full advantage of the spiking proper-
ties. Proposed sensors range from sound sensors [62] to vision sensors [22]. For the purpose of this
literature review, the focus is put on event-based vision sensors, which are most applicable to aerial
robotics.

Event cameras are neuromorphic vision sensors, which has been a topic of research since the intro-
duction of the integrated silicon retina by Misha Mahowald and Carver Mead [38]. They offer several
advantages over conventional vision sensors. First, they operate continuously rather than frame based,
as shown on Figure 2.3. Events are captured asynchronously, due to per-pixel brightness changes. As
events are caused by per-pixel brightness changes, a sparse output is generated. Pixels that do not
change, do not cause an event. The sensor tends to be very sensitive to brightness changes, offering a
wide dynamic range, under a wide range of lighting conditions. Furthermore, the asynchronous nature
of event-based vision allows a high temporal resolution compared to conventional sensors.
To truly take advantage of the asynchronous nature of event-based vision, novel algorithms and ar-
chitectures have to be explored. However, their low-latency, low-power and high dynamic range ca-
pabilities have shown to be attractive for a wide range of applications [39, 75, 78, 77, 7]. Due to the
high costs associated with event cameras, event based vision simulators have been developed, which
simulate the inherently different workings of event cameras [55].

Figure 2.3: Standard camera output compared to event camera output. Where standard cameras capture frames at fixed time
intervals, event cameras continuously stream changing pixel brightness. Therefore, the event camera does not suffer from

motion blur, and only transmits motion data. The figure is taken from [45], and an animated version can be found on
www.youtube.com/watch?v=LauQ6LWTkxM

2.4. Neuromorphics in Robotics
The energy efficient and dynamic properties of neuromorphics have gained the attention of the robotics
community early on, trying to push the boundaries of embodied intelligence.

For extreme edge cases, such as micro aerial vehicles (MAVs) weight, energy and latency are major

www.youtube.com/watch?v=LauQ6LWTkxM

2.4. Neuromorphics in Robotics 7

concerns. Efficient compute leads to reduced battery requirements, which in turn leads to a decreased
weight. Neuromorphics have been demonstrated for control of UAVs [69, 68, 75, 50]. It has been
shown that basic controllers such as PID controllers can be made neuromorphic and can be used for
onboard attitude control [69], this controller was not trained, but manually tuned. Next to controlling
MAVs, it is possible to estimate the attitude of an MAVwith an SNN in highly dynamic movements, using
IMU data and an SNN with only 150 neurons [68], an impressive display of the temporal capabilities
of SNN when one constraints and exploits the dynamics of the neuron models. This network was
trained using a small dataset obtained with real MAVs. They were able to deploy the network on the
Loihi [14] processor, paving the way towards energy-efficient, fully autonomous control of quadrotors.
Establishing neuromorphic perception and control was demonstrated on a quadrotor using the Loihi
[50]. The perception was based on optical flow and was trained in a self-supervised manner.

Other platforms have been demonstrated [6, 7, 8, 42]. Neuromorphic PID control has been demon-
strated on blimps [8], where the SNN was trained rather than manually tuned. SNN has been used
for lane-keeping tasks [7], where the controller was trained directly with R-STDP or indirectly, using
conversion from an ANN. Other work explored autonomous racing, using techniques such as imitation
learning or evolutionary learning for training [52, 81].

Next to SNN based planning, perception and control, neuromorphic sensors, such as event cameras,
have found widespread adaptation in more conventional robotics as well [39, 22].

3
Reinforcement Learning

Finding the optimal set of parameters for a neural network for a specific task, requires numerous weight
updates, which can be executed using algorithms such as backpropagation, local learning rules etc. In
supervised learning settings, the error signal, which dictates the direction of a weight update, can easily
be computed from datasets. In RL, however, there is no single correct output at each instance. The
goal-driven nature leaves ample different solutions and approaches to achieve the final goal. Therefore,
it is hard to compute a loss for each individual action, i.e. prediction. Numerous different methods to
compute individual loss signals for each action have been proposed in RL. In this chapter, the basics
of RL, an intuition behind the most popular algorithms, and finally previous work on RL for SNNs is
discussed.

3.1. The Basics of Reinforcement Learning
Learning from experience is often desired when trying to train neural networks in situations where
no clear examples exist. Popular applications for RL therefore include robotics, finance and natural
language processing. The ability to learn from interaction with an environment, however, also opens
up new challenges.

Most reinforcement learning algorithms use the logic described in Figure 3.1. An agent, a neural net-
work in deep reinforcement learning, interacts with an environment by performing an action. The envi-
ronment returns the next state, which subsequently is used as the input for the agent, and it returns a
reward or penalty, which is used as an error signal to guide our agent during the learning process. The
sequence of interactions, from start until the episode terminates, is called a rollout. During the learning
process, one balances exploring the environment, by taking random actions or stochastic actions, and
exploiting its skill, by following the agents’ policy. The policy of an RL algorithm reflects the part of the
agent that decides what next action to take, it is the part which will finally be deployed. Balancing ex-
ploitation and exploration allows the agent to not get stuck in local minima. All experiences are stored
in a buffer, a data structure which holds the observations seen by the agent, the actions taken by the
agent, the rewards received, and info about terminal conditions.

Reinforcement learning algorithms can be distinguished in several ways. Often, one distinguishes
between on-policy and off-policy, one may also distinguish between value based methods and policy
based methods, or offline and online reinforcement learning.

3.1.1. Online vs Offline Reinforcement Learning
When thinking about reinforcement learning, one usually imagines the scenario where the agent learns
by directly interacting with a simulator or even with the real world. This setup, also displayed in Fig-
ure 3.1, refers to online reinforcement learning. However, alternatively, when demonstrations from an
expert are available, one would like to exploit this data. Rather than using supervised learning, lever-
aging reward information enables learning the quality of state-action pairs in the dataset. This would
be the offline reinforcement learning setup. It has been shown that offline reinforcement learning can

8

3.1. The Basics of Reinforcement Learning 9

Figure 3.1: Diagram explaining the basic structure of most reinforcement learning algorithms.

successfully surpass the performance of the demonstrating dataset [21].

3.1.2. On-Policy and Off-Policy Learning
Within online reinforcement learning, there are, again, various ways to distinguish algorithms. Often,
one performs several rollouts with the environment before performing an optimization step. One has
the option to decide to keep rollouts gathered with a previous iteration of our policy, or to clear the
buffer after every optimization step and fill the buffer with rollouts gathered only with our current policy.
Referring to off-policy and on-policy RL respectively.

There are several advantages to on-policy algorithms. First, they tend to be more stable [71, 26]. Next,
they are often easier to implement, requiring only rollouts of the current policy. Popular on-policy al-
gorithms include State-Action-Reward-State-Action (SARSA) [71], Proximal Policy Optimization (PPO)
[63], Actor-Critic Asynchronous Advantage Learning (A3C) [43], or its synchronous version Actor-Critic
Advantage Learning (A2C) [43].

However, off-policy algorithms tend to be more sample efficient, as they can reuse samples gathered
with previous policies [24]. Popular off-policy algorithms include Deep Q Learning (DQN), Double Q
Learning (DDQN), Deep Deterministic Policy Gradient (DDPG) and Soft Actor-Critic (SAC).

Recently, algorithms that aim to combine the advantages of both on-policy and off-policy methods
have been developed. Two basic approaches can be observed. Either, some ratio of on- and off-policy
gradient steps to update the policy are carried out. Examples of this approach are the Actor-Critic with
Experience Replay (ACER) [15] and the Policy Gradient with Q-learning (PGQ) [48] algorithm.

3.1.3. Value-based and Policy-based Methods
Within RL, most approaches try to optimize a value function, a policy or a combination of the two. Both
have their advantages and disadvantages.

In value-based RL, a function is learned that approximates the value or expected return of observing a
state or state-action pairs, reflecting value V (s) and Q-value functions Q(s, a) respectively. Intuitively,
the network can learn a value off- and on-policy easily from experience, as an exact return is available
for each step and therefore state-action pair in the replay buffer. These value estimates are used by
the agent to make informed decisions about the best next action to maximize cumulative reward. In
deep RL, Q-value functions, can be optimized to create a policy, as described in DQN [44] and DDQN
[27]. They tend to converge faster and more reliably, in discrete action spaces. In continuous action
spaces, it is challenging to predict the value of all possible actions.

Policy-based RL aims at training an agent to output an action given the observation, in a deterministic
or stochastic manner. To train the policy, one commonly uses the policy gradient. In basic terms,
the policy gradient increases the probability of actions in an interaction if the interaction was found
to be successful, while doing the opposite if the interaction was found to be unsuccessful. As the
policy outputs an action or a probability of a set of actions, they are more suited to continuous action

3.2. Introduction to Deep Reinforcement Learning Theory and Algorithms 10

spaces. Furthermore, they are more suitable for stochastic tasks and allow for more stable training. In
environments where the exact value of an action is hard to determine, such as a drone control task,
policy based methods are preferred.

3.2. Introduction to Deep Reinforcement Learning Theory and Al-
gorithms

In this section, the aim is to explain the intuition behind the development of various hallmarks in re-
inforcement learning algorithms. For a deep understanding of the basic concepts of reinforcement
learning before the introduction of neural networks, the reader is referred to the book Reinforcement
Learning: An Introduction[71]. For more details about each algorithm, the reader is referred to the
original publication.

First, consider the general objective function of RL, which one aims to maximize, presented in Equa-
tion 3.1.

U(θ) = Eτ∼πθ
[R(τ)] (3.1)

Where

• θ: The parameters of the policy πθ (such as the weights in a neural network) which are adjusted
to maximize the objective.

• τ : A trajectory, or sequence of states, actions, and rewards generated by following the policy πθ.

• πθ: The policy function parameterized by θ, which maps states to actions.

• R(τ): The return of a trajectory τ , often calculated as the cumulative, discounted sum of rewards
received along that trajectory.

In essence, this objective seeks to maximize the return obtained from a complete trajectory, which is
generated using a policy π parameterized by θ. This objective can be exactly maximized using solution
methods when the Markov Decision Process (MDP) is relatively simple. However, as the complexity of
the problem increases, deep neural networks can be leveraged to solve larger, more complex MDPs.

3.2.1. Exact Solution Methods
In early reinforcement learning methods, where MDPs were relatively simple to solve, exact solution
methods gained popularity. A major advantage of these exact solution methods is their proof of con-
vergence.

Value Iteration
In value-based methods, the agent doesn’t learn a policy (a direct mapping from states to actions) but
instead focuses on learning the values of states or state-action pairs. These values provide insights
into how beneficial it would be for the agent to be in a certain state or to take a specific action in a given
state. The agent then chooses actions based on these value estimates, typically aiming to maximize
the expected cumulative reward.

Value iteration is an exact solution method. In value iteration, one will learn the value of being in each
possible state. Next, one can find the action which will result in the highest return using this function.
The value V (s) can be defined as Equation 3.2.

V (s) = max
a∈A

∑
s′∈S

P (s′ | a, s)(R(s′, a, s) + γV (s′)) (3.2)

Where:

• V (s) is the value function, representing the maximum expected cumulative reward obtainable
starting from state s and following the optimal policy.

• maxa∈A indicates the maximization over all possible actions a in the action set A, ensuring the
selection of the action that yields the highest expected reward.

• A is the set of all possible actions available to the agent in the environment.

3.2. Introduction to Deep Reinforcement Learning Theory and Algorithms 11

•
∑

s′∈S is the summation over all possible next states s′ in the state space S, reflecting the stochas-
tic nature of the environment.

• S is the set of all possible states in the environment.

• P (s′ | a, s) is the transition probability, representing the probability of transitioning to state s′ from
state s after taking action a.

• R(s′, a, s) is the immediate reward received when the agent transitions to state s′ from state s
after taking action a.

• γ is the discount factor, a parameter in the range 0 ≤ γ < 1 that determines how much future
rewards are discounted compared to immediate rewards.

• V (s′) is the value of the next state s′, representing the maximum expected cumulative reward
obtainable from s′ onward.

Looking at the example of a grid world, where an agent, initialized at the left bottom, is tasked to
navigate to the right top of the world, one can visualize the values that are found using value iteration,
displayed on Figure 3.2a.

(a) Value iteration predicts the value of being in each state. The
optimal policy would equal to stepping towards the state with the

maximum value.

(b) Q-value iteration will predict a value for each action in each given
state. Therefore, the optimal policy would be to follow the largest

Q-value prediction.

Figure 3.2: The values of the grid world example with a penalty of -1 for each step taken, a discount factor of 0.9 is visualized.

While value based methods can successfully solve MDPs, they require computing the value for each
possible next state to decide on the best action to take. Alternatively, Q-functions receive a state and a
proposed action, andwill return the expected return of taking an action in a certain state. Mathematically,
this alters Equation 3.2 to Equation 3.3.

Q(s, a) =
∑
s′∈S

P (s′ | a, s)
(
R(s′, a, s) + γmax

a′∈A
Q(s′, a′)

)
(3.3)

Applying Q-value iteration to the grid world example now outputs the Q-value function presented in
Figure 3.2b.

Policy Iteration
Policy Iteration is an iterative method used to directly find the optimal policy. Unlike value iteration and
Q-value iteration, which directly compute the value or Q-value function, policy iteration operates by
alternating between two steps: policy evaluation and policy improvement.

3.2. Introduction to Deep Reinforcement Learning Theory and Algorithms 12

Policy Evaluation

In the policy evaluation step, one computes the value function V π(s) for a given policy π. The value
function V π(s) represents the expected return from state s when following the policy π. The Bellman
equation for policy evaluation is given by:

V π(s) =
∑
a∈A

π(a | s)

[
R(s, a) + γ

∑
s′∈S

P (s′ | s, a)V π(s′)

]

Where:

• V π(s): The value of state s under policy π.

• π(a | s): The probability of taking action a in state s under policy π.

• R(s, a): The immediate reward received by taking action a in state s.

• γ: The discount factor, 0 ≤ γ < 1.

• P (s′ | s, a): The transition probability of moving to state s′ after taking action a in state s.

• S: The set of all states.

• A: The set of all possible actions.

The policy evaluation step is repeated until the value function converges, i.e., ∥V π(s) − V π′
(s)∥ < ϵ,

where ϵ is a small threshold.

Policy Improvement

In the policy improvement step, one updates the policy by choosing the action that maximizes the
expected return, given the current value function V π(s). The policy improvement step is performed as
follows:

π′(s) = argmax
a∈A

[
R(s, a) + γ

∑
s′∈S

P (s′ | s, a)V π(s′)

]

Where:

• π′(s): The new policy at state s after the improvement step.

If the policy improves, the algorithm proceeds to the policy evaluation step with the new policy. Other-
wise, the algorithm terminates as the optimal policy has been found.

The algorithm guarantees convergence to the optimal policy and value function.

3.2.2. Approximate Solution Methods: Value-based
While exact solution methods benefit from proven convergence and relatively simple implementation,
they are limited to simple MDPs. Approximate solution methods in combination with deep neural net-
works have shown the ability to achieve impressive results on a wide range of tasks. Within the approx-
imate solution methods, one can again distinguish in value- or policy-based methods.

Value-based reinforcement learning is commonly used in applications where discrete action spaces
allow the agent to evaluate potential actions and select the one with the highest value. Practical ap-
plications include game-playing (such as AlphaGo and DQN for Atari games), robotics, and recom-
mendation systems. Despite its simplicity and effectiveness, value-based RL methods are generally
better suited for environments with manageable state-action spaces, as they can become computation-
ally challenging in complex, high-dimensional spaces. For these reasons, ongoing research explores
combining value-based techniques with deep learning, allowing them to scale to larger, more complex
problems through methods like deep Q-networks (DQNs).

3.2. Introduction to Deep Reinforcement Learning Theory and Algorithms 13

Deep Q Networks
One of the first displays of the true power of neural networks in RL came with the introduction of Deep
Q Networks (DQNs), in 2013 [44]. In this paper, the authors presented the world with an algorithm
which could outperform human players in a range of Atari games. The concept was rather simple. the
agent approximates theQ-value of each state-action pair, by using deep neural networks. By iteratively
updating Q-values using experiences gathered through interaction with the simulated environment, the
agent improves its policy over time.

After sampling from the experience, stored in the replay buffer, one computes the target values, y using
Equation 3.4:

y =

{
r if s′ is terminal
r + γmaxa′ Q′(s′, a′; θ−) otherwise

(3.4)

Where Q′(s′, a′; θ−) is a target Q-function which is parametrized with θ−), usually a delayed set of
parameters from the most up-to-date Q-function. This serves as a stabilization mechanism for the
learning process. While one could use the true return of a state-action pair, as stored in the dataset, this
raises two challenges. Firstly, the true return is highly dependent on the exact sequence of state-action
pairs, leading to high variance in the estimate. Secondly, to reuse experience which was gathered with
an old policy, one needs to bootstrap with the most up-to-date Q-function. This allows to estimate the
expected return, if one had followed the most up-to-date policy.

The loss, U , can be computed using Equation 3.5.

U(θ) = E
[
(y −Q(s, a; θ))

2
]

(3.5)

Double Q-Learning
While Deep Q-Networks (DQNs) marked a significant breakthrough in reinforcement learning by suc-
cessfully approximating Q-values using deep neural networks, they suffered from an important issue:
the tendency to overestimate Q-values. This overestimation arises because the same network is used
both to select and evaluate actions, leading to overly optimistic value estimates and potentially subop-
timal policies.

To address this issue, Double Deep Q-Networks (DDQN)[27] were introduced. The key innovation in
DDQN is the decoupling of action selection and action evaluation, inspired by the Double Q-learning
framework. Instead of directly using the Q-network to estimate the value of the best action in the
target calculation, DDQN uses the primary Q-network to select the action and the target Q-network to
evaluate its value. This modification reduces overestimation bias, leading to more stable learning and
better performance.

The target value in DDQN is computed as:

y = r + γQ′(s′, argmax
a

Q(s′, a; θ); θ−) (3.6)

Where:

• Q(s′, a; θ): The primary Q-network is used to select the action with the highest estimated value.

• Q′(s′, ·; θ−): The target Q-network evaluates the value of the selected action.

By introducing this separation, DDQN provides a more accurate estimate of the Q-value and enhances
the robustness of the training process, especially in environments with noisy or stochastic rewards.

3.2.3. Approximate Solution Methods: Policy-based
In policy-based methods, one directly learns a policy π(s). This is generally an easier policy to learn.
Take for example a drone control task. The value of spinning up a propeller is rather ambiguous and is
hard to learn, next to that, in robotics settings, high dimensional and continuous action spaces make
value based methods challenging to use.

3.2. Introduction to Deep Reinforcement Learning Theory and Algorithms 14

Vanilla Policy Gradient
Building on top of Equation 3.1, one can derive the policy gradient. First, replace the expected value
by a sample-based estimate.

U(θ) =
∑
τ

P (τ ; θ)R(τ) (3.7)

Where

• R(τ) is the total return of a trajectory, τ , computed as
∑H

t=0 γ
tr(st, at), H is the time horizon

• P (τ ; θ) is the probability of trajectory, τ under a policy parametrized by θ

To compute the gradient from Equation 3.7 from samples gathered in an environment, the equation
should include a weighting term with the probability of a certain trajectory occurring. By realizing that
the likelihood ratio introduces this weighting term, the following is derived:

∇θU(θ) = ∇θ

∑
τ

P (τ ; θ)R(τ)

=
∑
τ

∇θP (τ ; θ)R(τ)

=
∑
τ

P (τ ; θ)

P (τ ; θ)
∇θP (τ ; θ)R(τ)

=
∑
τ

P (τ ; θ)
∇θP (τ ; θ)

P (τ ; θ)
R(τ)

=
∑
τ

P (τ ; θ)∇θlog(P (τ ; θ))R(τ)

(3.8)

Thanks to the weighting factor P (τ ; θ) introduced for each of the gradient computations, the final equa-
tion in Equation 3.8 can be approximated with samples following Equation 3.9.

∇θU(θ) ≃ ĝ =
1

m

m∑
i=1

∇θlog(P (τ (i); θ))R(τ (i)) (3.9)

Note that P (τ (i); θ), the probability of following trajectory τ (i) under a policy parametrized by θ can be
rewritten as the product of state transition probability multiplied by the probability that a policy performs
action, at given state, st, as described in Equation 3.10:

P (τ) =

H∏
t=0

P (st+1|st, at)πθ(at|st) (3.10)

Where the state transition probability, P (st+1|st, at), is independent of policy parameters θ. Therefore,
Equation 3.9 can be temporally deconstructed to facilitate a gradient calculation for each step in a roll-
out. By taking the logarithm of the probability of a trajectory, one can take the gradient of the sum of
Equation 3.10, and separate the state transition and the policy output in Equation 3.9. As the state tran-
sition is independent of the policy parameters, the gradient will be zero. While seemingly unimportant,
this allows one to learn a policy with no knowledge of the dynamics of the environment, target platform
or other state transition variables.

ĝ =
1

m

m∑
i=1

H−1∑
t=1

∇θlog(πθ(a
(i)
t |s(it))

H−1∑
k=t

γk−tr(s
(i)
t , a

(i)
t) (3.11)

The expected value of the estimator ĝ, in Equation 3.9, matches the original gradient described in
Equation 3.8, ensuring that it is unbiased. However, this estimator tends to have high variance. The
key reason lies in its reliance on the exact returns obtained from individual trajectories. These returns
depend heavily on the specific sequence of state-action pairs encountered during sampling. Since
trajectory outcomes can vary significantly due to stochasticity in both the policy and the environment,

3.2. Introduction to Deep Reinforcement Learning Theory and Algorithms 15

the resulting gradient estimates fluctuate widely. This high variance makes optimization inefficient,
prompting the development of methods to reduce noise and stabilize the gradient estimates.

Advantage Estimation
In practice, one often subtracts a baseline, b(s) from the true return, in an attempt to normalize the
expected returns. Early approaches utilized constant baselines, time-dependent baselines, and even
baselines derived from optimal control, all of which proved effective. The advantage can be calculated
as:

Âπθ
t =

[
H−1∑
k=t

γk−tr(s
(i)
t , a

(i)
t)

]
− b(st)

= Qπθ (st, at)− b(st)

(3.12)

Where the Q-value here is just the true return retrieved in the interaction, not a neural network. Which
results in the final gradient calculation in Equation 3.13.

∇θU(θ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(at|st)Âπθ
t

]
(3.13)

Advantage Actor Critic
The introduction of baselines significantly reduced the variance of policy gradient estimators without
introducing bias. A choice for such a baseline is a state dependent value function V (s). Next to using
a neural network for the value estimate as baseline, one further reduces variance by bootstrapping the
Q-value estimation with this critic, leading to the following advantage calculation.

Âπθ
t = [rt+1 + γV (st+1)]− V (st) (3.14)

In Advantage Actor Critic (A2C) or Asynchronous Advantage Actor Critic (A3C) [43], one uses such
value function as a baseline. One initializes an actor network, πθ0 and a critic network V π

ϕ0
, which

predicts the value of being in a state and then following policy π. Both the actor and critic are then
trained, using the collected rollouts, in an on-policy manner.

Trust Region Policy Optimization
One of the key challenges in RL is ensuring stable policy updates during training. It was soon realized
that the magnitude of a gradient step can significantly influence an agent’s performance. Unlike super-
vised learning, where an overly large step can often be corrected in subsequent updates, in RL, a large
gradient step in the wrong direction can result in a suboptimal policy. This degraded policy can collect
poor-quality data in subsequent rollouts, potentially leading to a complete loss of progress.

Additionally, when using advantage-based methods, the advantage calculated for a state-action pair
under the current (or ”old”) policy may become irrelevant if the newly computed policy differs too greatly
from the old one. This instability arises because the advantage values are tightly linked to the policy
used to collect the rollouts.

To address these issues, Trust Region Policy Optimization (TRPO) [64] introduces constraints to sta-
bilize policy updates. Instead of taking a single large gradient step, TRPO computes the gradient
direction and applies multiple controlled updates to the policy. Using the importance sampling ratio,
Equation 3.15, one can gain intuition that a policy update can be done by off-policy data, as long as
this ratio is close to 1. Therefore, we can improve sample efficiency and reliably take multiple gradient
steps without having to gather new rollouts.

Ex∼P [X] = Ex∼Q

[
P (x)

Q(x)
X

]
(3.15)

Using the importance sampling ratio, one can derive the policy loss function, taking into account the
distribution shift of the policy when updating the parameters multiple times over the same data. Which

3.2. Introduction to Deep Reinforcement Learning Theory and Algorithms 16

brings the following loss function:

U(θ) = E
[
πθ(at | st)
πθold(at | st)

Â
πθold
t

]
(3.16)

Note that TRPO is an on-policy method, and πθold refers to the policy which collects the experience,
and is updated until the divergence becomes too large, and a new environment interaction is needed.
To ensure that updates remain stable, TRPO constrains the Kullback-Leibler (KL) divergence between
the old policy πold and the updated policy πnew.

DKL(πnew, πold) ≤ ϵ (3.17)

where ϵ is a small threshold that defines the trust region. By enforcing this constraint, TRPO prevents
the new policy from diverging too much from the old one, ensuring that the advantage estimates remain
valid, and the updates are reliable.

Proximal Policy Optimization
TRPO was a significant improvement compared to other advantage based methods, with increased
stability. This came at the cost of computational complexity. With the introduction of Proximal Policy
Optimization (PPO) [63], the idea was to bring the constraint into the loss function as a soft constraint,
leading to

U(θ) = E
[

πθ(at|st)
πθold(at|st)

Â
πθold
t

]
− ζE [DKL(πθold(. . . |st), πθ(. . . |st))− ϵ] (3.18)

Where ζ is a weighing factor which can make this problem mathematically equivalent to TRPO, where
the constraint is enforced in a hard manner. Due to this soft constraint, one is now able to leverage
many deep learning tools and framework without significant changes. To reduce complexity, PPO V2
was introduced. Rather than using the KL divergence, a ratio rt(θ) =

πθ

πθold

is introduced as a measure
of the validity of using the advantage estimate. When this ratio diverges from 1, a new rollout should
be collected. The loss function therefore reduces to Equation 3.19

U clip(θ) = E
[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

]
(3.19)

Deep Deterministic Policy Gradient
While the abovementioned policy-based algorithms have proven highly effective, they all assume the
policy is stochastic and are designed for on-policy learning. This and the following algorithms will no
longer be advantage based, but will learn directly through the critic. Deep Deterministic Policy Gradient
(DDPG) [35] approaches the problem from another angle. Using a critic which now predicts a Q-value
function, Q(a, s), rather than the regular value function, V (s), one can learn the policy solely through
this Q-value function. Additionally, this allows for both stochastic and deterministic policies, in contrast
to advantage based methods.

By using the critic directly in the loss function, the loss function can be formulated as Equation 3.20.

U(θ) = E [Q(s, πθ(s))] (3.20)

This method allows for both deterministic and stochastic policies, but suffered from instability issues.
A common failure case in DDPG is that the Q-value is being overestimated, encouraging the policy to
take suboptimal actions, similar to DQN. Inspired by DDQN, Twin Delayed DDPG (TD3) aims to solve
this issue.

Twin Delayed DDPG
In DDQN, the issue of value overestimation was solved simply by introducing a second critic, and
trusting the minimum value of both critics that is being predicted. In Twin Delayed DDPG (TD3) [20],
the authors propose a similar approach building on top of DDPG. Next to this value clipping, they also
propose updating the policy at a lower frequency than the critics, leaving the critics to converge to more
realistic Q-values before training the policy. Next, noise to the policy actions is added to prevent the
critics to overfit on the policy actions taken. The loss function remains unchanged from Equation 3.20.

3.3. Reinforcement Learning for Partially Observable Environments 17

Soft Actor-Critic
Soft Actor-Critic [25] introduces an entropy term into Equation 3.20, rather than adding a second critic.
Therefore taking a different approach than TD3. The entropy motivates exploration and prevents over-
fitting to the Q-values predicted by the critic. The loss function is modified to Equation 3.21.

U(θ) = E [Q(s, πθ(s)) + ζH(π(. . . |s))] (3.21)

Note that the last threemethods do not use advantage calculations or do not assume stochastic policies.
Given the critic models the expected return for taking a certain action in a state and then using the
current actor as policy, this thus also works off-policy, where advantage based methods inherently
assume the policy does not tend too far away from the gathering policy.

3.3. Reinforcement Learning for Partially Observable Environments
A pitfall of common reinforcement learning methods is that they are trained on single transitions (con-
sisting of an observation, action, reward and next observation). This raised two distinct challenges.
First, one can ask how to train an algorithm to not only use spatial information, but use spatio-temporal
or temporal information as well. Second, real life robotics often lack one or more states, which are avail-
able in simulations that are required to solve a task, called a partially observable environment. These
missing states can often be derived from temporal information, think of velocity estimation from position
information. Methods incorporating the temporal dimension have been proposed and demonstrated.

Only a few months after the groundbreaking release of the DQN paper [44], the algorithm was applied
for a recurrent network [28]. Where the original DQN algorithm demonstrated human-level performance
on several Atari 2600 tasks, it needed a buffer of 4 frames in order to make a prediction. The recurrent
version of the algorithm showed to be effective with only a single input frame per prediction. Training
these recurrent nets requires training on sequences of data rather than single transitions. However,
DQN updates the networks based on the assumptions that all samples are independent and identi-
cally distributed, which is no longer the case when considering sequences. However, they found that
even when violating these assumptions, the algorithm still delivered improved performance over the
conventional DQN algorithm for several tasks.

Later, recurrent policies were applied to other off-policy algorithms as well. Using Recurrent Determin-
istic Policy Gradient (RDPG) [30], an agent can be trained that can not only integrate noisy sensory
measurements, but can also utilize temporal information on longer timescales. These off-policy al-
gorithms have further been explored using actor-critic networks such as SAC [76]. They found that
using an off-policy actor-critic algorithm with a unique actor and critic, rather than sharing one or more
layers between the actor and critic, deliver the best results. Out of several off-policy algorithms, includ-
ing DDPG and SAC, it has been shown that the SAC algorithm delivers the best results for recurrent
policies [47].

3.4. Reinforcement Learning for Spiking Neural Networks
As discussed in chapter 2, spiking neural networks have unique properties which pose unique chal-
lenges, but have attractive properties. In a reinforcement learning setting, indirect training techniques
with ANN-SNN conversion [72, 51] have been popular. However, direct training using RL has been
explored as well. This section gives an overview of current efforts toward direct reinforcement learning
for spiking neural networks is discussed. The approaches can roughly be categorized in biologically
inspired reinforcement learning, where local learning rules are guided by a reward signal, and classic
reinforcement learning, where conventional RL algorithms are used with a spiking agent.

3.4.1. Conventional Reinforcement Learning
Leveraging proven reinforcement learning algorithms allows training SNN by backpropagating an er-
ror signal throughout the network. Several different algorithms, including DQN and A2C, have been
modified in order to support SNN and train energy efficient algorithms. While current implementations
successfully train energy efficient agents, they do not exploit the temporal capabilities of the biologically
inspired neuron models. They use rate encoding techniques or present the input for several timesteps,
making the networks converge to an action. This causes the influence of previous observations to fade
away, together with its temporal information.

3.4. Reinforcement Learning for Spiking Neural Networks 18

Off-policy algorithms such as the DQN algorithm, which is a value-based algorithm, have been used
to train energy efficient agents acting on a wide range of tasks, from basic control problems such
as the cartpole [1], to the Atari 2600 games [36, 10]. In DQN, an experience replay buffer stores
state transitions (state, action, next state, reward). The value function learns to predict the discounted
reward of taking an action given a certain state. As the prediction is based solely on the current state,
no temporal dynamics can be learned [1]. Alternatively, sequences can be stored to train on temporal
information, which has been shown for recurrent neural networks [28].

Next to value-based reinforcement learning, actor-critic networks have been explored as well. Spiking
DDPG, an off-policy algorithm with a spiking actor, but a conventional critic, leverages the efficient
learning of artificial neural networks to guide the training of the spiking neural network. Training the
spiking actor with spatiotemporal backpropagation enables mapless navigation of a real robot [73].
While spatiotemporal backpropagation was used, due to the rate encoding, the temporal capabilities
of the actor are limited. Furthermore, the algorithm fails to generalize to complex, high-dimensional
environments. A similar method was used to control a 6 degrees of freedom robotic arm in a goal
reach task [49]. Expanding on on-policy methods, a policy gradient learning rule using the first-to-spike
and rate encoding enabled SNN to solve a windy grid task, reducing the number of spikes by an order
of magnitude compared to ANN-SNN conversion [56]. Next, a population encoded actor demonstrated
its applicability in a wide range of both on-policy and off-policy algorithms (PPO, SAC, DDPG and TD3)
[74]. They demonstrated the actor to achieve a similar reward as their non-spiking counterparts in
various continuous control tasks included in the OpenAI gym, tasks include the half cheetah, hopper,
walker and ant. Other work has also demonstrated the effectiveness of population encoding combined
with spatiotemporal coding of dynamic neurons, on the same tasks as before, again outperforming the
non-spiking alternatives [79].

Across all proposed methods, the focus has been to train energy efficient agents. They demonstrated
the ability of SNN to act in complex, high-dimensional environments with similar or superior performance
to non-spiking counterparts. The temporal capabilities of SNN have so far not been exploited, as
training has been performed on single transitions rather than on complete rollouts.

In previous work, the author tried to develop an on-policy RL method for training SNNs with RL. It
was chosen to use A2C due to its relatively simple implementation and easy extension to training
on sequences rather than single transitions. While the training was found to be successful for very
basic tasks, such as balancing a cart pole, or landing a drone given altitude information, it struggled
to generalize to more complex tasks. One issue was the instability raised by the spiking critic. Next
to that, training was slow due to the limited parallelization available in the implementation. For more
details, one can consult the supplementary materials section A.1 and section A.2.

3.4.2. Biologically Inspired Reinforcement Learning
As neuromorphic computing is usually biologically inspired, previous work has attempted to develop
reinforcement learning methods that follow neuroscientific principles. These methods often use local
learning rules to simulate processes such as dopamine in our brains.

Reward modulated STDP has been used to train a wide range of tasks. Early work showed STDP
to train an agent that controls a worm to find food [18]. Grid search tasks have been trained using
similar reward modulated methods [12]. Simulating the processes that teach the brain to learn have
been demonstrated to enable the training of SNN in a biologically plausible way [59]. While many
of these methods display temporal learning capabilities, they have only been demonstrated on rela-
tively low-dimensional tasks. Finally, the SpikePropamine method [61] has shown impressive results
on highly delayed reward tasks, where the temporal dimension is essential for successful completion.
Furthermore, it was shown to successfully complete the half cheetah environment as well.

While traditional ANN training methods excel in spatial settings, these biologically inspired methods
offer interesting possibilities in temporal learning.

4
Scientific Article

19

Master Thesis Aerospace Engineering

RECURRENT REINFORCEMENT LEARNING WITH SUR-
ROGATE GRADIENTS

K. Van den Berghe, S. Stroobants, V.J. Reddi, G.C.H.E. de Croon
Delft University of Technology, Harvard University

ABSTRACT

Enabling embodied intelligence in robotics presents several unique challenges.
A first major concern is the need for energy efficiency, low latency, and strong
temporal reasoning to facilitate effective real-world interaction. Neuromorphic
computing has garnered attention as a potential solution to these problems. Sec-
ondly, when using deep neural networks, it is hard to shape a learning signal, due
to the goal oriented nature of robotics. Reinforcement learning (RL) poses itself
as a framework to leverage goal-directed reward functions to create this learning
signal. A key challenge with recurrent and spiking neural networks trained via RL
is achieving stable baseline performance, able to creating sequences long enough
to stabilize hidden states. This stabilization is crucial for processing sequences
that extend beyond the initial warm-up period of the temporal network. In this
article, an online RL approach is proposed, enabling temporal training with mini-
mal changes to existing online algorithms, introducing a secondary guiding policy
whose sole objective is to prevent episode termination before the warm-up period is
complete. This framework is demonstrated to outperform offline RL methods and
significantly improve the wall clock time of online RL methods, adapted to sample
sequences rather than single transitions. Next, the effect of surrogate gradients as
a technique for translating the learning signal from the RL framework to weight
updates is analyzed. It is found that the slope, parametrizing the surrogate gradient,
plays a crucial role in online RL settings, and can be exploited as an exploration
mechanism.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated the ability to teach non-linear function approximates
such as neural networks to achieve superhuman performance on a wide range of tasks [21; 14; 39].
Many of these methods rely on the assumption that the process of state-action-next-state is a Markov
Decision Process (MDP) [33]. Often, they can be formulated in such a way that they do follow
this assumption, however in robotics, processes are often partially observable [37; 38], with rich
information embedded in time. In practice, a history of states and actions is often added to the
observation to allow the process to be modelled as an MDP [4; 17; 22; 6]. Stateful neural networks,
such as recurrent (RNN) or spiking (SNN) neural networks, inherently are time-variant, leaving the
desire to leverage their temporal capabilities to overcome the need for explicit frame-stacking.

SNNs have been praised as a brain inspired machine learning paradigm, with low computational
costs, low latency and temporal computing capabilities, receiving great interest in the field of micro
robotics [32; 3; 5; 24; 18; 41]. Naively training SNNs on temporal information with RL leads to
noisy training and suboptimal performance. Firstly, conventional RL algorithms need to be adapted to
accommodate training on sequences rather than on single transitions, which has been demonstrated in
the past [13] for value-based RL. However, for tasks where subpar performance leads to early episode
termination, achieving a baseline performance capable of generating sequences of considerable length
for a significant learning signal to teach the network, is challenging. Secondly, the discontinuous
spiking nature of SNNs prevents the application of regular gradient descent. The application of
surrogate gradients in the backward pass [23], however, enables leveraging conventional deep learning
frameworks for gradient calculation. The effect of approximating the true gradient with this surrogate
in a continuous control RL setting, where the learning signal is a noisy estimate of the true learning
signal, remains unexplored.

1

Master Thesis Aerospace Engineering

In this article, a new approach toward online RL on temporal information for stateful networks in
continuous environments is proposed. This approach is compared to state-of-the-art offline and online
RL approaches. We demonstrate the method using SNNs, but no assumption is made on the type of
network in the RL pipeline. Furthermore, the effect of the surrogate gradients in different learning
setups, namely offline and online RL, on a drone control task is evaluated. Next, the computational
requirements of this temporally trained SNN is compared to single-transition trained SNN and
conventional artificial neural networks (ANNs) using the NeuroBench benchmarking framework [40].
Finally, bridging the sim-to-real gap is demonstrated by deploying the trained agent to control the
CrazyFlie drone.

2 RELATED WORK

2.1 SPIKING NEURAL NETWORKS

SNNs are a class of neuromorphic deep learning algorithms, which leverage brain-inspired principles
[19]. Most significantly for this article, where conventional ANNs make use of non-linear, time-
invariant activation functions with continuous outputs, SNN use brain-inspired neuron models that
are time-variant and display a spiking behavior. This spiking behavior is mathematically governed
by a Heaviside step function, for which the derivative is a Dirac Delta. This function is 0 almost
everywhere, but at the origin, where it reaches infinity. Therefore, it leads to an extremely sparse and
unstable gradient calculation. This calls for alternative methods for training. Proposed approaches
have used alternative signals such as spike-timing to compute gradients, or used local learning rules
[7; 15; 27; 20; 2], inspired by neuroscientific findings. In this article, the surrogate gradient technique
[23] is used, to enable leveraging existing RL methods. The Dirac Delta is replaced by the derivative
of a smooth surrogate function, which is parametrized by a slope k. The introduction of the surrogate
gradient introduces bias to the gradient estimate, and can lead to sign reversal of the gradient in
deeper networks [11].

2.2 REINFORCEMENT LEARNING FOR STATEFUL NETWOKS

Deep RL traditionally uses single observation, action, reward, next observation transitions during
training. However, in real-life scenarios, important information can often be embedded in the temporal
dimension. This issue was recognized early on and resolved by the use of frame-stacking [21], where
a history of observations is passed to the actor for each prediction. R2D2 [13] directly trains RNNs on
sequences, omitting the need for frame-stacking. The network is given a warm-up period during which
its actions are not evaluated, to allow the hidden states to converge to realistic inference conditions.
Then, the network is evaluated on the remaining observations from the sequence. This value-based
method is ideally suited for discrete action spaces where the episode length is not proportional to
actor performance. Jump-Start RL (JSRL) [36], originally proposed for improved exploration, can
be used when an existing controller is available to gather lengthy sequences. Furthermore, when
pre-acquired data is available, offline RL methods [9] can outperform the demonstrating policy, by
exploiting reward information.

In the context of SNNs, both conventional as bio-inspired RL methods have been used for training.
Bio-inspired RL methods [8; 28] often struggle with generalizing to bigger networks of complex
tasks, and do not utilize the deep learning frameworks readily available. When leveraging traditional
RL methods, the time-variance of SNNs is commonly circumvented by allowing each input to be
processed multiple times [4; 1; 18; 35; 34]. This leads to final task performance in the same range as
their non-spiking counterparts, but at the cost of computational efficiency and disregarding temporal
relations. In actor-critic setups, an asymmetric setup improves performance. The critic, responsible
for guiding the actor during training, is an ANN [35]. Next to asymmetry in model types, asymmetric
inputs between actor and critic, where the critic exploits all information in the simulator, which is not
available to the actor when deployed, tends to improve training [25; 6].

2

Master Thesis Aerospace Engineering

3 METHODS

3.1 ONLINE SEQUENTIAL REINFORCEMENT LEARNING FOR CONTINUOUS ACTION SPACES

In online RL, the actor is tasked with learning a behavior based on interactions with a simulated or
real world environment, guided by a reward function. A key consideration when training stateful
neural networks, such as spiking or recurrent networks, is gathering sufficiently long sequences to
enable efficient training, allowing a warm-up period. For tasks where the length of an interaction is
governed by the actors’ performance, it takes a significant effort to achieve such baseline performance
in online RL settings. Next, where recurrent RL methods has been demonstrated on value based
methods, policy based RL methods are more suitable for continuous action spaces.

Within policy gradient methods which use the actor-critic setup, two approaches exist. Either the
critic is used directly to compute the expected return, such as in DDPG [16], TD3 [10] or SAC [12],
or the critic is used as a baseline, enabling advantage computation of the performed actions, such
as in A2C, A3C [22], TRPO [30] and PPO [29]. As highlighted in previous work [38], algorithms
which perform policy gradient using a baseline or an advantage estimate call for a baseline which
accounts for the temporal characteristics of the policy. To simplify the algorithm, it was decided
to use the critic directly to compute the expected return, removing the temporal dependence of the
baseline . Lastly, even though the actor is time-dependent, it can be proven using the importance
sampling ratio, that this time-dependence does not inflict with any assumption made in the derivation
of the policy gradient (subsection A.3), on which many modern RL algorithms build.

3.1.1 LEVERAGING JUMP-START RL

In Jump-Start RL [36], a pretrained guide policy is used to gather a wide range of start conditions,
after which an exploration policy is used for the remaining environment steps. While originally
proposed for enhanced exploration, it poses itself suitable for training stateful networks, thanks to
its inherent warm-up period. As in reality, online RL is almost exclusively performed in simulation,
the guide policy can receive any set of observations from the simulator, similar to the asymmetric
actor-critic setups that have gained popularity. Furthermore, the sole purpose of the guiding policy in
this setup is avoiding termination before a number of warm-up steps of the stateful exploration policy.
This guiding policy therefore does not need to be an expert policy, and can even be privileged. The
guiding policy used, is a regular feedforward ANN, which receives the same privileged inputs as the
critic. The exploration policy is a SNN.

Consider the environment to have a limit of 500 timesteps before it is terminated. Either, the guide
controller is used for the first 500−N timesteps, after which the exploration policy interacts for the
remaining N steps, gradually increasing the N steps gathered with the exploration policy, until the
guide policy is only used for the warm-up period. Alternatively, the guiding policy is used exclusively
during the warm-up period.

3.1.2 SAMPLING STRATEGY

In the setup used in this article, the full rollouts, i.e. interactions from both the guiding as the
exploration policy, are stored sequentially in the replay buffer. For training, sequences of length
100 timesteps are sampled from this buffer. The stateful policy is allowed a warm-up period of 50
timesteps, and actions are evaluated for the remaining timesteps. For ease of implementation, the
hidden states are not stored, but initialized at zero at the start of the warm-up period. Alternatively,
the hidden states could be stored and initialized at each sampled sequence, leading to a marginal
increase in training performance [13]. The critic, which is not stateful, performs an update on all 100
timesteps.

3.1.3 LEARNING THE ACTOR

The learning approach for this unique setup should leverage the demonstrations from the guiding
policy, as well as the exploration from the exploration policy. The buffer is partially filled with
interactions from the guide policy, which reflects an offline learning setup, as well as interactions
from the exploration policy, for which a classic online RL approach is expected to behave well.
It has been shown that appending a behavioral cloning (BC) loss term to an online RL algorithm

3

Master Thesis Aerospace Engineering

allows for surpassing dataset performance in offline settings [9]. Therefore, we make use of a loss
function which implements a weighted BC term that gradually decays during training, leveraging the
demonstration data efficiently, but at the same time allowing the use of the actor-critic setup to exploit
the reward signal as learning signal. In cases where the guiding policy is an expert policy, given
its ability to exploit all properties of the simulation in its observation, one can choose to increase
the weight of this BC term. Decaying this term becomes more important as the buffer is filled with
more and more data from the exploration policy through training. Note that the BC term also serves
as a soft constraint to avoiding large changes in policy behavior over the past policies, where large
changes can discard the usability of off-policy data.

The update rule can be defined as:

Lπ = −Eτ∼D

[
100∑
i=0

Qϕ1
(sτ,i, πθ(sτ,i|(sτ,i−1, . . . , sτ,i))) · 1i>49

]

+ λEτ∼D

[
100∑
i=0

∥πθ(sτ,i|(sτ,i−1...sτ,i))− aτ,i∥2 · 1i>49

]
(1)

Where:

• Qϕ1 in the first term is the first critic network used in TD3, which can essentially be replaced
by any online RL policy loss.

• τ represents a sequence sampled from the replay buffer, of length 100. sτ,i and aτ,i are the
ith observation and action in the sampled sequence, respectively.

• λ is a hyperparameter controlling the strength of the BC regularization, decaying over time.
When the guiding policy is of high quality, one would prefer a larger λ.

• 1i>49 is zero as long as the warm-up period of 50 timesteps has not passed, else 1.

3.1.4 LEARNING THE CRITIC

The critic used during training is not time variant and thus does not need a warm-up period. Therefore,
single transitions are sampled, and a traditional update rule can be used:

LQϕi
= E(s,a,r,s′,a′)∼D

[
(Qϕi

(s,a)− y)
2
]

(2)

where i ∈ {1, 2}, for the two critics used in TD3, and the target value y is computed using the
Bellman equation:

y = r + γ min
j=1,2

Qϕ′
j
(s′, (a′ + ϵ)) (3)

• Qϕi and Qϕ′
j

are the critic networks (with ϕ′
j being a delayed target network).

• s is the current state, a is the current action, and r is the reward.
• s′ is the next state, and (a′+ϵ) is the action from the transition with added noise ϵ ∼ N (0, σ)

is small random noise for smoothing the target policy (as part of TD3’s delayed policy
update).

• γ is the discount factor.

Note that in practice, the target value, Equation 3, in TD3 or SAC is usually computed by computing
the next action from the next observation using the current policy, πθ′(s′ + ϵ). We sample it from
the transition, avoiding recomputing the next actions, omitting an additional warm-up period for
stateful actors. While this will bias our critic towards learning the expected return from the actor
which gathered the transition, it is assumed that our current policy did not diverge from the gathering
policy significantly, controlled by the BC term.

3.2 SPIKING ACTOR-CRITIC

The spiking policy uses two hidden neuron layers, with Leaky-Integrate and Fire neurons (LIF). An
input current, Iin to the neuron charges the membrane potential, U , which leaks away over time, the

4

Master Thesis Aerospace Engineering

rate of which is defined by β. When the membrane potential exceeds a threshold, the neuron outputs
a spike and the membrane potential is reset. Which can be computed using:

U [t+ 1] = βU [t] + Iin[t+ 1]−R · Uthr (4)

Where R is 1 whenever the membrane potential exceeds the threshold, Uthr and 0 otherwise. The
spiking behavior can be modeled as:

s =

{
1, if U [t+ 1] > Uthr

0, otherwise
(5)

Note that this is a first order model, which means that a large input essentially immediately causes a
spike to be generated. In situations where an incoming spike should affect a neuron at a later time
step, second order models could be more effective.

The inputs to the network are the position, linear velocity, orientation (as rotation matrix) and angular
velocities, and the network outputs motor commands. The inputs are encoded using a linear fully
connected layer, and the output is decoded using population encoding. While the actor is spiking, the
critic is parametrized using an ANN, which receives the aforementioned states and an action history
of 32 timesteps. As this critic is not deployed on the drone, the deployed controller will still be a
fully spiking network. Furthermore, this asymmetric setup has been demonstrated to successfully
leverage the improved training stability of ANN [35; 34].

3.3 SURROGATE GRADIENTS

(a) The slope of the surrogate gradi-
ent dictates the range of inputs for
which a gradient exists. The real
gradient of the step function is the
Dirac Delta.

(b) A more shallow slope carries
the gradient through deeper through
the network, therefore suffering less
from the vanishing gradient prob-
lem.

(c) A shallower slope introduces
bias and variance to the estimator.
In deeper layers, the cosine similar-
ity of the true and surrogate gradient
goes to zero.

Figure 1: The effects of surrogate gradients on the gradients computed for deep networks.

As explained in subsection 2.1, surrogate gradients allow one to calculate a gradient for SNNs. In
spiking networks, the input to the step function, which is replaced by a surrogate function in the
backward pass, is the membrane potential, U ∈ {0, Uthr}, where Uthr is the threshold membrane
potential. The step function is centered around the threshold, leading to inputs x ∈ {−Uthr, 0}.
Using a surrogate gradient with a shallow slope allows a larger range of inputs to have non-zero
gradients, as seen on Figure 1a, increasing the number of weights updated during each backward
pass, as reflected in the gradient magnitude in Figure 1b. The steeper the slope, the bigger the effect
of the vanishing gradient. The vanishing gradient is a well known issue in machine learning, which is
emphasized in SNNs, as a true gradient only exists when the spike occurs.

While the slope of the surrogate gradient affects the number of updates done at each backward pass,
it also introduces bias and variance[11]. Using the cosine similarity of two vectors, one can analyze
the similarity of the true weight gradient ∇Wi and the weight gradient computed with a surrogate
gradient, ∇̃Wi.

cosine similarity =
∇Wi · ∇̃Wi

∥∇Wi∥∥∇̃Wi∥
(6)

As the true gradient for deeper layers does not exist, the cosine similarity of the weight update
computed with the surrogate and true gradient is analyzed by comparing a shallow slope to a steeper

5

Master Thesis Aerospace Engineering

slope. More specifically, the cosine similarity of a slope 100 is used as the ground truth. When the
slope approaches the true gradient of 100, the cosine similarity remains close to, 1 even for deeper
layers. For shallow slopes, it is seen on Figure 1c that the cosine similarity reduces to 0, indicating
that the weight update is essentially a random vector. This will essentially break the training for
deeper networks.

In RL, it is important to balance exploration and exploitation, meaning taking random actions, to
increase the number of visited states, and using the current policy to compute the next action. This
allows the policy to escape local minima and converge to an optimal policy. Shallow surrogate
gradients, naturally introduce randomness in the weight update. This hints towards the possibility of
leveraging this as an exploration mechanism in off-policy learning, where the randomness would be
captured in the replay buffer. One could also schedule this surrogate gradient slope, to increase in
steepness, as training progresses. While this showed to improve performance in initial experiments, it
was found this improvement is highly sensitive towards the used schedule. Therefore, scheduling was
discarded for the subsequent results.

3.4 SIMULATED ENVIRONMENT

To demonstrate the ability of the spiking network to bridge the reality gap, the CrazyFlie drone is
used as the target platform. As a lightweight and computationally constrained device, it serves as an
excellent testbed for the proposed training methods. Due to the drone’s inherent instability, it presents
itself as an ideal platform to analyze the proposed learning algorithm Inadequate controllers cause
early crashes, resulting in unusable training data. Additionally, its limited processing power, high
control frequency, and stringent energy demands place micro aerial vehicles in a category of robotics
that could significantly benefit from neuromorphic computing solutions.

Training online RL algorithms using a real drone, however, is challenging due to the expensive data
retrieval process. Learning therefore happens in a simulated environment, using a dynamics model
which has demonstrated sim-to-real bridging capabilities [6]. The actor is penalized for errors in
position, linear velocity, orientation, angular velocities and magnitude of actions. A more detailed
description of the environment and reward structure can be found in subsection A.2.

4 RESULTS

A key consideration when training stateful neural networks, such as spiking or recurrent networks,
is gathering sufficiently long sequences to enable efficient training, allowing a warm-up period.
When using online reinforcement learning algorithms, it takes a significant effort to achieve such
baseline performance. Therefore, alternative methods which do not suffer from this issue, namely BC,
TD3+BC are compared to the proposed method. When a learning signal from the RL framework is
calculated, one can use the surrogate gradient technique to compute the required weight changes. Due
to the notorious sensitivity towards hyperparameters in RL, one needs to establish an understanding
of the effect of surrogate gradient slopes as a hyperparameter and whether the noise inducing effect of
the shallow gradient can be balanced by the increased number of weight updates for each backward
pass.

4.1 SURROGATE GRADIENTS AS EXPLORATION MECHANISM

To investigate the effect of surrogate gradients, both BC, which is close to supervised learning, and
TD3, an online, off-policy RL algorithm, are compared. In BC, distinct behaviors can be observed
for the optimal surrogate gradient slope, for specific model sizes, displayed in Table 1.

For smaller models, improved model performance can be observed when using a shallow slope. As
observed in Figure 1b, the scope of weights that are updated increases with shallower surrogates,
as well as the magnitude of the update. In SNNs, a small change to the connecting weights does
not necessarily lead to different outputs in the forward pass. The change in membrane potential
might not affect whether the threshold governing the spiking behavior is exceeded. This also means
that dead neurons, neurons that never spike, might remain dead, and saturated neurons, neurons
that constantly spike, may remain saturated. When the model capacity tends to the limit of what
is required for the problem to be solved, dead or saturated neurons essentially decreases the model

6

Master Thesis Aerospace Engineering

Best Test Performance after 500 Epochs
Slope 2 Slope 50 Slope 100 Slope Scheduled

16-16 40.1± 26.6 21.4± 1.7 21.2± 3.1 30.6± 2.0

32-32 99.3± 66.6 110.4± 49.8 30.4± 32.8 127.5± 63.0

64-64 124.6± 81.0 220.6± 89.8 172.2± 82.7 206.2± 83.8

128-128 276.9± 90.6 346.6± 95.0 275.8± 96.0 307.8± 91.9

Epochs to Surpass Mean Return of 100
Slope 2 Slope 50 Slope 100 Slope Scheduled

16-16 N/A N/A N/A N/A

32-32 466± 189 N/A N/A 466± 181

64-64 241± 147 53± 230 93± 119 68± 181

128-128 52± 52 25± 24 52± 24.5 29± 17

Table 1: Training performance across various model sizes and surrogate gradient slopes in a fully supervised
behavioral cloning setup. Performance is measured by the return achieved when deploying the trained model
in simulation. Training is capped at 500 epochs, with models using scheduled or slope 100 settings showing
continued improvement, while shallower slopes converged early, displaying no further gains in the final epochs.
Green cells represent the best performing algorithm, orange cells represent the second-best algorithm.

capacity further. Larger models have sufficient neurons such that the reduced number of updated
weights is balanced by the more accurate gradient step. For larger models, it is found that there is an
optimal to be found in slope setting, leading to both faster convergence and better final performance.
It is however important to note that the training was stopped at 500 epochs. In the training curves
it can be seen that the slope of the curves tend to 0 for the shallower surrogate gradients, while
the surrogate gradients, that are scheduled or were parametrized with a slope of 100, the training
did not converge to an optimum yet, indicating further improvement possible with more epochs.
Furthermore, interestingly, scheduled slopes were able to achieve near-optimal training performance
in all training rounds. Therefore, this approach is beneficial for training robustness, reducing the
number of hyperparameters which need to be carefully tuned.

When looking at online reinforcement learning settings, advantage can be taken from the increased
noise of shallower surrogate gradient slopes. As hinted in Figure 1c, the shallow surrogate gradients
show to deviate from the true gradient. In RL, exploration is performed by injecting randomness in
actions, or injecting parameter noise [26] during the forward pass. While these are explicit forms
of exploration and will lead to more states to be visited, the effect of parameter noise on the cosine
similarities of the computed gradient, and the gradient when no noise would be injected show similar
trends as surrogate gradients. In online reinforcement learning setting, where no additional noise
injection mechanisms for exploration are at work, the shallow surrogate gradient outperforms the
steeper gradient significantly, Figure 2b.

The learning signal in RL is an approximation of the true signal required for maximizing the expected
returns, generated by the critic. As long as the critic can not accurately predict future returns, this
signal is thus a noisy estimate of the true error signal. Therefore, a steep surrogate slope, which
performs updates more true to the incoming error signal, does not necessarily lead to improved
training performance. Initial experiments showed that scheduling the surrogate gradient to become
steeper with improved critic accuracy, led to a significant improvement in training performance, when
the schedule is tuned right. However, wrongly scheduling this surrogate gradient tended to obstruct
training completely. Due to the already large hyperparameter space in RL, it was decided to use fixed
surrogate gradients for all subsequent experiments.

4.2 ONLINE REINFORCEMENT LEARNING FOR TRAINING SNN

Now that an understanding of the effect of the slope parametrizing the surrogate gradient has been
established, different approaches to training SNNs on temporal information are compared.

7

Master Thesis Aerospace Engineering

(a) Noise is injected during training to increase ex-
ploration. Steep slopes only update a limited number
of weights, leading to inefficient training, when the
error signal itself is noisy.

(b) No additional noise is injected during training.
The increased noise in gradients of the shallow gra-
dient allows for effective exploration. Scheduling
the gradient prevents converging to local minima and
reduces gradient noise during training.

Figure 2: The SNNs receive full action history. This enables leveraging standard reinforcement learning
frameworks, which learn based on single transitions rather than sequences.

4.2.1 TWIN DELAYED DDPG: TD3

Initially, it was attempted to train a network using TD3 [10], where observations are sampled
sequentially from the buffer. However, as a randomly initialized network fails to generate sequences
longer than the warm-up period of 50 timesteps, no gradient could be computed. Next, this period
was disregarded during training. This prevents the hidden states from converging to realistic values,
hindering learning for tasks where the episode length is determined by the agent’s performance.
The continuously changing observations combined with the unconverged hidden states decreases
the validity of the learning signal significantly. The wall-clock time exceeded 24h before any sign
of training could be observed. Furthermore, the large number of interactions required before the
baseline of 50 timesteps could be achieved, called for alternative approaches.

In a second experiment, the SNN was given each observation for 4 forward passes, accumulating the
spikes before performing a population-based decoding, after which the network resets its hidden states.
While this is undesired, for energy efficiency and breaks the temporal relation between subsequent
observations, the performance of the network is not negatively influenced by a warm-up period. This
approach is common in RL with stateful neural networks, as it allows for leveraging traditional RL
frameworks. This network learns much faster, but suffers from increased computational requirements,
and requires manual engineering of features to create an MDP from the temporal information.

4.2.2 TD3+BC JUMP-STARTED WITH A GUIDE POLICY

For subsequent experiments, the fast reward function will not be used, as the agents trained by these
experiments will be deployed on the Crazyflie. Now, an actor which has can successfully hover
the Crazyflie with observations available in the simulator, is used as a jump start for bridging the
warm-up period, to assure lengthy transitions to be gathered. Next, this agent is also used to gather a
dataset for the BC and TD3+BC experiments. To emphasize the ability of RL to surpass the original
agent, a reward curriculum is implemented.

In BC, no reward information is used, which leads to copying the guide policy. A strong decrease in
performance can be seen when the reward function is altered with the curriculum. Naturally, this setup
is unable to improve over the performance of the guiding agent. TD3+BC uses a critic which learns
the reward structure, which in turn guides the actor. Interestingly, the presence of the critic allows the
spiking actor to far exceed the BC approach in both the progressive and strict reward curriculum, as
seen in Table 2. Importantly, these two algorithms have been trained on static datasets, consisting
of roughly 1h30m of real world flight time, or 500000 environment interactions. When using an
existing agent during the warm-up period, and gathering new environment interactions online, it was
observed that the spiking actor was able to achieve the same performance as the BC setup. As the

8

Master Thesis Aerospace Engineering

Difficulty Slope BC TD3+BC TD3+BC+JSRL

Easy
2 292.0± 32.5 310.0± 84.9 353.7± 38.7

100 309.7 ± 15.9 272.6± 5.7 309.6± 49.6

Medium
2 9.3± 23.4 123.3± 13.4 318.4± 40.7

100 15.8± 28.3 124.4± 15.6 272.8± 86.0

Hard
2 −266.5± 140.2 −79.5± 3.4 90.6± 15.5

100 −312.0± 92.7 −140.6± 19.3 89.0± 30.1

Table 2: Training SNN using 3 different algorithms. The original agent, used in BC, TD3+BC and as jump-start
in TD3+BC+JSRL, was trained on the original reward function, after which curriculum training is used to
improve performance of the final agents. The difficulty levels relate to the difficulty of the reward function,
where easy relates to the original reward function, medium to a progressive reward function, and hard a strict
reward function, presented in subsection A.2. Green cells represent the best performing algorithm, orange cells
represent the second-best algorithm.

original actor, cloned in the BC setup, was trained using single transitions, using additional states, it
can be concluded that online recurrent RL which is adapted to overcome the warm-up period with
JSRL, can successfully achieve similar performance. Especially when utilizing a curriculum reward
function, the advantages of the novel interactions shine through. The jump-started RL method was
able to outperform both BC and TD3+BC.

As discussed earlier, one can either use an expert agent to jump-start training by rolling in the spiking
policy throughout training, or use an agent only to bridge the warm-up period. The advantage of the
aforementioned option, is increased learning speed, thanks to the BC term. This approach is similar
to offline RL, as most of the training is achieved early on in training, where the guiding agent still
gathers a large portion of the full rollout. While advantageous with a guiding agent which achieves
high reward scores, this also leads to a final policy which displays similar behavior as the guide.
Therefore, the guiding policy should only be used for the warm-up period when it is desired that the
spiking policy displays different behavior.

4.3 BRIDGING THE REALITY GAP

When deploying the trained agents on the CrazyFlie, one has to take into account the computational
constraints of the hardware. Where large agents or agents that perform multiple forward passes per
observation can perfectly be executed in simulation, in real life, the controller needs to be running
at a frequency of at least 100Hz, on an edge device. The inability to achieve this control frequency
obstructs the agent to control the drone. Using NeuroBench [40], the computational requirements of
the ANN, SNN which performs multiple forward passes per prediction, and finally the SNN trained
on sequences can be compared.

As shown in Table 3, the larger size of the SNN compared to the ANN leads to significantly different
results. The advantages of SNN become clear when looking at metrics like the activation sparsity
and the synaptic operations. As the ANN uses Tanh activation functions, the output is virtually
never sparse, this leads to dense synaptic operations, which is defined by the number of operations
needed for a forward pass, while neglecting any sparsity, equal to the effective synaptic operations,
which are the operations where only non-zero activations or weights are being multiplied. The latter
therefore reflects the computational requirements on sparsity aware hardware. Next, looking at
synaptic operations, one can distinguish between multiply-accumulates (MACs) and accumulates
(ACs). In practice, MACs are more computational intensive and can lead to energy consumption
roughly three times as large as ACs. Therefore, one can reason that the SNN, which uses temporal
information, is more energy efficient than the ANN, which is smaller. Next, interestingly, the SNN
with no temporal capabilities requires the large majority of operations in the encoding layer, of size
148, to accommodate for the action history, required to successfully fly the drone, as reflected in the
effective MACs. This is important to take into account when deciding on the platform to deploy the
model. A fully neuromorphic platform would be optimized for the binary spikes, reflected in the ACs.

9

Master Thesis Aerospace Engineering

Figure 3: The spiking controller can successfully guide the drone to perform eight figures in simulation.

As most operations still happen in the non-spiking domain, to enable encoding, it would not be worth
it to deploy the non-temporal SNN on neuromorphic hardware.

Baseline ANN SNNnon−temporal SNNtemporal

Reward (mean ± std) 447± 0.9 310± 10.1 446± 1.2

Risk 445 286 442

Footprint (bytes) 55.3× 103 287.4× 103 158.3× 103

Activation Sparsity 0.0 0.87 0.79

SynOps Dense 13.7× 103 282.6× 103 37.9× 103

SynOps Eff_MACs 13.7× 103 149.6× 103 4.6× 103

SynOps Eff_ACs 0.0 18.3× 103 12.2× 103

Table 3: NeuroBench results for an ANN, SNN with no temporal capabilities, and our SNN trained with
TD3BC+JSRL. The model sizes with comparable performance are 64-64 for the ANN, 256-256 for the SNN
with no temporal capabilities and 128-128 for the SNN with temporal capabilities.

The SNN receives the position, linear velocity, orientation and angular velocities, and outputs a motor
command for each motor, in a deterministic manner. The behavior of the drone was observed to
display strong oscillatory behavior. This could be explained due to the lack of penalty on angular
velocities in the default reward function. Where such behavior was not observed in an ANN, which
receives full action history, the SNN shows this behavior with and without the action history. As the
final layer, which is further decoded, directly dictates the granularity of the outputs possible, one
could reason that the network would benefit more from a reward function which penalizes abrupt
behavior more than for ANN. On top of this granularity, it is observed that the throttle of existing
controllers, and the networks, hover around 66%, with changes of only a few percentage points
leading to abrupt changes in attitude, the network should learn to increase granularity around the
hover setting. In future work, one could decide to control deviations around the drone hover throttle
settings, rather than the absolute throttle setting.

Although strong oscillatory behavior is present, the spiking controller still enabled autonomous
control for a wide range of maneuvers including eight figures, Figure 3.

Next, the actor is ported to the real Crazyflie. For portability reasons, the spiking policy is running on
a Teensy microcontroller, which is attached to the Crazyflie. However, the Crazyflie has sufficient
computational resources onboard, that the trained network can also be ran on the Crazyflie itself, at
a frequency of 100Hz. This does influence the inertia and mass of the drone, which the network
will need to adapt to. Next, the network was deployed on 2 versions of the Crazyflie. One with
the normal motors and propellers, as modeled in simulation, and one with upgraded motors and
upgraded propellers. The latter will demonstrate the robustness of the trained network. We compare

10

Master Thesis Aerospace Engineering

the performance on both position control, i.e. hovering around a set point, and trajectory following.
These are compared to the ANN proposed by Eschmann et. al. [6]. For fair comparison, their
minimum error across all tested models is used as baseline. We compare both the proposed ANNs
trained with and without action history.

While the SNN seems to be able to achieve a smaller error than the ANN, it is important to note that
the spiking controller is less reliable than the ANN. Where the ANN can consistently fly the drone,
the spiking actor tends to struggle to obtain similar reliability.

Position Control Error [m] Trajectory Tracking Error
[m]

ANN, action history[6] 0.1 0.21
ANN, no action history[6] 0.25 ∞

SNN 0.04 0.24
SNN, altered drone 0.14 0.20

Table 4: Comparison of neural network models for position control and trajectory tracking tasks. The models
include an ANN with full observation and action history, an ANN without action history, an SNN trained
with TD3BC+JSRL without action history, and the same SNN deployed on a drone with modified motors and
propellers. The mean position error of the deployed SNNs is benchmarked against the best-performing ANN
policy [6]. Position error is measured as the average xy-plane error (in meters), and trajectory tracking error is
evaluated as the average error across figure-eight and square-following tasks.

5 CONCLUSION

Despite the widely recognized temporal processing capabilities of stateful networks like recurrent and
spiking neural networks, effective training methods to harness these strengths in robotics applications
remain underdeveloped. Neuromorphic computing, known for its energy efficiency and low latency,
has garnered significant attention from the robotics community. In the context of spiking neural
networks, the relatively recent introduction of surrogate gradient techniques has made it possible
to leverage conventional deep learning frameworks, thereby facilitating the integration of various
reinforcement learning algorithms.

In this work, different approaches for training spiking neural networks in robotics, ranging from
supervised learning to online reinforcement learning, are examined. Additionally, a hybrid framework
is proposed to accelerate the training of stateful neural networks, extending beyond just spiking
neural networks. A trained agent was finally benchmarked using NeuroBench and deployed on
the Crazyflie drone, demonstrating the increased efficiency of training spiking neural networks on
sequential information.

When comparing behavioral cloning, offline RL and online RL, it is observed that all approaches shine
in specific contexts. Where BC can clone the behavior of a controller, without the need of a reward
structure, offline RL demonstrates improving over the original agent, at cost of the introduction of
a reward function, which can be challenging to design. Lastly, when one wants to fully exploit a
simulator, using an agent, which is only required to survive, rather than complete a task, as required
in the 2 aforementioned approaches, the online RL with a jump-start demonstrates the ability of
achieving similar performance to an expert controller, used in the BC and offline RL approach.

Next, the surrogate gradient parametrizing the weight update behavior of spiking neural networks, has
shown to display an important role in online RL, where shallow gradients demonstrated the ability to
introduce exploration. Therefore, it is advised to consider this when applying online RL to spiking
neural networks.

While the spiking policy was successfully deployed to the real world, the reliability of this controller
should be improved. The controller caused strong oscillatory behavior, causing some flights to
terminate early due to instabilities. This could be resolved by introducing a penalty for angular
velocities, and potentially modelling the effect of different propellers, motors, and the Teensy
microcontroller.

11

Master Thesis Aerospace Engineering

REFERENCES

[1] Mahmoud Akl, Yulia Sandamirskaya, Florian Walter, and Alois Knoll. Porting deep spiking
q-networks to neuromorphic chip loihi. In International Conference on Neuromorphic Systems
2021, pp. 1–7, 2021.

[2] Guillaume Bellec, Franz Scherr, Elias Hajek, Darjan Salaj, Robert Legenstein, and Wolfgang
Maass. Biologically inspired alternatives to backpropagation through time for learning in recur-
rent neural nets, 2019. URL http://arxiv.org/abs/1901.09049https://arxiv.
org/pdf/1901.09049.pdfhttps://arxiv.org/abs/1901.09049. Comment:
We changed in this version 2 of the paper the name of the new learning algorithms to e-prop,
corrected minor errors, added details – especially for resulting new rules for synaptic plasticity,
edited the notation, and included new results for TIMIT.

[3] Zhenshan Bing, Claus Meschede, Florian Röhrbein, Kai Huang, and Alois C Knoll. A
survey of robotics control based on learning-inspired spiking neural networks. Frontiers in
Neurorobotics, 12, 2018. ISSN 1662-5218. doi: 10.3389/fnbot.2018.00035. URL https:
//www.frontiersin.org/articles/10.3389/fnbot.2018.00035https:
//www.frontiersin.org/articles/10.3389/fnbot.2018.00035/pdf.

[4] Ding Chen, Peixi Peng, Tiejun Huang, and Yonghong Tian. Deep reinforcement learning with
spiking q-learning. arXiv.org, 2022.

[5] Sayeed Shafayet Chowdhury, Nitin Rathi, and Kaushik Roy. Towards Ultra Low Latency
Spiking Neural Networks for Vision and Sequential Tasks Using Temporal Pruning, volume
13671, pp. 709–726. Springer Nature Switzerland, 2022. ISBN 978-3-031-20082-3 978-3-031-
20083-0. URL https://link.springer.com/10.1007/978-3-031-20083-0_
42https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/
136710709.pdf.

[6] Jonas Eschmann, Dario Albani, and Giuseppe Loianno. Learning to fly in seconds. 11 2023.
URL http://arxiv.org/abs/2311.13081.

[7] Daniel E Feldman. The spike-timing dependence of plasticity. Neuron, 75(4):556–571, 2012.

[8] Răzvan V Florian. A reinforcement learning algorithm for spiking neural networks. Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, pp. 299–306, 2005. doi:
10.1109/synasc.2005.13.

[9] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
URL https://github.com/sfujim/TD3_BC.

[10] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International conference on machine learning, pp. 1587–1596. PMLR,
2018.

[11] Julia Gygax and Friedemann Zenke. Elucidating the theoretical underpinnings of surrogate
gradient learning in spiking neural networks.

[12] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. 1 2018. URL
http://arxiv.org/abs/1801.01290.

[13] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent
experience replay in distributed reinforcement learning. 2019. URL https://openreview.
net/pdf?id=r1lyTjAqYX.

[14] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen Koltun,
and Davide Scaramuzza. Champion-level drone racing using deep reinforcement learn-
ing. Nature, 620:982–987, 2023. ISSN 1476-4687. doi: 10.1038/s41586-023-06419-4.
URL https://www.nature.com/articles/s41586-023-06419-4https://
www.nature.com/articles/s41586-023-06419-4.pdf.

12

Master Thesis Aerospace Engineering

[15] Richard Kempter, Wulfram Gerstner, and J Leo Van Hemmen. Hebbian learning and spiking
neurons. Physical Review E, 59(4):4498, 1999.

[16] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning,
2019. URL https://arxiv.org/abs/1509.02971.

[17] Guisong Liu, Wenjie Deng, Xiurui Xie, Li Huang, and Huajin Tang. Human-level control
through directly trained deep spiking q-networks. IEEE transactions on cybernetics, pp. 1–12,
2022. doi: 10.1109/tcyb.2022.3198259.

[18] Yuxiang Liu and Wei Pan. Spiking neural-networks-based data-driven control. Elec-
tronics, 12:310, 2023. ISSN 2079-9292. doi: 10.3390/electronics12020310. URL
https://www.mdpi.com/2079-9292/12/2/310https://www.mdpi.com/
2079-9292/12/2/310/pdf?version=1673945908.

[19] Wolfgang Maass. Networks of spiking neurons: The third generation of neural network models.
10:1659–1671, 1997.

[20] Thomas Miconi. Biologically plausible learning in recurrent neural networks
reproduces neural dynamics observed during cognitive tasks. eLife, 6:e20899,
2017. ISSN 2050-084X. doi: 10.7554/eLife.20899. URL https://doi.
org/10.7554/eLife.20899https://elifesciences.org/download/
aHR0cHM6Ly9jZG4uZWxpZmVzY2llbmNlcy5vcmcvYXJ0aWNsZXMvMjA4OTkvZWxpZmUtMjA4OTktdjIucGRmP2Nhbm9uaWNhbFVyaT1odHRwczovL2VsaWZlc2NpZW5jZXMub3JnL2FydGljbGVzLzIwODk5/
elife-20899-v2.pdf?_hash=W0aFhuHQVJNohAxQoL1eTVP%2FdM48mukaN%
2F4B2YaDiFc%3D.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013. URL
https://arxiv.org/abs/1312.5602.

[22] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning, 2016. URL http://arxiv.org/abs/1602.01783https://arxiv.
org/pdf/1602.01783v2.pdfhttps://arxiv.org/abs/1602.01783.

[23] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks.

[24] Federico Paredes-Vallés, Jesse Hagenaars, Julien Dupeyroux, Stein Stroobants, Yingfu Xu,
and Guido de Croon. Fully neuromorphic vision and control for autonomous drone flight,
2023. URL http://arxiv.org/abs/2303.08778https://arxiv.org/pdf/
2303.08778.pdfhttps://arxiv.org/abs/2303.08778.

[25] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel.
Asymmetric actor critic for image-based robot learning. URL www.goo.gl/b57WTs.

[26] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
arXiv preprint arXiv:1706.01905, 2017.

[27] Samuel Schmidgall and Joe Hays. Meta-spikepropamine: learning to learn with synaptic
plasticity in spiking neural networks. Frontiers in neuroscience, 17, 2023. ISSN 1662-
4548. doi: 10.3389/FNINS.2023.1183321. URL https://pubmed.ncbi.nlm.nih.
gov/37250397/.

[28] Samuel Schmidgall, Jascha Achterberg, Thomas Miconi, Louis Kirsch, Rojin Ziaei, S Pardis
Hajiseyedrazi, and Jason Eshraghian. Brain-inspired learning in artificial neural networks: a
review.

[29] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

13

Master Thesis Aerospace Engineering

[30] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation, 2018. URL http:
//arxiv.org/abs/1506.02438https://arxiv.org/pdf/1506.02438.pdf.

[31] David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton. Reward is enough, 10 2021.
ISSN 00043702.

[32] Stein Stroobants, Julien Dupeyroux, and Guido De Croon. Design and implemen-
tation of a parsimonious neuromorphic pid for onboard altitude control for mavs us-
ing neuromorphic processors. In ICONS: International Conference on Neuromorphic
Systems, pp. 1–7. ACM, 2022. ISBN 978-1-4503-9789-6. doi: 10.1145/3546790.
3546799. URL https://dl.acm.org/doi/10.1145/3546790.3546799https:
//dl.acm.org/doi/pdf/10.1145/3546790.3546799.

[33] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[34] Guangzhi Tang, Neelesh Kumar, and Konstantinos P. Michmizos. Reinforcement co-learning of
deep and spiking neural networks for energy-efficient mapless navigation with neuromorphic
hardware. 3 2020.

[35] Guangzhi Tang, Neelesh Kumar, Raymond Yoo, and Konstantinos P. Michmizos. Deep rein-
forcement learning with population-coded spiking neural network for continuous control. 10
2020. URL http://arxiv.org/abs/2010.09635.

[36] Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon,
Matthew Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, Sergey Levine, and Karol Haus-
man. Jump-start reinforcement learning. 4 2022. URL http://arxiv.org/abs/2204.
02372.

[37] Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Agnieszka Grabska-
Barwi´nskabarwi´nska, Jack Rae, Piotr Mirowski, Joel Z Leibo, Adam Santoro, Mevlana
Gemici, Malcolm Reynolds, Tim Harley, Josh Abramson, Shakir Mohamed, Danilo Rezende,
David Saxton, Adam Cain, Chloe Hillier, David Silver, Koray Kavukcuoglu, Matt Botvinick,
Demis Hassabis, and Timothy Lillicrap. Unsupervised predictive memory in a goal-directed
agent. 2018.

[38] Daan Wierstra, Alexander Förster, Jan Peters, and Jürgen Schmidhuber. Recurrent policy
gradients.

[39] Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al.
Outracing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):
223–228, 2022.

[40] Jason Yik, Korneel Van den Berghe, Douwe den Blanken, Younes Bouhadjar, Maxime Fabre,
Paul Hueber, Denis Kleyko, Noah Pacik-Nelson, Pao-Sheng Vincent Sun, Guangzhi Tang, et al.
Neurobench: A framework for benchmarking neuromorphic computing algorithms and systems.
arXiv preprint arXiv:2304.04640, 2023.

[41] Luca Zanatta, Francesco Barchi, Andrea Bartolini, and Andrea Acquaviva. Artificial versus spik-
ing neural networks for reinforcement learning in uav obstacle avoidance. ACM International
Conference on Computing Frontiers, 2022. doi: 10.1145/3528416.3530865.

14

Master Thesis Aerospace Engineering

A APPENDIX

A.1 EFFECT OF SURROGATE GRADIENTS ON WEIGHT UPDATES

The choice of surrogate gradient slope in a spiking neural network is an important consideration,
especially for deeper neural networks. When analyzing the effect of the slope on a single layer
network, the effects are obvious. Choosing a steeper slope results in increasing the range of inputs to
the neuron for which a gradient exists becomes larger, at the cost of introducing a bias in the weight
update. However, when applying surrogate gradients in a deeper network, the effect becomes more
complex.

Let’s start by considering a network with two hidden layers, where the output layer is a weighted
sum of the last hidden layer, which corresponds to population encoding. Replacing the heaviside step
function in the LIF neuron model by a sigmoid and assuming β as defined in subsection 3.2 is 0, we
arrive at the following neural network.

1. Input layer to hidden layer:

Let x ∈ Rn be the input vector, W1 ∈ Rh×n be the weight matrix between the input and hidden
layer, b1 ∈ Rh be the bias vector, and σ(z) = 1

1+e−z be the sigmoid activation function.

z1 = W1x+ b1

a1 = σ(z1)

2. Hidden layer to hidden layer: Let W3 ∈ Rh×h be the weight matrix between the first hidden
layer and the second hidden layer, b2 ∈ Rh be the bias vector.

z2 = W2a1 + b2

a2 = σ(z2)

3. Hidden layer to output layer:

Let W3 ∈ Ro×h be the weight matrix between the hidden layer and the output layer, b3 ∈ Ro be the
bias vector.

z3 = W3a2 + b3

a3 = z3

Thus, the final output of the 2 hidden layers neural network is a3.

For each neuron i in layer l, the desired change in input can be calculated as:

δli = (

(nl+1)∑
j=1

W
(l+1)
ij δ

(l+1)
j)(σ′(z

(l)
i))

where
δ
(3)
i =

∂L

∂a
(3)
i

Where n(l) is defined as the number of neurons in layer l. The weight update can now be calculated
as the input to the neuron multiplied by its desired output change δ:

∂L

∂W
(l)
ji

= a
(l−1)
j δ

(l)
i

Using a surrogate gradient means replacing σ′(z(l)) by a surrogate function σ′
k(z

(l)), which is a
slope-altered sigmoid parametrized by k. Popular surrogate functions in SNN include the sigmoid,
fast-sigmoid and arctan. For this example, a bias-corrected sigmoid derivative will be used.

σ′
k(x) =

σ′(kx)

k2
= σ(kx) · (1− σ(kx))

15

Master Thesis Aerospace Engineering

For weights in the second weight matrix, the partial derivative for W (2)
ji to L is computed as:

∂L

∂W
(2)
ji

= a
(1)
j δ

(2)
i = a

(1)
j (

(n3)∑
j=1

W
(3)
ij δ

(3)
j)(σ′(z

(2)
i))

where replacing the activation function in the backward pass with the surrogate:

∂̃L

∂W
(2)
ji

= a
(1)
j

˜
δ
(3)
i = a

(1)
j (

(n3)∑
j=1

W
(3)
ij δ

(3)
j)(σ′

k(z
(2)
i))

Assume that all weights and bias matrices, the inputs and the error, ∂L

∂a
(3)
i

, follow independent

distributions:
W (l) ∼ N (µ

(l)
W , γ

(l)
W)

b(l) ∼ N (µ
(l)
b , γ

(l)
b)

x ∼ N (µin, γin)

∂L

∂a
(3)
i

∼ N (µe, γe)

Then the bias found by using the surrogate gradient over the true gradient can be calculated.

bias = E[
∂̃L

∂W
(2)
ji

]− E[
∂L

∂W
(2)
ji

]

= E[a(1)j] · E[˜
δ
(3)
i − δ

(3)
i]

= E[a(1)j] · E[
(n3)∑
j=1

W
(3)
ij δ

(3)
j] · E[σ′

k(z
(2)
i)− σ′(z

(2)
i)]

Therefore:
bias = 0

⇐⇒ E[σ′
k(z

(2)
i)] = E[σ′(z

(2)
i)]

This can only be true if k approaches one. Note that

∀x ∈ [−∞,∞] : σ′
k(x) >= σ′(x)

Therefore, a positive bias is introduced even in the first layer behind the surrogate gradient, which
scales with 1/k.

However, when deeper networks are considered, sign reversal of the gradient can occur [11], which
perturbs the gradient approximation of deeper layers. Looking at the gradients found in W (1)

∂̃L

∂W
(1)
ji

= xjδ
(2)
i = xj [

(n2)∑
j=1

W
(2)
ij (

(n3)∑
h=1

W
(3)
jh δ

(3)
h)(σ′

k(z
(2)
j))](σ′

k(z
(1)
i))

And realizing the cosine similarity can only equal 1 when:

∂̃L

∂W
(1)
ji

∂L

∂W
(1)
ji

= 1

We find that this happens when:

xj [
∑(n2)

j=1 W
(2)
ij (

∑(n3)
h=1 W

(3)
jh δ

(3)
h)(σ′

k(z
(2)
j))](σ′

k(z
(1)
i))

xj [
∑(n2)

j=1 W
(2)
ij (

∑(n3)
h=1 W

(3)
jh δ

(3)
h)(σ′(z

(2)
j))](σ′(z

(1)
i))

= 1

Considering the derivative of the surrogate gradient is always greater than zero, and thus greater than
the true gradient, the deviation from the true gradient greatly increases with deeper layers, due to the
constant overestimation.

16

Master Thesis Aerospace Engineering

A.2 SIMULATOR DETAILS

The reward structure and terminal conditions used during training greatly influence the behavior of
the final policy. Picking the reward structure to be too strict, will obstruct the policy to learn at all,
while soft reward structures will lead to unusable policies. In general, the right reward is crucial for
successful reinforcement learning [31].

Therefore, multiple reward structures were used. The actor receives a reward for survival, Cr,
avoiding the learning to terminate problem. Next, a penalty is given for position errors, velocity
errors, orientation errors and for the magnitude of the action, parametrized with Cp, Cv , Cq and Ca

respectively.

Cp Cv Ca Cq Cr

Original 1.0 0.005 0.01 0.25 1.0
Progressive 5.0 0.05 0.3 0.25 1.0
Strict 5.0 0.2 0.5 0.25 1.0
Fast Learning 0.1 0.0 0.0 0.0 1.0

Table 5: Parameters used for reward computation.

To simulate the drone, a simple drone dynamics model is used to compute the state change after
applying specific thrust to the four motors. As the model outputs an RPM setpoint, the change in
RPM can be calculated using a low-pass filter.

∆rpm = (
rpmdes − rpmcurr)

τ
(7)

Where rpmdes and rpmcurr are the desired and current rpm respectively, and τ is the time constant
of the motors and propellers, reflecting the delay in actual spin up or down of the motors.

The RPM can then be converted to motor thrust using a second order model.
T = c0 + c1 · rpm+ c2 · rpm2 (8)

Where c0, c1, c2 are thrust constants. The torques applied to the drone are caused by the thrust and
rotor configuration.

The state changes can now be computed in the body reference frame, after which they are converted
to the world reference frame.

For the parameters used, the reader is referred to the public GitHub page1.

A.3 RECURRENT IMPORTANCE SAMPLING

In off-policy reinforcement learning (RL), the replay buffer is populated with interactions from past
policies, which may differ from the current policy. A key question is whether transitions in the buffer,
gathered under a different policy, can still be used to train the current policy. This issue is addressed
through the concept of importance sampling, where we use a ratio to weigh transitions, offering
insights into how relevant a particular transition is for updating the current policy.

The policy gradient can be derived by starting with the standard objective function in RL:
∇θJ(πθ) = ∇θEτ∼πθ

[R(τ)]

This can be rewritten as:
= ∇θ

∫
τ

P (τ |θ)R(τ)

where P (τ |θ) is the probability of observing a trajectory τ under a policy parameterized by θ.

The probability P (τ |θ) can be expanded as:

P (τ |θ) = ρ0(s0)

T∏
t=0

P (st+1|st, at)πθ(at|st) (9)

Here:
1https://github.com/korneelf1/SpikingCrazyflie

17

Master Thesis Aerospace Engineering

• ρ0(s0) is the distribution of the initial state s0,
• P (st+1|st, at) is the environment transition probability from state st to st+1 given action
at,

• πθ(at|st) is the policy function, which defines the probability of taking action at in state st.

To incorporate importance sampling, we utilize the following equation:

Eτ∼πθ
[R(τ)] = Eτ∼πθ′

[
P (τ |θ)
P (τ |θ′)

R(τ)

]
(10)

This equation forms the basis for off-policy RL, showing that we can estimate the gradient of the
current policy using trajectories collected under a different policy, πθ′ . Even in on-policy methods,
this ratio is crucial, for instance, in advantage function estimations.

When applying Equation 9 to Equation 10, and accounting for recurrent policies, we get:

Eτ∼πθ
[R(τ)] = Eτ∼πθ′

[
ρ0(s0)

∏T
t=0 P (st+1|st, at)πθ(at| [st, st−1, . . . , s0])

ρ0(s0)
∏T

t=0 P (st+1|st, at)πθ′(at| [st, st−1, . . . , s0])
R(τ)

]
(11)

This expression highlights that, for recurrent policies, the importance sampling ratio now takes into
account a history of states, [st, st−1, . . . , s0], instead of just the current state st.

In practical terms, this means that off-policy learning for recurrent or spiking neural networks does
not alter the overall structure of the policy gradient update—other than introducing a sequential
dependence on past states. The same principle applies: we can use transitions from other policies as
long as we properly weight them according to the importance sampling ratio.

18

4.1. Additional Work 38

4.1. Additional Work
In the process of developing a reliable and effective training methods for SNN using RL, many ap-
proaches were experimented with. This section serves as an overview of the most important directions
which were investigated.

4.1.1. Neuron Model Selection
As explained in chapter 2, various neuron models exist with their own specific dynamics, ranging from
highly realistic neuron models to trimmed down, computationally efficient neuron models. Commonly,
first-order LIF models are used, due to their simple implementation and limited number of parameters.
A caveat of these neuron models, however, is the fact that the direct maximum effect of an incoming
current occurs at the exact same time as the input itself. In contrast to second order models, where
the maximum of the response towards an incoming impulse is delayed. The rise time caused by this
delay can cause an outgoing spike to occur delayed towards the incoming spike, therefore exploiting
the temporal dynamics of the model more.

While this is promising, and theoretically can represent more information than the first order models, it
introduces another dimension to the learning problem. To compare performance, a simple model was
trained to learn temporal dynamics and integrate incoming data in a supervised training manner. A
dataset of the drone control task was created by deploying an existing controller and the output were
motor commands. Interestingly, it was found that in this setup, the first-order models outperformed the

Figure 4.1: Comparison of First-Order and Second-Order Neuron Models in Spiking Neural Networks for Drone Control. The
first-order neuron model demonstrates higher loss compared to the second-order neuron model. This indicates that the

second-order model is better at learning the mapping from state information to motor commands, resulting in more effective
control of the drone.

second-order models, see Figure 4.1. This could be explained by the fact that the drone control task
already suffers from delays caused by factors such as the propeller spin-up. Additional delays could
therefore obstruct successful execution of the task.

4.1.2. Parallelizable Simulator
To enable fast RL training, the speed at which one can simulate is critical. With fast simulators, one
can leverage on-policy techniques, which tend to be more stable.

Initially, the FastPyDroneSim1 was used as the dynamics model backing the RL simulation environment.
This simulator provides highly optimized dynamics in Python, for drone-racing platforms. This simulator
uses numba kernels which parallelize the operations across parallel environments and therefore enable
simulation speeds that are far beyond other Python implementations available now.

A challenge with parallelized dynamics is that one can not treat each environment as independent,
which can be done when other techniques such asmultithreading are used. Standard RL data collection
interacts with an environment until it terminates. With parallelized dynamics, however, one can not

1https://github.com/tudelft/fastPyDroneSim

4.1. Additional Work 39

easily reset environments that achieved terminal conditions. Therefore, two solutions were worked
out. First, one simulates each environment for a fixed number of timesteps, saves the collected data,
and strips the data collected after terminal conditions. While this does work, it leaves the agent to
perform many steps, which are not used, wasting compute and time. However, one can place the loop
which runs the simulation steps within the numba optimized function. A second solution would be to
mask steps which occur after terminal conditions are obtained, and reset the environments in place.
However, this requires checking whether terminal conditions occur during the dynamics simulation,
which in turn requires step by step simulation. This is not possible within a numba function, exiting
and entering this function introduces an overhead, which again slows down simulation. The optimal
solution therefore depends on the task at hand and the hardware available. When the task terminates
due to bad agent performance, which is the case in drone control tasks, the second solution, where
one detects terminal conditions during simulation, can prevent numerous useless simulation steps.
However, for tasks where terminal conditions are largely governed by time limits, one can confidently
run the simulation for this number of steps and run the simulation loop within the numba function.

Upon further experimentation, it was discovered that this simulator was not optimized for the simulation
of the CrazyFlie drone. This introduced a number of challenges for the RL agent, and uncertainty on
whether the agent would be able to bridge the reality gap. Therefore, the usage of this optimized
simulator was discarded for a slower, but CrazyFlie specific simulator. In turn, the main bottleneck of
fast RL training now was the simulator. Therefore, the focus shifted towards off-policy algorithms.

4.1.3. Soft Actor-Critic
SAC is often considered as the most reliable off-policy RL algorithm. As described in chapter 3, it
builds on ideas of preceding algorithms, importantly adding an entropy term to introduce improved
exploration and improve training performance. Due to the attractive properties and the fact that the
simulator used for training was too slow to effectively exploit the stable characteristics of on-policy
algorithms such as PPO, SAC was initially used in all experiments. It was found that for ANN, SAC
outperformed alternatives such as TD3 and DDPG, hinting towards the effectiveness of the entropy
term. However, when applying to SNNs, it was found that the entropy term had a degrading effect.
For SNNs, more basic algorithms such as TD3 or DDPG showed improved results over the entropy
regulated counterpart, SAC.

One hypothesis for this behavior can be derived from chapter 4. Due to the usage of surrogate gradients,
the parameter update in itself is already a noisy approximation of the gradient direction computed by
the RL framework. The additional entropy term could potentially significantly decrease the training
performance in SNNs. Furthermore, the end-to-end control of MAVs is an unstable environment. The
simulator injects random disturbances to the MAV which already increases the exploration. Therefore,
SAC was disregarded for further experiments.

4.1.4. Evolutionary Learning
Early on, it was recognized that pure online RL suffered from a major issue. In unstable environments
such as drone control environments, the length of a rollout is directly affected by the performance of
the agent. One major challenge is to collect rollouts which are long enough to accurately represent
the temporal characteristics of, eg. successful drone flight. Especially when calculating gradients,
this tends to cause a major issue, as backpropagation through time (BPTT) is used. Evolutionary
Strategies (ES) are an alternative class of learning algorithms, which rather than optimizing a single
agent through gradient calculation, leverages a large population of agents with random parameters and
mutates the best performing agents to create children with improved performance. The advantage of
these techniques is that it does not suffer from the issue that BPTT can be a noisy gradient calculation
for sequences which are too short to reflect true temporal information. In early experiments, it was
found that these techniques were able to achieve a baseline performance which enables sequence
generation of sufficient length, as seen on Figure 4.2. Previous work has proposed hybrid methods of
RL and ES [54]. However, in early experiments, it was found that the ES agents consistently converged
to suboptimal performance, and that the initialization of an RL training round with this agent did not lead
to high-performing agents. This could be explained due to the fact that the ES agents arrive in local
minima, which do not necessarily serve as a useful initialization for the RL framework.

4.1. Additional Work 40

Figure 4.2: Evolutionary strategies (CEM-RL[54]) rapidly converge to a reasonable but suboptimal performance.

4.1.5. Open-Source Code
All the code used in this thesis project has been made open-source2. for the community to use and
improve. It includes a wide variety of algorithms, simulators, and more. All files are preloaded with the
hyperparameters employed in this thesis. Among these resources is the Spiking Crazyflie Gym, a high-
performance simulator designed to train end-to-end control algorithms for the Crazyflie 2.1 drone. This
simulator provides a robust environment for developing and testing control strategies, with a particular
focus on neural network-based approaches.

In addition to the simulator, the repository includes training scripts for both artificial neural networks
(ANNs) and spiking neural networks (SNNs). These scripts streamline the training process, enabling
the development of effective control strategies tailored to the Crazyflie 2.1 drone.

Simulator
The simulator builds upon the Learning to Fly in Seconds project, with dynamics integrated into the
Gymnasium API. The core implementation resides in the l2f_gym.py file, which provides the neces-
sary interfaces and dynamics to simulate the Crazyflie 2.1 drone. Notably, as of November 2024, the
Learning to Fly package supports CUDA operations, significantly improving simulation performance.

Training Agents
The repository supports multiple training methodologies, categorized into Online RL, Online-Offline RL,
and Offline RL.

Online RL
Fully online RL methods are implemented in scripts such as tianshou_l2f_<method>.py, built upon
the Tianshou RL framework. Initial experiments utilized SAC for network training, but it was found
that entropy-based exploration negatively impacted performance. This was due to the environment’s
inherent instability and random disturbances, which already promoted sufficient exploration. For SNN
training, it was observed that a shallower surrogate gradient slope improved training speed. A steep
gradient slope, while precise, updates fewer weights per step, leading to slower convergence during
the uncertain initial phases of RL training.

Online-Offline RL
Given that controllers for the Crazyflie 2.1 are readily available, an online-offline approach was explored
to accelerate SNN training. The TD3BC_Online.py file implements a Jump-Start RL method using
TD3+BC. This approach allows training to begin with either pre-existing replay buffers or an empty buffer
initialized by an existing controller. During training, the agent initially relies on the existing controller and
gradually transitions to the SNN. Mechanisms are incorporated to mitigate the impact of poor-quality
data due to early terminations.

2https://github.com/korneelf1/SpikingCrazyflie/

https://github.com/korneelf1/SpikingCrazyflie/

4.1. Additional Work 41

Offline RL
Offline RL methods focus on leveraging pre-existing datasets for training. At its core, this involves
supervised learning, as demonstrated in BC.py. For more advanced setups, actor-critic architectures
can utilize reward signals to refine performance over the baseline dataset, especially when dealing
with non-expert data or limited reward curricula. The TD3BC.py file provides an implementation of this
approach, showcasing how reward information can enhance offline RL training.

This repository, in its entirety, serves as a comprehensive toolkit for developing neural network-based
control strategies for drones, bridging the gap between simulation and real-world applications.

5
Conclusion

This thesis explored the integration of reinforcement learning with spiking neural networks in order
to address the computational efficiency and energy constraints of real-world robotic applications. By
leveraging the unique temporal capabilities of SNNs and combining them with advanced RL algorithms,
a novel framework was proposed and successfully applied to drone control tasks.

The strengths and challenges of using spiking networks in an RL context were pointed out. The pro-
posed approach of TD3+BC+JSRL demonstrated that offline and online RL can balance optimality and
computational efficiency. Its asymmetric actor-critic configuration-a spiking actor combined with a non-
spiking critic-simultaneously stabilizes training while offering the potential for energy-efficient deploy-
ment. The experimental results justified this, and reliable flight performance of the trained controllers
on Crazyflie drones both in simulated and real environments was attained.

Despite these successes, a number of challenges remain: direct SNN training using RL methods re-
quires a careful surrogate gradient setting with a trade-off between stability and exploration. While
energy efficiency is clearly improved in the models, the decrease in reliability compared to their non-
spiking equivalents calls for further investigation. Important future work remains in improving robust-
ness in spiking networks, as well as optimizing model deployment on neuromorphic hardware.

With this thesis, the field of neuromorphic computing is advanced with further use of SNNs within RL set-
tings. The results establish the foundation for further investigations toward low-power and time-aware
learning machines standing at the crossroads of biological inspiration and engineering innovation. The
encouraging results obtained in this work allow further steps toward broader adoption of neuromorphic
methods in autonomous robotics and beyond.

42

References

[1] Mahmoud Akl et al. “Porting Deep Spiking Q-Networks to neuromorphic chip Loihi”. In: ACM
International Conference Proceeding Series (July 2021). DOI: 10.1145/3477145.3477159. URL:
https://dl.acm.org/doi/10.1145/3477145.3477159.

[2] Daniel Auge et al. “A Survey of Encoding Techniques for Signal Processing in Spiking Neural
Networks”. In: Neural Processing Letters 53.6 (Dec. 2021), pp. 4693–4710. ISSN: 1573773X.
DOI: 10.1007/S11063-021-10562-2/TABLES/1. URL: https://link.springer.com/article/
10.1007/s11063-021-10562-2.

[3] John Backus. “Can programming be liberated from the von Neumann style?” In: Communications
of the ACM 21.8 (Aug. 1978), pp. 613–641. ISSN: 15577317. DOI: 10.1145/359576.359579.
URL: https://dl.acm.org/doi/10.1145/359576.359579.

[4] Guillaume Bellec et al. “A solution to the learning dilemma for recurrent networks of spiking neu-
rons”. In: bioRxiv 2019 (2019), p. 738385. DOI: 10.1101/738385.

[5] Guillaume Bellec et al.Biologically inspired alternatives to backpropagation through time for learn-
ing in recurrent neural nets. 2019. URL: http://arxiv.org/abs/1901.09049%20https://arxiv.
org/pdf/1901.09049.pdf%20https://arxiv.org/abs/1901.09049.

[6] Zhenshan Bing et al. “A Survey of Robotics Control Based on Learning-Inspired Spiking Neural
Networks”. English. In: Frontiers in Neurorobotics 12 (2018). ISSN: 1662-5218. DOI: 10.3389/
fnbot.2018.00035. URL: https://www.frontiersin.org/articles/10.3389/fnbot.2018.
00035%20https://www.frontiersin.org/articles/10.3389/fnbot.2018.00035/pdf.

[7] Zhenshan Bing et al. “Indirect and direct training of spiking neural networks for end-to-end control
of a lane-keeping vehicle”. In: Neural Networks 121 (2020), pp. 21–36. ISSN: 0893-6080. DOI:
10.1016/j.neunet.2019.05.019. URL: https://www.sciencedirect.com/science/article/
pii/S0893608019301595%20https://arxiv.org/pdf/2003.04603%20https://www.sciencedi
rect.com/science/article/pii/S0893608019301595.

[8] Tim Burgers, Stein Stroobants, and Guido C H E De Croon. “Evolving Spiking Neural Networks
to Mimic PID Control for Autonomous Blimps”. In: ().

[9] Yongqiang Cao et al. “Spiking deep convolutional neural networks for energy-efficient object
recognition”. In:SpringerYCao, YChen, DKhoslaInternational Journal of Computer Vision, 2015•Springer
113.1 (May 2015), pp. 54–66. DOI: 10 . 1007 / s11263 - 014 - 0788 - 3. URL: https : / / link .
springer.com/article/10.1007/s11263-014-0788-3.

[10] Ding Chen et al. “Deep Reinforcement Learning with Spiking Q-learning”. In: (Jan. 2022).
[11] Ding Chen et al. “Fully Spiking Actor Network with Intra-layer Connections for Reinforcement

Learning”. In: (Jan. 2024).
[12] Sérgio F. Chevtchenko and Teresa B. Ludermir. “Combining STDP and binary networks for re-

inforcement learning from images and sparse rewards”. In: Neural Networks 144 (Dec. 2021),
pp. 496–506. ISSN: 0893-6080. DOI: 10.1016/J.NEUNET.2021.09.010.

[13] Iulia M. Comsa et al. “Temporal Coding in Spiking Neural Networks with Alpha Synaptic Function”.
In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Pro-
ceedings 2020-May (May 2020), pp. 8529–8533. ISSN: 15206149. DOI: 10.1109/ICASSP40776.
2020.9053856.

[14] Mike Davies et al. “Loihi: A Neuromorphic Manycore Processor with On-Chip Learning”. In: IEEE
Micro 38.1 (2018), pp. 82–99. DOI: https://doi.org/10.1109/MM.2018.112130359.

[15] Ziyu Wang Deepmind et al. “SAMPLE EFFICIENT ACTOR-CRITIC WITH EXPERIENCE RE-
PLAY”. In: ().

43

https://doi.org/10.1145/3477145.3477159
https://dl.acm.org/doi/10.1145/3477145.3477159
https://doi.org/10.1007/S11063-021-10562-2/TABLES/1
https://link.springer.com/article/10.1007/s11063-021-10562-2
https://link.springer.com/article/10.1007/s11063-021-10562-2
https://doi.org/10.1145/359576.359579
https://dl.acm.org/doi/10.1145/359576.359579
https://doi.org/10.1101/738385
http://arxiv.org/abs/1901.09049%20https://arxiv.org/pdf/1901.09049.pdf%20https://arxiv.org/abs/1901.09049
http://arxiv.org/abs/1901.09049%20https://arxiv.org/pdf/1901.09049.pdf%20https://arxiv.org/abs/1901.09049
https://doi.org/10.3389/fnbot.2018.00035
https://doi.org/10.3389/fnbot.2018.00035
https://www.frontiersin.org/articles/10.3389/fnbot.2018.00035%20https://www.frontiersin.org/articles/10.3389/fnbot.2018.00035/pdf
https://www.frontiersin.org/articles/10.3389/fnbot.2018.00035%20https://www.frontiersin.org/articles/10.3389/fnbot.2018.00035/pdf
https://doi.org/10.1016/j.neunet.2019.05.019
https://www.sciencedirect.com/science/article/pii/S0893608019301595%20https://arxiv.org/pdf/2003.04603%20https://www.sciencedirect.com/science/article/pii/S0893608019301595
https://www.sciencedirect.com/science/article/pii/S0893608019301595%20https://arxiv.org/pdf/2003.04603%20https://www.sciencedirect.com/science/article/pii/S0893608019301595
https://www.sciencedirect.com/science/article/pii/S0893608019301595%20https://arxiv.org/pdf/2003.04603%20https://www.sciencedirect.com/science/article/pii/S0893608019301595
https://doi.org/10.1007/s11263-014-0788-3
https://link.springer.com/article/10.1007/s11263-014-0788-3
https://link.springer.com/article/10.1007/s11263-014-0788-3
https://doi.org/10.1016/J.NEUNET.2021.09.010
https://doi.org/10.1109/ICASSP40776.2020.9053856
https://doi.org/10.1109/ICASSP40776.2020.9053856
https://doi.org/https://doi.org/10.1109/MM.2018.112130359

References 44

[16] PU Diehl et al. “Fast-classifying, high-accuracy spiking deep networks through weight and thresh-
old balancing”. In: ieeexplore.ieee.orgPU Diehl, D Neil, J Binas, M Cook, SC Liu, M Pfeiffer2015
International joint conference on neural networks (IJCNN), 2015•ieeexplore.ieee.org (). URL:
https://ieeexplore.ieee.org/abstract/document/7280696/.

[17] Jason KEshraghian et al. “TRAININGSPIKINGNEURALNETWORKSUSINGLESSONSFROM
DEEP LEARNING”. In: TRAINING SPIKING NEURAL NETWORKS USING LESSONS FROM
DEEP LEARNING (2023). URL: https://snntorch.readthedocs.io/en/latest/tutorials/
index.html..

[18] Rǎzvan V. Florian. “A reinforcement learning algorithm for spiking neural networks”. In: Proceed-
ings - Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting, SYNASC 2005 2005 (2005), pp. 299–306. DOI: 10.1109/SYNASC.2005.13.

[19] Nicolas Frémaux andWulframGerstner. “Neuromodulated spike-timing-dependent plasticity, and
theory of three-factor learning rules”. In: Frontiers in Neural Circuits 9.JAN2016 (Jan. 2015),
p. 155830. ISSN: 16625110. DOI: 10.3389/FNCIR.2015.00085/BIBTEX.

[20] Scott Fujimoto, Herke van Hoof, and David Meger. “Addressing Function Approximation Error in
Actor-Critic Methods”. In: (Feb. 2018).

[21] Scott Fujimoto and Shixiang Shane Gu. AMinimalist Approach to Offline Reinforcement Learning.
Tech. rep. URL: https://github.com/sfujim/TD3_BC.

[22] Guillermo Gallego et al. “Event-Based Vision: A Survey”. In: IEEE Transactions on Pattern Analy-
sis and Machine Intelligence 44.1 (2022), pp. 154–180. ISSN: 1939-3539. DOI: 10.1109/TPAMI.
2020.3008413. URL: https://ieeexplore.ieee.org/ielx7/34/9639876/09138762.pdf?tp=
&arnumber=9138762&isnumber=9639876&ref=%20https://ieeexplore.ieee.org/document/
9138762/?arnumber=9138762.

[23] Wulfram Gerstner et al. “Eligibility Traces and Plasticity on Behavioral Time Scales: Experimental
Support of NeoHebbian Three-Factor Learning Rules”. In: Frontiers in Neural Circuits 12 (July
2018), p. 350307. ISSN: 16625110. DOI: 10.3389/FNCIR.2018.00053/BIBTEX.

[24] Shixiang Gu et al. “Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Es-
timation for Deep Reinforcement Learning”. In: ().

[25] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor”. In: (Jan. 2018). URL: http://arxiv.org/abs/1801.01290.

[26] Nessrine Hammami and Kim Khoa Nguyen. “On-Policy vs. Off-Policy Deep Reinforcement Learn-
ing for Resource Allocation in Open Radio Access Network”. In: IEEE Wireless Communications
and Networking Conference, WCNC 2022-April (2022), pp. 1461–1466. ISSN: 15253511. DOI:
10.1109/WCNC51071.2022.9771605.

[27] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement Learning with Double
Q-learning”. In: (Sept. 2015).

[28] Matthew Hausknecht and Peter Stone. “Deep Recurrent Q-Learning for Partially Observable
MDPs”. In: (2015). URL: www.aaai.org.

[29] D.O. Hebb. “The Organization of Behavior : A Neuropsychological Theory”. In: The Organization
of Behavior (Apr. 2005). DOI: 10.4324/9781410612403. URL: https://www.taylorfrancis.
com/books/mono/10.4324/9781410612403/organization-behavior-hebb.

[30] Nicolas Heess et al. “Memory-based control with recurrent neural networks”. In: ().
[31] A. L. Hodgkin and A. F. Huxley. “A quantitative description of membrane current and its application

to conduction and excitation in nerve”. In: The Journal of Physiology 117.4 (Aug. 1952), pp. 500–
544. ISSN: 14697793. DOI: 10.1113/JPHYSIOL.1952.SP004764.

[32] Elia Kaufmann et al. “Champion-level drone racing using deep reinforcement learning”. en. In:
Nature 620.7976 (2023), pp. 982–987. ISSN: 1476-4687. DOI: 10.1038/s41586-023-06419-4.
URL: https://www.nature.com/articles/s41586-023-06419-4%20https://www.nature.
com/articles/s41586-023-06419-4.pdf.

https://ieeexplore.ieee.org/abstract/document/7280696/
https://snntorch.readthedocs.io/en/latest/tutorials/index.html.
https://snntorch.readthedocs.io/en/latest/tutorials/index.html.
https://doi.org/10.1109/SYNASC.2005.13
https://doi.org/10.3389/FNCIR.2015.00085/BIBTEX
https://github.com/sfujim/TD3_BC
https://doi.org/10.1109/TPAMI.2020.3008413
https://doi.org/10.1109/TPAMI.2020.3008413
https://ieeexplore.ieee.org/ielx7/34/9639876/09138762.pdf?tp=&arnumber=9138762&isnumber=9639876&ref=%20https://ieeexplore.ieee.org/document/9138762/?arnumber=9138762
https://ieeexplore.ieee.org/ielx7/34/9639876/09138762.pdf?tp=&arnumber=9138762&isnumber=9639876&ref=%20https://ieeexplore.ieee.org/document/9138762/?arnumber=9138762
https://ieeexplore.ieee.org/ielx7/34/9639876/09138762.pdf?tp=&arnumber=9138762&isnumber=9639876&ref=%20https://ieeexplore.ieee.org/document/9138762/?arnumber=9138762
https://doi.org/10.3389/FNCIR.2018.00053/BIBTEX
http://arxiv.org/abs/1801.01290
https://doi.org/10.1109/WCNC51071.2022.9771605
www.aaai.org
https://doi.org/10.4324/9781410612403
https://www.taylorfrancis.com/books/mono/10.4324/9781410612403/organization-behavior-hebb
https://www.taylorfrancis.com/books/mono/10.4324/9781410612403/organization-behavior-hebb
https://doi.org/10.1113/JPHYSIOL.1952.SP004764
https://doi.org/10.1038/s41586-023-06419-4
https://www.nature.com/articles/s41586-023-06419-4%20https://www.nature.com/articles/s41586-023-06419-4.pdf
https://www.nature.com/articles/s41586-023-06419-4%20https://www.nature.com/articles/s41586-023-06419-4.pdf

References 45

[33] Youngeun Kim et al. “RATE CODING OR DIRECT CODING: WHICH ONE IS BETTER FOR AC-
CURATE, ROBUST, AND ENERGY-EFFICIENT SPIKING NEURAL NETWORKS?” In: ICASSP,
IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings 2022-
May (2022), pp. 71–75. ISSN: 15206149. DOI: 10.1109/ICASSP43922.2022.9747906.

[34] Markus Levy. Innatera’s Spiking Neural Processor - Brain-like architecture targets ultra-low power
AI. https://www.innatera.com/innatera-mpr-2021.pdf. 2021.

[35] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement learning”. In: (Sept. 2015).
[36] Guisong Liu et al. “Human-Level Control through Directly-Trained Deep Spiking Q-Networks”. In:

().
[37] Wolfgang Maass. “Networks of spiking neurons: The third generation of neural network models”.

In: Neural Networks 10.9 (Dec. 1997), pp. 1659–1671. ISSN: 08936080. DOI: 10.1016/S0893-
6080(97)00011-7.

[38] Michelle Mahowald. “VLSI Analogs of Neuronal Visual Processing: A Synthesis of Form and
Function”. PhD thesis. CalTech, May 1992.

[39] Ana I Maqueda et al. “Event-Based Vision Meets Deep Learning on Steering Prediction for Self-
Driving Cars”. en. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2018, pp. 5419–5427. ISBN: 978-1-5386-6420-9. DOI: 10.1109/CVPR.2018.
00568. URL: https://ieeexplore.ieee.org/document/8578666/%20https://openaccess.
thecvf.com/content_cvpr_2018/papers/Maqueda_Event-Based_Vision_Meets_CVPR_2018_
paper.pdf.

[40] Christian Mayr, Sebastian Hoeppner, and Steve Furber. SpiNNaker 2: A 10 Million Core Proces-
sor System for Brain Simulation and Machine Learning. 2019.

[41] Carver Mead. “Neuromorphic Electronic Systems”. In: Proceedings of the IEEE 78.10 (1990),
pp. 1629–1636. ISSN: 15582256. DOI: 10.1109/5.58356.

[42] J Parker Mitchell et al. “NeoN: Neuromorphic control for autonomous robotic navigation”. en. In:
2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS). IEEE, 2017,
pp. 136–142. ISBN: 978-1-5386-1342-9. DOI: 10.1109/IRIS.2017.8250111. URL: http://
ieeexplore.ieee.org/document/8250111/%20https://www.osti.gov/servlets/purl/
1423018.

[43] Volodymyr Mnih et al. “Asynchronous Methods for Deep Reinforcement Learning”. In: (2016).
[44] VolodymyrMnih et al. “Human-level control through deep reinforcement learning”. In:Nature 2015

518:7540 518.7540 (Feb. 2015), pp. 529–533. ISSN: 1476-4687. DOI: 10.1038/nature14236.
URL: https://www.nature.com/articles/nature14236.

[45] Elias Mueggler, Chiara Bartolozzi, and Davide Scaramuzza. “Fast event-based corner detection”.
In: (2017), pp. 1–8. DOI: 10.5167/uzh-138925.

[46] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. “Surrogate Gradient Learning in Spik-
ing Neural Networks”. In: ().

[47] Tianwei Ni, Benjamin Eysenbach, and Ruslan Salakhutdinov. “Recurrent Model-Free RL Can Be
a Strong Baseline for Many POMDPs”. In: Proceedings of Machine Learning Research 162 (Oct.
2021), pp. 16691–16723. ISSN: 26403498. URL: https://arxiv.org/abs/2110.05038v3.

[48] Brendan O’donoghue et al. “COMBINING POLICY GRADIENT AND Q-LEARNING”. In: ().
[49] Katerina Maria Oikonomou, Ioannis Kansizoglou, and Antonios Gasteratos. “A Hybrid Reinforce-

ment Learning ApproachWith a Spiking Actor Network for Efficient Robotic Arm Target Reaching”.
In: IEEE Robotics and Automation Letters 8.5 (May 2023), pp. 3007–3014. ISSN: 23773766. DOI:
10.1109/LRA.2023.3264836.

[50] Federico Paredes-Vallés et al. Fully neuromorphic vision and control for autonomous drone flight.
2023. URL: http://arxiv.org/abs/2303.08778%20https://arxiv.org/pdf/2303.08778.
pdf%20https://arxiv.org/abs/2303.08778.

[51] Devdhar Patel et al. “Improved robustness of reinforcement learning policies upon conversion to
spiking neuronal network platforms applied to Atari Breakout game”. In: (2019).

https://doi.org/10.1109/ICASSP43922.2022.9747906
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1109/CVPR.2018.00568
https://doi.org/10.1109/CVPR.2018.00568
https://ieeexplore.ieee.org/document/8578666/%20https://openaccess.thecvf.com/content_cvpr_2018/papers/Maqueda_Event-Based_Vision_Meets_CVPR_2018_paper.pdf
https://ieeexplore.ieee.org/document/8578666/%20https://openaccess.thecvf.com/content_cvpr_2018/papers/Maqueda_Event-Based_Vision_Meets_CVPR_2018_paper.pdf
https://ieeexplore.ieee.org/document/8578666/%20https://openaccess.thecvf.com/content_cvpr_2018/papers/Maqueda_Event-Based_Vision_Meets_CVPR_2018_paper.pdf
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/IRIS.2017.8250111
http://ieeexplore.ieee.org/document/8250111/%20https://www.osti.gov/servlets/purl/1423018
http://ieeexplore.ieee.org/document/8250111/%20https://www.osti.gov/servlets/purl/1423018
http://ieeexplore.ieee.org/document/8250111/%20https://www.osti.gov/servlets/purl/1423018
https://doi.org/10.1038/nature14236
https://www.nature.com/articles/nature14236
https://doi.org/10.5167/uzh-138925
https://arxiv.org/abs/2110.05038v3
https://doi.org/10.1109/LRA.2023.3264836
http://arxiv.org/abs/2303.08778%20https://arxiv.org/pdf/2303.08778.pdf%20https://arxiv.org/abs/2303.08778
http://arxiv.org/abs/2303.08778%20https://arxiv.org/pdf/2303.08778.pdf%20https://arxiv.org/abs/2303.08778

References 46

[52] Robert Patton et al. “Neuromorphic Computing for Autonomous Racing”. en. In: ICONS 2021:
International Conference on Neuromorphic Systems 2021. ACM, 2021, pp. 1–5. ISBN: 978-1-
4503-8691-3. DOI: 10.1145/3477145.3477170. URL: https://dl.acm.org/doi/10.1145/
3477145.3477170.

[53] JA Pérez-Carrasco et al. “Mapping from frame-driven to frame-free event-driven vision systems
by low-rate rate coding and coincidence processing–application to feedforward ConvNets”. In:
ieeexplore.ieee.orgJA Pérez-Carrasco, B Zhao, C Serrano, B Acha, T Serrano-Gotarredona, S
ChenIEEE transactions on pattern analysis and machine intelligence, 2013•ieeexplore.ieee.org
(). URL: https://ieeexplore.ieee.org/abstract/document/6497055/.

[54] Alo¨ıs Alo¨ıs Pourchot and Olivier Sigaud. CEM-RL: Combining evolutionary and gradient-based
methods for policy search. Tech. rep.

[55] Henri Rebecq, Daniel Gehrig, and Davide Scaramuzza. “ESIM: an Open Event Camera Sim-
ulator”. en. In: Conference on Robot Learning. PMLR, 2018, pp. 969–982. URL: https : / /
proceedings.mlr.press/v87/rebecq18a.html%20http://proceedings.mlr.press/v87/
rebecq18a/rebecq18a.pdf.

[56] Bleema Rosenfeld, Osvaldo Simeone, and Bipin Rajendran. “Learning First-to-Spike Policies
for Neuromorphic Control Using Policy Gradients”. In: IEEE Workshop on Signal Processing
Advances in Wireless Communications, SPAWC 2019-July (July 2019). DOI: 10.1109/SPAWC.
2019.8815546.

[57] Bodo Rueckauer et al. “Conversion of Continuous-Valued Deep Networks to Efficient Event-
Driven Networks for Image Classification”. In: Frontiers in Neuroscience 11 (2017). ISSN: 1662-
453X. URL: https://www.frontiersin.org/articles/10.3389/fnins.2017.00682%20https:
//www.frontiersin.org/articles/10.3389/fnins.2017.00682/pdf.

[58] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning representations by
back-propagating errors”. In: Nature 1986 323:6088 323.6088 (1986), pp. 533–536. ISSN: 1476-
4687. DOI: 10.1038/323533a0. URL: https://www.nature.com/articles/323533a0.

[59] Samuel Schmidgall and Joe Hays. “Meta-SpikePropamine: learning to learn with synaptic plas-
ticity in spiking neural networks”. In: Frontiers in neuroscience 17 (2023). ISSN: 1662-4548. DOI:
10.3389/FNINS.2023.1183321. URL: https://pubmed.ncbi.nlm.nih.gov/37250397/.

[60] Samuel Schmidgall and Joe Hays. “SYNAPTIC MOTOR ADAPTATION: A THREE-FACTOR
LEARNING RULE FOR ADAPTIVE ROBOTIC CONTROL IN SPIKING NEURAL NETWORKS”.
In: ().

[61] Samuel Schmidgall et al. “SpikePropamine: Differentiable Plasticity in Spiking Neural Networks”.
In: Frontiers in Neurorobotics 15 (Sept. 2021), p. 629210. ISSN: 16625218. DOI: 10.3389/FNBOT.
2021.629210/BIBTEX.

[62] Thorben Schoepe et al. “Closed-loop sound source localization in neuromorphic systems”. en.
In: Neuromorphic Computing and Engineering 3.2 (2023), p. 024009. ISSN: 2634-4386. DOI:
10.1088/2634-4386/acdaba. URL: https://iopscience.iop.org/article/10.1088/2634-
4386/acdaba%20https://pure.rug.nl/ws/portalfiles/portal/689382619/Schoepe_2023_
Neuromorph._Comput._Eng._3_024009.pdf.

[63] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: ().
[64] John Schulman et al. “Trust Region Policy Optimization”. In: (Feb. 2015).
[65] David Silver et al. “Mastering Chess and Shogi by Self-Play with a General Reinforcement Learn-

ing Algorithm”. In: (Dec. 2017). URL: https://arxiv.org/abs/1712.01815v1.
[66] Sen Song, Kenneth D. Miller, and L. F. Abbott. “Competitive Hebbian learning through spike-

timing-dependent synaptic plasticity”. In:Nature Neuroscience 2000 3:9 3.9 (Sept. 2000), pp. 919–
926. ISSN: 1546-1726. DOI: 10.1038/78829. URL: https://www.nature.com/articles/
nn0900_919.

[67] Speck. https://www.synsense.ai/products/speck/.

https://doi.org/10.1145/3477145.3477170
https://dl.acm.org/doi/10.1145/3477145.3477170
https://dl.acm.org/doi/10.1145/3477145.3477170
https://ieeexplore.ieee.org/abstract/document/6497055/
https://proceedings.mlr.press/v87/rebecq18a.html%20http://proceedings.mlr.press/v87/rebecq18a/rebecq18a.pdf
https://proceedings.mlr.press/v87/rebecq18a.html%20http://proceedings.mlr.press/v87/rebecq18a/rebecq18a.pdf
https://proceedings.mlr.press/v87/rebecq18a.html%20http://proceedings.mlr.press/v87/rebecq18a/rebecq18a.pdf
https://doi.org/10.1109/SPAWC.2019.8815546
https://doi.org/10.1109/SPAWC.2019.8815546
https://www.frontiersin.org/articles/10.3389/fnins.2017.00682%20https://www.frontiersin.org/articles/10.3389/fnins.2017.00682/pdf
https://www.frontiersin.org/articles/10.3389/fnins.2017.00682%20https://www.frontiersin.org/articles/10.3389/fnins.2017.00682/pdf
https://doi.org/10.1038/323533a0
https://www.nature.com/articles/323533a0
https://doi.org/10.3389/FNINS.2023.1183321
https://pubmed.ncbi.nlm.nih.gov/37250397/
https://doi.org/10.3389/FNBOT.2021.629210/BIBTEX
https://doi.org/10.3389/FNBOT.2021.629210/BIBTEX
https://doi.org/10.1088/2634-4386/acdaba
https://iopscience.iop.org/article/10.1088/2634-4386/acdaba%20https://pure.rug.nl/ws/portalfiles/portal/689382619/Schoepe_2023_Neuromorph._Comput._Eng._3_024009.pdf
https://iopscience.iop.org/article/10.1088/2634-4386/acdaba%20https://pure.rug.nl/ws/portalfiles/portal/689382619/Schoepe_2023_Neuromorph._Comput._Eng._3_024009.pdf
https://iopscience.iop.org/article/10.1088/2634-4386/acdaba%20https://pure.rug.nl/ws/portalfiles/portal/689382619/Schoepe_2023_Neuromorph._Comput._Eng._3_024009.pdf
https://arxiv.org/abs/1712.01815v1
https://doi.org/10.1038/78829
https://www.nature.com/articles/nn0900_919
https://www.nature.com/articles/nn0900_919

References 47

[68] Stein Stroobants, Julien Dupeyroux, and Guido C H E de Croon. “Neuromorphic computing for at-
titude estimation onboard quadrotors”. In: Neuromorphic Computing and Engineering 2.3 (2022),
p. 034005. ISSN: 2634-4386. DOI: 10.1088/2634-4386/ac7ee0. URL: http://arxiv.org/abs/
2304.08802%20https://arxiv.org/pdf/2304.08802.pdf%20https://arxiv.org/abs/2304.
08802.

[69] Stein Stroobants, Julien Dupeyroux, and Guido De Croon. “Design and implementation of a par-
simonious neuromorphic PID for onboard altitude control for MAVs using neuromorphic proces-
sors”. en. In: ICONS: International Conference on Neuromorphic Systems. ACM, 2022, pp. 1–7.
ISBN: 978-1-4503-9789-6. DOI: 10.1145/3546790.3546799. URL: https://dl.acm.org/doi/
10.1145/3546790.3546799%20https://dl.acm.org/doi/pdf/10.1145/3546790.3546799.

[70] Shiva Subbulakshmi Radhakrishnan et al. “A biomimetic neural encoder for spiking neural net-
work”. In: Nature Communications 2021 12:1 12.1 (Apr. 2021), pp. 1–10. ISSN: 2041-1723. DOI:
10.1038/s41467- 021- 22332- 8. URL: https://www.nature.com/articles/s41467- 021-
22332-8.

[71] Richard S Sutton and Andrew G Barto. “Reinforcement Learning: An Introduction Second edition,
in progress”. In: ().

[72] Weihao Tan, Devdhar Patel, and Robert Kozma. “Strategy and Benchmark for Converting Deep
Q-Networks to Event-Driven Spiking Neural Networks”. In: (2021). URL: www.aaai.org.

[73] Guangzhi Tang, Neelesh Kumar, and Konstantinos P Michmizos. “Reinforcement co-Learning of
Deep and Spiking Neural Networks for Energy-Efficient Mapless Navigation with Neuromorphic
Hardware”. In: (). URL: https://github.com/combra-lab/spiking-ddpg-mapless-navigatio
n.

[74] Guangzhi Tang et al. “Deep Reinforcement Learning with Population-Coded Spiking Neural Net-
work for Continuous Control”. In: (Oct. 2020). URL: http://arxiv.org/abs/2010.09635.

[75] Antonio Vitale et al. “Event-driven Vision and Control for UAVs on a Neuromorphic Chip”. en. In:
2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021, pp. 103–
109. ISBN: 978-1-72819-077-8. DOI: 10 . 1109 / ICRA48506 . 2021 . 9560881. URL: https : / /
ieeexplore.ieee.org/document/9560881/%20https://rpg.ifi.uzh.ch/docs/ICRA21_
Vitale.pdf.

[76] Zhihan Yang and Hai Nguyen. “Recurrent Off-policy Baselines for Memory-based Continuous
Control”. In: (Oct. 2021). URL: https://arxiv.org/abs/2110.12628v1.

[77] Luca Zanatta et al. “Artificial versus spiking neural networks for reinforcement learning in UAV
obstacle avoidance”. In: ACM International Conference on Computing Frontiers (2022). DOI: 10.
1145/3528416.3530865.

[78] Luca Zanatta et al. “Directly-trained Spiking Neural Networks for Deep Reinforcement Learning:
Energy efficient implementation of event-based obstacle avoidance on a neuromorphic accelera-
tor”. In:Neurocomputing 562 (Dec. 2023), p. 126885. ISSN: 0925-2312. DOI: 10.1016/J.NEUCOM.
2023.126885.

[79] Duzhen Zhang et al. “Multi-Sacle Dynamic Coding Improved Spiking Actor Network for Reinforce-
ment Learning”. In: Proceedings of the AAAI Conference on Artificial Intelligence 36.1 (June
2022), pp. 59–67. ISSN: 2374-3468. DOI: 10.1609/AAAI.V36I1.19879. URL: https://ojs.
aaai.org/index.php/AAAI/article/view/19879.

[80] Duzhen Zhang et al. “Population-coding and Dynamic-neurons improved Spiking Actor Network
for Reinforcement Learning”. In: (June 2021).

[81] Yixin Zhu et al. “Evolutionary vs imitation learning for neuromorphic control at the edge * You may
also like CMOS-compatible neuromorphic devices for neuromorphic perception and computing:
a review Evolutionary vs imitation learning for neuromorphic control at the edge *”. In: (2022).
DOI: 10.1088/2634-4386/ac45e7. URL: https://doi.org/10.1088/2634-4386/ac45e7.

https://doi.org/10.1088/2634-4386/ac7ee0
http://arxiv.org/abs/2304.08802%20https://arxiv.org/pdf/2304.08802.pdf%20https://arxiv.org/abs/2304.08802
http://arxiv.org/abs/2304.08802%20https://arxiv.org/pdf/2304.08802.pdf%20https://arxiv.org/abs/2304.08802
http://arxiv.org/abs/2304.08802%20https://arxiv.org/pdf/2304.08802.pdf%20https://arxiv.org/abs/2304.08802
https://doi.org/10.1145/3546790.3546799
https://dl.acm.org/doi/10.1145/3546790.3546799%20https://dl.acm.org/doi/pdf/10.1145/3546790.3546799
https://dl.acm.org/doi/10.1145/3546790.3546799%20https://dl.acm.org/doi/pdf/10.1145/3546790.3546799
https://doi.org/10.1038/s41467-021-22332-8
https://www.nature.com/articles/s41467-021-22332-8
https://www.nature.com/articles/s41467-021-22332-8
www.aaai.org
https://github.com/combra-lab/spiking-ddpg-mapless-navigation
https://github.com/combra-lab/spiking-ddpg-mapless-navigation
http://arxiv.org/abs/2010.09635
https://doi.org/10.1109/ICRA48506.2021.9560881
https://ieeexplore.ieee.org/document/9560881/%20https://rpg.ifi.uzh.ch/docs/ICRA21_Vitale.pdf
https://ieeexplore.ieee.org/document/9560881/%20https://rpg.ifi.uzh.ch/docs/ICRA21_Vitale.pdf
https://ieeexplore.ieee.org/document/9560881/%20https://rpg.ifi.uzh.ch/docs/ICRA21_Vitale.pdf
https://arxiv.org/abs/2110.12628v1
https://doi.org/10.1145/3528416.3530865
https://doi.org/10.1145/3528416.3530865
https://doi.org/10.1016/J.NEUCOM.2023.126885
https://doi.org/10.1016/J.NEUCOM.2023.126885
https://doi.org/10.1609/AAAI.V36I1.19879
https://ojs.aaai.org/index.php/AAAI/article/view/19879
https://ojs.aaai.org/index.php/AAAI/article/view/19879
https://doi.org/10.1088/2634-4386/ac45e7
https://doi.org/10.1088/2634-4386/ac45e7

A
Appendix

Supplementary materials are provided below.

A.1. Using A2C for spiking neural networks
The following work was performed as part of the Control and Simulations project. It served as a first
attempt to get familiarized with developing SNN specific RL methods. While this work is far from perfect,
it served as a stepping stone to the methods developed in this thesis.

48

A Comparative Study of Spiking and Non-Spiking
Neural Networks in Actor-Critic Reinforcement

Learning
K. Van den Berghe

Technische Universiteit van Delft, 1 Kluyverweg, Delft

ABSTRACT

Within the world of autonomous micro robotics,
constraints in computational resources and en-
ergy usage is a pressing issue, motivating the ex-
ploration of novel innovative algorithms to bring
intelligence to these systems. Currently, the
state of the art in embodied intelligence makes
use of artificial neural networks. These neu-
ral networks often require intensive computa-
tions and occupy a large memory footprint. Re-
cently, neuromorphic solutions have gained at-
tention from the machine learning community
as a possible avenue to tackle the issue of en-
ergy efficiency. More specifically, spiking neural
networks have shown impressive results requir-
ing only a fraction of the operations required for
similar performance to their non-spiking alterna-
tives. While supervised, unsupervised and even
self-supervised training are widely explored, re-
inforcement learning using these networks has
received little attention. This work aims at
exploring the challenges and opportunities that
arise when deploying spiking neural networks as
workers in actor-critic deep reinforcement learn-
ing. The reinforcement learning algorithm cho-
sen is the A2C algorithm, optimizing an artifi-
cial neural network and a spiking neural network,
using the leaky integrate and fire neuron model.
The task under consideration is the balancing of
a stick on a cart, the CartPole task. While the
training of the spiking agents was noisy, and per-
formance is slightly inferior to the non-spiking
variant, it is found that the computational com-
plexity for the spiking variants can be easily de-
creased significantly with respect to their non-
spiking alternatives. Furthermore, the spiking
variants showed an improved noise robustness.

1 INTRODUCTION

Reinforcement learning (RL) has experienced significant
advancements in the past years, enabling robots to achieve
human like performance on complex tasks. A popular cate-
gory of reinforcement learning algorithms include actor-critic
reinforcement learning, which has shown pivotal in training

efficiently in challenging environments. These algorithms
have the potential of being more sample efficient, thanks
to their parallel training. Concurrently, neuromorphic algo-
rithms, such as spiking neural networks (SNN) have garnered
attention in the field of deep learning. These bio-inspired
algorithms have demonstrated utility in handling temporal
data and offer high energy efficiency when run on specialized
hardware. Combining the possibility to learn from experience
from reinforcement learning with the energy efficient charac-
teristics of spiking neural networks holds great opportunity
in the field of small mobile robotics, where computational re-
sources are constrained.

Current research in the field of spiking based reinforce-
ment learning algorithms is largely based on the principle of
deep Q learning (DQN). While showing impressive results,
this method relies on the use of a technique called experience
replay to reduce the bias during training. This experience
therefore needs to be gathered before the training can start.
Actor-critic reinforcement learning on the other hand, makes
use of multiple workers operating in parallel, eliminating the
need for experience replay. This opens doors to learning on
resource constrained systems, where the overhead required
for storing past experiences and training in batches of experi-
ence can be detrimental for the performance of the system.

Considering the advantages of the actor-critic algorithms
and spiking neural networks, this article explores the chal-
lenges and opportunities of combining the two. Firstly, the
related work in the field of spiking based reinforcement learn-
ing is discussed in section 2. Going over the general use cases
where these bio-inspired algorithms shine and the implemen-
tation details of each work. Next, the methods used for this
article are discussed in section 3. Then, section 4 presents the
results. In section 5, the results are discussed and directions
for future work are given. Lastly, the article is concluded in
section 6.

2 RELATED WORK

Existing research in the field of neuromorphic RL has
mainly applied one algorithm; deep Q learning. The deep
Q algorithm is a well established algorithm, introduced by
DeepMind. The original publication demonstrated the perfor-
mance of this algorithm on multiple Atari games, displaying
its versatility [1]. It is a simple and elegant algorithm, based
on tabular Q-learning, that uses an artificial neural network as
policy. One component, important in the performance of this

algorithm, is the experience replay [2]. During the training
phase, experience from previous environment interactions
is used together with the most recent experience to avoid
bias in the training data and improve training characteristics.
The spiking variant of this algorithm has been demonstrated
in earlier work. DSQN has been applied on the Atari
environments and on the Airsim environment and outperform
several ANN based solutions [3, 4, 5].

The previous work on SNN based RL algorithms span
a wide array of different environments, tasks and train-
ing methods. Early research already harnessed bio-inspired
training algorithms such as spike-timing-dependent plastic-
ity (STDP) [6]. STDP is commonly described as: cells that
fire together, wire together. It is a concept derived from neu-
roscience, that assumes that neurons that often spike simul-
taneously, probably represent the same information. R.V.
Florian[7] proposed an algorithm based on deep Q learning,
modulating the STDP with the global reward signal, for a bio-
inspired problem. The agent controls a worm that solves a
localization problem based on gradient descent, receiving a
positive reward if it comes closer to the source, while receiv-
ing a negative reward when moving to a region with a lower
concentration. Further work shows that using reward modu-
lated spike-timing-dependent plasticity (R-STDP) or tempo-
ral difference spike-timing-dependent plasticity (TD-STDP)
allows networks to train more complex tasks such as the Cart-
Pole [8], a task where the model has to balance a stick on
a cart, by only applying a force to the cart [9]. However,
the model showed slow convergence and noisy, imperfect re-
sults. Another method inspired by neuroscience is eProp.
This method showed to approach the performance of back-
propagation through time for recurrent SNN [10].
Methods that more closely resemble the training of non-
spiking networks, include shadow training and surrogate gra-
dient training. In shadow training [11]. We train an ANN
and convert it to an SNN based agent. This approach, how-
ever, has shown to produce worse performing models com-
pared to the ANN based equivalent and to a DQN algorithm
directly optimizing the SNN based agent (DSQN)[12]. This
is explained by the fact that the converted SNN will always
be limited by the ANN from which it is converted, while the
other two methods (DQN and DSQN) train directly from the
environment. Surrogate gradient training [13] overcomes the
non-differentiable of spikes by modelling the step function
that presents the spiking behaviour of a neuron, with a differ-
entiable surrogate function that approaches the step function
the backward pass.

3 METHODS

Many components are necessary to successfully train an
agent using reinforcement learning. Reinforcement learning
is notoriously tricky to train, and so are spiking neural net-
works. Therefore, the choice of agent architectures, loss func-

tions, neuron models etc. are of utmost importance. First the
background of the reinforcement algorithm being used will
be explained. Then, the network responsible for interacting
with the environment is presented. Finally, the training of the
algorithm is elaborated upon.

3.1 A2C Reinforcement Learning

In 2016, DeepMind introduced the Asynchronous
Advantage Actor-Critic (A3C) algorithm in their paper
Asynchronous Methods for Deep Reinforcement Learning
[14]. It is built on using multiple workers who explore the
environment in parallel independently and updating a global
network with their experiences, asynchronously. Before a
worker interacts with its environment, it updates its internal
model with the global model. Compared to the popular
DQN algorithm, this network did not need experience replay,
trying to reduce variance and bias by using the experience
from multiple workers, and thus updates the underlying
model more frequently with fresh experiences. While
the A3C algorithm performed well on many tasks, it was
unsure whether the asynchrony, which adds complexity,
actually affected the performance positively. Next to the
added complexity, A3C does not take full advantage of the
possibility to perform computations on large batch sizes of
the GPU. Therefore, the synchronous version of A3C has
been introduced, named Advantage Actor-Critic (A2C). As
the ability to perform online distributed training with these
algorithms shows promising avenues for fine-tuning after
deployment, we decided to pursue experimentation using
these algorithms rather than the DQN based algorithms,
which already showed promising results. When finetuning
on device, every sample is costly to obtain. Having to wait
until sufficient experience has been gathered to start training,
is therefore undesirable.

3.2 CartPole task

The task to be solved in this article is the CartPole task.
This task has been widely used to develop new reinforce-
ment learning algorithms due to its simple implementation,
yet challenging solution. The task consists of balancing a
pole on a cart as long as possible, receiving +1 reward for
every timestep where the pole is balanced. The actor can ap-
ply either a force to the left or to the right on the cart, while
observing the position and velocity of the cart and angle and
angular velocity of the pole. For all models, the environment
is ran at a frequency of 20Hz.

3.3 Architecture and Neuron Model

Where the conventional reinforcement learning methods
use actor-critic models based on a deep neural network using
artificial neurons, the aim of this article is to demonstrate
the use of spiking neural networks. Spiking neural networks
use biologically inspired neuron models that simulate the
behavior of neurons in the brain. In the past, many different

neuron types have been proposed, with each their specific
use cases. Complex neuron models are often utilized for
neuroscience research, while simpler models have shown
useful in machine learning research.

To compare ANN to SNN, two models (an ANN and
an SNN) with the same architecture were used. The only
difference between the models is the spiking neurons in
the SNN, replacing the regular activation functions. This
architecture is kept small to avoid long training times, which
is an issue for SNN. The input layer consists of 4 continuous
neurons, there is one hidden layer, with 246 neurons, and
finally, two output heads represent the actor and critic output
respectively. Next to this shallow network, experiments were
carried out with a slightly deeper network with a similar
number of neurons. This second architecture replaces the
single hidden layer with 246 neurons, with two hidden layers,
each having 128 neurons.

The activation function used for the ANN is the ReLU
function. In the SNN experiments were conducted with two
different neuron types for the hidden layer, and a non-spiking
equivalent of each respective neuron is used for the output
layer. Firstly, the leaky integrate fire (LIF) is used. The LIF
neuron is a first-order neuron where the input current, Iin di-
rectly charges the membrane potential, U . This potential en-
ergy leaks over time at a rate β, the leakage parameter. When
this potential exceeds a threshold, Uthr, the neuron spikes and
the membrane potential is reset, by subtracting the threshold
value. The charging and resetting of the membrane potential
can be modeled using the following equation:

U [t+ 1] = βU [t] + Iin[t+ 1]−R · Uthr (1)

Where R is 1 whenever the membrane potential exceeds the
threshold and 0 otherwise. The spiking behavior can be mod-
eled as:

s =

{
1, if U [t+ 1] > thr

0, otherwise
(2)

Alternatively, a second order model, namely a synaptic neu-
ron model was investigated as well. In second order models,
the synaptic current is charged by the input current, which
subsequently charges the membrane potential, after which
similar behavior as the LIF can be observed. Concretely, the
following equations model these dynamics.

Isyn[t+ 1] = αIsyn[t] + Iin[t+ 1] (3)
U [t+ 1] = βU [t] + Isyn[t+ 1]−RUthr (4)

The spiking behavior for this neuron is the same as the LIF
neuron described above. However, after initial experiments,
it was found that this neuron model showed very slow
convergence. After analyzing the impulse response of
this neuron type, it is found that it is significantly delayed

compared to the first order model, which might be a cause
for the slow training.

3.4 Encoding and Decoding

To deploy spiking based models, we have to translate the
continuous domain to the discrete spiking domain and back
to continuous domain at the output. The way the bridging
of domains is carried out has significant effects on training
speed and final model performance. Several successful meth-
ods have been proposed in the past, ranging from rate coded,
latency coded to population coded methods. For robotic ap-
plications, learned coding has shown effective and easy to
implement[15]. The continuous inputs are connected to a first
layer of spiking neurons with a simple linear layer that en-
codes the continuous input to input current, which is fed into
the first spiking layer. The output is directly read from the
membrane potential from the last layer, which is programmed
to never spike. While this method can learn complicated en-
coding and decoding mechanisms, it is not necessarily the
most computationally efficient method. Depending on the
layer sizes, large linear layers might be required, for which
the number of multiply-accumulates equals the product of the
matrix dimensions.

3.5 Training Spiking Neural Networks

Training spiking neural networks have shown to carry
several unique challenges. Firstly, due to the discrete spik-
ing nature of the neurons, one can not compute the derivative
of this activation to compute the gradient of the weights run-
ning through the network. Therefore, several different train-
ing methods have been proposed. To be able to apply a re-
inforcement learning algorithm without significant changes
to train an SNN, we would like to have a training method
based on backpropagation. To find the gradient of the non-
differentiable spikes, a surrogate gradient is applied during
the backward pass[13]. When training using surrogate gra-
dients, a continuous, differentiable function is used to mimic
the spiking behavior. During the forward pass, the discrete
spiking function is used, but during the backward pass, the
derivative surrogate gradient represents the gradient of the
signal through the network. The derivative of this surrogate
function is a real non-zero value at the time of spiking. Its
trace reduces to zero as time moves away from the spike time,
seen on Figure 1. The surrogate function used is the fast sig-
moid function with a slope of 25. Increasing the slope leads
to shorter traces in time.
Next to the above-mentioned challenges, the choice of loss

function effects the training process significantly. For policy
gradient methods, generalized advantage can improve sam-
ple efficiency and increase stability during training [16]. This
loss was applied to the membrane potentials of the output
neurons.

Figure 1: The step function, surrogate function and its gradi-
ent.

3.6 Pruning the Spiking Neural Network
To explore opportunities of using the trained agents on

resource-constrained embedded devices, pruning and quanti-
zation are widely used to reduce the footprint and computa-
tional effort of networks. While in ANN, spatial pruning is
extensively exploited, in SNN the opportunity rises to take
a temporal pruning approach, with minimal performance de-
cay. Due to undesired effects during training using RL, the
trained agent often has dead or saturated spiking neurons.
Dead neurons are the ones that never spike, while saturated
spiking neurons spike at every timestep. This opens the op-
portunity to prune the network without losing any perfor-
mance. Dead neurons, and the connecting weights, can be
removed. Saturated spiking neurons, on the other hand, can
be removed by removing the weights connecting it to the pre-
vious layer, and adding the weights connecting to the next
layer as bias of the next neuron layer.

4 RESULTS

Spiking neural networks have notoriously been a chal-
lenge to train. Reinforcement learning on the other hand, is
highly sensitive to factors such as hyperparameter tuning.
The combination of SNNs trained with an RL framework
therefore showed a challenging task. Therefore, we start by
comparing the training patterns of SNNs compared to ANN.
Next, an analysis is carried out on the complexity of both the
neuromorphic and conventional solution, using NeuroBench.
Lastly, it is analyzed how the introduction of noise on the
sensor inputs affect the performance of the algorithm. This
reflects the behavior of the trained agents in a more realistic
setting.

4.1 Training
For the control of the CartPole, multiple policies were

trained, divided in two architecture types. First, models with

a single hidden layer were trained, then, models using two
hidden layers were trained. Of both policy types, at least
one conventional and one neuromorphic solution was trained.
Due to the simplicity of this task, it can be observed that all
models are able to achieve a reasonable performance. As ex-
pected, for both the deeper model as the model with only one
hidden layer, the neuromorphic solution converges slower.
This can partly be explained by the way the surrogate gra-
dient, used during backpropagation, works. Where in a con-
ventional neural network, virtually all weights contribute to
the output at each timestep, for spiking neural networks this
is not the case. Neurons for which the potential at a timestep
is lower than the threshold, will not spike. Therefore, for this
instant, there is no backpropagation gradient past this neuron.

Figure 2 shows the reward obtained by the agent after ev-
ery episode of the training cycle. Allowing the network to
train the amount of leakage of the neurons leads to fast con-
vergence and relatively high performance. However, upon
further inspection of the trained model, it can be seen that
the model learns to have complete leakage at every timestep
(β = 0 in Equation (1)). This thus corresponds to an ANN
with a Heaviside threshold function which goes from zero to
one at the threshold value. Therefore, no temporal dynamics
are learned. In a subsequent training cycle, the leak, β was
fixed to a value of 0.65. Initially this leads to faster training,
as less parameters need to be learned. However, the training
is less stable and the final model is not able to reach a com-
petitive performance to the other trained models.

Figure 2: Training of an ANN and SNN with one hidden layer
of size 246. The first SNN learns to reduce β to zero. The
second SNN has a fixed leak, β = 0.65.

Next, the deeper models were trained, presented on Fig-
ure 3. These showed a slower convergence, due to the in-
creased effect of the vanishing gradients. However, the train-
ing showed more stable behavior. Interestingly, it was found
that the training of SNN showed to be easier when the weight
of the entropy loss was increased, encouraging random ac-

tions. For the hyperparameters used, the public GitHub repos-

Figure 3: Training of an ANN and SNN with two hidden lay-
ers of size 128. The SNN has a leak of β = 1. β = 0.95 for
the first and second spiking layer respectively.

itory can be consulted 1.

4.2 Performance and computational complexity
Using NeuroBench 2, a fair comparison can be made be-

tween the trained models. The benchmark provides perfor-
mance and complexity metrics. For more information on the
metrics, the article can be consulted. While NeuroBench does
not officially support the benchmarking of closed-loop sys-
tems yet, an initial effort towards benchmarking these sys-
tems is publicly available on the GitHub repository 3. The
benchmark starts 1000 interactions with the environment,
each limited to a maximum of 10000 steps and monitors the
model performance and complexity. Performance for this
task is defined as the average obtained reward and the stan-
dard deviation. Furthermore, inspired by A2Perf 4, the risk is
computed as well. This risk is defined as the average of the
5% lowest scoring interactions. The complexity metrics on
the other hand, include the footprint, model frequency (which
is defined to be 20Hz for all models), the connection sparsity,
activation sparsity and the synaptic operations required per
prediction.

First, the shallow models, having a hidden layer of size
246 are analysed. Table 1 presents the results for the ANN,
while Table 2 presents the results for the SNN without tem-
poral dynamics, as well as the SNN with a fixed leak of
β = 0.65.
As expected the ANN outperforms the SNN variants when
looking at the reward characteristics. The well established
training techniques and the reinforcement learning algorithm

1https://github.com/korneelf1/SpikingA2C
2https://neurobench.ai
3https://github.com/NeuroBench/neurobench
4https://github.com/Farama-Foundation/A2Perf#

rlperf-benchmark-for-autonomous-agents

Baseline ANN

Reward (mean ± std) 1744 ± 1385

Risk 190

Footprint (bytes) 7.9× 103

Activation Sparsity 0.0

SynOps Dense 1.7× 103

SynOps Eff_MACs 1.5× 103

SynOps Eff_ACs 0

Table 1: NeuroBench results for the single layer ANN con-
trolling the CartPole task.

Baseline SNN SNN, leaky

Reward (mean ± std) 1620±1600 232±65

Risk 148 152

Footprint (bytes) 7.9× 103 7.9× 103

Activation Sparsity 0.68 0.92

SynOps Dense 1.7× 103 1.7× 103

SynOps Eff_MACs 0.9× 103 0.9× 103

SynOps Eff_ACs 238 59

Table 2: NeuroBench results for the single layer SNNs con-
trolling the CartPole task.

that was originally made for ANN, shows effective training of
ANN for the CartPole task. Comparing the two SNN models
(Figure 2, it shows that the first one, which did not learn tem-
poral dynamics, is able to achieve a significantly higher mean
reward than the leaking model. However, when looking at the
standard deviation and risks of both models, the leaky SNN
tends to be more predictable and even less risky.
Next, the differences in the results of the complexity metrics
display where SNN models shine compared to the better per-
forming ANN equivalent. Thanks to the spiking nature of
SNN, layers after a spiking layer only require accumulates
(AC) rather than multiply accumulates (MACs). Where an
AC consists of one operation, the addition, the MAC requires
a multiplication and an addition. The multiply operation is
more energy demanding than the addition. Therefore, com-
puting an AC is much less intensive. Furthermore, thanks to
the sparsity in the spiking models, the effective operations re-
quired, is significantly reduced. These effective operations
are defined as operations where non-zero inputs are multi-
plied by non-zero weights. Specialized hardware could make
use of these characteristics and reduce the computational ef-

fort required for these operations. Furthermore, it can be seen
that the encoding layer, which is a linear layer connecting the
continuous input to the first spiking layer, accounts for the
largest number of operations in the spiking model. Therefore,
more efficient spiking encoders could significantly reduce the
complexity of the model.
Table 3 shows the results on the deeper models tested through
NeuroBench. It can be seen that the deeper model signifi-
cantly increases the required footprint and number of dense
operations. However, the number of MACs for the SNN, rep-
resenting the encoding, has decreased when comparing with
the single layer models with a larger hidden layer. The per-
formance of the models is observed to decrease significantly,
due to the increased effect of dead and saturated neurons in
deeper models. This leads to a significant reduction in the
performance of the 5% scoring interactions, reflected by the
risk metric.

Baseline ANN, 2 layers SNN, 2 layers

Reward (mean ± std) 360 ± 116 220±139

Risk 97 27

Footprint (bytes) 70× 103 70× 103

Activation Sparsity 0.0 0.82

SynOps Dense 17× 103 17× 103

SynOps Eff_MACs 10× 103 0.5× 103

SynOps Eff_ACs 0 4.2× 103

Table 3: NeuroBench results for the double layer models con-
trolling the CartPole task.

4.3 Pruning
When training spiking neural networks using surrogate

gradients, two undesired effects can occur. Dead neurons and
saturated neurons. This is caused by the input current being
very low or very high, leading to a non-spiking or continu-
ously spiking neuron respectively. The gradient of the sur-
rogate function is always zero, countering the flow of gradi-
ents through the net. While this is a highly undesired behav-
ior during training, it does leave the opportunity to get rid of
these neurons. For both the single layer spiking models, these
neurons were removed. Firstly, the dead neurons and their
connecting synapses are completely removed. Secondly, the
synapses for which the post-synaptic neuron is saturated, are
removed. For the synapses for which the pre-synaptic neuron
is saturated, the synaptic weight is added as a bias to the post-
synaptic neuron.
To identify these neurons, the model interacts with the en-
vironment 1000 times, during which the spiking activity for
each neuron is registered. Neurons with 0% or 100% spiking
activity are removed as described above. This theoretically

should not affect the performance, however due to neurons
that have near 0% or 100% spiking activity, some neurons are
wrongfully classified as dead or saturated. This effect can be
reduced by increasing the number of interactions with the en-
vironment. This led to impressive results in the consequent
NeuroBench tests. Running the pruning algorithm on the first
single layer SNN, with a β of 0, we were able to remove 235
neurons, leaving us with a hidden layer of only 11 neurons.
For the second SNN, with a β of 0.65, we were able to re-
move 225 neurons, which leads to a hidden layer size of 21.
This is reflected in Table 5. Note that for this NeuroBench
run, the critic head was removed, as this does not add any
functionality during the inference of the agent. Including this
head would lead to an increase in ACs of at most 11 and 21
for the pruned SNN and the pruned leaky SNN respectively.
These pruned models show the pruning possibilities when us-
ing spiking neural networks trained with A2C. While perfor-
mance does not degrade significantly, the footprint and op-
erations required reduce roughly with a factor 20 and 25 re-
spectively. While the largest computational effort still is at-
tributed to the encoding layer (reflected in the effective MAC
metric), the reduction in complexity using non-neuromorphic
hardware is still promising, now only requiring 66 dense op-
erations, versus the 1700 operations required for the previous
model.

Baseline SNN pruned SNN, leaky pruned

Reward (mean ± std) 1570 ± 1480 200±64

Risk 140 73

Footprint (bytes) 360 640

Activation Sparsity 0.49 0.65

SynOps Dense 66 126

SynOps Eff_MACs 44 84

SynOps Eff_ACs 12 16

Table 4: NeuroBench results for the pruned single layer SNNs
controlling the CartPole task.

After analyzing the great reduction in complexity after the
pruning of the SNN, a model with the same architecture, re-
placing the spiking neurons with ReLU activation functions,
was trained for the same number of episodes as the original
SNN. Training this network with a single hidden layer of 11
neurons showed a significant decrease in performance com-
paring to the original ANN and even compared to the pruned
SNNs. Where the pruned SNNs were able to have a relatively
small decrease in average performance and a reasonable risk,
the ANN’s average performance degraded significantly with a
risk that may be unacceptable in some circumstances. Again,
for this analysis, the critic head was removed.

Baseline ANN 11 neurons

Reward (mean ± std) 263 ± 114

Risk 42

Footprint (bytes) 360

Activation Sparsity 0.0

SynOps Dense 66

SynOps Eff_MACs 66

SynOps Eff_ACs 0

Table 5: NeuroBench results for the ANN with 11 hidden
neurons controlling the CartPole task.

For the deeper models, it is hypothesised that similar results
can be obtained. However, due to time restrictions, the prun-
ing of deeper SNN is left as future work.

4.4 Noise robustness
When deploying controllers in the real world, the obser-

vations will be affected by noise. The noise robustness of
controllers can therefore be a significant factor in the decision
on what algorithm is suitable for its usecase. This subsection
therefore attempts to characterize the behaviour of all afore-
mentioned models under noise.
As explained in the previous sections, allowing the leakage to
be trained causes the neuron to disregard temporal dynamics
completely. Constraining the leakage to non-zero numbers,
necessitates the model to learn the temporal dynamics of the
system. This leads to longer and more difficult training for
the SNN. On the other side, it is often hypothesized that the
temporal spiking nature of SNN could lead to noise robust-
ness. Therefore, we conducted an experiment to analyze the
performance of the trained models after injecting noise, to
more closely simulate real-world imperfections.
Experiments were carried out to asses the noise robustness
of the trained models. For a range of a gain of 0 to 1 with
a step size of 0.015, each model was evaluated 250 times,
with a maximum interaction time of 1000. These parame-
ters were chosen to sufficiently represent the behaviour under
noise, while reducing the computational resources needed to
generate the results.
Figure 4 displays the results of the previously described ex-
periment. It can be seen that the models which exploit the
leakage of the neurons tend to be more noise robust. At a
noise level of roughly 0.15, these models outperform their
non leaking counterparts. The non leaking models tend to
show a high degradation of performance when noise is in-
jected.

Performing the same analysis for the deeper models leads
to similar results, as shown on Figure 5. At an injected noise
with gain of 0.04, the performance of the SNN surpasses the

Figure 4: Noise robustness analysis of the previously de-
scribed single layer models.

ANN.

Figure 5: Noise robustness analysis of the previously de-
scribed double layer models.

5 DISCUSSION AND RECOMMENDATIONS

The characteristics of the agent are described in three
ways, first, the training characteristics are elaborated upon.
Second, the NeuroBench results for the agents are presented.
Lastly, the noise robustness is discussed. For the deployment
of real closed-loop systems, these three aspects may be of
varying importance. When training complex tasks, the train-
ing is a constraining factor. As discussed above, training SNN
presents several additional challenges that may be detrimen-
tal. In these situations, ANN are still the algorithm of choice.
Due to the challenging nature of training SNNs, sample effi-
ciency and stability in training algorithms is a big require-
ment. Other reinforcement learning methods have shown
to have improved efficiency and stability for training ANN.
Examples of these are Proximal Policy Optimization (PPO)

and Soft Actor Critic (SAC) reinforcement learning. Next to
these improved algorithms, future work should try to imple-
ment SNN specific methods such as reward-modulated STDP,
which has been shown to reduce the effect of dead and satu-
rated neurons during training [7], in the proven RL frame-
works. Furthermore, eProp has also shown interesting results
[10].
When analyzing the NeuroBench results, it can be observed
that for resource constrained use cases, SNN may be a
promising avenue. Their pruning opportunities allow for a
significant reduction in complexity, even on hardware that is
not specialized for neuromorphic algorithms. When training
using RL, the SNN tends to struggle more with dead and sat-
urated neurons, which allows for pruning without significant
loss. Training ANN with similar architecture to the pruned
ANN did not allow for the same performance. However,
the pruning possibilities of the full ANN model were not ex-
plored.
To further analyze noise robustness of the models, more re-
alistic noise characteristics should be injected. Currently, all
inputs in the observation space receive the same white noise
of mean 0 and a gain. In reality, the noise is usually smaller
for sensors with a smaller range (such as the velocity). Fur-
thermore, further work should analyze the behavior of leak
and different neuron models under noise.

6 CONCLUSION

This article describes the opportunities and challenges
of spiking neural networks (SNN) for closed-loop control,
trained with actor-critic reinforcement learning. While the
convergence of SNN during training was slow and noisy, the
trained agents were able to control the CartPole. Evaluating
the trained agents using NeuroBench highlights the use cases
for ANN as well as SNN. Currently, the consistency and per-
formance of ANN allow for a more reliable and performing
controller in simulation. However, two aspects of the spik-
ing agents offer interesting applications for systems deployed
in real life. First, the computational resources required for
SNN showed significantly lower than their non-spiking coun-
terpart. These resources were further reduced by applying a
simple pruning algorithm, leading to a 25x reduction in oper-
ations required per control action. This allows the agent to be
run on extremely low power devices, or alternatively run the
model with a much higher frequency if necessary. Next, the
presence of noise in the observation of the agent severely af-
fected the ANN models. At relatively low gains of the noise
inserted, the SNN trained with temporal dynamics (β > 0)
outperformed the ANN. Therefore, in real systems, the ex-
pected noise should be analyzed before the deciding on spik-
ing or non-spiking controllers.

Further research is needed to improve the training ef-
ficiency of SNN using RL. Techniques such as reward-
modulated STDP and eProp show promise in this regard. Ad-
ditionally, the noise characteristics showed promising results

for real-world applications. Future work could use the pre-
sented methods to deploy a controller in the real world and
analyze their performance. Overall, the exploration of spik-
ing agents in reinforcement learning is an interesting avenue
for closed-loop control on deployed systems and warrants fur-
ther investigation.

REFERENCES

[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforce-
ment learning. arXiv preprint arXiv:1312.5602, 2013.

[2] William Fedus, Prajit Ramachandran, Rishabh Agarwal,
Yoshua Bengio, Hugo Larochelle, Mark Rowland, and
Will Dabney. Revisiting Fundamentals of Experience
Replay, July 2020. arXiv:2007.06700 [cs, stat].

[3] Ding Chen, Peixi Peng, Tiejun Huang, and Yonghong
Tian. Deep Reinforcement Learning with Spiking Q-
learning. arXiv.org, 2022. ARXIV_ID: 2201.09754
S2ID: 0a3104f2ca2308ac9930dd57cfbbe112d04f841d.

[4] Guisong Liu, Wenjie Deng, Xiurui Xie, Li Huang,
and Huajin Tang. Human-Level Control Through Di-
rectly Trained Deep Spiking Q-Networks. IEEE
transactions on cybernetics, pages 1–12, January 2022.
ARXIV_ID: 2201.07211 MAG ID: 4294691690 S2ID:
2190a17a5e937c065adc5c139b563026ac174136.

[5] Luca Zanatta, Francesco Barchi, Andrea Bartolini, and
Andrea Acquaviva. Artificial versus spiking neural
networks for reinforcement learning in UAV obstacle
avoidance. ACM International Conference on Comput-
ing Frontiers, May 2022. MAG ID: 4229040499 S2ID:
0903d078a954427d8c875da922d52d187981b958.

[6] Henry Markram, Wulfram Gerstner, and Per Jesper
Sjöström. Spike-timing-dependent plasticity: A com-
prehensive overview. Frontiers in Synaptic Neuro-
science, 4, 2012.

[7] Răzvan V. Florian. A reinforcement learn-
ing algorithm for spiking neural networks.
Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing, pages 299–306,
September 2005. MAG ID: 2120905747 S2ID:
cb6442b823c13339446a21fcb089428ec521a34c.

[8] Yuxiang Liu and Wei Pan. Spiking Neural-Networks-
Based Data-Driven Control. Electronics, 12(2):310,
January 2023. Number: 2 Publisher: Multidisciplinary
Digital Publishing Institute.

[9] Andrew G. Barto, Richard S. Sutton, and Charles W.
Anderson. Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE Transactions

on Systems, Man, and Cybernetics, SMC-13(5):834–
846, 1983.

[10] Guillaume Bellec, Franz Scherr, Anand Subramoney,
Elias Hajek, Darjan Salaj, Robert Legenstein, and Wolf-
gang Maass. A solution to the learning dilemma
for recurrent networks of spiking neurons. bioRxiv,
2019:738385, August 2019. MAG ID: 2967417697
S2ID: 858549b00245aadc92f91a2540f01398f5f389ae.

[11] Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun
Huang. Optimal ann-snn conversion for fast and accu-
rate inference in deep spiking neural networks. arXiv
preprint arXiv:2105.11654, 2021.

[12] Ding Chen, Peixi Peng, Tiejun Huang, and Yonghong
Tian. Deep Reinforcement Learning with Spiking Q-
learning. arXiv.org, 2022. ARXIV_ID: 2201.09754
S2ID: 0a3104f2ca2308ac9930dd57cfbbe112d04f841d.

[13] Emre O Neftci, Hesham Mostafa, and Friedemann
Zenke. Surrogate gradient learning in spiking neural
networks: Bringing the power of gradient-based opti-
mization to spiking neural networks. IEEE Signal Pro-
cessing Magazine, 36(6):51–63, 2019.

[14] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi
Mirza, Alex Graves, Timothy P. Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
Methods for Deep Reinforcement Learning, June 2016.
arXiv:1602.01783 [cs] version: 2.

[15] Stein Stroobants, Julien Dupeyroux, and Guido C. H. E.
de Croon. Neuromorphic computing for attitude es-
timation onboard quadrotors. Neuromorphic Comput-
ing and Engineering, 2(3):034005, September 2022.
arXiv:2304.08802 [cs].

[16] John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel. High-Dimensional Contin-
uous Control Using Generalized Advantage Estimation,
October 2018. arXiv:1506.02438 [cs].

A.2. Deploying SNN on the Bebop Parrot 2 58

A.2. Deploying SNN on the Bebop Parrot 2
Taking the method developed in section A.1, an SNN was trained to land the Parrot Bebop 2 drone.
This work was presented at ICNCE 2024.

Control using Spiking Neural Networks Trainedwith Reinforcement

Learning and Surrogate Gradients
K. Van den Berghe, S. Stroobants, G.C.H.E. de Croon

Delft University of Technology

Motivation
Deep reinforcement learning (RL) enables autonomous agents to achieve human-level per-

formance in complex tasks through interaction with their environment. When deploying

agents on edge devices, we are limited by computational and energy resources. Neuro-

morphic solutions such as spiking neural networks (SNNs) offer a promising avenue for

improved energy efficiency.

We investigate efficient deep spiking reinforcement learning. Using surrogate gradient

backpropagation through time, enabled by training on sequences, we take the networks’

inherent memory into account.

Methods

Advantage Actor Critic (A2C): an on-policy RL algorithm. Instead of batching the

interactions of multiple actors to single transitions, the network trains on full

sequences.

Spiking neural network: continuous data is directly passed to the first hidden layer by

using a linear encoding layer. The output of the network is defined by the membrane

potentials of the final layer, which is a non-spiking LI neuron. The neurons in the

hidden layers are LIF neurons.

Target tasks: two tasks were analyzed, the carpole task and a drone landing task. In

cartpole, the net controls left and right movement. In the drone landing task, the

network applies a throttle command based on sonar altitude inputs.

Figure 1. The Cartpole environment from
Gymnasium.

Figure 2. The Parrot Bebop 2 drone is used for
evaluation of the drone environment.

Training and Pruning Process
The SNN converges slower and noisier than comparable ANN. When the leakage can be

learned, the network learns to disregard the temporal dimension (complete leakage). In a

second experiment, the leak was fixed to a non-zero value.

Figure 3. Training of an ANN and SNN with one hidden layer of size 246. The first SNN learns to
reduce β to zero. The second SNN has a fixed leak, β = 0.65.

SNNs were pruned based on activity, removing dead and saturated neurons. This leads

to reduced models.

Hidden layer of only 11 neurons for the model with full leakage.

Hidden layer of only 21 neurons for the model which has a fixed leakage.

These reduced models showed little decrease in performance.

NeuroBench Results
NeuroBench [1] is a community driven neuromorphic benchmarking framework. The com-

plexitymetrics provided by the benchmark include the synaptic operations, activation spar-

sity and footprint. The performance of the algorithms are described by the reward and the

risk, representing the 5% worst performing interactions.

Baseline ANN SNN SNNleaky SNNp SNNleaky,p

Reward (µ ± σ) 1744 ± 1385 1620 ± 1600 232 ± 65 1570 ± 1480 200 ± 64

Risk 190 148 152 140 73

Footprint (bytes) 7.9 × 103 7.9 × 103 7.9 × 103 360 640

Activation Sparsity 0.0 0.68 0.92 0.49 0.65

SynOps Dense 1.7 × 103 1.7 × 103 1.7 × 103 66 126

SynOps Eff_MACs 1.5 × 103 0.9 × 103 0.9 × 103 44 84

SynOps Eff_ACs 0 238 59 12 16

Table 1.NeuroBench results for the single layer ANN and SNNs (regular, leaky, pruned (p), and leaky
pruned (p) controlling the CartPole task.

The pruned spiking neural networks allow for an impressive reduction in synaptic oper-

ations for a relatively small decrease in performance. Pruning efforts for the ANN were

unable to achieve similar characteristics.

Noise Robustness
The 5 different models, with artificial neurons, spiking neurons with and without temporal

capabilities, are compared upon injection of Gaussian noise into the input data.

Figure 4.Noise robustness analysis of the artificial, and spiking models.

Pruned models achieved similar performance to their original models independent of

noise injection.

Leakage enables the models to perform more robustly to noisy sensory data.

Deployment on a UAV
A model with two hidden layers of 32 LIF neurons, uses noisy sonar altitude measure-

ments, requiring the network to estimate velocity. The net controls the throttle setting, to

successfully land a UAV.

Figure 5. An SNN trained with the previously described pipeline can successfully land the Parrot
Bebop 2 drone, decreasing velocity as it nears the ground.

FutureWork
While it is possible to train an SNN by modifying the A2C algorithm to train on sequences and using the surrogate gradient for backpropagation, the SNN fails to fully exploit temporal

dynamics. In future work, I would like to explore how to train an SNN to exploit temporal dynamics with RL and attempt to combine the fast learning of ANN as a critic or guiding policy

with a SNN-based actor in RL.

References
[1] Jason Yik and Korneel Van den Berghe et al.

Neurobench: A framework for benchmarking neuromorphic computing algorithms and systems, 2024.

ICNCE 2024

	Preface
	Summary
	Nomenclature
	Introduction
	Neuromorphic Computing
	Spiking Neural Networks
	Terminology
	Neuron Models
	Input Encoding and Output Decoding

	Training Spiking Neural Networks
	Local Learning Rules
	ANN to SNN Conversion
	Backpropagation in SNN

	Neuromorphic Hardware
	Neuromorphic Accelerators
	Event Cameras

	Neuromorphics in Robotics

	Reinforcement Learning
	The Basics of Reinforcement Learning
	Online vs Offline Reinforcement Learning
	On-Policy and Off-Policy Learning
	Value-based and Policy-based Methods

	Introduction to Deep Reinforcement Learning Theory and Algorithms
	Exact Solution Methods
	Approximate Solution Methods: Value-based
	Approximate Solution Methods: Policy-based

	Reinforcement Learning for Partially Observable Environments
	Reinforcement Learning for Spiking Neural Networks
	Conventional Reinforcement Learning
	Biologically Inspired Reinforcement Learning

	Scientific Article
	Additional Work
	Neuron Model Selection
	Parallelizable Simulator
	Soft Actor-Critic
	Evolutionary Learning
	Open-Source Code

	Conclusion
	References
	Appendix
	Using A2C for spiking neural networks
	Deploying SNN on the Bebop Parrot 2

