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Abstract
In this paper we study degree-penalized contact processes on Galton-Watson (GW) trees and the configuration
model. The model we consider is a modification of the usual contact process on a graph. In particular, each vertex
can be either infected or healthy. When infected, each vertex heals at rate one. Also, when infected, a vertex u with
degree d,, infects its neighboring vertex v with degree d,, with rate 1/ f (dy, d\ ) for some positive function f. In the
case f(dy,dy) = max(dy,d,)* for some u > 0, the infection is slowed down to and from high-degree vertices.
This is in line with arguments used in social network science: people with many contacts do not have the time to
infect their neighbors at the same rate as people with fewer contacts.

We show that new phase transitions occur in terms of the parameter u (at 1/2) and the degree distribution D of

the GW tree.

o When u > 1, the process goes extinct for all distributions D for all sufficiently small 1 > 0;

o When u € [1/2,1), and the tail of D weakly follows a power law with tail-exponent less than 1 — y, the process
survives globally but not locally for all A small enough;

o When p € [1/2,1), and E[D'~H] < oo, the process goes extinct almost surely, for all A small enough;

o When u < 1/2, and D is heavier than stretched exponential with stretch-exponent 1 — 2y, the process survives

(locally) with positive probability for all 2 > 0.

We also study the product case, where f(dy,d,) = (dyd,)*. In that case, the situation for u < 1/2 is the same as
the one described above, but ¢ > 1/2 always leads to a subcritical contact process for small enough A > 0 on all
graphs. Furthermore, for finite random graphs with prescribed degree sequences, we establish the corresponding
phase transitions in terms of the length of survival.
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1. Introduction

The contact process (CP) is a model for epidemics on graphs, described by a continuous-time Markovian
dynamics, in which each vertex is in one of two states: infected or healthy. Infected vertices infect each
of their healthy neighbors with a constant rate A, while also healing at a constant rate 1. The model was
first introduced by Harris in 1974 [32], who studied it on the integer lattice. Since then, much work has
been done to characterize the behavior of the process also on infinite trees and locally tree-like finite
graphs. The focus of this line of research has been to establish phase transitions in the long-term behavior
of the process, as the spreading rate A varies. A series of works [46, 57, 65] showed that the process on
the infinite d-ary tree (d > 2), with an initial infection at the root, has three possible phases separated
by two critical values 0 < A.,; < A.2: when 4 < 4.1 the process undergoes eventual extinction, when
A € (A¢.1,Ac2) there is “global but not local” survival, and when A > A. 5 there is “local” survival
of the infection (see Definition 1.3). More recently, studying the process on Galton-Watson trees, the
combination of the results in [34] and [6] showed that models with exponentially decaying offspring
distributions always have an extinction phase (4d.,; > 0), whereas subexponentially decaying offspring
distributions lead to local survival for any positive value of A due to the persistence of the infection
around high-degree vertices, that is, 1.1 = 4.2 = 0 in this case.

Motivated by the latter results, we introduce a variant of the original contact process, where we
slow down the spread of the infection around high-degree vertices in a degree-dependent way, in order
not to let “superspreaders” scale up the infection rate linearly in their degree. Our results show that
this change in the dynamics can reveal topological features of the graphs hidden from the classical
versions, whose behaviours tend to depend strongly on the highest-degree vertices. Further, it allows us
to observe different phases of the process on the same underlying graph caused by only a slight change
in the process dynamics.

Our results, informally. In the degree-dependent contact process, the total infection rate from a high-
degree infected vertex shall only grow polynomially with its degree, with an exponent less than one.
Gradually increasing the penalty on the infection rate, we prove that the new process qualitatively differs
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from the classical version. In particular, we obtain new phase diagrams for Galton-Watson trees: as
soon as the total infection rate from a high-degree vertex scales less than the square root of its degree,
high-degree vertices no longer maintain the infection, but their local surroundings heal quickly, and the
process shows local extinction for small 4, yielding 4. 2 > 0, on any tree in fact (not just Galton-Watson
trees). On Galton-Watson trees, if the offspring distribution is sufficiently heavy tailed (i.e., heavier than
x~ % for some critical a. depending on the degree-dependent penalty on the infection rate), then the
degree-penalized CP survives globally but not locally (i.e., 4,1 = 0 but 1. » > 0). However, if the tail is
lighter, i.e., the offspring distribution has finite @.-th moment (with @, < 1), then CP has an extinction
phase (i.e., 4,1 > 0). Here we find it surprising that subexponential distributions as heavy as infinite
mean power laws can also show extinction. We also establish the corresponding phase diagrams for
large finite random graphs with prescribed degree distributions (the configuration model), in terms of
the length of time the infection survives on them. Here, tree-based recursion techniques break down,
and we develop new methods to treat the extinction phase when A.,; > 0, which work as soon as the
offspring distribution has finite variance. In the phase when high-degree vertices no longer maintain the
infection for a long time, but the Galton-Watson tree show global survival for small A > 0, we find new
structures — k-cores existing on constant degree vertices only — that maintain the infection globally on
the graph for a long time. All our results are also valid for the corresponding branching random walks as
well. See a summary of our main results in Table | where we briefly explain the main parameters. We
defer mentioning more related work to Section 2.1. From the point of view of epidemic modeling, an
important message of our results is that the change in the phases can be obtained by only changing the
dynamics of the process around high-degree vertices (i.e., increasing the degree-penalization), while
keeping the underlying graph/contact network intact.

Applied and theoretical motivation for our model. While this paper is theoretical in nature, the
choice of degree-dependent transmission rates comes directly from applications. Actual contacts do
not scale linearly with network connectivity due to limited time or awareness [27, 44, 71]. Even
individuals who spread an atypically large number of pathogens cause only sublinearly many new cases
even via indirect spreading [64]. Degree-dependent transmission rates have been used to model the
sublinear impact of superspreaders as a function of contacts in applications ranging from infection
spreading to information spread in communication networks [29, 39, 49]. Two versions of the degree-
dependent contact process were proposed and studied empirically in [71, 72]. Also related are the
degree-dependent bond percolation and Ising model [2, 33] and topology-biased random walks in the
applied literature [13, 23, 45, 59, 73], in which the transition probabilities from a vertex depend on
the degrees of its neighbors. All these works assume a polynomial dependence on the degrees. On the
theoretical side, the recent degree-dependent first passage percolation (dd-FPP) [40, 41, 42] uses the
same “degree-penalization” that we shall assume, combined with the first passage percolation dynamics
where reinfections to a vertex are not possible. Our results show that the phase-transition points of
degree-penalized CP differ from those of dd-FPP. Reinfection in CP makes both the results and the
proof techniques different. See more in Section 2.1 below.

1.1. Degree-penalized infection processes: main definitions

We now define the processes considered in this paper. These processes take place on an underlying
graph, which is undirected, but not necessarily simple, that is, we allow multiple edges and loops, see
Section 1.2 for the underlying graphs we use. We use the convention that the degree of a vertex is
the number of nonloop edges incident to it (counted with multiplicity) plus twice the number of loops
incident to it. More formally, for a graph G = (V, E) we denote by e(u, v) the number of edges between
vertices u, v € V, and by N(v) the neighborhood of v € V, the set of vertices u for which e(u,v) > 1.
For a vector x € NV (where N = {0, 1,2,...}), we let |x| := 3, ¢y x(v) be its 1-norm.

Definition 1.1 (Degree-penalized contact process). Consider a graph G = (V, E), with d,, denoting the
degree of vertex v € V. Let f(x,y) > 1 be a function of two variables, 1 > 0, and éio € {0,1}V. For
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Table 1. Summary of our main results: phases of degree-dependent contact process. Let u, v
be two vertices with degrees d,,, d,, respectively, connected by and edge. Then the infection
rate across the edge (u,v) is 1/ f (dy,,d,) = 1/(d,d,)* in the case of the product penalty,
and A/ f (dy,dy) = A/max{d,,d, }} in the case of the max penalty. The second column
shows the phases when the underlying graph is a Galton-Watson tree with offspring distribution
D, and initially only the root is infected. Here, a denotes the power-law tail-exponent, that is,
P(D > z) = z~. The third column shows the phases when the underlying graph is a configuration
model with degree sequence d,, and initially all the vertices are infected. Here, T denotes the
exponent of the limiting mass function, that is, P(D > z) =< z~""V. We allow not just pure
power laws, see Definitions 1.7—1.8 and Assumptions 1.10—1.12 for weaker assumptions. Some
technical conditions are omitted in the table. For u € [1/2, 1) on the configuration model, fast
extinction occurs when T > 3, including any other lighter tails, not just power laws.

Product penalty

Galton-Watson tree Tp

Configuration model CM(d,,)

n<1/2

pu=1/2

Local survival
forany 1 > 0

for tail heavier than
stretched-exponential
with ¢ =1-2pu
Extinction

ford <1

for any graph

Survival until @p (exp(Cn)) time
forany 1 > 0

for tail heavier than
stretched-exponential

with & =1-2pu

Extinction in Op(poly(n)) time
for A < 1

whenever 31| dt.lf“ = Oz (poly(n))

Max penalty

Galton-Watson tree Tp

Configuration model CM(d,, )

n<1/2

well/an

Local survival
forany 1 > 0

for tail heavier than
stretched-exponential
with ¢ =1-2pu
Only global survival
forA<1/2

for weak power law

with tail-exponent @ < 1 — u

Extinction
for small A
when E[D'"#] <

Extinction
ford <1

for any graph

Survival until ®@p (exp(Cn)) time
forany 1 > 0

for tail heavier than
stretched-exponential

with ¢ =1-2u

Survival until ®p(exp(Cn)) time
forany 1 > 0

for power-law empirical degrees
withuy <3 -7

Extinction in ®p (log(n)) time
for small A

for power-law empirical degrees
with 7 > 3 (or lighter)
Extinction in Op(poly(n)) time
ford <1

whenever Y1, dl.lf“ = Ogp(poly(n))

u,v € Vietr(u,v) =2a-e(u,v)/f(dy,d,). We define CPf,,l(G,g_fO) = (ét),zo = (& (v))vev.r>0 to be

the following continuous-time Markov process on the state space {0, 1}V . The process starts from the
state éo at time 7 = 0, and evolves according to the following transition rates:

§_>§_]lv

|

with rate 1; for all v with £(v) = 1,

ueN (v)

— &+ 1, withrate Z E(u)r(u,v); forall v with £(v) =0,

ey
(@)

where 1,, € {0,1}" denotes the vector with entry 1 at position v, and zero entries at all other positions.

Strictly speaking, the above is not an actual mathematical definition. In case the graph is finite, the
description using jump rates is entirely satisfactory (one can think of exponential waiting times governing
the dynamics). However, as is well-known in the particle systems literature, the treatment of infinite
graphs is more subtle [47]. We include the above only as a first indication of how the process behaves,
but we define the contact process to be the process obtained from the Poisson graphical construction

(see Section 3.1 below).
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We refer to vertices v with & (v) = 1 as infected at time ¢, and to all other vertices as healthy at time ¢,
and consequently |&;| is the number of infected vertices at time 7. Describing the process less formally,
each infected vertex u heals at rate 1, and during the time it is infected, it infects each of its healthy
neighbors v at rate r(u,v) = A - e(u,v)/f(dy,d,), where e(u,v) is the number of edges between u
and v. A common choice for § we take is 1, the all-1 vector on the vertex set V of G. This choice is
a theoretical tool in our analyms as the process starting from this initial state stochastically dominates
the process starting from any other initial state.

A process related to the contact process is the branching random walk on the same graph. Branching
random walks are known to stochastically dominate the contact process, since they consider the vertices
of the graph as locations that infected particles can occupy, and they allow more than one infected
particles per vertex. In comparison, in the contact process only one particle per vertex is allowed. In
our setting, the degree-penalized branching random walk turns out to be useful for upper bounds when
proving extinction.

Definition 1.2 (Degree-penalized branching random walk). Consider a graph G = (V, E), with d,
denoting the degree of vertex v € V and e(u, v) the number of edges between u and v. Let f(x,y) > 1
be a function of two variables, 4 > 0, and x,, € NV . Foru,veVletr(u,v)=24-e(u,v)/f(d,,d,). We
define BRW; (G, x,) = (x,)r>0 = (x/(v))vev s >0 to be the following continuous-time Markov process
on the state space NV . The process starts from the state X, at time ¢ = 0, and evolves according to the
following transition rates:

x—x—-1, withratex(v)forallveV, 3)
x—x+1, withrate Z x(u)r(u,v) forallv € V. (C))
ueN (v)

Similarly to Definition 1.1, this definition works for finite graphs; we give a more general mathematical
definition using particle genealogies in Definitions 3.4-3.5 below. Informally, we think of x,(v) as
the number of particles at location v at time ¢. Then each particle dies at rate 1, independently of
everything else, and each particle located at u reproduces to every neighboring vertex v at rate r(u, v) =
- e(u’ V)/f(du, dv)

In what follows we study the qualitative long-term behavior of the above processes, for small infection
parameters A > 0. The following definition summarizes the possible phases that can occur on graphs,
first with (countably) infinitely many vertices, and then on graphs with finitely many vertices. Here, and
in the following, 0 denotes the all-zero vector (on the relevant index set).

Definition 1.3 (Modes of survival). Given a graph G = (V, E), a penalty function f(x, y) > 0 and some
A > 0, consider either the process (ft), >0 = CPy (G, fo) or the process (x,);>0 = BRW; (G, x,,) with

respective fixed starting states éo € {0,1}V and X, € NV . If |V| = oo, we say that the process exhibits

(i) almost sure extinction if, with probability 1, there exists some 7" < co such that & = 0 (respectively,
x, = 0) for all 27,
(ii) global survival if, with positive probability, ét # 0 (respectively x, # 0), for all # > 0.
(iii) local survival if, with positive probability, there exists v € V such that for any # > O there exists
some s > f such that & (v) = 1 (respectively, x,(v) > 1).

For any underlying graph G and respective initial states éo € {0,1}V and X, € NV of CP .4 and
BRW ,, let us define the (possibly infinite) extinction time, and for a vertex v € G the local extinction
time at v

T(G.é) =inf{r >0: ¢ =0}, T5(G.€,v)=inf{r>0: & (v) =0V 21},
Teb,ftW(G,)_cO) =inf{r >0: x, = 0}, T;{tw(G,)_cO,v) =inf{r>0: xy(v) =0Vt > ¢}
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We note some remarks: First, local survival in (iii) implies global survival in (ii). Second, only global
(but not local) survival means that (ii) holds, whereas for any choice v € V almost surely there exists
some 7, > 0 such that & (v) = 0 (resp., x;(v) = 0) for all # > T,,. Finally, provided that 0 < |§ | < o0
(resp., 0 < |x,| < o0), and that the graph G is connected, the phase that occurs among (i)—(iii) does not
depend on the initial state .;_fo (resp., x)-

1.2. Definition of the underlying graphs

Next, we define the graph models that we focus on.

Definition 1.4 (Galton-Watson tree). Given a non-negative integer-valued random variable D, we define
the Galton-Watson (GW) tree with offspring distribution D as follows. Let @ be a distinguished vertex,
called the root of the tree. {@} is generation O of the tree, and its cardinality is Zy = 1. Let (D i’f)zio,j=1
be an array of iid copies of D. Then we recursively define generation i + 1 of the tree fori = 0,1 ...
in the following way. For each vertex j (j = 1,...,Z;) of generation i we assign D; ; many offspring,
connect them to vertex j, forming together generation i + 1, that is, generation i + 1 has cardinality
Ziv1 = Z 1 Di,j. We call the resulting finite or infinite tree a realization of the Galton-Watson tree.

Our results, in an important regime, extend to any random or deterministic tree as well, as long as it
grows at most exponentially almost surely, a concept which we define now.

Definition 1.5 (Branching number of a tree). Let 7 be an infinite tree, and let Zy (7) := |Genpy (7)]
be the size of generation N. Then we define the (possibly infinite) “upper” branching number of T as

br(7) := limsup Zy (T)'/V. 5

N —o

Definition 1.6 (Spherically symmetric tree). Given a positive integer-valued sequence d :=
(do, di1,da, . ..), we define the Spherically Symmetric Tree (SST) with degree sequence d, SST(d) as
follows. Let @ be the root of the tree having dy := do many offspring. Then SST(d) is the tree where
each vertex in generation 7 has d; many offspring.

The following two definitions describe two important classes of degree distributions that we use for
Galton-Watson trees.

Definition 1.7 (Weak power-law tails). Consider a distribution D on {0, 1, ... }. We say that the tail of
D weakly follows a power law with tail-exponent @ > 0 if for all fixed & > 0 there exists a constant
zo(g) > 1, such that whenever z > zo(¢g),

1 1
<P(D=>2) <

7a+e 7a—¢ :

(6)

In the numerators in (6) we could have allowed a slowly varying function as well, but those can be
ignored by adjusting zo(&), due to Potter’s theorem [8], since any slowly varying function €(x) satisfies
x7¢ < {(x) < x® for all € > 0 as x — oo. Pure power-law distributions satisfy (6) with & = 0, in this
case the constant 1 in the numerators of the upper and lower bounds may change. The next definition
considers a similar domination, but now with stretched exponential tails:

Definition 1.8 (Heavier than stretched exponential tails). Consider a distribution D on {0, 1,...}. We
say that D is heavier than stretched exponential with stretch-exponent ¢ > 0 if there exists a function
g : N — [0, 00) such that g(x) — 0 as x — oo, and an infinite sequence of nonnegative numbers
71 < 73 < ... suchthatfori > 1,

P(D = z) > exp(~g(2:)z}). @)
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An equivalent statement to (7) is

—log(P(D =
lim inf —og( ( 2) =

z—00 Zév

0.

We comment that in case of stretched exponential distributions, the tail P(D > K) and the mass function
P(D = K) are a polynomial prefactor away, which can be incorporated in the function g.

The next definition gives the finite random graph model that we consider in this paper: the configu-
ration model with a given degree sequence [12, 50].

Definition 1.9 (Configuration model). Given a positive integer n, and a sequence d, := (di,...,d,)
of nonnegative integers with h, := X', d, even, we define the configuration model CM(d,)) as a
distribution on (multi)graphs constructed as follows. We take n vertices, and assign di, da, . . . , d, “half-

edges” to them, respectively. Then we take a uniformly random pairing of the set of half-edges, and to
each such pair we associate an edge in CM(d,,) between the respective vertices.

In Definition 1.9, in the degree sequence d,, = (d () d(z"’ e, di{”) we allow that the degrees depend
on n. If it is not confusing we drop the superscript (n) from the degree sequence. When the degree
sequence is random, (e.g., coming from an iid sequence D1, D5, ... ), then one may add an extra half-
edgeto D, when };"' | D; is odd. This will not affect the “regularity”” assumptions on the degree sequence
below. The configuration model is a locally tree-like graph: its local weak limit is a Galton-Watson tree
[1, 4]. We expect that our results extend to other nongeometric graph models with branching processes
as their local weak limit, for example, the Erd§s-Rényi random graph, the Chung-Lu or Norros-Reitu
model, rank-1 inhomogeneous random graphs [26, 18, 60, 11], and so on.

We define the empirical mass function v,, of the degrees and the corresponding cumulative distribution
function (cdf) for all z > 0 as

n, 1< 1 <
(@)= 2= = gy and Fy(@) =v((0.2) = - ) Loy (8)
i=1 i=1

noon
Let D, be a random variable with distribution v,,. To be able to relate different elements of the sequence
CM(d,,) to each other, we pose the following regularity assumption, common in the literature [50, 51, 37].

Assumption 1.10 (Regularity assumptions on the degrees). Consider the configuration model in
Definition 1.9. We assume that the sequence (d, )u>1 = ((d1,d2, . .., dy))n>1 satisfies the following:

a) D, with cdf F,(z) in (8) converges in distribution to some a.s. finite random variable D with
E[D] € (0, o). We denote the cdf of D by Fp,.
b) lim, o E[D,] = E[D]. In particular, for any constant M > 0,

’}EEOE[Dnﬂ{DnZM}] =E[D1(ps>m].

Formulating power-law assumptions about a sequence of empirical distributions is slightly different
than about a single distribution, since the minimal mass in the model with n vertices is 1/n and the
maximal degree is n-dependent and finite. Hence, we formulate the next assumption, which ensures that
the empirical distribution F;, follows a (possibly truncated) weak power law.

Assumption 1.11 (Power-law empirical degrees). We say that the empirical distribution of (d, )n>1
follows a weak (possibly truncated) power law with exponent T > 1 with exponent-error & > 0, if there
exist constants ¢, ¢y, zo = z0(&), no(€) > 0 and a function z\'., (&, n) — oo as n — oo such that for all
n > no(e), F,(z) in (8) satisfies

Ce

"t < Cu
Z('r'—l)(1+e3) -

1-F,(z) < m, 9)
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for all z € [20, z\ax (&, n)], while the upper bound holds for all z > zo. In this case we call T — 1 the

tail-exponent, consistent with Definition 1.7.

When the degrees are coming from an iid sample of a distribution D that satisfies (6) with some
7, &, then one can use Chernoff bounds to show that Assumption .11 is also satisfied with a slightly
larger € and zmax (€, 1) can be chosen slightly below the typical maximum degree among iid degrees,
which is n(1=9/(7=1 with high probability. However, in Assumption 1.11 we also allow for much

lower z\\). (€, n). In such cases we talk about truncated power-law degrees. Since the truncation value

7 (g,n) — o0 as n — oo, the limiting distribution D satisfies (9) for all (fixed) z > zo. We also
comment that if & > 0, by slightly increasing & and zg if necessary, one may choose ¢, = ¢, = 1.

Further, if instead of (9), one has the bounds
()27 < 1= Fu(2) < ()27 (10)

for some slowly varying functions ¢}, £, then (9) holds for any & > 0, since z7% <« €1(z2) < r(z) < z°
by Potter’s theorem [8]. Then zop may depend on &. In one of our results below, we additionally require
the following assumption on the maximum degree and the empirical mass function.

Assumption 1.12. We assume that there is an € > 0 such that there exists constants ny (&), zo(g), C, > 0,
such the empirical measure v,, in (8) satisfies, for all n > ny(g),

C
vn(2) < (1” ; forallz > z0(&), (11)
z7(l-¢
max d; < C,n'/(71=8)-D (12)
i<n

The first condition implies the upper bound in Assumption 1.11, since (11) implies that v,,((z, o)) <
Dise cui 7178 = ¢ g~ (r=lrre — o7 p=(7=D(1=8") with ¢’ := g7 /(7 — 1). The second condition is also
quite natural, and both conditions hold for the empirical measure of iid degrees whp, as the following
example shows. The proof can be found on page 74 in the Appendix.

Example 1.13 (lid degrees). Suppose d,, = (D1, ..., Dpn+ 1{X; <, Dn,i 0dd}) where (Dp ;)i<, are
iid from a distribution D satisfying Definition 1.7 with some a. Then (d,,),>1 with high probability

satisfies Assumptions 1.10, 1.11 with 7 = @ + | and any & > 0, and z\% (e,n) = n!/(@(+2) iy
Assumption 1.11, that is, with zg(&/2) from Definition 1.7,

Yz > z0(g/2) : 1 - F,(z) < z7¢U=%) and

Vz e [20(8/2),n1/(a(1+8))] -1 —Fn(Z) > Z—(x(1+a) -1 (13)

Further, D satisfying Definition 1.7 for some a implies that (12) holds whp with 7 = @ + 1 and any
£ > 0, that is, P(max D,,; < n'/(@(1=2))) 5 | If D satisfies also that for all £ > 0 there exists zo(&),
such that for all z > zp(¢g),

P(D =z) <7719, (14)

then the empirical measure v, (z) of d, also satisfies (11) with any & > 1/7. That is, for all & > 0,

P(VZ > 20(8) : va(z) < z7TU-V/T+e) = 27(77”8')) — 1. (15)

Finally, if one considers truncated power-law distributions with max, ; D, ; = o(nl/ 7), then for all
>0

P(Vz > 70(8) 1 vu(2) < z_T(l_‘E)) - 1. (16)
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While (15) seems rather weak, it is essentially best possible. Namely, using the lower bound one can
show that the vertices with maximal degree are of order n(!+°(1))/(7=1) "and when there is a single vertex
with degree in this range, then the upper bound in (15) can be sharp. Examples on truncated power-
law degree distributions can be found in [68, Example 1.20, 1.21] where graph distances are discussed
under truncation. Here, as soon as the maximal degree is o(n'/7), the true 7 can be recovered also for
point-masses with any & > 0 in (16).

2. Results

We focus on the behavior of degree-penalized CP and BRW for small values of 4 > 0. Table | contains
a simplified summary of our results. We first state our results on the product penalty, that is, when
f(x,y) = (xy)* for some p > 0 in Definitions 1.1 and 1.2. We based this choice on a slightly related
model, degree-dependent first passage percolation [40], where this penalty function is proven to show
rich phenomena for first passage percolation. Some of our results extend to polynomial penalty functions
as well; see Remark 2.4 below. We start with results on Galton-Watson trees. On a Galton-Watson tree,
the degree of a nonroot vertex v equals its number of offspring plus 1. Survival proofs for the contact
process are often based on the “star”-graph strategy. This means that an infected high-degree vertex of
degree K survives exp(®(1%K)) long time with high probability where the infection is sustained by
repeated reinfections from the surrounding K neighbors. If the rate is changed to A’ = AK™* around this
vertex, then a vertex of degree K survives exp(®(12K'~%#)) long, which grows with the degree K only if
< 1/2. This intuition suggest a phase transition at u = 1/2 that we confirm in the following theorems:

Theorem 2.1 (Product penalty with 4 < 1/2 on Galton-Watson trees). Let T be an infinite Galton-
Watson tree with offspring distribution D, so that py = P(D = 0) = 0. Consider the degree-penalized
contact process CPy 4 and branching random walk BRW ¢ , with penalty function f(x,y) = (xy)* in
Definitions 1.1 and 1.2 for some u € [0, 1/2).

When the tail of D is heavier than stretched-exponential with stretch-exponent 1 — 2u (as in
Definition 1.8), then for all A > 0, CPy 2(T, 15) and BRW (T, 1) both show local survival, for
almost all realizations T of the Galton-Watson tree, that is, 1.1 = d¢c2 = 0.

By setting u = 0, we recover the result for classical CP: if the tail of D is heavier than exponential
then there is local survival [34]. Theorem 2.1 generalizes this result for any u < 1/2, and we see a phase
transition point at u = 1/2. The counterpart of this theorem for u > 1/2 holds generally on any graph.

Theorem 2.2 (Product penalty with u > 1/2). Consider the degree-penalized contact process CPy ,
and branching random walk BRW ¢ 4 with penalty function f(x,y) = (xy)* in Definitions 1.1 and 1.2
for some u > 1/2. Then A1 > 1, equivalently, for all A < 1, CPf,/l(G,éo) and BRWf,,l(G,g_fO) both
go extinct almost surely on any (finite or infinite) graph G whenever |§0| < oo (respectively, |x,| < o)
almost surely. Further,

E[TR(G.£) | G.£1 SEITNY(G.£) | G.£ 1 < ) &o(ndy™/(1-2) (17)
veVv

and P(TP

ext

least 1 — A.

ext

(G,go) > t) and P(TbrW(G,io) > t) both decay (at least) exponentially in t at a rate of at

This result is novel. Intuitively, it shows that when the average number of infections to neighbors
is at most A times the square root of the degree, then A.; = 0 on any graph. This is especially
counterintuitive on graphs/trees with power-law degree distribution, since without penalization those
have 4.1 = A2 = 0 by [34], and the penalization for u < 1 is not yet strong enough to suppress
the power laws: since the average number of infections out of a vertex is polynomial of the degrees
(®(Adeg(v)'#), which still follows a power law when deg(v) does so. The bound (17) bounds the
mean extinction time as a function of the initially infected set. If G is finite, &y(v) = 1 for all v, then the
bound is linear in the number of edges of G.
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Our next theorem is about the same processes on the configuration model. For the sake of simplicity,
we assume that min;<, d; > 3, ensuring that for all sufficiently large n, CM(d,,) on n vertices has a
giant component C;’ containing n(1 — o(1)) many vertices with probability that tends to 1 as n — oo,
see [50, 51]. We use the Op, ®p-notation in the standard way, see notation at the end of Section 2.1. By
poly(n) we denote polynomial functions of n (with an arbitrary but finite exponent).

Theorem 2.3 (Product penalty on CM). Let G, := CM(d,) be the configuration model in Definition 1.9
on the degree sequence d, = (di,...,dy,). Consider the degree-penalized contact process CPy 4
and branching random walk BRW ¢ 3 with penalty function f(x,y) = (xy)* for some u > 0 from
Definition 1.1 and 1.2.

(a) Let u < 1/2, and d,, satisfy the regularity assumptions in Assumption .10 with min;<, d; > 3, so
that D has heavier tails than stretched-exponential with stretch-exponent 1 -2 (as in Definition 1.5).
Then for all A > 0, bothCPy A(Gn, 15 ) and BRW p 4(Gp, L ) survive at least until ©p(exp(Cn))
long time.

(b) Let u > 1/2. Then for all fixed A < 1, both CPf,/l(Gn’lGn) and BRWf,,l(Gn,lGn) go extinct in

0:(3d, ™) = O(|E(Gy)]).

There results are stated in the annealed setting, as the Op, ®p notation can accommodate the errors
coming from bad realizations of G,. However, part (b) is a direct application of Theorem 2.2, and
as such it can be strengthened to the quenched setting, and noting that 1 — u < 1, the bound on the
extinction time is linear in the number of edges of G,,.

Part (a) here recovers the result of [6] for classical CP by setting p# = 0, and generalizes it for
u € (0,1/2). The phase transition at u = 1/2 occurs again: Part (b) is again novel and it is the finite
graph analogue of Theorem 2.2. It shows that on finite graphs extinction happens quickly when u > 1/2.
Starting from the all-infected state on G, is not a serious restriction. In part (a), when started from a
single vertex, that is, §0 = 1,, the process has a positive probability of reaching a large pandemic, and
the same result — long survival — is valid with positive probability. See [6] on how to move between a
single vertex and all vertices as starting states.

Remark 2.4 (Polynomial penalties). The proof of Theorems 2.2 and 2.3 (b) are based on supermartingale
arguments. They also work more generally for any penalty function fj(x,y) = x*y” with u+v > 1
under the same conditions, that is, for all graphs G, whenever 4 < 1 and initial infected set & is
finite. In particular, with x;(v) the number of particles on vertex v in the BRW, the supermartingale
is of the form M, = , x,(v)dl‘f for some B € [1 — u,v]. Using the same supermartingale, it is thus
straightforward to extend the result from monomials to polynomials of the form

fole,y) = )ty
ieN
with at least one term, say the first one, satisfying p;+v; > 1,and all a; > 0. In this case we can guarantee
extinction whenever A4 < ay, using the stochastic domination of CP by CPqy, 5,0 = CPj a/4,, since
the penalty is higher in process with f>, leading to smaller infection rates, see (20) below. By the
same reasoning, the proof of Theorem 2.2 also extends to processes with penalty function

fr(x,y) = 1/ Zaix_“iy_vi, with Za; <
ieN ieN

whenever (u;, v;);en are such that and there is a unique dominant term (say the first one) in the following
sense: (1 < u; and vy < v; forevery i € N and u; + vy > 1. We then bound the infection rates from
above as follows:

A fi(duedy) =AY aid dy < A Y ) = a( Y ai) [ filduedy),

1 4
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with fi(x,y) = x*1y*. So, using stochastic domination, whenever 4 < (3; a;)~', Theorem 2.2 is still
valid by the first part of the remark.

It turns out that — instead of the product penalty — switching to a class of penalty functions f that are
monomials of max(x, y) shows a richer behavior, and we see an extra phase when u crosses 1.

Theorem 2.5 (Max penalty on GW trees). Let T be an infinite Galton-Watson tree with offspring
distribution D, so that P(D = 0) = 0. Consider the degree-penalized contact process CPy , and
branching random walk BRW ¢ 4 with penalty function f(x,y) = max(x,y)* for some u > 0 in
Definitions 1.1 and 1.2.

(a) Let u < 1/2, and the tail of D be heavier than stretched-exponential with stretch-exponent 1 -2y, (as
in Definition 1.8). Then A. » = A¢c 2 = 0, that is, for all A > 0, the contact process CPy (T, 1) and
BRW ¢ 1 (T, 1) both show local survival, for almost all realizations T of the Galton-Watson tree.

(b) Let u € [1/2,1), @ € (0,1 — ), and the tail of D weakly follow a power law with tail-exponent «
(as in Definition 1.7). Then Ac1 = 0 and Ac» > 0. In particular, for A € (0,1/2), CP; (T, 1)
and BRW ¢ (T, 1g) both show local extinction and global survival, for almost all realizations T
of the Galton-Watson tree.

(c) Let u € [1/2,1), and E[D'"#] < co. Then A.,; > 0. In particular, for A < 1/(2E[D'7H]),
the processes CPy (T, 1) and BRWy (T, 1) both go extinct almost surely, for almost all
realizations T of the Galton-Watson tree.

Part (a) here again recovers classical results [34] when y = 0. Whenever u > 1/2, we see two new
phases: if the offspring distribution has very heavy tails (part (b)), then local extinction still occurs (see
Theorem 2.6 below) and the process survives by escaping to infinity for any 4 > 0, thatis, 1.1 =0
for almost all realizations of the Galton-Watson tree. If the offspring distribution has slightly lighter
tails (but could still be a power law with infinite mean) in part (c), then global extinction occurs for
small A. The fact that the boundary between these two phases depends on the exact power-law tail has
not been observed before in the contact process literature on static graphs [17]. Note that @ < 1 — ¢ in
part (b) means that E[D'™#] = co, and for power-law degrees with @ > 1 — i, we have E[D!#] < co.
In this sense part (b) and (c) are almost matching and we leave out only the case @ = 1 — u, where the
(potentially present) slowly varying function multiplying the power-law decay shall play a decisive role
in survival vs extinction (see below (6)). To avoid technical difficulties of tail-estimates, we decided to
leave out this boundary case. Part (c) above is also valid more generally, see Corollary 2.7 below. To
prove both local extinction (in part (b)) and global extinction (part (c)), we develop a new technique that
we call loop erasure of infection paths, see Section 2.1 and Figure 1. This technique is robust, and can
be used to obtain stronger results on extinction more generally, hence we state them separately. Note
that there is some overlap between Theorem 2.5 and the theorem below.

Theorem 2.6 (Max penalty on trees and graphs). Let T be any (possibly infinite) rooted tree with
root @. Consider the degree-penalized contact process CPy ; and branching random walk BRW ¢ ,
with penalty function f(x,y) = max(x, y)* for some u > 0.

(@) Letp > 1/2.Then . > 0, thatis, forall A < 1/2, the processes CP ¢ (T, §0) and BRW ¢ 2 (T, x,)
both show local extinction almost surely, whenever |§0| < oo (resp., |x,| < o) almost surely.
In this case we further have that for any v € T, the tail-distributions of the local extinction times
T.(T, éo’ v), TV (T, Xy, V) decay exponentially in .

(b) Let yt > 1. Then A1 > 0, that is, for all A < 1, the processes CPf,,l(G,go) and BRWy (G, x,)
both go extinct almost surely on any (finite or infinite) graph G whenever |§0| < oo (resp., |xy| < o)
almost surely, hence also on any tree T. Further, the bound (17) is also valid here on the extinction
times, which decay at least exponentially in t with rate at least 1 — A.

Part (b) here is the max-penalty analogue of Theorem 2.2 which considers the product penalty with
i > 1/2. In the regime p € [1/2,1) we see a surprising difference: for the max-penalty we can only
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guarantee local extinction on trees, whereas for the product penalty we see global extinction on all
graphs. For the max-penalty CP on Galton-Watson trees, global survival but local extinction occurs for
all small A when E[Dl‘”] = oo, see Theorem 2.5(b), which is a new phase in the CP literature. The
reason for this difference is that under the product penalty it is much harder for the infection to spread
between two superspreaders than under the max-penalty, and in the max-penalty case with E[D'~#] = oo
the infection can escape to infinity via a ray of superspreaders of growing degree.

Here, we prove Theorem 2.6(a) using again the loop erasure of infection paths technique of Theorem
2.5(b-c). It follows from the proof of Theorems 2.5(c) and Theorem 2.6(a) that (local-global) extinction
for small 4 > 0 happens on any tree with at most exponential growth. Recall the upper branching number
br(7) from Definition 1.5.

Corollary 2.7 (Trees with finite branching number). Let T be a rooted tree with br(7) := b < oo, and
consider CPy 4 and BRW ¢ 4 on T with penalty function f(x,y) = max(x, y)* with i > 1/2. Then for
all 2 < b~ /2, the processes CP; (T, 1g) and BRW (T, 1) both go extinct almost surely.

Let T be a spherically symmetric tree with degree sequence d = (dy, dy, da, . . .) satisfying br(7) :=
b < co. Then for all A < b=U=1) /2 the processes CPs a(T,1p) and BRW ¢ (T, 1g) both go extinct
almost surely.

For spherically symmetric trees, finiteness of the upper branching number br(7) is equivalent to
requiring that log br(7") = limsupy _,, % Zi]\i 1 log(d;) < oo. The requirement on A in Corollary 2.7 for
SSTs is slightly milder than for arbitrary trees with finite upper branching number. Our last theorems
describes the behavior of degree-penalized processes with maximum penalty on the configuration model.

Theorem 2.8 (Max penalty on CM, long-survival regimes). Let G, := CM(d,) be the configuration
model in Definition 1.9 on the degree sequence d,, = (d\, . .., dy) that satisfies the regularity assump-
tions in Assumption 1.10. Consider the degree-penalized contact process CPy , and branching random
walk BRW ¢ 4 with penalty function f(x,y) = max(x, y)¥.

(a) Let u < 1/2, and the tail of D be heavier than stretched-exponential with stretch-exponent 1 — 2u
(in the sense of Definition 1.8), and min; <, d; > 3. Then for all A > 0 the process CPy (G, lGn)
survives at least until ®p(exp(Cn)) long time.

(b) Letu € [1/2,1), and (d,)n>1 satisfy the power-law empirical degree Assumption 1.11 with exponent
T and exponent-error € > 0, with

1-¢
l+&°

u<@B-r-e(r-1)- (18)

Then for all A > 0 the process CPy a(Gy, 15 ) survives until ©p(exp(Cn)) long time.

Part (a) and (b) here both show long survival; the difference is that when p < 1/2, the requirement
on the degree distribution is very mild, while one needs sufficiently heavy power-law degrees for long
survival when p < 1/2 (essentially, 7 < 3 — u). We emphasize that the ®p notation implies that the
results are annealed over the graphs, bad realizations are swallowed by the error there, and the proofs
indeed find structures that sustain the infection for a long time, that are only “whp” present in G,, but
are not present in “almost all realizations” of G,, for fixed n. Part (a) here again recovers the result
for the classical CP [0] by setting u = 0. Part (b) is a novel phase; it is the finite-graph analogue of
Theorem 2.5(b), as we explain now. As the error in the power-law exponent £ | 0, the condition in (18)
simplifies to u < 3 — 7, which is equivalent to the condition that @ := 7 —2 < 1 — g in Theorem 2.5.
Here @ = 7 — 2 is the tail-exponent of the size-biased version of D, say D, which can be shown to
weakly follow a power law with @ = 7 — 2 > 0 in the sense of Definition 1.7. The local weak limit of
the configuration model is a Galton-Watson tree with a version of the size-biased degree distribution D.
Theorem 2.5(b) describes that when u € [1/2, 1), on a weak power-law GW tree the processes both
survive globally exactly when @ < 1 — u. Hence, this theorem reflects the analogous Theorem 2.5(b)
on Galton-Watson trees, showing that global survival (but local extinction) there implies long survival
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for the corresponding configuration model. Our last theorem states fast extinction on the configuration
model, and admittedly it has the most involved proof.

Theorem 2.9 (Max penalty on CM, fast extinction regimes). Consider the configuration model G,, :=
CM(d,,) in Definition 1.9 on the degree sequence d, = (dy,...,d,). Consider the degree-penalized
contact process CP ¢y and branching random walk BRW ¢, with penalty function f (x,y) = max(x, y)*.

(@) Letu € [1/2,1), and (d,)n>1 satisfy the regularity assumptions in Assumption 1.10, and the power-
law empirical degrees of Assumption 1.11—1.12 with exponent T and exponent-error € > 0 with
7(1 = &) > 3. Then for all A small enough the processes CPy a(Gn, 15 ) and BRWy 1(Gp, 1 )
both go extinct in @p(log n) time.

(b) Let u = 1. Then for all A < 1, the processes CPf,/l(Gn’lGn) and BRWf,,l(Gn,lGn) both go

extinct in Op(poly(n)) time, whenever it holds for (d,) that ¥;_, dl.l_"’ = Op(poly(n)).

The results of this theorem, especially part (a) are novel in the contact process literature. First,
CP dies out on power-law configuration models when, on average, a vertex transmits the infection to
fewer neighbors than the square root of its degree. Second, we could prove that the extinction happens
extremely fast, in ®(log n) time, using our new technique of loop erasure of infection paths combined
with new structural results on the configuration model with 7 > 3 itself. Namely, we developed the
loop erasure technique for trees where loops of infection paths are back-and-forth, and we erase these
back-and-forth steps gradually. However, we cannot erase nontrivial loops. To be able to push the
technique through for the configuration model with 7 > 3 power law degrees, we develop strong bounds
on the surplus edges of neighborhoods, which also controls the number of nontrivial loops, see below.
The best currently known bounds for the extinction time on graphs whose degree distribution has infinite
support are polynomial [6], using recursive techniques on subtrees. On d-regular graphs, extinction of
CP in its subcritical regime also happens in ®(logn) time [56]. Theorem 2.9(a) is the counterpart of
Theorem 2.8(b), that is, it shows fast extinction on the configuration model with power-law degrees with
sufficiently light tail. For long survival, Theorem 2.8(b) essentially requires 4 < 3 — 7, equivalently,
7 > 3 — p. Here in Theorem 2.9(a) to prove extinction we need essentially 7 > 3, that is, we leave
the cases when 7 € (3 — u,3) open. We show that when 7 > 3, the local weak limit GW tree can
be embedded until ®(logn) generations and with only a bounded number of surplus edges for all n
vertices all-at-once, see Proposition 5.1, which might be interesting in its own right. We can then relate
extinction of the CP/BRW on this new structure using a modified version of our methodology of loop
erasure of infection paths also accommodating the presence of a few cycles in @(log n) neighborhoods
(see below in Section 2.1) so that CP/BRW never reaches the last generation of the “local weak limit +
few surplus edges” approximation.

When 7 < 3, the configuration model looks structurally very different: the Galton-Watson tree forming
the local weak limit of the configuration model has infinite mean, so it grows doubly-exponentially,
and can be embedded into the configuration model only until ®(loglogn) generations, and with many
surplus edges (i.e., edges beyond the number of vertices—1 that form the tree). On the one hand the
O(loglog n) generations of the embedding are too short and leave a good probability for CP/BRW to
escape the embedded tree, and on the other hand there are too many additional cycles on the embedded
tree that might boost the performance of CP/BRW. This causes the gap in the theorem, and so to prove
extinction when 7 € (3 — y, 3) on the configuration model remains open.

2.1. Background, discussion and overview of proof techniques
In the following we highlight our novel proof techniques and their relation to the literature. The overview
follows the structure of the rest of the paper.

Novel methodology: loop erasure in the space of infection paths (Sections 4 and 5). In Sections 4.5, 4.6
for the proof of Theorems 2.5(c) and 2.6(a) we develop a new recursive path counting argument on the
space of infection paths, where we essentially carry out a (probability-weighted) loop erasure on the set
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of possible infection paths. Then we relate the probability that BRW ¢ , survives on 7 to the product of

degrees I‘[ﬁ=1 d;r:” summed over nonbacktracking paths, called rays = = (79 = @, 7y, 72, ...,) on the
tree, that is, paths that always go downwards. See Figure | for an illustration.

To extend the same result to the configuration model, that is, to prove Theorem 2.9(a) (in Section 5),
we need to handle loops in the underlying graph. First in Lemma 5.2 we develop a new moment bound
for the total size of GW trees with power-law offspring distribution with n-dependent maximum degree,
(i.e., coming from the empirical degrees of the configuration model) valid for all T > 3. We use this
new bound to show that whp the following holds for configuration models with T > 3 on n vertices:
for some small § > 0, the § logn graph-neighborhood of every vertex only has at most a constant £
many surplus edges, that is, upon removing at most £ edges the ¢ log n neighborhood becomes a tree.
This result, Proposition 5.1, may be of independent interest. Returning to the degree-penalized contact
process on the configuration model, we extend the (probability weighted) loop-erasure method that we
developed for trees, to graphs with a bounded number of surplus edges, which is a nontrivial adaptation
itself.

Survival on GW-trees with stretched-exponential-tailed offspring (Section 6). Theorem 2.1 is the gen-
eralization of the result by Huang and Durrett [34], where the authors prove that the classical contact
process shows local survival on Galton-Watson trees whenever the offspring distribution has no expo-
nential moments, that is, for all ¢ > 0, it holds that E[eCD ] = co. When we set ¢ = 0 in our degree
penalised CP, we get back this result. For the degree-penalized versions, (i.e., 4 > 0) due to the penal-
ties, the same condition is not sufficient for the proofs to carry through. For our proofs to hold, we need
that D has heavier tails than stretched exponential with stretch exponent that is strictly less than 1 — 2,
as in Definition 1.8. We leave it an open question whether this condition in Theorem 2.1 is sharp. For
the classical contact process on Galton-Watson trees, the no-exponential-moments condition is sharp,
as shown by Bhamidi, Nam, Nguyen and Sly [6].

The combination of Theorems 2.1 and 2.2 shows that the product penalty has a phase transition at
p = 1/2. The usual argument that star-graph maintain the infection, as introduced by Chatterjee and
Durrett [17], gives a back-of-the-envelope calculation that suggests this phase transition. Namely, a
star-graph has a central vertex of degree say K, connected to K leaves or very low-degree vertices. The
degree-penalized contact process on this structure survives typically for a time that is Qp (exp(A2K12#)).
Hence, whenever 1 — 2u > 0, star-graphs survive long enough to infect other star-graphs embedded
in the graph, provided these stars are not too far away from each other, that is, at most the logarithm
of the survival time, giving at most o(K'~2*) away. The stretched-exponential condition on the tail of
D ensures that we can find stars within this distance of each other. For the infection to be able to pass
between the stars, we also need to ensure that the path connecting the stars only contain low-degree
vertices, so that the penalty does not hinder the infection from passing. This is new compared to the
classical contact process, see Section 6.2.

Local extinction and global survival for small A on power-law GW-trees. The combination of
Theorems 2.5 and 2.6 shows that for the max-penalty when u € (1/2,1), on a Galton-Watson tree,
local extinction but global survival happens for any small 4 > 0 and D has a power-law tail with tail-
exponent @ < 1— u. The behavior for large rates (41 > 1) may depend on the exact offspring distribution,
and the contact process and the branching random walk may differ in behavior, see the work of Pe-
mantle and Stacey [58]. Comparing Theorems 2.5 and 2.6 for the max-penalty with the corresponding
Theorems 2.1 and 2.2 for the product penalty, we see that the phase of u > 1/2 for the max-penalty is
subdivided into three different sub-phases, and the almost-sure extinction on arbitrary graphs requires
p > 1 for the max-penalty, c.f. 4 > 1/2 for the product penalty. The subphases of max penalty with
u € [1/2,1) (Theorem 2.5(b)—(c)) are novel, since they provide the first natural static graph model
where the contact process on power-law degree graphs can be subcritical (c) and show only global sur-
vival (b); and the exact condition also depends on the exact power-law exponent. For dynamical graphs
a similar phenomenon occurs, see the recent work of Jacob, Linker and Morters [36].
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Survival proofs: k-cores sustain the infection when stars heal quickly (Section 7). When u > 1/2,
in the degree-penalized contact process, star-graphs heal essentially immediately and hence the usual
arguments that they maintain the infection for a long time break down. In this regime on the GW tree,
when the offspring distribution is sufficiently heavy-tailed (so that the (1 — u — £)th moment is infinite
for some £ > 0), we prove that contact process shows local extinction but global survival by escaping
to infinity, by Theorem 2.6(a) and Theorem 2.5(b).

In the configuration model with the same local weak limit, we find a new sub-graph that maintains the
infection exponentially long in n. Extending the results of Janson and Luczak [37] we show that a k-core
H, < G, is present whp whenever 7 € (2, 3), with size linear in n, on vertices with degree k(+m/G-7)
for some small = n(&). The heuristic idea is that within H,,, the expected number of vertices that an
infected vertex infects before healing is (ignoring the n error in the exponent, and denoting by degs (v)
the degree of a vertex in the graph G):

degyy (w)r(u,v) = degy (u)A(degs (1) Vv degg ()™ ~ kAk /G0 ~ qp! =177,

which grows with k whenever u < 3 — 7. We then show that when we choose k a large A-dependent
constant, the graph H,, sustains the contact process exponentially long. As far as we know this is the
first model where k-cores are directly used to maintain the infection process.

Long survival on the configuration model with stretched exponential degree distribution (Section §).
In the regime where u < 1/2, a star-graph of degree j maintains the infection long enough to pass
it to a neighboring star-graph if the graph-distance between them is o(j'™2#). This idea will lead to
Theorem 2.3 (a) and, as a consequence, Theorem 2.8 (a). Our proof here is an almost direct adaptation
of the argument in [6] where we embed an expander-graph of stars with degree approximately j into the
original graph so that each edge of the expander corresponds to a path of length o(j'~2#). This leads to
the condition of heavier than stretched exponential degree distributions with the exponent at most 1 —-2.

Another CP-model with degree-dependent transmission rates. Wei Su in [66] studies a degree-penalized
contact process and branching random walk with the asymmetric penalty function f(x,y) = x. This
penalty function implies that the total rate of infection from every vertex vis a constant A > 0, irrespective
of the degree of v. In this case, CP can be coupled to a “usual” un-penalized BRW on the GW tree with
Poisson() total offspring, and finer results can be obtained on Galton-Watson trees, not just the small
A > 0 behavior. For BRW, extinction occurs when 4 < 1, and local vs. only global survival depends
on whether 4 > 1/7(7) or not, where »(7) is the spectral radius of the underlying tree with respect
to symmetric random walk. For the contact process, the minimal degree in the Galton-Watson tree is
decisive, see [66, Theorems 3.1, 4.2].

Comparison to degree-dependent FPP. In a sequence of papers, Komjathy et al. [40, 41, 42] study
non-Markovian degree-dependent first passage percolation (dd-FPP) on spatial graphs with power-law
degrees with exponent 7. In dd-FPP, there is no healing, and hence, reinfections are not allowed. When
one considers exponentially distributed transmission times, the degree-dependence there is similar to
the product penalty here. Despite the similar transition rates, the results are entirely different for the
two processes. The main phase transition point in our results, u = 1/2 is completely absent in dd-FPP:
this transition point emanates from reinfecting the same high-degree vertex over and over. Explosion
(reaching infinitely many individuals in finite time) stops happening in dd-FPP when u < (3 — 1)/2,
see [40]. The other two papers [41, 42] study the rate of growth in time of the infection cluster on
geometric inhomogeneous random graphs. The underlying geometry there is crucial, and the three phases
are: stretched exponential, polynomial faster than the dimension, and polynomial growth proportional
to 9. The proof techniques mostly consist of renormalization techniques. We leave the question of
spatial underlying graphs for degree-penalized CP for future projects.

Further directions. We believe that most of our results can be relatively easily adapted to graphs with
GW trees as local weak limits, for example, the Chung-Lu or Norros-Reitu models or even to general
inhomogeneous random graphs [11, 18, 60]. Our current proof techniques pose the restriction that they
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all rely on tree-based arguments or “almost” tree-based arguments. It would be interesting to see how far
this can be relaxed. Sparse random intersection graphs [9, 10, 20, 38, 63] or random intersection graphs
with communities (where not every community is a complete graph [69, 70]) provide a natural candidate
for this. These graphs are no longer locally tree-like, yet there is an embedded tree-like structure formed
by the communities [69]. Another interesting direction is to develop robust techniques that can extend our
results (beyond the p > 1 case) to spatial graphs with inhomogeneous degree distributions, for instance
to geometric inhomogeneous random graphs [14], scale-free percolation [21], or the hyperbolic random
graph [43]. A coupling argument to the related degree-dependent first passage percolation [40], which
explodes also exactly when @ := 7 —2 < 1 — y, indicates that at least Theorem 2.5(b) on global survival
must carry through for these graphs. Considering the recent growth phases of degree-dependent first
passage percolation (1-FPP) in [41, 42], it is an intriguing question to ask whether the front of the
degree-dependent contact process started from the origin and conditioned to survive, follows the same
universality classes of growth as the 1-FPP spreading process.

Metastable behavior of the original contact process on finite graphs is a lively field of research starting
with [16]; see also [25, 52, 54, 55, 61, 62]. See [5, 15, 17, 53] for results on power-law preferential
attachment models and configuration models, [48] on hyperbolic random graphs, [19, 35, 36] on
dynamically evolving graphs, and [30] on spatial random graphs. Further studying metastability of the
degree-penalized processes here (for instance, investigating metastable densities) is an interesting future
direction.

Organization of the rest of the paper: Before the proofs we introduce some necessary terminology
and preliminary facts about the contact process and branching random walks in Section 3. Then, in
Section 4 we give the proofs of Theorems 2.2, 2.3(b), 2.5(c), 2.6(a), (b) and 2.9(c). In Section 5 we prove
Theorem 2.9(a). Section 6 contains the proofs of Theorems 2.1 and 2.5(a), (b). In Section 7 we provide
the proof of Theorem 2.8(b). Finally, in Section 8 we give a sketch of the proofs of Theorems 2.3(a)
and 2.8(a).

Notation: When we compare degrees of vertices in graphs on the same vertex set, we use the notation
degq; (v) for the degree of vertex v within graph G. Unless specified, we always think of graphs as
undirected. With a slight abuse of notation, we use |G| as a shorthand for |V (G)|, the number of vertices
in G.

We use the abbreviations “rhs” and “lhs” for “right-hand side” and “left-hand side” (of an equation),
“jid” for “independent and identically distributed” and “whp” for “with high probability,” that is, with
probability converging to 1 as the size of the underlying graph (the number of its vertices) tends to
infinity. For a deterministic function g(n), we say that a sequence of random variables X,, = op(g(n)),
if the sequence (X,,/g(n)),>1 tends to O in probability, and we say that X,, = Op(g(n)) if (X,,/g(n))n>1
is a tight sequence of random variables. Similarly, X,, = Qp(g(n)) if (g(n)/X,).>1 is a tight sequence,
and finally, we say that X, = Op(g(n)) if X,, = Op(g(n)) and X,, = Qp(g(n)) both hold.

3. Preliminaries

In this section we describe some basic properties of the contact process and the underlying random
graphs that will be used throughout the paper.

3.1. Graphical construction of the contact process

We briefly discuss the graphical construction of the contact process, based on Section 6.2 of [31]. The
graphical construction provides the mathematical definition of the contact process, and is useful for
various coupling arguments. The idea is to record the infection and healing events of the contact process
CPs (G, g_fo) on the space-time domain V X [0, co). For a Poisson point process PPP on [0, o), we say
that ¢+ € PPP if ¢ is an arrival time (a point) in the given PPP. Further, PPP(/) denotes the set of points
that fall in the set I C R.
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Definition 3.1 (Graphical construction of CP). For a graph G = (V, E), consider for each v € V an
independent Poisson process PPP,, with rate 1, and, independently of these, further independent Poisson
processes PPP,,,, for each u, v € V with corresponding rate r(u,v) = A-e(u,v)/ f(dy, d,). The healing
events in (1) form a subset of the arrival times of (PPP,), <y, and the infection events in (2) form a
subset of the arrival times of (PPP,,, );,,v}e£ that we describe now.

We define an infection path as a sequence {(vo,to), (vo, 1), (vi,t1), (Vi,12), ..., (Vi,tk+1)} With
vertices vo, Vi, ...,Vr € Vand times g < t] < ... < fi41 such that

(i) PPP,,([#;,ti41]) =0 foreachi € {0,...,k}, and
(ii) t; € PPP,, |, foreachi € {1,...,k}.

Then, we set
&;(u) = 1{there is an infection path from (v, 0) to (u, t) for some v € éﬂ}, ueV,t>0, (19

that is, we say u is infected at time ¢ if the space-time point (u, t) can be reached by an infection path
started at some infected v at time 0. Here, and in the future, with a slight abuse of notation we use the
convention that v € g—‘[ means that §t (v) =1 for the 0-1 vector ft (i.e., we also treat 5[ as a set).

We define the contact process to be the process obtained from (19). Note that we do not exclude the
possibility of finite-time explosion, meaning that a process started from finitely many infections reaches
infinitely many infections in finite time.

This definition is useful for coupling contact processes with different initial conditions and different
spreading rates. The following is an easy consequence of the graphical construction.

Corollary 3.2. For two penalty functions fi, fo for which fi(x,y) = fa(x,y) holds for all x,y > 1, it
holds on any graph G and arbitrary initial starting state fo and any A > 0 that

d
CP;i.A(G, &) < CP5a(G. ). (20)

Proof. The stochastic domination in (20) is the consequence of a standard coupling argument: con-
struct the graphical construction of CPg, ,I(G,éo), that is, of the process with higher infection rates
(A/ f2(u,v))u,v. Then, independently for different pairs uv, on PPP,,, keep every infection event
(point) with probability (1/f1(u,v))/(A] f2(u,v)) = fa(u,v)/fi(u,v), independently across points.
The thinned PPP has rate Af;(u,v), hence we obtain a graphical construction of CPj (G, g_fo). This
joint realization of the two processes gives a coupling of CP; (G, éo) and CPy 1 (G, {0), so that every
infection event in the former process is also an infection event in the latter process. This finishes the
proof of (20). m]

For the branching random walk, we adopt a different definition: we construct the process via particle
genealogies. Heuristically speaking, every infected particle can trace back its infection via a finite-length
chain of particles to a particle infected initially. In the next section we make this notion precise.

3.2. Genealogic branching random walks

We now describe a construction of branching random walks that keeps track of not only the number
of particles per site, but also of the genealogy of particles. The advantage of defining the process via
genealogies is that it allows us to treat the process both “locally” as well as “globally”: it is possible
that the process locally is well-behaving (even dies out) while at the same time it escapes to infinity
in finite time, called explosion. Even if this latter event happens, the genealogical definition allows for
(local) particle-chains also beyond the explosion time. This will be useful for proofs to show both local
and global extinction, which are based on counting particles with given genealogies. Recall that for two
vertices u and v in a graph G, we write e(u, v) to denote the number of edges between u and v.
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Definition 3.3 (Set of genealogical labels). Given a graph G = (V, E), we let 7 = 7 (G) be the set
T ={(ug,...,um) :meN, ugy,...,um €V, e(uj,u;+;) > 0 forall i}.

An element 7 = (uo, ...,un) € I will be a genealogical label attributed to certain particles that
occupy u,,, the final vertex in the sequence. More specifically, a particle occupying u,, receives label &
if it has the following genealogical history: its oldest ancestor particle (present at time 0) was at uo and
gave birth to its next ancestor particle at u1, which then gave birth to its next ancestor particle at u», . . .,
which then gave birth to the particle in question, at u,,. Hence, the label r lists the vertices occupied
by the ancestors of the particle (and the particle itself), in chronological order. In particular, a particle
present at vertex v at time 0 receives the label (v).

For w = (ug, . ..,u,) € 7, we define

I(w) :=m (length of n),

s(m) := u,, (end-location of r). @h

In case m > 1, we also let
p(n) := (ug, ..., un-1) (parent path of ).

Definition 3.4 (Degree-penalized genealogic branching random walk). Consider a graph G = (V, E),
with d,, denoting the degree of vertex v € V. Let f(x,y) > 1 be a function of two variables and A > 0;
for u,v € Vet r(u,v) = A-e(u,v)/f(du,dy). Also let x,, € NVY. We define GBRW; 1(G,x,) =
(Xt)tzo = (y:(m)) e .10 to be the following continuous-time Markov process on the state space N7 .
The process starts at time ¢ = 0 from the state Y defined by

{m(s(n)) if 1(x) = 0;
yo(m) =

0 otherwise,
and evolves according to the following transition rates:

y—y-1, withratey(n)forallm e J; (22)
y—y+1; withrate y(p(n)) - r(s(p(n)),s(n)) forall 1 € T with () > 1. (23)
We interpret y,(7) as the number of particles with label 7 at time f. Guided by this interpretation,

we obtain the degree-penalized branching random walk from GBRW ¢ , as a projection, defined next.
Definition 3.5. Let (yt)tzo = GBRW/ 1(G, x,)), and define
x (v) = Z yi(m), t>0,veV. 24)
neT: s(m)=v

Then, we call (x,);>0 = (x/(v))vev,r>0 the degree-penalized branching random walk on G with rate 4,
penalization function f, and initial configuration x,,.

We show that this definition is consistent with Defintion 1.2 by computing the transition rates. Let
(x,): >0 be the process obtained from (yt),zo as in (24). For each v € V, the transition x — x — 1,
occurs with rate

> ym=x(),

neT: s(n)=v
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and the transition x — x + 1, occurs with rate

D @) @) sm) = Y Yy rwv)y = D x(w) - r(w,v),
neT: s(m)=v, weV a'eT: wev
(7)1 s(n)=w

where we used (24) to obtain the last equality.

In the statement of the following lemma, we interpret products of the form ]—H"_l

~o as 1 whenm =0.
Lemma 3.6 (Expectation formulas for genealogic branching random walks). Let (Xt)tz() =
GBRWy (G, x,), and let 7 = (ug, ..., uy) € .

(a) Foranyt > 0, we have

m m—1
By (0] = e (vo(wo) [ | s i), ©5)

i=0
(b) Define
xo(uo) if = (uo);

Z(n) = (26)
#{t >0:y,(m) =y;— () + 1} otherwise,

that is, in case ©t has length zero (so that m = (ug)), Z(n) is the number of initial particles xo(ugp),
and in case m = () > 1, Z(r) is the number of particles with label i ever born. Then,

m—1

E[Z(m)] = 2(7) = xo(uo) [ | r(ur, uis). 27)
i=0

Before the proof we mention that the factor e™’#/m! is the density of a Gamma random variable
with parameters 1 and m + 1, that is, the convolution of m + 1 iid Exp(1) random variables. Intuitively
this factor comes from the convolution of the healing times of the m + 1 vertices on the path u, . . ., u,,.

Proof. Proof of part (a). We argue by induction in m = [(xr). In case m = 0, we have © = (ug), and
the process (y;())s>0 is a continuous-time Markov chain that starts at yog(7) = xo(ug) at time O and
can only decrease, doing so with rate ys(7r) at any time s > 0. If we interpret the state of this chain
as a number of particles, where each particle dies with rate 1 (and no particles are born), then the
probability that a particle is still alive at time ¢ is e™’, so the expected number of living particles at time
tis xo(ug)e™, as desired.

Now assume that m > 1 and the statement in (25) holds for all 7’ € I with [(n”) < m — 1. Let

mo = (uo), m = (uo,u1), ..., ‘m=7m=(uo,....Um),
and let F be the o-algebra generated by
{ys(mi): 1 <i<m-1, s >0}.

Conditioned on F, the process (ys(7))s>0 is an N-valued (time-inhomogeneous) Markov process that
starts at O at time O and, at any time s > 0, increases by 1 with rate

Vs (M- (5(p(7)), 5(7)) = s (Tm-1)r (Um-1,Um),

and decreases by 1 with rate y, (), by (23) and (22). Again seeing this process as counting particles
(which as before die with rate 1, but now can also be born with a time-dependent rate), the conditional
expectation of the number of particles at time ¢ is

Elye(m) | F1=r(m-1, tm) /0 Vs (1) e ds.
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Taking expectation and using Tonelli’s theorem, this gives

Ely: (7)] = r(um-1,um) .[) E[ys(Tm-1)] ce(79) g

Using this recursively m times, and then using the base induction case E[y,(mg)] = xo(up)e™, we obtain
E[y:(7)]
m-1 t pt t
= xo(uo) 1—[ r(ui—y, ui) / / .. / e~Stem (2751 L g=(m=sm-)g=(i=sm) qg ... dg,
i=0 0 S1 Sm-1

m—1

tm
= xo(up) 1—[ r(ui—y,u;) et - —-
i=0 m:

Proof of part (b). In case () = 0, the statement is obvious, using the fact that yo((v)) = xo(v) for all v.
Assume that [(7) = m > 1, and write 7 = (uy, . . ., U,,). Since the transition y — y + 1, occurs with
rate y(p(m)) - r(tm-1, Usm) by (23), we have -

E[Z(7)] = r(upm-1,Um) E[/o yi(p(m)) dt]
=r(Um—1, Um) E[./o ye((uo, ... s Um-1)) dt]~

Using Tonelli’s theorem and (25) on the right-hand side, we obtain

m=2 00 tm—l .
E[Z(7)] = r(um-1,Um) - (XO(MO) L_o[ r(uhum)) "/0 me dz,

=1
as desired. O

Corollary 3.7. Let (yt)tzg = GBRW; 1(G.,x,), and let n € T with m = l(n). Let X;ny1 be a
Gamma(1, m + 1) random variable, that is, with density f,,(s) = e 5s™/m!. For any t > 0, we have

P(ys(m) > 0 for some s > 1) < e-EB[Z(n)] - P(Xpp1 = 1). (28)
Proof. Let
T :=inf{s > r: ys(m) > 0},
so that the left-hand side of (28) equals P(t < o). Next, define the event
A:={t <00, ys(r) >0forall s € [t,T+1]}.
It is easy to check that
P(A) > P(t <o) -e . (29)

Using first Tonelli’s theorem and then the fact that y () is integer-valued, we have

f E[ys(ﬂ)]ds=E[/ y(m) ds ZE[/ ﬂ{ysm»o}ds]-
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Now, the right-hand side is bounded from below by

E

T+1
Tg- / Ly, (x)>0} dS} =P(A),
where the equality follows from the definition of .A. Also using (29), we have thus obtained
P(ys(m) > 0 for some s > 1) =P(t < o) < e/ E[ys(m)] ds.
t

The desired bound in (28) now follows from (25) in Lemma 3.6 (a). m]

The last statement in this section states the stochastic domination between the contact process and
branching random walk.

Lemma 3.8 (Domination of contact process by branching random walk). Given any graph G = (V, E),
parameters f : R — [0, 00), 1 > 0, and starting state ‘zo € {0,1}Y, it holds that

(€ )20 = CP; 1(G.£,) € BRW; 1(G.£,) = (x,)r20. (30)

This is a well-known result which can be proved either by comparison of transition rates or a coupling
using a graphical construction. See [47, p.34] for details of the latter approach; here we omit further
details.

4. Extinction proofs via particle counting and martingales

In this section we prove several results relating to global, local or fast extinction. We start by showing
Theorem 2.2 on global extinction for the product penalty with ¢ > 1/2 in Section 4.1. Theorem 2.3
(in Section 4.2), Theorem 2.6(b) (in Section 4.3) and Theorem 2.9(b) (in Section 4.4) will all be
straightforward consequences. Then we establish the other extinction phases for the max-penalty,
showing local extinction on all trees — Theorem 2.6(a) — for g > 1/2 in Section 4.5. We then prove
global extinction on GW trees with finite (1 — x)th moment — Theorem 2.5(c) — in Section 4.6.

4.1. Product penalty: global extinction for all graphs when u > 1/2 via martingales

We start by establishing the subcritical phase for the product penalty (Theorem 2.2). Here, the result
holds generally for any underlying graph, not just a Galton-Watson tree, and any monomial penalty
function with polynomial-degree at least 1:

Claim 4.1 (Supermartingale for global extinction). Let f(x, y) = ax*y” for some a > 0 and y,v > 0
suchthat u+v > 1,andlet G = (V, E) be an arbitrary finite graph. Consider the process (x; (v))r>0.vey =
BRW 1(G,x,) for 2 > 0 on a finite graph G, starting from a given state x, € NV Define, for any
a€[l-puv],

M, = Z x (v)dy.

vev

Then, whenever 3}, .y xo(v)dS < oo, the process (M;);»o is a supermartingale with respect to the
filtration F; = o-((xs(v))v eV(g),SS,) for all A € (0, a] and a strict supermartingale when 1 € (0, a).

Proof. We start by observing that the interval [1 — y, v] is nonempty since u + v > 1. To prove
the supermartingale property we analyze the expected increments of (M), o, using the definition of
BRW , in Def. 1.2. Here we use the transition rates for computations instead of the construction in
Definition 3.5. This is justified since we assume that the graph is finite. The change in M; may come
from either a particle disappearing at v due to a death event, or from a new particle appearing at v
due to reproduction events from neighboring particles. We obtain, using the rates in (3) and (4) with
r(u,v) = de(u,v)/f(dy,,d,), that
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B[Mpsa = M, | Fil =B > (e (v) =5, (v)dS | Fi
veV (G)

= > -xm+ D) wr@v)|d-dy

veV (G) ueN (v)

=-Mdr+ > > x(w)- [Ae(w,v)/f(du,d))] - didt,

veV(G) ueN (v)

We substitute f(d,,d,) = ad!,d’, in the last line above, and use that 2~ < 1 by the assumption that
a < v to obtain that:

E[Miar = My | Fil = =Midi + (@) - D > xi(we(uv)dydy™dr
veV(G) ueN (v)

< —M,dt + (1/a) - Z Z xo (u)e(u, v)d " dt.

veV (G) ueN (v)
Exchanging the sums and using that )}, .y e(#, v) = d,, (see Notation in Section 1), we obtain

E[Mirar — M; | Ft] £ —M;dt + (2/a) - Z xf(u)d,ld_’udt.
ueV (G)

Finally, since d,, > 0 is an integer, d,i_” < dg holds by the assumption 1 — u < . Hence,

E[Mysar — M, | Fi] < =M, dt + (1/a) - Z x,(u)d®dt = [(A/a) — 1] - Mydt. 31)
ueV(G)

Since M; > 0, for A < a we obtain the supermartingale property, as [(1/a) — 1] - M,dt < 0, with
strict inequality when A < a. The finiteness of the initial state M| is ensured by the assumption that
My =), cy xo(v)d{ < oo. This finishes the proof. O

Proof of Theorem 2.2. Let G be a finite graph. Without loss of generality we may assume that all
vertices in G have degree at least 1. Indeed, if G contained a (finite) number of vertices with degree 0,
the contact process on those, starting from any éjo with finitely many infected vertices, reduces to a pure
death process where each particle dies at rate 1. This is because infection cannot happen to and from
these vertices. This process goes almost surely extinct. Hence we assume wlog that d,, > 1 forallv € V.

By Lemma 3.8, it is sufficient to prove the almost sure extinction of BRW ¢ (G, é{) ) for any & that
is almost surely finite, that is, >, ¢y £0(v) < oo almost surely. Fix now any such realization of the initial
state. Then, since only finitely many coordinates are nonzero, ».,cy o(V)dy = X, ey Xo(v)dy < oo
also holds for any @ > 0. We assumed A € (0, 1) also in Theorem 2.2. Hence, the conditions of
Claim 4.1 are satisfied with v = ¢ > 1/2, and we can set @ = 1 — u there to obtain the non-negative
(strict) supermartingale (M, );>0, (i.e., not a martingale).

Apply Doob’s martingale convergence theorem for the non-negative supermartingale (M;);>¢. Since
(M;);>0 = 0 cannot take values in (0, 1), (as d,, > 1 and x,(v) € N for all v) its almost sure limit can
only be 0. Therefore, almost surely M; = 0 for large enough t. By the coupling between CP; , and

BRW £ ; and that di_" > 1 whenever d,, > 1, we obtain that

Dam < Y u@d =M 550

vev veVvV

implying global extinction. To compute the extinction time, by definition, Tex (G, §0) > t implies the
existence of at least one infected particle at time ¢. Since 1 — u > 0 and d,, > 1 for all v, the existence
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of at least one infected particle at time ¢ in turn implies M, > 1. By Markov’s inequality, and since
My = |§0 |, taking expectation of (31) and solving the resulting differential equation for E[M; | G, fo]
yields for all 4 < 1:

P(Tet(G,€)) 21| G,£)) <P(M; 21| G,£)) <E[M; | G,£,]
< (X @ma™) exp(=(1 = 0.

vev

Hence,

ElTo(G.£) | Gog < [ Y 6o0di™) exp(=(1 = oy

vev

= (X ama™)/a-a.

vev

This finishes the proof for finite graphs. To extend the result to infinite graphs, we can take an exhausting
sequence of sets V,, (increasing finite subgraphs whose union is the whole graph) and work with the
transition rates inherited from the original infinite graph and take a monotone limit; we omit the details.

The extensions in Remark 2.4 follow immediately from the stochastic domination in (20) and then
the martingale argument applied to the monomial obtained. O

4.2. Product-penalty: fast extinction on the configuration model when u > 1/2
We obtain Theorem 2.3(b) as an immediate consequence of Theorem 2.2, since it applies for arbitrary

finite graphs as well.

Proof of Theorem 2.3(b). The bound in (17) in Theorem 2.2 applied to the configuration model G,

yields that E[Tg5 (G, 16 )(di)i<a] < 2L, dl.lf”/(l — 1). Fast extinction now follows by using the
1_

assumption that >/, d; ¥ = Op(poly(n)). Assumption 1.10 implies that max;<, d; = o(n), so then
this condition is automatically satisfied, but it holds even in a much larger class of degree sequences
(d,,) that do not grow superpolynomially. O

4.3. Max-penalty: global extinction for all graphs when y > 1
Global extinction in Theorem 2.6(b) is a straightforward consequence of that in Theorem 2.2.
Proof of Theorem 2.6(b). For all u > 0,

filx,y) = max(x, y)* = xH2yH2 = f(x,y)

d
holds for all x,y > 1. Hence, the stochastic domination in (20) applies and CP 4 < CPy . Since the
exponent in f> is u/2 > 1/2 by the assumption that y > 1, Theorem 2.2 applies for CPy ,, and the
process goes extinct for all 2 < 1. Hence, so does CPy ;. O

4.4. Max-penalty: fast extinction on the configuration model when u > 1

Fast extinction in Theorem 2.9(b) follows from Theorem 2.3(b) in a similarly straightforward way.

Proof of Theorem 2.9,(b). The stochastic domination between the product and max-penalties discussed
in the proof of Theorem 2.6(b) above implies the result from Theorem 2.3(b). ]
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4.5. Max-penalty: Loop erasure in particle counting when p € [1/2,1)

To prove local extinction, and also global extinction later under the max-penalty, we go back to the

construction of genealogic branching random walks from Section 3.2. We use Lemma 3.6 and bound the

number of total particles ever born, decomposed along genealogical paths. We first give some definitions.
For a graph G = (V, E), we will take throughout this section the infection-rate function to be

A-e(u,v)

r(u,v) = max(d,. d,)F’

u,vev. (32)

Recall that = T (G) denotes the set of genealogical labels in G, as in Definition 3.3, and Z ()
from (26). We define, for 7 = (ng,...,71,) € T,

m—1 m—1

2m) = | | rmam) = 2 | | ot (33)

b
i=0 i=0 max(dx, ., ¥

with z(mr) = 1 if the length of the path [(r) = 0. Note that, by Lemma 3.6(b), z(w) = E[Z(n)], the
expected number of particles with label m ever born, in a genealogical branching process with birth
rate A, maximum-penalty function with exponent y, and started with a single particle with label (7).

Definition 4.2 (Backtracking steps). Let G = (V, E) be a graph. Given a path 7 = (71y,...,7,) € T
with length [(7) = m > 2, we define

T(n):=min{i >2: m; =m;_» # 71} (34)

(with the convention min @ = o0). That is, 7(7) is the first index on the path when 7 returns to a vertex u
right after having jumped away from it to a different vertex v. We informally refer to this kind of motion
u — v — u (with u # v) as a backtracking step. For n with 7(7) < oo, we define

g(ﬂ) = (71-09'~-’7TT—297TT+17"-’7TI(7I))7 (35)

that is, g(x) is the path obtained by removing the first backtracking step of 7. We define g~ (7) = {7’ :
g(n") = m} as the set of paths that map to  under g.

We clarify that traversal of self-loops, even multiple times, is not considered a backtracking step for
the above definition.

rr®) =3 7= g(x) = g(x®)

Figure 1. Illustration of the loop erasure technique: two potential infection paths 1V (left) and 7®
(right) both lead to the same rectified path nt (middle). The figure also shows the definition of T and g in
Definition 4.2.

Claim 4.3 (Removal of one backtracking step). Let G = (V, E) be a graph, 4 > O and p > 1/2. Let z(-)
be as in (33). For any 7 € 9 and any index a € N, we have
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Z 2(n') < A% z(n) max  e(ma_a,v). (36)
VIVETG-2
n’eg N (n): 7(n')=a

Proof. Fix n and a as in the statement of the lemma. Write © = (ny, ..., 7;;), where m = (). We
assume that the set {7’ € g~'(7) : 7(n’) = a} is nonempty, as the desired inequality is trivial otherwise.
By (34) we then have a € {2,...,m +2}, and any 7’ € g~! () with (") = a and 7 are of the form

' = (Mo, . Mae3 U Vo U T, . o, ), = (70500 s a3 Us Wa1s o> ), (37)

where u = 1, = ma — 2 = x/, and v is a neighbor of u (with v # u). (We obtain that the next vertex on
the path 7 has index a — 1 by the erasure of the (a¢ —2)nd (1) and (a — 1)th vertex (v) on z’). Then, by (33),

A-e(u,v) )2. ()S/lz.e(u,v)z.z(ﬂ)’

max(dy, d, )* (du)*

() =r(u,v)* - z(n) = (
and

2. 2.
Z z(n) < #)Z? Z e(u,v)? < (du—z)(;/:) ~dy - max e(u,v)

n’eg(n): (n')=a vivEU

=22 z2(n) - (d)'™* - max e(u,v) < A% z(n) - max e(my_n,v),
Viv#Eu VIVET, 2

where the last inequality follows from d,, > 1 and u > 1/2, and that u = 7,_». O

With g () the path obtained from 7 by the erasure of its first backtracking step in (35), let us write
gWi=g, g*k D =gog® k>0.

In the statement and proof of the following lemma, to avoid summations with long subscripts, for any
set A and any function & : A — R, we write ), {h(x) : x € A} = Y, c4 h(x) (with the convention that
this is zero when A is empty).

Lemma 4.4 (Removal of multiple backtracking steps). Let G, A, u, f and z(-) be as in Claim 4.3. Fix
n € I . Then, for any k > 1 and any sequence of positive integers (ay, . .., ay), we have

7 e (@),
Z Z(ﬂ' ) ' T(ﬂ") =a, T(g(ﬂ")) =az, ..., T(g(k_l)(”')) =dk

k ook
< ( max e(u,v)) A% z(m).
u,veG
v#u

Proof. The proof is by induction on k, the case k = 1 being Claim 4.3. Assume the statement has been
proved for k, and fix 7 €  and a sequence (ay,...,ag+1). Then, since T gives the location of the first
backtracking step,

Ple) s w7 e .t =an, - T(g W) = ag
“SUS e neg (), | a”e(g®)(n), 38)
Cr(n) =a Cr(n”)=as, ..., (g% () = akn |
By Claim 4.3, for each 7"/, the inner sum above is smaller than

A%z(n”")  max e(ﬂgl_z,v)g/l2z(7r”) max e(u,v),
VIVER] u,veG:v£u
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so the double sum in (38) is smaller than

max e(u,v)A° - Z{z(ﬂ”) 77 e ("N (), T(x) = as, . T8 () = ak+1}.
u,veG:v+u
Using the induction hypothesis, this is smaller than (maxu,veg;vm )k+1/12(k+1)z(7r), as required. O

We would now like to use the above lemma to obtain a bound involving all possible sequences
(ai,...,ar). Before doing so, we prove the following simple fact.

Claim 4.5. Let G be a graph and 7 € J be such that 7(7) < oo and 7(g (7)) < co. Then,
T(g(n)) = (1) — 1.

Proof. This follows from the observation that the sub-path (7, . . ., 7,_7) remains intact after applying
g to m, and this sub-path contains no backtracking steps by the minimality of 7 (7). O

Corollary 4.6. Let G, A, u and f be as in Claim 4.3. Fixnt € J and k > 1. Then,

I 2 k
E z2(n’) < 21 (4/l ( max e(u,v))) - z(m). 39)
u,veG
ae(g®)-1(n) vEu

Proof. Fix m and k as in the statement. Define
A= {(x),7(g(@)), ..., 7@ V(@) 7' e (g) ().

That is, for a single 7’ € (g®¥)~!(x), the sequence (7(x’),7(g(7")),...,7(g*"V(x’))) gives the
locations — that is, not the vertex but its index on the “current” path — of loop erasure when we
sequentially apply g, k times, on the path 7. A is then the set of all sequences of length k that can
be obtained by taking 7’ € (g¥))~! () and applying 7, 7o g, ..., 7 0 g*"V to n’. By Lemma 4.4, the
left-hand side of (39) is smaller than

k
Z z2(n') < ( max e(u,v)) A% z(m) - | Al
u,veG:v+u
' e(gh) 1 ()

The desired bound will then follow from the inequality |.A| < 2'/)*2¥ which we now prove.

For each 7’ € (g"®)~!(n), we add 2(i — 1) to the location of the ith erasure in the sequential
application of loop erasure g on n’, which, by Claim 4.5 leads to a a strictly increasing sequence of
numbers, that is, we define

c;(n’) = T(g(i_l)(yr')) +2(-1), ie{l,... k}
(with g© (n”) = /). Note that

cr(n) =7(g* V() +2(k - 1) < U(g*V(x)) +2(k - 1)
=l(m)+2+2(k—1) =1(n) +2k.

Moreover, fori € {1,...,k — 1},
cint () = ci(n') = (gD (x")) = 7 (gD (n")) + 2,

which is positive by Claim 4.5. These considerations show that (¢ (x’), ..., cr(x”)) is an increasing
sequence in {1,...,[(x) + 2k}. Therefore, A can be mapped injectively into the set of increasing
sequences with k elements in {1, ..., () + 2k}. It is a combinatorial exercise to show that the number
of such sequences is (I(”{rz}() < 2lm+2k, O
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Proof of Theorem 2.6(a). By Lemma 3.8 it is enough to prove the result for the branching random walk.
Assume that 4 > 1/2 and A < 1/2. Let T be a tree with a root @. For each vertex u of T, let 7,
denote the geodesic path from @ to u. Consider the branching random walk on 7 with penalty function
f(x,y) = max(x, y)*, birth rate u and initial configuration consisting of a single particle, located at
the root. For this process, let Z(-) be as in (26) and z() be as in (33); note that by (27), we have
E[Z(n)] = z(x) for any 7 € T . Further, let 9y = {w €  : my = @} denote the set of paths in T that
start at the root. Then, since 7 is a tree and e(u, v) € {0, 1} for all pairs u,v € T,

00

> Ezml= Y wam=>. >

neJy: s(m)=u neJy: s(m)=u k=0 ne(g(k))fl(ﬂ-w)
o ()
o) 2\k — .
<z(mp) -2 k§:0(4/1 ) =T ), (40)

where the inequality follows from Corollary 4.6. Since the right-hand side above is finite, we see that
the expectation of the number of particles ever born at u is finite, so this number is almost surely finite.
This proves local extinction for the initial configuration in which there is a single particle at the root.
As already observed, this implies local extinction for the branching random walk, and also the contact
process, started from any finite initial configuration.

To prove the exponential decay of the local extinction time, we will use Corollary 3.7 to write, for

any t > 0,
brw
(Text (T, 1g,u) > z) Z P(ys(m) > 0 for some s > 1)
neJy: s(m)=u
< > eBIZM] - PKima 2 ), (4D

neJy: s(m)=u

where X,,, is a Gamma(l, m) variable for any m > 0. Let @ € (0, 1) be a constant specified later. Further
bounding the right-hand side of (41), we write

(T;’,;W(T 1g,u) > t) Z e z(m) - P(Xi(my41 2 1) + Z e-z(m). (42)
neJy: s(m)=u, neJy: s(m)=u,
I(m)<|at)] [(m)>]at]

First, we bound the first sum on the right-hand side of (42). Noting that X| o, stochastically dominates
Xi(x)+1 When () < |at], and using Corollary 4.6 we get

lat|-1

D ez P(Ximer 2 1) S e P(Xjar 20 Y >

nedy: s(n)=u, r=l(x(u)) n€Jp: s(n)=u,
[(m)<|at] (7)=r
(Lat |-1-1(my (1)) /2
< e P(X|ar) 2 1) 2(ny(u)) - 210000 > @2k 43)
k=0

Since A < 1/2, the sum on the right-hand side of (43) is bounded by 1/(1 — 442). By (33), we have
(7 (u))-1
z(m(u)) — Um ) 1_[ (Mmax(dy, . dy,,, )" < (27H2)1 00D (44)

i=0
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Combining (43) and (44) to further upper bound the right-hand side of (43) yields

e _
D erz(m) P(Ximer 2 1) < 5 PXlar 21)- (21 Q) () (45)
neJy: s(n)=u,

I(m)<|at]

To bound the probabilistic term on the right-hand side of (45), we use the large deviation principle for
Gamma variables to write

P(XLatJ >t) < e_l-atJIexp(l/a)’
where Iy, is the large deviation rate function of the exponential distribution with parameter 1, defined as
Iexp(a) =a—1+log(1/a) 6

for a > 1. As a result, we get

e (2171 )lm ) e latllep(1/@)

Z e-z(m) - P(Xy(my+1 2 1) < a0

neJy: s(n)=u,

[(m)<|at]

(47)

Next, we bound the second sum on the right-hand side of (42). Similarly to (43), again using
Corollary 4.6, we get

D erz(m) < e z(my(w) 21 > (441~ (48)

neJo: s(m)=u, k=(lat]-1(m (u)))/2
[(m)>|ar]

Bounding z(7r ()) as in (44), and evaluating the geometric sum in (48) yields

(422) (Lot [=1(x () 2

D erzlm e @RI —

neJy: s(m)=u,
I(n)>]at]

e - 2~ Hl(m (1)
=—— .l 49
(@D 49)

Substituting the bounds (47) and (49) into (42) yields

e- (21—#/1)1(”1(14)) Lt llag(1/a) e - 2~ ul(m (1))
.e ex - .
1-422 1-422

P(TJ’X‘Y(T, lg,u) > t) < uytetd (50

For A < 1/2, (50) shows the exponential decay of the local extinction time at u. Since the first term on
the right-hand side is increasing in @, whereas the second term is decreasing, the optimized bound is
given by a = a@*, where a* is the solution of
el e (1/a®) (22) La*t] (51)
Using (46), (51) simplifies to
1/a* — 1 +1log(a*) = —log(241). (52)

Since the left-hand side of (52) is strictly decreasing from oo to 0 as a* increases from O to 1, there is
exactly one solution a* € (0, 1) for any given A < 1/2. This finishes the proof for x, = 1.
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To extend the argument to any starting state x,, with |x,| < co, we make two observations. First, since
the above argument is valid for any tree T with any fixed root @, (by rerooting the tree) this implies that

]P’(Teb;tW(T, 1,,u) > t) < (vye ! 53)

for any u,v € T and ¢ > O (for 1 < 1/2). Here, the constant c¢;(v) further depends on u, 4, u, while
¢y depends on A, but, importantly, not on v. Second, when (?_Ct)zzo = BRW (T, )_co), then by the
independent behavior of the particles in BRW, we have that

xp(v)

EH T DYDY Al I (54)

vixg(v)>0 i=1 50

T(v,i,u)

where ()_cgv’i))v,i are independent realizations of the processes BRW ¢ (7, 1,). Hence, if T,

denotes the local extinction time of ()_c,("’i)),zo at u, then a union bound combined with (53) gives

ext

]P(Tebxrtw(Ts-zog M) > [) = P(max T(V,i,u) > t)

xo(v) ) xo(v)
< Z Z P(Te(xvt”’”) > t) < Z Z c1(v)e e,
vixo(v)>0 i=1 vixo(v)>0 i=1

that is, exponential decay of the distribution of the local extinction time (with the same constant in the
exponent for any |x,|). This finishes the proof. )

4.6. Max-penalty: global extinction on trees when growth is limited

In this section, we consider rooted trees. The root will always be denoted by @. We always assume that
trees have no loops or parallel edges. For any vertex u of 7, we keep using the notation |, for the
geodesic from @ to u. Given u > 0, for each vertex u in 7 we let

I[(m)-1

L(u) = n max(dy,, dy,, )", wheren =m,, (55)
i=0

so that (recalling (33), and recalling that we exclude parallel edges, so that e(7r;, 7;41) = 1) we have
2(my) = A 2 (u). (56)

We will write Geny (7) for the set of vertices at graph distance N from @, for N € N.
Lemma 4.7. Let T be a tree with root @. Fix u € [1/2,1), A > 0 and assume that

i(u)N D L) <. (57)
N=0

ueGenpy (T)

Then, BRW ¢ (T, 1g) with penalty function f(x,y) = max(x, y)* goes extinct globally.

Proof. We continue using the notation 9y = {m € I : my = @} for the set of paths in T that start at
the root. Repeating the estimate in (40) and using (56), for any N € N and any vertex u € Geny (7)) we
have I(7},,) = N, so summing over all infection paths ending at u gives

N
SoEzml= Y am < 2V ),

— 42
neJy: s(m)=u neJy: s(m)=u 1-44
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Then, when summing over all infection paths in the tree, we have

> BlZ(m)] i > > ElZ(m)]

nedy N=0 ueGenn (T) neJy: s(n)=u
1 < N
N=0 ueGenpy (7))

by the assumption. This shows that, starting from a single particle at the root, the expected number of
particles ever born (overall in 7) is finite, so this number is finite almost surely. This implies global
extinction. mi

In the applications we have in mind, rather than verifying (57) directly, we will verify that

Sent Y <. (58)
N=1

ueGeny (7)

where £ (u) is defined for all u # @ by

[(m)-1

F(u) = (dp) ™ - [_] (dp, — 1), where 7 = 7, (59)
i=1

where d, > 2 as we assumed no vertices are leaves in the tree. We leave f undefined at the root. Clearly,
by (55), £ (u) < Z(u) for all u # @, so (58) implies (57).

Proof of Theorem 2.5(c). We assume that the offspring distribution of the Galton-Watson tree satisfies
E[D!"#] < co. We claim that, for any N > 1,

El Y Zw|=EDN. (60)
ueGeny (T)

This is obvious in case N = 1. Assume that it has been proved for N. Recalling that d,, > 2 for all v
except possibly the root, for the induction step, by (59), we note that

(= >, v ), d-D™

ueGenn1(T) veGeny (T) ueGenn41 (7):
u~v
= D> W@ -D-d-DF= > W) (de -1 (6]
veGeny (T) veGeny (T)

Let 7y denote the truncation of 7 at generation N, that is, 7 is the subgraph of 7 induced by the set
of vertices at graph distance at most N from @. Note that 7 does not include information about the
offsprings of vertices in generation N, and conditioned on 7T, the sizes of these offsprings are iid, with
same law as D. Taking expectations in (61), we have

Bl )L fw|=B[E| > 0 (=D Ty
ueGenpn .1 (7) | [ ve€Genn (T)

R LE (T

| v€Geny (T)
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=E| > Z0)|-E[D'#] = B[PV,

veGeny (T)

where the last equality follows from the induction hypothesis. This completes the proof of (60).
Now, if A < (2E[D'"#])7!, then

E i(u)” Z HOIE i(Zﬂ-E[Dl‘“])N < .
N=1

ueGenn (T) N=1

Hence, Y% _; ()N - 2ucGenn (T) Z(u) is finite for almost all realizations of 7. It then follows from
Lemma 4.7 (and the observation following its proof) that there is global extinction of the penalized
branching random walk for almost every realization of 7. )

We now see further applications of Lemma 4.7, the proof of Corollary 2.7.

Proof of Corollary 2.7. The case of trees with finite upper branching number b follows from verifying
condition (57) with the simple bound {(u) < 1 for all u. For the case of spherically symmetric trees,
we can verify condition (58) directly instead of working with the branching number. Note that, for any
N > 1, we have

N-1
Z(u) = (do)™ | [ (di =)™ forany u & Geny (T),
i=1

SO
N-1 N-1
£aw) = (do)* | ] (i = ) - [Geny (T)] = (do)!# [ | (s = 1!,
ueGenn (T) i=1 i=1

and then

eyN > Zw)

ueGeny (7))

N-1
= exp{N(log(Z) +log(d) + (1 = p)(log do) + 11_\7# ; log(d; — 1))}.

N

Now, it is easy to check that limsup 1/N - Zi]\ifl log(d; — 1) < logbr(T), so if 1 < e~ (1=#) logbr(7T) /2,
then there exists ¢ < 0 such that the expression inside parentheses above is smaller than ¢ for N large
enough. It readily follows that (58) is satisfied, so global extinction follows from Lemma 4.7. O

4.7. Max-penalty: fast extinction when u € [1/2,1)

We close this section by proving a result that bounds the survival of BRW ¢ , for f(x, y) = max(x, y)*,
u € [1/2,1) on any graph, both in space and in time. We will use this result in Section 5 to prove
Theorem 2.9(a), stating that the max-penalty contact process goes quickly extinct on the configuration
model whenever 7 > 3.

We again go back to the genealogic branching random walk construction of Section 3.2. For a graph
G = (V, E), recall the definition of the set of genealogical labels I from Definition 3.3, the notations
[(7) and s(x), the construction of (yt)tzo in Definition 3.4 and its relation to the branching random
walk (x,);>0 given in Lemma 3.5. Here we will take these processes with birth rate A and max-penalty
function with exponent u, f(x,y) = max(x, y)¥, so that r(-,-) is as in (32). As before, for & with
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I(w) = 1, Z(x) denotes the number of particles with label & born in the whole history of the process.
We let z(-) be as in (33). Finally, recall the first backtracking index 7(-) and the backtracking erasure
function g(-) from Definition 4.2.

Lemma 4.8. Let y € [1/2,1) and G = (V, E) be a graph with a distinguished vertex v. Assume that
for some constant £ > 0, e(u,v) < € for any u,v € V. Fix N > 2 and let by denote the number of
non-backtracking paths of length at most N started at v,

by ={meT : mo=7, [(n) < N, 7(n) = 0} (62)

Consider the penalized branching random walk ()_cg‘j))tzo on G with penalization function f(x,y) =
max(x, y)¥, birth rate A < 1/(4¢) and started from a single particle, located at v. Then, for any fixed
constant C > 1,

P( ()_ct(ﬁ)) dies before time CN, and never reaches )

any vertex at graph distance N from v (63)

> 1= 2by (o€ - (4L)N 47N (CD/CO),

Proof. Let (y );>0 be the genealogic branching random walk corresponding to (x,); >0 as in Lemma 3.5;
in particular, yo((v)) = 1 and yo(rr) = O for any 7 # ¥. We note that

{()_ct) is alive at time CN, or reaches some vertex at distance N from \7}
c {ycn () > 0 for some 7 € I with my = v, [(7) < N}
Vs

U {y;(mr) > 0 for some n € I with 7y = v, I(nr) = N and some ¢ > 0}.

Using a union bound and the inequalities P(ycn (1) > 0) < E[ycn (7)] and P(y, (1) > O for some #) <
e-E[Z(n)] =e - z(x) from Corollary 3.7, we have

< > Elyen(ml+e Y z(n). (64)

(x,) is alive at time CN, or reaches
some vertex at distance N from v

neg: neg:
o=V, o=V,
[(n)<N I(n)=N

We bound the two sums in the rhs separately. Using (33) the following bound holds for any path:
2(m) < (€)', (65)
which follows from max(d,, d,)* > 1 and the assumption that e(u, v) < €.

We first deal with the second sum in (64). Recall that if 77 € (¢®)~!(x), then [(x’) = [(x) + 2k.
Then, we break the sum as follows:

Z z(m) = Z Z Z z(7').

=V, (m,k): mmo=v, g'e(gk))-1(x)
[(m)=N m+2k=N [(m)=m,
7(7m)=00

Using (39) in Corollary 4.6, the right-hand side is at most

Z z(m) < Z Z 27 (42%0)F - (7).

Tmy=V, (m,k): m:m=v,
[(m)=N m+2k=N 1(m)=m,
T(7m)=00
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Using (65) and b from (62), this is at most

Z Z 2 (4EA2) L (L™

(m =V,
m+2k N I(m)=m,
T(7m)=00
ST @Ry =5, 1(m) = m, T(m) = oo}
(m,k):
m+2k=N
<by- Z (4€)m+k .Am+2k.
(m,k):
m+2k=N

Using that m +2k = N implies that m + k = (N +m) /2 foreachm € 0, ..., N, the above sum is at most

N N
DT am) by Y @ONTIEN = e PN py Y 201

=V, m=0 m=0
[(m)=N

< 20'2(4e)N - by. (66)

We now turn to the first term in (64). Using (25), we have

(CN)" cn
D, Elyen(m] < (nggN e N . (67)
=V, .=V,
1(7)<N I(7)<N

Let us bound the sum in the right-hand side using (39) with max e(u, v) < € and then (65) as

doams ) i > )

M=V, o=V, k=0 g’'e(g®)-1(x
1(n)<N 1(7)<N, ()7
T(ﬂ')—oo
(39) (65) 1
< 2[(7T) 2021
a2 2 S g Y e
T To= V T.T)= v,
I(7r)<N, [(m)<N,
7(7m)=00 T7(7m)=00

Since A < 1/(4¢) with € > 1, we have ——
than

; 4[/12 < 2and2fA < 1/2 < 1, so the last factor in (67) is smaller

2{m o=V, I(nr) < N, 7(n) = co}| < 2by. (68)

Next, the expression inside the maximum in (67) equals P(W = m) for W having the Poisson(CN)
distribution. We bound

max P(W =m) <P(W < N).

0<m<

Wezuse a Chernoff bound for Poisson random variables: for X ~ Poisson(v) we have P(X < v —1¢) <
e! /(2"), see [67, Exercise 2.21]. This gives

—(CN _ N)z} = exp{——(c _ 1)2 . N}.

P(W < N) < exp{—
(W< )—eXp{ 2CN 2C

Combining this with (68) in (67) and (66) completes the proof of (63). ]
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5. The configuration model: fast extinction via loop erasure

In this section we prove Theorem 2.9(a). This theorem says that the contact process CP¢ ; and the
branching random walk BRW ¢ ; go extinct quickly for small 4 > 0 on the configuration model when
f(x,y) = max(x,y)* with u € [1/2,1) and the degree distribution is lighter than a power-law with
exponent 7 > 3. The proof idea is the following. Fixing a large constant ¢, first, we show that with
probability 1 — o(1/n), there are at most £ surplus edges in the r-neighborhood B, (u,,) of a uniformly
chosen vertex u, with r = § log n for some small § > 0. That is, one can remove at most £ edges from
B s10gn(itn) to obtain a tree. Then, we apply Lemma 4.8 to show that the expected number of particles of
BRW , on infection paths in Bs1og (1) that reach the boundary 0B s10gn () decays exponentially
for small A. This implies that BRW ¢ , dies out inside B s1og, (i) before reaching 9B 5109 n(1n) With
probability at least 1 — o(1/n). A union bound over the n vertices then finishes the proof.

Our first goal is to prove a statement about the surplus edges of Bs1og, (i5), and then we move on to
the analysis of infection paths of BRW ¢ ;. The number of surplus edges of a (sub)graph H = (Vy, Ex)
is given by |Eg| — (|Vg| — 1). Recall the configuration model from Definition 1.9 and that e(u, v)
denotes the number of edges between vertices u, v.

Proposition 5.1. Consider the configuration model with degree sequence d,, satisfying Assumption 1.10,
and Assumptions 1.11 and 1.12 with some T, €, cy, 20 (for all sufficiently large n) with T(1 — &) > 3.
Fix some § > 0. Let u,, be a uniformly chosen vertex in [n] and let Surp 5]0gn(un) denote the number
of surplus edges in B s1ogn(ttn). Then, for all &' € (0, (7(1 — &) — 3)/2 there exists § > 0 and 6’ > 0 so
that forany € > (t(1 —&) = 1)/(v(1 —&) =3 = 2¢&’)

P(IBstogn(un)] = n 1+ =970 op Qurp 50 () =€) <7 (69)
Finally, forany € > 3V (t(1 — &) = 1)/(7(1 — &) — 3), there exists some §' > 0 that

P( mahe(u,v) >0 <n 7. (70)
u,veln

Observe that with probability 1/n the root’s degree is the maximal degree in the graph, which can
be as high as O(n!/(T1=2)=1) 's0 &’ > 0 in (69) is necessary for the bound to be true. The condition
g’ € (0,(r(1 — &) — 3)/2 ensures on the one hand that ¢ := (1+¢&")/(t(1 —&) — 1) < 1/2 and on the
other hand that the required lower bound (7(1 —¢) = 1)/(7(1 —&) =3 -2&") = 1/(1 —=2) on { is
positive. If one aims to bound the maximal multiplicity of edges inside B s10g s, the inequality (69) also
includes that, since multiple edges also count as surplus edges. For generality we include the stronger
result in (70) here.

The proof is based on a breadth-first-search exploration process of B g n(#,), and a coupling to a
(power-law) branching process tree ’T(‘;logn so that the tree contains B sjog, (1,). First we give a good
bound on the size of the tree that holds with probability 1 — o(1/n). When the offspring distribution
decays exponentially, this is fairly easy, but when it follows for instance a power law, we need to develop
some new bounds.

Hence, the next lemma bounds the kth moment of the size of (truncated) power-law BP trees, but
before that, we give some definitions. Let (£,,),>1 be a sequence of discrete measures on N that satisfies

T eN:  L(2) <z TV, M,, := max support(,) < Cun'/(7 =1, (71)
Usually ¢, is the size-biased measure of an empirical degree sequence d, satisfying Assumptions 1.10

and (1.12). For each integer k > 1, there exists Cx > 0 such that, if n is large enough, the k-th moment
can be bounded by an integral of the rhs of (71) yields that the kth moment

M, My
Z Klu(2) < cu+ Z cu 2D < ¢ -0 (72)
z=1 z=1
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where
hy :=max{(k+1)/('=1) -1, 0}. (73)

Whenever 7/ > 2, the coefficient of k+1 in Ay is positive but less than 1. Thus, k +— hy, is non-decreasing
and, due to the additive term —1, for any k, £, the super-additivity property holds:

hi +he < hpye. (74)

Lemma 5.2. Let T* be a Galton-Watson tree with offspring distribution ¢, satisfying (71) with v/ > 3,
and for each r, let Z, be the size of its generation r. For any integer k > 1, there exists € > 0 such that
the following holds for all sufficiently large n:

E[(Z)*] < € -n"™ %" forallr > 0. (75)

The criterion 7/ > 3 is important: this guarantees that the mean offspring E[X] = E[A],] does not
grow with n. BPs with 7/ € (2,3) grow doubly-exponentially, and (75) does not hold for them. The
importance here is that the rhs of (75) only depends on the generation number r exponentially, that
is, the constant € in the exponential growth does not depend on n. This is non-trivial, since the k-th
moment of the offspring distribution itself does, but it only enters the bound once, as the prefactor n**.

Proof of Lemma 5.2. We will argue by induction over k. Let X’ be a random variable distributed as ¢,
(we will generally omit the dependence on n).

For the base case k = 1, recalling (75), note that &; = 0 since 7/ > 2; hence, E[X] is bounded by
the constant C; which does not depend on n (equivalently, in A the maximum is at 0 in (73)). The
right-hand side of (75) is satisfied in this case since

E[Zr] = E[X]r < (Cl)r = nh] _elog(C])r.

Now assume that we have proved (75) for j = 1,...,k — 1, that is, assume that we have already found
constants €, ..., ;_; such that
E[(Z)/] <€;-n"i-e%"  forall je{l,...,k—1}andallr >0, (76)

and we want to find € so that (75) holds. Let f(s) denote the probability-generating function of X',
f(s) = Z 5 -P(X =7) = Z s -vu(z), seER
z21 z21

Since ¢, has finite support, f is well defined for any s; it is also infinitely differentiable, with derivative
of order m at s = 1 satisfying

f ) =E[X(X =1) - (X —m+1)].

For any r € N, let f, denote the r-fold composition of f with itself (i.e., fo is the identity function, f; = f
and f, = f o f,—; for r > 1). It is well-known that f, is the probability-generating function of Z, [3],
which is again well defined and infinitely differentiable for all s,

0= D s Bz =, seR and () =BIZ(Z ~ 1) (Z - me )]

z=1

We claim that there exists ¢ ,’( > 0 such that

By <€) a5 forallr > 0. (77)
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Before proving this, let us show how to use it together with the induction hypothesis to obtain (75) (with
a constant € that is possibly different from €} ). We bound

E[(Z)*] <E[Z(Z, = 1)+ (Z, = (k= 1))]
+|E[(Z)*] - E[Z,(Z, = 1) - (Z, — (k= )]

k—1
<F9 ) + > a1 - BIZE),
J=1

where a1, is the coefficient of x/ in the polynomial x(x—1) - - - (x— (k—1)). By (77) and the induction
hypothesis, the right-hand side above is smaller than

k=1
E[(Z)*] < ()4 ol eG4 Z lak-1,;1-€; cnhi ST,
=

Since j + h; is increasing, we can choose € (not depending on n or r) such that the above expression
is smaller than € - n'* - %" for all r. This proves (75) once (77) is proved. To prove (77), fix r > 1.
We start by writing

i) = Fof_n®(1). (78)

We will use the chain rule for higher-order derivatives (also known as Faa di Bruno’s formula); let us
briefly state it. Let f, g : I — R be functions defined in an open interval / containing s € R. Fix k € N
and assume that f and g are k times differentiable in s. Let Py denote the set of partitions of {1, ..., k}.
For some P = {Bj,..., B¢} € Pi, we let |P| = € be the number of blocks in P, and for B € P similarly
we write |B| for the number of elements in B. Let then Py , C Pi be the set of partitions containing ¢
blocks. Then,

(foa)®(s)= > 1" (gls))- [ ] " s)

PePy BeP

k ¢
=3 > G- [e" ),

=1 {B] ..... B(e}Eme j=1

Using this formula with f = f and g = f,_; (together with §,_;(1) = 1) in (78), we have
k - L (IB;1)
My =GFefn®@m=>0 > fOm-[ [R5 . (79)
¢=1 {By,..., Be}ePr.e Jj=1

We now inspect each term in (79). The value ¢ = 1 gives the trivial partition which consists of a single
block {1,..., k}. The corresponding term is

’ (k) _ (k) —
() - 1.2 =E[X] - §.2,(1) when ¢ = 1. (80)
Now fix a partition P = {By, ..., B¢} with £ > 2. The corresponding term in (79) equals

(1B

£
fOm - 115 @) =Bl -1 (X - e+ 1)]
j=1

J 1BIZr-1(Zeey = D) - (Zoy = 1Bj + D]
j<t

<Blx)-[[EUZ-0" ' ¢t []BLZ-0) ).
jst i<t
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Since £ > 2, each block has size |B;| < k. We thus use the induction hypothesis (76) to bound the rhs as

FO1) - l—[’f(lB’D(l)<C ot ﬂ(ng‘ il oSy (r=1)

t t
= Cg( 1_[ Cis; e (E‘Bf"(r’”) R s
Jj=1

<c eC (r=1) | h1‘+2§:1h|31~\’ (81)

where ¢’, C’ are constants that neither depend on r nor on the partition P, and are given by

= (max C;) - (max €;)k, C’ := k- max ;.
i<k i<k—1 i<k—1

We inspect the exponent of n that appears in (81), and set out to prove the inequality

hf+Zh|Bﬂ < hy. (82)
js<t

We consider two cases. The first case is when A, = 0. The superadditivity (74) yields that

he+ ) higy| < hy gy = hi.
j<t

The second case is hy > 0, with a more involved proof. Recall &y from (73). We write « := ﬁ and
Bi=1- ﬁ, so that #; = max(ai — 8, 0) for any i, and carry out some formal rearrangements:

he+ Y b =at=B+ > (alBjl-B)= —ﬁ+Za+ D, (@Bjl-p

j<t Jh|3 >0 Jj=1 ]h‘B >0

=-B+ Z a+ Z (a|Bj| +a - p)

j:h|3.’,‘=0 jih‘Bj|>0

<-p+ > alBjl+ > (alBjl+a-p).

j:h‘Bﬂ:O jih‘Bj‘>0

By the assumption in the lemma that 7/ > 3, @ — 8 < 0. Since {Bj, ..., B¢} € Pi.¢, that is, the blocks
partition {1,...,k}, ¥ ;¢ |B;| = k holds which gives that

hg+Zh|Bj|s—ﬁ+ Z a|B;| + Z @|B)| = ak - B = hy.

j<t th\Bj|:0 j:h\Bj\>0

This completes the proof of (82). We substitute it as an upper bound in (81) to obtain that for any
P € Pk, forany € > 2,

f(f)(l) . 1—[ ffl_lil)(l) < c/eC'(r—l) . nhk.

BeP

Substituting this bound into (79) and using (80) for £ = 1, we arrive at

PO < et BLY] 11 (1),
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where ¢’ := ¢’-|Py| = ¢’2¥. This bound can now be used recursively: the same inequality (with (r,r—1)
replaced by (r—1,r—2)) can be used to bound f;’f)l (1) on the right-hand side, and then further. This gives

i9 (1) < 7€) g (1 +E[X] +E[X]2 +- - + E[X]")
< C//eC'(r—l) . E[X]r+l . l’lhk.
Now, we can choose €; > 0 such that the right-hand side above is smaller than €; et . for all r.
This completes the proof of (77). O

We now proceed to embed B, (u,) in Proposition 5.1 to a branching process that satisfies the
conditions of Lemma 5.2. Recall v,,(z) = n,/n from (8). Define the size-biased version and the down-
shifted size-biased version of v,, as

ZVn(Z)
E[D,]’

@+ Dva(z+1)  (z+Dngy

vi(z) = and Vu(2) = E[D,] =5

(83)

If D, ~ vy, D} ~ vy, then D} — 1 ~ v,. It is well-known that v,, é v}, that is, the size-biased version
of a random variable on N stochastically dominates the original measure. This follows from Harris’
inequality: P(D}; > 2)E[D,] = E[D,1(p,>;}] = E[D,]P(D, > z) for any z > 0. The next definition
makes the tail of any starting distribution v having a ¢ > 1 moment slightly heavier so that it also
stochastically dominates v.

Definition 5.3 (-heavier-transformation of a probability measure). Let v be a probability measure so
that v(z) < z~7 holds for all sufficiently large z > 0. Let 5 satisfy that 7/(1 — ) > 1, and given a
distribution v, let zg > 1 be the smallest integer that satisfy the following:

min  v(i)™" > 8/7, v(i)'77 < 7/8.
z2z8v ()20 z;# (34)
=20

Choose a normalizing factor Z := Z(n, v) so that the following measure is a probability measure:

0 if 7 < 2%,
@ =y, (85)
v(z2)"Z ifz >z

The choice 7/8 is quite arbitrary in (84), any number strictly less than 1 would serve our purposes.

Claim 5.4 (Stochastic domination between v and v*). Let v be a probability measure so that for some
7/ > 1, v(z) < z~7 holds for all sufficiently large z > 0. Then the measure v* exists and stochastically
dominates v for all n satisfying 7’(1 —n) > 1, and has finite g-th moment for all ¢ < 7/(1 —75) — 1.
Finally, Z < 7/8.

Proof. Suppose the measure exists. Then Z < 7/8 follows from the second criterion in (84) since
Z =Yzt v(i)!'=" < 7/8. For z < 2}, v*([0,z]) < v([0,z]) is immediate from the first row in (85).

For z > zg, we aim to show v((z, ©)) < v#((z, )), which is equivalent to
Z Y vy < ) v,
i>z i>z

which holds since Z < 7/8 and v(i) < 1 implies that v(i) < v(i)'~7 for each i > z. To see the
moment conditions, for all z > 1 it holds that Zv*(z) < v(z)!~", and so the gth moment is finite

whenever Zzzzg 79v(z)'™" < oo, which in turn is at most ZzZz{;‘ z9z~7' (=1 This sum is convergent if
qg—71'(1-1n) < -1, equivalently if g < 7/(1 — ) — 1. This also gives with ¢ = 0 that /(1 —n) > 1 is
indeed sufficient for zg in (84) to exist and the normalizing factor Z to be finite. |
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The following exploration process gradually constructs the configuration model by matching
half-edges sequentially in a way that reveals the graph neighborhood of a vertex v, B, (v¢), in a breadth-
first search manner. The exploration also immediately couples the r-neighborhood B, (v¢) to the first r
generations of a random rooted tree ’foPl so that | B, (vo)| < |7’,€Xpl| holds a.s. under the coupling.

Construction 5.5 (Exploration of the neighborhood of a vertex). We take as input a degree sequence d, ,
a starting vertex v, a target radius r, and an additional offspring distribution £. The coupled exploration
of B, (vp) in the configuration model CM(d,,) is then as follows:

Step 0. Initialization. To initialize, we set v active and reveal its half-edges (say hy, ... hdvo) and
set also all of its half-edges active. We introduce the list of the active vertices A, (0) := {vo} and of the
active half-edges A, (0) := {hy,..., ha,, }, and we set Ex,, (0) := 0, Ex; (0) := 0 for the list of explored
vertices and half-edges, respectively.

Step s. Exploring a half-edge. In each discrete step s > 1 we take the first half-edge A from Ap(s — 1),
in a first-in-first-out (breadth-first search) order, and reveal the half-edge m(hy) it is matched to. We
then append hg and m(hy) to the end of the list of explored half-edges Exj (s — 1), obtaining Exy, (),
and we remove /i from the active half-edges A, (s — 1), and also remove m (k) from it if it happened
to belong to Ay, (s — 1). Then we carry out three more substeps:

Substep s.(i): Adding newly discovered vertices. If the vertex v(m(hy)) that m(hy) is attached to is a
new vertex, that is, notin A, (s — 1), then we append v(m(hy)) to the end of the list A, (s — 1), obtaining
A, (s), and we append the remaining X" many half-edges of v(m (hy)) to the end of the active half-edge
list, obtaining Ay, (s). We call X\’ the forward degree of the vertex discovered in step s.

Substep s.(ii) Handling loops and creating ghost subtrees. If, however, the half-edge m(h;y) is already
active and it is attached to an active vertex v(m(hy)), then we call this a collision at step s. This creates a
loop and hence a surplus edge in B,-(vo). We then do the following: in B, (v¢) we create the loop formed
by (hs, m(hy)), and in 77" we create two “ghost” subtrees as follows. Let ry = dg (vo, v(hy)), 12 =
dg (vo, v(m(hg))), respectively. We then sample two independent branching processes, 7}‘#_’§]1 and 7}#_;22
with offspring distribution ¢, (the first one has depth r — r; while the second one has depth r — r,) and
attach their root to the half-edges i, and m(hy) respectively, and add these ghost-subtrees to ’foPl,

Substep s.(iii): Checking for vertices being fully explored. If the half-edges of the vertices v (/) and/or
v(m(hy)) are all explored after substep s.(ii), then we append v(hy) and/or v(m(hy)) also to the set of
explored vertices Ex,, (), otherwise we keep them active.

Stopping condition. The exploration stops when we have matched all half-edges belonging to vertices
at graph distance r — 1 from vy. We denote the number of needed steps by #(r).

Output. The output is the graph B, (v() and the tree 7,°" ! We denote the number of half-edges added

in step s to the active half-edges by X,”, giving the random sequence X,”, X;", ..., Xt('(l;), with the

convention that we set X" := 0 if a collision have occurred at step s and no new vertex was added. We
denote by Coll, (vo) the number of collisions that occurred during the process.

Observation 5.6. The exploration reveals the whole graph (including all loops) within B,_;(vp), and
also the size of B, (vg). To see the latter, by the stopping condition, we have explored all vertices in
generation r — 1, and their forward degrees, say Xs(fjl, . ,X,(r"_) , are thus known. Matching then all
these half-edges reveals edges between at least one vertex in generation r — 1, and the other vertex can
be either in generation r — 1 or r. For each edge where the other vertex is also in generation r — 1, a
loop between two vertices in generation r — 1 arises, and the size of B, (vg) is reduced by 2 compared
10 Xies, 1itri] Xl.("). Each collision where two edges lead to the same vertex in generation 7, reduces
the size of B, (vo) compared t0 X e, .1 ] Xl.(") by 1. Note that |B, (vo)| < |'7fo1| for any offspring
distribution .

Observation 5.7. All surplus edges are either self-loops, multiple edges, or between two vertices, say
v, v’ so that the distance between |dg (4, v) — dg (un, v’)| < 1. Indeed, when a surplus edge is created,
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the half-edge h; is matched to an active half-edge in Ay, (s —1). All half-edges in Aj (s — 1) either belong
to the same generation as v(h;) or they belong to the next generation.

Recall the size biasing from (83) and the hash-transformation of a measure from (85) in Definition 5.3.

Lemma 5.8. Consider Construction 5.5 started from a uniformly chosen vertex v := u,, on the config-
uration model CM(d,)) so that (d, )u>1 satisfies Assumptions 1.10 and 1.12 with some 7, &, ¢y, 2o for
all sufficiently large n so that T(1 — &) > 2 in (11). Let n > 0 be so that (t(1 —¢) - 1)(1 —-n) > 1.
Assume that the number of exploration steps t(r) < ¥;c(] di/17. Then, for all sufficiently large n, the
forward-degree sequence (X§n>)55t(r) is stochastically dominated by an iid sequence (Yy)s<:(r) from
(v})* defined from (83) and (85). Under Assumption 1.12 this measure satisfies for some constant cl,:

v*(2) < c;zf(T(lfg)’])(l’”). (86)

As a result, there exists a coupling B, (u,) C 7;CXP1 C T where T} is the first r generations of a
branching process having iid offspring from (v¥)*(z).

Remark 5.9. With the same method it could also be proved that (X;"))SS,(r) is stochastically dominated
by an iid sequence (Z;)s < () from (v,)* defined from (83) and (85), the 57-heavier transformation of the
down-shifted size-biased version of v,,. In that case, however, the root’s degree d,,, cannot necessarily
be dominated by (v,)*. Further, (v,,)* and (v})* both satisfy the same inequality (86), so for simplicity
we dominate by a “usual” GW tree 7, where all vertices have the same offspring distribution.

The proof will follow from the following statement and Construction 5.5.

Claim 5.10 (Domination and size-biasing during the exploration). Let v,, be the empirical measure
of d, = (dy,...d,) in (8) satisfying that v} (z) < cuz” 7 for all z > zq for some 7/ > 1 in (83).
For a subset A C [}};<, d;], remove the half-edges with label in A to obtain a new degree sequence
gﬁ = (d] Lar 0, - - - d; 14 0), and let V:’ » denote the size-biased version of the empirical distribution
of g’ﬁ. Then, for any choice of A with [A| < (X;c[n) di)/8, VZ’ A is stochastically dominated by (v#
for any 77 so that /(1 — ) > 1.

Proof. We assume here that v; (z) < cuz” " forall z > zo. Then, Claim 5.4 gives that v is stochastically
dominated by (v})* whenever /(1 —7) > 1. So when A = () then the statement holds. Recall that
va(z) = nz/n, and let hy := Y;cpn) di- Then Yjiepy) dilaiz0 = hn — |A| since we removed |A| many
half-edges. Recall zg from (84) and (85). Let us first consider any z < zﬁ. Clearly vZ, A ([0, z]) = 0 while
(v¥)*([0,z]) = 0 so the criterion for stochastic domination via([0,2]) = (v})*([0,z]) holds in this
case. Let now z > Zg. Observe that all degrees can only decrease by removing half-edges, hence writing
n; = Ylicn] Ild}_zi for the number of vertices of degree i after removing the half-edges with label in A, it
holds that 3., in] < ;.. in; relating to (83). Now we look at the upper tail using that |A| < nE[D,]/8

Zi>z inz{ < Zi>z in;
hn —|A] =~ nE[Dy](1-1/8)

vpa((z,0)) = =v¥((z,)) - 8/7.

At the same time, using that Z < 7/8 in Claim 5.4, the tail of (v}¥)* satisfies:
*\# _ l *\1-1 * *
()" ((z,00)) = = Zvn(l) < v, ((2,0))/Z 2 v;((z,)) - 8/7.
i>z
Hence the stochastic domination criterion vy , ((z,00)) < (v})*((z, 00)) is satisfied. O

Proof of Lemma 5.8. Let us write h,, := };, d;. Consider step (s) of Construction 5.5, when we match
half-edge hy. Its pair m(hy) is chosen uniformly among the available 4, — 2s — 1 many half-edges at
step s. At this point the half-edges not available for matching to i form the set Ag := Exp, (s —1) U{hg}.

Consider the “available” degrees at this moment, say gfls) = (dfs) L) oo d,(,s) 1, ¢0), where d}”
1 n
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is the number of not-matched half-edges of vertex j before step s if h; is not attached to vertex j and
1 less if Ay is attached to vertex j. Since we choose the half-edge m(hy) uniformly at random from the
currently available half-edges, the vertex v(m(hy)) that m(hy) is attached to is chosen size-biasedly
from g};‘), conditionally independently of previous matchings, that is, its forward degree then

[ 2jeln) l{d_js‘):i}

P(X" =i-1)=P(d") /) =
(X" =i-1) =P =1) 251

v(m(hs)) ~ =V, (),

with A := Exj, (s — 1) U {h,}. In particular X" + 1 follows the measure v* WA, (i) in Claim 5.10. Thus,
let us apply Claim 5.4 with A := Exj, (s — 1) U {hy}, that is, removing the set of unavailable half-edges.
Since t, < h,/17, we have IAA | < 2h,/17+1 < h,/8 so Claim 5.10 applies. By Claim 5.10, the
measure vr’; A, (i) is stochastically dominated by (v*)* for each s, so let Y, be such a random variable.
Using the conditional independence of the consecutive matchings, one can thus construct a coupling
where X{" < X" +1 < Y, and Y; are iid from (v*)*. Further, since u,, is a vertex chosen uniformly
at random, the root’s degree d,,, has distribution v,. By below (83), the measure v}; stochastically
dominates v,,. So it holds that

d ,d
Va S VE<S (VO
and thus one can construct a coupling where d,,, < Yo with ¥y from (v,’;)#. To finish, recall that whenever
the exploration discovers a loop at some step s, it appends two ghost subtrees to the half-edges A and
m(hg) exactly so that their last generation ends at distance r from u,,. Setting the offspring distribution
of these branching processes to be also (v*)* gives then a coupling where B, (0) is embedded in ’Tprl
which are both embedded in 7,%, a branching process where all vertices have iid degree from v,,.
Using Assumption 1.12 we now bound (v*)#(z) for all z > zg V z¢. Since we assumed v, (z) <
cuz 7178 with 7(1 — €) > 2, it holds for some finite constant 7 that E[D,] < m < oo uniformly
for all n, and Assumption 1.10 also ensures that E[D,] > m for some m, uniformly for all n. Hence
v*(2) < cu(z+1)z771=®) /m for all n and all z > zo. Finally, for all z > Zg V zo
Cl—n
# 1-n _ u 1-n _—-7(1-&)(1-n) r _—(t(l-e)-1)(1-n)
()" (2) = Vn(Z) = Zm 7 27z <clz ,
which proves (86). The condition (7(1 — &) — 1)(1 —57) > 1 is necessary for the hash-measure to exist
in Claim 5.4. O

We are ready to prove Proposition 5.1.

Proof of Proposition 5.1. We start by applying Lemma 5.8. This gives that B, (u,) is contained in a BP
tree 7, as long as the number of half-edges explored is ¢(r) < nE[D,]/17, with offspring distribution
v, defined in (86). Next, we ensure that this measure satisfies the conditions (71) so that we can use
the moment bounds of Lemma 5.2. To see (71) is satisfied, we observe that v,, has power-law exponent
' —1:=(t(1-¢&)-1)(1—-n) > 2, thatis, 7" > 3, and we can easily ensure that 7’ ¢ N by changing n
if necessary. The condition on the maximum of the support in (71) follows from Assumption 1.12 since
the exponent 1/(7(1 — &) — 1) there is less than 1/(7’ — 1) which is allowed in (71). Hence Lemma 5.2
is applicable for the BP tree 7,* in Lemma 5.8.

By Observation 5.6, in order to also bound the surplus edges in Bsiogn We need to reveal the size

of one more generation, and so we set out to bound |7'#lOg 4e1| fOr some 6 > 0. Set r, := dlogn + 1.

Let k € N, and £ > 0 to be determined later. We use first the increasing function x*, then Markov’s
inequality, and then Minkowski’s inequality in the second inequality:

k
Sn—kf(z E[z¢]'"*

i<rp

k

P17} > n?) =P((|TED* = n*4) <n”™E (Z Zi

i <kn
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We now apply Lemma 5.2 on ]E[Zik ] foreachi < ry:

k k
P(ITEDE 2 n*€) < n7k€| ) (6 - n -eckf)l/k) =n . G -nhk(z eckf/k) :

i<rp i<rp

The sum on the rhs is geometric and since €, > 0, it is at most C’eCx/k)m for some constant C”, with
rn = 6logn + 1, which gives

P((|7—r’i|)k > nk{) < n—k{ . (gk . nhkclkné(ik — Cn—k§+hk+5(.ck.

We inspect the exponent of n. Recall that iy = ((k+1)/(7" = 1) = 1) v 0 from (73). Since 7" = 1 > 2,
we may write

—k{ + h +6€, = —k({ - 25) - (1 - 25) + 66 (87)

The exponent of n can be made strictly less than —1 for sufficiently large k if £ > 1/(7’ — 1). Since
v —1 = (7(1 — &) = 1)(1 — n) with 5 arbitrarily small, this yields the formulation |Bsiogn(un)| >
n(1+&0/(r(1=2)=1) in (69) of the proposition. For any such ¢ one can now choose k € N so large that the
exponent goes below —1, in particular any & satisfying k > £/(7’ — 1) — 1 is a good choice. Given k, one
now chooses ¢ small enough so that the whole exponent in (87) still stays below —1, giving also §” > 0.

By the coupling Bsiogn(Un) S Bslogn+1(n) S 7—;log .+1» We have just proved

P(Asize) = P(lBélogn+l(un)| < n(HSI)/(T(l_E)_l)) >1- n_l_él, (88)

and then by monotonicity {|Bs1ogn ()| < n(1+&7/(7(1=8)=D1 4150 holds with the same error probability.
Now we start bounding the surplus edges inside Bé]ogn(un). On the event Ay, the exploration in
Construction 5.5 finishes in (6 log n) < n¢ with{ := (1+&”)/(7(1-&)—1) steps, and by Observation 5.6,
the exploration reveals B s 109 (#,) and all surplus edges inside. We estimate the probability of a collision
from above at each step of the exploration. When the exploration is at step s, a collision happens if the
half-edge /g is matched to one of the active half-edges in Ay (s — 1), see substep s.(ii) in Construction
5.5. The size of Ay, (s — 1) is at any time no more than the total size of B s1og n+1(it5), that is, at most né.
Hence, since s < n¢ on Ay, also, and so

-1

)

né~' = cnf

¢ 2
P(a surplus edge is created at step s) < n _nzs 1 < E[D,]

uniformly for all s < n¢, and conditionally independent of other steps. One can thus dominate the se-
quence of indicators of whether a surplus edge is created at step s by an iid sequence of n¢ many Bernoulli
random variables with mean 2n¢~'E[D,,]. Thus, the number of collisions is at most Bin(n¢, cné~").
Since, = (1+&")/(t(1 —¢g)—1),and we assumed 7(1 —¢) — 1 > 2and &’ € (0, (t(1 — &) — 3)/2, we
have ¢ < 1/2, and so the mean, ©(n*¢~!) tends to zero for &’ in this interval. For some ¢ to be chosen
later, we bound

P(Surpsopn (un) = €| Asize) < P(Bin(n¢,cn®™") > 0)
I’l( : > :
< Z-1yi 20-1Ni 1 (22-1)¢
_Z(i)(cn )SZ(cn )} <c'n ,
i>t i=l

where we used that (";) < nfi, and that the geometric sum in the middle has base less than 1 for
all sufficiently large n since 2¢ — 1 < 0. Choose now ¢ so large that the exponent of n on the rhs,
(2¢ = 1)¢ < =1, thatis, £ > 1/(1 — 2£). Then one has for some §” > 0 that

P(SUIP s 100 (tn) = € | Asize) <n™'7. (89)
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One can compute using ¢ that £ > T(TE;% which also shows that 7(1 — &) > 3 is necessary for

the argument to work. Combining now (88) with (89) with a union bound finishes the proof of (69).
Finally we estimate the maximal multiplicity of the edges in the whole graph. We introduce 1 L(fz, =1
if there are at least £ edges between vertex u and v. Then by Markov’s inequality, and pairing £ chosen

half-edges from u and from v together yields that

P( V) > 5) =IP>( 19 > 1) < E[ 19
8y e 2, 1 2,

u,ve[n] u,ve(n]

(90)

for some constant ¢ > 0. Using (11) and (12) in Assumption 1.12, with M,, := C,n"/(71=8)=1 and so
one bounds the moment as

M"
E[Df;] < Z c 27718 < c/ TU-9)g,
z<M, 1

< CMHTU=EDV0 _ (@) (7 (1=2)=D=D) VO,

similarly to & in (73). If now the maximum is at O in the exponent, one obtains £ > 3 is necessary
for the exponent to be below —1, and if the maximum is at the other term £/(7(1 — &) — 1) — 1 then
one obtains £ > (7(1 —¢&) — 1)/(7(1 — &) — 3) then the exponent in (90) is less than —1. Hence
>3V (t(l-¢g)-1)/(r(1 —¢&) = 3) is a sufficient choice, finishing the proof of (70) and thus the
proposition. O

With Proposition 5.1 at hand, we now move on to analyze the contact process on B s1og 1 (#4,). On the
event in (69), Bs1og n (i,) has at most £ surplus edges. By Observation 5.7, all the surplus edges created
during the exploration are either self-loops, multiple edges, or the distance between the root u,, and the
two end-vertices of the surplus edge differ by at most 1. We will apply the next lemma to bound the
number of nonbacktracking infection paths of the contact process on B siogn (in).

Recall from Definition 3.3 that  (G) denotes the genealogical label of particles in the contact
process, equivalently, the set of possible infection paths 7 on G. Recall also that () is the length of the
path (number of edges) from (21), while 7 () in (34) denotes the location of the first backtracking step
on the path, with the convention that 7(x) = oo if the path is nonbacktracking.

Lemma 5.11. Let T = (V, E) be a tree with root @; assume that T has no self-loops or parallel edges.
Let N,k € N. Let uy,vy,up,va,...,ui,vr €V be (not necessarily distinct) vertices such that for all
ied{l,....k}

0 < distr(@, u;) < distr (@, v;) < distr (@, u;) + 1. 91

Consider another graph T ) on the same vertex set V, with edgeset E' := EU{uy,vi}U...U{ug, v}
Let Ty :={v € V : dist;(@,v) < N} as before, and define

By ={neT(T®): no=, I(n) <N, 1(r) = co}. (92)
Then |By| < 2k + DN | Ty .
The lemma allows for self-loops and multiple edges, these also satisfy (91).

Proof. We start by introducing a labeling of the directed edges of any path & € B, describing whether
the edge uses a surplus edge in one of the two possible directions, or the edge is not a surplus edge. So
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introducing the symbol o for the latter, we define the set of possible labels £, and we then introduce
Seq, as the set of length-N sequences with elements from £ with a vertex in 7 appended at the end:

L= [ (v, i)} U{oh, ©3)
1<i<k
Seqy = {(s1,82,....5n,v) 1 s; € L,v € V.distr(2,v) < N}. O4)

Observe that |£| < 2k + 1 (self-loops and multiple edges can make this inequality strict) and thus
ISeqy | < (2k+1)N|Tw|. Therefore, if we show that there is an injection from By to Seqy, it will yield

IBn| < |Sequ | < (2k + DN |Tn ],

proving the lemma. We now construct this injection.

Fix any n = (mg,71,...,7m) € By, where m = [(r). We think of this path as the sequence
(e1,e2,...,em) withe; = (m;_1, ;) adirected edge. By the definition of By in (92), m < N. Recalling
the labels from (93), for each 1 < j < m define

(ui,vi) ife; = (u;,v;) for some i <k,
Sj = (vi,u;) ifej = (v;,u;) for some i < k,
0 otherwise.

Furthermore, define s; = o foreachm +1 < j < N, and finally, let v = 7,,,. By the condition (91), each
edge in 7 can only change the distance from @ by at most 1, thus dist-(@, v) < N. Hence, we associate
a vector L(7) = (s1,...,8n,v) € Seqy to each 7 € By. We will show that this mapping is injective,
that is, (s, ..., sy, v) uniquely encodes the path 7.

Foreach 1 < j < N the label s; reveals whether the edge e crosses one of the surplus edges {u;, v;},
and if so, in which direction. Between two consecutive crossings,  is a nonbacktracking path on the
edges of the tree 7, hence it is uniquely determined, since in a tree there is a single nonbacktracking
path between any two vertices: for example, if s; = (u;,v;) and s; = (up,vp) for j < j’ and
Sjs1 =...=s8p_1 =o,then (nj,...,my_1) is the unique geodesic (i.e., nonbacktracking shortest path)
in 7 from v; to u;. A similar argument shows that if jn.c = max{j : s; # o}, then (7., ..., T (x)) is
the unique geodesic in 7 from the endpoint of s;, . to v, the endpoint of 7. This shows that the defined
map is indeed injective, finishing the proof. O

Proof of Theorem 2.9(a). Let G, be arealization of CM(d,,). Recalling from Lemma 3.8 the stochastic
domination between CP and BRW, and that a branching random walk with initial configuration §0 can
be realized as the sum of independent BRWs, each started from a single particle present in §0, we obtain
that

d
CP 1(Gn1g,) <BRW; 4(Gnlg) = > BRW; (G 1y) = > xY),

ve[n] ve(n]

where the branching random walks )_Ct(v) are independent given G,,. Let now Ty denote the extinction

time of BRW s 1(Gp, 1 ), and let T.") denote the extinction time of x'"’. Then Tex; = max, cpn) TY.
Hence for any ¢ > 0,

ext ext ext

P(To > 1) =P(Fve[n] : T > 1) <n- (1 DRI s 1)) =0Tl >0, ©99)

ve[n]

where u,, is a uniformly chosen vertex. We will show that for some C > 0, IP’(T;Z") > Clogn) = o(1/n).
which then shows that the extinction time is Op(log n) by (95).
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We first apply Proposition 5.1, which is applicable since its conditions coincide with that of
Theorem 2.9(a). Proposition 5.1 then gives constants &, 6, &’,£ > Oand ¢ := (1+&’)/(t(1-¢)-1) < 1/2
so that the event

Agood (Uty) = {MI??E;] e(u,v) <€} n {|B510gn(un)| < ng} N {Surp5logn(un) < ¢}

holds with probability 1 — 2n~'%". On the event Agood (), there are at most ¢ surplus edges in
Bsiogn(tn), so we may apply Lemma 5.11 to see that the set of nonbacktracking infections paths in
Bsiogn(un) = T starting at u,, of length N = & log n, defined in (92) satisfies on the event Agood (Un)
that

|B(510gn| < (2€+ l)ﬁlogn|7‘610gn| < nélog(2f+l)|3610gn(un)| < n{+510g(2€+1).

Now we apply Lemma 4.8, with ¢ as the maximal number of multiple edges and v := u,. The main
result there, (63) turns into, with N = §logn and A < 1/(4¢),

P ()_c§“")) dies before time C¢ log n, and never reaches
any vertex at graph distance ¢ logn from u,
>1- 2|Bﬁlogn| (ef X (45/1)510gn + e—dlogn(C—l)z/(2C)) (96)

> 1 = ppétolog(2t+) (efn’é‘ log(4C)| . n—é(Cfl)z/ZC)'

Distributing the brackets, there are two error terms, the first one is

2ef - n§+610g(2t’+1)—6|10g(4€/1)| < n—l—d’
whenever 4¢1 is small enough so that the exponent of n goes below —1 — ¢, in particular when

1 ’
/l<ﬁexp(—%(1+6 +§+6log(2€+l))). 97)

The second error term is

2n4+51og(2{f+1)—5(C—1)2/(2C) < 1-¢

whenever C is so large that the exponent of 1 goes below —1—¢”, in particular using that (C—1)?/(2C) >
(C - 1)/4 the exponent is below —1 whenever

C>1+45(1+06" ++6log(2C+1)).

This shows that for all A sufficiently small (satisfying (97)), the event in (96) holds with probability at

least 1—n~1=9", On this event, the process )_cﬁu") never leaves the ball B 5 10g n (un), in particular the process

never sees other parts of the graph. In other words, extinction of )_c,(“") on B siog n (1t,,) without reaching

the boundary of B sog,(1,) implies extinction of )ﬁ,(”") on G,. Hence, the event {TX[") > Célogn} is

covered by the complement of the event in (96), P(T(“") > Célogn) < 2n~'=9" Substituting this back

ext

to (95) finishes the proof. m]

6. Proofs of survival on Galton-Watson trees

In this section we present proofs of survival regimes. We start with (only) global survival — Theorem
2.5(b), then we prove Theorems 2.1 and 2.5 (a) in Section 6.2.
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6.1. Max-penalty: global survival via infinite infection rays on heavy tailed GW trees

To prove global survival for the max-penalty with u € [1/2,1) on GW trees with sufficiently fat-tailed
offspring distributions, that is, Theorem 2.5(b), we will show the existence of a (random) infinite ray in
the Galton-Watson tree on which the infection survives forever.

Definition 6.1 (Down-directed contact process). Let 7 be any (given) tree with root @. Consider the
directed graph 7 where each edge {u, v} of T is directed away from the root, that is, from parent to
child. Then we denote by CP# (T, ,_5‘0) = (gtl)t >1 the degree-penalized contact process in Definition 1.1

on the directed graph T with initial state 50.

One can obtain the down-directed contact process 74(7, fo) from the graphical construction of the
original CP (T, éo ) by deleting the Poisson point process_es that represent infections from child to
parent (i.e., upward in the tree), and leaving only those infection paths intact which only contain parent-
to-child infection events. Hence, for every given tree 7 and starting state §0 e {0,1}V(7) it holds
that

d
CP;J(T,g_fO) < CPya(T.€)). (98)

The next proposition shows that CP#’ , survives globally with positive probability on a Galton-Watson
tree:

Proposition 6.2. Let T be a Galton-Watson tree with offspring distribution D satisfying Definition 1.7
for some @ > 0 and P(D > 1) = 1. Suppose f(x,y) = max(x, y)*, and moreover u + a < 1. Then the
down-directed contact process CPJLC A (T, 1) exhibits global survival with positive probability on T for
any A > 0, for almost all realizations T of the Galton-Watson tree.

Proof of Theorem 2.5(b). The result follows from Proposition 6.2 by using the stochastic domination
in (98). m]

Proof of Proposition 6.2. In this proof we denote by D, = d, — 1 the out-degree (number of children)
of the vertex v in 7. Let Aglop be the event that CP# (T, 1) survives globally. Let Bx = {3ty > 0,

Av e V(T),deg(v) 2K : g—‘}o(v) = 1} be the event that CP} , ever reaches a vertex with degree at least
K for a large enough K decided later. This event has strictly positive probability px with lower bound
depending only on K, since px > P(Dgy > K) > 0.

P(Agiob) = P(Bx)P(Agiob | Bk ), 99)

so it is enough to show that P(Agqp | Bx) > 0 for some large enough K. Fix some constants 1 < s1 < s
to be chosen later.

Consider a vertex v with degree D,, = L > K in the Galton-Watson tree and let N (v, [L*', L2]) and
N(v, [L*', L*]) be the set and number of children of v in 7 with degrees in [L"!, L2], respectively.
Since the children have iid degrees, N (v, [L*', L*2])) is binomially distributed with parameters L and
P(D € [L51, L*2]). We bound its mean from below using (6). Given some € € [0, a(sy — 51)/(s2 +51)),
assuming L > Ky(&) so that (6) holds,

E[N(v, [L*',L*]) | D, = L] = L(P(D > L) -P(D > L‘Yz))

> L( 1 _ 1 ) — Ll—asl—ssl (1 _ L—a/(sz—sl)+£(sz+s1))
- Lsi(a+e) Ls2(a-¢) .
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By the assumption that s, > 51 and € < a(sy — s51)/(s2 + 51), we obtain the existence of K (&, 52, 51, @)
such that the second factor on the rhs above is at least 1/2 for all L > K (&, 52,51, @) V Ko(&). Hence
for all such L,

E[N(v,[L*,L?]) | D, = L) > L'=@17#51 )2, (100)

We now require that sy, € is such that 1 — as; — &5y > 0, then the mean tends to infinity with L. Using
now Chernoft’s bound on this Binomial random variable we obtain that

P(A; (v, L)|Dy = L) :=P(N(v, [L*,L?2]) > L'"*""#S1 /4 | D, = L) aon
>1—exp(— L1755 /48) = 1 —err;(L).
Assume now that CP} 2 has reached vertex v at some time, and that A; (v, L) holds for v. Let now

As(v,L) be the event that v infects at least one of the first L!=®$172%1 /4 many children within
the set A'(v, [L!, L*2]) before healing. We bound the complement of this event using that the de-
gree of such a child is in the interval [L®!, L*2], which gives that the infection rate from v to any
child u € N'(v, [L®, L%?]) is at least r(v,u) = Amax(L,D,)™ > AL (since we assumed that
s> > 51 > 1). We obtain that

P(=Ay(v, L) | v ever infected, D, = L, A;(v, L))

1 1
= <
1+ X{r(v,ui) s ui € N'(v, [L%, L%2]),i < L1-@s1=851 /4} = 1 4 AL1-asi-us:=ss1 /4
< 8L (masimusa=es) —: epp, (L), (102)

where we used that L is sufficiently large, and the assumption that 1 —as1 — sy —es; > 0 to obtain the last
line. This assumption can be satisfied with s, > s; > 1 and & > 0 small enough whenever 1 —a—u > 0,
which is true since we assumed a + p < 1. Also note that it cannot be satisfied when a + u > 1.

We use the error bound in (102) repeatedly. Let now v be the first vertex reached by CP}’  With
degree at least K in the event Bx in (99), and let D,,, denote its random degree. We now define a random
infection ray (vo, vi,...,Vm, Vm+1 - - . ) Tecursively. Suppose we already defined (vy, ..., v;,) for some
m > 0, and their degrees (D, . . ., Dy,,). We now check whether the event A; (v,,,, Dy, )NA2 (v, Dy,,,)
holds, and if so, then we choose any vertex v,.1 € N (v, [Dy) , D32 1) that is infected by v,, before
v heals. We now obtain the existence of an infinite ray by taking the limit of the nested sequence of
events:

P((vo,..-sVm,...) exists) = lim P( Nim<my V1 exists})

mp—oo
mo

lim ]P’(vm+1 exists | (Vo ..., Vm) exists),

mp—oo

We denote by F,, the sigma-algebra generated by

Ui<m-1 {Al (V[, Dv,—), AZ(Vi, Dvi)v Vi, DV,'} U {Vm’ Dvm }
That is, we reveal the degree and existence of v,,, but not whether A; (v, Dy,,) N A2 (v, Dy,,) holds
since those events already give v,,.1. Using this sigma-algebra, we can use the Markov property of

CP}. » lower bound the probability of existence of vy by P(Bk ), and that of v,,,; by the conditional
probability of A; (v, Dy,,) N A2(vm, Dy,,) to obtain
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P((vos .-y Vim,...) exists)

mo
> lim P(Bk)E l—l P(Al(vms Dy,,) N A2(vin, Dy,,,) | ]:m)]

mgp—oo m=0
my
> P(Bg) m{jinm 1_[ P(Al(vm,Dvm) N A2 (Vi, Dy,,) | Vi €ver infected,D\,m) . (103)
m=1

Observe that now the calculations in (101) and (102) apply, and the mth factor is, conditionally on D,, ,
at least 1 —err;(D,,,) — errz(D,,,). We inductively show that the mth factor in the product above is at
least

1 —err (K*) — errp (K*1), (104)

by showing that D,, > K Si" whenever v,, exists. Monotonicity of err; (L)+err; (L) in L then immediately
yields the lower bound (104), as follows. Since we assumed D ,,, > K = K S(l), the induction starts. Assume
now that D, , > K*""". Then per definition, (see below (102)), D,,, € [D;! |, Dy 1. Using now
the induction hypothesis immediately gives (104). Hence, we return to (103), for a.e. realization in the
conditional expectation the lower bound in (104) holds, hence,

P((vos---sVm, . ..) exists) > P(Bk) l—[(l ey (K*7) = erry (K*))
i=1

- (105)
> P(BK)(I - Z err (K*1") + errz(K‘an)).
m=0
Using the values of err; (K*1") + erry (K*1") from (101), (102), given that
1 <s1 <52, 1 —asy —usy—es; >0, 1-—as;—&es1>0, (106)

the sum on the right hand side is summable in m, and both terms decrease faster then geometrically
in m, hence they are dominated by a constant times their first term:

Z exp(_st"(l—a/xl—ssl)/48) + Z 8/1—1K—Sf"(l—ﬂ/sl—lﬂz—ﬁsl)
m=0 m=0

< Cexp(—K'7917851 148) 4 cA7 K~ (I-asi—ps=es1) (107)

One can check that the system of inequalities in (106) is solvable whenever 1 —a—u > 0. Namely, choose
first 1 < 51 < s close enough to 1 so that 1 — as; — usz > 0 holds. Choose then £ > 0 small enough
so that (100) and (106) hold as well, and finally one can set K sufficiently large so that all inequalities
above are valid. In particular, given now any 4 > 0 (i.e., small), one can choose K sufficiently large so
that the sum in (107) is at most 1/2, and then we obtain in (105) that an infinite infection ray exists
with probability at least P(Ag)/2, which is strictly positive. Hence, global survival occurs with strictly
positive probability, whenever a + u < 1, finishing the proof. O

6.2. Product penalty: local survival using a row of star-graphs when u < 1/2

We will prove local survival of CPs ; (for both product and maximum penalty) when u € [0,1/2) on
the Galton-Watson tree, with at last stretched exponential offspring distributions, that is, Theorem 2.1
in multiple steps.

The idea is the following: As a direct consequence of known results about star graphs that goes back
to Berger, Borgs, Chayes and Saberi [5], in Claim 6.6 we prove that when ¢ < 1/2, the infection survives
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Figure 2. The graph Hy ¢ (k).

on a star-graph of degree K, which consists of a degree-K vertex and its degree-1 neighbors, for a time
Tx = exp(©(12K'21)) with probability very close to 1. Moreover, throughout this time the star will
be infested, by which we mean that a sufficiently high fraction of its vertices are infected.

We then show that a star-graph that is infested for time Tk, sends the infection through a path of
length ¢ to another such star-graph with probability close to 1 if and only if £ = o(log T ). Hence we
need that £ = o(K'~2#) so that the infection successfully infests another star-graph.

Let Hg ¢x) be a graph that consists of a one-ended infinite row of star-graphs of degree K,
(v1, V2, ...), with paths of length £(K) = o(K'~?*) between two consecutive stars. We show that the
degree-penalized contact process survives forever on Hk ¢ (k) with positive probability, as long as K is
sufficiently large compared to 4. We do this by mapping the process on Hx ¢(x) to a discrete time analog
of the contact process on N, = {1,2, ...} corresponding to the infinite row of star-graphs (vy,vs,...).

Finally, we prove that Hx ¢(k) can be embedded almost surely in a Galton-Watson tree 7p in a way
that in the embedding, every vertex in Hk ¢(x) has degree at most M times its degree in Hk ¢(x).
This only changes A in the arguments above by a constant factor, that is, to 1 := 1/M?*, so if CP .
survives on Hk ¢(kx) whenever K is sufficiently large, then the same is true for CP, ; by increasing K
if necessary. For the embedding to be possible, the tail of D must be heavier than stretched exponential
with stretch-exponent 1 — 2, in the sense of Definition 1.8, which is the mildest condition possible for
this proof to work.

6.2.1. Embedding stars in the Galton-Watson tree
We now make the former outline precise, starting with the definition of the infinite row of star-graphs
and the embedding that does not increase degrees too much.

Definition 6.3 (Infinite path of stars and M-embedding). Giventwointegers K, > 1,let H = Hg ¢ bean
infinite graph defined as follows: we start by taking an infinite path (v, P, v2, P2, ..., Vi, Pi, Vitlr - -+ )
where for all i > 1 the paths P; = (u(l”, R u}”) have length ¢, and then to each v;,i € N we attach
K additional neighbors w(li’, R w(lg, each with deg H(w}”) = 1, which we call leaves. We call K the

star-degree of Hg , and ¢ the connecting-path length, which might depend on K. See Figure 2.
We say that H = Hk ¢ is (degree-factor) M-embedded in a graph G if G contains Hk ¢ as subgraph,

and for all vertices v € Hgx » € G it holds that
deg;(v) <

<M. 108
degy () (108)

The next lemma shows that for large K, Hx , can be M-embedded almost surely into a Galton-
Watson tree 7 with offspring distribution D. The proof reveals that the tail of D determines the minimal
¢ = {(K) that is possible for the embedding to hold almost surely.

Lemma 6.4. Let T be a Galton-Watson tree with degree distribution D so that the tail of D is heavier
than stretched exponential with stretch-exponent 1 —2u, in the sense of Definition 1.8, along the infinite
sequence (z;)i>1, and prefactor g(z) — 0 as z — 0. Then there exists a constant M > 1, such that
Hg ¢(k) can be M-embedded in T for all sufficiently large K such that 2K € {z;,i > 1}, for almost all
realizations of T, whenever

((K) 2 2'7#g(2K)K' 7 = o(K'™#). (109)
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Proof. First, fix some small constant ¢ > 0 decided later. Let E[D] := ¢ > 1, and define
Dy = Dlp<py, that is, the distribution where P(Dy, = 0) = P(D = 0) + P(D > M) and
P(Dy = k) = P(D = k) for all k € [1,M). Given € > 0, we choose M > 2 such that both of
the following inequalities hold:

gm =E[Dy] =E[DI{D < M}] > E[D] —& > 1+2e¢, (110)
P(D<M)>1-¢.

It is clear that Dy can be coupled to D such that P(Dys < D) = 1, and this embedding can be done
for each vertex of the original Galton Watson tree 7, obtaining a sub-forest Fj; of 7. The embedding
can be done by first sampling D,, ~ D many children for each vertex v, and then accepting the number
of offspring as it is when D,, is between 0 and M — 1, but setting the degree of v in Fs to be 0 when
D, > M. We will denote the distribution of a single tree in Fas by Tars, which is a branching process
with offspring distribution D ;.

Define the event, for 2K € {z;}i>1,

Ay :={3v e T :D, =2K}.

Since we assumed P(D = 0) = 0, 7 survives almost surely and so P(A;) = 1. Take then the vertex
v € T that is closest to the root @ and has D,, = 2K, and set it to v; in Hg ¢ of the embedding. Clearly
v then satisfies (108) since its degree in 7 is 2K < MK by our assumption that M > 2.

Similarly as in the proof of Proposition 6.2 below (99), let N'(v, [a, b]), N(v, [a, b]) denote the set
and number of children of a vertex v € 7 with offspring in the interval [a, b]. Consider now the event
Achita(v1) := {N(v1,[0,M)) = K + 1}. Since D,, = 2K per assumption, and the children of v; have
iid degrees, using (110), each of these children has offspring less than M with probability at least 1 — &.
Hence, using the concentration of Binomial random variables (e.g., a Chernoff’s bound), whenever
& < 1/8 (which we safely assume), for all K sufficiently large,

P(Achiia(v1)) =P(N(v1, [0, M)) > K +1)

> P(Bin(2K,1 -¢) > K) > 1 —e K/12, (b

On the event Achja(vy), we label by wi, wa, ..., wg4 the first K + 1 children in N (v1, [0, M)).
Including the edge towards vi, the total degree of any of these vertices in T is at most M, satisfying
thus the degree factor M in (108). So, v; and any K out of the children wy, ..., wg4; may serve as the
embedding of w'"” wy' of Hg ¢, and any one of these children may take the role of u|" of the path
P1in Hk ¢.

From each of these vertices w; we start the (embedded) branching process Tps (w;) C T (w;) with
offspring distribution D ;. Let the number of descendants of w; in Tz (w;) in generation ¢ (that is,

of distance ¢ from w;) be Zéi) for each ¢ > 1. It is well-known that Wé(,i) = Zéi) / qfw is a martingale

12 Wk

for each i [3], and that limy_,c W{S') = Wg) exists a.s. Since E[Dys] = gy > 1 + 2¢, this branching
process is supercritical, and because Dj; is bounded by M, the Kesten-Stigum Theorem gives that
n = P(Wg) # 0) > 0 is the probability that the corresponding branching process 7Tj; survives
indefinitely. It follows then that, for any i,

(i) t
. Z _ .
lim P(Z\) > (gu - £)*) = lim P[ =~ > [~ =2} | —pw? > 0) = 1.
{—00 {—o00 qf\l qm

By (110), gpr — € > 1 + € and consequently, there exists a (deterministic) £y only depending on D s
(but not on K) such that for all £ > £, we have

P(B)) :=P(Z" = (qu - &)") = n/2. (112)
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Denote the set of individuals in the ¢-th generation of Ty (w;) by G éi) foreachi=1,2,...,K, and let

Ge = Ufi 9 é(f.). Since (w;); <k are siblings, G, is embedded in 7 also in the same (possibly other than ¢)
generation. We now return to the original branching process 7 for a single generation. For each v € G,
consider i.i.d. copies D, of D (that is, without the truncation at M used so far), and define the events for
i <K:

Bi = {3u € G ¢ Dy, =2K} (113)
foreachi=1,...,K + 1. By (112) we have P(B3;) > n/2. Furthermore, since on the event I5;
P(-B; | B;) < (1-B(D = 2K)) ="
< exp ( “B(D = 2K)(qp — s)f).
Since we have assumed 2K € {z; };> in Definition 1.8, we can use the bound

P(D=2K) > exp(—g(2K)(2K)'72H)

for the function g(2K) — 0 as K — 0 in Definition 1.8. Hence, g(2K) = 0(4/g(2K)) but at the same
time 4/g(2K) — 0 as K — oo. We then also use that gp; —& > 1+ & by assumption, and so by choosing

¢ =((K) > /g(2K)(2K)'~?#, one can compute that (2K)'"2#(1/g(2K) log(gp — &) — g(2K)) —
and so for all sufficiently large K it holds that

P(=B; | By) < exp (- e #CRICKI (g — 5)((K))

< exp (- @K (VeCK) loglan—e)=g KD < 13, (o
Combining (112) and (114) yields
P(Bi) > B(B;) - B(B; | B)) 2 (n/2) - (1/2) = n/4.
Now we define the event that at least two events 5;, B, i happen for vy:
A(vi) :={3i,j : i # j: B; N B; holds}. (115)

Now consider the number of indices i < K + 1 for which g, holds. By (113), on the event Agpiig(v1)
in (111), this number stochastically dominates a binomial random variable with parameters K + 1 and
n/4. Hence, by the definition of A(v1) in (115), it holds for some constant ¢(77) > 0 that

P(A(v1) | Aaita(v1)) = P(Bin(K + 1,7/4) > 2)
= 1= (1 =n/A" = Km/4) (1 -n/HF 2 1-ePE,

Combining this with (111), we obtain that for all sufficiently large K,

P(Amita(v1) N A1) = 1 —e MK _eK/12 51 _ ¢ (116)

On the event fl(vl) N Achila(v1), there are two vertices v, 1, v22 such that their most recent common
ancestor is the starting vertex vy, and deg(va 1), deg(v22) = 2K, and dg(vi,v2,1) = dg(vi,v22) =
{(K) > +/g(2K)(2K)'72# with £(K) = o(K'?#), and the paths P 1, P> joining v with v and
va 2 respectively are edge-disjoint with all internal vertices having degree at most M. Observe that
(v1,P1,1,v2,1) and (vq, P12, v2,2) both serve as a factor M-embedding of the vertices in (v, Py, v2) in
Hg ¢(k)» hence we may choose any of them for the embedding. Further, the vertices v, 1 and v; > have
degree 2K in 7T, hence, using the argument between (111) and (115), one can repetitively apply the
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procedure of checking whether the events Acpjg(-) N A(-) hold for these vertices, and the vertices then
found by either Acpiia(v2,1) N A(v2.1) or Achilg(v2.2) N A(vz,z) may all serve as the embedding of the
path P, and v3, and so on.

We thus consider an auxiliary “renormalised” branching process. We say that v has 2 children
(in this case vj 1, v2,2) with probability (at least) 1 — & in (116) and O otherwise. Observe that the
path leading to any vertex in generation j of this branching process serves as an M-embedding of
(v1,P1,v2,...,Pj-1,v;). This renormalised branching process is supercritical. Hence, it survives with
positive probability, giving that the M-embedding of the infinite graph Hg ¢k exists in T, starting
from vy, with positive probability. Kolmogorov’s 0-1 law finishes the proof that 7 then has a proper
M-embedding of Hg ¢(k) somewhere in 7 with probability 1. O

We now define star-graphs (subgraphs of Hk () and the notion of infested stars.

Definition 6.5. A star-graph S of degree K is a graph which consists of one vertex v of degree
degq(v) = K (its center) and its K neighbors (w;); <k, each of degree degg(w;) = 1 that we call leaves.
Consider the classical contact process with infection rate » on S. We will call such a star r-infested at
some time ¢ by the contact process if at least 7K /(16¢2) of its leaves are infected.

The next claim adapts [53, Lemma 3.1] to the degree-penalized contact process on S. The claim
shows that starting with only the center infected, a star-graph is AK #-infested for a time interval of
length Tx > exp(cr?K) = exp(cA>K'~2#) with high probability, and during this time-interval the center
vertex v is infected more than half of the time. Writing r for the rate of infection of the classical contact
process on a star-graph, [53, Lemma 3.1] holds under the condition that 72K is uniformly bounded away
from 0. Since in the degree-penalized CP, the rate across the edges of the star-graph is r = AK™#, we
shall require that 2K '~?# is uniformly bounded away from 0.

Claim 6.6 (Lemma 3.1 of [53] adapted). Assume u < 1/2, A < 1. Consider a star-graph S of degree K
with center v. Let &; denote the contact process CP on S where r(v,u) = r(u,v) = A/K*. Then there
exists a constant ¢y > 0 such that

P(1€,1 2 4K /(4e) | £9(v) = 1) = (1 - e K" ") e, (117)
Further, let Tx := exp(clxlzKl_zf‘). If A2K1721 > 322 then
P(§ # 0‘ €| = /IKI”‘/(Se)) > 1 —e KT g —erm k.- (118)
—TK - 20 ’

Moreover,

Tk

P| S is AK #-infested for all ¢ € [0, Tx] and &(v) 2Tk /2 |§O| > /lKl_“/(Se))
) Y

>1-errk. (119)
The proof of Claim 6.6 is very similar to [53, Lemma 3.1], therefore we include it in the Appendix.

6.2.2. Contact process on an infinite line of stars

We continue by studying the spread of the infection on Hg (k). In particular, we prove that the
probability that an infested star passes on the infestation to a neighboring star in Hx (k) can be made
arbitrarily close to 1 with the right choice of the parameters.

Claim 6.7. For each fixed small 2 > 0 and 6 > O there is a K, s such that the following holds for all
K > K, s. Consider the degree-penalized contact process CPy 4 on Hk (k) with f = (xy)# for some
{4 < 1/2. Consider two consecutive stars v;, vi+1 in Hg ¢(k) in Definition 6.3, with £(K) = o(K'72#),
and let Tx := exp(c1A2K'~?#) from Claim 6.6. Suppose that v; is AK ~H-infested at some time 9. Then
at time #o + Tk, vi4+1 is AK H-infested with probability at least 1 — 6.
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Proof. In Definition 6.3, we denoted the vertices on the path P; connecting v; to vy by u(l’) , (2’), e ;,”

In this proof we will omit the superscript and denote absolute constant factors by c¢ that we specify on
the go. Further, | - | means the Lebesgue measure of a set in R. We define the event and bound its
probability from below using (119):

P(A; (v;)) := {v; is AK H-infested for all 7 € [tg, fo + Tk ]} = 1 — e VK™ > 1 -5/8,  (120)

whenever K > log(8/6)A~2/(1=21) /¢| =: K((6). For some x to be determined later, partition the time
interval [fg, 19 + Tk ] into mx = [Tk /tx | disjoint consecutive intervals of length 7x followed by one
potentially shorter time interval, denoted by Ji, ...y, and Jy,, 41 (for the remaining time of length
Tk —mgtg < tx). We would like to use the infested status of the star around v; to help transmit the
infection along the path v, u”, ..., uy’. For this we start with establishing that v; itself is in an infected
state shortly after the beginning of the time interval J;. While the probability of such an event is not
explicitly mentioned in Claim 6.6, it can be obtained from its proof. Namely, since v; is infested at
time 7o by assumption, it is also infested for all times ¢t € [tg, ) + Tk ], and the proof of Claim 6.6
reveals that & (v;) stochastically dominates a two-state Markov chain (say 7,) on {0, 1} with transition
rate go,; = A°K'72#/(16€?) and g0 = 1. So, regardless of the value of fjj— (vi), the value of fjj—+1 (vi)
stochastically dominates the value of n1|{r9 = 0}, which equals 1 with probability more than 1/2.
Formally, for each interval J; = [J7, J;f) with j < m, let 7; denote the first time in J; when & (v;) = 1.
Define then the event that

Aa(J)) = {1 < J7 + 1} (121)

Then by the above argument, P(A>(J;)) > 1/2 for all J;, and the Markov property of the process
ensures that A>(J;);<m, are independent. Then Chernoff’s bound yields that

P(A3(vi)) :==P(#{j < mg : A>(J;) holds} > mg /4) 122)

> P(Bin(mK, 1/2) > mK/4) >1—e Mk,
for ¢ = 1/48. Consider now {j : A>(J;) holds}, and for each such j, call such J; successful if there
is some time ¢ € J; when at least 1K 11/ (4¢) many leaves in the star-graph of v;,| are infected. We
now lower bound the probability of the event that J; is successful conditioned on .4,(J;), as follows.
Define a sequence of time-moments s, := 7; + h4* for h € {0,...,{+1},and for h = 1,...,¢ we
recursively check whether uy, is infected at time sy, given that uj,_ is infected at s;,_; (setting ug := v;),
and that whether v;1 =: ue4 is infected at time s¢4 given that u, is infected at time s,. We also set
Se+n := se+1+ 1 and check whether at least AK 1= /(4e) many leaves in the star of v, are infected at time
S¢+2, given that v;y is infected at time s¢4;. We shall thus bound, for some constant c, the time-interval
lengths and their number as

tk =4 +2)+2 < (4H v 2)(L+3), mg = |Tx [tk ] > cTk /L. (123)

Returning to an interval J; being successful, denote the infection status of the set of leaves in the star
around v;; by & 1(”1). Then, using the strong Markov property, we can lower bound

P(J; successful | Ay(J;)) > ]P’(|£ii+21)| > AK17H /(4e) | Ee;(vi) = 1) (124)
+1

> (& () = 11 &0, 00) = D) [ [P(&0, (un) = 11 &6,y uam) = 1) (125)
h=2

BT D] 2 AT (de) | £y, (Vien) = 1), (126)
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On the last factor we shall use Claim 6.6 shortly, but first we bound the probability of each other factor
in (125) from below by requiring that the sender vertex uy_; infects u;, during a time interval of length
4# from below, and then u, stays infected for the rest of the time-interval. More generally, along an edge
(u,v), for any two time-moments ¢ < ¢’, with infection rate r along the edge,

t'—t

P& (v) = 1] &) =1) > / (e ) (re " M)e (DT g = =("=1) (1 - e-r“’-’)).

=0

On the path (ug, uy,un, ..., ue, uer1) (With ug := vy, upy1 = viy1), we apply this lower bound with
t’ —t = 4# along each edge, with rates r(up_1,uy) = A/4* for all h € {2,...,¢}, and r(ug,u;) =
r(ue,uerr) = A/ (2K)*. For (126), we recall that s¢.2 — s¢+1 = 1, so here (117) directly applies, hence

P(J; is successful | Ax(J;)) > e (1 - o1 K+

¢
) (e"‘” (1- e—4“/l/(2K)”))2 1_[ e,4u(1 _ 674%/1/4#)'
h=1

Then we may apply that 1 —e™ > x/2 for all x < 1/2 to arrive at

P(J; is successful | A»(J;)) = (1 - e_”"lKl_y)e_‘w(“z)_l(/1/2)‘7(21()_2/J

(127)
> () K™ = gk,

- e AK S .
for some constant ¢ > 0 and ¢, := e /2, as long as (1 —e~“'*K"™) > 1/2 which is ensured since we

already assumed K > Ky(6) at (120). Since the time-intervals are disjoint, on A3(v;) from (122), by
the strong Markov property, the indicators of the events {J; successful} stochastically dominate mg /4
independent trials (with mg from (123)), each with success probability gx from (127). Let A4(v;) be
the event that at least one of the intervals is successful. Then

P(A(vi) | A1) 0 As(vi) 2 1= (1= gg)"™ /> 1 —emmeand, (128)
where we used that 1 — x > e™/2 for all x < 1/4, which is applicable since gx in (127) tends to 0
with K. We now analyze the exponent mg gk as a function of K on the rhs of (128).The assumption in
this claim is that £(K) = o(K'2#) (in contrast to (109) which is more specific). So, we may assume
wlog that £(K) can be written in the form

0K) =3(K)K'™  for Z(K) > 0asK — co. (129)

Recalling from (119) that Tx = exp(c1A2K'7%#), and mg > cTx /€(K) from (123), as well as (127),
we obtain using the fact that 1/£(K) > K~(1721);

mrqk > c(Tx /€) - (c2) K™ = cexp |1 2K 72 + Z(K)K' 7 log(CQ/l))K_l
= cexp (2K (c; - g(K)| log(c22)[/2%) - 1og(K)).

We now argue that for any small fixed 4 > 0 we can choose K sufficiently large so that the rhs tends to
infinity. First choose K (g, 1) so large that for all K > K(g, A) the inequality

g(K)|log(e22)| /2% < c1/2
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holds. This is doable since g(K) — 0. For all K > K(g, 1) we thus have
miqr > Cexp [A2K'"# ¢ /2 —log(K) |.

We now further increase K (g, A) if necessary so that mg gx > log(8/8)/c. (We comment that by wlog
assuming a monotonically decreasing g, the minimal K (g, 1) can be chosen as a constant multiple of

27V 12/ 2l log(ca)])) v 473+ (17200
for some € > 0, for all A sufficiently small.) Returning to (128), and using (120), (122) we see that
P(As(vi) | As(vi) N A1(vi)) 2 1-6/8 and  P(As(vi) N A3(vi) N A1(vi)) 2 1-6/2.

On the event A4(v;) N A3(v;) N A;(v;), at least one J; is successful, and by (124), that means that at
least AK'=2#/(4e) leaves in the star of v;, are infected at some time in the interval [zg, fo + Tk ]. Using
the strong Markov property, and applying now (119), v;4; stays AK™# infested during the rest of the
time interval [z, fo + Tx | with probability 1 — exp(—c1A2K'~2#) > 1 — §/4 by our initial assumption
that K > K¢(9). This finishes the proof. O

6.2.3. Local survival through renormalization

Having established Lemma 6.4 and Claim 6.7 we are in a position to prove Theorems 2.1 and 2.5(a) by
showing that the embedded structure Hg (k) sustains the infection (locally) indefinitely with positive
probability. This is formalized below in Lemma 6.8. The proof of this has two steps. The first step is a
time-renormalization. Based on the results of Claim 6.7, we prove that on Hg ¢ (k) the infection moves
between neighboring centers with large enough probability on a specified discrete time-scale, leading
to a renormalized version of the contact process on N. The second step is to establish a relationship
between this renormalized contact process and a certain oriented percolation model, which then can
be analyzed by techniques from percolation theory, involving a Peierls-type argument. This connection
was already used in [24] to derive various results for the contact process on Z.

Lemma 6.8. For any fixed u < 1/2 and A > 0, there is a Ko(A) such that the following holds for all
K > Ko(A). Let H = Hk ¢ (k) be the graph defined in Definition 6.3 with {(K) = o (K721 and with v,
being the center of its first star. Consider the penalty function f(x,y) = (xy)*. Then both the contact
process CP¢ 3(H,1,,) and BRW¢ ,(H, 1,,) exhibit local survival with positive probability.

Proof. By the stochastic domination between CP¢ ,(H,1,,) and BRW ,(H, 1,,) in Lemma 3.8, it is
enough to prove the statement for CPy 4(H, 1,,). Forfixed A > 0, we choose asmall § > 0 specified later.
Then we choose K large enough such that K > K. as in Claim 6.7. Finally, let Tx = exp(ciA2K'~2)
as in Claim 6.6. Then, Claim 6.7 yields the following: for any v; in Hk ¢k ), if v; is AK™#-infested at
some time #y, then v;,1 is AK #-infested by v; at time 79+ Tx with probability at least 1 — ¢, and the same
holds for v;_; when i > 2. (However, these two events are not necessarily independent.) Throughout
this proof, the term “infested” will refer to “AK~#-infested.”

Now we construct an oriented percolation model, which we couple with CP; ,(H,1,,) so that it
dominates from below CPy 1(H, 1,,) restricted to the vertices {vi, vy, ...} attimes {Tk, 2Tk, ...}. Let
‘H be an oriented graph on the vertex set

Vy ={(x,y) €Z" XZ" : x + y even}
with the oriented (equivalently, directed) edge set

Ey = {((x1,y1), (x2,y1 + 1)) € Vo X Vg @ [xa —x1| = 1}. (130)
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Observe that 7 is isomorphic to a subgraph (a cone) of Z* x Z* as a graph but the edges are “diagonal”
and have Euclidean length V2. In H, we will refer to the vertex sets {(x, 1)}yez+ and {(1, Y)}yez+ as
the x- and y-axis, respectively. For every oriented edge e = ((x1, y1), (x2,y2)) — where y, = y; + 1 and
x2 = x1 £ 1 by (130) — define the event A, = A(x,.y,),(x,,y,) that either v, is not infested at time y; Tk,
or vy, is infested at time y; 7Tk and it infests v, by time y>Tk in the sense of Claim 6.7. The same claim
shows that

P(A,) >1-6 foreverye € Ey. (131)
Now let 7 : V3y — {0, 1} be a function on the vertices of H defined recursively as

n((x, 1) = Hx =1},
1 ifp(x—1,y) =1 and A(x_1,y),(x,y+1) holds, or

(132)
n((x,y+1) = n(x+1,y)=1and -A(x+1,y),(x,y+1) holds,
0 otherwise.
Define the event
Z; = {v1 is infested at time Tk in CP; ,(H, 1,,)}, (133)

which exactly corresponds to 77((1,1)) = 1. Then, conditioned on Zj, n(x,y) = 1 exactly when there
is an “infestation” path 7 of length I(r) = y through stars (v, = Vi,Vz,,...,Vx, = Vx) so that v, is
infested by v ., attime JjTk.So,on 7y,

d
(T](X, y))(x,y)EVH < (gyTK (VX))(x,y) eVy® (134)

We now define a subgraph of #. Let us declare each edge ¢ € E3 open if and only if 1{A4.} = 1,
closed otherwise, and denote the graph of open edges by G (). This is a percolation model, where the
outgoing edges from a vertex (x, y) are dependent, however, the outgoing edges from distinct vertices
are independent due to the strong Markov property and Claim 6.7. The open connected component of
(1, 1) is

Cq1,1 = {(x,y) € Vo : there is an oriented path of open edges from (1, 1) to (x, y)}. (135)

Then, comparing C(; 1) to {(x,y) : n(x,y)} = 1} in (132), which is defined recursively as precisely
those vertices that are accessible from (1, 1) via an oriented path of open edges in #, we obtain that
{(x,y) n(e, )} =1} =Ca.-

Now we carry out a Peierls-type argument to prove local survival of CPf ;. Due to the coupling
and stochastic domination in (134), and (135), it is enough to show that with positive probability C(; 1)
contains infinitely many vertices of the form (1, y). This implies for CP , that v; is infested at times
yTk , for infinitely many y, which guarantees local survival. Let

Ymax:SUP{y€Z+ : (LY) eC(l,l)}- (136)

We will prove that for small enough 6 > 0 in (131) it holds that P(Yj,ax = o0) > 3/4.

Assume to the contrary that {Y,x = k} for some k < co. We now construct a path of length &,
which starts from the y-axis next to (1, k), and forms a part of the boundary of C(1, 1) containing
enough closed edges in H. Define for each edge e = ((x1,y1), (x2,y2)) € E% its (unoriented) dual
e’ = {(x1,y2), (x2, 1) }. The dual edges connect vertices on the dual lattice H := {(x,y) € Z* X Z* :
x +y odd}. We declare the dual edge e’ closed if e is closed, and open if e is open. We then define the
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Figure 3. This example shows a finite oriented cluster of the origin C(y 1 filled black circles are vertices
in C(1,1) while empty black circles are vertices that do not belong to C(1,1). The oriented, black edges
are open in H, while the closed edges of H are not drawn. The red contour and red vertices belong
to the dual lattice H'. Since Yya = 5, the dual contour ny starts from (1,6), and follows the closed
dual edges colored red, ending at (2, 1). Edges of H pointing out of C(1 1) are all closed (not drawn),
whereas edges pointing into C(\,1y may be open — such as the edge ((5,3), (4,4)) — or closed.

(outer edge-) boundary of C(; 1y as the set of dual edges
dC(1,1) = {e’ : exactly one of the two endpoints of e is in C 1) }. (137)

Since H is a cone in Z* x Z*, and C(y,1) is connected per definition, dC(; ;) is a union of connected
contours in ', which along with (parts of) the x- and y-axes encircle C(y ). Assume now that the event
{Ymax = k} occurs. This implies that (1, k) € C(1,1y and (1,k +2) ¢ C(1,1y. So, define the edges and
their duals

€1 = ((1,k), (2,k + 1)), ¢ ={(Lk+1),(2,k)},
b= (2,k+1),(1,k+2)), & ,={(Lk+1),(2,k+2)}.

Now, if (2, k + 1) ¢ C(1,1), then since (1, k) € C(1,1), the dual edge é;(,l € 0C(1,1) (and é;(,z € 0C1,1))-
In this case, define é; = éx;. On the other hand, if (2, k + 1) € C(y,1), then since (1, k +2) ¢ C(y 1), the
dual edge é;c,Z € 0C(1,1) (and é;,l € 0C(1,1)). In this case, define & = é; ». In both of these cases, the
vertex (1, k + 1) is the starting point of the dual é;{, which is in dC(y,1), and the other dual edge with
endpoint (1, k +1) is notin dC(y,1). Then we start exploring dC(1,1), starting from e] := &, by following
the dual edges in this connected component of dC; ). That is, the next dual edge in the path, denoted
by e}, is incident to (2, k) if e} = {(1,k +1),(2,k)} and to (2,k +2) if e] = {(1,k +1),(2,k +2)}.
Then we continue from the other endpoint of e/, and so on. We continue this exploration process either
indefinitely (if C(y,1) is infinite), or until we reach the x-axis (if C(y 1) is finite). As we explain next, these
are the only two possible outcomes. For an example of the second outcome, see Figure 3.

Denote by 5 = (e}, e, . ..) the path (as a sequence of dual edges) obtained this way. It is possible
that 7y visits the y-axis above (1, k + 1) (say at (1,y’) with y’ > k), but since Y;,.x = k, this can only
happen when (2,y’) € C(1,1) and (1,y" + 1) ¢ C(1,1), and then we can always continue the path 5 by
traversing the dual edge {(1,y’), (2,y" + 1)}. However, 7y cannot visit the y-axis below (1, k), since
then we would have encircled the entire C(; 1), starting from (1, k + 1), without containing (1,1), a
contradiction. Hence, one of the two remaining cases happens. We either find an infinite path 5 in
0C(1,1), and then we set m5(k) to be the sequence of its first k edges. Or, we find a finite path 7y that
reaches the x-axis, in particular, the dual vertex (2, 1). This path has length at least k, since the path
starts at (1, k + 1), and the y coordinate only changes by +1 between consecutive vertices on the path.
In this case we again set g (k) to be the sequence of the first k edges of 7.
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We now categorize edges of m5(k) (all are in dC; 1)) as follows. Recall that edges of # in (130) are
oriented (directed), and recall (137). Given C(,1) let us call the dual edge e’ € dC(1,1) an outward dual
edge, if for the edge e = ((x1, y1), (x2, y2)) it holds that (x1, y1) € C(1,1) and (x2,y2) € C(1,1) and let us
call e’ an inward dual edge if (x1,y1) € C(1,1) and (x2, y2) € C(1,1). Per definition of C(y 1) in (135), the
outward edges and their duals are all closed. However, C(1,1) does not determine the status of inward

dual edges.
We now prove that for any realization of C(j,1, at least half of the edges of 75(k) are outward dual
edges, and hence closed. Let us introduce the notation 7y = (1, k+1), 7y, 72, ..., 7wk, . . . for the vertices

of the path 74 in order, and define the directed edge e; = (m;_,7;) for all i > 1 (the directed version
of e?). Then for all outward dual edges e; € 7, e is pointing to the right (in the direction of increasing x
coordinate), and for all inward dual edges e; € 74, e/ is pointing to the left (in the direction of decreasing
x coordinate). Since 7y (k) starts from (1, k + 1), which is part of the y-axis, and remains in the positive
quadrant, at least half of its dual edges have to be directed to the right, thus, duals of outward edges.
Hence, at least k/2 dual edges in m5(k) are closed. Further, since every vertex in V3 has at most two
outgoing (nondual) edges, in every possible realization (e{, e}, ..., e} ) of (k) we can find k /4 edges
that are all closed and that their oriented nondual edges in 7 all start from different vertices.

By (131), the probability that a given edge (and its dual) is closed is at most 6. As mentioned
before (135), the status of different edges are not independent, however, Ay, y,),(x,,y,) is independent
of A(xi,yi),(xé,yé) if (x1,y1) # (x{,y}). Thatis, two edges ey, e € Ey are open or closed independently
if their starting points are distinct.

We call a given connected path (ef,...,e;) of dual edges eligible if it is a possible realization of
ny(k) (of which one requirement is that one of the endpoints of e is (1, (k + 1))). Then, for all such

(e}, €5 .. ep),
P(ra(k) = (€], ... e})) < /4. (138)

Next, we upper bound the number of eligible paths (e],. .., e} ). Since (e}, ..., ;) is a path starting
from (1,k + 1) on the dual lattice ' isomorphic to a quadrant of Z?, each of the k steps in the
exploration of m5(k) can be taken in one of at most three directions. This yields that the number of
possible trajectories is at most 3. Therefore, by a union bound,

P(Yax = k) < P U matk) = (e, ef)}| < 3k6 4. (139)

(e; ,,,,, e;() eligible

Then (139) implies that
P(Yax < 00) = Y P(Ymax = k) < > 3868 < 1/4, (140)
k=1 k=1

whenever § € (0, (1/15)*). Consequently, P(Yyyax = o) > 3/4. Finally, recalling Z; from (133),
P(Z;) > 1/3 for large enough K by Claim 6.6. By the stochastic dominance in (134), it follows from a
union bound that

P(CPs 1(H, 1,,) survives locally at vi) > P(Z; N {Ymax = o0}) > 1-2/3-1/4 > 0.
This proves local survival of CP; ,(H, 1,,) with positive probability. O

Proof of Theorem 2.1. Lemma 6.4 states that for some M > 1 there exists K; such that for K > K| and
¢(K) asin (109) Hg ¢(k) can be M-embedded in 7 almost surely. Set 1 = 1/M>* and let K((1) be given
by Lemma 6.8. Now let K > max(Kq(1), K;). Then Lemma 6.4 yields that Hy ¢(k) can be M-embedded
in 7 almost surely. Let v; be the center of the first star in the embedded Hg ¢(x). Recalling (108) in
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Definition 6.3, we observe that the process CP¢ 4(7,1,,) restricted to the vertices of the embedded
Hg (k) is stochastically dominated from below by the process CP £ (Hk ¢(k)> 1y,) on a standalone
copy of Hg ¢(k). Combining this with Lemma 6.8 and K > Ko () implies that CPf’/‘l(HK,[(](), 1y,)
survives locally with positive probability. This, along with the fact that with positive probability,
CPf 4(T,1p) infects v at some point in time finishes the proof. O

Proof of Theorem 2.5(a). This is an easy consequence of Theorem 2.1 by stochastic domination, noting
that max(d,,, d,)* < (d,d,)". ]

7. The configuration model: k-cores sustain the infection when stars do not

In this section we will prove part (b) of Theorem 2.8. A crucial difference between the classical contact
process and the degree-dependent version in this regime is that star-graphs do not sustain the infection,
in fact they heal quickly when u > 1/2, by Claim 6.6. However, we know from Section 6.1 that the
approximating Galton-Watson tree shows global survival (only), which suggests long survival on the
configuration model. So we set out to find a new structure — a subgraph — embedded in the configuration
model that sustains the degree-dependent contact process for a long time. Generally speaking, any
(sparse) graph can sustain the infection linearly long in its number of edges (or vertices), hence to prove
exponentially long survival in n we aim for this subgraph to have linearly many vertices in 7.

To find such a subgraph, we need to take into account that vertices that have either too high or too
low degree cannot sustain the infection, either because the penalty f on them is too high or because
A is assumed to be close to 0. The subgraph we found is the k-core — a maximal subgraph of the
configuration model where each vertex has degree at least k inside the same subgraph — but with a twist:
in the original configuration model with fat-tailed degrees, the k-core contains vertices of very high
degree (e.g., polynomials of n). However, the degree-dependent CP near these vertices would have too
high penalty f, so we need to exclude them from the k-core.

As a result we look at the k-core of not the original configuration model, but the subgraph obtained
after removing all vertices of degree above a threshold value M, where now M is a constant depending
only on k but not on the total number of vertices n. It is a priori unclear whether such a low truncation
value even produces a connected graph, let alone contains a linear-sized k-core (i.e., containing at least
some constant times n vertices). So our first step is to study the dependence between M = M (k) and k so
that a linear sized k-core still exists in the configuration model where all vertices of degree above M are
removed. As we will see, the exact relation between k and M (k) will be crucial on whether the infection
manages to spread: indeed, any vertex in the k-core can spread to (typically) k vertices while it (typically)
experiences rate AM (k)™ coming from the original degrees. Intuitively, CP will survive on the k-core
if kM (k)™# is growing with k, which limits the value of M (k) to a polynomial of k. We will show that
“essentially the lowest” power of k we can achieve so that a linear k-core exists is M (k) = k(1+0(1)/(3=7)
which then readily yields the 4 < 3 — 7 — o(1) criterion for survival in Theorem 2.8.

After finding the linear-sized k-core on vertices of degree at most M (k), we show that CP; , survives
on this k-core. For this step, our proof is a nontrivial adaptation of the proof of [56, Theorem 1.2(b)],
which shows long survival in the original contact process model on (d + 1)-regular random graphs,
when A is above the lower critical 1| (T¢) on d-regular trees needed for global survival [57]. However, in
our case we have A arbitrarily close to 0. Fortunately, we can choose k as a function of A that makes the
process locally supercritical. This also makes the proof different from that in [56] even beyond finding
the k-cores. First, we define the k-core of a graph.

Definition 7.1. Let G be any simple, finite graph. For a fixed positive integer k, the k-core of G is the
largest induced subgraph Corey (G) of G such that every vertex in Corey (G) has degree at least k within
Corer (G).

It is not hard to see that the k-core Corey (G) in Definition 7.1 is well-defined — but may be empty —
by the following algorithm producing it. First, delete all vertices of G that have degree less than k along
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with their incident edges. Then do the same with the resulting graph, repeatedly, until no new vertex is
deleted. The output of this algorithm is the unique largest induced subgraph of G with all degrees at
least k. Note that the k-core of a graph might be empty or may contain more than one component.

7.1. The subgraph spanned on low-degree vertices contains a k-core

Our first goal is to prove the existence of a k-core in the configuration model after we remove all vertices
with too high degrees. Throughout this section, we work with the configuration model CM(d,) =: G
in Definition 1.9 on the degree sequence d, = (dj, ..., d,) that satisfies the regularity assumptions in
Assumption 1.10, and the weak power-law empirical degrees of Assumption .11 with exponent 7 > 2
and error € > 0.

We now set up the procedure of removing all vertices above some degree M and the edges attached
to those in CM(d,,). This is often called a targeted attack on the graph. Because the graph is formed
by a random matching, and the half-edges that have one endpoint at a vertex with degree larger than M
and another endpoint at a vertex with degree at most M are also removed, the degrees in the remaining
graph are random.

Definition 7.2 (Configuration model under targeted attack). Consider the configuration model CM(d, )

in Definition 1.9 on the degree sequence d, = (dy,...,d,). Fix some value M > 0. Denote
n
Vem ={i<n:di <M}, Vem :=Veul, Hop = ) dilig<mys
i=1
n (141)
Vom ={i<n:di>M}, Voy :=|Vsuml, Hopy = ) dilg>my,

i=1

Let G, [V<pm] denote the (random) subgraph of CM(d,,) that is spanned on the vertex set V<. For

any v € V<), we denote the random degree of vin G, [V<ps] by d, v, and we write 7; for the number of
vertices with degree i in G, [V<ps]. For any z > 0 define

~ 1 1 -
Fam@ =—— > 15, = Tiis (142)

and let 5,1, M denote a random variable with cdf fn, M (2).

Observe that 17,,, M (2) is the new empirical distribution of the degrees, after the targeted attack. This
distribution is random, caused by the random matching that generated the graph before the attack. The
quantities in (141) all depend on n, which we suppress in notation. We are ready to state the existence
of the k-core in the configuration model under attack.

Theorem 7.3. Consider the configuration model CM(d,)) =: G, in Definition 1.9 on the degree sequence
d, = (dy,...,dy,) that satisfies the regularity assumptions in Assumption 1.10, and the weak power-law
empirical degrees of Assumption 1.11 with exponent T € (2,3) and error € > 0. Let

o B-1) l+e
Tmin = B —e(r-1) 1-e

(143)

and assume T, € are such that Nmin € [0, 00). Fix a large enough positive integer k, and for any 1 > Nmin
let M := My ,, = k(+m/G=7) Let G, [V<ar] be the configuration model under attack in Definition 7.2,
and denote by Corey (G, [V<pm]) its k-core. Then there exists some p = p(k) > 0 such that

lim P(|Corex (Gu[ Ve D] 2 pn) = 1, (144)
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Further, conditioned on its vertex set and degree sequence, Corer (G, [V<m]) is itself a configuration
model.

Remark 7.4 (Asymptotics of p). The proof of Theorem 7.3 shows that there exists a constant ¢’ > 0
such that

(r=1)(1+¢)
p(k) > ¢’k C-(=D(T+e) (145)

Note that in this lower estimate only the lower bound exponent in Assumption 1.11 appears. We
comment that 7y, € [0, o) implies that € < (3 — 7)/(7 — 1), which is exactly the condition that the
lower bound on the tail-exponent, (7 — 1)(1 + &) in (9), stays strictly below 2. Hence a k-core exists for
all k£ when the estimates on the empirical power law are so that the tail is always heavier than a power
law with infinite variance. Without the truncation at M, that is, for pure power laws, such a result is
already known, see [37] and [28]. Here we specify the truncation value M for which the result stays
valid. We comment that when & = 0 in Assumption 1.11, then our proof can be strengthened so that
M = ©(k'/3-7)) guarantees the existence of a large k-core after the targeted attack.

We will prove Theorem 7.3 below using the following two lemmas and the results of Janson and
Luczak [37] that we will state soon. The first lemma says that the random empirical distribution of
G, [V<m] converges in probability, assuming the regularity assumptions on the original degrees. We
use notation from Definition 7.2. Given the degree sequence d,,, D, stands for the random variable that
follows the empirical distribution F;, of d, in (8), and D is the random variable following the limiting
distribution in Assumption 1.10. Define then

qn,m = E[D,1(p, <m}]/E[Dn], gm =E[D1p<m}]/E[D], (146)

and we collect the errors below M between the n-dependent degree distribution D,, and the limit D as
follows:

6 = max {lqunnr fanr = 11 101 = gnan) /(1= qar) =1,
(147)

P(D, = i) IPDnz'IP’Dz'—l},
isM}]?(%:i):O ( ) iSM,r]Irbl(Eg(:i)¢0| ( D/E( i =1l

with 6,, — 0 when Assumption 1.10 holds. Typically, for M large g, is close to 1 so the relative error
of 1 — g n to 1 — gpy is driving the maximum in the first row, while the second row is only over values
i<M.

Lemma 7.5 (Degree distribution of CM under attack). Consider the configuration model CM(d,,) in
Definition 1.9 on the degree sequence d, = (d,...,dy) that satisfies the regularity assumptions in
Assumption 1.10. Fix any M > 0 constant, and let q, pr,qp,0n as in (146) and (147). Define the
following random variable Du: foralli < M, let

. ~ K PD=)) (i) =i
Pl =P =0 = JZ m(i)w“ s (148)

=PBin(D,qm) =i | D < M).

Let Xy p (i) :=ni/Veu = P(DV”,M =i | Gu[V<m]) be the random empirical degree distribution of
G, [V<m]. Then for all &, > 0 that satisfies &,, > max{5,, 1/y/n},

M3
P( sup X (1) = par ()] 2 ) = o(n—z) - 0. (149)

i<M n
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Further, lim; o E[ﬁn,M | Gn[V<m]] = E[Dy] in probability. So, the empirical degree distribution
Dy of Gu[ V<] satisfies Assumption 1.10 with probability tending to 1. Furthermore, G, [V<u] is
itself a configuration model on its vertex set, conditioned on the degrees of its vertices.

The second lemma proves that the limiting degree distribution of G,,[V<s] is a truncated weak
power law with truncation close to M if the original degree distribution satisfied the weak power law
assumption.

Lemma 7.6 (Truncated power laws after targeted attack). Consider the configuration model CM(d,)
in Definition 1.9 on the degree sequence d, = (di,...,dy,) that satisfies the regularity assumptions
in Assumption 1.10, and the power-law empirical degrees of Assumption 1.11 with exponent T and
exponent-error € > 0. Let M > 0 be a constant (i.e., not depending on n, but it may depend on ¢),
and let

1
Zmax (M) =27 (c/(2¢,)) T-D+e) pp1-e)/(1+e) (150)

Consider the limiting degree distribution Fpy(z) =: i<z Pm (D) in (148) of Go[V<p] in Lemma 7.5.
Then there exist constants ¢y, ¢, Mo, such that whenever M > My, for all 7 € [z0, Zmax (M)], it holds
that

~ Cu

ce
Z(‘1'—1)(1+.»3) <

The proof shows that ¢; = ¢,2~(7"D(1+&)=2 and &, = 2¢,, are valid choices (although they may not be
optimal). Since the proofs of Lemmas 7.5 and 7.6 are fairly standard, we provide them in the Appendix
on pages 78 and 82.

With these lemmas at hand, the proof of Theorem 7.3 relies on the result of Janson and Luczak [37],
describing the k-core of the configuration model. To state this result, we introduce some notation.

For a random variable D and p € [0, 1], we let Xp_, denote a random variable with Binomial(D, p)
distribution. That is,

2 l r I-r
P(Xp,p=r)= ) B(D = l)(r)p (I=p)™".

I=r
We then define the following functions:
h(D, p) :==E[Xp ,{Xp,p = k}], hi(D,p) :=P(Xp,p > k). (152)

Note that both /4 and h; are increasing in p, and h(D,0) = h;(D,0) = 0. Moreover, h(D,1) =
E[D1{D = k}] < E[D],and h;(D,1) =P(D = k) < 1.
Then the theorem of Janson and Luczak is as follows. They use the same regularity Assumption 1.10

as we do.
Theorem 7.7 (Theorem 2.3 in [37]). Consider the configuration model G,, := CM(d,,) in Definition 1.9
on the degree sequence d, = (d\, . ..,dy) that satisfies the regularity assumptions in Assumption 1.10.

For k > 2 be fixed, let Corey := Corey (G,,) be the k-core of G,,. Let
p=max{p < 1:E[D]p*=h(D,p)}. (153)

Then, if p > 0 and E[D]p? < h(D, p) for p in some interval (p — €, p), then Corer(G,,) is nonempty
whp, and

|[V(Corey)|/n l hi (D, p), |€(Corek)|/ni> h(D,p)/2 = E[D]ﬁ2/2. (154)

We first need a small extension of this theorem.
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Claim 7.8. Suppose there is a value p_ where E[D]p? < h(D, p_) holds (see below (153)). Then,
there is a nonzero fixed point p, > p_ of (153) so that in the interval (p, p« — &) the inequality
E[D]p?* < h(D, p) holds. Then, Corey(G,) is nonempty and

B(1V(Coren)l/n < h(D, p-)(1 - &) 055
< B(|V(Core)|/n < i (D, p) (1-2)) > 0

asn — oo,

Sketch of proof. The first statement, namely that p* exists, follows from the continuity of the function
E[D]p?-h(D, p). The second statement, that the size of the k-core is at least 1; (D, p) (1 — &), follows
from the proof of [37, Theorem 2.3]. Namely, the only case where the proof of [37, Theorem 2.3] does
not apply directly is where the function f(p) = E[D]p? — h(D, p) does not cross the 0-line at its
maximal O but rather, it touches it. Nevertheless, if one finds a smaller value p_ where the function
f(p) is in the negative, it implies that there must be zero-point p, of f where the function crosses the
0 level line. In this case the proof there yields that the density of the k-core is at least & (D, p4), hence
(155) holds. This can be found on [37, page 56-57], where a value p_ for which f(p_) < 0 implies
the upper bound on the stopping time of a pruning algorithm generating the k-core for (154). That is,
the continuous time pruning algorithm of sequentially removing vertices of degrees at least k and their
outgoing edges is guaranteed to stop by time ¢t = —log(p-), that is, one can set t, = —log(p-) at the
bottom [37, page 9]. An upper bound on the stopping of the pruning algorithm gives a lower bound
on the number of remaining vertices forming the k-core. In our case, by not knowing whether p_ is
adjacent to the maximal fixed point and whether f touches or crosses 0 there, we lose the upper bound
on the k-core size.

With Lemmas 7.5 and 7.6 at hand, we are ready to prove Theorem 7.3 by checking the conditions of
Theorem 7.7 and Claim 7.8.

Proof of Theorem 7.3. First, we prove (144) holds: we will check that the conditions of Theorem 7.7 hold
for G,,[V<pr] with probability tending to 1. First, Lemma 7.5 implies that G, [V<ys] is a configuration
model (conditioned on its vertices and their degrees), and its (random) degree sequence satisfies
Assumption 1.10 with probability tending to 1. We will use the notations of Lemmas 7.5 — 7.6, so, Dy
denotes the limiting degree distribution of G, [V<p]. Since h(ﬁ M > p) in (152) is a continuous function
of p, it is enough for us to find a particular choice of p with E[Du]p* < h(Dy, p). Based on the tail
probabilities of Dy from (151), in particular the exponent 7 € (2, 3) and the constant ¢, in the lower
bound, which holds for z € [20, Zmax (M)] With Zymax (M) defined in (150), our goal is to find two positive
constants a_ < a4 and ¢ > 3 — 7 and an interval

I, :=[p_,ps] = a_k~(&/G-0=1 4 }=(£/G-1)=D | (156)
We will show that when p € I,,, then ]E[ﬁM]p2 < h(Dyg, p). Using (152), and that Xj,,p stochastically

dominates Xj, , when [» > [;, we estimate, for some constant § and exponent & > 3 — 7 to be chosen
later,

M l
WDy, p) = Y B(Dy =1) ) rP(Xy, =7)
I=k r=k

M

> > P(Dm =DE[X,,1{X;, > k}]
I=k&/(3-7)
> P(Dy > Bk NE| Xgperon p M Xprercn , > kY. (157)
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We bound the first factor on the rhs of (157) first. Recalling that the tail-bound on P(E m > 2)in (151),
we get

)—(T—l)(1+8)

P(Dyr 2 phEIO7) 2 G pre/ -0 , (158)

on the condition that ﬁkg 1G-1) < Zmax (M) which we now check. (This is the place where we need
that the truncation point M is high enough.) We expand Zmax (M) in (150) as a function of k using that
M = k1+m/G=7) pelow (143). We write C for the prefactor in (150) that only depends on c¢, ¢y, 7, €:

1+17

Znan (M) = EMU-9)/1+e) = G £4) 10/ 150), (159)

Treating B, C as constants while k can be chosen arbitrarily large, the rhs of (159) is larger than gk 4/(3-7)

for all sufficiently large k when
&<+ -2/ +e), (160)

which shall lead to the assumption thatp > np;, in (143) shortly. Next, we bound the second factor on the
ths of (157). For any variable X, it holds that E[ X1 x>x1] = E[X] -E[X1{x<k}] = E[X]-kP(X < k).
In (157) X ~ Bin(Bk¢/3=7) p), and with the choice a_ := 2/, we can lower bound its mean using
that p > p_ in (156) as Bk¢/G-7 p > 2k€/G-1)=(£/G-1)-1) = 2k Hence, a Chernoff bound applies
and we obtain that

KB (Xgperimn p < k) < kexp(—ﬁkf/ (3-7) p/8) < kexp(—k/4), (161)

for all p > p_ in (156). Using again that p > p_ implies Bk¢/3~) p > 2k, the second factor in (157)
can be bounded from below for all sufficiently large k as

E[Xgrero-n p L{Xgrerc-n. > kY] > Bk¥/C7 0 p — kexp(-k/4) > pk/G-7p /2. (162)
Substituting (158) and (162) into (157) gives, for all 8, p > p_ in (156) and all ¢ > 3 — 7 > O that
h(Du, p) > (¢)2) - pr- (7D U+e)  (I=(r=D)(1+£) £/(G-1) ), (163)
Thus, h(BM,p) > ]E[ﬁM]p2 holds when
(G/2) BTV U+e)  (=(r=D(1+£)/G=7) S B[ D, ]p. (164)

At this point we still have the freedom of choosing 8 and & > 3 — 7 provided that the relation between
1, & in (160) holds. Since p < a,k~¢/G=7=1 in (156), first we compare the powers of k on both sides.
The inequality (164) holds for all sufficiently large k if

(I-(-D1+£)&/B-1) 2 -(§/B-71)-1).

After elementary computations, the smallest ¢ that satisfies this inequality, and hence the threshold 7
for (160) is

3-7 _fmin(l"'s)_

S in = 1 1
3or—e(r_1y 177 ; (165)

& 2 &min =

1-¢
which equals 77y, in (143). Comparing now constants on the two sides of (164) yields that

ay = (¢ 2B[Dp B! I
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Solving the inequality a_ = 2/ < a, gives that the interval I, is nonempty whenever

\R-(r-D(148)]
B> (4E[DM]/05) .

Summarizing, we have found that whenever g satisfies this inequality, and p is in the interval
Ip — (Z/B) . k—(l/(3—‘r—s(‘r—1))—1)’ (E[/zE[ﬁM])ﬁl_(T_l)(l-'—s)k_(l/(3_T_s(T_1))_1) ,

then the required inequality for the existence of the k-core holds. This implies that p > p., and we can
estimate the asymptotic proportion of the k-core (154), h1 (D, p) = hi(Dys, p+) following similar
steps as in (157):

h1(5M,ﬁ) > P(EM > kf/a—ﬂ)P(Xk‘f/“’”»W 2 k)
> k(D (+)/G-1) (] _ exp(—k/4)),

using the same & = &pin and Chernoff bound as in (165) and in (161), yielding (145) in Remark 7.4.
Finally, we need to check that conditioned on its vertex set and degree sequence, Corex (G,[V<m])
is itself a configuration model. This follows from the fact that every matching of half-edges within
Corer (G, [V<m]), given its degree sequence, has equal probability by the construction of the configu-
ration model. m]

This finishes the first combinatorial part, that is, the existence of a large k-core. We now (slowly)
transition to studying the contact process on the k-core. The proof of Theorem 2.8(b) is based on a
structural property of Corey (G, [V<m]) that we define next. This structural property guarantees that an
infected set of vertices can pass the infection to many other vertices in a unit time step.

Definition 7.9 ((6, k)-expansion). Fix any 6 € (0, 1) and an even positive integer k. We say that a
(multi)graph G on n vertices is (J, k)-good if for every set {vi,...,v|sn)} of [dn] vertices in G, we
can choose a subset Z, of the indices of size |Z,| > |dn]/8 such that each v; : i € Z, has k /2 neighbors
Wi1,...,Wj /2 in G such that the vertices v;,i € Z, and w; ;,i € Zg, j < k/2 are all distinct.

A graph being (6, k)-good is somewhat stronger than requiring that the 1-neighborhood of any |6n]
many vertices expands by a factor k/16, since we need enough individual vertices that expand to k/2
different vertices. The following lemma proves that Core (G, [V<p]) has the (6, k)-good property for
small enough ¢ > 0.

Lemma 7.10. Consider the configuration model CM(d, ) =: G, in Definition 1.9 on the degree sequence
d, = (dy,...,dy) so that for an even integer k > 128 and constant { > 1, d; € [k, k4] holds for all
i € [n]. Then there exists some 6o = 8o(k, ) > 0 independent of n, such that for all § < 6y,

P(G,, is (8, k)-good) > 1 — e 010e(1/9)/8, (166)

Proof. Let vy,...,v|sn) be distinct fixed vertices in G,,. We will explore, that is, gradually reveal the
neighbors of these vertices, as follows. In the first exploration step, we reveal the first k edges adjacent
to v; (according to an arbitrary ordering), one by one. When revealing an edge, we say that a collision
happens at v if the revealed edge either leads to one of vi,vs,...,V|su, Or is parallel to an edge
revealed earlier (note that we allow self-loops and multiple edges in G,,). During this first step, as soon
as the number of collisions at v reaches two, we stop revealing the connections of v and color v red.
If the number of collisions does not reach two by the end of step 1, we color v green, and we assign the
revealed distinct neighbors of vy, outside the set {vy,...,v|sn)}, the labels wy 1, w12, ..., wy . Here,
ny € [k — 1, k], since there was at most one collision.

In the second step we reveal the first k edges adjacent to v,, one by one, including the potential edges
(at most two) that lead to v and have already been revealed. Now we say that a collision happens at v,
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if a revealed edge either leads to one of v, v, ...,V s, ), (except when it was already revealed starting
from vy, and thus the collision happened at v| in which case we do not count it as a new collision), or
it leads to one of wy 1, w1 2,..., w1, (in case vi was colored green), or is parallel to an edge already
revealed at v,. Again, as soon as the number of collisions at v, reaches two during this step, we stop
revealing the edges of v, and color v, red. If the number of collisions at v, does not reach two by the
end of the step, we color v, green, and assign the revealed distinct neighbors of v,, outside the set

{Vl, e Vsn WL W12, .- 7W1,n1} the labels W2 1, W22, s W2 - Here, n, € [k -3, k], since at
most three edges caused collisions at either v; (these can connect to v,) or v;.
We then continue this procedure, in each step revealing the first k connections of v3,...,V|sn]

analogously to the above, with one modification: if at the beginning of step i, when starting to reveal
the neighbors of vertex v; (i > 2), v; already has at least k/4 adjacent revealed edges coming from the
already processed vertex set {vi,va,...,Vv;_1}, then we do not reveal any new connections at v;, but
color it blue, and continue to the next step i + 1, with v;y1.

After all the | 5n] steps are done, let Z, := {i1, ..., i, } denote the indices and {v;,, ..., vig} be the set
of green vertices (subset of {vy, ...,V sn)}). We will prove that with probability at least 1 — exp(—Cn)
for some constant C > 0, |Z,| > [6n]/8 and n; > k/2 for all i € Z,. So, the green vertices along
with their revealed neighbors {w; ; : i € Zg, j < n;} demonstrate the (J, k)-good property of G, in
Definition 7.9.

Later, we take a union bound over all subsets of size |én], but for now we fix a choice of
{V1,...,V|6n)}. First, we bound the number of blue vertices. When at step j, we reveal at most two
edges that connect v; to some v, for j* > j. Hence, we reveal at most 2| 6n] edges with both end-
points in the set {vy, ..., Vv|sn)}, which we call internal edges. These involve at most 4| 6] half-edges
at {vi,...,v|sn)}. Since more than 16|dn]/k vertices adjacent to at least k /4 internal edges would
involve more than 4| §n] half-edges, by the pigeonhole principle, for all £ > 128:

|Blue vertices| = |[{i € [Ldn]] : v; is adjacent to at least k /4 internal edges}|

(167)
< 4|6n]/(k/4) =16|6n]/k < |6n]/8.

Hence, the exploration reveals the neighborhood of at least 7| 6n] /8 and at most | én| vertices that can
be either red or green. Next, we bound the number of red vertices. Here we use that G, is a configuration
model, with all degrees in the interval [k, k¢]. Thus we can carry out the exploration process above
by matching the first (at most) k half-edges of each vertex under consideration. After revealing the jth
edge, for j < k|én] — 1, we have discovered at most j new vertices and so half-edges attached to at
most |én] + j vertices can cause a collision when matching the j + 1th half-edge. And, there are at
least nk — 2j — 1 remaining unmatched half-edges to choose from. Let us denote by F; the o--algebra
generated by the outcome of the matching of the first j half-edges. Then, for all £ > 2 and sufficiently
small § = 6(k) > 0, and for any realization in F;

(L6n] + j)k¢ - (6n + 6nk)ké

< < 26Kk°.
nk—-2j -1 (1 =26)nk

P(collision at j + 1* edge | F;) <

Let Y; = 1 if revealing the j™ edge causes a collision and Y 7 = 0 otherwise. Then (¥1,Ya,...) is
dominated by a sequence of i.i.d. Bernoulli variables with parameter 26k%. We color v; red if at least
two collisions happen at step 7, that is, if at least 2 of the Y; variables corresponding to the at most k
revealed edges at v; are 1. So, with X, ;, a binomial variable as before, independently across different v;,

P(v; isred) < P(Xj h5xc > 2) < k2462 k% = 462 k>4 (168)
Combining (167) and (168) yields that the number of red vertices is stochastically dominated by a

Binomial random variable with parameters |67 and 46°k**?¢ =: ¢. Hence, by a crude upper bound on
the binomial coefficients,
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P(|i : v; is red| > 3| 6n]/4) < P(X|sn).q > 3lOn]/4) = Z (LérnJ)qr(l _g)lonl-r
r>3|6n]/4

< Lénjz\_(snj q3 lon]/4 — |_6nJ2|_5nJ (462k2+2{)3 \_6"]/4. (169)
after substituting the value of ¢. Rewriting (169) we obtain for small enough § = §(k) > 0,

P(|i : v; istred| > 3| 6n]/4)
< |on] exp ((3/2) log(6)|6n] + (5/2) log(2) | 6n] + (3/4) log(k***¢) | 6n)) (170)
< Cexp (- (5/4)log(1/6)6n).

We bound the number of ways to choose the [6n] vertices S = {vi,...,v|sn]}:
Lon] on
n n n
< < =exp (6n(1 +log(1/6))). 171
([6nj) (Lon])! ™ exp (6nlog(én) — 6n) P (on( e(1/9)) a7

Combining (170) and (171), we obtain for some positive constant C that for all small enough
6=06(k) >0,

P(3S c G : |S| = |6n], atleast 3| 6n]/4 red vertices in §)
< exp (6n(1 +10g(1/6)) - (5/4) log(1/6)) < exp (— ndlog(1/6)/8).

Combining this with (167), we obtain that with probability at least 1 — exp(—Cn), for any choice
of vi,...,V|sn), there are at least | 6n]/8 green vertices among v, ..., v|sn|. The green vertices, per
design, have at most one collision among their at least 3k /4 revealed edges. Hence, each green vertex has
at least k /2 neighbors in G, that are all distinct from each other and from vy, . .., v| s, |, demonstrating
the (8, k)-good property. This finishes the proof. o

The next lemma studies a contact process with lower infection rate than CP ¢ , with f = max(x, y)#
on a (6, k)-good graph and shows that when | 6n| vertices are infected, their neighborhood sustains the
infection for a unit of time:

Lemma 7.11. Fix some A > 0, u € [1/2,1) and ¢ > 1 satisfying ul < 1. Then there exist constants
C’ > 0and ko = ko(A, u, £) so that for all k > kg even, the following holds. Let G, be any multi-graph
with degree sequence d,, = (d, .. ., dy) satisfying d; € [k, k] foralli € [n), so that G, is (6, k)-good
for some fixed 5§ > 0. Let (é‘:t)tz() be a contact process CPy._y with fi(x,y) = k* on G,. Then, for all
sufficiently large n, and an;t >0,

P(|§I+l| > |6n] ) HE LénJ) > 1 —exp(=n6/(193¢)). (172)

By (20) in Corollary 3.2, the process CPy, 4 on G,, dominates from below the contact process CP ,
with f(x,y) = max(x, y)#, since f(d,,d,) = max(d,, d,)* < k%" = (max; <, d;)".

Proof. We shall fix k£ > 400. Since |§z| > |6n] in the conditioning in (172), denote the first |dn|
infected vertices by S; := {vi,...,Vv|sn)}. Since G, is (J, k)-good, choose the index set Z, with size
|Zg| > |6n]/8 guaranteed by the (8, k)-good property in Definition 7.9 and write w; 1, ..., w; k2 for
the distinct neighbors of each v;,i € Z,. For each i € Z, define the event A(v;) as

A(v;) = {v; infects at least 87 vertices among w; 1,. .., W; k/2 (173)
that stay infected by time ¢ + 1}.
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We will prove that

P(B) := P( > a2 L5nJ/(32e)) > 1 —exp(—on/(193e)). (174)

i€Z,

Then, on the event B3, at least 87| 6n] /(32e) vertices among {w; ;}1<i<|sn|,1<j<k/2 are infected at time
¢ + 1, and since 32e ~ 86.98, this implies that |<;_ft+1| > | 6n] holds in (172), proving the lemma.

For (174), we first give a lower bound on P(A(v;)) in (173). The probability that v; does not heal
in the time interval [¢,f + 1] is 1/e. Given that v; does not heal, it infects each of w; 1,...,w; ¢/, in
the time interval [z, + 1], with probability at least 1 — exp(—1k~#¢), as the infection rate r(v;, w; ;)
from v; to w; ; is Ak™HE A given w;, ;j infected in the time interval [¢,+1] stays infected until ¢ + 1
with conditional probability at least 1/e. So, given that v; does not heal until time ¢+ 1, the number
of infected vertices among w; 1, ..., w; r/2 at time ¢ + 1 is stochastically dominated from below by a
Binomial random variable with parameters k/2 and (1/e)(1 — exp(=1k=#¢)) > (1/e) (k¢ [2) = p.
This lower bound holds whenever k > A~1/#¢_ which holds for all k > 2 when A < 1 and for all
sufficiently large kK when A > 1. Hence,

P(A(vy)) > P(g—ts(v[) =1Vse[t,t+1])- P(Xk/g,p >87) > e ! P(Xk/z’p) > 87).

The mean E[ X ] = Ak'=H¢ /(4e) and since ul < 1, this quantity grows with k, and we can choose k
large enough so that E[ Xy ,,] > 2 - 87. Then, by a Chernoft bound,

P(A(v)) = e - P(Xpjn,p = 87) <e (1 -e28/12) > 1/(2e).

Now we use Corollary 3.2 to obtain 1 4,,7 € Zy is stochastically dominated from below by independent
events with success probability 1/(2¢). Thus, another Chernoft bound finishes the proof of (174):

P(B) = P(X[|sn)/81.1/(2) = L6n]/(32¢)) = 1 —exp (- |6n]/(16 - 12¢)),

completing the proof of the lemma with C’ := 1/(193¢) where we increased 16 - 12 = 192 by one to
compensate for dropping the integer part. O

With Theorem 7.3, and Lemmas 7.10 and 7.11 at hand, we are ready to prove Theorem 2.8(b).

Proof of Theorem 2.8(b). Observe that in (143) in Theorem 7.3,

:  Mmint1 1 l+¢
M3 T 3-1-g(r-1) l-g&

(175)

The inequality (18), thatis, that u < (3—7—e(t—1))(1+¢&)/(1 — &) and (175) together imply that for
all u satisfying (18) one can choose { > {min s0 that u < 1 also holds. Fix such a £. Then, Theorem 7.3
states that for all sufficiently large but fixed k even, a linear sized k-core of CM(d,) exists after removing
all vertices of degree larger than M = k+m/G=7) = k¢ thatis, forall &’ > 0, for all sufficiently large n,

P(A,) = ”@gop(morek((;n VoDl > pn) = 1-¢/3, (176)

and conditioned on its vertex set and degree sequence, Corex (G, [V<¢]) is itself a configuration model.
Applying Lemma 7.10 on Corey (G, [V<¢]) then yields that for all small enough 6 > 0

P(B, | A,) :=P(Corex (G, [V<ie]) is (6, k)-good | Ay)

177
>1—e PR 5 1 _ g /4, (7
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Consider the process (ft)t >0 ~ CPy , with f(x,y) = max(x, y)* on G,. For any ¢ > 0 define the event

7, := {at least §pn vertices of Corex (G, [V<,¢]) are infected at time ¢}.

On the event A,, N B, all vertices in H, := Corex(G,[V<ic]) have original degrees in the interval
[k, k%] within G,,, hence CP ' ,arestricted to H,, is dominated from below by a contact process on H,, with
f(x,y) = k%#, exactly as in Lemma 7.11. Hence, Lemma 7.11 applies for H,, := Corex (G, [V<x<]),

P(Zye1] Ap 0By NTy) > 1 — e P (K)6/(193¢) (178)

whenever £ is larger than ko = ko (A4, u, 17). This latter condition dictates our choice of k. Starting from
the all-infected initial condition, (178) implies that on the event A, N B, the extinction time of CP; ,
is dominated from below by a geometric random variable with success probability exp(—C’n). Hence,
the process survives until time exp(nC’/2) with probability at least 1 —&’/3. Combining this with (176)
and (177) yields that the process CP; (G, lG,,) exhibits long survival, finishing the proof. ]

8. The configuration model: survival through a network of stars

The proof of Theorem 2.3 (a) (which then implies Theorem 2.8(a)) follows the proof of Theorem 4 in [6],
that is, the proof of the exponentially long survival of the classical contact process on the configuration
model with subexponentially tailed degree distributions. We need some modifications to adapt the proof
there to the degree-penalized model. Since the proof in [6] is rather lengthy, we only provide an outline
of the main steps, and we focus on explaining the necessary modifications for the degree-penalized
version. We direct the interested reader to [0, Section 6, 7] for a full proof.

A common way to show exponentially long survival for the classical contact process is to find
®(n) many embedded star-graphs in the configuration model with paths of bounded degree vertices
connecting them (similarly as we proved local survival on Galton Watson trees in Section 6 here for the
penalized version). The exact structure in this case, corresponding to [6, Definition 5.1], is an embedded
expander-graph.

For a graph H, and a subset of vertices A C V(H) we denote by Ny (A, r) the set of vertices at most
distance r from A. For some m > 1, let also degg ., (#) denote the number of neighbors of vertex u in
G that have degree at most m.

Definition 8.1. Let H = (V(H), E(H)) be a graph with |[V(H)| < |V(G)|. We say that H is an
a-expander if for every subset A C V(H) with |A| < «|V(H)],

INu (A, 1)] = 2|Al. (179)

Let G be a connected graph with |V(G)| > |V(H)|. We say that H is an (R, m, j)-embedded a-expander
in G if there is a choice of vertices Wy C V(G) with |Wy| = |V(H)| with a one-to-one map between
Wy and V(H), so that there exist, for each edge (u,v) € E(H) an associated path ngv in G between
u,v € Wy that satisfies

7G| < Rforallu,v € E(Hw,), (180)
deg;(w) € [2,m] forallw e ﬂ'f’v \ {u,v}, u,vewy, (181)
degg (u) € [f,2/], and degg <, (u) > j/2 forallu € Wo. (182)

Observe that (179) is the expansion property of H, while (182) ensures that the embedded vertices
of Wy serve as star-graphs in G, that is, they have sufficiently high degree. Meanwhile, (180) and (181)
ensure that the paths corresponding to each edge of H are fairly short and occur on low-degree vertices,
so that even the degree-penalized contact process can pass through them with good probability. Next,
we prove the following structural lemma, corresponding to [6, Lemma 6.1].
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Lemma 8.2. Consider the configuration model G,, := CM(d,)) in Definition 1.9 on the degree sequence
d, = (d1,...,dy) that satisfies the regularity assumptions in Assumption 1.10. Suppose that its limiting
degree distribution D has heavier tails than stretched-exponential with stretch-exponent {, for some
{ > 0, as in Definition 1.8. Then, for any sufficiently large m > 0 there exists a jo > m such that
whenever j > jo then there exists a, 8, R > 0 with R < 0(j¢) such that the following holds whp. The
graph G, contains an (R, m, j)-embedded a-expander H := Hyy, on the vertex set Wy with |Wy| = Bn.

PiOOf. We choose m so high that
. [ ( ) {DSm}] > E[ ( - )] (1 ) |

E[D1{p<m}] - E[D] (183)
E[D1(p<m] = (1 - &)E[D].

\4

The proof is similar to the proof of [6, Lemma 6.1], and consists of the following steps.

Step 1. Targeted attack. Recall the configuration model under targeted attack from Definition 7.2. Here
we carry out the attack above degree 2 (considering (182) and (181)), and we denote the remaining
graph by G,[V<»;], and the degree of a vertex v in G,[V<»;] by d,. This ensures that all remaining
degrees are at most 2.

The second criterion in (183) ensures that each half-edge of a vertex with degree in the interval

[/,2/] is matched to a vertex with degree below m with probability at least 1 — . Hence, denoting by
uj =P(D € [j,2j]), a Chernoff bound similar as in [6, Lemma 7.1, part (4) and Claim 7.2] ensures
that there are at least enu; many vertices with degq (1) € [j,2j] and degs ,, (1) > j/2, as required
in (182).
Step 2. Exploration. Let W := {v € G, : degg, (v) € [j,2]].degg, <n(v) € [j/2,2j]}. We find the
vertex set Wy of Hyw, as a subset of W. We explore the R-neighborhood in G, [V<,;] of each vertex
w € W simultaneously, but we refrain from exploring vertices that have degree (within G,,) higher
than m, as we explain now in more detail. As is usual for the configuration model, we construct the
graph along with the exploration, see, for example, [67]. That is, we put all half-edges attached to vertices
in W —initially in an arbitrary order — in an active list and call these unmatched, also all other half-edges
in the graph are initially unmatched (but not active). Due to the uniform matching property, we then
sequentially may choose the currently first half-edge /. in the active list and match it to a uniformly
chosen yet unmatched half-edge, its pair p(h.), forming a new edge. We remove these two half-edges
from the set of unmatched/active list. We call v(p(h.)) the vertex that p(h.) belongs to. If the degree
of v(p(h,)) is at most m, if any, we append the not- active unmatched half-edges adjacent to v(p(h.))
to the end of the active list. If however the vertex v(p(h.)) has degree above m, we keep the rest of its
unmatched half-edges in the unmatched not-active list. This way we explore the neighborhood of W in
V<> generation by generation, but we do not follow the neighborhood of vertices with degree > m,
which become leaves in the exploration tree (unless there is an overlap and such a vertex is matched
to more than once). As we explore in a breadth-first-search manner, there is an associated exploration
tree and thus it is possible to keep track of parents/generation numbers during this exploration. As the
exploration is indexed by discrete steps, there is a (random) step number when we finish exploring the
Rth generation, that is, revealing all vertices that are at distance at most R from Wy reachable from paths
with vertices of degree < m except the first and possibly the last vertex. Each at-this-moment active half-
edge can be associated to the edge boundary of the R-neighborhood of some vertex w € Wy. We denote
these exploration-R-neighborhoods by N<»; ,»(w, R) for each w € Wy. We need to bound the overlap
of these neighborhoods. For this, we follow [6] and notice that an overlap between N<, i,m(w,R) and
N<ajm(w’, R) means that w’ is part of N<zj m(w, 2R).

The criteria in (183) implies, by standard coupling arguments (see, e.g., [6] or [7]) that the exploration
inside V<»; with refraining to explore vertices with degree > m (except those in Wy that we claimed
initially active), can be approximated by a supercritical branching process with mean offspring b from
the first generation onward. Also, the total number of half-edges in G,[V<2;] > (1 — &)nE[D] since
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J > m), which can be used to derive an upper bound on the probabilities that we match to a particular
vertex at any time during the exploration. Following notation in [6], here we introduce a new parameter
r that (contrary to usual notation for radius) is controlling the number of allowed overlaps between
neighborhoods of vertices in Wy. Given j, R, we choose the value of the integer r so that foraw € W
the expected number of vertices of Wy that lie in the neighborhood N<»; (W, 2R) in the exploration
is small compared to . Then it will be unlikely that different neighborhoods N<3; ,» (w, R) intersect in
more than r vertices. To determine r, we note that degrees of explored vertices in the exploration are
< m while we also may match to vertices of degree < 2;j and some of these (with degree in [j,2])
may be the ones being part of Wy. So we estimate the size of the (2R — 1)-st generation of the branching
process and then we sample the degrees in generation 2R according to size-biased distribution D;.‘ of
Dlp«j:

E[|N<2j.m(v,2R) N Wo|] = B[ON (v,2R — DIP(D% € [},2)]) ~ jb**"- (184)

wg

d
where u; =P(j < D <2j)and d = E[D]. Since the above contains & errors both in the numerator and
denominator, we set the requirement that

BAR-1 72y ,
7 < o (185)

Step 3. Graph contraction. We carry out a graph contraction on G, [V<;] as follows: We associate
a vertex v,, to each of the neighborhoods N, j,m(w, R), w € W, forming the (contracted) vertex set
V’. We associate to v, € V’ as many half-edges as there are unmatched half-edges adjacent to any
vertex in N<pj »(w, R) after the exploration process in Step 2 finishes exploring generation R of W.
Furthermore, let V*” be the set of vertices of G, [V<»;] that have not been touched in the exploration
process, i.e., vertices that belong to none of the neighborhoods U,, cew N<> j,m(w,R). Then the graph
G, is obtained by matching the half-edges of the vertex set V/ U V"’ uniformly at random. About the
degrees of vertices in V' in G, that is, the number of unmatched half-edges in each N'¢, i.m(W, R),
[6, Lemma 7.5] proves the following:

There exists positive constant &', £, Ry, depending only on the degree sequences (d,,),>1, such that
for all bounded positive numbers R1, R, r satisfying

Ry < min{R;,R — R}, 800r < &”(b(1 — &)1, (186)
pRRi-1:2, p2R-1:2,, .
A L, 2 JW T (187)
d 104 d 10

the number of vertices in V’ with degree at least M is at least (¢’/2)|V’| whp, where

V- 8/3([7(1 _88//))R—1j.

Note that this is reasonable, as a typical degree of a w,,v € V' has cca ~ jb®~! many unmatched
half-edges after finishing generation R, via the coupling to a branching process, and M is on the same
scale but much smaller. Note also that M grows with j, in fact all R, Ry, r are dependent on and growing
with j, while Ry, €, &” are not.

Step 4. Given that the conditions (186)-(187) are satisfied, [6] proves the existence of a high-degree core
in G,,, which is an (R, m, j)-embedded a-expander in G, (the core-number is chosen so that vertices
that are not in V” have too low degree to be part of the core of G;,, so the core will be a subset of W).
Here we mean core in the sense of Definition 7.1. [6] chooses 7, R, Ry as the solution to the following

equations:
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BZR—I -2

Juj
4 1
y 10’ (188)
e?(b(1-¢&")R=1; = 800r, (189)
_ d
Rl s ——— (190)
10%j%u;;

It is relatively easy to check that for large j this set of choices satisfies then (186)-(187). We also set
r, R, Ry given by (188)—(190), and now compute the value of R: Combining (188) and (189) gives the
relation between R; and R:

R-1=(R 1) log(b(1—¢")) IOg(soooju,) a9
1 log(b) log(b)

Next, we note that (190) yields

2R - 1= M. (192)

log(b)

Since we assume that E[D?] < co, it holds that lim e jzuj =lim;_ e J*P(D € [,2j]) = 0. So R,
can be chosen arbitrarily large by increasing j. Using this in (191) yields

o 77,) og(b(1 - ) 1°g(80001uf)

2R- 1= —
21log(b) log(b) log(b)
log 4 ;2 1Og 80%3 u
~ (10/u)+ ( ]J) (193)
41log(b) 21log(b)

In [6, Theorem 4], the degree distribution of G,, is subexponential, that is, u; = e¢~°)  Then, the ths
of (193) is o(j). In our case, the degree distribution has heavier tails than stretched-exponential with
stretch-exponent £, that is, u; = e0U%) Therefore, the rhs of (192) is o(j ¢ ), finishing the proof. m]

Proof of Theorem 2.3 (a), outline. With Lemma 8.2 at hand, the proof can be word-by-word adapted
from the proof of [6, Theorem 4] with the difference that we use Claim 6.7 for the degree-penalized
process, in place of [6, Lemma 6.2]. Both [6, Lemma 6.2] and our Claim 6.7 ensure that given that a
star is infested, the infection reaches the next star at most 2R away with probability close to 1. For us,
2R = o(j'7?") is necessary for Claim 6.7, hence the assumption of heavier than stretched exponential
decay with exponent 1 — 2u for the degree-penalized process. In comparison, in [6], R = o(j) is
necessary for [6, Lemma 6.2], which leads to the assumption of subexponential tails there. We note that
J depends on the infection rate A. O

Proof of Theorem 2.8(a). This is an easy consequence of Theorem 2.3(a) by stochastic domination,
noting that max(d,,, d, )" < (d,d,)*. m|

Remark 8.3. Here we highlight the difference between the expander that [6, Theorem 4] uses vs. what
we describe in Lemma 8.2 and the reason for the choice of difference. In Section 6.2, we have seen
the following: a star-graph of degree j = j(A) that survives until exp(c;j'~2*) long time can transfer
the infection along a path of length o(j!72#) if the path contains only constant degree vertices (say,
at most degree m, neither depending on j nor on A). If we would allow the path to contain vertices of
any degree up to j, the penalty along the path increases and along such a path whp transmission within
exp(cj'~?*) long time only happens up to distance o(j'~2#/log j), which can be seen by adapting the
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proof of Claim 6.7. Thus, to obtain a sharp result, in Definition 8.1, in addition to the constraints (179),
(180), (182) that are all already present in [6], we have added (181), that restricts the embedded paths
connecting the stars of degree j to contain only low-degree vertices of degree at most m. Without the
restriction in (181), the proof in [6] word-by-word carries through for the degree-penalized CP as well,
but gives a weaker result: R can only be set in the proof to R = o(j'~2#/log j), which then, by (193),
would result in the slightly stronger assumption on the degree distribution

P(D = K) > exp{—g(K)K'™** /log(K)} (194)

along an infinite subsequence (K;);>; and with some function g such that g(x) — 0 as x — co. For
limiting degree distributions satisfying (194), the proof of [6, Theorem 4] goes through for the degree-
penalized version without any modifications. The modification (181) thus eliminates the extra 1/log(K)
factor in the tail-requirement on D in (194) so that the same assumption as for GW trees, Definition 1.8
with = 1 — 2u is enough.

A. Appendix: Proofs of technical lemmas
A.l. Proof of the statement in Example 1.13

Assumption 1.10 is a consequence of the law of large numbers. To prove Assumptions 1.11,and 1.12, we
also need to consider n-dependent values for v,,(z) and 1 — F;,(z) which makes the statement nontrivial.
We bound the maximum degree first, this immediately gives (12) in Assumption 1.12. Here we use that
P(D > z) < 1/2%7% < 1/z%0-¢") holds for all &’ to estimate that the probability that (12) fails to hold
for given n,C,,, &1 > Ois

i<n

Plmax D, ; > nl/("(l‘fl))) < nP(D > nl/(a(l—al)))

< pp~(e=&)/((a(l-&1)) _ ,1-(1-&)/(1~&1) (A1)

For any fixed | > 0, choose &’ := /2 and then the exponent of n is negative. Hence, with probability
tending to 1, we have max d; < nl/(a(l-21)) —. Zmax (€1) for any fixed £;. We can rewrite the exponent
to obtain that @ = 7 — 1. This means that v, (z) has discrete support on [0, n!/®(1=21)] with probability
tending to 1, hence it is enough to consider z € N in this range. We now recall that for any Binomial
random variable with parameters »n and p, and any ¢ > 1,

P(Bin(n, p) = cnp) < exp(—np(clogc+1—c¢)) = exp(—npc(logc+1/c - 1)). (A.2)

Clearly the right-hand side is tending to 0 as long as npc — oo and log ¢ — oo both hold. We start by
estimating the upper tail for Assumption 1.11, so that we prove (13). Our goal is to show that for all
z < pl/lel-en) = - for some &5 > 0 that is still arbitrarily small, whp

P(VZ € [Z()(SZ/Z)vaax(Sl)] 1= Fn(Z) < Z—(x(l—ez)) — 1. (A.3)

Note that n(1 — F,(z)) is the number of vertices with degree above z, which has Bin(n,P(D > 7))
distribution. For all z > zo(g’) this is stochastically dominated from above by a Bin(n, z~*(1=7)
distribution. Hence,

B(1=Fa@ 2 ) < B(Bin(r, 2 2(0) 2 7).
Now we apply (A.2) with p = z7®U1=¢) and ¢ = z-@(-a)+a(1=&) = a(&-£) The exponent of
7 is positive whenever &, > &’ which we already we may safely assume since &’ can be chosen

arbitrarily, hence log ¢ — oo. Further, npc = nz=*1=2) tends to co exactly when z = o(n!/(¢(1-22)))
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which can be made always true in the range [1,n!/(*(1=21))] of the empirical distribution by choosing
& > g1 = &' = g/2, but all of them arbitrarily small. At zyx(€1) the exponent in (A.2) becomes
minimal and is at least constant times npc = nz,}gx(l*&) = pn~U-#2)/(=8) = y+d Taking a union

bound over all z € [1,n!/(@(1=21))] and the bound in (A.1) we obtain that

1=P(Vz2 1:1=Fo(2) < 7)) =P(3i < n: Di > zmax(£1))
+P(3Z < zZmax(€1) 1 1 = Fp(z) < Z“’(l—é‘z))

< 101060 1/ (@(1=60) ey _pd) _, ),

This finishes the proof of (A.3) and the upper bound in Assumption 1.11. To prove the lower bound we
need the opposite direction, that is, for all ¢ < 1/2,

P(Bin(n, p) < cnp) < exp(-np/8), (A.4)

as long as np — oco. We now estimate n(1 — F,,(z)) = Bin(n, P(D > z)) stochastically from below by
Bin(n, z~(@*¢)) > Bin(n, z-®(1*¢)) which is true for all fixed &’ and all z > zo(&’), since the lower
bound here is coming from (6). So let us set zl(fa)x(a, n) in Assumption 1.11 to be n'/(@?(+2) "and then
the mean n(zr(IQX(a, n))~(@+&7) = ,1-(1+8)/(1+2) tends to infinity whenever &’ < &. Further, if &’ < &
then also nz=@(1+8) < pz=@(+&) /2 for all 7 < Z,(IQX (£,n), and so (A.4) applies with p = z=*1+&) By
a union bound then

P(Elz € [20. 250 (£.n)] : 1 = Fu(2) < zf"‘(”g)) < p!/(@+8) oy (_pl=(+&D)/(1+2) /gy

which tends to 0. It remains to prove (11) in Assumption 1.12, and here we can use the extra assump-
tion (14). Namely, following the bound on the maximum in (A.1). We want to prove that

P(HZ € (20, Zmax(&1)] : va(2) 2 Z_T(l_e)) =0

In this case nv,(z) = n, = Bin(n,P(D = z)) which is stochastically dominated by Bin(n, z~7(17¢"),
and returning to (A.2), now ¢ = 77(e=¢) tends to infinity whenever £ > &, and now nz= 719 takes the
role of npc. This tends to infinity whenever z = o(n'/(7(1=2)) which is much less than the maximum
degree zmax(€1) = n'/(*=D0=2) for small & > 0. Nevertheless, we can set a reasonable &, namely,
whenever we set ¢ > 1/, for example, set £ := 1/7 + 6, then nz"T(1=8) = pp=7(-1/1-6) — jp~(7-1-6)
and s0 for zmax = n!/(T"DU=8D thig js pp=(7-1-0)/(r=D (-1 which has a positive exponent whenever
6 > g1(1t—1). Since £ was arbitrarily small, ¢ is thus also arbitrarily small. This, together with a union
bound with (A.1) finishes the proof of (15):

1-P(Vz>1:vu(z) <z 7TV = P(3i < n: D; > zmax (61))
+P(3z < zmax(&1) 1 val2) < 2

< p1=(=8010=e1) 4 g1/ (=D (1=60) gy o) 0,

—T(l—l/‘r+6))

If one considers truncated power-law distributions with maximal degree zmax,ir = o(n'/7), then
-7(l-¢g)

NZmax,tr

— oo for all possible values z, hence the proof above works with &£ > 0 arbitrary.

A.2. Proof of long survival on stars

Proof of Claim 6.6. Denote the neighbors of v by wq, ..., wg. Define
Ay ={& (v) =1forallt € [0, 1]},
Ap = {|{i : &) (wy) = 1}| = AK'7#/(4e)}.
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Since v recovers at rate 1, P(A; | £&(v) = 1) = 1/e. Conditioning on A;, v infects each of w; during
[0, 1] with rate AK™*, independently of each other. Hence, fori =1, ..., K,

P(v infects w; at some 7 € [0,1]) = 1 — e K™ > AK7#/2,

using that AK™# < 1. Each u; that becomes infected during [0, 1] is still infected at time 1 with
conditional probability at least 1/e. Hence,

I{i: & (wi) = 1}|| A1 > X ~ Bin(K, AK#/(2e)),
where > stands for stochastic domination. By a standard Chernoff bound, this yields
P(A | A)) > P(X > /lKl‘”/(4e)) > ] = K/ (6e) (A5)
Therefore,
P(Ap) 2 (A - B(As | A1) 2 (1= e K106 e,

finishing the proof of (117) in Claim 6.6.
We now turn to proving (118) and (119). Starting from time 0, we declare each unit time-interval
[s,s+ 1] for s € N successful if the following events jointly occur:

By = {|{i : &(wi) = 1} = AK'#/(8e)},
By ={l{i: & (w;) =1forallt € [s,s+ 1]} > AK'#/(16¢%)},

s+1 A6
B = { / &) dr > o.ss}, (A.6)
B = {l{i : &1 (wi) = 1}] = AK'7#/(8e)}.

Here B! is the event that a large enough number of leaves of the star are infected at the beginning of the
time interval [s, s + 1], which will be enough to sustain the infestation during the whole period, while
B2 is the corresponding event for the end of the time interval. B2 is the event that the star is infested
during [s, s + 1], while B;’ is the event that the center is infected a bit more than half the time during the
time interval [s, s + 1]. Note that B* = BSI 4 for all s and that B(l) holds by the condition of the Lemma.

One can see that if B! N B2N B3 N B4 holds forall s € {0, 1,..., [Tk |}, given that |&o| > AK'~#/8e,
then the event on the left-hand side of (119) holds (we demand in Bg a little bit more than 1/2 of the
time being infected, so that even if v is healthy during [| Tk |, Tk , this does not cause a problem on the
total infected time being above Tk /2. Further, (118) is a direct consequence of (119), so it is enough to
bound the probability of the intersection of these events.

We now fix some s € N and bound the conditional probabilities of each of these events given the
previous ones. First, any leaf of the star that is infected at time s will stay infected during the whole
interval [s, s + 1] with conditional probability at least 1/e, conditioned on any trajectory of the process

on the other vertices. Formally, foranyi =1, ..., K,
. E(wy)=1forallzt e [s,s+1] | &(wy) =1,
1r}1}fIP &=non [s,s+ 1] on all vertices apart from u; 2 1/e.
Hence, by a Chernoff bound similar to (A.5),
P(B%| Bly > 1 — ¢ K "/(64%) (A7)

We will now give a bound on P(B? | B! N 82), using that an infested star has enough leaves infected at
every time to send back the infection to the center frequently enough to keep it infected for at least half
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of the time. Formally, given B! N Bg, (&:(V))re[s,s+1] is a Markov process on the state space {0, 1} with
transition rates

Qo1 > AK'"™H . AK™#/(16€%) = 2K'7/(16¢%), Qo= 1,

and some starting state &;(v). Let us introduce auxiliary Markov processes (Y ); >0, (¥} ):»0 and (¥/")r>0
on {0, 1}, all starting from the same initial state &;(v), with transition rates

qoi = K'72#/(16€%), g0 =1 of Y,
95, = 1. @)y = 1662/ (2K'2)  of Y',
90, = 1, g, =1/2 of Y,

respectively. Note that Y’ is a time-changed (slowed-down) version of Y, and Y” is stochastically
dominated by Y’ when (16¢2)/(A2K'~2") < 1/2. Then, recalling (A.6), we have

2512
3 1 2 1 1662 . f<6(12 - ,
P(BY | B;nB) 2P| | Yidr2055) =P Y/ dt > 0.55
0 0
2 1-2u
1662 . 16e2 "

Note that the stationary distribution of Y”" is (g, 1) = (1/3,2/3). The large deviation principle for
Markov chains (see for example [22]) yields that the time average of ¥;” on the right-hand side of (A.8)
is close to r; with large probability, as K — oo:

1662 /12K1;2;1
e e
£ A2K1-2u ’ Y/ dr > 0.55| > 1 —exp{-cA®K'2}. (A.9)
0
Combining (A.8) and (A.9) gives
P(B; | By N B}) 2 1 - exp{-cA’K'~*#} (A.10)

for some ¢ > 0.

Given B;’, during [s, s+ 1], v spends at least 1/2 time in total in state 1, during which it infects all the
leaves with rate AK'™#. Each leaf infected this way is still infected at s + 1 with conditional probability
at least 1/e. Hence, for Bﬁ given by (A.6), another Chernoff bound, similar to (A.5), yields

P(B* | BN B2NB3) > 1 — ¢ 4K /G2e), (A.11)
Combining (A.7), (A.10) and (A.11) yields
P(BINB2NBINBE| Bl > 1 —exp{-c’A*K' 7} (A.12)

for some ¢’ > 0. In words, (A.12) states the following: given that a large enough number of leaves (at
least AK'~#/(8e)) are infected at time s, the conditional probability that the time-interval [s, s + 1] will
be successful (in the sense discussed around (A.6)) is at least 1 — exp{—c’/lzK 1‘2"}. The fact that the
time-interval [s, s + 1] is successful includes the event Bﬁ = B; ,1» that is, that a large enough number
of leaves are infected at time s + 1 as well. Hence, using (A.12) iteratively (for s = 0, 1, .. .) shows that,

given B(l, = {|§0| > 1K' /(8e)}, the number of consecutive successful time-intervals [0, 1], [1,2], ...

stochastically dominates a Geometric random variable with parameter exp{—c’A?K'~2#}. Consequently
(using a union bound with (A.12)), there exists a constant ¢; > 0 such that, with Tx := exp(c 2K 1_2"),
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P|[0,1],[1,2],...,[|Tk ], [Tk 1] are all successful time-intervals Ig_fol > /lKl"‘/(Se))
> | —exp(—c1A2K' 7). (A.13)

Recalling how successful time intervals are defined in terms of the events in (A.6), (A.13) implies
both (118) and (119) in the claim. m]

A.3. Proofs about the degrees in the configuration model

Proof of Lemma 7.5. We will consider n; := X, H{Jj:i,djsM}

with degree i in G, [V<ps]. Then the (random) empirical mass function of I?,,, M can be written as

which gives the number of vertices

Xn,M(i) :P(En,M =1i| Gn[VSM]) = Vers =
<

n; (VgM )_1'@. (A.14)

n n

We can now analyze both factors on the rhs separately. The first factor is already given by (141), and
can be exactly described using D,, with cdf in (8)

Vam _ ”F"T(M) = Fy(M) = B(D, < M). (A.15)

n

By the definition of §,, in (147), this falls in the range P(D < M) + M§,,. Turning to the second factor
n;/n in (A.14), we introduce ny := |V,| = 27‘:1 1{a;=¢} the number of degree-¢ vertices in the original
graph. Then we can carry out a first and second moment method, that is, we take expectation over the
realization of the matching and hence the graph G, [V<)s]. We start with the first moment:

1E[~_1M . e ~
- ni]—;ZZE[]I{dv:i}ldV—f]—;ZZ]P’(dv—z|dv—f). (A.16)

£=i veVy =i veVy

To analyze P(dy =i | d, = ¢), we first deal with self-loops at v € V,. Labeling the half-edges of v as
hi, ha, ..., he, the number of self-loops at vis S, = 31 < ;<¢ L{h,on,}» With < standing for the event
that the two half-edges are matched to each other. We denote the total number of half-edges in the graph
by H, = E[D,]n, and then a first moment method yields, as £ < M,

£\ 1 M?
B(Sy > 1) < E[S,] = (2)H <o (A17)

Recall from (14 1) in Definition 7.2 that we denote by H <5; and H- ;s the number of half-edges attached
to vertices of degree at most M and larger than M, respectively. Partition now the ¢ half-edges of v into
(arbitrary) two groups of size i and ¢ — i, respectively: hg,, ..., hs, and h ., hs,, and let us write
informally

NS ERN

Afr gy = {{hsl, o hy} o VertiAhgys ool ) © Vo, Sy = 0}

for the event that the half-edges A, , . . ., hy, are all matched to half-edges belonging to vertices in V<,
the half-edges &, ,, . . ., hy, are all matched to half-edges belonging to vertices in Vs, and there is no
self-loop created among A, . . ., hy,. Then, matching half-edges one by one, we come to

i—1 —i—1
H<M —{—-a H>M -b
P . = S .
(Agsi,.ws1)) I [ H, —2a-1 b[:()] H,—2(i+b) -1

a=0
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Observe that per definition H<p = nE[D,1(p,<m}] and H, = nE[D,] so one can compute, using
also that £ < M, that each factor in the first product is ¢, as (1 + O (M /n)) and each factor in the second
product is (1 — g a)(1 + O(M/n)). Considering all the possible partitions of the half-edges into two
groups of i and ¢ — i half-edges, and using that there are £ < M factors in the two products together, we
arrive at

P(d, =i|d, =0

v
dNg
=
=
C
:

. (A.18)
= (l.)CIZ,M(l —gnan) T (1+0(X)).

A similar upper bound holds: we account for the error caused by the event that there might be self-loops
atvin (A.17),

P([Z, =i | d, = f) < P(SV = 1) + Z P(A{sl ,,,,, si})
{s1,...,8: C[€]

, (A.19)
=008} (¢t 1 = (1 +0(£)).

Using these bounds in (A.16), and that |V¢|/n = P(D,, = £), we arrive at

ZP(D _f)( M) 4 ()an(l—an)“(HO( )))

=0(M\p(D, < M)+ (1+0(X ZP(D _5)( )an(l—q,,M)“
=i

Combining this with (A.14) and (A.15), (recalling also that given (dy,...d,), V< is deterministic),
we obtain that

E[Xnm ()] =

E[n;]
<M

—0(M) 4 (1+0(M2 ZPP;(;";A?)();,M(l—qn,M)""‘.

(A.20)

We can here observe that the rhs gives the probability P(Bin(D,,gnm) =i | Dy < M). Since
P(D, < M) - P(D < M) and g, — qum by Assumption 1.10, the rhs of (A.20) tends to

llmE [Xn.m (0)] Z PID =) () (1 =aqm)"™

P(D < M) (A21)

=MBmuqu>=Hz>snn=ﬂw5M:4>:pMax

where we recognised that the formula on the right hand-side of the first row equals the second row,
which ensures that this is a proper random variable. As p s (i) is lim,—,c E[ X, a (i)], we now set out
to prove that the random empirical distribution I::m M — with pointmasses X, ps (i) at i — converges
pointwise for each i < M to py (i), in probability. Then (148) will be the limit random variable in the
lemma statement.

To achieve this, first we bound the difference between E[X}, ,,(i)] and its limit pas (7). Recalling
the definition of §,, from (147) we may write ¢y p = g (1 £6,), 1 =g = (1 —gp)(1 £ 6,) and
similarly we can use that P(D,, = €) = P(D = £)(1 + §,) when the limit P(D = ¢) is nonzero and
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otherwise P(D,, = £) < §,. So, we subtract (A.20) from the right-hand side of the first row in (A.21) to
obtain after elementary error-estimates that

B[ X ()] = par ()] < O(X2) + O(M2 4 M25,)P(Dys = i)

(A.22)
=0(M 4 5,M?).
This finishes comparing the first moments. We now turn to the variance in (A.14). Clearly
Py 1% -2 Var(7:
Var(Xn M(i)) = Var( il ) = ( SM) . ar(n,)' (A.23)
’ Veur n n?

The first factor on the rhs is P(D,, < M)~2. Using the indicator representation of 72;, we compute using
the covariance formula that

Vi) in S (B =idy=ildy=t.d, =)

n
ee=iveVy, (A.24)

u€eVy

~B(dy =il dy = OB(dy =i | dy = ).

When u = v, the two vertices are the same, the (co)variance is at most 1, and the summation contains
only at most n terms, hence the error coming from coinciding u, v is O(1/n)P(D,, < M) when summed
also over £ = ¢’. Now we treat the case when u # v. For P(d, =i | d, = ¢) and P(d, =i | d, = ¢’ ) we
can use the bounds in (A.18) and (A.19). Similarly to there, we compute the first term P(d =1, d
i|ld,=¢4d, = f’) as well. Let S,,.,, denote the number of self-loops at the two vertices u, v together
plus the number of edges between u and v. Then a first moment method yields

1 4 t’ 2M?
P(S,, >1) <E[S = — + €t . A.25
BT V4 O T
Now we label the half-edges YL ,h}v) and h(l”), ... ,h}'f) of v and u, respectively, and parti-
tion them into two subsets each, defined by the index sets {si,...,s;}, {Si1,...,5¢} C [£] and
{t1,...,ti}, {tix1, ..., ter} € [€']. We introduce the event

—— v) ) (u) (u)
Aoy = {5 BB} © Ve,

(BB R R e Vorg, Suy = o},
the event that the half-edges h({), c kG R by are all matched to half-edges belonging to
vertices in V<, the half-edges A{)) ... h§;), htl s h;‘;/’ are all matched to half-edges belonging to
vertices in V-, and there is no self- loop and edge created at and between u and v. Then
" . l_—ll Horg— - —q (02 Hong — b
L 3 SR AV VU h, —20i+n) -1

Using that ¢, ¢’ < M, one can compute that each factor in the first product is g, a (1 + O(M/n)) and
each factor in the second product is (1 — g, ar)(1 + O(M/n)). Hence, similarly to (A.18) and (A.19),
summing over all possible partitions, we obtain the lower bound

P(dy =idy =i |dy=0,d, =)

{ i —i f' i i
Z(l.)‘I;[,M(l_Qn,M)[ (l.)qn,M(l_‘In,M)[ (1+0(MT2))-
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and the upper bound is the same as the rhs with an additive O( ) coming from (A.25). We see that
this is the same bound as the one in (A.19), multiplied together for u and v. Hence returning to (A.24),

when we take the difference of the two terms, the summand 1 in the (1 + O( )) factor cancels, and
each summand can be upper bounded as

|P(dy =i, dy=ildy=td,=C)~P(dy=i,| dy=OP(dy =i | dy =)
0\, (e o
< O(4) +0(£) {)atpr 1 = 000 ([l (1 = ).

We account for the O(1/n)P(D,, < M) error coming from u = v, and use |V,|/n = P(D,, = {) and
|[Ver|/n =P(D,, =), then we obtain in (A.24) that

M
<o(LHp(D, < M) +0(XL) Z P(D, = )P(D, = ')
€=i

: (1+ (f)an(l _an)f ,(f )qn M(1 _CInM)[ l)

< O(M)(B(D, < M) +2B(D, < M)?),

Var(n;)
2

where the last row is a far-from-sharp upper bound.
Wlog we may assume M is large enough for P(D,, < M) > 1/2 to hold. Using the previous inequality
in (A.23), and that the first factor there is 1/P(D,, < M)?, we come to

Var(nM(l))<0( )(2+1/P(D M)) oM, (A.26)

which is true uniformly in i, that is, the factor O(M?/n) is not depending on i.

We now are ready to prove the bound in (149) in Lemma 7.5. Recall that X,, ps (i) := n;/Vem =
P(ﬁn, m =1 | Gy[V<m]). We can replace the supremum on the left-hand side of (149) by a “there
exists,” followed by a union bound and a triangle inequality:

B( sup [Xow () = P O] 2 en) < 37 B([Xane () = pw 0] = )

i<M

> (P(\X,,,Ma) = B Xt O] > £0/2) + B([BLXaa ()] = paa ()] 2 sn/z)).

isM

(A.27)

The second probability in the second row is either O or 1 as it involves only deterministic quantities. Recall
that we computed E[X;, a (i)] in (A.20), and lim,—e B[ X, 0 ()] = P(Dp = i) := pp (i) in (A21)
per our definition of pys (i) in (A.21) and (148). By (A.22), [E[X,.m ()] — pa (D)] < O(M?/n+M?5,).
Thus, whenever &, > O(M?/n + M?5,,) (that we assumed in Lemma 7.5), the second probability on
the right-hand side is O simultaneously for all i < M, for all n is sufficiently large. On each term in the
first sum we can apply Chebyshev’s inequality, and use the bound on the variance of X, as (¢) in (A.26)
as follows:

P( s<1]15 |Xn,M(i) — pM(i)| > 8,,) < Z P(|Xn,M(i) - E[Xn,M(i)H = 8"/2)
i< i<M . (A.28)
< 3 deVar(Xo (i) = O3,

i<M

where we summed over i < M to obtain the last bound. The rhs tends to zero as n — oo by the
assumption that &, > 1/+/n implying nsfl — oo. This finishes the proof of (149).
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Recall that 5,1, »m denotes a random variable with rangom mass function X, as (i). We compute the
limit of the (random) mean of the empirical distribution F, ps of G, V<] using (A.28)

M M

E[Dyw | GalVem]] = Y iXum () — Y ipa (i) = E[Dy].
i=1 i=1

Finally, the fact that G,,[ V<] is a configuration model, conditioned on its vertices and their degrees,
follows from the fact that every matching of its half-edges have equal probability under the law of the
configuration model G,,. This finishes the proof of Lemma 7.5. O

Proof of Lemma 7.6. We analyze now the limiting distribution in (148) under the assumption that the
original empirical distribution sequence (F},),>1 satisfies both Assumptions 1.10 and 1.11. In particular,
Assumption 1.11 implies that the cdf of the limiting distribution Fp of D,, satisfies (9) for all € > 0
such that for all n > ny(&), and for all z > z( that

Ce

Cu
mﬁ 1-Fp(z) £ ——— (A.29)

(-1 (1-2)"

and E[D] < co by assumption. We observe first that Dy in (148) is a binomial thinning of (D|D < M),
hence Dy, is stochastically dominated from above by (D|D < M). So, by the definition of stochastic
domination,

(1-Fp(2) - (1 - Fp(M))

1-Fy(z)=P(Dy >2) <P(D>z|D<M)= oD
D

(A.30)

Using now (A.29), estimating the numerator from above and the denominator from below, assuming
that M is such that ¢, M~(7=1)/2 < 1/2, for all £ € (0, (r — 1)/2] it holds for all z € [zo, M] that

Cuz—(r—l)(l—a) CMZ—(T—I)(I—s)

—(r-1)(1-¢)
e M 008 = T_ g a2 (A.31)

I—FM(Z) <

which finishes the proof of the upper bound in (151) with ¢,, = 2¢,,. For the lower bound in (151) we will
also need a lower bound on P(D > z | D < M). Using the rhs of (A.30), estimating the denominator by
at most 1, and the numerator using (A.29), we obtain

P(D >z | D < M) > C[’Z(T_l)(1+€) _CuM—(T—l)(l—é‘)
— C[Z_(T_l)(1+8)(1 _ (Z(T—l)(1+8)/M(T—1)(1—8)) . (CM/C[)). (A32)

Here we require that the second factor is at least, say, 1/2, which leads to

P(D>z|D <M)> (c/2)7 7 DU+
1 2e (A.33)
forall z < (cr/(2¢,) T DT M'"Toe =0 7, (M),

Observe that even without considering the binomial thinning in (148), one cannot hope to prove a lower
bound for z too close to M. Nevertheless, 7, (M) is growing with M for all £ < 1, and it gets closer
to ©@(M) as ¢ is smaller, which intuitively means that the sharper bound one has on the tail of D, the
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sharper bound we can also get on probabilities of D falling in given intervals. Nevertheless, even for
€ =0, we must require z < coM for some constant ¢, < 1.
Now we compute the thinning probability in (148):

1= gu =E[D]'E[D1pspry] = E[D]‘l(MP(D > M)+ Y B(D > j))

=M (A34)

S]E[D]—l(Cujwlf(‘r—l)(l—g)_i_ Z Cujf(T—l)(lfa)) < CuylMl—(T—l)(l—s)’
j=M

for some constant ¢,,; > 0 (that does not depend on M) and a similar lower bound holds 1 — g >
ceaM I=(r-1)(1+&) Then, using the Binomial representation in (148), and then stochastic domination of
Bin(j, g) by Bin(j*, g) when j < j*, we obtain that for all j* > z,

P(D = j) o
b <P B am) 22 (A.35)

> P(Bin(j*,qm) = 2)P(D > j* | D < M),

_ M
P(Dy 2 2) =)
j=z

and we can optimize the value j* = j*(z) > z to obtain a sharp enough bound. For the second factor
on the rhs we may use (A.33). Moving to the “complement” binomial, we estimate the first factor in
(A.35) as

P(Bin(j*, qm) = z) = P(Bin(j*,1 - gqm) < j* - 2)

A36
=1-P(Bin(j*,1-qum) > j* - 2). (A0

We observe that the thinning probability 1 — gas in (A.34) tends to zero with M. So, when z < Z5.. /2,
we may take j*(z) := 2z and use Markov’s inequality on the rhs in (A.36) to obtain

_ 2200 =gqm) _

1 -P(Bin(2z,1 —qum) > z) > 1
Z

1-2(1-gpm) =21/2
for all M large enough so that ¢, M'~(7=D1=2) < ] /4, Using this bound in (A.35), along with (A.33),
we obtain for all z < Zyax/2 that

P(Dy 22) 2P(D 22z| D < M)/2 = (ce/4)(22) 7D+,

which finishes the proof by choosing

~ —(r-1)(14&)-2 ~ . 28
Cr:=2 72ce  and  Zpax (M) =27 (ce/(2¢,)) (T-DU+e) M Tae i
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