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Summary

Offshore wind energy is considered a necessary energy resource, that may stimulate the transition from fossil
fuels. Following the successful development in Western Europe, offshore wind is quickly gaining momen-
tum in the Asia-Pacific region. At variance with North-Sea based offshore wind turbines (OWTs), structures
installed in the Asia-Pacific region are exposed to a high risk of strong earthquakes. To reasonably manage
these risks a solid understanding of the physical process of seismic loading is required. Moreover, accurate
and effective design procedures to account for this complicated type of loading, need to be developed.

Considering that the response of OWTs to earthquakes is affected by the the interaction with the soil, the cur-
rent thesis is aimed at providing a modelling method to accurately account for the effects of soil-structure in-
teraction in the seismic design of offshore wind turbines. More specifically, the complicated load transferring
mechanisms between the soil continuum and the most often applied monopile foundation are addressed.
The accuracy of the currently applied design methods is questioned. The uncoupled lateral springs as used
in these methods cannot capture the non-local reaction of the soil towards the rigid monopile. Moreover,
these methods do not account for the effects of seismic wave diffraction as they use free-field ground motion
to introduce the seismic action. For these reasons, the currently applied methods may provide inaccurate
estimations of the seismic loads. Hence, more accurate modelling approaches are required.

In establishing the modelling method, it is suggested to benefit from the accuracy of a 3D model as it auto-
matically captures the complicated 3D soil-structure interaction mechanisms during earthquake loading. For
this reason, a 3D finite element model is provided that simulates the seismic loading of a monopile-supported
wind turbine. The 3D modelling approach is however computationally too expensive to replace the simple,
1D models used in the design of offshore wind turbine structures. Therefore, to combine the speed and sim-
plicity of a 1D model with the accuracy of the 3D model, the current thesis presents a method to obtain a 1D
effective model that mimics the 3D modelled response.

In establishing the effective modelling approach, the 3D model is not only used as a target solution. The
3D model is directly employed to capture the 3D soil continuum reaction and the seismic excitation loads
acting on the monopile. These components are incorporated into an effective model by making use of the
substructuring method of analysis. To extract the 3D reactions of the soil, the non-local method of Versteijlen
[30] is used. The soil stiffness matrices obtained by this method are integrated into a 1D beam model. The
ground motion required to introduce the seismic action into this 1D model is determined in a separate step;
the ground response analysis. This analysis is performed using a 3D model of the soil subsystem, that incor-
porates an excavation at the location of the embedded pile. This cavity is included to account for the effects
of wave diffraction.

To assess, the performance of the provided modelling approach, a comparative study is performed between
the 3D soil-structure model and the 1D effective model. This study showed that the 1D pile response closely
matches the response of the 3D model - for both horizontal and vertical earthquake motion. Hence, it is
proven that the developed design method effectively combines the accuracy of a 3D model with the simplic-
ity of a 1D model.

Furthermore, the effective modelling approach is applied to assess the influence of 3D continuum soil-structure
interaction effects on the structural response to earthquakes. These analyses indicate that the diffracted
component of the seismic wave field does not significantly affect the earthquake excitation load acting on
the monopile. As a results, the seismic wave diffraction can safely be neglected. This makes it possible to
use free-field ground motion to introduce the seismic action into the effective 1D model. Moreover, the fre-
quency dependent characteristics of the soil are evaluated - which are associated with geometric damping
and inertial effects. An initial study on the influence of this soil frequency dependence, showed that the geo-
metric damping results in a considerably reduced structural response for high frequencies. The effect of the
soil inertia forces on the response to earthquakes is limited.
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1
Introduction

In recent years, the offshore wind industry has experienced a huge growth. Although this industry is still
primarily concentrated in Northwestern Europe, also other parts of the world start to benefit from offshore
wind power as a mean of energy production. The environmental conditions at these locations provide new
challenges as many of the areas are well known for their high risk of strong earthquakes. The impact of earth-
quakes on the structural integrity and stability of offshore wind turbines has only recently become of interest
and is therefore a relatively new field of research.

With the recent development of offshore wind farms in seismically active areas comes the demand for bet-
ter understanding of the requirements earthquakes impose on the design of substructures for offshore wind.
Moreover, the development of adequate design and modelling procedures is required to accurately assess
the seismic performance of offshore wind turbines. One subject that makes the earthquake analysis and de-
sign particularly challenging is the soil-structure interaction. The complexity of the soil-structure interaction
during an earthquake results in many uncertainties in the design of a offshore wind turbine support struc-
tures. The guidelines used in offshore and earthquake engineering do not provide a structured framework on
how to deal with these uncertainties, leading to the use of various design methods instead of a clear unified
approach. Moreover, most design methods are established for (offshore) structures in general and are not de-
veloped for the large diameter tubular sections that characterize the monopile foundations. For this reason,
more research into the structural behaviour of offshore wind turbine support structures and soil-structure
interaction during earthquakes is required.

To provide further background on the topic of this thesis Section 1.1 will present an introduction to the earth-
quake analysis of offshore wind turbines. This is followed by a section specifically addressing the challenging
field of seismic soil-structure interaction (Section 1.2) and finally, the objective of this thesis is established in
Section 1.3 and an outline is presented in Section 1.4.

1.1. Earthquake analysis of offshore wind turbines
Research on offshore wind turbine structures has been mostly focused on the normal environmental con-
ditions while, so far, relatively little attention has been spent on considering extreme natural hazards that
threat the reliability of the wind turbines. Recently, studies have however indicated that loads induced by
earthquakes may govern the design of offshore wind turbine support structures in regions with high seismic-
ity (e.g. [1, 24, 28]), which highlights the importance of understanding the potential vulnerability of these
structures during seismic events. Code provisions and technical guidelines also recognize the importance of
earthquake-resistant design of offshore wind turbine structures and include brief recommendations on the
seismic assessment procedures. Based on these guidelines and published research, the key aspects of seismic
analysis of offshore wind turbines are discussed in this section.

As a wind turbine is a tall and slender structural system with a large mass at the top, it can be particularly
sensitive to lateral forces and deformations, as induced by earthquake ground motion [36]. However, the
relatively large flexibility of the conventional offshore wind turbine structures makes them insensitive to a
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2 1. Introduction

Figure 1.1: Frequency diagram showing typical normalized wind, sea wave and earthquake spectra along with the frequency ranges
corresponding to first and higher vibration modes of conventional wind turbine structures (source: [6]).

great part of earthquake excitation frequency range [9]. This is visualized in Figure 1.1 by presenting a typical
earthquake spectrum alongside with the frequency range corresponding to the first bending mode of con-
ventional wind turbine structures. Nonetheless, numerous studies indicated that offshore wind turbines are
not resistant against all seismic hazards. For specific earthquake characteristics, the seismic energy around
the fundamental natural frequency may still be significant. Moreover, research has indicated that also higher
modes of the structure may be significantly excited during a possible earthquake event [12]. Besides ana-
lyzing the seismic performance of the wind turbine’s support structure, also the turbine blades need to be
assessed [19]. As the resonant frequencies of the blades (0.7−2.0 Hz) correspond to the range of high seismic
intensity, these components may be particularly vulnerable to earthquake action [10].

The seismic loads in earthquake analysis of OWTs are generally quantified by a time-history representation
of earthquake excitations, which form the input for the method of response history analysis. This time do-
main method of analysis is preferred over frequency domain approaches for the analysis of OWTs, as it allows
for adequate modeling of the complex aeroelastic interaction among the different wind turbine components
[34]. The time-dependent operation of both the controller and the safety system can be efficiently modeled
within the time domain, and thus, for example, the shutdown triggered by specified nacelle acceleration can
be adequately analyzed [14]. The importance of considering a possible emergency shutdown in the seismic
load simulations of OWTs is recognized by the design guidelines [22, 29]. Besides the emergency shutdown,
two other operating scenarios should be accounted for according to these codes; normal operational condi-
tions (running) and parked conditions (idling) [7].

The standards require the earthquake analysis in two horizontal directions as well as in the vertical direction.
Numerous studies (e.g. [11, 17, 18]) recognize the potential vulnerability of offshore wind turbine structures
to vertical seismic excitations. These indicated a strong amplification of vertical seismic motion that could
possible cause structural failure of offshore wind turbines.

1.2. Seismic soil-structure interaction
The interaction between soil and structure has been found to be a critical aspect in the analysis and design
of offshore wind turbines as it has a significant impact on the response of the structure to dynamic loading.
At the same time, the highest modelling uncertainty in the design of offshore wind turbine foundations is
related to this soil-structure interaction [26]. The soil reaction towards the rigidly behaving monopile (MP)
is particularly challenging to describe as it conveys complicated soil-structure interaction (SSI) mechanisms
that require advanced modelling techniques [30]. The knowledge gap in this field, most often results in con-
servative designs of the wind turbine support structures. However, due the many opposing effects in soil-
structure interaction this can not always be guaranteed. Only through proper understanding of soil-structure
interaction one can adequately consider (or conservatively neglect) SSI effects in engineering design.
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Compared to the normal environmental loading conditions, accurate description of soil-structure interaction
is even more important for earthquake loading of wind turbine structures. This is due to one fundamental
difference; seismic loads do not originate from the structure towards the soil, but from the soil towards the
structure. This specific characteristic result in an additional role of the foundation; besides bearing the struc-
tures vibrations and transferring them to the ground, the foundation also transmits the ground motion to the
structure. Therefore, the description of SSI in earthquake analysis is crucial for the determination of the load
itself and an incorrect soil modelling can significantly over- or underestimate the dynamic response of the
structure due to the seismic action.

Effects of soil-structure interaction
The primary effects of soil-structure interaction to the seismic response of structures include effects specific
for earthquake loading conditions and effects related to the general dynamic response of structures. In gen-
eral, the most apparent effect of soil-structure interaction is the increased flexibility of the system [2]. This
results in a decrease of the fundamental frequency to a value significantly below that applicable for the fixed-
base situation. Due to the increased flexibility, the shape of the vibration modes will change as well. Another
important effect of the soil to the dynamic response of structures is the increased amount of damping due to
soil material damping and geometric damping. These additional damping mechanism introduced by the soil
may lead to a strongly reduced response of the structure [16].

The interaction between soil and structure also effects the seismic loads itself. This can be explained by look-
ing at the process of earthquake loading. Due to a sudden release of energy, seismic waves start to travel
through the earths interior and will cause earthquake ground motion. In the absence of a structure this mo-
tion is referred to as the free-field ground motion. When a structure is present at the surface, the seismic
waves will at some point reach the structure’s foundation and at the interface energy is partly scattered away
and partly transmitted. Due to the energy transmitted to the structure, it starts to vibrate and alters the soil
motion around it. During this process the motion of the structure will differ from the free-field ground mo-
tion as the equilibrium that needs to be satisfied at the soil-structure interface is not the one of a stress-free
surface. The seismic loading transmitted to the structure therefore depends on the interaction between the
soil and structure.

Due to the many opposing effects of soil-structure interaction, it is difficult to decide whether neglecting SSI
effects is in general conservative or not [2]. For example, the effect of an increased flexibility of the system
depends very much on the frequency content of the input motion. Moreover, the structural deformations can
be significantly increased due to the effects of the soil.

Figure 1.2: An impression of the soil-structure interaction process during seismic loading.



4 1. Introduction

Modelling methods for seismic soil-monopile interaction
The commonly applied methods to incorporate soil-structure interaction effects in the seismic analysis of
structures, can be separated in methods adopting a direct approach and modelling methods using the sub-
structure method of analysis. In the direct approach the soil and structure are simultaneously accounted for
in the mathematical model and analyzed in a single step. For a complex foundation-soil system, the direct
analysis is often performed as time domain simulations using 3D finite element modelling. When adequately
used, this approach accurately models the propagation of seismic waves through the soil and it is able to
capture complex 3D interaction mechanisms between soil and structure. Moreover, since the assumptions of
superposition are not required, true nonlinear analysis are possible. Nonetheless, the analyses are expensive
in terms of computational time and require special consideration for modeling the fictitious boundaries of
the soil domain to eliminate reflection of waves and to introduce the seismic excitation [2]. Hence, direct soil-
structure interaction analysis are used only in special cases and are usually not applied for load simulations
of offshore wind turbines [14].

In the design process of offshore wind turbines the response of the structure is of primary relevance and there-
fore an equivalent representation of the soil reaction with proper consideration of the seismic action usually
suffices. To achieve this, the fully coupled system is often treated as two separate components by applying the
substructuring method of analysis. In this approach, the responses of the soil and structure are first obtained
independently and subsequently combined to formulate the complete solution. This is done by joining the
soil and structure at the common interface by imposing force equilibrium conditions and kinematic compat-
ibility at all times. As the substructure approach is based on superposition, this method is normally limited
to linear behavior. The principal advantage of the substructuring approach is its flexibility. Because each step
is independent of the others, it is easy to focus resources on the most important aspects of the problem.

An often-applied approach to account for the soil reaction in the analysis of offshore wind turbine structures
is by making use of a Winkler type foundation [33]. This approach uses locally acting springs and dash-
pots along the embedded length of the monopile foundation to account for the impedance of the soil. In
earthquake analysis of monopile-based OWTs the Beam-on-dynamic-Winkler-foundation (BDWF) model is
employed by adopting the substructuring method of analysis. This commonly applied approach is based on
two separate modelling stages. In the first stage, the free-field soil motions are computed using a suitable
ground response modelling method. The second stage of the analysis computes the response of the structure
supported by the Winkler springs. This is done by exciting the supports of these springs with the free-field
soil displacement, while on at the other end the springs are connected to the pile. In this way, the seismic
loads and displacements are introduced to the structure. This substructuring approach - as visualized in fig-
ure 1.3 - is relatively simple to apply in the seismic load simulations of OWT structures. Moreover, it provides
a very intuitive visualization of the physical process of seismic soil-structure interaction as it directly yields a
representation of the foundation response.

Figure 1.3: The conventional modelling procedure for seismic soil-pile interaction: the Beam-on-dynamic-Winkler-foundation model
in combination with a free-field ground response analysis.
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Even thought, the substructuring method of analysis based on the BDWF model in combination with free-
field ground response analysis is well-accepted and has allowed the safe design of many structures, this ap-
proach does not fully capture the 3D seismic soil-structure interaction process of large-diameter monopile
foundations. By assuming undisturbed soil conditions in determining the seismic ground motion, it is not
accounted for that the presence of the structure alters the free-field seismic waves due to diffraction. While,
the assumption of neglecting the diffraction can be substantiated for small diameter piles, this is not neces-
sarily the case for the large monopile foundations. Therefore, adopting this approach results in additional
modelling uncertainties in the seismic design process of offshore wind turbine support structures.

For determining the spring properties in the BDWF model, a great number of methods are available. The
offshore wind industry adopted the p − y curve approach [20, 23, 25]. This semi-empirical approach (estab-
lished by the oil gas industry) yields curves describing the local, nonlinear relation between soil reaction
force (p) and pile displacement (y) at specific depths along the embedded pile. The Winkler spring stiffness
is described by the tangent of these p − y curves. However, as this method adopts uncoupled springs to rep-
resent the dominant soil reaction towards the rigidly behaving monopile foundations, the complete reaction
of the soil is underestimated. The global restoring force of the soil is induced by more complex, non-local
interaction mechanisms, which are not accurately captured by the p−y curve approach. Therefore, adopting
the nonlinear p − y curve approach, further increases the modelling uncertainties in the seismic load simu-
lations of wind turbines. The nonlinear spring stiffness representing the soil restoring force, is an empirical
tuning parameter depending on the soil characteristics, the properties of the pile and the loading conditions.
As the currently used p − y curves were calibrated on small-diameter, flexible piles, under quasi static loads
originating from the structure, these curves are not representative for the soil reaction during seismic loading
of monopile foundations.

1.3. Objective
The development of offshore wind farms in seismically active areas presents support structure and wind tur-
bine generator designers with the challenge of a new type of loading. Unlike other loads such as wind, waves
and ice loads, seismic loads originate from the ground. The evaluation of seismic loading therefore not only
requires understanding of the load transfer from the structure to the soil, but also from the soil to the struc-
ture. The interaction between soil and structure can considerably affect the dynamic response of offshore
wind turbine structures. For this reason, modelling methods to simulate the response of offshore wind tur-
bines to earthquakes are required, that do not only incorporate the structure but also account for the effects
of soil-structure interaction.

The interaction between soil and monopile foundations during earthquake loading is a complicated 3D pro-
cess where loads are transferred between soil and structure through different mechanisms. Hence, the seis-
mic soil-structure interaction of these structures can best be captured by employing a continuum approach
that considers the soil as a 3D solid. Currently, however, engineering models are applied that employ Winkler-
type foundations in combination with free-field ground response analyses. The accuracy of this effective
modelling approach for the seismic analysis of monopile-supported offshore wind turbines is questioned.
First of all, the uncoupled lateral springs as used in the 1D Winkler model cannot capture the non-local re-
sponse of the soil continuum towards rigid monopiles. Secondly, the use of free-field ground motion to intro-
duce the earthquake action, does not account for the effects of seismic wave diffraction due to the presence
of the structure. For these reasons, the currently applied 1D methods may inaccurately simulate the seismic
response of offshore wind turbine structures to earthquakes.

Nonetheless, a 1D model is currently still required in the design process of offshore wind turbines as 3D mod-
els are computationally too expensive. Three-dimensional models can still be used for improved physical
understanding of the soil-structure interaction during seismic loading of offshore wind turbines. However, to
become truly useful for design, the 3D model should not only serve as a design check, but its accuracy should
be directly integrated into the design models. For these reasons the objective of this thesis is:

Establish a method to identify an effective 1D model for seismic analysis of monopile-based offshore wind
turbines that incorporates 3D soil-structure interaction.
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Moreover, this effective method will be applied to assess the influence of 3D continuum soil-structure inter-
action effects on the offshore wind turbine’s response to earthquakes. Based on this assessment, recommen-
dations for the practical application of the effective modelling approach will be provided.

1.4. Outline
In order to meet the objectives of this thesis, several sequential steps are to be followed. This master thesis
report is structured in accordance with these steps.

In Chapter 2, the required theoretical background on the physical process of earthquakes is provided in or-
der to allow for an adequate representation of the seismic loading of offshore wind turbine structures. Next,
in Chapter 3, a 3D finite element model is provided to simulate the three-dimensional interaction between
monopile foundation and soil, yielding a more realistic estimation of the structural response to earthquakes
than obtained with the conventional Winkler-type models. The modelled 3D response is used as a target so-
lution for the effective modelling approach.

The method to identify the 1D effective soil-structure interaction model for seismic analysis of OWTs is pre-
sented in Chapter 4. The dynamic substructuring approach used for this purpose is introduced and the mod-
elling steps to obtain the 1D model are presented. Subsequently, Chapter 5 provides the validation of the
effective method by comparing the modelled 1D response with the response obtained with the 3D model.
Moreover, the modelling limitations are discussed.

In Chapter 6, the effective modelling method is applied to assess the influence of 3D continuum soil-structure
interaction effects on the response of offshore wind turbines to earthquakes. Based on this assessment, rec-
ommendations for the practical application of the effective modelling approach are presented. Finally, the
main conclusions of the thesis and recommendations for extended research are given in Chapter 7.



2
Theoretical background

In this chapter a literature study is performed with the objective of providing the theoretical background
required to adequately model the seismic loading of monopile-based offshore wind turbines. In Section 2.1,
the propagation of seismic waves is addressed and the different types of waves are introduced. In Section 2.2,
focuses on the characteristics of earthquake induced ground motion. Finally, Section 2.3 discusses the local
site effects and the ground response analysis.

2.1. Seismic wave propagation
An earthquake is manifested as ground shaking caused by a sudden release of energy in the earths crust.
This energy may originate from different sources. Earthquakes induced by movement of tectonic plates are
of primary relevance for the design and analysis of wind turbine structures [13]. These tectonic earthquakes
originate due a relative movement of plates causing stress to build up at the interface. When the stress reaches
a limit, a fault rupture occurs and seismic energy is released. This energy is converted into waves propagat-
ing away from the source. When reaching the surface of the earth, the waves will cause shaking of the ground.

Waves travelling through the earths interior are called body waves. When a wave approaches a surface, other
types of waves can be formed. These waves are called surface waves as they travel along the surface instead
of through a body. Body waves can be distinguished into two types; P-waves (primary/pressure) and S-waves
(secondary/shear). The former are waves in which the particle motion is equal to the direction of propagation
of the wave. Therefore, P-waves propagate by expansion and compression of the body they travel through.
For S-waves the particle motion is perpendicular to the direction of wave propagation. At ground surface, S-
waves can produce both vertical (SV) and horizontal (SH) motions. The velocity of a body wave depends on
the stiffness and the density of the medium through which they pass. The velocity of P-wave in an isotropic
and homogeneous solid can be calculated as:

vp =
√

G(2−2ν)

ρ(1−2ν)
(2.1)

where G , ν and ρ are the shear modulus, Poisson ratio and density of the medium, respectively. Since the rock
and soil are rather resistant to the compression-dilation effects, the P-wave generally has a minor influence
on the ground motion. However, especially at sites close to fault ruptures, P-wave may still generate signifi-
cant ground excitation [13].

Compared to P-waves, shear waves generally cherishes a longer period with a lower wave speed ranging from
100 to 800 m/s for soils and around 3000 m/s for hard rocks. The velocity of S-wave in an isotropic and
homogeneous solid is given by:

vs =
√

G

ρ
(2.2)

Surface waves occur when (inclined) body waves interact with a surface, e.g. the surface of the Earth. Rayleigh
waves and Love waves are the most relevant types of surface waves for earthquake engineering applications.

7
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Figure 2.1: Motion caused by harmonic body and surfaces waves.

Rayleigh waves are produced by interaction of P- and SV-waves with the Earth’s surface and involve both hor-
izontal as vertical particle motions. Love waves are shear waves that are the result of SH-waves that interact
with a soft superficial layer and have no vertical component of motion. Compared to body waves, surface
waves have a longer period with a relatively slower decay with time.

The relative significance of body and surface wave forms depends on various factors such as source mech-
anism, source-to-site distance, direction to the source, topography and sediment geometry. Shear waves
generally cause the ground motions that are most damaging for structures as the horizontal peak ground
acceleration is mostly influenced by the S-waves, and only in some cases by surface waves. If the distance
between the earthquake source and a site is larger than a few times the Earth crust thickness (30-50 km),
instead of body wave, the surface wave is likely to produce the peak ground motions [13]. This is due to the
surface wave’s slower rate of decay than that of body waves. As a result of geometric spreading in 2D the en-
ergy carried by surface wave decays as 1

R , with R being the distance from the source. The energy carried by
body waves decays with 1

R2 , due to the spreading in three dimensions.

2.2. Earthquake ground motion
If a structure is build in a seismically active region and it is deemed to be affected by a potential earthquake,
an estimation needs to be made of the possible ground motion induced by seismic waves. This is done by
performing an assessment of the local seismicity, which accounts for the rupture mechanism at the source of
the earthquake as well as the source-to-site attenuation characteristics. When the earthquake event is domi-
nated by body waves, the procedure to determine the ground motion at the site of interest is generally divided
into two parts. This is done by introducing an interface layer called the engineering bedrock; a relatively stiff
layer underlying the soft soil deposit on which the structure is founded. The first step of the procedure is
to identify the relevant motion characteristics (amplitude, frequency content and duration) of this bedrock
layer, using probabilistic seismic hazard analysis (PSHA). The motion at bedrock is used as input for the sec-
ond analysis step; the site response analysis. This site or ground response analysis captures the propagation
of waves through the shallower soil layers to take local effects into account.

The composition of the seismic wave field at bedrock level is complex and depends on the regional geology
and seismology. Due to (inclined) propagation of both P-waves and S-waves the motion of the bedrock is
composed out of both horizontal and vertical motion components. For small epicentral distances (≈ 20 km)
the intensity of the vertical accelerations is roughly equal to that of the horizontal motions and falls off down
to 50 to 30 percent for larger epicentral distances [32]. In practice, it is well accepted to derive the vertical
bedrock motion spectrum by scaling the horizontal motion spectrum by either a constant factor or different
factors at different frequency ranges [8]. Vertical motions are mainly caused by P-waves, and partially con-
tributed to by SV-waves. Because the pressure wave velocities of the soil and the underlying rock generally
have little differences, the motions at ground surface are essentially very similar, or can in many cases be
assumed to be identical, to the vertical seismic motions at bedrock [13, 22]. Furthermore, seismic ground
motions vary between different spatial locations. This spatial variation of the ground motions is attributed
to source-rupture characteristics, wave propagation through the earth strata, scattering and local site effects.
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Figure 2.2: Visualization of the bedrock and ground surface motion.

For structures with small horizontal dimensions, it is usually reasonable to assume that the spatial variation
does not significantly affect the structural response and therefore uniform motion along the bedrock can be
assumed [27].

2.3. Ground response analysis
Whereas seismological considerations dictate the wave composition, amplitude, and frequency content of
the incoming seismic motion in the underlying rock, the geometric and stiffness characteristics the soil de-
posit affect and modify (often profoundly) the ground motions experienced at the site. Reflections and refrac-
tions at the layer interfaces and the free surface, as well as resonance phenomena that may result from these,
modify the wave field in the shallow layers with respect to the incident seismic wave field at bedrock. The
motion of the soil deposit without the disturbance of an (embedded) structure or excavation, is referred to as
the free-field ground motion. Based on the seismic input at bedrock level, this motion can be determined by
performing a free-field ground response analysis.

Ideally, a full ground response analysis would model the rupture mechanism and evaluate how the waves
propagate until reaching the site of interest. However, this mechanism is so complicated and unpredictable
that such approach would not be practical. This is why different simplified 1D, 2D and 3D design methods for
ground response analysis have been developed in order to approximate the ground motion based on the mo-
tion characteristics at bedrock level. Two-dimensional or three-dimensional methods may be required when
irregular geometric properties of the site (such as sloping layer boundaries or basins) significantly affect the
wave propagation or when different types of seismic wave propagation needs to be captured, i.e. body and
surface wave.

For practical applications, generally one-dimensional analysis are adopted to determine the free-field ground
response. One-dimensional analysis can be performed under the following assumptions:

• The boundaries between the different layers of the soil, the bedrock and the surface are horizontally
stratified.

• The soil deposit and the bedrock extend to infinity in the horizontal direction.

• The motion of the bedrock is spatially uniform.

• The response of the soil deposit is predominantly caused by SH waves propagating vertically from the
underlying bedrock.

The last assumption can be justified considering that seismic waves propagating from the source through
the earths interior, are bent by successive refractions into a nearly vertical path (according to Snell’s law of
refraction).
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Under the given assumptions, the motion of the soil column can be described by the following equation of
motion:

ρ(z)
∂2u

∂t 2 = ∂

∂z

(
G(z)

∂u

∂z

)
+ ∂

∂z

(
c(z)

∂

∂t

∂u

∂x

)
(2.3)

where ρ is the density of the soil, G the shear modulus and c the damping coefficient.

Using this equation of motion, the free-field ground motion along the height of the soil stratum can be de-
termined. Moreover, an estimation can be made of the resonance periods of the site. The site period Ts for
uniform single soil layer on bedrock can be estimated from the relationship:

Ts,n = 1

2n −1

4H

vs
(2.4)

where Ts is in seconds. H and vs are the depth of the soil layer and soil shear wave velocity, respectively. n
is represents the nth mode of vibration (n > 1). For a complete derivation of the one-dimension shear wave
propagation model, reference is made to [27].



3
3D soil-structure model

To capture the complex seismic wave propagation and soil-structure interaction mechanisms between MP
foundations and soil during earthquakes, the pile must be modeled as embedded in a 3D continuum. In such
a model the soil reaction and the seismic loads transmitted to the rigid monopile structure can accurately be
identified. This direct approach models the soil and the structure in a single step and therefore requires fewer
assumptions compared to the often applied Winkler-type modelling method, which is based on substructur-
ing. Moreover, as both the soil and structure are explicitly modelled, the 3D modelling approach is not bound
to the specific range of pile and soil properties for which they were tuned.

For simulating the seismic loading of offshore wind turbines on monopile foundations, a MATLAB based fi-
nite element model is used. The model is a variation on the model of Barbosa [15] and computes the response
in the frequency domain. Originally the model was developed for loads acting at the top of the monopile. To
suit the model for this work a superstructure is included and the model is modified to incorporate seismic
loads originating from the soil. First, a description of the model is provided in section 3.1 and subsequently
the numerical implementation will be discussed in section 3.2. In section 3.3 modelling results are presented
and the response of the soil-structure system to earthquake excitation is discussed. Besides simulating the
seismic excitation of the fully coupled soil-structure system, this model will also serve as a basis for the effec-
tive 1D modelling method. This will be discussed in Chapter 4.

3.1. Model description
A stratified soil deposit is considered in which a monopile foundation is embedded. On top of the foundation
the superstructure is included, which consists of the tower and rotor nacelle assembly. The soil body overlays
a rigid bedrock layer, on which the seismic load is introduced. A large dynamic impedance contrast is consid-
ered (e.g. low velocity sediments over high velocity bedrock), such that the bedrock layer can be modelled as
a rigid boundary reflecting downward propagating waves back into the system. The seismic load acts in the
global x and z-direction and it varies in time harmonically. It is imposed as a dynamic displacement which
is spatially-uniform over the full bedrock surface. In the horizontal direction, the outer boundaries of the soil
domain satisfy the radiation condition such that the energy propagating away from the structure does not get
reflected. The geometry of the model is presented in Figure 3.1.

3.1.1. Modelling of the structure
The monopile design used in this work is an idealized representation of a contemporary offshore wind turbine
foundation. The MP is designed for a water depth of approximately 30 meter, has an embedded depth of 30
meter and a constant outer diameter of 7.0 meter. The pile thickness varies locally along the z-axis of the
pile. For simplicity, this minor z-depency is omitted and the geometry of the foundation is assumed to be
constant. The geometry of the tower is generally more complex and varies significantly over the height of
the structure. However, as detailed modelling of this part is not required for the qualitative analysis of soil-
monopile interaction, a simplified representation of this superstructure is employed; the tower is modelled
with constant cross-sectional properties and the RNA is idealized as a lumped mass with rotational inertia.
The idealized structural geometry as used in this work is presented in Table 3.2 - with reference to Figure

11
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Figure 3.1: Geometry of the 3D soil-structure model.

3.2). These are determined such that the dynamic characteristics of the structure approach that of realistic
offshore wind turbine structures. The material properties describing the linear elastic behaviour of the steel
are also included in Table 3.2. These properties are modelled to be constant throughout the structure and no
steel material damping is included.

3.1.2. Modelling of the soil body
Similar to the steel of the structure, the soil medium is modelled as an isotropic, linearly elastic solid. The
material constants describing the behaviour of the soil vary along the depth and can be defined by the shear
modulus Gs , poisson ratio νs , mass density ρs . The material damping in the soil involves a frictional loss of
energy. This so-called hysteretic damping is independent of frequency. It can be introduced into the equa-
tions by replacing the elastic constants by corresponding complex ones. In this model this is done by making
the shear modulus of the soil Gs complex:

G∗
s =Gs (1+2iζs sg n(ω)) =Gs (1+ iηsg n(ω)) (3.1)

where, ζs is the damping ratio and η is the loss factor. The complex continuum stiffness and the geometric
damping cause the soil-structure response to become complex valued.

The soil profile used in this work is based on the Westermeerwind near-shore wind farm [30]. The charac-
teristics as implemented in the model are presented in table 3.3. The variation of stiffness, Poisson’s ratio,
density and the corresponding shear wave velocity are presented in Figure 3.2. Besides the heterogeneous,
realistic soil profile, a fictional idealized case with homogeneous properties is considered as well. The bottom
soil layer, starting at a depth of 30 meters, is assumed to be extending up to the underlying bedrock. The is
rigid bedrock layer is assumed to be located at a depth of 60 meter.

The soil profile is modelled to extent into the tubular pile section, such that monopile is filled with soil up to
a certain level. In this work two limit cases are considered, one where there is no soil inside of monopile and
one where the pile is filled with soil up to the seabed level. The last case is a more accurate representation
of reality. However, due to soil plugging it may occur that part of the monopile is free of soil on the inside
[4]. With these two different conditions and the two different soil profiles, a total number of four cases will be
considered in this work. These are listed in table 3.1.
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Case Soil profile Soil inside monopile
1A Homogeneous Yes
1B Homogeneous No
2A Heterogeneous Yes
2B Heterogeneous No

Table 3.1: Case studies considered in this work.

Property Symbol Value Unit
Pile tip - Mudline L 30 m
Mudline - Hub height L0 130 m
Outer diameter D 7.0 m
Wall thickness t 0.07 m
RNA total mass MRN A 450 × 103 kg
RNA rotational inertia JRN A 65 × 106 kg m2

Youngs’s modulus Ep 210 GPa
Poisson’s ratio steel νp 0.3 -
Density steel ρp 7850 kg/m3

Table 3.2: Geometry and material properties of the structure.

Property Symbol Value Unit
Bedrock - Mudline H 60 m
Shear modulus soil Gs Fig. X MPa
Poisson’s ratio soil νs Fig. X -
Density soil ρs Fig. X kg/m3

Shear wave velocity vs Fig. X m/s
Damping ratio ζs 0.05 -

Table 3.3: Geometry and material properties of the soil.
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Figure 3.2: Young’s modulus E , Poisson’s ratio ν, Density ρ and shear wave velocity vs of the heterogeneous and homogeneous soil
profile.
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3.2. Numerical modelling
To solve the problem as introduced in the previous section, the finite element method is used. This numerical
method subdivides the large continuous system into elements with finite dimension. The simple equations
that model these finite elements are then assembled into a global system of equations that models the entire
problem. The governing equations of the finite element analysis are described in section 3.2.1. Section 3.2.2
discusses the modelling of the seismic bedrock excitation and section 3.2.3 focuses on the important aspects
of meshing, the domain size and the absorbing boundaries. Lastly, the 3D soil-structure model is validated
by a comparative study with an open-source FE model called OpenSeesPL.

3.2.1. Governing equations
For the modelling of the linear elastic soil-structure system, cylindrical coordinates are used (r,θ, z). By apply-
ing the finite element method, the continuous physical problem is discretized into elements, interconnected
at a finite number of nodes. Every node has three degrees of freedom; ur , uθ and uz . The equations of motion
of the obtained multi degree of freedom system can be formulated in the frequency domain as:

K u = f (3.2)

where u and f respectively contain amplitudes of nodal DOF and nodal load, and are a function of all three
coordinates (r,θ, z). The global stiffness matrix K can be formulated as:

K = Ks + iωC−ω2M (3.3)

The matrices M, C and Ks represent the mass matrix, the damping matrix, and the static-stiffness matrix,
which are constant for a linear system.

The geometry and material properties of the problem as introduced in section 3.1, exhibit symmetry around
the z-axis. For the displacement boundary conditions, applied at the bottom boundary, this is not the case.
Therefore, the problem is three-dimensional in the sense that every field quantity is a function of all three co-
ordinates. However, it is possible to represent a load or displacement by components in the form of trigono-
metric series. Let the displacement amplitudes u be described as the sum of its series components:

u(r, z,θ,ω) =
∞∑

n=0
uc

n(r, z,ω)cos(nθ)+
∞∑

n=0
us

n(r, z,ω)si n(nθ) (3.4)

where uc
n and us

n are displacement amplitudes that depend on n, but not on θ. In this type of representation
completeness is preserved as the Fourier series can represent any continuous function within a given region.
The forces can be described in a similar way:

f(r, z,θ,ω) =
∞∑

n=0
fc

n(r, z,ω)cos(nθ)+
∞∑

n=0
fs

n(r, z,ω)si n(nθ) (3.5)

Owing to the orthogonality principle it can be proven that the force term of the nth harmonic only affects the
nth system of equations. This property allows us to solve only one set of equations if the Fourier expansion
of the load involves only one term. If more terms are required to describe the problem, analysis can be per-
formed for each component separately and results can be combined to produce the solution for the original
loading. In this way, no division into elements in the θ-direction is required, so that instead of solving the
large 3D problem, several 2D problems can be solved. The system of algebraic equations describing the 2D
problem for the nth harmonic can be described as:

Kn un = fn (3.6)

in which Kn , un and fn are functions of two coordinates; r and z. In this work, equation 3.6 is established and
solved for n = 0 and n = 1.

3.2.2. Seismic boundary condition
In the seismic soil-structure problem, the load consist of the uniform harmonic excitation imposed at the
bottom boundary of the soil domain. This is composed out of a vertical (ubr

z (ω)) and horizontal component
(ubr

x (ω)). Separate analysis are required for the two components as the vertical component is described by
terms independent of θ (n = 0) and the horizontal component has a θ-dependency described by first order
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trigonometric terms (n = 1). Nodal amplitudes provided by the two separate analyses must be superposed to
obtain the solution for the full loading situation.

First the vertical component is discussed. The loading state that imposes a vertical seismic excitation at the
bottom boundary, while fixing the horizontal degrees of freedom of the rigid bedrock, is described by the
following boundary conditions at z = 0:

ur (r,θ,0,ω) = 0 (3.7)

uθ(r,θ,0,ω) = 0 (3.8)

uz (r,θ,0,ω) = ubr
z (ω) (3.9)

Due to this loading character the displacement are independent of θ:

ur (r,θ, z,ω) = ur (r, z,ω) (3.10)

uθ(r,θ, z,ω) = uθ(r, z,ω) (3.11)

uz (r,θ, z,ω) = uz (r, z,ω) (3.12)

The same holds for the internal stresses.

The uniform horizontal bedrock motion (ubr
x ) can be decomposed into radial and circumferential compo-

nents using first order trigonometric terms. In this loading state the vertical degrees of freedom of the rigid
bedrock are fixed. The boundary conditions at z = 0 are described by:

ur (r,θ,0,ω) = ubr
x (ω)cos(θ) (3.13)

uθ(r,θ,0,ω) = ubr
x (ω)si n(θ) (3.14)

uz (r,θ,0,ω) = 0 (3.15)

This loading character permits to describe the displacements and forces due to the horizontal bedrock mo-
tion, by making use of separation of variables. The θ-dependencies for the displacements (and similarly for
the stresses) are:

ur (r,θ, z,ω) = ur (r, z,ω)cos(θ) (3.16)

uθ(r,θ, z,ω) = uθ(r, z,ω)si n(θ) (3.17)

uz (r,θ, z,ω) = uz (r, z,ω)cos(θ) (3.18)

To obtain the unknown field quantities, the boundary conditions at the bedrock DOFs need to be imposed
into the global system of equations. Prescribing zero displacement boundary conditions at a specific nodal
degree of freedom k, can be performed by removing the kth row and column in the dynamic stiffness matrix
as well as the kth element in the force vector. Imposing non-zero displacement boundary conditions is less
straightforward. To do this the system of equations needs to be decomposed into:[

K11 K12

K21 K22

][
u f

ubr

]
=

[
f f

fbr

]
(3.19)

where ubr denote the imposed displacement amplitudes at the bedrock nodes and fbr the corresponding
unknown nodal forces. The vector u f contains the unknown nodal amplitudes of the remaining DOFs and
the force vector of these DOFs is denoted with f f . By using this decomposition, the displacements u f can
then be determined by:

u f = K−1
11

(
f f −K12ubr

)
(3.20)

The vector containing the externally applied forces f f , has all components equal to zero if only the seismic
loads introduced at the bedrock are considered.
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3.2.3. Mesh and absorbing boundaries
The accuracy of the numerical approximation strongly depends on the size of the elements into which the
system is discretized. For this reason, a mesh study is performed to optimize the dimension of the finite
elements. Based on the accuracy of the results and the calculation time, an optimal mesh discretization is
determined. The mesh size in the horizontal direction varies throughout the domain. Near the pile finite ele-
ments are used with a width equal to the thickness of the pile and towards the outer boundaries of the model,
the mesh size gradually increases. The mesh is different for each case as the maximum element dimensions
depend on the shortest wavelength present in the system. Based on the mesh study and recommendation in
literature [37], the requirement is used that a full sinusoidal wave should at least be described by six elements.
In the vertical direction, a constant discretization length of 0.5 meter is used. A finer mesh might still improve
the numerical approximation, but the increase in computational demand due to the additional degrees of
freedom does not outweigh the benefits in terms of accuracy.

Also the domain size and the absorbing boundaries play an important role in the accuracy of the numerical
model. Inadequate consideration of these aspects may result in distortion of the systems dynamic charac-
teristics and consequently inaccurate results. The use of finite elements in dynamic soil-structure problems
requires special attention as soil layers of infinite extent in the horizontal direction must be represented by a
model of finite size. For this purpose, absorbing boundaries are used at the outer boundaries of the system
to satisfy the radiation condition.

A commonly applied method for truncating computational regions to simulate problems with open bound-
aries, makes use of Perfectly Matched Layers (PMLs) [15]. The principle behind this method is that the out-
wardly propagating waves enter a layer, where they are transformed into decaying evanescent waves to mini-
mize the reflections at the boundary. The method introduces an absorbing layer with uniform thickness that
forces the waves to decay exponentially. Note that this method is not developed for evanescent waves with
complex-valued wavenumbers. PMLs are not effective in absorbing these types of waves, which may result in
reflection [3]. Since evanescent waves decay automatically, an approach to prevent these reflections is choos-
ing the domain size in such a way that the amplitudes of the evanescent waves are negligible at the start of
the PML. For this reason the start of the absorbing PMLs is located at 30 times the length of the shortest shear
wave present in the system. The PMLs are based on the properties of the soil continuum and the dimensions
of the PMLs are determined such that 10 wavelengths fit in a PML. For more information about PMLs, the
reader is advised to review [15].

3.2.4. Validation
To validate the model, results are compared with a different finite element model, computed in the software
OpenSeesPL. In OpenSeesPL the linear elastic soil medium is modelled with 8-node brick elements and the
pile is modelled as a one-dimensional beam. To account for the three-dimensional geometry of the embed-
ded pile, the nodes of the 1D beam are connected to the nodes of the surrounding soil with very stiff beam
elements. The static response of the MP foundation to a horizontal load is determined for the homogeneous
soil case. It can be observed that the 3D models are in good agreement in both displacement u(z) and rota-
tion ψ(z).

As an additional validation step the dynamic response of the soil system without pile is compared with that
determined by a 1D shear wave propagation model of which the equation of motion was introduced in Equa-
tion 2.3. This is done to ensure adequate modelling of the seismic boundary condition. The homogeneous
soil case is used and the load condition consists of a uniform horizontal bedrock motion with amplitude ubr

x .
Both the real and imaginary part of the steady-state displacement are in good agreement for the frequency
range of interest. The soil response for an excitation frequency of 1.5 Hz and 5.0 Hz is presented in Figure 3.3.

3.3. Response to seismic excitation
In this section a simulation of the 3D interaction between pile and soil is presented. First, the situation of
the undisturbed soil is considered to give an impression of the seismic wave field generated by the bedrock
motion. The steady-state response to a bedrock excitation with frequency of 5.0 Hz is presented in Figure 3.4
and 3.5. The figures clearly show the vertically propagating S-waves and P-waves, inducing a uniform ground
motion along the horizontal plane. The figures also visualize the difference in wavelength between the two
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Figure 3.3: Validation of the 3D soil-structure model. Left: Pile response comparison between the MATLAB based FE model and the
FE model computed in OpenSeesPL. A static horizontal force of 100 KN at 10 m above mudline is applied. Right: Undisturbed soil
response comparison between the 3D FE model and 1D shear wave propagation model for uniform horizontal bedrock excitation with
unit amplitude and frequencies of 1.5 Hz and 5.0 Hz.

types of body waves, as discussed in section 2.1. For the homogeneous soil, this wavelength is constant over
the height, while the heterogeneous soil shows an irregular response due to the varying elastic properties.
Furthermore, the amplification of the seismic bedrock motion is analyzed. In Figure 3.8, the amplitude ratio
between bedrock displacement and ground surface displacement is presented for both vertical and hori-
zontal motion. This is done for the homogeneous and heterogeneous soil deposit. The seismic motion is
significantly amplified for frequencies corresponding to the resonance of the soil stratum for vertical S-wave
propagation and vertical P-wave propagation.

When including the monopile-based offshore wind turbine, a disturbance of the ground motion is intro-
duced. This is visualized in Figure 3.6 and 3.7. The system with structure is subjected to the same bedrock
motion as considered for the soil-only case (Figure 3.4 and 3.5). The disturbance of the seismic wave field
arise from the following processes: Due to the sudden change in elastic properties at the soil-pile interface
phenomena such as scattering, refraction and diffraction occur, causing seismic energy to be deflected in
different directions. Part of the seismic energy is transmitted to the foundation which induces structural vi-
brations. The inertia forces that are subsequently generated in the superstructures mass, produce dynamic
forces. These forces are transmitted onto the foundation and eventually in the surrounding soil, causing ad-
ditional ground displacements. Figure 3.6 and 3.7 also visualize the mode conversion of the incoming body
waves to waves travelling along the soil surface.

Figure 3.4: The steady-state response of the homogeneous soil deposit without structure, in the x- and z-direction. Induced by a uniform
vertical and horizontal bedrock excitation with unit amplitude and frequency 5.0 Hz.
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Figure 3.5: The steady-state response of the heterogeneous soil deposit without structure, in the x- and z-direction. Induced by a uniform
vertical and horizontal bedrock excitation with unit amplitude and frequency 5.0 Hz.

Figure 3.6: The steady-state response of the homogeneous soil with structure, due to a uniform vertical and horizontal bedrock excitation
with unit amplitude and frequency 5.0 Hz.

Figure 3.7: The steady-state response of the heterogeneous soil with structure, due to a uniform vertical and horizontal bedrock excita-
tion with unit amplitude and frequency 5.0 Hz.
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Figure 3.8: Frequency response function of the soil deposit without structure. The amplitude ratio between bedrock and mudline dis-
placement is displayed for the homogeneous (left) and heterogeneous (right) soil profile.





4
Effective 1D model

Along with the development of rigorous modelling methods, comes the need to translate the response of
those models into simplified, effective models. Effective modelling methods are particularly important for
the design of offshore wind turbines as the stochastic loading environment of these structures requires a
great number of time-domain simulations. In such a design process, it is of great value to reduce the number
of DOF by using simplified models, provided that it has been shown to match the rigorous results adequately.
For these reasons the main objective of this work is to establish a method to identify an effective 1D model for
seismic analysis of monopile-based offshore wind turbines that incorporates 3D soil-structure interaction. This
objective will be addressed in this chapter.

The approach as established in this work is based on the Beam-on-dynamic-Winkler-foundation (BDWF)
model, in which the soil is represented by springs and dashpots continuously distributed along the embedded
pile. The BDWF modelling approach has been used extensively to estimate the soil reaction for monopile-
based offshore wind turbines subjected to hydrodynamic and aerodynamic loads. However, specific for seis-
mic action is that it originates from the soil and therefore the load itself is developed due to soil-structure
interaction. This requires an additional step in establishing an effective 1D Winkler-type model, namely, de-
termining and incorporating the effective seismic excitation. In this thesis a substructuring approach is used
for this purpose. A generic formulation of this substructuring approach will be presented in Section 4.1. Sub-
sequently, in Section 4.2, the expression found to describe the soil-structure interaction forces is explained.
Section 4.3 to 4.5 elaborates on the applied procedure to obtain the 1D model and in Section 4.6 the numerical
implementation is discussed.

4.1. Substructuring method of analysis
For the design of OWT support structures the response of the structure itself is of primary interest and an
equivalent representation of the soil reaction with proper consideration of the seismic input, usually suffices.
Therefore, the approach used to establish the effective model for seismic analysis of offshore wind turbines
is based on dynamic substructuring. By adopting this approach, the seismic load simulations of the complex
wind turbine structure can be performed without explicitly modelling the soil. This is a highly favourable ap-
proach as modelling of the soil domain is complicated and it increases the computational time significantly.

In this section, a generic mathematical formulation of the dynamic substructuring approach is provided for a
multi-degree-of-freedom structural system with an embedded foundation. This formulation is based on the
work of Wolf [35]. The approach is based on subdividing the fully coupled system into two separate substruc-
tures; the structure itself and the soil with excavation. The components are joined at the common interface
by imposing force equilibrium conditions and kinematic compatibility at all times. In Section 4.3, the sub-
structuring method of analysis is applied to establish the 1D effective model.

21



22 4. Effective 1D model

Figure 4.1: A visualization of the substructuring method of analysis.

The first step of the substructuring approach is formulating the equations of motion of the MDOF structural
system. This is done in a partitioned form, by distinguishing between DOFs of the foundation (subscript f )
- which are in contact with the soil - and the remaining structural DOFs (subscript s). When only consider-
ing seismic loads, the nodes not in contact with the soil are not externally loaded. Under this assumption,
the response of the structure is only induced by the interaction forces with the soil and therefore the struc-
tural response is denoted as the "total" response (superscript "t"). The system of equations describing the
equilibrium of the structure can be formulated in the frequency domain as:[

Kss Ks f

K f s K f f

][
ut

s

ut
f

]
=

[
0

pt
f

]
(4.1)

In equation 4.1 the following notations are used:

• Kss , Ks f , K f s and K f f : the submatrices forming the dynamic stiffness matrix of the structure. Subscript
"s" refers to the structural while "f" to the foundation DOFs, namely the ones positioned at the soil-
structure interface.

• ut
s : displacement vector of the DOFs of the structure, excluding the ones positioned at the interface.

• ut
f : vector of displacements of the foundation DOFs; the ones at the soil-structure interface.

• pt
f : total nodal interaction forces developed at the soil-structure interface.

Besides the structural subsystem, also the soil subsystem contributes to the equilibrium of the nodes located
at the soil-structure interface, through interaction forces pt

f . In order to obtain these unknown interaction

forces, the two substructures should be assembled by applying two interface conditions. The first condition
is force equilibrium, which states that the interface stresses between connecting nodes should have equal
magnitude and opposing sign. The nodal interaction forces acting on the structure (pt

f ) and those acting on

the soil subsystem (pg
f ), can thus be related by the following equation:

pt
f (ω) =−pg

f (ω) (4.2)

The second interface condition is coordinate compatibility; as the foundation and the soil are perfectly bonded
at the contact surface the connecting nodes of the two substructures should have equal interface displace-
ment:

ut
f (ω) = ug

f (ω) (4.3)
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As a linear system is considered, the response of the soil substructure can be decomposed into multiple load-
ing components. These can be determined individually and the total response can be found by superposition
of the separate components. In this case two loading states are considered. The first includes the response
induced by the earthquake action. In this loading state, the seismic excitation is imposed at the bedrock
boundary while the complete soil surface, including cavity surface, is free of stress.

The second component is the response induced by the interaction stresses with the structure, acting on the
surface of the cavity. In this case the bottom boundary of the soil subsystem is fixed and no incident wave
field is present. The total displacement of the nodes on the interface, can now be formulated as:

ut
f (ω) = ug ,i

f (ω)+ug ,e
f (ω) (4.4)

The vector ug ,e
f denotes the displacement amplitudes of the soil subsystem due to the earthquake compo-

nent, for the nodes located at the cavity surface. Vector ug ,i
f denotes the displacements of the same nodes

due to the soil-structure interaction forces.

The forces acting on nodes f can be partitioned by making use of the same two loading states:

pt
f (ω) =−pg ,i

f (ω)−pg ,e
f (ω)︸ ︷︷ ︸
=0

(4.5)

where, pg ,i
f are the forces acting on the nodes f of the soil subsystem, due to the SSI and the vector pg ,e

f de-

notes the forces on the same nodes f , due to the seismic excitation imposed upon the soil subsystem. The
latter are equal to zero as the cavity surface is stress-free for the earthquake loading state. Therefore, the total
nodal forces at the interface merely consists of the ones originating due to the soil-structure interaction com-
ponent.

Let G f f be the dynamic stiffness matrix of the soil substructure, describing the relation between force and
displacement of all nodes on the cavity surface. Then the displacement of nodes f of the soil subsystem due

to the forces pg ,i
f can be determined by:

ug ,i
f (ω) = G−1

f f pg ,i
f (ω) (4.6)

By making use of equation 4.4 and 4.5, this can be rewritten to:

pt
f (ω) = G f f

(
ug ,e

f (ω)−ut
f (ω)

)
(4.7)

which can be implemented in equation 4.1:

[
Kss Ks f

K f s K f f +G f f

][
ut

s (ω)

ut
f (ω)

]
=

[
0

G f f ug ,e
f (ω)

]
(4.8)

Once the complex-valued soil stiffness matrix G f f and the seismic input ug ,e
f are determined by using the

soil subsystem, this can be implemented in the structural model to determine the structural response to
earthquake loading. The size of the dynamic soil stiffness matrix is m ×m, with m being the number of de-
grees of freedom of nodes located on the soil-structure interface. Matrix G f f includes both diagonal and
non-diagonal terms as the response of a soil continuum is in general coupled and non-local. In continuous
systems the stiffness matrix G f f may be formulated as a linear operator G f f . Any type of solution method
can be used to capture the force-displacement relation of the soil subsystem at the contact surface with the
structure. It may be a semi-analytical solution approach - for instance, using Greens’s functions - or a numer-
ical one. In the current work, G f f is captured using a soil subsystem modelled as a 3D continuum with finite
elements. This approach, based on the work of Versteijlen [30, 31], will be discussed in the coming sections.
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4.2. Seismic soil-structure interaction forces
Before establishing the effective 1D model using the substructuring method of analysis, the obtained relation
for the soil-structure interaction forces acting on the foundation (Eq. 4.7) is explained. The total interaction
forces between the soil and structure are a superposition of the following two components:

pt
f = pI

f +pI I
f (4.9)

where the forces pI
f and pI I

f are defined as:

pI
f = G f f ug ,e

f (4.10)

pI I
f =−G f f ut

f (4.11)

The loading component pI
f introduces the seismic action to the system and is therefore referred to as the exci-

tation load. This loading component is generated by incoming seismic waves interacting with the stationary
structural body and is therefore independent of the motion of the structure. It can be decomposed into a
free-field component and a diffraction component, as is commonly done in the field of hydrodynamics to
determine wave forces acting on a body [21]. The theoretical prove that the excitation load as defined in this
work, captures the free-field as well as the diffracted component is included in Appendix B. This appendix
also elaborates on the analogy with the hydrodynamic approach. The loading state corresponding to the ex-
citation component of the soil-structure interaction force is visualized in Figure 4.2.

The interaction forces developed due to the motion of the structure are captured in the component pI I
f . This

force component - referred to as the radiation force - can be interpret as the force originating due to the
structural vibrations in the absence of ground motion induced by incoming seismic waves. This is depicted
in Figure 4.2. When only earthquake loads are considered, the structural motion is fully induced by the seis-
mic excitation load (pI

f ) and, thus, no SSI forces would develop in the absence of earthquake ground motion.

Now that the SSI forces during seismic loading are defined, the assumption behind the conventional mod-
elling procedures using free-field ground motion in a Winkler-type foundation model, can be identified.
In determining the earthquake ground motion, these engineering modelling methods do not account for
diffraction because of the geometrical irregularity introduced into the soil deposit by the embedded part of
the structure. Therefore, the excitation load considered in these methods, does not account for the diffracted
wave force component.

Figure 4.2: A graphical presentation of the two loading components that together represent the total interaction forces between soil and
structure. The excitation load (pI

f ) is shown left and the inertial load (pI I
f ) on the right.
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Figure 4.3: Graphical representation of the 1D beam model with soil-structure interaction forces.

4.3. Governing equations of the 1D model
With the substructuring method as introduced in the previous section, the 1D model for seismic analysis of
monopile based OWTs can be established. This modelling approach provides a substructure in the form of a
Winkler foundation stiffness matrix, along with the effective seismic input, represented by a ground motion
signal along the embedded length of the monopile. These soil related components are incorporated in the
structural model to introduce the seismic action and account for SSI effects. Extraction of the dynamic soil
stiffness matrices and the seismic input motion, by using the soil substructure model, is discussed in Section
4.4 and 4.5. First, the governing equations of the 1D SSI system are introduced in Section 4.3.

The first step of the substructuring method is to establish the equations of motion of the structure. The
Timoshenko beam theory is used for this purpose, as it was found that both shear deformation and rotational
bending effects should be accounted for to describe the 3D response of large diameter piles. The equilibrium
equations of a Timoshenko beam, representing a monopile with external distributed forces are:

G Aκ

(
d 2u(z)

d z2 − dψ(z)

d z

)
+ω2ρAu(z) = fx (z,ω) (4.12)

G Aκ

(
du(z)

d z
−ψ(z)

)
+E I

d 2ψ(z)

d z2 +ω2ρIψ(z) = m(z,ω) (4.13)

where equation 4.12 describes the balance of lateral forces, and equation 4.13 describes the balance of bend-
ing moments. Both are formulated in the frequency domain. G Aκ is the product of the steel shear modulus
G , the cross-sectional area A and the cross section-dependent shearing coefficient κ. For the cylindrical pile
section, κ= 0.53 is assumed. Furthermore, E I is the product of the steel Young’s modulus E and the second
moment of area of the cross section of the pile I .

To include vertical degrees of freedom in the 1D model, an additional equation of motion is introduced for
equilibrium in the z-direction. This formulation is based on a simple rod in axial motion. The equation of
motion describing the longitudinal motion is:

E A
d 2w(z)

d z2 +ωρAw(z) = fz (z,ω) (4.14)
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In equations 4.12 - 4.14, fx , m and fz are respectively the distributed lateral force, bending moment and verti-
cal force due to soil-structure interaction. These interaction forces introduce the seismic load to the structure.
The geometry and sign convention of the 1D model is presented in Figure 4.3. In establishing the equations
of motion, the assumption is made that there is no coupling effect between the axial motion of the structure
and the rotational and lateral motion.

The boundary conditions as used in the model are given below. The first three incorporate the RNA mass at
tower top and the equations 4.18 to 4.20 prescribe the free-end conditions at pile tip.

G Aκ

(
du(z)

d z
−ψ(z)

)∣∣∣∣
z=−L0

=−ω2MRN Au(0) (4.15)

E I
dψ(z)

d z

∣∣∣∣
z=−L0

=−ω2 JRN Aψ(0) (4.16)

E A
d w

d z

∣∣∣∣
z=−L0

=−ω2MRN A w(0) (4.17)

G Aκ

(
du(z)

d z
−ψ(z)

)∣∣∣∣
z=L

= 0 (4.18)

E I
dψ(z)

d z

∣∣∣∣
z=L

= 0 (4.19)

E A
d w

d z

∣∣∣∣
z=L

= 0 (4.20)

Next, the contribution of the soil substructure to the equilibrium of the structure will be incorporated. This
will be done by introducing the dynamic soil stiffness according to equation 4.8, by making use of the global
stiffness operator G f f . As discussed in section 4.1, this operator describes the relation between soil reaction
force and displacement at the soil-structure interface. Because the displacement of the beam is described
by the three components, u, ψ and w , it is convenient to decompose G f f into the sub-operators K u,u , Kψ,ψ,
K w,w , K u,ψ and K u,ψ. The soil stiffness operators coupling w to u and ψ are not considered in this work, be-
cause the assumption is made that the axial motion of the system is uncoupled from the lateral and rotational
motion.

Besides introducing the dynamic soil stiffness operators, also the effective seismic input is introduced into
the equilibrium equations of the structure. In the 1D effective modelling approach established in this work,
the seismic input is represented by the motion of the soil substructure due to the seismic excitation. This
motion is determined for the line that forms the interface between the soil and structure and is described by
the components ug (z), ψg (z) and wg (z).

Upon incorporating the contribution of the soil subsystem according to equation 4.8, the interaction forces
fx , m and fz in the equilibrium equations (Eq. 4.12, 4.13 and 4.14) become integrals:

G Aκ

(
d 2u(z)

d z2 − dψ(z)

d z

)
+ω2ρAu(z)−

∫ L

0
K u,u(z, z̄)u(z̄)d z̄ −

∫ L

0
K u,ψ(z, z̄)ψ(z̄)d z̄

=−
∫ L

0
K u,u(z, z̄)ug (z̄)d z̄ −

∫ L

0
K u,ψ(z, z̄)ψg (z̄)d z̄ (4.21)

G Aκ

(
du(z)

d z
−ψ(z)

)
+E I

d 2ψ(z)

d z2 +ω2ρIψ(z)−
∫ L

0
Kψ,ψ(z, z̄)ψ(z̄)d z̄ −

∫ L

0
Kψ,u(z, z̄)ψ(z̄)d z̄

=−
∫ L

0
Kψ,ψ(z, z̄)ψg (z̄)d z̄ −

∫ L

0
Kψ,u(z, z̄)ψg (z̄)d z̄ (4.22)

E A
d 2w(z)

d z2 +ω2ρAw(z)−
∫ L

0
K w,w (z, z̄)w(z̄)d z̄ =−

∫ L

0
K w,w (z, z̄)wg (z̄)d z̄ (4.23)
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In these equations of motion, the terms on the right hand side introduce the earthquake action to the struc-
ture. Note that the interaction force between soil and pile at a location z, is a function of the pile displace-
ment at that particular location and the pile displacements at all other locations along the embedded part of
the pile. This is due to the non-local effects included in this modelling method. Although the integral only
captures the domain from mudline to pile tip, the interaction forces between the soil and structure are the
reaction of the whole soil continuum. This is implicitly included in determining the dynamic soil stiffness
kernels.

outer ring of nodes inner ring of nodes

L

D

Outer soil

h

Inner soil
Pile cavity

Figure 4.4: A graphical presentation of the FE mesh of the soil substructure model, with the pile cavity in red. Only a small section around
the pile is shown.

4.4. Extracting the 3D continuum reaction
To determine the dynamic soil stiffness matrices required for the one-dimensional BDWF model, the non-
local method as established by Versteijlen is used. In the non-local method, the complex, global soil reac-
tions are extracted from a linear elastic 3D soil model and inserted in a 1D Winkler-type model. The method
was shown to yield accurate fits of both the static and low-frequency dynamic response for a large range of
soil-structure interaction problems.

The 3D model used to extract the dynamic soil stiffness matrices is based on the model introduced in Chapter
3. The structure is removed to obtain the soil subsystem model, which includes a cavity at the location of the
MP. As the steel tubular structure itself is not included, the terms of the soil stiffness matrix do not depend
on the material properties of the MP foundation, but only on it’s geometry. When using a numerical solution
method, the stiffness operators, as introduced in section 4.3, will be discretized into stiffness matrices of size
n×n, with n the amount of nodes used to discretize the 1D structural model. The methodology to determine
the sub-matrices Ku,u , Kψ,ψ, Kψ,u , Ku,ψ and Kw,w , is briefly described below. For further background about
the extraction of the non-local stiffness kernels reference is made to the work of Versteijlen [31].

Capturing the sub-matrix Ku,u is done using the following procedure; for every discrete depth zi the circum-
ferential ring of nodes of the cavity surface is displaced with a certain amplitude ui in the x-direction. The
prescribed displacement amplitudes are collected in the matrix Ux , which is a diagonal matrix. Next, the sum
of the nodal horizontal reaction forces is collected at that ring as well as for all the other vertically spaced
rings, at depths z j 6=i . A matrix Fx is constructed from column vectors fx, j , being the reaction forces at depths
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z j due to the displacements at depths zi . With the matrices Fx and Ux , the soil stiffness matrix Ku,u can be
determined by making use of equation 4.24.

Ku,u = Fx Ũ−1
x

h
(4.24)

In Eq. 4.24, the nodal force matrix Fx is divided by the discretisation length h as the unit of the lateral equi-
librium forces (Eq. 4.21) is N/m. Moreover, the tilde over the matrix Ux indicates that it is an auxiliary matrix
that incorporates the trapezium rule of integration. This is done in order to be consistent with the integral in
equations 4.21.

Along this line, the rotational stiffness matrix Kψ,ψ, can be found by imposing a rotationψi on the nodal rings
along the circumference of the cavity surface, collecting the nodal reaction forces in vertical direction for all
depths, and thus form the matrix Fz . The lever arm of the vertical reaction forces is incorporated (D/2) as
Kψ,ψ relates the rotations to the distributed moment.

Kψ,ψ = DFzΨ̃
−1

2h
(4.25)

in which Ψ̃ is the matrix containing the imposed rotation (including the trapezium rule of integration). The
stiffness matrix coupling the lateral soil reaction to rotations is determined by:

Ku,ψ = FxΨ̃
−1

h
(4.26)

(4.27)

and the matrix coupling the rotational reaction to lateral displacements of the nodal rings by:

Kψ,u = DFz Ũ−1
x

2h
(4.28)

To capture the matrix Kw,w , a vertical displacement of the ring of nodes is imposed for every depth zi and
the vertical nodal reaction forces are collected along the circumference of the cavity. The stiffness matrix can
then be found as

Kw,w = Fz Ũ−1
z

h
(4.29)

Due to the axisymmetry of the vertical displacement imposed to every ring of nodes, there is no resultant
lateral force or bending moment acting on the pile. Therefore, no soil stiffness matrices coupling w , to u and
ψ are extracted.

4.5. Effective seismic input
Besides using the 3D FE model of the soil subsystem for capturing the dynamic soil stiffness matrices, this
model will also be used to extract the seismic input required for the 1D modelling approach. This seismic in-
put is defined by the motion of the soil substructure due to the earthquake action introduced at the bedrock
boundary. As discussed in section 4.1, only the motion of the surface that forms the soil-structure interface is
required. Because the monopile is not present in this substructuring step, the interface surface - also referred
to as the excavation or cavity surface - is stress-free. The presence of the excavation leads to a discontinuity of
the soil body and therefore the response of the soil subsystem will differ from the free-field ground response.
The excavation alters the incident wave front and seismic energy is deflected in different directions due to
phenomena known as wave diffraction or scattering. For this reason, the earthquake motion of the soil body
with cavity is referred to as the disturbed or scattered ground motion.

The scattered ground motion is a result of 3D modelling and is thus a function of three spatial coordinates.
However, the ground motion required for the 1D modelling approach is characterized by ug (z), ψg (z) and
wg (z), which only vary in the vertical direction. Therefore, this substructuring step must be performed in
such a way that the scattered motion of the cavity can be described as a function of time and z only. For the
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Figure 4.5: An impression of the ground motion of the soil subsystem witch excavation. The steady-state response to a harmonic hori-
zontal bedrock motion with unit amplitude and f = 5.0 Hz is shown, for Case 1A (homogeneous soil profile and no soil inside MP). On
the left the displacement in the x-direction is presented and on the right the displacement in the z-direction.

situation without soil inside the pile, this is relatively straightforward, as in this case the interface between
soil and structure only consists of the outside cavity surface. To obtain the displacements (ug , ψg and wg )
as a function of one spatial coordinate only, the motion of each ring of nodes located on this outer surface is
simply averaged. The assumption behind this approach is that under the given loading conditions, the oval-
ization of the cavity circumference can be disregarded and does not affect the seismic loads transmitted to
the structure. An impression of the scattered ground motion is presented for the homogeneous soil profile in
Figure 4.5. The seismic environment is generated by a uniform horizontal bedrock motion with unit ampli-
tude. No vertical component is included. It shows that the vertically propagating shear waves are affected by
the presence of the excavation and that these waves do not only impose a lateral displacement to the cavity
but also a rotation due to the varying z-displacements. When also vertical seismic bedrock motion would be
included, the cavity would experience an additional vertical displacement.

For the cases with soil inside the tubular monopile section, two rings are present along the embedded pile
length; the inner ring and the outer ring. Together these rings form the cavity surface, as depicted in Figure
4.4. Simply averaging the motion of the two rings at each level of z, does not provide an accurate representa-
tion. The response of the inner soil differs significantly from the outer soil due to the locally varying dynamic
response. This is not accounted for in extracting the dynamic stiffness kernels, which are based on the as-
sumption that the a pile section behaves as a rigid disk and therefore no distinction is made between the
stiffness contribution of the soil inside and outside of the monopile. As a solution the DOF of the inner nodes
and outer nodes are coupled when determining the response of the soil subsystem, such that the inner ring
at level z has the same horizontal displacement, rotation and vertical displacement as the outer ring. This
implies that each section of the excavation behaves as a rigid disk - an assumption similar to the one applied
to extract the soil impedance from the 3D model. When applying this restriction additional (non-physical)
forces are introduced and the cavity surface is no longer a stress-free surface. It is however verified that these
forces can be neglected with respect to the forces induced by the motion of the structure.

4.6. Numerical implementation
To numerically approximate the solution of the dynamically loaded Timoshenko beam on a non-local Winkler
foundation, the central finite difference method is used. The MATLAB based numerical model used in this
work is a modification of the model used by Versteijlen [31]. Using the finite difference method, the functions
u(z), ψ(z) and w(z) are evaluated in a domain of length L +L0 at n equally spaced points. The discretisation
length is h = (L+L0)/(n−1). Using this schematization, the first and second derivative terms of equations 4.12
- 4.14 are approximated. Using Einstein summation convention the equations of motion can be formulated:

G Aκ

h2 (ui−1 −2ui +ui+1)− G Aκ

2h
(−ψi−1 +ψi+1)+ω2ρAui − K̃ u,u

i , j u j − K̃ u,ψ
i , j ψ j =−K̃ u,u

i , j ug
j − K̃ u,ψ

i , j ψ
g
j (4.30)

G Aκ

2h
(−ui−1+ui+1)−G Aκψi+E I

h2 (ψi−1−2ψi+ψi+1)+ω2ρIψi−K̃ψ,u
i , j u j −K̃ψ,ψ

i , j ψ j =−K̃ψ,u
i , j ug

j −K̃ψ,ψ
i , j ψ

g
j (4.31)
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E A

h2 (wi−1 −2wi +wi+1)+ω2ρAwi − K̃ w,w
i , j w j =−K̃ w,w

i . j w g
j (4.32)

with i = 1, ...,n and j = 0, ...,n+1, zi = L0 representing the location of the tower top and zn = L that of the pile
tip. This implies that two ghost nodes ( j = 0 and j = n+1) are used to solve the equations at the boundaries of
the domain. The tildes over the global stiffness matrices in equations 4.30 - 4.32 indicate that these stiffness
matrices are auxiliary matrices, incorporating the Trapezium rule for integration. In this case the Trapezium
rule modifications are applied by multiplying the first and last columns of the original stiffness matrices by
a factor 1

2 . Moreover, to include the ghost nodes a column of zeros is added to the left and right side of the
matrices. To incorporate the boundary conditions (formulated in Eqs. 4.15 to 4.20) in the system of equations,
these are rewritten into the following form:

G Aκ
(−u0 +u2

2h
−ψ1

)
=−MRN Aω

2u1, u0 = 2h

G Aκ
MRN Aω

2u1 −2hψ1 +u2 (4.33)

E I
(ψ0 +ψ2

2h

)
= JRN Aω

2ψ1, ψ0 =−2h

E I
JRN Aω

2ψ1 +ψ2 (4.34)

E A
(−w0 +w2

2h

)
=−MRN Aω

2w1, w0 = 2h

E A
MRN Aω

2w1 +w2 (4.35)

G Aκ
(−un−1 +un+1

2h
−ψn

)
= 0, un+1 = 2hψn +un−1 (4.36)

E I
(−ψn−1 +ψn+1

2h

)
= 0, ψn+1 =ψn−1 (4.37)

E A
(−wn−1 +wn+1

2h

)
= 0, wn+1 = wn−1 (4.38)

These expressions need to be substituted into the equations 4.30 to 4.32 for i = 1 and i = n, such that the
ghost nodes ( j = 0 and j = n +1) can be eliminated. In this way a square matrix of n ×n is obtained that can
be inverted. By collecting the terms in 4.30 - 4.32 in a coefficient matrix A and a right hand side vector b, the
solution vector x (containing u, ψ and w) can be found by solving the linear algebraic equation Ax = b.

4.7. Summary
By making use of dynamic substructuring a modelling method is provided to obtain an effective 1D SSI model,
that captures the soil impedance and seismic excitation by making use of 3D modelling. This method analy-
ses the full soil-structure system by means of its components; the structure and the soil with excavation. By
applying coupling procedures at the soil-pile interface the response of the full system can be determined.

The impedance of the soil is integrated into the 1D model by extracting Winkler foundation stiffness matri-
ces using the non-local method of Versteijlen [30]. This is not only done for lateral and rotational motion
of the pile, but also for the vertical motion. For the dynamic case, the soil stiffness matrices incorporate, be-
sides inertial effects, also the material and geometric damping simulated in the 3D model, which makes them
complex-valued and frequency dependent.

The seismic action is introduced into the 1D model by the ground displacements obtained in a separate sub-
structuring step. In this step the soil subsystem - which incorporates an excavation at the location of the
embedded pile - is subjected to the seismic bedrock excitation. The ground motion at the surface that forms
the interface with the structure, is captured. In order to be compatible with the 1D model of the pile this is
seismic ground motion is obtained as a function of merely one coordinate. By incorporating the excavation
in the soil subsystem, the modelling approach accounts for the effect of wave diffraction in determining the
effective seismic excitation of the structure.

In order to verify the effectiveness of the provided modelling approach, Chapter 5 will compare the results of
the 1D model with those obtained by the full 3D soil-structure model.
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Validation

With the substructuring method of analysis introduced in Chapter 4, an approach is established to capture
3D soil-structure interaction effects into an effective one-dimensional model. The significant increase in
computational speed associated with the translation from 3D to 1D is of great value for the design of offshore
wind turbines. However, in order for the method to be effective, the identified 1D model should prove to
adequately match the rigorous modelling results. For this reason, this chapter will present a comparison
between the results obtained with the 3D and 1D modelling approaches in Section 5.1. In Section 5.2 the
performance of the 1D model is discussed and the modelling limitations are identified.

5.1. Comparison with 3D model
Besides using the MATLAB based 3D FE model for extracting the soil impedance and the seismic ground
motion, the model is also used for the three-dimensional target solution. In this section, the results of the
1D effective modelling approach are compared to the 3D modelling results. For this purpose, both models
are used to determine the steady state response of the structure to seismic loads introduced by a uniform
harmonic bedrock excitation. The accuracy of the solution is evaluated by making use of misfit functions.
Depending on the aim of the analysis, the definition of the optimum might differ. For a specific type of
analysis, an accurate match of the displacement and rotation at mudline is sufficient, while for the other a
full match in bending moment for all depths might be preferred. In this work, the accuracy of the identified
1D model is assessed based on the response of the full embedded part of the pile. As the superstructure is not
directly interacting with the soil, this part is not included. The misfit function considers the relative difference
between the response of the 1D model and 3D model, in terms of the components; u(z), ψ(z), w(z), du

d z (z),
du
d z (z) and du

d z (z), in the domain z = (0,L).
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(5.1)

Figure 5.1 to 5.4 display the complex-valued response of the 1D model and the 3D model for the two different
soil profiles and excitation frequencies of 0.5 Hz and 2.0 Hz. The corresponding misfit values are presented
alongside. These two frequencies are analyzed as they provide a good indication of the overall performance
of the model in the frequency range relevant for seismic analysis of offshore wind turbines. The frequency
f = 0.5 Hz is below the fundamental frequency of the soil-structure systems considered in this work, while
f = 2.0 Hz is located above this frequency. Therefore, the response is stiffness-dominated for f = 0.5 Hz and
more inertia-dominated for f = 2.0 Hz. Furthermore, the excitation frequency of f = 0.5 Hz is particularly
interesting to analyze as it is located close to both the typical first and second bending mode of tower as well

31



32 5. Validation

as the first blade modes. The frequency of f = 2.0 Hz is considered as it located around the peak of typical
seismic response spectra [8].

Figure 5.1 to 5.4 show a good match between the pile response obtained with the 1D model and the response
of the 3D model. Especially, the fit of the real part of the complex-valued response is satisfactory. Although
larger misfits are obtained for the imaginary part, which is related to the damping, also this part matches the
3D response relatively well. In Table 5.1 the misfit values for the four different cases are presented. The given
values - representing the overall accuracy of the effective modelling method - are the averaged misfits in the
frequency range between 0.1 and 6.0 Hz. This specific frequency range is considered throughout this thesis as
the frequency range relevant for the seismic analysis of OWTs. This is based on the typical characteristics of
tectonic earthquakes as well as the dynamic properties of offshore wind turbine structures. Existing research
and practical experience in the field of seismic analysis of OWTs indicate that offshore wind structures are
predominantly excited within this frequency range [10]. Note that Figure 5.1 to 5.4 gives the response and
corresponding misfits of the imaginary and real parts of the response separately, while the absolute values
are considered when determining the overall misfits (Cu,u′,ψ,ψ′,w,w ′ ).

Case Soil profile Soil inside MP Overall accuracy
1A Homogeneous Yes 3.88 %
1B Homogeneous No 7.94 %
2A Heterogeneous Yes 2.68 %
2B Heterogeneous No 5.04 %

Table 5.1: The accuracy of the 1D modelling results with respect to the target solution obtained with the 3D soil-structure model. The
value is based on the overall misfit averaged over the frequency range between 0.1 and 6.0 Hz: Cu,u′ ,ψ,ψ′ ,w,w ′ (0.1−6.0 Hz)×100%.
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Figure 5.1: The fits between the complex-valued response of the 1D non-local model and the 3D model, for the homogeneous soil profile
(Case 1A) and excitation frequencies of 0.5 Hz.
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Figure 5.2: The fits between the complex-valued response of the 1D non-local model and the 3D model, for the homogeneous soil profile
(Case 1A) and excitation frequencies of 2.0 Hz.
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Figure 5.3: The fits between the complex-valued response of the 1D non-local model and the 3D model, for the heterogeneous soil profile
(Case 2A) and excitation frequencies of 0.5 Hz.
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Figure 5.4: The fits between the complex-valued response of the 1D non-local model and the 3D model, for the heterogeneous soil profile
(Case 2A) and excitation frequencies of 2.0 Hz.

5.2. Modelling limitations
The presented match between the 1D model and the 3D model are relatively good and within the accuracy
limits that are acceptable in the seismic design procedure. Nevertheless, differences can be observed be-
tween the response of the 1D model and that obtained with the 3D soil-structure model. These differences
predominantly originate due the applied assumptions to translate the three-dimensional problem into one
dimension. Among others, this includes the different modelling methods of the pile; 1D Timoshenko beam
versus the 3D solid elements. Relatively high misfits are identified for excitation frequencies corresponding
to the resonance modes of the structure, this can be seen in Figure 5.5. These results indicate that the the
difference in structural modelling may significantly contribute to the observed inaccuracy. To assess if these
high misfits are related to the difference in structural modelling an analysis is performed that does not in-
clude a superstructure (tower and lumped RNA mass). Hence, for this specific case, the difference between
the 1D model and 3D model is solely associated with the modelling of the soil-monopile system. In Figure 5.5
the difference in response between the 1D model and the 3D model is presented in terms of the misfit value
Cu,u′,ψ,ψ′,w,w ′ for both the situation with and without superstructure. The presented results confirm that the
high misfit peaks are due to the difference in 1D versus 3D superstructure modelling and are not related to
the soil impedance or seismic input.

Another possible cause of the misfit between 1D and 3D is related to the extraction of the 3D continuum
soil reaction. The soil impedance matrices are determined based on beam-shaped (rigid ring) deformations,
whereas the 3D soil-pile model allows for difference of the displacement along the circumference of the pile.
Versteijlen [30] verified that the ovelisation of the 3D pile is higher for relatively soft soil conditions. This
explains the higher misfit for Case 1 compared to Case 2, because the overall soil stiffness is lower for the ho-
mogeneous soil profile. A similar explanation can be provided for the difference between the cases with and
without soil inside the monopile. The soil inside the foundation impedes the ovelisation of the pile. Thus,
when removing this inner soil, larger differences of the displacement along the pile circumference will occur
and the assumption of rigid ring deformations in extracting the 3D continuum soil reaction is less accurate.

Another assumption is made in determining the scattered ground motion required for the effective 1D mod-
elling approach, by making use of the soil substructure. In determining the motion at the cavity surface for
the cases with soil inside the monopile, the restriction is applied that the inner soil and outer soil are coupled
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at each level of z. This introduces non-physical forces that result in an incorrect application of the substruc-
turing approach, as the cavity surface is no longer a stress-free surface. This assumption causes additional
inaccuracy in the translation from 3D to 1D. When no soil is included inside of the monopile (Case 1B and
2B), this restriction is not required and the motion at the outer cavity surface is simply averaged at each level
of z to obtain ground motion compatible with the 1D model. This approach however does not account for
the differential motion along the circumference of the cavity. Again, the ovelisation - in this case of the cavity
surface - is expected to be larger for relatively soft soil conditions.

Besides modelling uncertainties related to the behaviour of soil-structure system also the numerical approx-
imations contribute to the deviation between 1D and 3D results. The mesh grid of the pile and soil domain
is optimized based on a combination of modelling accuracy and computational efficiency. With a finer mesh
the accuracy of the numerical approximation still improves. This is discussed in the mesh study of Appendix
A. This predominantly affects the accuracy at higher frequencies as in this case the wavelength is shorter.
This requires a finer mesh to have the same number of finite elements describing a full wavelength. For the
discretization in the horizontal direction this is accounted for by decreasing the element width for higher
frequencies. However, the vertical discretization is kept constant at 0.5 m because of computational limita-
tions. Furthermore, even though Perfectly Matched Layers are incorporated, reflection of waves at the outer
boundaries of the soil domain may still affect the modelling results.

0 1 2 3 4 5 6
0

5

10

15

20 With superstructure

Without superstructure

Figure 5.5: The accuracy with respect to the modelled 3D response for Case 2A, plotted over the frequency range of interest. The accuracy
value is based on the overall misfit averaged over the frequency range between 0.1 and 6.0 Hz: Cu,u′ ,ψ,ψ′ ,w,w ′ (0.1−6.0 Hz)×100%. A
comparison is made for the case with and without superstructure to identify the influence of the difference in superstructure modelling.
Pile resonances are indicate with ( ) and soil resonances with ( ).





6
Application

Besides facilitating efficient seismic load simulations, the provided effective modelling approach can also be
applied to obtain an improved understanding of the physical process of seismic soil-structure interaction.
In this chapter the effective modelling method is used to analyze the influence of 3D continuum SSI effects
on the dynamic response of OWTs, with the objective of identifying improvement opportunities in terms of
modelling accuracy and efficiency. Based on these qualitative analyses, recommendations for the practical
application of the effective modelling method will be presented.

One of the main advantages of the substructuring approach is that it allows for independent modelling of
the different components. In this way, every modelling step can be optimized individually. In this chapter,
the two soil-related components required to define the seismic soil-structure interaction problem are indi-
vidually treated. In section 6.1, the effective seismic ground motion is addressed and a qualitative study is
performed on wave propagation phenomena and their influence on the seismic loading of OWTs. In Section
6.2 the frequency dependent characteristics of the soil impedance is discussed. Lastly, Section 7.2 presents
recommendations for the practical application of the non-local method for seismic load simulations in the
design procedure of offshore wind turbine support structures.

6.1. Effective seismic excitation
The starting point of the seismic analysis using an effective Winkler-type model is determining the seismic
ground motion to apply in the soil-structure model. This is a vital modelling step as inadequate considera-
tion of the excitation load transferred to the foundation may results in significant under- or overestimation of
the structural response. In this section, two important phenomena related to seismic wave propagation are
discussed and their influence on the response of the structure is identified. First, the influence of the wave
diffraction on the seismic excitation load is discussed in Section 6.1.1. In Section 6.1.2 the vertical wave pas-
sage effects are studied to analyze the influence of the varying ground motion along the embedded length of
the monopile.

6.1.1. Wave diffraction
In conventional modelling procedures for seismic analyses, the ground motion used as input for the Beam-
on-dynamic-Winkler-foundation model is determined based on a free-field ground response analysis. This
is desirable because this reduces the complexity of the modelling process and, under certain assumptions,
allows for using simple one-dimensional models to simulate the propagation of seismic waves through the
soil deposit. As discussed in Section 4.2, the assumption behind using free-field ground motion is that the
excitation loads due to diffraction of the incoming seismic waves can be neglected. Or formulated along the
lines of the substructuring method established in Chapter 4; the presence of the pile cavity does not affect
the earthquake induced motion of the soil subsystem.

As the response of the structure is of primary relevance, the effect of the different approaches to determine
the effective seismic input is assessed based on the frequency response of the offshore wind turbine structure.
For this purpose, the amplitude ratio between the uniform horizontal bedrock displacement and the tower
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top displacement is presented in Figure 6.1, for Case 1A and 2A. The same is done for the bending moment
at mudline level. The modelling results of the cases with soil inside of the tubular monopile section, do not
indicate a significant difference in structural response between the two different 1D model. Both approaches
capture the 3D soil-structure interaction relatively well, indicating that under the given circumstances the
diffraction of seismic waves can be neglected.

The diffraction due to a disturbance in the soil medium is proportional to the dimensions of the obstacle
causing the disturbance. If the dimensions of the irregularity - in this case the space occupied by the pile -
would increase with respect to the wavelength, the diffraction would increase as well. For this reason, the
space occupied by the pile is increased by assuming that the monopile is not filled with soil. Even though,
the dimension of the pile itself are unchanged, this assumption leads to a larger disturbance of the free-field
soil because of the larger excavation. Also for this case, the structural response to the horizontal bedrock
excitation is analyzed based on the frequency response function of the tower top displacement and bending
moment at mudline. This is presented in Figure 6.1.

The results of the ’empty’ monopile-foundation, indicate that for this case the diffraction of the incident wave
field does affect the seismic excitation load acting on the structure. By neglecting the influence of diffraction
the response of the structure is overestimated. Moreover, the accuracy of the 1D non-local model using free-
field ground motion as seismic input is lower compared to the 1D non-local model that accounts for wave
diffraction by using the scattered ground motion as input. The misfits of the 1D pile response with respect
to the modelled 3D response are presented in Table 6.1. Similar to Section 5.1, these values are based on the
averaged overall misfits in the frequency range 0.1-6.0 Hz. The larger difference between the two 1D mod-
elling approaches for high excitation frequencies, can be explained by the length of the seismic waves travel-
ing through the system. Presuming that the wave medium remains unchanged, higher frequencies result in
shorter wavelengths. As short waves with respect to the size of the disturbance experience more diffraction,
a larger difference will be observed between the motion of the free-field soil and the disturbed soil body.

It has to be noted that in reality the monopile will never be completely free of soil inside the tubular section.
This case is primarily considered to verify that the substructuring approach using the soil subsystem with
excavation provides different and more accurate results with respect to the 3D target solution.

6.1.2. Vertical wave passage effects
An often-applied assumption in the seismic analysis of structures is that the seismic ground motion is uni-
form over the depth and can be represented by the motion at the ground surface. Due to this simplification,
it is not required to determine the subsurface soil motion. By applying this approach, the fact that the ground
motion induced by vertically propagating body waves varies over the depth, is not accounted for. To assess
the influence of this assumption, the response of the structure is simulated by using the ’actual’ non-uniform
ground motion and by applying the simplified modelling approach that uses the ground surface motion along
the full embedded pile length. In Figure 6.2, results are presented in terms of tower top displacements and
bending moment at mudline, for both soil profiles.

It can be observed that the ground motion at the surface is not able to adequately describe the actual seis-
mic excitation. This can be attributed to two effects. Firstly, the non-uniform ground motion along the pile
introduces besides a translation also a rotation to the structure. As wind turbine structures are relatively tall
structure, a small additional rotation at foundation level may result in significant differences in the response
at tower top level. The second effect is related to the amplification of seismic ground motions towards the
surface of the soil. In particular for the heterogeneous soil case, which is characterized by a relatively soft
top layer, the superficial soil layers significantly amplify the ground motion amplitude. For this reason, the
effective seismic excitation may be overestimated.

While the first effect generally results in an underestimation of the structural response, the second effect
may cause overestimation. These opposing influences can be recognized in the frequency response of the
heterogeneous soil case. Because the homogeneous soil profile does not have a soft superficial soil layer
that amplifies the ground motion, the second effect does not noticeably influence the structural response for
this case. Therefore, for Case 1A, an overestimation of the structural response is observed for the complete
frequency range.
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Figure 6.1: Frequency response functions of the tower top displacement and bending moment at mudline, normalized with respect
to the amplitude of the horizontal bedrock displacement. A comparison is presented between the 3D model, the 1D non-local model
using scattered ground motion (accounting for diffraction) and the 1D non-local model using free-field ground motion. Case 1A and 2A
include soil inside the monopile and Case 1B and 2B are modelled without inner soil. Pile resonances are indicate with ( ) and soil
resonances with ( ).
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Case Soil profile Soil inside MP Accuracy 1D NL Accuracy 1D NL free-field
1A Homogeneous Yes 3.88 % 4.15 %
1B Homogeneous No 7.94 % 12.31 %
2A Heterogeneous Yes 2.68 % 2.73 %
2B Heterogeneous No 5.04 % 9.46 %

Table 6.1: The accuracy of the 1D model response with respect to the 3D target solution. A comparison is made between the 1D model
using free-field ground motion as input, and the ’exact’ 1D model, using scattered ground motion. The value is based on the overall
misfit averaged over the frequency range between 0.1 and 6.0 Hz: Cu,u′ ,ψ,ψ′ ,w,w ′ (0.1−6.0 Hz)×100%.

0 1 2 3 4 5 6

10
0

10
1

10
2

1DNL

1DNL surface motion

(a) Case 1A: uRN A

0 1 2 3 4 5 6

10
7

10
8

10
9

10
10

1DNL

1DNL surface motion

(b) Case 1A: Mmud

0 1 2 3 4 5 6

10
0

10
1

10
2 1DNL

1DNL surface motion

(c) Case 2A: uRN A

0 1 2 3 4 5 6

10
8

10
9

10
10

1DNL

1DNL surface motion

(d) Case 2A: Mmud

Figure 6.2: Frequency response functions of the tower top displacement and bending moment at mudline, normalized with respect to
the amplitude of the horizontal bedrock displacement. A comparison is presented between the 1D non-local model using the actual
non-uniform ground motion along the monopile length and the 1D non-local model using the ground surface motion as input. Pile
resonances are indicate with ( ) and soil resonances with ( ).

6.2. Soil impedance
In this section the characteristics of the soil impedance are evaluated in order to provide an improved physical
understanding of the soil reaction towards monopile foundations during seismic loading. More specifically,
the frequency dependent behaviour of the soil is analyzed and the influence of this behaviour on the offshore
wind turbine’s response is identified.

Owing to inertia forces of the soil and frequency dependent damping effects, the dynamic soil stiffness dif-
fers from the stiffness applicable for static conditions. To accurately account for this frequency dependent
soil behaviour in dynamic SSI problems, the soil impedance must be determined for the full frequency range
of interest. In this work the reaction of the three-dimensional stratified soil continuum is described using
complex-valued, non-local soil stiffness matrices, as introduced in Section 4.4. The real part of these matri-
ces represents the dynamic storage stiffness (in-phase stiffness and 180 degree out-of-phase inertia) of the
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soil, while the imaginary part represents the damping. In order to identify the effects of the frequency de-
pendent inertia forces of the soil, the real parts of the non-local soil stiffness matrices, Ku,u , Kψ,ψ and Kw,w

are evaluated in the frequency range of interest. The same is done for the imaginary part. In order to asses
the overall frequency dependent behaviour of the soil, the sum of the terms on the diagonal of the stiffness
matrices is taken, as these are the terms dominating the global soil reaction:

kx,x
d sum(ω) =

n∑
i=1

Kx,x
i i (ω), x = u,ψ, w (6.1)

These quantities are divided by the sum of the diagonal terms of the static soil stiffness matrices:

kx,x
d sum,0 =

n∑
i=1

Kx,x
i i (ω= 0), x = u,ψ, w (6.2)

to obtain the ratios:

r x,x
Re (ω) =

ℜ(
kx,x

d sum(ω)
)

kx,x
d sum,0

, x = u,ψ, w (6.3)

r x,x
Im (ω) =

ℑ(
kx,x

d sum(ω)
)

kx,x
d sum,0

, x = u,ψ, w (6.4)

The ratios r x,x
Re (ω) and r x,x

Im (ω) - representing the real and imaginary part of the complex-valued dynamic
soil stiffness normalized to the static soil stiffness - are plotted as a function of frequency in Figure 6.3. The
figures display some characteristic behaviour of an elastic medium. Three frequency response ranges can be
distinguished, which are defined by the frequency of excitation relative to the first natural frequency of the
soil-pile system - also known as the cut-off frequency. The frequency ranges are:

• ω < ωcut−o f f : The energy associated with the displacement of the pile is stored as elastic potential in
the surrounding soil. There is no propagation of waves away from the structure and the damping purely
consist of soil material damping. In this frequency range the ratio r x,x

Im (ω) is equal to the loss factor. In
this work this factor is assumed to be η= 0.1 (see Section 3.1).

• ω=ωcut−o f f : The soil deposit is excited in its fundamental frequency, leading to standing waves in the
in the vertical direction of the soil. The real part of the impedance shows a dip as the displacement
resistance falls due to a large added soil mass.

• ω > ωcut−o f f : The harmonic displacement of the pile leads to the generation of waves. These waves
carry energy away from the system, which is felt as a damping force. Figure 6.3 clearly shows the in-
crease of the imaginary part of the complex-valued soil stiffness for the range above the cut-off fre-
quency.

The resonance dip does not only occur for the first natural frequency of the soil system, also at higher modes
standing waves occur and the soil resistance drops. The ratio (r x,x

Re ) at resonance depends mainly on the ma-
terial damping ratio of the soil and the impedance of the layer underlying the soil stratum. In this work the
bedrock is assumed to be completely rigid, such that it reflects all downward propagating waves back into
the system. This results in more pronounced resonance phenomena and a larger dip in the dynamic soil
impedance compared to cases with a smaller impedance contrast between soil and bedrock. From Figure
6.3 it can be observed that the resonance of the soil stratum for vertical S-wave propagation predominantly
affects the lateral soil reaction, while the resonance for vertical P-wave propagation mostly influences the
vertical soil reaction.

The effect of the frequency dependent characteristics of the soil reaction on the structural response to earth-
quakes is studied as well. This is done by performing frequency response analyses of the monopile-supported
offshore wind turbine using the effective 1D modelling approach. Two different cases are analyzed; one which
accounts for the frequency dependent soil impedance and one case which assumes the soil stiffness to be fre-
quency independent. In the first case, the soil stiffness matrices are separately extracted for each excitation
frequency, while the second case uses soil stiffness matrices extracted at one frequency only. A frequency of
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Figure 6.3: The real and imaginary part of the complex-valued dynamic soil stiffness as a function of the excitation frequency. The
presented values are the sum of the diagonal terms of the soil stiffness matrices Ku,u , Kψ,ψ and Kw,w , normalized to the corresponding
static stiffness matrices. The resonance frequencies of the soil stratum for vertical S-wave propagation are indicated as ( ) and for
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to the heterogeneous (Case 2A).
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Figure 6.4: Frequency response functions of the tower top displacement and bending moment at mudline, normalized with respect to
the amplitude of the horizontal bedrock displacement. A comparison is presented between the 1D non-local model using frequency de-
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with ( ) and soil resonances with ( ).



6.3. Recommendations for practical application 43

f = 0.2 Hz is used, as this is well below the first mode of the soil-pile system and therefore the stiffness matri-
ces do not capture the effects of the resonance dips, radiation damping and soil inertia forces.

The frequency response functions of the tower top displacement and bending moment at mudline are dis-
played in Figure 6.4 for Case 1A; the homogeneous soil profile. These figures indicate that the response of
the structure is overestimated for high excitation frequencies when not accounting for the frequency de-
pendence of the soil impedance. At the second bending mode of the structure ( f = 1.78 Hz), the tower top
displacement is overestimated with 93% and at the third mode ( f = 5.15 Hz) with 770 %. This is due to the
geometric damping that is not included. Moreover, the frequency response functions show a small shift of
the peaks corresponding to the resonant modes of the structure - especially, for the resonant peak at f = 5.15
Hz. This can be attributed to the lower dynamic soil stiffness due to soil inertia forces.

6.3. Recommendations for practical application
The analyses performed in this chapter provide a better insight into the effects of soil-structure interaction on
the offshore wind turbine’s response to earthquakes. This can be used to identify the critical aspects in seis-
mic analysis of offshore wind turbines and, moreover, it allows for identifying opportunities to improve the
efficiency of the established 1D modelling approach. For each of the two soil-related components - the seis-
mic ground excitation and the soil impedance - recommendations for the practical application are presented.

Effective seismic excitation
The provided effective modelling approach as presented in Chapter 4 includes a separate analysis step to de-
termine the seismic ground motion; the ground response analysis. This motion introduces the earthquake
excitation into the 1D model. The model used for the ground response analysis, must include an excavation
in order to account for the effect of seismic wave diffraction. This requires the use of a 3D soil model, in which
the case-specific geometry of the monopile foundation determines the dimensions of the excavation. This
significantly increases the modelling complexity of this substructuring step, with respect to the convention-
ally applied free-field ground response analysis. Moreover, it makes it impossible to use the computationally
efficient 1D wave propagation models to determine the seismic ground response.

As indicated by the analyses of Section 6.1.1, the difference between using free-field ground motion and the
scattered ground motion, is insignificant - especially for the realistic case of the monopile foundation with
soil inside the tubular section. The pile response obtained with the 1D model using free-field ground motion
as input, matches the modelled 3D response equally well as the effective model that does account for diffrac-
tion. For this reason, it can be stated that for the practical application of the effective modelling approach, the
modelling step to determine the seismic ground motion can be simplified by assuming free-field conditions.

The performed analyses are based on the assumption of a seismic wave field consisting of vertically propa-
gating body waves. However, it is expected that the conclusions regarding the influence of diffraction do also
apply for different seismic loading conditions - for example, for seismic action introduced by surface waves.
Because wavelengths of surface waves are typically longer that those of shear waves [13], the influence of
diffraction will not be larger for incoming surface waves.

Soil impedance
The method to identify an effective 1D model for seismic analysis, makes use of a 3D soil model to extract
the 3D continuum soil reaction. By employing this approach continuum-related inertial effects, material
damping and geometric damping of the soil are incorporated into the soil stiffness matrices. This makes the
dynamic stiffness matrices, not only complex-valued but also frequency dependent. To account for this fre-
quency dependence in an exact manner, the soil stiffness matrices must be extracted from the 3D model for
the full frequency range of interest. This involves a great number of computationally demanding numerical
calculations and therefore, a more efficient approach to account for the frequency dependent soil reaction is
desirable.

To enable the identification of an efficient and accurate approach to account for the frequency dependent
soil-structure interaction, insight is required in the SSI effect that cause this frequency dependency. These
are the inertial forces of the soil and radiation damping effects. In Section 6.2, the characteristics of the dy-
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namic soil reaction are analyzed. Based on this analysis it is observed that the participation of the geometric
damping is limited with respect to the material damping of the soil, for the case studies analyzed in this work.
Also the inertial effects of the soil only marginally affect the dynamic stiffness of the soil.

However, when looking at the response of the structure, the minor difference in dynamic soil stiffness, results
in a noticeable difference of the structural response. In particular at frequencies corresponding to structural
resonances (Figure 6.4). This is mostly related to the geometric damping effects - the effect of soil inertial
forces is merely reflected by a small shift of the structural resonant frequencies. The added geometric damp-
ing considerably reduces the structural response at frequencies above the cutoff frequency of the soil. There-
fore, it is beneficial to account for the effects of geometric damping in order to reduce the excitation of higher
modes. However, it should be noted that one cannot always be sure that significant amount of energy will be
dissipated in the form of radiation damping. When the soil deforms nonlinearly, the amount of energy that
can be radiated away from the structure can be very limited as plastic waves cannot carry energy away in an
efficient manner [2].



7
Conclusion and recommendations

In this chapter a recapitulation is presented of the main findings of this research project. Moreover, as the
work leaves behind interesting research opportunities for future efforts, some directions are listed for further
work. First, in Section 7.1, the main conclusions are stated and in Section 7.2 recommendations for future
research are presented.

7.1. Conclusion
The soil-structure interaction (SSI) of monopile foundations during earthquakes involves complicated load
transferring mechanisms that can best be captured by an approach considering the soil as a three-dimensional
continuum. However, 3D models are computationally too expensive for implementation in the design pro-
cess of offshore wind turbine support structures. For this reason, the main objective of this master thesis
is to establish a method to identify an effective 1D model for seismic analysis of monopile-based offshore wind
turbines that incorporates 3D soil-structure interaction. Moreover, the aim is to use this effective method to as-
sess the influence of 3D continuum soil-structure interaction effects on the offshore wind turbine’s response
to earthquakes. Based on this assessment, recommendations for the practical application of the effective
modelling approach are provided.

In this study, a method is established that employs dynamic substructuring to capture the seismic excitation
and 3D soil impedance in an effective 1D model. The method provides a substructure in the form of a Winkler
foundation stiffness matrix along with the effective seismic ground motion over the embedded length of the
pile, and integrates this in a 1D beam model. To obtain the foundation stiffness matrix, the non-local method
of Versteijlen [30] is applied. This method directly extracts the global soil reactions from a 3D model, yielding
an exact representation of the 3D soil impedance. The effective seismic ground motion is determined with
the same 3D model of the soil subsystem. It is proven theoretically that the established modelling approach
accounts for the full wave field, consisting of a free-field, diffracted and radiated component.

The effective 1D model identified by the substructuring approach was shown to closely match the response
of a full 3D soil-structure model - for both horizontal and vertical earthquake motion. The small difference
between the 1D and 3D modelling results are related to numerical errors and assumptions made to translate
the 3D soil-structure interaction problem into 1D. The latter includes the different models used for the pile
(1D beam versus 3D solid elements) and assumptions required to extract the 3D soil impedance and effective
seismic ground motion as a function of one coordinate only. For the soil-structure characteristics and seismic
environment considered in this work, the modelled structural response is however not significantly affected
by these assumptions. Hence, it is verified that the developed modelling approach effectively captures the 3D
soil-structure interaction during seismic loading.

Following the validation of the effective modelling method, the identified 1D model is employed to perform
frequency domain analyses. Based on these analyses, the influence of 3D continuum soil-structure interac-
tion effects on the structural response to earthquakes is assessed. This has led to two main conclusions.
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First of all, it is concluded that the diffracted component of the seismic wave field does not significantly affect
the earthquake excitation load acting on the monopile foundation. This is verified for a seismic wave field
consisting of vertically propagating body waves. For these often assumed loading conditions, it is therefore
possible to use free-field ground motion to introduce the seismic action in a Winkler-type model.

Secondly, by assessing the frequency dependent characteristics of the soil impedance and its effect on the off-
shore wind turbine’s response, it is concluded that the soil-structure interaction during earthquakes should
be considered as frequency dependent. This is required in order to account for inertial effects and geometric
damping of the soil. The former results in a slight reduction of the dynamic stiffness of the soil, while the latter
is reflected by an increased amount of energy dissipation for excitation frequencies above the first resonance
of the soil-pile system. As the geometric damping results in a reduced motion of the structure, neglecting
this additional damping component results in a conservative estimation of the structural response to seismic
loading.

To recapitulate, this thesis provided a method to identify an effective soil-structure interaction model for
seismic analysis of monopile-supported offshore wind turbines, that combines the computational speed of a
1D model with the accuracy of a 3D model. Moreover, recommendations for the practical application of this
method are provided based on a qualitative assessment of continuum-related SSI effects on the structural
response to earthquakes.

7.2. Recommendations
Based on the performed research in the current thesis, directions for further research are identified:

• The stress-strain relationship of soils is nonlinear. Nevertheless, the current work assumes the soil
behaviour to be linear elastic. This is an often applied assumption for the initial, small-strain soil re-
sponse. However, in regions with high seismicity and soft to medium soil conditions, one would expect
a high degree of soil nonlinearity. In order to account for this within the presented effective modelling
approach, the soil behaviour must be linearized. For this reason, it must be evaluated if a satisfactory
approximation of the true non-linear soil behaviour can be obtained by applying this linearized mod-
elling approach. This linearization can performed by making use of an iterative procedure to estimate
the expected strain levels in the soil and in this way determine a secant soil stiffness. Fundamentally,
this is not correct but for design purposes this approach could prove to be effective.

• The current method can also be extended to directly incorporate strain-dependent soil behaviour.
The two soil-related substructuring steps - the ground response analysis and the extraction of the soil
impedance - can each be performed using a nonlinear approach. For the ground motion this can
straightforwardly be done by using a suitable nonlinear ground response model. For extracting the
dynamic soil stiffness from a 3D soil model this is however more complicated. Extending the non-
local effective stiffness method to incorporate soil nonlinearity is a topic of ongoing research. It should
however be noted that the presented method is based on the principle of superposition, which is only
exact for linear formulations. Therefore, in order to extend the current method to include nonlinear
soil behaviour, it has to be investigated if the superposition of the free-field ground response and the
SSI response still provides an accurate representation of the total motion of the system.

• Before applying the current method in the foreseen time-domain load simulations, a more extensive
assessment of the frequency dependent characteristics of the soil-structure interaction must be per-
formed. In particular the influence of the location and properties of the bedrock must be evaluated
as this can significantly affect the dynamic characteristics of the soil deposit. Moreover, the effect of
a lower soil material damping must be assessed as this could lead to more pronounced resonant dips
in the dynamic stiffness. For capturing the frequency dependent SSI in a time domain model, it can
be evaluated if an equivalent added soil mass and frequency-dependent dashpots can be found, that
mimics the inertial and geometric damping effects of the soil.

• Besides analyzing seismic wave fields consisting of vertically propagating body waves, the method can
also be applied for surface waves. For this purpose a suitable modelling method must be provided to
determine the ground motion as induced by these surface waves. Moreover, it would be interesting
to verify if also for this type of wave, the diffraction can be neglected and therefore free-field ground
motion can be applied.



A
Mesh study

A mesh study is performed to determine a suitable discretization of the MATLAB based FE model to numer-
ically approximate the continuous physical problem. This involves determining a mesh grid in the vertical
direction and in the radial direction. In the radial direction, a lower accuracy is allowed towards the outer
boundaries of the domain, as the domain in the vicinity of the monopile predominantly affects the structural
response. Therefore, the element size gradually increases for an increasing radial distance from the central
axis. In the vertical direction of the domain, accurate modelling is equally important along the depth and,
therefore, a constant vertical spacing of the FE nodes is applied. Three different element heights are consid-
ered; 1.0 m, 0.5 m and 0.25 m.

For the radial discretization, also three options are considered. In the domain around the pile, the three
considered options all use an element width equal to the pile thickness. From the outer boundary of pile,
the element width starts to increase gradually with a ratio of 1.02 between every consecutive element. A
maximum horizontal spacing, d xM ax, is used to limit the maximum element dimensions. This d xM ax is
related to the smallest wavelength present in the system:

d xM ax = λ

rd xM ax
(A.1)

The ratio rd xM ax is varied between 6 and 10 as is generally recommended in literature [37]. The five mesh
grid options are presented in Table A.1. The performance of the different meshes is judged based on one con-
trol parameter; the absolute value of the pile displacement at mudline, |ux,mud |. The case study used for the
mesh evaluation is based on the homogeneous soil profile. For simplicity, no superstructure is modelled. It is
verified that including a superstructure would not influence this comparative study. When smaller elements
are used (a finer mesh), more accurate results are expected. For this reason, Figure A.1 displays results for the
control parameter normalized to the result obtained with the finest mesh (h = 0.25 m, rd xM ax = 8). In this
way, the relative difference between the different meshes is clearly visualized.

Based on the mesh study it can be concluded that changing the factor rd xM ax between 6 and 10, does not af-
fect the numerical results. Therefore the mesh used in this work will adopt rd xM ax = 6. The different element
heights h, do however significantly affect the results. For the mesh with h = 1.0 m, the control parameter
shows a deviation of 2 to 12% with respect to the target results obtain with the finest mesh (mesh option 5).
For h = 0.5 m this is a deviation between 0.5 and 4%. In general, the differences increase with higher frequen-
cies. This can be explained by the fact that higher frequency excitation results in shorter wavelengths and
therefore a finer mesh is required to describe a full wave with the same amount of elements. The difference
in computational efficiency between a mesh with h = 0.5 m and a mesh with h = 0.25 m is very large and
does not outweigh the increase in accuracy. Therefore, this work will employ mesh option 4: h = 0.5 m and
rd xM ax = 6.
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Mesh option dz rd xM ax

1 1.0 m 8
2 0.5 m 10
3 0.5 m 8
4 0.5 m 6
5 0.25 m 8

Table A.1: The different mesh grids evaluated in this study. The meshes differ in element height and maximum element width. The
minimum element width is equal to the pile thickness.
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Figure A.1: The results of the mesh study in terms of the control parameter, |ux,mud |. Which is the absolute value of the pile displacement
at mudline. The plotted value is normalized with respect to the target solution obtained with the finest mesh grid.
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Figure A.2: The real part of the pile displacement (Re(ux (z))) is plotted as an additional indication of the mesh performance.



B
Wave forces on a body

In Chapter 4, Section 4.1, the substructuring method of analysis is introduced to determine the forces acting
on the structure due to seismic action and soil-structure interaction. This method is analogous with an often
applied approach to determine forces arising from potential flow theory used in the field of hydrodynamics.
As this resemblance is not directly apparent, this appendix will elaborate on the analogy between the two
approaches. To do this we start from the equation identified in Section 4.1, which defines the forces on the
structure. Next, we show that these are the same forces as encountered in hydrodynamics. The equation
presented in section 4.1 that describes the forces acting from the soil towards the structure is defined as:

pt
f = G f f

(
ug ,e

f −ut
f

)
(B.1)

To clearly separate the two components, this equation is rewritten to:

pt
f = pI

f +pI I
f (B.2)

where pI
f and pI I

f are defined as:

pI
f = G f f ug ,e

f (B.3)

pI I
f =−G f f ut

f (B.4)

In these equations, the following notations are used:

• G f f is the matrix describing the dynamic stiffness of the soil body with excavation, for the nodes on the
interface between soil and structure (denoted with subscript f ).

• ug ,e
f contains the displacement amplitudes of the soil subsystem due to the seismic loading. In this

loading state the surface of the soil system satisfies stress-free boundary conditions.

• ut
f describes the total displacement of the structure at the soil-structure interface. These displacements

are the same for the nodes f positioned at the soil body.

Figure B.1: A visualization of the loading states used in hydrodynamics to decompose the wave forces acting on a body.
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Decomposition of wave forces acting on a body
The approach applied in the field of hydrodynamics, to determine wave forces acting on a body, separates
the forces into three components [21]:

1. The force due to the incident wave field, FI (the Froude-Krylov force). This load is introduced by the
pressure field generated by the free-field waves. In this situation the medium does not include a geo-
metrical irregularity due to a structure or ’excavation’. This force does however include the effects of
wave reflection of the free surface.

2. Diffraction or scattering force (FD ), which originate because the wave field near the body is affected
even if the body is stationary (so that no-flux B.C. is satisfied).

3. Radiation force (FR ), which originates from to the total motion of the body in the absence of an incident
wave field.

The combination of the first two components is generally referred to as the excitation load and the last com-
ponent as the inertial load. The physical meaning of these components is visualized in Figure B.1.

Figure B.2: The two loading states of the soil body with excavation to decompose the seismic soil-structure interaction forces. Loading
state A captures the incident and diffracted fields, while loading state B includes the radiated field.

Analogy between hydrodynamic and earthquake approach
For the seismic SSI case considered in this work the same components can be identified. The component pI I

f
describes the interaction forces developed due to the total structural motion in the absence of an incident
wave field (see Figure B.2, component B). This corresponds to the third component of the hydrodynamic
wave force decomposition (the inertial load). In this work these forces are referred to as the radiation forces
and the corresponding wave field is called the radiated field (ur ad ).

The physical explanation of component pI I
f is less straightforward. Even though it may not be directly obvi-

ous, these forces correspond to the field generated by the incident and diffracted waves. This can be proven
by making use of superposition. The left loading state of Figure B.1 - representing the stationary structure
subjected to the incoming seismic waves - can be decomposed into two components, as depicted in Figure
B.2. In the first loading state, the complete surface is free of stress and the system is subjected to the incoming
waves (component A1). The motion observed at the interface nodes ( f ) due to this loading state is by defini-
tion equal to ug ,e

f .
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The second component (A2 in Figure B.2) is generated by forces acting at the interface nodes:

pg ,i nc+di f
f =−G f f ug ,e

f (B.5)

These impose displacements such that the superposition of the two components (A1 and A2) satisfies the
zero displacement conditions at nodes f :

ug ,i nc+di f
f = ug ,e

f −G−1
f f pg ,i nc+di f

f = 0 (B.6)

By making use of Equation B.3 it can be proven that the first component of the interaction forces acting on
the structure, pI

f , indeed captures the incident and diffracted forces:

pI
f = G f f ug ,e

f = pg ,i nc+di f
f (B.7)





C
Numerical approximation of equations of

motion

The differential equations describing the one-dimensional model of a beam on a non-local Winkler founda-
tion are numerically solved using Euler’s central finite difference scheme [5]. To verify the accuracy of this
numerical approximation a sanity check is performed in this appendix. To satisfy equilibrium conditions the
sum of the lateral forces, bending moments and vertical forces should be zero. However, as the obtained so-
lution is a numerical approximation, a small error will appear. In this appendix it is evaluated if this error is
sufficiently small compared to the individual force components.

By applying the central finite difference method the equations of motion can be formulated using Einstein
summation convention, as presented in equations Eqs. 4.30 - 4.32. By collecting the terms in Eqs. 4.30 - 4.32
in a coefficient matrix A and a right hand side vector b, the solution vector x (containing u, ψ and w) can
be found by solving the linear algebraic equation Ax = b. By implementing the obtained nodal displacement
amplitudes (u, ψ and w) back into the equations of motion it can be verified if the equilibrium conditions
are satisfied, i.e. if the sum of forces approaches zero. To evaluate this, the remaining horizontal force (R fx ),
bending moment (Rm) and vertical force (R fz ), is determined and divided by the magnitude of the internal
beam forces:

e fx (ω, z) = R fx

F i n
x

(C.1)

em(ω, z) = Rm

F i n
m

(C.2)

e fz (ω, z) = R fz

F i n
z

(C.3)

with:

F i n
x =G Aκ

(
d 2u(z)

d z2 − dψ(z)

d z

)
(C.4)

F i n
m =G Aκ

(
du(z)

d z
−ψ(z)

)
+E I

d 2ψ(z)

d z2 (C.5)

F i n
z = E A

d 2w(z)

d z2 (C.6)

The values of e fx , em and e fz provide an indication of the relative error. This error is plotted in Figure C.1 and
C.2, for Case 1A and an excitation frequency of 2.0 Hz and 5.0 Hz. From these figure we can conclude that the
errors are relatively small and the governing equations of the 1D model are accurately solved.
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Figure C.1: The error in the numerical approximation for Case 1A and excitation frequency f = 2.0 Hz
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Figure C.2: The error in the numerical approximation for Case 1A and excitation frequency f = 5.0 Hz
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