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ABSTRACT: Manipulating the way in which colloidal particles
self-organize is a central challenge in the design of functional soft
materials. Meeting this challenge requires the use of building blocks
that interact with one another in a highly specific manner. Their
fabrication, however, is limited by the complexity of the available
synthesis procedures. Here, we demonstrate that, starting from
experimentally available magnetic colloids, we can create a variety
of complex building blocks suitable for hierarchical self-
organization through a simple scalable process. Using computer
simulations, we compress spherical and cubic magnetic colloids in
spherical confinement, and investigate their suitability to form small clusters with reproducible structural and magnetic
properties. We find that, while the structure of these clusters is highly reproducible, their magnetic character depends on the
particle shape. Only spherical particles have the rotational degrees of freedom to produce consistent magnetic configurations,
whereas cubic particles frustrate the minimization of the cluster energy, resulting in various magnetic configurations. To
highlight their potential for self-assembly, we demonstrate that already clusters of three magnetic particles form highly
nontrivial Archimedean lattices, namely, staggered kagome, bounce, and honeycomb, when focusing on different aspects of the
same monolayer structure. The work presented here offers a conceptually different way to design materials by utilizing
preassembled magnetic building blocks that can readily self-organize into complex structures.
KEYWORDS: colloids, magnetism, dipolar assembly, self-assembly, spherical confinement, hierarchical assembly

A contemporary goal common in the soft matter field
aims at creating building blocks with specific
functionalities. Using these nano- to microscale

building blocks, scientists are envisaging engineering materials
with controllable properties.1−5 For this reason, recent years
have seen the development of a plethora of approaches to
colloidal particle preparation, from classical wet-chemistry
synthesis methods6−15 to physical and lithographic techni-
ques.16−22 Solely using a building block’s shape is a powerful
way to control structure formation;23−25 however, to obtain
increasingly functional building blocks, chemists have to
imbibe them with a ”code” that specifically defines the way
in which the particles will spontaneously assemble. These
”codes” are usually formulated using chemical26−28 or
physical6,29 surface modifications. While unconventional
colloidal preparation methods are on the rise, synthetic
complexity and low yields still remain the most common
limiting factors to obtain complex macroscopic materials via
colloidal self-organization. Recently, it has been shown that
carefully designed preassembly of simple colloidal particles,
with interactions programmed by DNA coatings, allows the
preparation of a variety of crystalline structures.30 Preassembly
of readily available colloidal particles into defined structures

that can be used themselves as building blocks, is a powerful
method and allows the use of well-known traditional colloidal
units to make exotic architectures. In this context, magnetic
particles are promising candidates to tailor particle assembly.31

The main advantage is that magnetic dipolar interactions not
only allow the direct formation of predefined structures
without a supplemental need for chemical or physical
functionalization, but also have the potential to enable tuning
of the formed structure with the application of external
magnetic fields.7,31

Here, we explore, using computer simulations, the design of
complex magnetic building blocks from experimentally
accessible magnetic particles. The magnetic spherical and
cubic particles are compressed in spherical confinement, to
form building blocks, mimicking known emulsion templating
techniques.32 Depending on the starting number of particles in
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the compression environment, we obtain clusters composed of
n = (2−10) particles. We have elucidated both the structural
and magnetic configurations of the particles within the clusters.
In our analysis, we find that, while the structural organization
of the obtained building blocks is robust in both cases, the
magnetic configuration is consistent for spheres but not cubes
due to the intrinsic difference in anisotropy, which in the latter
case causes frustration in the preferential alignment of the
dipoles. An observation suggesting that spheres, in this
scenario, are better candidates for use in self-assembly studies.

To conceptualize this assertion we show that clusters of three

magnetic spheres have the ability to readily form extended

assemblies in a hierarchical fashion. This work introduces a

general principle with associated rules to experimentally design

magnetic building blocks capable of self-organizing into

structures unattainable for the simple constituent magnetic

colloids.

Figure 1. Compression mechanism and particle model. (a) A fixed number of particles is placed within a spherical confinement representing
the emulsion droplet, an example for n = 6 cubes is shown. The available volume is slowly decreased over the course of a simulation,
resembling the evaporation of water from a droplet. (b) Cubes are constructed from subunits of spheres arranged to form the surface, a
superball geometry with a shape parameter of m = 4. The wire-frame shown in the first two views is provided to highlight the exact superball
surface. In the final view, the orientation of the particle dipole moment μ is visualized with its 12° tilt from the space diagonal. (c) Spheres,
with a shape parameter of m = 2, are constructed in an analogous fashion to facilitate comparison. The approximation to perfect spherical
geometry is indicated, again by the wire-frame. The orientation of μ with respect to the particle geometry is no longer relevant due to
symmetry, but indicated for completeness.

Figure 2. Clusters post confinement. Visualizations of clusters for n = (2−10) for (a) cubes and (b) spheres, achieved after the confinement
procedure. These clusters represent the structures with the lowest second moment of the mass distribution, 2. The upper row of images in
each figure shows the structure of the clusters obtained. The lower row gives a description of the magnetic character of the clusters. The
dipole of individual particles is shown as a red and blue bar. Cluster orientations were rationally chosen to allow the magnetic alignment to
be more easily visible in a 2D projection.
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RESULTS AND DISCUSSION

Compression Mechanism. The compression mechanism
used to prepare clusters of magnetic particles is schematically
shown in Figure 1a. In order to emulate existing experimental
procedures,32 a fixed number n of magnetic particles is placed
randomly within a spherical confinement, initialized to a radius
large enough to prevent the imposition of any confinement
effects on the initial aggregation of the particles. The spherical
volume is uniformly decreased over the course of a simulation
to resemble the experimental observations during evaporation
of emulsion droplets in colloidal cluster formation from water-
in-oil emulsions.32 For each cluster size, we repeat the
compression a total of 50 times, to test the reproducibility of
the procedure and allow for the resulting structures to be
compared.33 In the simulations, the particles are propagated
using Langevin molecular dynamics performed for a fixed
number of particles, at a fixed temperature, and at a
systematically varied “fixed” volume. The scheme by which
the droplet volume is reduced is discussed in the Methods
section and visualized in Figure 6, the protocol outlined
follows an exponential decay to allow time for cluster
equilibration as the droplet shrinks. The interaction between
particles consists of a short-range repulsion to prevent particle
overlap, and the dipolar potential to characterize the long-
range magnetic interaction. In experiments, clusters are formed
when all the solvent in the droplet evaporates and the
constituent particles are held together by van der Waals forces
which arise upon particle contact. In simulation, each replica is
considered complete when a force threshold is reached,
indicating imminent confinement violation. Note that in our
simulations we do not explicitly consider capillary forces, as
these seem to be inconsequential in the formation of
comparable colloidal clusters.34 Similarly, due to the likelihood
of low Reynolds number flow within individual droplets and
the low density of the solvent, the hydrodynamic coupling
between particles is expected to be slight and is thus neglected.
Further information regarding the simulation protocol used is
detailed in the Methods section and should be consulted prior
to the subsequent sections to contextualize these results.
Cube Clusters. Cube clusters are prepared using particles

with rounded edges, a well-known feature of hematite colloids,
the only known naturally occurring permanently magnetized
micron-size colloidal system.31,35−38 The choice of cubic-like
particles follows from their precise anisotropic shape combined
with well-understood magnetic properties as reported by some
of the authors in another work.31 The particles used for the
simulations are illustrated in Figure 1b. Their surface is
constructed by overlapping spheres of equal diameter, these
subunits are arranged according to a superball geometry
(Methods, eq 4) with a shape parameter of m = 4. While other
shape parameters are undoubtedly of some interest, we chose
to tailor our simulation to be as representative as possible of
the experimentally accessible systems. The dipole moment μ in
such particles is known to lie at a face-tilted angle of 12° from
the space diagonal.31 The magnitude of μ is set via the
experimentally derived dipole coupling parameter λ, the
specifics of which can be found, along with further details
regarding the particle model, in the Methods section. An
overview of the clusters obtained for n = (2−10) is displayed in
Figure 2a, where both the structure and the dipolar
configuration of representative clusters are reported. The

clusters presented here are those with the lowest values of the
second moment of the mass distribution 2.
The top row of Figure 2a highlights the arrangement of

particles within the cluster, which is commensurate to that of
nonmagnetic spherical clusters as reported in both experi-
ments32,39 and simulations.33,40 Small deviations in geometry
are due to specific particle surface properties that can promote
either particle adsorption to the interface39 or complete
dispersion in the drying droplets.32 This observation suggests
that the magnetic interaction plays a secondary role to the
confining forces. One can therefore expect that confinement is
the driving force during evaporation. Turning to the lower row,
we show how the dipoles are configured within the clusters.
Immediately, we can see that the arrangement of the magnetic
moments of the particles is frustrated, as can be seen by the
absence of closed rings that are necessary to minimize the
magnetic energy. It appears that a cube’s sole route to
minimize the magnetic flux of a given cluster is through the
formation of approximate (quasi) antiparallel pairs. As a result
of this behavior, the remnant magnetization for cube clusters is
often determined by a single particle forced into an
unfavorable magnetic configuration due to steric hindrance,
this is most clearly seen in clusters for n = 3 and 5.

Sphere Clusters. Spherical particles with well-defined
magnetization in the micron-size range are not easy to prepare
from naturally occurring magnetic materials. This is because of
the crystalline nature of most magnetic materials in
combination with their general tendency to become multi-
domain at the submicron length scale. However, it has recently
been demonstrated that one can encase hematite cubes in a
spherical polymeric shell,41 effectively producing spherical
particles with a permanent dipole moment. Accounting for the
availability of this experimental protocol, we consider here the
use of spherical particles that possess the same magnetic
properties as the hematite cubes. We model our spherical
particles in a fashion analogous to the cubes, in which subunits
of spheres are arranged according to a spherical geometry
(superball m = 2, Methods eq 4) with the same repulsive and
dipole potentials active. Due to the reintroduction of spherical
particle symmetry, the dipole moment orientation relative to
the geometry is no longer relevant. The magnitude of the
dipole moment and volume is kept constant between the
particle types, given that these quantities are directly
proportional. This procedure acts to realize an experimental
version of hematite cube particles embedded in a spherical
shell with diameter equal to the cube space diagonal. This
equivalency is elaborated on further in the Methods section.
An overview of the clusters obtained for n = (2−10) is
displayed in Figure 2b, where, as before, the structure and
dipolar configuration of the representative clusters are shown
in the upper and lower row, respectively. To facilitate a fair
comparison, the clusters presented adhere to the lowest 2
criterion already imposed. Shown in Figure 2b and in a similar
fashion to the cubic clusters we find that the progression
closely follows the evolution seen in nonmagnetic spherical
colloidal clustering from experiments.32 Again, this identi-
fication is relative to the center of mass for the spheres. The
insights from the previous section regarding the dominance of
confinement over magnetic forces are valid once again.
Turning our attention to the lower row with dipoles, we can
already visually identify configurations with significantly more
ordering of the magnetic moments than those observed for
cube clusters. Ring formation has reasserted itself; moreover,
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we see the appearance of distinct layers in the configuration of
the dipoles. One can argue that these begin to manifest from n
≥ 4, starting with two layers of antiparallel pairs. Due to the
prevalent return of flux closure in these clusters, we expect the
remnant magnetization to be less in comparison to the
equivalent cube clusters.
Cluster Comparison. In the preceding analysis we selected

a single cluster from the set of replicas for each value of n
according to the minimal 2 criterion. In contrast to this
specificity, we will now address quantitatively the variability
across all replicas for each cluster size and make comment on
the reproducibility of the structures discussed thus far. Figure 3
shows the three quantities used for the analysis and
comparison of cube (left column) and sphere (right column)
clusters. Namely,

∑= −
=

r r( )
i

n

i2
1

cm
2

(1)

∑ μ=M
i

n

i
(2)

∑ μ μ= U r( , , )
i j

n

ij i jm
,

m
(3)

2 is the second moment of the mass distribution, where rcm
represents the center of mass of the cluster and ri the location
of each individual surface site, which allow for the geometry
and orientation of the particles to be implicitly accounted for.
M denotes the scalar magnetization (or total dipole moment)
of the cluster. m is the total magnetic interaction energy
where Um is the dipole interaction between two particles i and j
as defined in the Methods section. These observables are
plotted as a function of the time evolution of the simulations,
i.e., the progression as the droplet evaporates, expressed in
terms of the number of time-steps Δt. Each observable is
normalized in a manner that allows the data for different
cluster sizes and particle types to be viewed on an equal
footing. We present here the evolution for n = 3, a cluster type
that we will explore the assembly of later in this work.
Equivalent data sets for all other cluster sizes investigated are
presented in the Supporting Information (Figures S1−S8).
To begin, let us consider each particle type separately. For

cubic particles (Figure 3 column 1), 2 (row 1) for each
replica converges to the same value, indicating that the same
structural arrangement of particles is being reproduced in a
regular, repeatable fashion. 2 provides a measure of the
distribution of the particles in the cluster and thus a measure of
how the particles are arranged in space. Following the
evolution of M (row 2), we observe a lack of convergence
over the course of confinement. M describes the magnitude of
the cluster magnetic moment, an indication of the remnant

Figure 3. Cluster property comparison. The data shown is for a cluster size of n = 3. Equivalent plots for each of the other cluster sizes can be
found in the Supporting Information (Figures S1−S8). The grid of plots is arranged as follows: each column displays the data for each
particle type, cubes (m = 4) and spheres (m = 2) on the left and right, respectively. In the upper row of plots, we have the second moment of
the mass distribution (the cluster selection criterion), followed below by the total dipole moment of a cluster, and ending with the magnetic
interaction energy across the whole cluster. Each plot shows the evolution of the respective quantity over the course of a simulation; the
evolution is plotted in units of the simulation time-step Δt. Each quantity is normalized in the manner indicated to facilitate comparisons
not only between particle types but also cluster sizes, where as a reminder, μ = |μ| is the particle magnetic moment, n is the cluster size, and λ
is the magnetic coupling parameter (see Methods). Fifty replica compression runs were performed for each type of cluster for the given
particle size. To aid further with readability, the evolution of each replica was smoothed by calculating the moving average over 200
measures.
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magnetization, i.e., the propensity of a cluster to maintain
magnetic character. One can conclude then that although
replicas readily form equivalent structural arrangements, the
spread in the remnant magnetization of the resultant clusters
suggests the dipoles within a cluster must be oriented
differently. This is further corroborated by considering m
(row 3), the total magnetic interaction energy, where we again
note a deviation in the final values. This suggests that either the
distance between, or orientation of, the dipoles is varying
within the clusters. However, we know that the cluster
symmetry is consistent from the evolution of 2 implying that
it is strictly the dipole orientations that are inconsistent from
cluster to cluster. Turning our attention to spheres (Figure 3
column 2), one notices immediately the tendency for each
replica to converge to broadly similar values for all three
measures. The fluctuations in the closing stages of the
evolution in M and m, appearing from a clearly previously
well-defined pathway, can be attributed to the lower structural
rigidity of the sphere trimer. The structure can be deformed
more easily by the evaporating droplet than its cube
counterpart, which partially stabilizes itself due to steric
hindrance. Prior to this deviation, the values between replicas
are broadly self-consistent.
Comparing between the particle types, we note the similarity

in the values of 2, suggesting the equivalency in the
structural arrangements for both cluster types, emphasized by
the inset snapshots of Figure 3. For the two magnetic
parameters, we can see a clear-cut spread in the values for
cubes and the pathways to arrive there; this is not the case for
spheres where a much clearer consistency is found. This allows
us to conclude that the spherical particle clusters offer the best
opportunity to not only reliably and reproducibly attain a
consistent cluster geometry but also reliably reproduce
equivalent magnetic configurations and characteristics. For
further confirmation and evidence of these assertions, the
reader is encouraged to study the equivalent plots for n = 2,
(4−10), that appear in the Supporting Information (Figures
S1−S8), where similar behavior is seen across clusters with
different values of n. If one looks at the pathways taken by the
respective particle types during confinement, cubes proceed via
multiple possible trajectories due to the complex free energy
landscape generated by the competition between steric and
magnetic interactions. In contrast, spheres proceed by one
clearly defined pathway characterized by two branches, visible
in each of the observables: the upper branch corresponds to
spheres in a chain configuration; the chain then deforms,
buckles, and collapses to the lower branch which indicates flux
closure and the formation of a ring. The closure of the ring
occurs at different points in time for each replica as determined
by the confinement and the random Brownian fluctuations.
During compression, the vast majority of dipolar rearrange-
ment occurs concurrent to the cluster formation. Once a
particular structural arrangement is formed during cluster
formation, it has a corresponding dipolar arrangement as
determined by the trajectory of the simulation prior to the
”collapse” into the cluster. Consequently, one can say that the
cluster formation and dipole rearrangement take place on the
same time scale. This follows on from the fact that the dipoles
within the particles are fixed relative to their geometry. The
increase in the potential energy at long times seems to suggest
that there is still some rearrangement of dipoles after the
clusters have formed; however, this can be attributed to

perturbations of interparticle separation as a result of
compression, which leads to the fluctuations seen in the
observables. The particles are being forced closer together,
causing the increase in energy prior to the simulation end.
We can go one step further in our analysis and facilitate a

more quantitative comparison of the resultant cluster
geometry. For all replicas of a given cluster size, we collated
the terminal values of each of the three observables. We
summarized this data in the form of a violin plot appearing in
Figure 4, in which individual distributions of 2, M, and m
are visualized for each cluster size n, where data for spheres
appear in blue and cubes in red. Each violin shows the

Figure 4. Cluster property distributions. In three violin plots, we
summarize the observable of interest as a function of cluster size n,
for every replica at the end of the evaporation procedure. In the
upper plot, we present the second moment of the mass distribution

2; in the middle plot, we look at the cluster magnetization
magnitude M; and in the lower plot, we look at the total dipole
interaction energy across the cluster m. We maintain the same
normalization strategy as discussed for Figure 3. Distributions for
sphere particle clusters are shown in blue, while cube clusters are
shown in red. The distributions drawn take into account only the
available data and thus truncate at its limits. A boxplot is drawn at
the center of each distribution where the white circle denotes the
median, the black bar denotes the interquartile range, and the
black line denotes the maximum and minimum extent neglecting
outliers. Viewing the data in this manner confirms that while all
clusters of cubes and spheres show reproducible structural
configurations, only clusters of magnetic spheres show reprodu-
cible magnetic configurations.
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probability density in the horizontal axis and the quantity
under consideration varies in the vertical axis. In terms of the
second moment of the mass distribution, we see that the
structural similarity between clusters of spheres and cubes is
very strong, and the values of 2 are in close proximity for a
given cluster size. Furthermore, we note that the spread of the
values in either case is predominately very narrow, highlighting
the reproducibility of the structural arrangement of the clusters
in space. In general, the decrease in 2 with increasing cluster
size indicating an increase in the spherical symmetry of the
clusters. Considering next the magnetization (total dipole
moment) of the clusters in the middle plot, the most notable
difference to the previous quantity is that there are now much
broader distributions in the values for each cluster size and
particle type; this width does decrease for the spherical case as
the cluster size increases. Moreover, the size of the spread is in
general less for clusters of spheres. These observations are
indicative of the fact that we have more variation in the dipolar
configurations achieved upon compression particularly so for

the cubic particles. In the spherical case, we see a propensity
for the clusters to do a better job of closing the magnetic flux
within the cluster, minimizing it close to zero as cluster size
increases. This highlights the magnetic frustration felt by the
cubic clusters on compression due the steric hindrance
generated by the cubic geometry. The magnetic energy offers
complementary insights into the magnetic configurations. In
this case, we notice that the energies of the sphere clusters are
distributed in a much narrower fashion in comparison to the
cube counterparts. The energy per particle is seen to broadly
decrease with growing cluster size; discontinuities in this trend
are likely due to the frustrations induced by an additional
particle being difficult to incorporate in the previous structure
type. Care should be taken when comparing cluster energies
between particle types due to the variation in particle
dimension that result from the fixed volume of the particles.
It is not out of the question that, although a given sphere
cluster is both structurally and magnetically favorable, the
corresponding cube cluster could be lower in energy simply

Figure 5. Cluster aggregation. A single snapshot from the monolayer simulation at a concentration of φA = 0.4 for clockwise trimers. The
field of view within the simulation has been reduced to allow more detail to be seen; a complete field of view of the simulation can be found
in Figure S9 of the Supporting Information. Each image (a−e) is of the same region within the monolayer. (a) Main structural arrangement
of the clusters. (b) We peer inside the clusters here, highlighting the arrangement of the dipoles (red−blue bars) within, the center of mass
of each cluster is indicated by the gray sphere. In (c−e), we showcase the different Archimedean lattice structures that are discoverable
within the monolayer. In these images, we transition from the relevant snapshot image (left) to a simplified visualization of the lattice (right)
to highlight the repeating pattern. (c) Staggered kagome lattice formed by the arrangement of the dipoles in the monolayer structure. (d)
Bounce lattice formed across the monolayer by the individual particles constituting each cluster. (e) Honeycomb lattice in the monolayer
formed by considering the center of mass of each cluster. Corresponding images for the anticlockwise and racemic systems can be found in
Figures S10,11 of the Supporting Information, respectively.
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because the dipoles are slightly closer together. If we consider
the magnetization and magnetic energy simultaneously, we
believe we can offer an explanation for the spread in the
magnetization observed for both particle variants. In the
spherical case, the tight spread of cluster energies implies that
the dipoles are likely to be broadly in the same orientation
within a given cluster; the modest variation in the magnet-
ization is thus likely due to the fluctuations of the dipoles
around these given directions. Fluctuations are possible due to
the sphere’s ability in the simulation to rotate freely even while
bound in the cluster. In experiments, however, even if rotations
are hindered by van der Waals forces between adjacent
particles, we would expect a similar distribution in the
magnetization due to thermal fluctuations acting during
compression prior to irreversible aggregation. We do not
expect these minor differences between clusters to inhibit the
subsequent hierarchical assembly pathways. In contrast, for
cubic clusters, the variation in cluster energy is predominately
due to dipoles becoming fixed in different orientations within
the structure. Once in a cluster, the rotational freedom for the
cubes is constrained by the presence of the other particles in
the arrangement; consequently, fluctuations of the dipole
around the average rotation are lessened in comparison to
spheres. This observation suggests that the variations in
magnetization for cubic clusters are due to manifestly different
dipole orientations and thus configurations of cubes within a
cluster. This further cements the previous qualitative
observations that clusters of spheres are far better at
reproducing not only the structural arrangement in space but
also the magnetic arrangement. Our cubic systems can only
reproduce the former on a consistent basis. We therefore
suggest that the spherical variant is the most viable candidate
for producing a colloidal hierarchy of magnetic building blocks.
In simple terms, this means that we should theoretically be able
to produce clusters of spheres with consistent shape and
magnetic configuration to be used for hierarchical assembly.
Hierarchical Assembly. To confirm the validity of the

previous observations, we have run simulations to test the
hierarchical assembly capabilities of magnetic trimers, clusters
formed by three magnetic spheres. In the interest of simplicity,
the trimers were considered idealized versions of that
appearing in Figure 2b. Namely, the center of mass of each
sphere was placed at the vertex of an equilateral triangle
defined by an edge length equal to the sphere diameter. The
dipoles were oriented perpendicular to the displacement vector
for each sphere, relative to an origin at the triangle centroid.
The trimers were confined to a strictly two-dimensional
monolayer, where cluster rotations were only permitted in-
plane. Simulations were conducted on a bulk system where the
number of clusters was Nc = 1000. Periodic boundary
conditions were employed to mimic the bulk of a monolayer.
The system was initialized by placing clusters at random
positions and orientations at an area fraction of φA = 0.4.
Furthermore, due to the imposed two-dimensional system
geometry we arrived at a situation where clusters can be
considered as magnetic enantiomers of one another. To
account for this effect, three systems were propagated to see
the effects on their assembly. Two scenarios with systems of
clusters of one type were used, namely, where the dipole
configuration circulated in a clockwise and anticlockwise
direction, respectively. We adopt here a naming convention
that follows the blue end of the dipole visualization in the
simulation snapshots. The third scenario considered was a

racemic mixture of both cluster varieties. Further details on the
simulation method used to explore the cluster aggregation can
be found in the Methods section. Analyzing the trajectories
taken by the three systems, we could quickly identify the
clockwise and anticlockwise systems evolved in an equivalent
fashion, whereas pattern formation in the racemic mixture was
frustrated due to the different enantiomers being present.
Nevertheless, enantiopure crystallites are beginning to emerge
as islands within the bulk (see Figure S11). Experimentally, it
is not unreasonable to anticipate phase separation of
enantiomers in 2D samples given enough equilibration time.
Furthermore, nonuniform magnetic fields could be used to
separate enantiomers or to prepare enantiopure samples by
enforcing a certain orientation of each trimer. One should
note, however, that, at least for the trimers, chirality is lost in
3D. With the clockwise variant as an example of an
enantiopure system, the results of the cluster aggregation are
shown in Figure 5, where we have a cropped view of the
simulation cell; a full view can be found in Figure S9 of the
Supporting Information. For Figure 5a,b, we see the position-
ing and dipolar arrangement of clusters in the aggregated
structure, respectively. In Figure 5c−e, we compartmentalize
the repeating patterns found in the aggregated monolayer to
highlight a number of Archimedean lattices that manifest in
different aspects of the structure. These images take a gradient
from the respective structural snapshot and morph gradually
into a simple rendering of the lattice we wish to highlight. It is
clear from Figure 5a that we have the formation of a
hierarchical well-ordered lattice structure, in which point
defects and dislocations are still evident. Point defects manifest
as holes in the lattice where one or two trimer units are
missing. Dislocations occur between ordered crystallites and
result in the formation of alternating five and seven membered
rings in contrast to the more energetically advantageous six;
this is most clearly seen in the upper right-hand portion of
Figure 5c. It should be noted that this structure formed
spontaneously under the simulation condition, with no use of
more sophisticated simulation techniques to optimize the
structure. The characteristic motif within the structure is
evidently the interlinking six-membered rings. Turning to
Figure 5b, we visualize the dipoles within each cluster. The
center of mass for each cluster is indicated by a silver sphere to
act as a reference and to aid with the comparison to the other
visualizations. One can note that the dipolar configuration is
characterized by archetypal ring formation, albeit with a
hexagonal flavor. Considering now the ordering of the clusters
within the monolayer, we can make a number to identify the
aggregate repeats in space. The pattern arising from dipole
alignment can be characterized as a staggered kagome lattice,
as shown in Figure 5c. This lattice is not a true kagome lattice,
as the vertices of the triangles formed by connecting the
particle dipoles overlap, disturbing the exact trihexagonal tiling
present in a true kagome lattice. In Figure 5d, by considering
the constituent particles of each cluster as lattice points, we
find that the particles arrange themselves into a so-called
bounce lattice. Finally, if we treat the center of mass of each
cluster as a lattice point, we find a honeycomb lattice as shown
in Figure 5e. Having broken down the repeating structure of
the monolayer into its constituent parts, it is clear to see the
complex ordering one can obtain in both the topological and
magnetic characteristic of the monolayer. The repeating lattice
patterns present in the monolayer are well understood and
quantified; however, the bounce lattice, in particular, has not

ACS Nano www.acsnano.org Article

https://dx.doi.org/10.1021/acsnano.0c09952
ACS Nano 2021, 15, 4989−4999

4995

http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c09952/suppl_file/nn0c09952_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c09952/suppl_file/nn0c09952_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c09952/suppl_file/nn0c09952_si_001.pdf
www.acsnano.org?ref=pdf
https://dx.doi.org/10.1021/acsnano.0c09952?ref=pdf


yet been seen or predicted in colloidal systems including in
experimental and theoretical works on patchy col-
loids,14,27,42−47 which are the most closely related systems
available as of yet. The observed structures are strikingly
different and of greater complexity compared to those obtained
from the assembly of the simple dipolar spheres, the
”monomers” of our hierarchical structures. These are in fact
known to form ring and chain structures at low concen-
trations,48 branched structures at intermediate concentra-
tions,49,50 and close-packed structures at higher concentra-
tions.51,52 Our structures can therefore only be accessed using
hierarchical assembly: constituent magnetic particles preas-
sembled into a larger unit, a building block, the structure and
magnetic configuration of which directly influence the
subsequent level of assembly where the building blocks
organize to form the ordered monolayer. In the case of
trimers, we have clearly shown proof of concept for such a
protocol with this kind of spherical magnetic particle. This
route offers the possibility of engineering hierarchical colloidal
materials that are magnetically reactive.

CONCLUSIONS
In this work, we have introduced via computer simulation a
viable way to prepare colloidal magnetic building blocks by
confining magnetic cubes and spheres into small clusters.
While the lower symmetry of the magnetic cubes frustrates the
magnetic arrangement during confinement, clusters made of
magnetic spheres show exquisitely reproducible magnetic
configurations for clusters of up to ten particles. We have
shown that magnetic sphere trimers (clusters made of three
magnetic spheres) readily assemble into ordered monolayers in
which 3 of the 11 Archimedean lattice symmetries can be
identified. We anticipate the experimental analogues of our
clusters to be stable in dispersion due to strong van der Waals
forces arising upon particle contact, comparably to other
already available experimental systems.32,34,39,53,54 The method
presented in this work has therefore the potential to open
alternative avenues for colloidal self-assembly using building
blocks that can be prepared in bulk and interact with highly
specific interactions without the need of additional costly
chemical functionalizations.

METHODS
Computer Simulation. Model. The particles in this work were

constructed from subunits of spheres using a real and virtual particle
scheme to encapsulate rigid body motion. A real site is placed at a
particle’s center of mass, relative to which virtual particles are
positioned, building up the particle surface. The details of this scheme
for particle construction are discussed in detail in ref 55. In contrast to
the previous work, the positioning and sizing of the sites comprising
the particle surface have evolved. The surface is constructed from
overlapping spheres of equal diameter, positioned equidistantly from
each other on a lattice lying at the boundary defined by the following
equation describing the geometry of the superball surface
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where h is the height of the particle and m is the shape parameter that
sets the roundness of the particle edges and vertices.56 The diameter
of the surface sites was set by the number of sites used relative to the
lattice spacing. The surface particles were placed on the boundary
according to the routine outlined for the surface charges appearing in
ref 57. At the coordinates of each surface site, the normal to the
surface was calculated according to
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The particle was then shifted by h
2
in the direction of −n̂. In this

manner, the edges of surface sites lie on the boundary defined in eq 4.
The number of surface sites used is equal to 150, i.e., 25 per face in
the case of a cube particle. This number was determined based upon a
tradeoff between efficacy and accuracy.

We have studied superball particles with m = 2 (spheres) and m = 4
(cubes) exclusively. The shape of the cubic magnetic particles is based
on those appearing in ref 31 that are composed of hematite. The
magnetic character of hematite particles can be suitably approximated
by a dipole placed in the center of the superball. Similarly, we use the
dipole moment orientation reported therein, namely, a 12° tilt from
the space diagonal toward the cube face. The dipole orientation
relative to the sphere geometry is irrelevant due to the symmetry
present. In the experimental system, hematite superballs with m = 4
had a height of h = (L + 2t) = 1335 nm where L = 1135 nm denotes
the height of the magnetic core and t = 100 nm was the thickness of a
silica shell. At this point, it is useful to define a number of pertinent
reduced units used during simulations. Namely, temperature as T* =
kT/ϵ, magnetic moment (μ*)2 = μ0μ

2/4πh3ϵ, energy U* = U/ϵ, and
displacement r* = r/h; where the following identifications are made: k
is the Boltzmann constant, ϵ the energy parameter, and μ0 the vacuum
permittivity. In these simulation units, the particle height becomes h*
= 1. This results in a superball volume of νsb*(m = 4.0) = 0.810 248. It
follows that for νsb*(m = 2) = 0.810 248 we require h* = 1.156 662.
This scaling correlates with the behavior in experimental systems as
the magnitude of a particle’s magnetic moment scales with the volume
of the particle |μ|∝ ν. We keep νsb* constant when moving from cubes
to spheres, a restriction that is compensated for by an increase in the
sphere diameter. In other words, we created a spherical analogue to
the established cubic particles. Illustrations of the particle models for
spheres and cubes are found in Figure 1b,c, respectively.

We can link the simulation and experimental realms by character-
izing the system using the magnetic coupling parameter
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relating the magnetic and thermal energy.31 The quantity is a
structural prefactor relating to the dipole tilt angle θ and the two-
particle ground state. An experimental value of λ was calculated for
the cubic particles discussed, with T = 100 °C (temperature of the
system during droplet evaporation) and μp = 2.8 × 10−15 A m−2 (for
hematite), resulting in λ = 39.3435. By choosing T* = 1 in
simulations, the corresponding magnetic moment was calculated as
μ* = 7.99735 ≈ 8 and used for both particle types. The short-range
interaction between particles was treated as the sum of repulsive
contributions between each spherical subunit, characterized by the
Weeks−Chandler−Anderson potential
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where r is the displacement between surface sites on opposing
particles and σ denotes the surface site diameter and energy parameter
ϵ defines the energy scale. The cutoff radius rc, at which the
interaction potential becomes zero, is defined to be rc = 21/6σ. An
offset radius roff was employed to tune the location where the
potential falls to zero. In order to steepen the potential, making it less
soft, we used σ and roff in tandem to achieve this. Namely, we actually
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mirror a hard particle diameter of σ by setting σ = R and roff = R,
where R is the virtual site radii. This produces a steeper more
hardcore potential that still falls to zero beyond σ. The magnetic
interaction is approximated using the dipole potential
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where r denotes the vector between dipoles μ1 and μ2, with a
magnitude of r = |r|.
Droplet Evaporation. Simulations were conducted on isolated

clusters of particles ranging in size from n = (2−10), for both m = 2, 4.
Individual runs were initialized by randomly distributing in both
position and orientation n particles confined to the inside of a sphere

of radius * = +Ri
n( 2)

2
, within a three-dimensional nonperiodic

simulation box. The sphere is present to imitate the evaporating
droplet from the experimental systems alluded to in the main text.
The surface sites of particles also interacted with the confining sphere
via the potential in eq 7, where in this case r is the displacement
between site centers and the droplet surface. The initial sphere radius
Ri* was chosen sufficiently large to not preferentially bias the system
into any particular area of the free energy landscape. The system was
propagated according to Langevin molecular dynamics, the use of
which in this context is discussed in detail in previous studies.55,58

Due to the nonperiodicity of the system, the dipolar interaction was
calculated using direct summation. As noted earlier, all simulations
were conducted at T* = 1 and with particle magnetic moments of μ*
≈ 8. The time step used was Δt* = 0.001. During the course of a
single cluster simulation the confining sphere was reduced in size
according to the following equation

* = *R R (0.99)k i
k (9)

where Rk is the radius after k iterations. In Figure 6, we plot the
variation of Rk (red) over the course of a simulation for a cluster size

of n = 3 and as a function of Δt*; alongside, we plot the

corresponding droplet volume (blue) given by * =
*πV R4

3
k

3

. Setting a

rate constant of 0.99 ensures the particles contained are confined
gradually and able to stay in a quasi-equilibrium state. This scheme
approximates the gradual evaporation of the water from the droplets
in experiment. One can view this as a simulated annealing protocol,
which instead of acting on temperature acts on the sphere size. Using
this scheme meant that the reduction in droplet size at each iteration
was reduced as the simulation progressed. By maintaining the
iteration length, the confinement was applied more slowly as the
system increased in density, and it was thus harder for rearrangement

to occur. This allows the free energy landscape to be properly
explored especially when replica simulations are used. In this case, 50
replicas were performed for each value of m and n. After each
reduction in droplet size or kth iteration the system was propagated
for 2.0 × 104 Δt* to allow for equilibration. The evolution of droplet
evaporation was observed and recorded: observables (energy, etc.)
every 1.0 × 102 Δt* and particle configurations once immediately
prior to the next confinement iteration. Simulations were stopped
when the force on the confining sphere was seen to diverge, i.e., the
point at which the particles begin to penetrate the confinement. A
schematic of the procedure using real simulation data is shown in
Figure 1a. It should be stressed that the compression procedure was
the same for both particle types, meaning the relative difference in the
magnetic structure and particle arrangement are comparable.

From the 50 replicas given for each m and n, the one achieving the
lowest value of the second moment of the mass distribution (eq 1)
was selected for visualization. In previous studies, this was reported as
an effective parameter with which to differentiate clusters.32,39,53

Simulations in this study were performed using ESPResSo 3.3.0.59

Similar simulation schemes to this, i.e., at constant volume in the
NVT ensemble, have been shown to achieve indistinguishable results
to those conducted using the NPT ensemble.60

Cluster Aggregation. For the simulations of spherical particle
trimers, we abandoned the use of the composite sphere model
discussed above, and reverted to a simple dipolar soft sphere
implementation characterized by the potentials in eq 7 and eq 8. This
choice was made to improve the efficacy of the simulations and
absence of the need to compare to the cubic case. Moreover, the
magnetic moment of the particles was reduced to μ* = 2.5, while the
temperature and particle size were kept constant. This allowed for
more widespread recombination of clusters, facilitating a more rapid
and representative equilibration of the system. At high dipole
moments, it can get locked and stuck very quickly in metastable
states. A lower dipole moment means the free energy landscape is less
extreme, and metastability is less prevalent. Furthermore, one could
argue that annealing in experiment or simulation would allow one to
achieve the same end at higher dipole moments. By reducing the
dipole moment, we have negated the need for this approach. The
magnitude of the dipole moment simply alters the kinetics of the
situation but not the final structures, which are of interest here. A
further experimental justification of this approach is the fact that the
spherical particles are magnetic cubes surrounded by a polystyrene
shell effectively shields the dipole moment. In terms of the short-range
interaction, the value of roff is set such that the net force between two
particles at close contact due to the total interaction potential is zero.
Furthermore, the energy parameter was increased to ϵ = 1000 to
reduce the softness of the interaction.

Simulations were conducted on systems of Nc = 1000 clusters, in a
strictly two-dimensional geometry; i.e., clusters were not permitted to
rotate out-of-plane, only in-plane. Periodic boundary conditions were
implemented and dipolar interactions were handled using the P3 M
algorithm in combination with a dipole layer correction, both with an
accuracy on the order of 10−4 in the forces.61,62 Due to the fixed
monolayer geometry of the system, three situations arise in terms of
dipole configurations due to the effect of chirality. The first is a system
of clusters where the dipole configuration of each cluster circulates in
one direction, i.e., anticlockwise. The second is the antithesis of this, a
dipolar configuration circulating in the other direction, i.e., clockwise.
The third option is a mixture of these two geometry-enforced cluster
types; we decided to investigate a 50:50 racemic mixture of clockwise
and anticlockwise clusters.

Simulations were performed in the NVT ensemble, where the
system was initialized by randomly placing and rotating the clusters
within the plane at an area fraction of φA = 0.4. The system was then
propagated again using Langevin molecular dynamics from this initial
configuration for a total of 2.0 × 105 Δt*, with Δt* = 0.001 as before.
Configurations were recorded at intervals of 1.0 × 103 Δt* to monitor
the evolution of the aggregation. Simulations were again performed
using ESPResSo 3.3.0.59 The final recorded configuration was then
visualized and featured as the snapshots in the main text and

Figure 6. Droplet evaporation. Visualization of the droplet
evaporation scheme used in simulation for a cluster size of n =
3. The droplet radius Rk is systematically decreased over the
course of the simulation according the curve appearing in red. The
corresponding reduction in the droplet volume is shown in blue.
The curves are both plotted as a function of the time-step Δt*.
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Supporting Information. For the visualization of the sublattices within
the aggregate, cutoff radii were used to draw the bonds, where Rb* =
1.4, and Rhc* = 2.1 for the bounce and honeycomb lattice, respectively.
For the dipolar (staggered) kagome lattice, the visualization was
created by drawing tangents along the dipole moments.
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