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Abstract
In this paper we study degree-penalized contact processes on Galton-Watson (GW) trees and the configuration
model. The model we consider is a modification of the usual contact process on a graph. In particular, each vertex
can be either infected or healthy. When infected, each vertex heals at rate one. Also, when infected, a vertex u with
degree 𝑑𝑢 infects its neighboring vertex v with degree 𝑑𝑣 with rate 𝜆/ 𝑓 (𝑑𝑢 , 𝑑𝑣 ) for some positive function f. In the
case 𝑓 (𝑑𝑢 , 𝑑𝑣 ) = max(𝑑𝑢 , 𝑑𝑣 )𝜇 for some 𝜇 ≥ 0, the infection is slowed down to and from high-degree vertices.
This is in line with arguments used in social network science: people with many contacts do not have the time to
infect their neighbors at the same rate as people with fewer contacts.

We show that new phase transitions occur in terms of the parameter 𝜇 (at 1/2) and the degree distribution D of
the GW tree.

◦ When 𝜇 ≥ 1, the process goes extinct for all distributions D for all sufficiently small 𝜆 > 0;
◦ When 𝜇 ∈ [1/2, 1), and the tail of D weakly follows a power law with tail-exponent less than 1 − 𝜇, the process

survives globally but not locally for all 𝜆 small enough;
◦ When 𝜇 ∈ [1/2, 1), and E[𝐷1−𝜇] < ∞, the process goes extinct almost surely, for all 𝜆 small enough;
◦ When 𝜇 < 1/2, and D is heavier than stretched exponential with stretch-exponent 1 − 2𝜇, the process survives

(locally) with positive probability for all 𝜆 > 0.

We also study the product case, where 𝑓 (𝑑𝑢 , 𝑑𝑣 ) = (𝑑𝑢𝑑𝑣 )𝜇 . In that case, the situation for 𝜇 < 1/2 is the same as
the one described above, but 𝜇 ≥ 1/2 always leads to a subcritical contact process for small enough 𝜆 > 0 on all
graphs. Furthermore, for finite random graphs with prescribed degree sequences, we establish the corresponding
phase transitions in terms of the length of survival.
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1. Introduction

The contact process (CP) is a model for epidemics on graphs, described by a continuous-time Markovian
dynamics, in which each vertex is in one of two states: infected or healthy. Infected vertices infect each
of their healthy neighbors with a constant rate 𝜆, while also healing at a constant rate 1. The model was
first introduced by Harris in 1974 [32], who studied it on the integer lattice. Since then, much work has
been done to characterize the behavior of the process also on infinite trees and locally tree-like finite
graphs. The focus of this line of research has been to establish phase transitions in the long-term behavior
of the process, as the spreading rate 𝜆 varies. A series of works [46, 57, 65] showed that the process on
the infinite d-ary tree (𝑑 ≥ 2), with an initial infection at the root, has three possible phases separated
by two critical values 0 < 𝜆𝑐,1 < 𝜆𝑐,2: when 𝜆 < 𝜆𝑐,1 the process undergoes eventual extinction, when
𝜆 ∈ (𝜆𝑐,1, 𝜆𝑐,2) there is “global but not local” survival, and when 𝜆 > 𝜆𝑐,2 there is “local” survival
of the infection (see Definition 1.3). More recently, studying the process on Galton-Watson trees, the
combination of the results in [34] and [6] showed that models with exponentially decaying offspring
distributions always have an extinction phase (𝜆𝑐,1 > 0), whereas subexponentially decaying offspring
distributions lead to local survival for any positive value of 𝜆 due to the persistence of the infection
around high-degree vertices, that is, 𝜆𝑐,1 = 𝜆𝑐,2 = 0 in this case.

Motivated by the latter results, we introduce a variant of the original contact process, where we
slow down the spread of the infection around high-degree vertices in a degree-dependent way, in order
not to let “superspreaders” scale up the infection rate linearly in their degree. Our results show that
this change in the dynamics can reveal topological features of the graphs hidden from the classical
versions, whose behaviours tend to depend strongly on the highest-degree vertices. Further, it allows us
to observe different phases of the process on the same underlying graph caused by only a slight change
in the process dynamics.

Our results, informally. In the degree-dependent contact process, the total infection rate from a high-
degree infected vertex shall only grow polynomially with its degree, with an exponent less than one.
Gradually increasing the penalty on the infection rate, we prove that the new process qualitatively differs
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from the classical version. In particular, we obtain new phase diagrams for Galton-Watson trees: as
soon as the total infection rate from a high-degree vertex scales less than the square root of its degree,
high-degree vertices no longer maintain the infection, but their local surroundings heal quickly, and the
process shows local extinction for small 𝜆, yielding 𝜆𝑐,2 > 0, on any tree in fact (not just Galton-Watson
trees). On Galton-Watson trees, if the offspring distribution is sufficiently heavy tailed (i.e., heavier than
𝑥−𝛼𝑐 for some critical 𝛼𝑐 depending on the degree-dependent penalty on the infection rate), then the
degree-penalized CP survives globally but not locally (i.e., 𝜆𝑐,1 = 0 but 𝜆𝑐,2 > 0). However, if the tail is
lighter, i.e., the offspring distribution has finite 𝛼𝑐-th moment (with 𝛼𝑐 < 1), then CP has an extinction
phase (i.e., 𝜆𝑐,1 > 0). Here we find it surprising that subexponential distributions as heavy as infinite
mean power laws can also show extinction. We also establish the corresponding phase diagrams for
large finite random graphs with prescribed degree distributions (the configuration model), in terms of
the length of time the infection survives on them. Here, tree-based recursion techniques break down,
and we develop new methods to treat the extinction phase when 𝜆𝑐,1 > 0, which work as soon as the
offspring distribution has finite variance. In the phase when high-degree vertices no longer maintain the
infection for a long time, but the Galton-Watson tree show global survival for small 𝜆 > 0, we find new
structures – k-cores existing on constant degree vertices only – that maintain the infection globally on
the graph for a long time. All our results are also valid for the corresponding branching random walks as
well. See a summary of our main results in Table 1 where we briefly explain the main parameters. We
defer mentioning more related work to Section 2.1. From the point of view of epidemic modeling, an
important message of our results is that the change in the phases can be obtained by only changing the
dynamics of the process around high-degree vertices (i.e., increasing the degree-penalization), while
keeping the underlying graph/contact network intact.

Applied and theoretical motivation for our model. While this paper is theoretical in nature, the
choice of degree-dependent transmission rates comes directly from applications. Actual contacts do
not scale linearly with network connectivity due to limited time or awareness [27, 44, 71]. Even
individuals who spread an atypically large number of pathogens cause only sublinearly many new cases
even via indirect spreading [64]. Degree-dependent transmission rates have been used to model the
sublinear impact of superspreaders as a function of contacts in applications ranging from infection
spreading to information spread in communication networks [29, 39, 49]. Two versions of the degree-
dependent contact process were proposed and studied empirically in [71, 72]. Also related are the
degree-dependent bond percolation and Ising model [2, 33] and topology-biased random walks in the
applied literature [13, 23, 45, 59, 73], in which the transition probabilities from a vertex depend on
the degrees of its neighbors. All these works assume a polynomial dependence on the degrees. On the
theoretical side, the recent degree-dependent first passage percolation (dd-FPP) [40, 41, 42] uses the
same “degree-penalization” that we shall assume, combined with the first passage percolation dynamics
where reinfections to a vertex are not possible. Our results show that the phase-transition points of
degree-penalized CP differ from those of dd-FPP. Reinfection in CP makes both the results and the
proof techniques different. See more in Section 2.1 below.

1.1. Degree-penalized infection processes: main definitions

We now define the processes considered in this paper. These processes take place on an underlying
graph, which is undirected, but not necessarily simple, that is, we allow multiple edges and loops, see
Section 1.2 for the underlying graphs we use. We use the convention that the degree of a vertex is
the number of nonloop edges incident to it (counted with multiplicity) plus twice the number of loops
incident to it. More formally, for a graph 𝐺 = (𝑉, 𝐸) we denote by 𝑒(𝑢, 𝑣) the number of edges between
vertices 𝑢, 𝑣 ∈ 𝑉 , and by 𝑁 (𝑣) the neighborhood of 𝑣 ∈ 𝑉 , the set of vertices u for which 𝑒(𝑢, 𝑣) ≥ 1.
For a vector 𝑥 ∈ N𝑉 (where N = {0, 1, 2, . . .}), we let |𝑥 | :=

∑
𝑣 ∈𝑉 𝑥(𝑣) be its 1-norm.

Definition 1.1 (Degree-penalized contact process). Consider a graph 𝐺 = (𝑉, 𝐸), with 𝑑𝑣 denoting the
degree of vertex 𝑣 ∈ 𝑉 . Let 𝑓 (𝑥, 𝑦) > 1 be a function of two variables, 𝜆 > 0, and 𝜉

0
∈ {0, 1}𝑉 . For
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Table 1. Summary of our main results: phases of degree-dependent contact process. Let 𝑢, 𝑣
be two vertices with degrees 𝑑𝑢 , 𝑑𝑣 , respectively, connected by and edge. Then the infection
rate across the edge (𝑢, 𝑣) is 𝜆/ 𝑓 (𝑑𝑢 , 𝑑𝑣 ) = 𝜆/(𝑑𝑢𝑑𝑣 )𝜇 in the case of the product penalty,
and 𝜆/ 𝑓 (𝑑𝑢 , 𝑑𝑣 ) = 𝜆/max{𝑑𝑢 , 𝑑𝑣 }𝜇 in the case of the max penalty. The second column
shows the phases when the underlying graph is a Galton-Watson tree with offspring distribution
D, and initially only the root is infected. Here, 𝛼 denotes the power-law tail-exponent, that is,
P(𝐷 ≥ 𝑧) � 𝑧−𝛼 . The third column shows the phases when the underlying graph is a configuration
model with degree sequence 𝑑𝑛, and initially all the vertices are infected. Here, 𝜏 denotes the
exponent of the limiting mass function, that is, P(𝐷 ≥ 𝑧) � 𝑧−(𝜏−1) . We allow not just pure
power laws, see Definitions 1.7–1.8 and Assumptions 1.10–1.12 for weaker assumptions. Some
technical conditions are omitted in the table. For 𝜇 ∈ [1/2, 1) on the configuration model, fast
extinction occurs when 𝜏 > 3, including any other lighter tails, not just power laws..

Product penalty Galton-Watson tree T𝐷 Configuration model CM(𝑑𝑛)

𝜇 < 1/2 Local survival Survival until ΘP (exp(𝐶𝑛)) time
for any 𝜆 > 0 for any 𝜆 > 0
for tail heavier than for tail heavier than
stretched-exponential stretched-exponential
with 𝜁 = 1 − 2𝜇 with 𝜁 = 1 − 2𝜇

𝜇 ≥ 1/2 Extinction Extinction in 𝑂P (poly(𝑛)) time
for 𝜆 < 1 for 𝜆 < 1
for any graph whenever

∑𝑛
𝑖=1 𝑑

1−𝜇
𝑖 = 𝑂P (poly(𝑛))

Max penalty Galton-Watson tree T𝐷 Configuration model CM(𝑑𝑛)

𝜇 < 1/2 Local survival Survival until ΘP (exp(𝐶𝑛)) time
for any 𝜆 > 0 for any 𝜆 > 0
for tail heavier than for tail heavier than
stretched-exponential stretched-exponential
with 𝜁 = 1 − 2𝜇 with 𝜁 = 1 − 2𝜇

𝜇 ∈ [1/2, 1) Only global survival Survival until ΘP (exp(𝐶𝑛)) time
for 𝜆 < 1/2 for any 𝜆 > 0
for weak power law for power-law empirical degrees
with tail-exponent 𝛼 < 1 − 𝜇 with 𝜇 < 3 − 𝜏
Extinction Extinction in ΘP (log(𝑛)) time
for small 𝜆 for small 𝜆
when E[𝐷1−𝜇 ] < ∞ for power-law empirical degrees

with 𝜏 > 3 (or lighter)
𝜇 ≥ 1 Extinction Extinction in 𝑂P (poly(𝑛)) time

for 𝜆 < 1 for 𝜆 < 1
for any graph whenever

∑𝑛
𝑖=1 𝑑

1−𝜇
𝑖 = 𝑂P (poly(𝑛))

𝑢, 𝑣 ∈ 𝑉 let 𝑟 (𝑢, 𝑣) = 𝜆 · 𝑒(𝑢, 𝑣)/ 𝑓 (𝑑𝑢 , 𝑑𝑣 ). We define CP 𝑓 ,𝜆 (𝐺, 𝜉
0
) = (𝜉

𝑡
)𝑡≥0 = (𝜉𝑡 (𝑣))𝑣 ∈𝑉 ,𝑡≥0 to be

the following continuous-time Markov process on the state space {0, 1}𝑉 . The process starts from the
state 𝜉

0
at time 𝑡 = 0, and evolves according to the following transition rates:

𝜉 −→ 𝜉 − 1𝑣 with rate 1; for all 𝑣 with 𝜉 (𝑣) = 1, (1)

𝜉 −→ 𝜉 + 1𝑣 with rate
∑

𝑢∈𝑁 (𝑣)
𝜉 (𝑢)𝑟 (𝑢, 𝑣); for all 𝑣 with 𝜉 (𝑣) = 0, (2)

where 1𝑣 ∈ {0, 1}𝑉 denotes the vector with entry 1 at position v, and zero entries at all other positions.

Strictly speaking, the above is not an actual mathematical definition. In case the graph is finite, the
description using jump rates is entirely satisfactory (one can think of exponential waiting times governing
the dynamics). However, as is well-known in the particle systems literature, the treatment of infinite
graphs is more subtle [47]. We include the above only as a first indication of how the process behaves,
but we define the contact process to be the process obtained from the Poisson graphical construction
(see Section 3.1 below).
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We refer to vertices v with 𝜉𝑡 (𝑣) = 1 as infected at time t, and to all other vertices as healthy at time t,
and consequently |𝜉𝑡 | is the number of infected vertices at time t. Describing the process less formally,
each infected vertex u heals at rate 1, and during the time it is infected, it infects each of its healthy
neighbors v at rate 𝑟 (𝑢, 𝑣) = 𝜆 · 𝑒(𝑢, 𝑣)/ 𝑓 (𝑑𝑢 , 𝑑𝑣 ), where 𝑒(𝑢, 𝑣) is the number of edges between u
and v. A common choice for 𝜉

0
we take is 1𝐺 , the all-1 vector on the vertex set V of G. This choice is

a theoretical tool in our analysis, as the process starting from this initial state stochastically dominates
the process starting from any other initial state.

A process related to the contact process is the branching random walk on the same graph. Branching
random walks are known to stochastically dominate the contact process, since they consider the vertices
of the graph as locations that infected particles can occupy, and they allow more than one infected
particles per vertex. In comparison, in the contact process only one particle per vertex is allowed. In
our setting, the degree-penalized branching random walk turns out to be useful for upper bounds when
proving extinction.

Definition 1.2 (Degree-penalized branching random walk). Consider a graph 𝐺 = (𝑉, 𝐸), with 𝑑𝑣
denoting the degree of vertex 𝑣 ∈ 𝑉 and 𝑒(𝑢, 𝑣) the number of edges between u and v. Let 𝑓 (𝑥, 𝑦) > 1
be a function of two variables, 𝜆 > 0, and 𝑥0 ∈ N𝑉 . For 𝑢, 𝑣 ∈ 𝑉 let 𝑟 (𝑢, 𝑣) = 𝜆 · 𝑒(𝑢, 𝑣)/ 𝑓 (𝑑𝑢 , 𝑑𝑣 ). We
define BRW 𝑓 ,𝜆 (𝐺, 𝑥0) = (𝑥𝑡 )𝑡≥0 = (𝑥𝑡 (𝑣))𝑣 ∈𝑉 ,𝑡≥0 to be the following continuous-time Markov process
on the state space N𝑉 . The process starts from the state 𝑥0 at time 𝑡 = 0, and evolves according to the
following transition rates:

𝑥 −→ 𝑥 − 1𝑣 with rate 𝑥(𝑣) for all 𝑣 ∈ 𝑉, (3)

𝑥 −→ 𝑥 + 1𝑣 with rate
∑

𝑢∈𝑁 (𝑣)
𝑥(𝑢)𝑟 (𝑢, 𝑣) for all 𝑣 ∈ 𝑉. (4)

Similarly to Definition 1.1, this definition works for finite graphs; we give a more general mathematical
definition using particle genealogies in Definitions 3.4–3.5 below. Informally, we think of 𝑥𝑡 (𝑣) as
the number of particles at location v at time t. Then each particle dies at rate 1, independently of
everything else, and each particle located at u reproduces to every neighboring vertex v at rate 𝑟 (𝑢, 𝑣) =
𝜆 · 𝑒(𝑢, 𝑣)/ 𝑓 (𝑑𝑢 , 𝑑𝑣 ).

In what follows we study the qualitative long-term behavior of the above processes, for small infection
parameters 𝜆 > 0. The following definition summarizes the possible phases that can occur on graphs,
first with (countably) infinitely many vertices, and then on graphs with finitely many vertices. Here, and
in the following, 0 denotes the all-zero vector (on the relevant index set).

Definition 1.3 (Modes of survival). Given a graph 𝐺 = (𝑉, 𝐸), a penalty function 𝑓 (𝑥, 𝑦) > 0 and some
𝜆 > 0, consider either the process (𝜉

𝑡
)𝑡≥0 = CP 𝑓 ,𝜆 (𝐺, 𝜉

0
) or the process (𝑥𝑡 )𝑡≥0 = BRW 𝑓 ,𝜆 (𝐺, 𝑥0) with

respective fixed starting states 𝜉
0
∈ {0, 1}𝑉 and 𝑥0 ∈ N𝑉 . If |𝑉 | = ∞, we say that the process exhibits

(i) almost sure extinction if, with probability 1, there exists some𝑇 < ∞ such that 𝜉
𝑡
= 0 (respectively,

𝑥𝑡 = 0) for all 𝑡≥𝑇 ,
(ii) global survival if, with positive probability, 𝜉

𝑡
≠ 0 (respectively 𝑥𝑡 ≠ 0), for all 𝑡 ≥ 0.

(iii) local survival if, with positive probability, there exists 𝑣 ∈ 𝑉 such that for any 𝑡 ≥ 0 there exists
some 𝑠 > 𝑡 such that 𝜉𝑠 (𝑣) = 1 (respectively, 𝑥𝑠 (𝑣) ≥ 1).

For any underlying graph G and respective initial states 𝜉
0
∈ {0, 1}𝑉 and 𝑥0 ∈ N𝑉 of CP 𝑓 ,𝜆 and

BRW 𝑓 ,𝜆, let us define the (possibly infinite) extinction time, and for a vertex 𝑣 ∈ 𝐺 the local extinction
time at v

𝑇
cp
ext (𝐺, 𝜉

0
) = inf{𝑡 ≥ 0 : 𝜉

𝑡
= 0}, 𝑇

cp
ext (𝐺, 𝜉

0
, 𝑣) = inf{𝑡 ≥ 0 : 𝜉𝑡′ (𝑣) = 0 ∀𝑡 ′ ≥ 𝑡},

𝑇brw
ext (𝐺, 𝑥0) = inf{𝑡 ≥ 0 : 𝑥𝑡 = 0}, 𝑇brw

ext (𝐺, 𝑥0, 𝑣) = inf{𝑡 ≥ 0 : 𝑥𝑡′ (𝑣) = 0 ∀𝑡 ′ ≥ 𝑡}.
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We note some remarks: First, local survival in (iii) implies global survival in (ii). Second, only global
(but not local) survival means that (ii) holds, whereas for any choice 𝑣 ∈ 𝑉 almost surely there exists
some 𝑇𝑣 > 0 such that 𝜉𝑡 (𝑣) = 0 (resp., 𝑥𝑡 (𝑣) = 0) for all 𝑡 > 𝑇𝑣 . Finally, provided that 0 < |𝜉

0
| < ∞

(resp., 0 < |𝑥0 | < ∞), and that the graph G is connected, the phase that occurs among (i)–(iii) does not
depend on the initial state 𝜉

0
(resp., 𝑥0).

1.2. Definition of the underlying graphs

Next, we define the graph models that we focus on.

Definition 1.4 (Galton-Watson tree). Given a non-negative integer-valued random variable D, we define
the Galton-Watson (GW) tree with offspring distribution D as follows. Let ∅ be a distinguished vertex,
called the root of the tree. {∅} is generation 0 of the tree, and its cardinality is 𝑍0 = 1. Let (𝐷𝑖, 𝑗 )∞𝑖=0, 𝑗=1
be an array of iid copies of D. Then we recursively define generation 𝑖 + 1 of the tree for 𝑖 = 0, 1 . . .
in the following way. For each vertex j ( 𝑗 = 1, . . . , 𝑍𝑖) of generation i we assign 𝐷𝑖, 𝑗 many offspring,
connect them to vertex j, forming together generation 𝑖 + 1, that is, generation 𝑖 + 1 has cardinality
𝑍𝑖+1 =

∑𝑍𝑖

𝑗=1 𝐷𝑖, 𝑗 . We call the resulting finite or infinite tree a realization of the Galton-Watson tree.

Our results, in an important regime, extend to any random or deterministic tree as well, as long as it
grows at most exponentially almost surely, a concept which we define now.

Definition 1.5 (Branching number of a tree). Let T be an infinite tree, and let 𝑍𝑁 (T ) := |Gen𝑁 (T ) |
be the size of generation N. Then we define the (possibly infinite) “upper” branching number of T as

br(𝑇) := lim sup
𝑁→∞

𝑍𝑁 (T )1/𝑁 . (5)

Definition 1.6 (Spherically symmetric tree). Given a positive integer-valued sequence 𝑑 :=
(𝑑0, 𝑑1, 𝑑2, . . . ), we define the Spherically Symmetric Tree (SST) with degree sequence 𝑑, SST(𝑑) as
follows. Let ∅ be the root of the tree having 𝑑∅ := 𝑑0 many offspring. Then SST(𝑑) is the tree where
each vertex in generation i has 𝑑𝑖 many offspring.

The following two definitions describe two important classes of degree distributions that we use for
Galton-Watson trees.

Definition 1.7 (Weak power-law tails). Consider a distribution D on {0, 1, . . . }. We say that the tail of
D weakly follows a power law with tail-exponent 𝛼 > 0 if for all fixed 𝜀 > 0 there exists a constant
𝑧0(𝜀) > 1, such that whenever 𝑧 > 𝑧0(𝜀),

1
𝑧𝛼+𝜀

≤ P(𝐷 ≥ 𝑧) ≤ 1
𝑧𝛼−𝜀

. (6)

In the numerators in (6) we could have allowed a slowly varying function as well, but those can be
ignored by adjusting 𝑧0(𝜀), due to Potter’s theorem [8], since any slowly varying function ℓ(𝑥) satisfies
𝑥−𝜀 � ℓ(𝑥) � 𝑥𝜀 for all 𝜀 > 0 as 𝑥 → ∞. Pure power-law distributions satisfy (6) with 𝜀 = 0, in this
case the constant 1 in the numerators of the upper and lower bounds may change. The next definition
considers a similar domination, but now with stretched exponential tails:

Definition 1.8 (Heavier than stretched exponential tails). Consider a distribution D on {0, 1, . . . }. We
say that D is heavier than stretched exponential with stretch-exponent 𝜁 > 0 if there exists a function
𝑔 : N → [0,∞) such that 𝑔(𝑥) → 0 as 𝑥 → ∞, and an infinite sequence of nonnegative numbers
𝑧1 < 𝑧2 < . . . such that for 𝑖 ≥ 1,

P
(
𝐷 = 𝑧𝑖

)
≥ exp(−𝑔(𝑧𝑖)𝑧𝜁𝑖 ). (7)
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An equivalent statement to (7) is

lim inf
𝑧→∞

− log(P(𝐷 = 𝑧))
𝑧𝜁

= 0.

We comment that in case of stretched exponential distributions, the tail P(𝐷 ≥ 𝐾) and the mass function
P(𝐷 = 𝐾) are a polynomial prefactor away, which can be incorporated in the function g.

The next definition gives the finite random graph model that we consider in this paper: the configu-
ration model with a given degree sequence [12, 50].

Definition 1.9 (Configuration model). Given a positive integer n, and a sequence 𝑑𝑛 := (𝑑1, . . . , 𝑑𝑛)
of nonnegative integers with ℎ𝑛 :=

∑𝑛
𝑖=1 𝑑𝑛 even, we define the configuration model CM(𝑑𝑛) as a

distribution on (multi)graphs constructed as follows. We take n vertices, and assign 𝑑1, 𝑑2, . . . , 𝑑𝑛 “half-
edges” to them, respectively. Then we take a uniformly random pairing of the set of half-edges, and to
each such pair we associate an edge in CM(𝑑𝑛) between the respective vertices.

In Definition 1.9, in the degree sequence 𝑑𝑛 = (𝑑 (𝑛)1 , 𝑑 (𝑛)2 , . . . , 𝑑 (𝑛)𝑛 ) we allow that the degrees depend
on n. If it is not confusing we drop the superscript (𝑛) from the degree sequence. When the degree
sequence is random, (e.g., coming from an iid sequence 𝐷1, 𝐷2, . . . ), then one may add an extra half-
edge to 𝐷𝑛 when

∑𝑛
𝑖=1 𝐷𝑖 is odd. This will not affect the “regularity” assumptions on the degree sequence

below. The configuration model is a locally tree-like graph: its local weak limit is a Galton-Watson tree
[1, 4]. We expect that our results extend to other nongeometric graph models with branching processes
as their local weak limit, for example, the Erdős-Rényi random graph, the Chung-Lu or Norros-Reitu
model, rank-1 inhomogeneous random graphs [26, 18, 60, 11], and so on.

We define the empirical mass function 𝜈𝑛 of the degrees and the corresponding cumulative distribution
function (cdf) for all 𝑧 ≥ 0 as

𝜈𝑛 (𝑧) :=
𝑛𝑧
𝑛

=
1
𝑛

𝑛∑
𝑖=1

1{𝑑𝑖=𝑧 } and 𝐹𝑛 (𝑧) = 𝜈𝑛 ([0, 𝑧]) =
1
𝑛

𝑛∑
𝑖=1

1{𝑑𝑖≤𝑧 } . (8)

Let 𝐷𝑛 be a random variable with distribution 𝜈𝑛. To be able to relate different elements of the sequence
CM(𝑑𝑛) to each other, we pose the following regularity assumption, common in the literature [50, 51, 37].

Assumption 1.10 (Regularity assumptions on the degrees). Consider the configuration model in
Definition 1.9. We assume that the sequence (𝑑𝑛)𝑛≥1 = ((𝑑1, 𝑑2, . . . , 𝑑𝑛))𝑛≥1 satisfies the following:

a) 𝐷𝑛 with cdf 𝐹𝑛 (𝑧) in (8) converges in distribution to some a.s. finite random variable D with
E[𝐷] ∈ (0,∞). We denote the cdf of D by 𝐹𝐷 .

b) lim𝑛→∞ E[𝐷𝑛] = E[𝐷]. In particular, for any constant 𝑀 ≥ 0,

lim
𝑛→∞
E[𝐷𝑛1{𝐷𝑛≥𝑀 }] = E[𝐷1{𝐷≥𝑀 }] .

Formulating power-law assumptions about a sequence of empirical distributions is slightly different
than about a single distribution, since the minimal mass in the model with n vertices is 1/𝑛 and the
maximal degree is n-dependent and finite. Hence, we formulate the next assumption, which ensures that
the empirical distribution 𝐹𝑛 follows a (possibly truncated) weak power law.

Assumption 1.11 (Power-law empirical degrees). We say that the empirical distribution of (𝑑𝑛)𝑛≥1
follows a weak (possibly truncated) power law with exponent 𝜏 > 1 with exponent-error 𝜀 ≥ 0, if there
exist constants 𝑐ℓ , 𝑐𝑢 , 𝑧0 = 𝑧0(𝜀), 𝑛0(𝜀) > 0 and a function 𝑧 (ℓ)max(𝜀, 𝑛) → ∞ as 𝑛→ ∞ such that for all
𝑛 ≥ 𝑛0 (𝜀), 𝐹𝑛 (𝑧) in (8) satisfies

𝑐ℓ

𝑧 (𝜏−1) (1+𝜀) ≤ 1 − 𝐹𝑛 (𝑧) ≤
𝑐𝑢

𝑧 (𝜏−1) (1−𝜀) , (9)
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for all 𝑧 ∈ [𝑧0, 𝑧
(ℓ)
max(𝜀, 𝑛)], while the upper bound holds for all 𝑧 ≥ 𝑧0. In this case we call 𝜏 − 1 the

tail-exponent, consistent with Definition 1.7.

When the degrees are coming from an iid sample of a distribution D that satisfies (6) with some
𝜏, 𝜀, then one can use Chernoff bounds to show that Assumption 1.11 is also satisfied with a slightly
larger 𝜀 and 𝑧max(𝜀, 𝑛) can be chosen slightly below the typical maximum degree among iid degrees,
which is 𝑛(1−𝜀)/(𝜏−1) with high probability. However, in Assumption 1.11 we also allow for much
lower 𝑧 (ℓ)max(𝜀, 𝑛). In such cases we talk about truncated power-law degrees. Since the truncation value
𝑧 (ℓ)max(𝜀, 𝑛) → ∞ as 𝑛 → ∞, the limiting distribution D satisfies (9) for all (fixed) 𝑧 ≥ 𝑧0. We also
comment that if 𝜀 > 0, by slightly increasing 𝜀 and 𝑧0 if necessary, one may choose 𝑐ℓ = 𝑐𝑢 = 1.
Further, if instead of (9), one has the bounds

ℓ1(𝑧)𝑧−(𝜏−1) ≤ 1 − 𝐹𝑛 (𝑧) ≤ ℓ2(𝑧)𝑧−(𝜏−1) (10)

for some slowly varying functions ℓ1, ℓ2, then (9) holds for any 𝜀 > 0, since 𝑧−𝜀 � ℓ1(𝑧) ≤ ℓ2(𝑧) � 𝑧𝜀

by Potter’s theorem [8]. Then 𝑧0 may depend on 𝜀. In one of our results below, we additionally require
the following assumption on the maximum degree and the empirical mass function.

Assumption 1.12. We assume that there is an 𝜀 > 0 such that there exists constants 𝑛0 (𝜀), 𝑧0(𝜀), 𝐶𝑢 > 0,
such the empirical measure 𝜈𝑛 in (8) satisfies, for all 𝑛 > 𝑛0 (𝜀),

𝜈𝑛 (𝑧) ≤
𝐶𝑢

𝑧𝜏 (1−𝜀)
for all 𝑧 ≥ 𝑧0(𝜀), (11)

max
𝑖≤𝑛

𝑑𝑖 ≤ 𝐶𝑢𝑛
1/(𝜏 (1−𝜀)−1) . (12)

The first condition implies the upper bound in Assumption 1.11, since (11) implies that 𝜈𝑛 ((𝑧,∞)) ≤∑
𝑖≥𝑧 𝑐𝑢𝑖

−𝜏 (1−𝜀) = 𝑐′𝑢𝑧
−(𝜏−1)+𝜏𝜀 = 𝑐′𝑢𝑧

−(𝜏−1) (1−𝜀′) with 𝜀′ := 𝜀𝜏/(𝜏 − 1). The second condition is also
quite natural, and both conditions hold for the empirical measure of iid degrees whp, as the following
example shows. The proof can be found on page 74 in the Appendix.

Example 1.13 (Iid degrees). Suppose 𝑑𝑛 = (𝐷𝑛,1, . . . , 𝐷𝑛,𝑛 + 1{
∑
𝑖≤𝑛 𝐷𝑛,𝑖 odd}) where (𝐷𝑛,𝑖)𝑖≤𝑛 are

iid from a distribution D satisfying Definition 1.7 with some 𝛼. Then (𝑑𝑛)𝑛≥1 with high probability
satisfies Assumptions 1.10, 1.11 with 𝜏 = 𝛼 + 1 and any 𝜀 > 0, and 𝑧 (ℓ)max(𝜀, 𝑛) = 𝑛1/(𝛼(1+𝜀)) in
Assumption 1.11, that is, with 𝑧0(𝜀/2) from Definition 1.7,

P

(
∀𝑧 ≥ 𝑧0(𝜀/2) : 1 − 𝐹𝑛 (𝑧) ≤ 𝑧−𝛼(1−𝜀) and

∀𝑧 ∈ [𝑧0(𝜀/2), 𝑛1/(𝛼(1+𝜀)) ] : 1 − 𝐹𝑛 (𝑧) ≥ 𝑧−𝛼(1+𝜀)

)
→ 1. (13)

Further, D satisfying Definition 1.7 for some 𝛼 implies that (12) holds whp with 𝜏 = 𝛼 + 1 and any
𝜀 > 0, that is, P(max 𝐷𝑛,𝑖 ≤ 𝑛1/(𝛼(1−𝜀)) ) → 1. If D satisfies also that for all 𝜀 > 0 there exists 𝑧0(𝜀),
such that for all 𝑧 ≥ 𝑧0(𝜀),

P(𝐷 = 𝑧) ≤ 𝑧−𝜏 (1−𝜀) , (14)

then the empirical measure 𝜈𝑛 (𝑧) of 𝑑𝑛 also satisfies (11) with any 𝜀 > 1/𝜏. That is, for all 𝜀′ > 0,

P

(
∀𝑧 ≥ 𝑧0(𝜀) : 𝜈𝑛 (𝑧) ≤ 𝑧−𝜏 (1−1/𝜏+𝜀) = 𝑧−(𝜏−1+𝜀′)

)
→ 1. (15)

Finally, if one considers truncated power-law distributions with max𝑛,𝑖 𝐷𝑛,𝑖 = 𝑜(𝑛1/𝜏), then for all
𝜀 > 0

P

(
∀𝑧 ≥ 𝑧0(𝜀) : 𝜈𝑛 (𝑧) ≤ 𝑧−𝜏 (1−𝜀)

)
→ 1. (16)
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While (15) seems rather weak, it is essentially best possible. Namely, using the lower bound one can
show that the vertices with maximal degree are of order 𝑛(1+𝑜 (1))/(𝜏−1) , and when there is a single vertex
with degree in this range, then the upper bound in (15) can be sharp. Examples on truncated power-
law degree distributions can be found in [68, Example 1.20, 1.21] where graph distances are discussed
under truncation. Here, as soon as the maximal degree is 𝑜(𝑛1/𝜏), the true 𝜏 can be recovered also for
point-masses with any 𝜀 > 0 in (16).

2. Results

We focus on the behavior of degree-penalized CP and BRW for small values of 𝜆 > 0. Table 1 contains
a simplified summary of our results. We first state our results on the product penalty, that is, when
𝑓 (𝑥, 𝑦) = (𝑥𝑦)𝜇 for some 𝜇 ≥ 0 in Definitions 1.1 and 1.2. We based this choice on a slightly related
model, degree-dependent first passage percolation [40], where this penalty function is proven to show
rich phenomena for first passage percolation. Some of our results extend to polynomial penalty functions
as well; see Remark 2.4 below. We start with results on Galton-Watson trees. On a Galton-Watson tree,
the degree of a nonroot vertex v equals its number of offspring plus 1. Survival proofs for the contact
process are often based on the “star”-graph strategy. This means that an infected high-degree vertex of
degree K survives exp(Θ(𝜆2𝐾)) long time with high probability where the infection is sustained by
repeated reinfections from the surrounding K neighbors. If the rate is changed to 𝜆′ = 𝜆𝐾−𝜇 around this
vertex, then a vertex of degree K survives exp(Θ(𝜆2𝐾1−2𝜇)) long, which grows with the degree K only if
𝜇 < 1/2. This intuition suggest a phase transition at 𝜇 = 1/2 that we confirm in the following theorems:
Theorem 2.1 (Product penalty with 𝜇 < 1/2 on Galton-Watson trees). Let T be an infinite Galton-
Watson tree with offspring distribution D, so that 𝑝0 = P(𝐷 = 0) = 0. Consider the degree-penalized
contact process CP 𝑓 ,𝜆 and branching random walk BRW 𝑓 ,𝜆 with penalty function 𝑓 (𝑥, 𝑦) = (𝑥𝑦)𝜇 in
Definitions 1.1 and 1.2 for some 𝜇 ∈ [0, 1/2).

When the tail of D is heavier than stretched-exponential with stretch-exponent 1 − 2𝜇 (as in
Definition 1.8), then for all 𝜆 > 0, CP 𝑓 ,𝜆 (T ,1∅) and BRW 𝑓 ,𝜆 (T ,1∅) both show local survival, for
almost all realizations T of the Galton-Watson tree, that is, 𝜆𝑐,1 = 𝜆𝑐,2 = 0.

By setting 𝜇 = 0, we recover the result for classical CP: if the tail of D is heavier than exponential
then there is local survival [34]. Theorem 2.1 generalizes this result for any 𝜇 < 1/2, and we see a phase
transition point at 𝜇 = 1/2. The counterpart of this theorem for 𝜇 ≥ 1/2 holds generally on any graph.
Theorem 2.2 (Product penalty with 𝜇 ≥ 1/2). Consider the degree-penalized contact process CP 𝑓 ,𝜆

and branching random walk BRW 𝑓 ,𝜆 with penalty function 𝑓 (𝑥, 𝑦) = (𝑥𝑦)𝜇 in Definitions 1.1 and 1.2
for some 𝜇 ≥ 1/2. Then 𝜆𝑐,1 > 1, equivalently, for all 𝜆 < 1, CP 𝑓 ,𝜆 (𝐺, 𝜉

0
) and BRW 𝑓 ,𝜆 (𝐺, 𝜉

0
) both

go extinct almost surely on any (finite or infinite) graph G whenever |𝜉
0
| < ∞ (respectively, |𝑥0 | < ∞)

almost surely. Further,

E[𝑇cp
ext (𝐺, 𝜉

0
) | 𝐺, 𝜉

0
] ≤ E[𝑇brw

ext (𝐺, 𝜉
0
) | 𝐺, 𝜉

0
] ≤

∑
𝑣 ∈𝑉

𝜉0 (𝑣)𝑑1−𝜇
𝑣 /(1 − 𝜆) (17)

and P(𝑇cp
ext (𝐺, 𝜉

0
) > 𝑡) and P(𝑇brw

ext (𝐺, 𝜉
0
) > 𝑡) both decay (at least) exponentially in t at a rate of at

least 1 − 𝜆.
This result is novel. Intuitively, it shows that when the average number of infections to neighbors

is at most 𝜆 times the square root of the degree, then 𝜆𝑐,1 = 0 on any graph. This is especially
counterintuitive on graphs/trees with power-law degree distribution, since without penalization those
have 𝜆𝑐,1 = 𝜆𝑐,2 = 0 by [34], and the penalization for 𝜇 ≤ 1 is not yet strong enough to suppress
the power laws: since the average number of infections out of a vertex is polynomial of the degrees
(Θ(𝜆 deg(𝑣)1−𝜇), which still follows a power law when deg(𝑣) does so. The bound (17) bounds the
mean extinction time as a function of the initially infected set. If G is finite, 𝜉0(𝑣) = 1 for all v, then the
bound is linear in the number of edges of G.
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Our next theorem is about the same processes on the configuration model. For the sake of simplicity,
we assume that min𝑖≤𝑛 𝑑𝑖 ≥ 3, ensuring that for all sufficiently large n, CM(𝑑𝑛) on n vertices has a
giant component C (1)𝑛 containing 𝑛(1 − 𝑜(1)) many vertices with probability that tends to 1 as 𝑛 → ∞,
see [50, 51]. We use the 𝑂P,ΘP-notation in the standard way, see notation at the end of Section 2.1. By
poly(𝑛) we denote polynomial functions of n (with an arbitrary but finite exponent).

Theorem 2.3 (Product penalty on CM). Let 𝐺𝑛 := CM(𝑑𝑛) be the configuration model in Definition 1.9
on the degree sequence 𝑑𝑛 = (𝑑1, . . . , 𝑑𝑛). Consider the degree-penalized contact process CP 𝑓 ,𝜆

and branching random walk BRW 𝑓 ,𝜆 with penalty function 𝑓 (𝑥, 𝑦) = (𝑥𝑦)𝜇 for some 𝜇 ≥ 0 from
Definition 1.1 and 1.2.

(a) Let 𝜇 < 1/2, and 𝑑𝑛 satisfy the regularity assumptions in Assumption 1.10 with min𝑖≤𝑛 𝑑𝑖 ≥ 3, so
that D has heavier tails than stretched-exponential with stretch-exponent 1−2𝜇 (as in Definition 1.8).
Then for all 𝜆 > 0, both CP 𝑓 ,𝜆 (𝐺𝑛, 1𝐺𝑛

) and BRW 𝑓 ,𝜆 (𝐺𝑛, 1𝐺𝑛
) survive at least until ΘP (exp(𝐶𝑛))

long time.
(b) Let 𝜇 ≥ 1/2. Then for all fixed 𝜆 < 1, both CP 𝑓 ,𝜆 (𝐺𝑛, 1𝐺𝑛

) and BRW 𝑓 ,𝜆 (𝐺𝑛, 1𝐺𝑛
) go extinct in

𝑂P(
∑
𝑑

1−𝜇
𝑖 ) = 𝑂P(|𝐸 (𝐺𝑛) |).

There results are stated in the annealed setting, as the 𝑂P,ΘP notation can accommodate the errors
coming from bad realizations of 𝐺𝑛. However, part (b) is a direct application of Theorem 2.2, and
as such it can be strengthened to the quenched setting, and noting that 1 − 𝜇 ≤ 1, the bound on the
extinction time is linear in the number of edges of 𝐺𝑛.

Part (a) here recovers the result of [6] for classical CP by setting 𝜇 = 0, and generalizes it for
𝜇 ∈ (0, 1/2). The phase transition at 𝜇 = 1/2 occurs again: Part (b) is again novel and it is the finite
graph analogue of Theorem 2.2. It shows that on finite graphs extinction happens quickly when 𝜇 ≥ 1/2.
Starting from the all-infected state on 𝐺𝑛 is not a serious restriction. In part (a), when started from a
single vertex, that is, 𝜉

0
= 1𝑣 , the process has a positive probability of reaching a large pandemic, and

the same result – long survival – is valid with positive probability. See [6] on how to move between a
single vertex and all vertices as starting states.

Remark 2.4 (Polynomial penalties). The proof of Theorems 2.2 and 2.3 (b) are based on supermartingale
arguments. They also work more generally for any penalty function 𝑓1(𝑥, 𝑦) = 𝑥𝜇𝑦𝜈 with 𝜇 + 𝜈 ≥ 1
under the same conditions, that is, for all graphs G, whenever 𝜆 < 1 and initial infected set 𝜉0 is
finite. In particular, with 𝑥𝑡 (𝑣) the number of particles on vertex v in the BRW, the supermartingale
is of the form 𝑀𝑡 =

∑
𝑣 𝑥𝑡 (𝑣)𝑑

𝛽
𝑣 for some 𝛽 ∈ [1 − 𝜇, 𝜈]. Using the same supermartingale, it is thus

straightforward to extend the result from monomials to polynomials of the form

𝑓2(𝑥, 𝑦) =
∑
𝑖∈N

𝑎𝑖𝑥
𝜇𝑖 𝑦𝜈𝑖

with at least one term, say the first one, satisfying 𝜇1+𝜈1 ≥ 1, and all 𝑎𝑖 ≥ 0. In this case we can guarantee
extinction whenever 𝜆 < 𝑎1, using the stochastic domination of CP 𝑓2 ,𝜆 by CP𝑎1 𝑓1 ,𝜆 = CP 𝑓1 ,𝜆/𝑎1 , since
the penalty is higher in process with 𝑓2, leading to smaller infection rates, see (20) below. By the
same reasoning, the proof of Theorem 2.2 also extends to processes with penalty function

𝑓3 (𝑥, 𝑦) := 1
/ ∑
𝑖∈N

𝑎𝑖𝑥
−𝜇𝑖 𝑦−𝜈𝑖 , with

∑
𝑖∈N

𝑎𝑖 < ∞

whenever (𝜇𝑖 , 𝜈𝑖)𝑖∈N are such that and there is a unique dominant term (say the first one) in the following
sense: 𝜇1 ≤ 𝜇𝑖 and 𝜈1 ≤ 𝜈𝑖 for every 𝑖 ∈ N and 𝜇1 + 𝜈1 ≥ 1. We then bound the infection rates from
above as follows:

𝜆/ 𝑓3 (𝑑𝑢 , 𝑑𝑣 ) = 𝜆
∑
𝑖

𝑎𝑖𝑑
−𝜇𝑖
𝑢 𝑑−𝜈𝑖

𝑣 ≤ 𝜆
( ∑

𝑖

𝑎𝑖

)
𝑑
−𝜇1
𝑢 𝑑−𝜈1

𝑣 = 𝜆
( ∑

𝑖

𝑎𝑖

)/
𝑓1(𝑑𝑢 , 𝑑𝑣 ),
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with 𝑓1(𝑥, 𝑦) = 𝑥𝜇1 𝑦𝜇1 . So, using stochastic domination, whenever 𝜆 < (
∑
𝑖 𝑎𝑖)−1, Theorem 2.2 is still

valid by the first part of the remark.

It turns out that – instead of the product penalty – switching to a class of penalty functions f that are
monomials of max(𝑥, 𝑦) shows a richer behavior, and we see an extra phase when 𝜇 crosses 1.

Theorem 2.5 (Max penalty on GW trees). Let T be an infinite Galton-Watson tree with offspring
distribution D, so that P(𝐷 = 0) = 0. Consider the degree-penalized contact process CP 𝑓 ,𝜆 and
branching random walk BRW 𝑓 ,𝜆 with penalty function 𝑓 (𝑥, 𝑦) = max(𝑥, 𝑦)𝜇 for some 𝜇 ≥ 0 in
Definitions 1.1 and 1.2.

(a) Let 𝜇 < 1/2, and the tail of D be heavier than stretched-exponential with stretch-exponent 1−2𝜇, (as
in Definition 1.8). Then 𝜆𝑐,2 = 𝜆𝑐,2 = 0, that is, for all 𝜆 > 0, the contact process CP 𝑓 ,𝜆 (T ,1∅) and
BRW 𝑓 ,𝜆 (T ,1∅) both show local survival, for almost all realizations T of the Galton-Watson tree.

(b) Let 𝜇 ∈ [1/2, 1), 𝛼 ∈ (0, 1 − 𝜇), and the tail of D weakly follow a power law with tail-exponent 𝛼
(as in Definition 1.7). Then 𝜆𝑐,1 = 0 and 𝜆𝑐,2 > 0. In particular, for 𝜆 ∈ (0, 1/2), CP 𝑓 ,𝜆 (T ,1∅)
and BRW 𝑓 ,𝜆 (T ,1∅) both show local extinction and global survival, for almost all realizations T
of the Galton-Watson tree.

(c) Let 𝜇 ∈ [1/2, 1), and E[𝐷1−𝜇] < ∞. Then 𝜆𝑐,1 > 0. In particular, for 𝜆 < 1/(2E[𝐷1−𝜇]),
the processes CP 𝑓 ,𝜆 (T ,1∅) and BRW 𝑓 ,𝜆 (T ,1∅) both go extinct almost surely, for almost all
realizations T of the Galton-Watson tree.

Part (a) here again recovers classical results [34] when 𝜇 = 0. Whenever 𝜇 ≥ 1/2, we see two new
phases: if the offspring distribution has very heavy tails (part (b)), then local extinction still occurs (see
Theorem 2.6 below) and the process survives by escaping to infinity for any 𝜆 > 0, that is, 𝜆𝑐,1 = 0
for almost all realizations of the Galton-Watson tree. If the offspring distribution has slightly lighter
tails (but could still be a power law with infinite mean) in part (c), then global extinction occurs for
small 𝜆. The fact that the boundary between these two phases depends on the exact power-law tail has
not been observed before in the contact process literature on static graphs [17]. Note that 𝛼 < 1 − 𝜇 in
part (b) means that E[𝐷1−𝜇] = ∞, and for power-law degrees with 𝛼 > 1 − 𝜇, we have E[𝐷1−𝜇] < ∞.
In this sense part (b) and (c) are almost matching and we leave out only the case 𝛼 = 1 − 𝜇, where the
(potentially present) slowly varying function multiplying the power-law decay shall play a decisive role
in survival vs extinction (see below (6)). To avoid technical difficulties of tail-estimates, we decided to
leave out this boundary case. Part (c) above is also valid more generally, see Corollary 2.7 below. To
prove both local extinction (in part (b)) and global extinction (part (c)), we develop a new technique that
we call loop erasure of infection paths, see Section 2.1 and Figure 1. This technique is robust, and can
be used to obtain stronger results on extinction more generally, hence we state them separately. Note
that there is some overlap between Theorem 2.5 and the theorem below.

Theorem 2.6 (Max penalty on trees and graphs). Let T be any (possibly infinite) rooted tree with
root ∅. Consider the degree-penalized contact process CP 𝑓 ,𝜆 and branching random walk BRW 𝑓 ,𝜆

with penalty function 𝑓 (𝑥, 𝑦) = max(𝑥, 𝑦)𝜇 for some 𝜇 ≥ 0.

(a) Let 𝜇 ≥ 1/2. Then𝜆𝑐,2 > 0, that is, for all𝜆 < 1/2, the processes CP 𝑓 ,𝜆 (T , 𝜉
0
) and BRW 𝑓 ,𝜆 (T , 𝑥0)

both show local extinction almost surely, whenever |𝜉
0
| < ∞ (resp., |𝑥0 | < ∞) almost surely.

In this case we further have that for any 𝑣 ∈ T , the tail-distributions of the local extinction times
𝑇

cp
ext (T , 𝜉

0
, 𝑣), 𝑇brw

ext (T , 𝑥0, 𝑣) decay exponentially in t.
(b) Let 𝜇 ≥ 1. Then 𝜆𝑐,1 > 0, that is, for all 𝜆 < 1, the processes CP 𝑓 ,𝜆 (𝐺, 𝜉

0
) and BRW 𝑓 ,𝜆 (𝐺, 𝑥0)

both go extinct almost surely on any (finite or infinite) graph G whenever |𝜉
0
| < ∞ (resp., |𝑥0 | < ∞)

almost surely, hence also on any tree T . Further, the bound (17) is also valid here on the extinction
times, which decay at least exponentially in t with rate at least 1 − 𝜆.

Part (b) here is the max-penalty analogue of Theorem 2.2 which considers the product penalty with
𝜇 ≥ 1/2. In the regime 𝜇 ∈ [1/2, 1) we see a surprising difference: for the max-penalty we can only
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guarantee local extinction on trees, whereas for the product penalty we see global extinction on all
graphs. For the max-penalty CP on Galton-Watson trees, global survival but local extinction occurs for
all small 𝜆 when E[𝐷1−𝜇] = ∞, see Theorem 2.5(b), which is a new phase in the CP literature. The
reason for this difference is that under the product penalty it is much harder for the infection to spread
between two superspreaders than under the max-penalty, and in the max-penalty case withE[𝐷1−𝜇] = ∞
the infection can escape to infinity via a ray of superspreaders of growing degree.

Here, we prove Theorem 2.6(a) using again the loop erasure of infection paths technique of Theorem
2.5(b-c). It follows from the proof of Theorems 2.5(c) and Theorem 2.6(a) that (local-global) extinction
for small 𝜆 > 0 happens on any tree with at most exponential growth. Recall the upper branching number
br(T ) from Definition 1.5.

Corollary 2.7 (Trees with finite branching number). Let T be a rooted tree with br(T ) := 𝑏 < ∞, and
consider CP 𝑓 ,𝜆 and BRW 𝑓 ,𝜆 on T with penalty function 𝑓 (𝑥, 𝑦) = max(𝑥, 𝑦)𝜇 with 𝜇 ≥ 1/2. Then for
all 𝜆 < 𝑏−1/2, the processes CP 𝑓 ,𝜆 (T ,1∅) and BRW 𝑓 ,𝜆 (T ,1∅) both go extinct almost surely.

Let T be a spherically symmetric tree with degree sequence 𝑑 = (𝑑0, 𝑑1, 𝑑2, . . . ) satisfying br(T ) :=
𝑏 < ∞. Then for all 𝜆 < 𝑏−(1−𝜇) /2, the processes CP 𝑓 ,𝜆 (T ,1∅) and BRW 𝑓 ,𝜆 (T ,1∅) both go extinct
almost surely.

For spherically symmetric trees, finiteness of the upper branching number br(T ) is equivalent to
requiring that log br(T ) = lim sup𝑁→∞ 1

𝑁

∑𝑁
𝑖=1 log(𝑑𝑖) < ∞. The requirement on 𝜆 in Corollary 2.7 for

SSTs is slightly milder than for arbitrary trees with finite upper branching number. Our last theorems
describes the behavior of degree-penalized processes with maximum penalty on the configuration model.

Theorem 2.8 (Max penalty on CM, long-survival regimes). Let 𝐺𝑛 := CM(𝑑𝑛) be the configuration
model in Definition 1.9 on the degree sequence 𝑑𝑛 = (𝑑1, . . . , 𝑑𝑛) that satisfies the regularity assump-
tions in Assumption 1.10. Consider the degree-penalized contact process CP 𝑓 ,𝜆 and branching random
walk BRW 𝑓 ,𝜆 with penalty function 𝑓 (𝑥, 𝑦) = max(𝑥, 𝑦)𝜇.

(a) Let 𝜇 < 1/2, and the tail of D be heavier than stretched-exponential with stretch-exponent 1 − 2𝜇
(in the sense of Definition 1.8), and min𝑖≤𝑛 𝑑𝑖 ≥ 3. Then for all 𝜆 > 0 the process CP 𝑓 ,𝜆 (𝐺𝑛, 1𝐺𝑛

)
survives at least until ΘP (exp(𝐶𝑛)) long time.

(b) Let 𝜇 ∈ [1/2, 1), and (𝑑𝑛)𝑛≥1 satisfy the power-law empirical degree Assumption 1.11 with exponent
𝜏 and exponent-error 𝜀 ≥ 0, with

𝜇 <
(
3 − 𝜏 − 𝜀(𝜏 − 1)

)
· 1 − 𝜀

1 + 𝜀 . (18)

Then for all 𝜆 > 0 the process CP 𝑓 ,𝜆 (𝐺𝑛, 1𝐺𝑛
) survives until ΘP (exp(𝐶𝑛)) long time.

Part (a) and (b) here both show long survival; the difference is that when 𝜇 < 1/2, the requirement
on the degree distribution is very mild, while one needs sufficiently heavy power-law degrees for long
survival when 𝜇 ≤ 1/2 (essentially, 𝜏 < 3 − 𝜇). We emphasize that the ΘP notation implies that the
results are annealed over the graphs, bad realizations are swallowed by the error there, and the proofs
indeed find structures that sustain the infection for a long time, that are only “whp” present in 𝐺𝑛 but
are not present in “almost all realizations” of 𝐺𝑛 for fixed n. Part (a) here again recovers the result
for the classical CP [6] by setting 𝜇 = 0. Part (b) is a novel phase; it is the finite-graph analogue of
Theorem 2.5(b), as we explain now. As the error in the power-law exponent 𝜀 ↓ 0, the condition in (18)
simplifies to 𝜇 < 3 − 𝜏, which is equivalent to the condition that 𝛼 := 𝜏 − 2 < 1 − 𝜇 in Theorem 2.5.
Here 𝛼 = 𝜏 − 2 is the tail-exponent of the size-biased version of D, say 𝐷, which can be shown to
weakly follow a power law with 𝛼 = 𝜏 − 2 > 0 in the sense of Definition 1.7. The local weak limit of
the configuration model is a Galton-Watson tree with a version of the size-biased degree distribution 𝐷.
Theorem 2.5(b) describes that when 𝜇 ∈ [1/2, 1), on a weak power-law GW tree the processes both
survive globally exactly when 𝛼 < 1 − 𝜇. Hence, this theorem reflects the analogous Theorem 2.5(b)
on Galton-Watson trees, showing that global survival (but local extinction) there implies long survival
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for the corresponding configuration model. Our last theorem states fast extinction on the configuration
model, and admittedly it has the most involved proof.

Theorem 2.9 (Max penalty on CM, fast extinction regimes). Consider the configuration model 𝐺𝑛 :=
CM(𝑑𝑛) in Definition 1.9 on the degree sequence 𝑑𝑛 = (𝑑1, . . . , 𝑑𝑛). Consider the degree-penalized
contact process CP 𝑓 ,𝜆 and branching random walk BRW 𝑓 ,𝜆 with penalty function 𝑓 (𝑥, 𝑦) = max(𝑥, 𝑦)𝜇.

(a) Let 𝜇 ∈ [1/2, 1), and (𝑑𝑛)𝑛≥1 satisfy the regularity assumptions in Assumption 1.10, and the power-
law empirical degrees of Assumption 1.11–1.12 with exponent 𝜏 and exponent-error 𝜀 ≥ 0 with
𝜏(1 − 𝜀) > 3. Then for all 𝜆 small enough the processes CP 𝑓 ,𝜆 (𝐺𝑛, 1𝐺𝑛

) and BRW 𝑓 ,𝜆 (𝐺𝑛, 1𝐺𝑛
)

both go extinct in ΘP (log 𝑛) time.
(b) Let 𝜇 ≥ 1. Then for all 𝜆 < 1, the processes CP 𝑓 ,𝜆 (𝐺𝑛, 1𝐺𝑛

) and BRW 𝑓 ,𝜆 (𝐺𝑛, 1𝐺𝑛
) both go

extinct in 𝑂P (poly(𝑛)) time, whenever it holds for (𝑑𝑛) that
∑𝑛
𝑖=1 𝑑

1−𝜇
𝑖 = 𝑂P (poly(𝑛)).

The results of this theorem, especially part (a) are novel in the contact process literature. First,
CP dies out on power-law configuration models when, on average, a vertex transmits the infection to
fewer neighbors than the square root of its degree. Second, we could prove that the extinction happens
extremely fast, in Θ(log 𝑛) time, using our new technique of loop erasure of infection paths combined
with new structural results on the configuration model with 𝜏 > 3 itself. Namely, we developed the
loop erasure technique for trees where loops of infection paths are back-and-forth, and we erase these
back-and-forth steps gradually. However, we cannot erase nontrivial loops. To be able to push the
technique through for the configuration model with 𝜏 > 3 power law degrees, we develop strong bounds
on the surplus edges of neighborhoods, which also controls the number of nontrivial loops, see below.
The best currently known bounds for the extinction time on graphs whose degree distribution has infinite
support are polynomial [6], using recursive techniques on subtrees. On d-regular graphs, extinction of
CP in its subcritical regime also happens in Θ(log 𝑛) time [56]. Theorem 2.9(a) is the counterpart of
Theorem 2.8(b), that is, it shows fast extinction on the configuration model with power-law degrees with
sufficiently light tail. For long survival, Theorem 2.8(b) essentially requires 𝜇 < 3 − 𝜏, equivalently,
𝜏 > 3 − 𝜇. Here in Theorem 2.9(a) to prove extinction we need essentially 𝜏 > 3, that is, we leave
the cases when 𝜏 ∈ (3 − 𝜇, 3) open. We show that when 𝜏 > 3, the local weak limit GW tree can
be embedded until Θ(log 𝑛) generations and with only a bounded number of surplus edges for all n
vertices all-at-once, see Proposition 5.1, which might be interesting in its own right. We can then relate
extinction of the CP/BRW on this new structure using a modified version of our methodology of loop
erasure of infection paths also accommodating the presence of a few cycles in Θ(log 𝑛) neighborhoods
(see below in Section 2.1) so that CP/BRW never reaches the last generation of the “local weak limit +
few surplus edges” approximation.

When 𝜏 < 3, the configuration model looks structurally very different: the Galton-Watson tree forming
the local weak limit of the configuration model has infinite mean, so it grows doubly-exponentially,
and can be embedded into the configuration model only until Θ(log log 𝑛) generations, and with many
surplus edges (i.e., edges beyond the number of vertices−1 that form the tree). On the one hand the
Θ(log log 𝑛) generations of the embedding are too short and leave a good probability for CP/BRW to
escape the embedded tree, and on the other hand there are too many additional cycles on the embedded
tree that might boost the performance of CP/BRW. This causes the gap in the theorem, and so to prove
extinction when 𝜏 ∈ (3 − 𝜇, 3) on the configuration model remains open.

2.1. Background, discussion and overview of proof techniques

In the following we highlight our novel proof techniques and their relation to the literature. The overview
follows the structure of the rest of the paper.
Novel methodology: loop erasure in the space of infection paths (Sections 4 and 5). In Sections 4.5, 4.6
for the proof of Theorems 2.5(c) and 2.6(a) we develop a new recursive path counting argument on the
space of infection paths, where we essentially carry out a (probability-weighted) loop erasure on the set

https://doi.org/10.1017/fms.2025.10144 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10144


14 Z. Bartha, J. Komjáthy and D. Valesin

of possible infection paths. Then we relate the probability that BRW 𝑓 ,𝜆 survives on T to the product of
degrees

∏𝑡
𝑖=1 𝑑

1−𝜇
𝜋𝑖

summed over nonbacktracking paths, called rays 𝜋 = (𝜋0 = ∅, 𝜋1, 𝜋2, . . . , ) on the
tree, that is, paths that always go downwards. See Figure 1 for an illustration.

To extend the same result to the configuration model, that is, to prove Theorem 2.9(a) (in Section 5),
we need to handle loops in the underlying graph. First in Lemma 5.2 we develop a new moment bound
for the total size of GW trees with power-law offspring distribution with n-dependent maximum degree,
(i.e., coming from the empirical degrees of the configuration model) valid for all 𝜏 > 3. We use this
new bound to show that whp the following holds for configuration models with 𝜏 > 3 on n vertices:
for some small 𝛿 > 0, the 𝛿 log 𝑛 graph-neighborhood of every vertex only has at most a constant ℓ
many surplus edges, that is, upon removing at most ℓ edges the 𝛿 log 𝑛 neighborhood becomes a tree.
This result, Proposition 5.1, may be of independent interest. Returning to the degree-penalized contact
process on the configuration model, we extend the (probability weighted) loop-erasure method that we
developed for trees, to graphs with a bounded number of surplus edges, which is a nontrivial adaptation
itself.
Survival on GW-trees with stretched-exponential-tailed offspring (Section 6). Theorem 2.1 is the gen-
eralization of the result by Huang and Durrett [34], where the authors prove that the classical contact
process shows local survival on Galton-Watson trees whenever the offspring distribution has no expo-
nential moments, that is, for all 𝑐 > 0, it holds that E[e𝑐𝐷] = ∞. When we set 𝜇 = 0 in our degree
penalised CP, we get back this result. For the degree-penalized versions, (i.e., 𝜇 ≥ 0) due to the penal-
ties, the same condition is not sufficient for the proofs to carry through. For our proofs to hold, we need
that D has heavier tails than stretched exponential with stretch exponent that is strictly less than 1 − 2𝜇,
as in Definition 1.8. We leave it an open question whether this condition in Theorem 2.1 is sharp. For
the classical contact process on Galton-Watson trees, the no-exponential-moments condition is sharp,
as shown by Bhamidi, Nam, Nguyen and Sly [6].

The combination of Theorems 2.1 and 2.2 shows that the product penalty has a phase transition at
𝜇 = 1/2. The usual argument that star-graph maintain the infection, as introduced by Chatterjee and
Durrett [17], gives a back-of-the-envelope calculation that suggests this phase transition. Namely, a
star-graph has a central vertex of degree say K, connected to K leaves or very low-degree vertices. The
degree-penalized contact process on this structure survives typically for a time that isΩP (exp(𝜆2𝐾1−2𝜇)).
Hence, whenever 1 − 2𝜇 > 0, star-graphs survive long enough to infect other star-graphs embedded
in the graph, provided these stars are not too far away from each other, that is, at most the logarithm
of the survival time, giving at most 𝑜(𝐾1−2𝜇) away. The stretched-exponential condition on the tail of
D ensures that we can find stars within this distance of each other. For the infection to be able to pass
between the stars, we also need to ensure that the path connecting the stars only contain low-degree
vertices, so that the penalty does not hinder the infection from passing. This is new compared to the
classical contact process, see Section 6.2.
Local extinction and global survival for small 𝜆 on power-law GW-trees. The combination of
Theorems 2.5 and 2.6 shows that for the max-penalty when 𝜇 ∈ (1/2, 1), on a Galton-Watson tree,
local extinction but global survival happens for any small 𝜆 > 0 and D has a power-law tail with tail-
exponent 𝛼 < 1− 𝜇. The behavior for large rates (𝜆 > 1) may depend on the exact offspring distribution,
and the contact process and the branching random walk may differ in behavior, see the work of Pe-
mantle and Stacey [58]. Comparing Theorems 2.5 and 2.6 for the max-penalty with the corresponding
Theorems 2.1 and 2.2 for the product penalty, we see that the phase of 𝜇 ≥ 1/2 for the max-penalty is
subdivided into three different sub-phases, and the almost-sure extinction on arbitrary graphs requires
𝜇 ≥ 1 for the max-penalty, c.f. 𝜇 ≥ 1/2 for the product penalty. The subphases of max penalty with
𝜇 ∈ [1/2, 1) (Theorem 2.5(b)–(c)) are novel, since they provide the first natural static graph model
where the contact process on power-law degree graphs can be subcritical (c) and show only global sur-
vival (b); and the exact condition also depends on the exact power-law exponent. For dynamical graphs
a similar phenomenon occurs, see the recent work of Jacob, Linker and Mörters [36].
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Survival proofs: k-cores sustain the infection when stars heal quickly (Section 7). When 𝜇 ≥ 1/2,
in the degree-penalized contact process, star-graphs heal essentially immediately and hence the usual
arguments that they maintain the infection for a long time break down. In this regime on the GW tree,
when the offspring distribution is sufficiently heavy-tailed (so that the (1 − 𝜇 − 𝜀)th moment is infinite
for some 𝜀 > 0), we prove that contact process shows local extinction but global survival by escaping
to infinity, by Theorem 2.6(a) and Theorem 2.5(b).

In the configuration model with the same local weak limit, we find a new sub-graph that maintains the
infection exponentially long in n. Extending the results of Janson and Luczak [37] we show that a k-core
𝐻𝑛 ⊆ 𝐺𝑛 is present whp whenever 𝜏 ∈ (2, 3), with size linear in n, on vertices with degree 𝑘 (1+𝜂)/(3−𝜏) ,
for some small 𝜂 = 𝜂(𝜀). The heuristic idea is that within 𝐻𝑛, the expected number of vertices that an
infected vertex infects before healing is (ignoring the 𝜂 error in the exponent, and denoting by deg𝐺 (𝑣)
the degree of a vertex in the graph G):

deg𝐻𝑛
(𝑢)𝑟 (𝑢, 𝑣) = deg𝐻𝑛

(𝑢)𝜆(deg𝐺𝑛
(𝑢) ∨ deg𝐺𝑛

(𝑣))−𝜇 ≈ 𝑘𝜆𝑘−𝜇/(3−𝜏) ≈ 𝜆𝑘1−𝜇/(3−𝜏) ,

which grows with k whenever 𝜇 < 3 − 𝜏. We then show that when we choose k a large 𝜆-dependent
constant, the graph 𝐻𝑛 sustains the contact process exponentially long. As far as we know this is the
first model where k-cores are directly used to maintain the infection process.
Long survival on the configuration model with stretched exponential degree distribution (Section 8).
In the regime where 𝜇 < 1/2, a star-graph of degree j maintains the infection long enough to pass
it to a neighboring star-graph if the graph-distance between them is 𝑜( 𝑗1−2𝜇). This idea will lead to
Theorem 2.3 (a) and, as a consequence, Theorem 2.8 (a). Our proof here is an almost direct adaptation
of the argument in [6] where we embed an expander-graph of stars with degree approximately j into the
original graph so that each edge of the expander corresponds to a path of length 𝑜( 𝑗1−2𝜇). This leads to
the condition of heavier than stretched exponential degree distributions with the exponent at most 1−2𝜇.
Another CP-model with degree-dependent transmission rates. Wei Su in [66] studies a degree-penalized
contact process and branching random walk with the asymmetric penalty function 𝑓 (𝑥, 𝑦) = 𝑥. This
penalty function implies that the total rate of infection from every vertex v is a constant𝜆 > 0, irrespective
of the degree of v. In this case, CP can be coupled to a “usual” un-penalized BRW on the GW tree with
Poisson(𝜆) total offspring, and finer results can be obtained on Galton-Watson trees, not just the small
𝜆 > 0 behavior. For BRW, extinction occurs when 𝜆 < 1, and local vs. only global survival depends
on whether 𝜆 > 1/𝑟 (T ) or not, where 𝑟 (T ) is the spectral radius of the underlying tree with respect
to symmetric random walk. For the contact process, the minimal degree in the Galton-Watson tree is
decisive, see [66, Theorems 3.1, 4.2].
Comparison to degree-dependent FPP. In a sequence of papers, Komjáthy et al. [40, 41, 42] study
non-Markovian degree-dependent first passage percolation (dd-FPP) on spatial graphs with power-law
degrees with exponent 𝜏. In dd-FPP, there is no healing, and hence, reinfections are not allowed. When
one considers exponentially distributed transmission times, the degree-dependence there is similar to
the product penalty here. Despite the similar transition rates, the results are entirely different for the
two processes. The main phase transition point in our results, 𝜇 = 1/2 is completely absent in dd-FPP:
this transition point emanates from reinfecting the same high-degree vertex over and over. Explosion
(reaching infinitely many individuals in finite time) stops happening in dd-FPP when 𝜇 < (3 − 𝜏)/2,
see [40]. The other two papers [41, 42] study the rate of growth in time of the infection cluster on
geometric inhomogeneous random graphs. The underlying geometry there is crucial, and the three phases
are: stretched exponential, polynomial faster than the dimension, and polynomial growth proportional
to 𝑡𝑑 . The proof techniques mostly consist of renormalization techniques. We leave the question of
spatial underlying graphs for degree-penalized CP for future projects.
Further directions. We believe that most of our results can be relatively easily adapted to graphs with
GW trees as local weak limits, for example, the Chung-Lu or Norros-Reitu models or even to general
inhomogeneous random graphs [11, 18, 60]. Our current proof techniques pose the restriction that they
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all rely on tree-based arguments or “almost” tree-based arguments. It would be interesting to see how far
this can be relaxed. Sparse random intersection graphs [9, 10, 20, 38, 63] or random intersection graphs
with communities (where not every community is a complete graph [69, 70]) provide a natural candidate
for this. These graphs are no longer locally tree-like, yet there is an embedded tree-like structure formed
by the communities [69]. Another interesting direction is to develop robust techniques that can extend our
results (beyond the 𝜇 ≥ 1 case) to spatial graphs with inhomogeneous degree distributions, for instance
to geometric inhomogeneous random graphs [14], scale-free percolation [21], or the hyperbolic random
graph [43]. A coupling argument to the related degree-dependent first passage percolation [40], which
explodes also exactly when 𝛼 := 𝜏 − 2 < 1− 𝜇, indicates that at least Theorem 2.5(b) on global survival
must carry through for these graphs. Considering the recent growth phases of degree-dependent first
passage percolation (1-FPP) in [41, 42], it is an intriguing question to ask whether the front of the
degree-dependent contact process started from the origin and conditioned to survive, follows the same
universality classes of growth as the 1-FPP spreading process.

Metastable behavior of the original contact process on finite graphs is a lively field of research starting
with [16]; see also [25, 52, 54, 55, 61, 62]. See [5, 15, 17, 53] for results on power-law preferential
attachment models and configuration models, [48] on hyperbolic random graphs, [19, 35, 36] on
dynamically evolving graphs, and [30] on spatial random graphs. Further studying metastability of the
degree-penalized processes here (for instance, investigating metastable densities) is an interesting future
direction.
Organization of the rest of the paper: Before the proofs we introduce some necessary terminology
and preliminary facts about the contact process and branching random walks in Section 3. Then, in
Section 4 we give the proofs of Theorems 2.2, 2.3(b), 2.5(c), 2.6(a), (b) and 2.9(c). In Section 5 we prove
Theorem 2.9(a). Section 6 contains the proofs of Theorems 2.1 and 2.5(a), (b). In Section 7 we provide
the proof of Theorem 2.8(b). Finally, in Section 8 we give a sketch of the proofs of Theorems 2.3(a)
and 2.8(a).
Notation: When we compare degrees of vertices in graphs on the same vertex set, we use the notation
deg𝐺 (𝑣) for the degree of vertex v within graph G. Unless specified, we always think of graphs as
undirected. With a slight abuse of notation, we use |𝐺 | as a shorthand for |𝑉 (𝐺) |, the number of vertices
in G.

We use the abbreviations “rhs” and “lhs” for “right-hand side” and “left-hand side” (of an equation),
“iid” for “independent and identically distributed” and “whp” for “with high probability,” that is, with
probability converging to 1 as the size of the underlying graph (the number of its vertices) tends to
infinity. For a deterministic function 𝑔(𝑛), we say that a sequence of random variables 𝑋𝑛 = 𝑜P (𝑔(𝑛)),
if the sequence (𝑋𝑛/𝑔(𝑛))𝑛≥1 tends to 0 in probability, and we say that 𝑋𝑛 = 𝑂P (𝑔(𝑛)) if (𝑋𝑛/𝑔(𝑛))𝑛≥1
is a tight sequence of random variables. Similarly, 𝑋𝑛 = ΩP(𝑔(𝑛)) if (𝑔(𝑛)/𝑋𝑛)𝑛≥1 is a tight sequence,
and finally, we say that 𝑋𝑛 = ΘP (𝑔(𝑛)) if 𝑋𝑛 = 𝑂P (𝑔(𝑛)) and 𝑋𝑛 = ΩP(𝑔(𝑛)) both hold.

3. Preliminaries

In this section we describe some basic properties of the contact process and the underlying random
graphs that will be used throughout the paper.

3.1. Graphical construction of the contact process

We briefly discuss the graphical construction of the contact process, based on Section 6.2 of [31]. The
graphical construction provides the mathematical definition of the contact process, and is useful for
various coupling arguments. The idea is to record the infection and healing events of the contact process
CP 𝑓 ,𝜆 (𝐺, 𝜉

0
) on the space-time domain 𝑉 × [0,∞). For a Poisson point process PPP on [0,∞), we say

that 𝑡 ∈ PPP if t is an arrival time (a point) in the given PPP. Further, PPP(𝐼) denotes the set of points
that fall in the set 𝐼 ⊆ 𝑅.
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Definition 3.1 (Graphical construction of CP). For a graph 𝐺 = (𝑉, 𝐸), consider for each 𝑣 ∈ 𝑉 an
independent Poisson process PPP𝑣 with rate 1, and, independently of these, further independent Poisson
processes PPP𝑢𝑣 for each 𝑢, 𝑣 ∈ 𝑉 with corresponding rate 𝑟 (𝑢, 𝑣) = 𝜆 · 𝑒(𝑢, 𝑣)/ 𝑓 (𝑑𝑢 , 𝑑𝑣 ). The healing
events in (1) form a subset of the arrival times of (PPP𝑣 )𝑣 ∈𝑉 , and the infection events in (2) form a
subset of the arrival times of (PPP𝑢𝑣 ){𝑢,𝑣 }∈𝐸 that we describe now.

We define an infection path as a sequence {(𝑣0, 𝑡0), (𝑣0, 𝑡1), (𝑣1, 𝑡1), (𝑣1, 𝑡2), . . . , (𝑣𝑘 , 𝑡𝑘+1)} with
vertices 𝑣0, 𝑣1, . . . , 𝑣𝑘 ∈ 𝑉 and times 𝑡0 ≤ 𝑡1 ≤ . . . ≤ 𝑡𝑘+1 such that

(i) PPP𝑣𝑖 ([𝑡𝑖 , 𝑡𝑖+1]) = ∅ for each 𝑖 ∈ {0, . . . , 𝑘}, and
(ii) 𝑡𝑖 ∈ PPP𝑣𝑖−1𝑣𝑖 for each 𝑖 ∈ {1, . . . , 𝑘}.

Then, we set

𝜉𝑡 (𝑢) = 1{there is an infection path from (𝑣, 0) to (𝑢, 𝑡) for some 𝑣 ∈ 𝜉
0
}, 𝑢 ∈ 𝑉, 𝑡 ≥ 0, (19)

that is, we say u is infected at time t if the space-time point (𝑢, 𝑡) can be reached by an infection path
started at some infected v at time 0. Here, and in the future, with a slight abuse of notation we use the
convention that 𝑣 ∈ 𝜉

𝑡
means that 𝜉

𝑡
(𝑣) = 1 for the 0-1 vector 𝜉

𝑡
(i.e., we also treat 𝜉

𝑡
as a set).

We define the contact process to be the process obtained from (19). Note that we do not exclude the
possibility of finite-time explosion, meaning that a process started from finitely many infections reaches
infinitely many infections in finite time.

This definition is useful for coupling contact processes with different initial conditions and different
spreading rates. The following is an easy consequence of the graphical construction.

Corollary 3.2. For two penalty functions 𝑓1, 𝑓2 for which 𝑓1(𝑥, 𝑦) ≥ 𝑓2(𝑥, 𝑦) holds for all 𝑥, 𝑦 ≥ 1, it
holds on any graph G and arbitrary initial starting state 𝜉

0
and any 𝜆 > 0 that

CP 𝑓1 ,𝜆 (𝐺, 𝜉
0
)
𝑑
≤ CP 𝑓2 ,𝜆 (𝐺, 𝜉

0
). (20)

Proof. The stochastic domination in (20) is the consequence of a standard coupling argument: con-
struct the graphical construction of CP 𝑓2 ,𝜆 (𝐺, 𝜉

0
), that is, of the process with higher infection rates

(𝜆/ 𝑓2(𝑢, 𝑣))𝑢,𝑣 . Then, independently for different pairs 𝑢𝑣, on PPP𝑢𝑣 , keep every infection event
(point) with probability (𝜆/ 𝑓1 (𝑢, 𝑣))/(𝜆/ 𝑓2(𝑢, 𝑣)) = 𝑓2(𝑢, 𝑣)/ 𝑓1(𝑢, 𝑣), independently across points.
The thinned PPP has rate 𝜆 𝑓1(𝑢, 𝑣), hence we obtain a graphical construction of CP 𝑓1 ,𝜆 (𝐺, 𝜉

0
). This

joint realization of the two processes gives a coupling of CP 𝑓1 ,𝜆 (𝐺, 𝜉
0
) and CP 𝑓2 ,𝜆 (𝐺, 𝜉

0
), so that every

infection event in the former process is also an infection event in the latter process. This finishes the
proof of (20). �

For the branching random walk, we adopt a different definition: we construct the process via particle
genealogies. Heuristically speaking, every infected particle can trace back its infection via a finite-length
chain of particles to a particle infected initially. In the next section we make this notion precise.

3.2. Genealogic branching random walks

We now describe a construction of branching random walks that keeps track of not only the number
of particles per site, but also of the genealogy of particles. The advantage of defining the process via
genealogies is that it allows us to treat the process both “locally” as well as “globally”: it is possible
that the process locally is well-behaving (even dies out) while at the same time it escapes to infinity
in finite time, called explosion. Even if this latter event happens, the genealogical definition allows for
(local) particle-chains also beyond the explosion time. This will be useful for proofs to show both local
and global extinction, which are based on counting particles with given genealogies. Recall that for two
vertices u and v in a graph G, we write e(𝑢, 𝑣) to denote the number of edges between u and v.
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Definition 3.3 (Set of genealogical labels). Given a graph 𝐺 = (𝑉, 𝐸), we let 𝒯 = 𝒯(𝐺) be the set

𝒯 := {(𝑢0, . . . , 𝑢𝑚) : 𝑚 ∈ N, 𝑢0, . . . , 𝑢𝑚 ∈ 𝑉, 𝑒(𝑢𝑖 , 𝑢𝑖+1) > 0 for all 𝑖}.

An element 𝜋 = (𝑢0, . . . , 𝑢𝑚) ∈ 𝒯 will be a genealogical label attributed to certain particles that
occupy 𝑢𝑚, the final vertex in the sequence. More specifically, a particle occupying 𝑢𝑚 receives label 𝜋
if it has the following genealogical history: its oldest ancestor particle (present at time 0) was at 𝑢0 and
gave birth to its next ancestor particle at 𝑢1, which then gave birth to its next ancestor particle at 𝑢2, . . . ,
which then gave birth to the particle in question, at 𝑢𝑚. Hence, the label 𝜋 lists the vertices occupied
by the ancestors of the particle (and the particle itself), in chronological order. In particular, a particle
present at vertex v at time 0 receives the label (𝑣).

For 𝜋 = (𝑢0, . . . , 𝑢𝑚) ∈ 𝒯, we define

𝔩(𝜋) := 𝑚 (length of 𝜋),
𝔰(𝜋) := 𝑢𝑚 (end-location of 𝜋). (21)

In case 𝑚 ≥ 1, we also let

𝔭(𝜋) := (𝑢0, . . . , 𝑢𝑚−1) (parent path of 𝜋).

Definition 3.4 (Degree-penalized genealogic branching random walk). Consider a graph 𝐺 = (𝑉, 𝐸),
with 𝑑𝑣 denoting the degree of vertex 𝑣 ∈ 𝑉 . Let 𝑓 (𝑥, 𝑦) ≥ 1 be a function of two variables and 𝜆 > 0;
for 𝑢, 𝑣 ∈ 𝑉 let 𝑟 (𝑢, 𝑣) = 𝜆 · e(𝑢, 𝑣)/ 𝑓 (𝑑𝑢 , 𝑑𝑣 ). Also let 𝑥0 ∈ N𝑉 . We define GBRW 𝑓 ,𝜆 (𝐺, 𝑥0) =
(𝑦

𝑡
)𝑡≥0 = (𝑦𝑡 (𝜋))𝜋∈𝒯,𝑡≥0 to be the following continuous-time Markov process on the state space N𝒯 .

The process starts at time 𝑡 = 0 from the state 𝑦
0

defined by

𝑦0 (𝜋) =
{
𝑥0 (𝔰(𝜋)) if 𝔩(𝜋) = 0;
0 otherwise,

and evolves according to the following transition rates:

𝑦 −→ 𝑦 − 1𝜋 with rate 𝑦(𝜋) for all 𝜋 ∈ 𝒯; (22)

𝑦 −→ 𝑦 + 1𝜋 with rate 𝑦(𝔭(𝜋)) · 𝑟 (𝔰(𝔭(𝜋)), 𝔰(𝜋)) for all 𝜋 ∈ 𝒯 with 𝔩(𝜋) ≥ 1. (23)

We interpret 𝑦𝑡 (𝜋) as the number of particles with label 𝜋 at time t. Guided by this interpretation,
we obtain the degree-penalized branching random walk from GBRW 𝑓 ,𝜆 as a projection, defined next.

Definition 3.5. Let (𝑦
𝑡
)𝑡≥0 = GBRW 𝑓 ,𝜆 (𝐺, 𝑥0), and define

𝑥𝑡 (𝑣) =
∑

𝜋∈𝒯: 𝔰 (𝜋)=𝑣
𝑦𝑡 (𝜋), 𝑡 > 0, 𝑣 ∈ 𝑉. (24)

Then, we call (𝑥𝑡 )𝑡≥0 = (𝑥𝑡 (𝑣))𝑣 ∈𝑉 ,𝑡≥0 the degree-penalized branching random walk on G with rate 𝜆,
penalization function f, and initial configuration 𝑥0.

We show that this definition is consistent with Defintion 1.2 by computing the transition rates. Let
(𝑥𝑡 )𝑡≥0 be the process obtained from (𝑦

𝑡
)𝑡≥0 as in (24). For each 𝑣 ∈ 𝑉 , the transition 𝑥 −→ 𝑥 − 1𝑣

occurs with rate ∑
𝜋∈𝒯: 𝔰 (𝜋)=𝑣

𝑦(𝜋) = 𝑥(𝑣),
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and the transition 𝑥 −→ 𝑥 + 1𝑣 occurs with rate∑
𝜋∈𝒯: 𝔰 (𝜋)=𝑣,

𝔩 (𝜋) ≥1

𝑦(𝔭(𝜋)) · 𝑟 (𝔰(𝔭(𝜋)), 𝔰(𝜋)) =
∑
𝑤 ∈𝑉

∑
𝜋′ ∈𝒯:

𝔰 (𝜋′)=𝑤

𝑦(𝜋′) · 𝑟 (𝑤, 𝑣) =
∑
𝑤 ∈𝑉

𝑥(𝑤) · 𝑟 (𝑤, 𝑣),

where we used (24) to obtain the last equality.
In the statement of the following lemma, we interpret products of the form

∏𝑚−1
𝑖=0 as 1 when 𝑚 = 0.

Lemma 3.6 (Expectation formulas for genealogic branching random walks). Let (𝑦
𝑡
)𝑡≥0 =

GBRW 𝑓 ,𝜆 (𝐺, 𝑥0), and let 𝜋 = (𝑢0, . . . , 𝑢𝑚) ∈ 𝒯.
(a) For any 𝑡 ≥ 0, we have

E[𝑦𝑡 (𝜋)] =
𝑡𝑚

𝑚!
e−𝑡 ·

(
𝑥0 (𝑢0)

𝑚−1∏
𝑖=0

𝑟 (𝑢𝑖 , 𝑢𝑖+1)
)
. (25)

(b) Define

𝑍 (𝜋) :=
⎧⎪⎪⎨⎪⎪⎩
𝑥0 (𝑢0) if 𝜋 = (𝑢0);

#{𝑡 > 0 : 𝑦𝑡 (𝜋) = 𝑦𝑡−(𝜋) + 1} otherwise,
(26)

that is, in case 𝜋 has length zero (so that 𝜋 = (𝑢0)), 𝑍 (𝜋) is the number of initial particles 𝑥0 (𝑢0),
and in case 𝑚 = 𝔩(𝜋) ≥ 1, 𝑍 (𝜋) is the number of particles with label 𝜋 ever born. Then,

E[𝑍 (𝜋)] = 𝑧(𝜋) = 𝑥0 (𝑢0)
𝑚−1∏
𝑖=0

𝑟 (𝑢𝑖 , 𝑢𝑖+1). (27)

Before the proof we mention that the factor e−𝑡 𝑡𝑚/𝑚! is the density of a Gamma random variable
with parameters 1 and 𝑚 + 1, that is, the convolution of 𝑚 + 1 iid Exp(1) random variables. Intuitively
this factor comes from the convolution of the healing times of the 𝑚 +1 vertices on the path 𝑢0, . . . , 𝑢𝑚.

Proof. Proof of part (a). We argue by induction in 𝑚 = 𝔩(𝜋). In case 𝑚 = 0, we have 𝜋 = (𝑢0), and
the process (𝑦𝑠 (𝜋))𝑠≥0 is a continuous-time Markov chain that starts at 𝑦0 (𝜋) = 𝑥0 (𝑢0) at time 0 and
can only decrease, doing so with rate 𝑦𝑠 (𝜋) at any time 𝑠 ≥ 0. If we interpret the state of this chain
as a number of particles, where each particle dies with rate 1 (and no particles are born), then the
probability that a particle is still alive at time t is e−𝑡 , so the expected number of living particles at time
t is 𝑥0 (𝑢0)e−𝑡 , as desired.

Now assume that 𝑚 ≥ 1 and the statement in (25) holds for all 𝜋′ ∈ 𝒯 with 𝔩(𝜋′) ≤ 𝑚 − 1. Let

𝜋0 = (𝑢0), 𝜋1 = (𝑢0, 𝑢1), . . . , 𝜋𝑚 = 𝜋 = (𝑢0, . . . , 𝑢𝑚),

and let F be the 𝜎-algebra generated by

{𝑦𝑠 (𝜋𝑖) : 1 ≤ 𝑖 ≤ 𝑚 − 1, 𝑠 ≥ 0}.

Conditioned on F , the process (𝑦𝑠 (𝜋))𝑠≥0 is an N-valued (time-inhomogeneous) Markov process that
starts at 0 at time 0 and, at any time 𝑠 ≥ 0, increases by 1 with rate

𝑦𝑠 (𝜋𝑚−1)𝑟 (𝔰(𝔭(𝜋)), 𝔰(𝜋)) = 𝑦𝑠 (𝜋𝑚−1)𝑟 (𝑢𝑚−1, 𝑢𝑚),

and decreases by 1 with rate 𝑦𝑠 (𝜋), by (23) and (22). Again seeing this process as counting particles
(which as before die with rate 1, but now can also be born with a time-dependent rate), the conditional
expectation of the number of particles at time t is

E[𝑦𝑡 (𝜋) | F] = 𝑟 (𝑢𝑚−1, 𝑢𝑚) ·
∫ 𝑡

0
𝑦𝑠 (𝜋𝑚−1) · e−(𝑡−𝑠) d𝑠.
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Taking expectation and using Tonelli’s theorem, this gives

E[𝑦𝑡 (𝜋)] = 𝑟 (𝑢𝑚−1, 𝑢𝑚) ·
∫ 𝑡

0
E[𝑦𝑠 (𝜋𝑚−1)] · e−(𝑡−𝑠) d𝑠.

Using this recursively m times, and then using the base induction case E[𝑦𝑠 (𝜋0)] = 𝑥0 (𝑢0)e−𝑠, we obtain

E[𝑦𝑡 (𝜋)]

= 𝑥0 (𝑢0)
𝑚−1∏
𝑖=0

𝑟 (𝑢𝑖−1, 𝑢𝑖)
∫ 𝑡

0

∫ 𝑡

𝑠1

· · ·
∫ 𝑡

𝑠𝑚−1

e−𝑠1 e−(𝑠2−𝑠1) · · · e−(𝑠𝑚−𝑠𝑚−1)e−(𝑡−𝑠𝑚) d𝑠𝑚 · · · d𝑠1

= 𝑥0 (𝑢0)
𝑚−1∏
𝑖=0

𝑟 (𝑢𝑖−1, 𝑢𝑖) · e−𝑡 ·
𝑡𝑚

𝑚!
.

Proof of part (b). In case 𝔩(𝜋) = 0, the statement is obvious, using the fact that 𝑦0 ((𝑣)) = 𝑥0 (𝑣) for all v.
Assume that 𝔩(𝜋) = 𝑚 ≥ 1, and write 𝜋 = (𝑢0, . . . , 𝑢𝑚). Since the transition 𝑦 → 𝑦 + 1𝜋 occurs with
rate 𝑦(𝔭(𝜋)) · 𝑟 (𝑢𝑚−1, 𝑢𝑚) by (23), we have

E[𝑍 (𝜋)] = 𝑟 (𝑢𝑚−1, 𝑢𝑚) · E
[∫ ∞

0
𝑦𝑡 (𝔭(𝜋)) d𝑡

]
= 𝑟 (𝑢𝑚−1, 𝑢𝑚) · E

[∫ ∞

0
𝑦𝑡 ((𝑢0, . . . , 𝑢𝑚−1)) d𝑡

]
.

Using Tonelli’s theorem and (25) on the right-hand side, we obtain

E[𝑍 (𝜋)] = 𝑟 (𝑢𝑚−1, 𝑢𝑚) ·
(
𝑥0 (𝑢0)

𝑚−2∏
𝑖=0

𝑟 (𝑢𝑖 , 𝑢𝑖+1)
)
·
∫ ∞

0

𝑡𝑚−1

(𝑚 − 1)! e−𝑡 d𝑡︸��������������������︷︷��������������������︸
=1

,

as desired. �

Corollary 3.7. Let (𝑦
𝑡
)𝑡≥0 = GBRW 𝑓 ,𝜆 (𝐺, 𝑥0), and let 𝜋 ∈ 𝒯 with 𝑚 = 𝔩(𝜋). Let 𝑋𝑚+1 be a

Gamma(1, 𝑚 + 1) random variable, that is, with density 𝑓𝑚(𝑠) = 𝑒−𝑠𝑠𝑚/𝑚!. For any 𝑡 ≥ 0, we have

P(𝑦𝑠 (𝜋) > 0 for some 𝑠 ≥ 𝑡) ≤ 𝑒 · E[𝑍 (𝜋)] · P(𝑋𝑚+1 ≥ 𝑡). (28)

Proof. Let

τ := inf{𝑠 ≥ 𝑡 : 𝑦𝑠 (𝜋) > 0},

so that the left-hand side of (28) equals P(τ < ∞). Next, define the event

A := {τ < ∞, 𝑦𝑠 (𝜋) > 0 for all 𝑠 ∈ [τ, τ + 1]}.

It is easy to check that

P(A) ≥ P(τ < ∞) · e−1. (29)

Using first Tonelli’s theorem and then the fact that 𝑦𝑠 (𝜋) is integer-valued, we have∫ ∞

𝑡
E[𝑦𝑠 (𝜋)] d𝑠 = E

[∫ ∞

𝑡
𝑦𝑠 (𝜋) d𝑠

]
≥ E

[∫ ∞

𝑡
1{𝑦𝑠 (𝜋)>0} d𝑠

]
.
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Now, the right-hand side is bounded from below by

E

[
1A ·

∫ 𝜏+1

𝜏
1{𝑦𝑠 (𝜋)>0} d𝑠

]
= P(A),

where the equality follows from the definition of A. Also using (29), we have thus obtained

P(𝑦𝑠 (𝜋) > 0 for some 𝑠 ≥ 𝑡) = P(τ < ∞) ≤ e
∫ ∞

𝑡
E[𝑦𝑠 (𝜋)] d𝑠.

The desired bound in (28) now follows from (25) in Lemma 3.6 (a). �

The last statement in this section states the stochastic domination between the contact process and
branching random walk.
Lemma 3.8 (Domination of contact process by branching random walk). Given any graph 𝐺 = (𝑉, 𝐸),
parameters 𝑓 : R2 → [0,∞), 𝜆 > 0, and starting state 𝜉

0
∈ {0, 1}𝑉 , it holds that

(𝜉
𝑡
)𝑡≥0 = CP 𝑓 ,𝜆 (𝐺, 𝜉

0
)
𝑑
≤ BRW 𝑓 ,𝜆 (𝐺, 𝜉

0
) = (𝑥𝑡 )𝑡≥0. (30)

This is a well-known result which can be proved either by comparison of transition rates or a coupling
using a graphical construction. See [47, p.34] for details of the latter approach; here we omit further
details.

4. Extinction proofs via particle counting and martingales

In this section we prove several results relating to global, local or fast extinction. We start by showing
Theorem 2.2 on global extinction for the product penalty with 𝜇 ≥ 1/2 in Section 4.1. Theorem 2.3
(in Section 4.2), Theorem 2.6(b) (in Section 4.3) and Theorem 2.9(b) (in Section 4.4) will all be
straightforward consequences. Then we establish the other extinction phases for the max-penalty,
showing local extinction on all trees – Theorem 2.6(a) – for 𝜇 ≥ 1/2 in Section 4.5. We then prove
global extinction on GW trees with finite (1 − 𝜇)th moment – Theorem 2.5(c) – in Section 4.6.

4.1. Product penalty: global extinction for all graphs when 𝜇 ≥ 1/2 via martingales

We start by establishing the subcritical phase for the product penalty (Theorem 2.2). Here, the result
holds generally for any underlying graph, not just a Galton-Watson tree, and any monomial penalty
function with polynomial-degree at least 1:
Claim 4.1 (Supermartingale for global extinction). Let 𝑓 (𝑥, 𝑦) = 𝑎𝑥𝜇𝑦𝜈 for some 𝑎 > 0 and 𝜇, 𝜈 ≥ 0
such that 𝜇+𝜈 ≥ 1, and let𝐺 = (𝑉, 𝐸) be an arbitrary finite graph. Consider the process (𝑥𝑡 (𝑣))𝑡≥0,𝑣 ∈𝑉 =
BRW 𝑓 ,𝜆 (𝐺, 𝑥0) for 𝜆 > 0 on a finite graph G, starting from a given state 𝑥0 ∈ N𝑉 . Define, for any
𝛼 ∈ [1 − 𝜇, 𝜈],

𝑀𝑡 :=
∑
𝑣 ∈𝑉

𝑥𝑡 (𝑣)𝑑𝛼𝑣 .

Then, whenever
∑

𝑣 ∈𝑉 𝑥0 (𝑣)𝑑𝛼𝑣 < ∞, the process (𝑀𝑡 )𝑡≥0 is a supermartingale with respect to the
filtration F𝑡 = 𝜎

(
(𝑥𝑠 (𝑣))𝑣 ∈𝑉 (𝐺) ,𝑠≤𝑡

)
for all 𝜆 ∈ (0, 𝑎] and a strict supermartingale when 𝜆 ∈ (0, 𝑎).

Proof. We start by observing that the interval [1 − 𝜇, 𝜈] is nonempty since 𝜇 + 𝜈 ≥ 1. To prove
the supermartingale property we analyze the expected increments of (𝑀𝑡 )𝑡≥0, using the definition of
BRW 𝑓 ,𝜆 in Def. 1.2. Here we use the transition rates for computations instead of the construction in
Definition 3.5. This is justified since we assume that the graph is finite. The change in 𝑀𝑡 may come
from either a particle disappearing at v due to a death event, or from a new particle appearing at v
due to reproduction events from neighboring particles. We obtain, using the rates in (3) and (4) with
𝑟 (𝑢, 𝑣) = 𝜆𝑒(𝑢, 𝑣)/ 𝑓 (𝑑𝑢 , 𝑑𝑣 ), that
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E[𝑀𝑡+d𝑡 − 𝑀𝑡 | F𝑡 ] = E
⎡⎢⎢⎢⎢⎣

∑
𝑣 ∈𝑉 (𝐺)

(𝑥𝑡+d𝑡 (𝑣) − 𝑥𝑡 (𝑣))𝑑𝛼𝑣

������ F𝑡

⎤⎥⎥⎥⎥⎦
=

∑
𝑣 ∈𝑉 (𝐺)

(
− 𝑥𝑡 (𝑣) +

∑
𝑢∈𝑁 (𝑣)

𝑥𝑡 (𝑢)𝑟 (𝑢, 𝑣)
)
d𝑡 · 𝑑𝛼𝑣

= −𝑀𝑡d𝑡 +
∑

𝑣 ∈𝑉 (𝐺)

∑
𝑢∈𝑁 (𝑣)

𝑥𝑡 (𝑢) · [𝜆𝑒(𝑢, 𝑣)/ 𝑓 (𝑑𝑢 , 𝑑𝑣 )] · 𝑑𝛼𝑣 d𝑡.

We substitute 𝑓 (𝑑𝑢 , 𝑑𝑣 ) = 𝑎𝑑
𝜇
𝑢 𝑑

𝜈
𝑣 in the last line above, and use that 𝑑𝛼−𝜈𝑣 ≤ 1 by the assumption that

𝛼 ≤ 𝜈 to obtain that:

E[𝑀𝑡+d𝑡 − 𝑀𝑡 | F𝑡 ] = −𝑀𝑡d𝑡 + (𝜆/𝑎) ·
∑

𝑣 ∈𝑉 (𝐺)

∑
𝑢∈𝑁 (𝑣)

𝑥𝑡 (𝑢)𝑒(𝑢, 𝑣)𝑑−𝜇𝑢 𝑑𝛼−𝜈𝑣 d𝑡

≤ −𝑀𝑡d𝑡 + (𝜆/𝑎) ·
∑

𝑣 ∈𝑉 (𝐺)

∑
𝑢∈𝑁 (𝑣)

𝑥𝑡 (𝑢)𝑒(𝑢, 𝑣)𝑑−𝜇𝑢 d𝑡.

Exchanging the sums and using that
∑

𝑣 ∈𝑉 𝑒(𝑢, 𝑣) = 𝑑𝑢 (see Notation in Section 1), we obtain

E[𝑀𝑡+d𝑡 − 𝑀𝑡 | F𝑡 ] ≤ −𝑀𝑡d𝑡 + (𝜆/𝑎) ·
∑

𝑢∈𝑉 (𝐺)
𝑥𝑡 (𝑢)𝑑1−𝜇

𝑢 d𝑡.

Finally, since 𝑑𝑢 ≥ 0 is an integer, 𝑑1−𝜇
𝑢 ≤ 𝑑𝛼𝑢 holds by the assumption 1 − 𝜇 ≤ 𝛼. Hence,

E[𝑀𝑡+d𝑡 − 𝑀𝑡 | F𝑡 ] ≤ −𝑀𝑡d𝑡 + (𝜆/𝑎) ·
∑

𝑢∈𝑉 (𝐺)
𝑥𝑡 (𝑢)𝑑𝛼𝑢 d𝑡 = [(𝜆/𝑎) − 1] · 𝑀𝑡d𝑡. (31)

Since 𝑀𝑡 ≥ 0, for 𝜆 ≤ 𝑎 we obtain the supermartingale property, as [(𝜆/𝑎) − 1] · 𝑀𝑡d𝑡 ≤ 0, with
strict inequality when 𝜆 < 𝑎. The finiteness of the initial state 𝑀0 is ensured by the assumption that
𝑀0 =

∑
𝑣 ∈𝑉 𝑥0 (𝑣)𝑑𝛼𝑣 < ∞. This finishes the proof. �

Proof of Theorem 2.2. Let G be a finite graph. Without loss of generality we may assume that all
vertices in G have degree at least 1. Indeed, if G contained a (finite) number of vertices with degree 0,
the contact process on those, starting from any 𝜉

0
with finitely many infected vertices, reduces to a pure

death process where each particle dies at rate 1. This is because infection cannot happen to and from
these vertices. This process goes almost surely extinct. Hence we assume wlog that 𝑑𝑣 ≥ 1 for all 𝑣 ∈ 𝑉 .

By Lemma 3.8, it is sufficient to prove the almost sure extinction of BRW 𝑓 ,𝜆 (𝐺, 𝜉
0
) for any 𝜉0 that

is almost surely finite, that is,
∑

𝑣 ∈𝑉 𝜉0(𝑣) < ∞ almost surely. Fix now any such realization of the initial
state. Then, since only finitely many coordinates are nonzero,

∑
𝑣 ∈𝑉 𝜉0(𝑣)𝑑𝛼𝑣 =

∑
𝑣 ∈𝑉 𝑥0 (𝑣)𝑑𝛼𝑣 < ∞

also holds for any 𝛼 > 0. We assumed 𝜆 ∈ (0, 1) also in Theorem 2.2. Hence, the conditions of
Claim 4.1 are satisfied with 𝜈 = 𝜇 ≥ 1/2, and we can set 𝛼 = 1 − 𝜇 there to obtain the non-negative
(strict) supermartingale (𝑀𝑡 )𝑡≥0, (i.e., not a martingale).

Apply Doob’s martingale convergence theorem for the non-negative supermartingale (𝑀𝑡 )𝑡≥0. Since
(𝑀𝑡 )𝑡≥0 ≥ 0 cannot take values in (0, 1), (as 𝑑𝑣 ≥ 1 and 𝑥𝑡 (𝑣) ∈ N for all v) its almost sure limit can
only be 0. Therefore, almost surely 𝑀𝑡 = 0 for large enough t. By the coupling between CP 𝑓 ,𝜆 and
BRW 𝑓 ,𝜆 and that 𝑑1−𝜇

𝑣 ≥ 1 whenever 𝑑𝑣 ≥ 1, we obtain that∑
𝑣 ∈𝑉

𝜉𝑡 (𝑣) ≤
∑
𝑣 ∈𝑉

𝑥𝑡 (𝑣)𝑑1−𝜇
𝑣 = 𝑀𝑡

𝑎.𝑠.−→ 0

implying global extinction. To compute the extinction time, by definition, 𝑇ext (𝐺, 𝜉
0
) ≥ 𝑡 implies the

existence of at least one infected particle at time t. Since 1 − 𝜇 > 0 and 𝑑𝑣 ≥ 1 for all v, the existence
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of at least one infected particle at time t in turn implies 𝑀𝑡 ≥ 1. By Markov’s inequality, and since
𝑀0 = |𝜉

0
|, taking expectation of (31) and solving the resulting differential equation for E[𝑀𝑡 | 𝐺, 𝜉

0
]

yields for all 𝜆 ≤ 1:

P(𝑇ext (𝐺, 𝜉
0
) ≥ 𝑡 | 𝐺, 𝜉

0
) ≤ P(𝑀𝑡 ≥ 1 | 𝐺, 𝜉

0
) ≤ E[𝑀𝑡 | 𝐺, 𝜉

0
]

≤
( ∑
𝑣 ∈𝑉

𝜉0(𝑣)𝑑1−𝜇
𝑣

)
exp(−(1 − 𝜆)𝑡).

Hence,

E[𝑇ext (𝐺, 𝜉
0
) | 𝐺, 𝜉

0
] ≤

∫ ∞

0

( ∑
𝑣 ∈𝑉

𝜉0(𝑣)𝑑1−𝜇
𝑣

)
exp(−(1 − 𝜆)𝑡)d𝑡

=
( ∑
𝑣 ∈𝑉

𝜉0(𝑣)𝑑1−𝜇
𝑣

)
/(1 − 𝜆).

This finishes the proof for finite graphs. To extend the result to infinite graphs, we can take an exhausting
sequence of sets 𝑉𝑛 (increasing finite subgraphs whose union is the whole graph) and work with the
transition rates inherited from the original infinite graph and take a monotone limit; we omit the details.

The extensions in Remark 2.4 follow immediately from the stochastic domination in (20) and then
the martingale argument applied to the monomial obtained. �

4.2. Product-penalty: fast extinction on the configuration model when 𝜇 ≥ 1/2

We obtain Theorem 2.3(b) as an immediate consequence of Theorem 2.2, since it applies for arbitrary
finite graphs as well.

Proof of Theorem 2.3(b). The bound in (17) in Theorem 2.2 applied to the configuration model 𝐺𝑛

yields that E[𝑇cp
ext (𝐺𝑛, 1𝐺𝑛

) |(𝑑𝑖)𝑖≤𝑛] ≤
∑𝑛
𝑖=1 𝑑

1−𝜇
𝑖 /(1 − 𝜆). Fast extinction now follows by using the

assumption that
∑𝑛
𝑖=1 𝑑

1−𝜇
𝑖 = 𝑂P (poly(𝑛)). Assumption 1.10 implies that max𝑖≤𝑛 𝑑𝑖 = 𝑜(𝑛), so then

this condition is automatically satisfied, but it holds even in a much larger class of degree sequences
(𝑑𝑛) that do not grow superpolynomially. �

4.3. Max-penalty: global extinction for all graphs when 𝜇 ≥ 1

Global extinction in Theorem 2.6(b) is a straightforward consequence of that in Theorem 2.2.

Proof of Theorem 2.6(b). For all 𝜇 ≥ 0,

𝑓1 (𝑥, 𝑦) := max(𝑥, 𝑦)𝜇 ≥ 𝑥𝜇/2𝑦𝜇/2 =: 𝑓2 (𝑥, 𝑦)

holds for all 𝑥, 𝑦 ≥ 1. Hence, the stochastic domination in (20) applies and CP 𝑓1 ,𝜆

𝑑
≤ CP 𝑓2 ,𝜆. Since the

exponent in 𝑓2 is 𝜇/2 ≥ 1/2 by the assumption that 𝜇 ≥ 1, Theorem 2.2 applies for CP 𝑓2 ,𝜆, and the
process goes extinct for all 𝜆 < 1. Hence, so does CP 𝑓1 ,𝜆. �

4.4. Max-penalty: fast extinction on the configuration model when 𝜇 ≥ 1

Fast extinction in Theorem 2.9(b) follows from Theorem 2.3(b) in a similarly straightforward way.

Proof of Theorem 2.9,(b). The stochastic domination between the product and max-penalties discussed
in the proof of Theorem 2.6(b) above implies the result from Theorem 2.3(b). �
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4.5. Max-penalty: Loop erasure in particle counting when 𝜇 ∈ [1/2, 1)

To prove local extinction, and also global extinction later under the max-penalty, we go back to the
construction of genealogic branching random walks from Section 3.2. We use Lemma 3.6 and bound the
number of total particles ever born, decomposed along genealogical paths. We first give some definitions.

For a graph 𝐺 = (𝑉, 𝐸), we will take throughout this section the infection-rate function to be

𝑟 (𝑢, 𝑣) = 𝜆 · e(𝑢, 𝑣)
max(𝑑𝑢 , 𝑑𝑣 )𝜇

, 𝑢, 𝑣 ∈ 𝑉. (32)

Recall that 𝒯 = 𝒯(𝐺) denotes the set of genealogical labels in G, as in Definition 3.3, and 𝑍 (𝜋)
from (26). We define, for 𝜋 = (𝜋0, . . . , 𝜋𝑚) ∈ 𝒯,

𝑧(𝜋) :=
𝑚−1∏
𝑖=0

𝑟 (𝜋𝑖 , 𝜋𝑖+1) = 𝜆𝑚 ·
𝑚−1∏
𝑖=0

e(𝜋𝑖 , 𝜋𝑖+1)
max(𝑑𝜋𝑖 , 𝑑𝜋𝑖+1)𝜇

, (33)

with 𝑧(𝜋) = 1 if the length of the path 𝔩(𝜋) = 0. Note that, by Lemma 3.6(b), 𝑧(𝜋) = E[𝑍 (𝜋)], the
expected number of particles with label 𝜋 ever born, in a genealogical branching process with birth
rate 𝜆, maximum-penalty function with exponent 𝜇, and started with a single particle with label (𝜋0).

Definition 4.2 (Backtracking steps). Let 𝐺 = (𝑉, 𝐸) be a graph. Given a path 𝜋 = (𝜋1, . . . , 𝜋𝑚) ∈ 𝒯

with length 𝔩(𝜋) = 𝑚 ≥ 2, we define

𝜏(𝜋) := min{𝑖 ≥ 2 : 𝜋𝑖 = 𝜋𝑖−2 ≠ 𝜋𝑖−1} (34)

(with the convention min∅ = ∞). That is, 𝜏(𝜋) is the first index on the path when 𝜋 returns to a vertex u
right after having jumped away from it to a different vertex v. We informally refer to this kind of motion
𝑢 → 𝑣 → 𝑢 (with 𝑢 ≠ 𝑣) as a backtracking step. For 𝜋 with 𝜏(𝜋) < ∞, we define

𝑔(𝜋) := (𝜋0, . . . , 𝜋𝜏−2, 𝜋𝜏+1, . . . , 𝜋𝔩 (𝜋) ), (35)

that is, 𝑔(𝜋) is the path obtained by removing the first backtracking step of 𝜋. We define 𝑔−1(𝜋) = {𝜋′ :
𝑔(𝜋′) = 𝜋} as the set of paths that map to 𝜋 under g.

We clarify that traversal of self-loops, even multiple times, is not considered a backtracking step for
the above definition.

Figure 1. Illustration of the loop erasure technique: two potential infection paths 𝜋 (1) (left) and 𝜋 (2)

(right) both lead to the same rectified path 𝜋 (middle). The figure also shows the definition of 𝜏 and g in
Definition 4.2.

Claim 4.3 (Removal of one backtracking step). Let 𝐺 = (𝑉, 𝐸) be a graph, 𝜆 > 0 and 𝜇 ≥ 1/2. Let 𝑧(·)
be as in (33). For any 𝜋 ∈ 𝒯 and any index 𝑎 ∈ N, we have
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𝜋′ ∈𝑔−1 (𝜋): 𝜏 (𝜋′)=𝑎

𝑧(𝜋′) ≤ 𝜆2 · 𝑧(𝜋) max
𝑣:𝑣≠𝜋𝑎−2

𝑒(𝜋𝑎−2, 𝑣). (36)

Proof. Fix 𝜋 and a as in the statement of the lemma. Write 𝜋 = (𝜋0, . . . , 𝜋𝑚), where 𝑚 = 𝔩(𝜋). We
assume that the set {𝜋′ ∈ 𝑔−1(𝜋) : 𝜏(𝜋′) = 𝑎} is nonempty, as the desired inequality is trivial otherwise.
By (34) we then have 𝑎 ∈ {2, . . . , 𝑚 + 2}, and any 𝜋′ ∈ 𝑔−1(𝜋) with 𝜏(𝜋′) = 𝑎 and 𝜋 are of the form

𝜋′ = (𝜋0, . . . , 𝜋𝑎−3, 𝑢, 𝑣, 𝑢, 𝜋𝑎−1, . . . , 𝜋𝑚), 𝜋 = (𝜋0, . . . , 𝜋𝑎−3, 𝑢, 𝜋𝑎−1, . . . , 𝜋𝑚), (37)

where 𝑢 = 𝜋𝑎−2 = 𝜋𝑎 − 2 = 𝜋′𝑎 and v is a neighbor of u (with 𝑣 ≠ 𝑢). (We obtain that the next vertex on
the path 𝜋 has index 𝑎−1 by the erasure of the (𝑎−2)nd (u) and (𝑎−1)th vertex (v) on 𝜋′). Then, by (33),

𝑧(𝜋′) = 𝑟 (𝑢, 𝑣)2 · 𝑧(𝜋) =
(

𝜆 · e(𝑢, 𝑣)
max(𝑑𝑢 , 𝑑𝑣 )𝜇

)2
· 𝑧(𝜋) ≤ 𝜆2 · e(𝑢, 𝑣)2

(𝑑𝑢)2𝜇
· 𝑧(𝜋),

and ∑
𝜋′ ∈𝑔−1 (𝜋): 𝜏 (𝜋′)=𝑎

𝑧(𝜋′) ≤ 𝜆2 · 𝑧(𝜋)
(𝑑𝑢)2𝜇

∑
𝑣:𝑣≠𝑢

e(𝑢, 𝑣)2 ≤ 𝜆2 · 𝑧(𝜋)
(𝑑𝑢)2𝜇

· 𝑑𝑢 · max
𝑣:𝑣≠𝑢

𝑒(𝑢, 𝑣)

= 𝜆2 · 𝑧(𝜋) · (𝑑𝑢)1−2𝜇 · max
𝑣:𝑣≠𝑢

𝑒(𝑢, 𝑣) ≤ 𝜆2 · 𝑧(𝜋) · max
𝑣:𝑣≠𝜋𝑎−2

𝑒(𝜋𝑎−2, 𝑣),

where the last inequality follows from 𝑑𝑢 ≥ 1 and 𝜇 ≥ 1/2, and that 𝑢 = 𝜋𝑎−2. �

With 𝑔(𝜋) the path obtained from 𝜋 by the erasure of its first backtracking step in (35), let us write

𝑔 (1) := 𝑔, 𝑔 (𝑘+1) := 𝑔 ◦ 𝑔 (𝑘) , 𝑘 ≥ 0.

In the statement and proof of the following lemma, to avoid summations with long subscripts, for any
set A and any function ℎ : 𝐴 → R, we write

∑
{ℎ(𝑥) : 𝑥 ∈ 𝐴} =

∑
𝑥∈𝐴 ℎ(𝑥) (with the convention that

this is zero when A is empty).

Lemma 4.4 (Removal of multiple backtracking steps). Let G, 𝜆, 𝜇, f and 𝑧(·) be as in Claim 4.3. Fix
𝜋 ∈ 𝒯. Then, for any 𝑘 ≥ 1 and any sequence of positive integers (𝑎1, . . . , 𝑎𝑘 ), we have∑{

𝑧(𝜋′) :
𝜋′ ∈ (𝑔 (𝑘) )−1(𝜋),
𝜏(𝜋′) = 𝑎1, 𝜏(𝑔(𝜋′)) = 𝑎2, . . . , 𝜏(𝑔 (𝑘−1) (𝜋′)) = 𝑎𝑘

}
≤

(
max
𝑢,𝑣 ∈𝐺
𝑣≠𝑢

𝑒(𝑢, 𝑣)
) 𝑘
𝜆2𝑘 · 𝑧(𝜋).

Proof. The proof is by induction on k, the case 𝑘 = 1 being Claim 4.3. Assume the statement has been
proved for k, and fix 𝜋 ∈ 𝒯 and a sequence (𝑎1, . . . , 𝑎𝑘+1). Then, since 𝜏 gives the location of the first
backtracking step,∑{

𝑧(𝜋′) : 𝜋′ ∈ (𝑔 (𝑘+1) )−1(𝜋), 𝜏(𝜋′) = 𝑎1, . . . , 𝜏(𝑔 (𝑘) (𝜋′)) = 𝑎𝑘+1
}

=
∑{∑{

𝑧(𝜋′) :
𝜋′ ∈ 𝑔−1 (𝜋′′),
𝜏(𝜋′) = 𝑎1

}
:
𝜋′′ ∈ (𝑔 (𝑘) )−1(𝜋),
𝜏(𝜋′′) = 𝑎2, . . . , 𝜏(𝑔 (𝑘−1) (𝜋′′)) = 𝑎𝑘+1

}
. (38)

By Claim 4.3, for each 𝜋′′, the inner sum above is smaller than

𝜆2𝑧(𝜋′′) max
𝑣:𝑣≠𝜋′′

𝑎1−2

𝑒(𝜋′′𝑎1−2, 𝑣) ≤ 𝜆2𝑧(𝜋′′) max
𝑢,𝑣 ∈𝐺:𝑣≠𝑢

𝑒(𝑢, 𝑣),
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so the double sum in (38) is smaller than

max
𝑢,𝑣 ∈𝐺:𝑣≠𝑢

𝑒(𝑢, 𝑣)𝜆2 ·
∑{

𝑧(𝜋′′) : 𝜋′′ ∈ (𝑔 (𝑘) )−1(𝜋), 𝜏(𝜋′′) = 𝑎2, . . . , 𝜏(𝑔𝑘−1(𝜋′′)) = 𝑎𝑘+1
}
.

Using the induction hypothesis, this is smaller than
(
max𝑢,𝑣 ∈𝐺:𝑣≠𝑢

) 𝑘+1
𝜆2(𝑘+1) 𝑧(𝜋), as required. �

We would now like to use the above lemma to obtain a bound involving all possible sequences
(𝑎1, . . . , 𝑎𝑘 ). Before doing so, we prove the following simple fact.
Claim 4.5. Let G be a graph and 𝜋 ∈ 𝒯 be such that 𝜏(𝜋) < ∞ and 𝜏(𝑔(𝜋)) < ∞. Then,

𝜏(𝑔(𝜋)) ≥ 𝜏(𝜋) − 1.

Proof. This follows from the observation that the sub-path (𝜋0, . . . , 𝜋𝜏−2) remains intact after applying
g to 𝜋, and this sub-path contains no backtracking steps by the minimality of 𝜏(𝜋). �

Corollary 4.6. Let G, 𝜆, 𝜇 and f be as in Claim 4.3. Fix 𝜋 ∈ 𝒯 and 𝑘 ≥ 1. Then,∑
𝜋′ ∈(𝑔 (𝑘) )−1 (𝜋)

𝑧(𝜋′) ≤ 2𝔩 (𝜋) ·
(
4𝜆2 ( max

𝑢,𝑣 ∈𝐺
𝑣≠𝑢

𝑒(𝑢, 𝑣)
) ) 𝑘
· 𝑧(𝜋). (39)

Proof. Fix 𝜋 and k as in the statement. Define

A := {(𝜏(𝜋′), 𝜏(𝑔(𝜋′)), . . . , 𝜏(𝑔 (𝑘−1) (𝜋′))) : 𝜋′ ∈ (𝑔 (𝑘) )−1(𝜋)}.

That is, for a single 𝜋′ ∈ (𝑔 (𝑘) )−1(𝜋), the sequence (𝜏(𝜋′), 𝜏(𝑔(𝜋′)), . . . , 𝜏(𝑔 (𝑘−1) (𝜋′))) gives the
locations – that is, not the vertex but its index on the “current” path – of loop erasure when we
sequentially apply g, k times, on the path 𝜋′. A is then the set of all sequences of length k that can
be obtained by taking 𝜋′ ∈ (𝑔 (𝑘) )−1(𝜋) and applying 𝜏, 𝜏 ◦ 𝑔, . . ., 𝜏 ◦ 𝑔 (𝑘−1) to 𝜋′. By Lemma 4.4, the
left-hand side of (39) is smaller than∑

𝜋′ ∈(𝑔 (𝑘) )−1 (𝜋)

𝑧(𝜋′) ≤
(

max
𝑢,𝑣 ∈𝐺:𝑣≠𝑢

𝑒(𝑢, 𝑣)
) 𝑘
𝜆2𝑘 𝑧(𝜋) · |A|.

The desired bound will then follow from the inequality |A| ≤ 2𝔩 (𝜋)+2𝑘 , which we now prove.
For each 𝜋′ ∈ (𝑔 (𝑘) )−1(𝜋), we add 2(𝑖 − 1) to the location of the ith erasure in the sequential

application of loop erasure g on 𝜋′, which, by Claim 4.5 leads to a a strictly increasing sequence of
numbers, that is, we define

𝑐𝑖 (𝜋′) := 𝜏(𝑔 (𝑖−1) (𝜋′)) + 2(𝑖 − 1), 𝑖 ∈ {1, . . . , 𝑘}

(with 𝑔 (0) (𝜋′) = 𝜋′). Note that

𝑐𝑘 (𝜋′) = 𝜏(𝑔 (𝑘−1) (𝜋′)) + 2(𝑘 − 1) ≤ 𝔩(𝑔 (𝑘−1) (𝜋′)) + 2(𝑘 − 1)
= 𝔩(𝜋) + 2 + 2(𝑘 − 1) = 𝔩(𝜋) + 2𝑘.

Moreover, for 𝑖 ∈ {1, . . . , 𝑘 − 1},

𝑐𝑖+1(𝜋′) − 𝑐𝑖 (𝜋′) = 𝜏(𝑔 (𝑖) (𝜋′)) − 𝜏(𝑔 (𝑖−1) (𝜋′)) + 2,

which is positive by Claim 4.5. These considerations show that (𝑐1 (𝜋′), . . . , 𝑐𝑘 (𝜋′)) is an increasing
sequence in {1, . . . , 𝔩(𝜋) + 2𝑘}. Therefore, A can be mapped injectively into the set of increasing
sequences with k elements in {1, . . . , 𝔩(𝜋) + 2𝑘}. It is a combinatorial exercise to show that the number
of such sequences is

(𝔩 (𝜋)+2𝑘
𝑘

)
≤ 2𝔩 (𝜋)+2𝑘 . �
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Proof of Theorem 2.6(a). By Lemma 3.8 it is enough to prove the result for the branching random walk.
Assume that 𝜇 ≥ 1/2 and 𝜆 < 1/2. Let T be a tree with a root ∅. For each vertex u of T , let 𝜋↓𝑢
denote the geodesic path from ∅ to u. Consider the branching random walk on T with penalty function
𝑓 (𝑥, 𝑦) = max(𝑥, 𝑦)𝜇, birth rate 𝜇 and initial configuration consisting of a single particle, located at
the root. For this process, let 𝑍 (·) be as in (26) and 𝑧(·) be as in (33); note that by (27), we have
E[𝑍 (𝜋)] = 𝑧(𝜋) for any 𝜋 ∈ 𝒯. Further, let 𝒯0 = {𝜋 ∈ 𝒯 : 𝜋0 = ∅} denote the set of paths in T that
start at the root. Then, since T is a tree and 𝑒(𝑢, 𝑣) ∈ {0, 1} for all pairs 𝑢, 𝑣 ∈ T ,

∑
𝜋∈𝒯0: 𝔰 (𝜋)=𝑢

E[𝑍 (𝜋)] =
∑

𝜋∈𝒯0: 𝔰 (𝜋)=𝑢
𝑧(𝜋) =

∞∑
𝑘=0

∑
𝜋∈(𝑔 (𝑘) )−1 (𝜋↓𝑢)

𝑧(𝜋)

≤ 𝑧(𝜋↓𝑢) · 2𝔩 (𝜋↓𝑢) ·
∞∑
𝑘=0
(4𝜆2)𝑘 =

2𝔩 (𝜋↓𝑢)

1 − 4𝜆2 · 𝑧(𝜋↓𝑢), (40)

where the inequality follows from Corollary 4.6. Since the right-hand side above is finite, we see that
the expectation of the number of particles ever born at u is finite, so this number is almost surely finite.
This proves local extinction for the initial configuration in which there is a single particle at the root.
As already observed, this implies local extinction for the branching random walk, and also the contact
process, started from any finite initial configuration.

To prove the exponential decay of the local extinction time, we will use Corollary 3.7 to write, for
any 𝑡 > 0,

P

(
𝑇brw

ext (T ,1∅, 𝑢) > 𝑡
)
=

∑
𝜋∈𝒯0: 𝔰 (𝜋)=𝑢

P(𝑦𝑠 (𝜋) > 0 for some 𝑠 ≥ 𝑡)

≤
∑

𝜋∈𝒯0: 𝔰 (𝜋)=𝑢
𝑒 · E[𝑍 (𝜋)] · P(𝑋𝔩 (𝜋)+1 ≥ 𝑡), (41)

where 𝑋𝑚 is a Gamma(1, 𝑚) variable for any 𝑚 > 0. Let 𝛼 ∈ (0, 1) be a constant specified later. Further
bounding the right-hand side of (41), we write

P

(
𝑇brw

ext (T ,1∅, 𝑢) > 𝑡
)
≤

∑
𝜋∈𝒯0: 𝔰 (𝜋)=𝑢,
𝔩 (𝜋)< �𝛼𝑡 �

𝑒 · 𝑧(𝜋) · P(𝑋𝔩 (𝜋)+1 ≥ 𝑡) +
∑

𝜋∈𝒯0: 𝔰 (𝜋)=𝑢,
𝔩 (𝜋) ≥ �𝛼𝑡 �

𝑒 · 𝑧(𝜋). (42)

First, we bound the first sum on the right-hand side of (42). Noting that 𝑋 �𝛼𝑡 � stochastically dominates
𝑋𝔩 (𝜋)+1 when 𝔩(𝜋) < �𝛼𝑡�, and using Corollary 4.6 we get

∑
𝜋∈𝒯0: 𝔰 (𝜋)=𝑢,
𝔩 (𝜋)< �𝛼𝑡 �

𝑒 · 𝑧(𝜋) · P(𝑋𝔩 (𝜋)+1 ≥ 𝑡) ≤ 𝑒 · P(𝑋 �𝛼𝑡 � ≥ 𝑡) ·
�𝛼𝑡 �−1∑

𝑟=𝔩 (𝜋↓ (𝑢))

∑
𝜋∈𝒯0: 𝔰 (𝜋)=𝑢,

𝔩 (𝜋)=𝑟

𝑧(𝜋)

≤ 𝑒 · P(𝑋 �𝛼𝑡 � ≥ 𝑡) · 𝑧(𝜋↓(𝑢)) · 2𝔩 (𝜋↓ (𝑢))
( �𝛼𝑡 �−1−𝔩 (𝜋↓ (𝑢)))/2∑

𝑘=0
(4𝜆2)𝑘 . (43)

Since 𝜆 < 1/2, the sum on the right-hand side of (43) is bounded by 1/(1 − 4𝜆2). By (33), we have

𝑧(𝜋↓(𝑢)) = 𝜆𝔩 (𝜋↓ (𝑢))
𝔩 (𝜋↓ (𝑢))−1∏

𝑖=0
(max(𝑑𝜋𝑖 , 𝑑𝜋𝑖+1 ))−𝜇 ≤ (2−𝜇𝜆)𝔩 (𝜋↓ (𝑢)) . (44)
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Combining (43) and (44) to further upper bound the right-hand side of (43) yields∑
𝜋∈𝒯0: 𝔰 (𝜋)=𝑢,
𝔩 (𝜋)< �𝛼𝑡 �

𝑒 · 𝑧(𝜋) · P(𝑋𝔩 (𝜋)+1 ≥ 𝑡) ≤ 𝑒

1 − 4𝜆2 · P(𝑋 �𝛼𝑡 � ≥ 𝑡) · (21−𝜇𝜆)𝔩 (𝜋↓ (𝑢)) . (45)

To bound the probabilistic term on the right-hand side of (45), we use the large deviation principle for
Gamma variables to write

P(𝑋 �𝛼𝑡 � ≥ 𝑡) ≤ 𝑒−�𝛼𝑡 �𝐼exp (1/𝛼) ,

where 𝐼exp is the large deviation rate function of the exponential distribution with parameter 1, defined as

𝐼exp(𝑎) = 𝑎 − 1 + log(1/𝑎) (46)

for 𝑎 > 1. As a result, we get∑
𝜋∈𝒯0: 𝔰 (𝜋)=𝑢,
𝔩 (𝜋)< �𝛼𝑡 �

𝑒 · 𝑧(𝜋) · P(𝑋𝔩 (𝜋)+1 ≥ 𝑡) ≤ 𝑒 · (21−𝜇𝜆)𝔩 (𝜋↓ (𝑢))

1 − 4𝜆2 · 𝑒−�𝛼𝑡 �𝐼exp (1/𝛼) . (47)

Next, we bound the second sum on the right-hand side of (42). Similarly to (43), again using
Corollary 4.6, we get∑

𝜋∈𝒯0: 𝔰 (𝜋)=𝑢,
𝔩 (𝜋) ≥ �𝛼𝑡 �

𝑒 · 𝑧(𝜋) ≤ 𝑒 · 𝑧(𝜋↓(𝑢)) · 2𝔩 (𝜋↓ (𝑢))
∞∑

𝑘=( �𝛼𝑡 �−𝔩 (𝜋↓ (𝑢)))/2
(4𝜆2)𝑘 . (48)

Bounding 𝑧(𝜋↓(𝑢)) as in (44), and evaluating the geometric sum in (48) yields∑
𝜋∈𝒯0: 𝔰 (𝜋)=𝑢,
𝔩 (𝜋) ≥ �𝛼𝑡 �

𝑒 · 𝑧(𝜋) ≤ 𝑒 · (21−𝜇𝜆)𝔩 (𝜋↓ (𝑢)) · (4𝜆
2) ( �𝛼𝑡 �−𝔩 (𝜋↓ (𝑢)))/2

1 − 4𝜆2

=
𝑒 · 2−𝜇𝔩 (𝜋↓ (𝑢))

1 − 4𝜆2 · (2𝜆) �𝛼𝑡 � . (49)

Substituting the bounds (47) and (49) into (42) yields

P

(
𝑇brw

ext (T ,1∅, 𝑢) > 𝑡
)
≤ 𝑒 · (21−𝜇𝜆)𝔩 (𝜋↓ (𝑢))

1 − 4𝜆2 · 𝑒−�𝛼𝑡 �𝐼exp (1/𝛼) + 𝑒 · 2−𝜇𝔩 (𝜋↓ (𝑢))

1 − 4𝜆2 · (2𝜆) �𝛼𝑡 � . (50)

For 𝜆 < 1/2, (50) shows the exponential decay of the local extinction time at u. Since the first term on
the right-hand side is increasing in 𝛼, whereas the second term is decreasing, the optimized bound is
given by 𝛼 = 𝛼★, where 𝛼★ is the solution of

𝑒−�𝛼
★𝑡 �𝐼exp (1/𝛼★) = (2𝜆) �𝛼★𝑡 � . (51)

Using (46), (51) simplifies to

1/𝛼★ − 1 + log(𝛼★) = − log(2𝜆). (52)

Since the left-hand side of (52) is strictly decreasing from ∞ to 0 as 𝛼★ increases from 0 to 1, there is
exactly one solution 𝛼★ ∈ (0, 1) for any given 𝜆 < 1/2. This finishes the proof for 𝑥0 = 1∅.
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To extend the argument to any starting state 𝑥0 with |𝑥0 | < ∞, we make two observations. First, since
the above argument is valid for any tree T with any fixed root ∅, (by rerooting the tree) this implies that

P

(
𝑇brw

ext (T ,1𝑣 , 𝑢) > 𝑡
)
≤ 𝑐1(𝑣)𝑒−𝑐2𝑡 (53)

for any 𝑢, 𝑣 ∈ T and 𝑡 > 0 (for 𝜆 < 1/2). Here, the constant 𝑐1 (𝑣) further depends on 𝑢, 𝜆, 𝜇, while
𝑐2 depends on 𝜆, but, importantly, not on v. Second, when (𝑥𝑡 )𝑡≥0 = BRW 𝑓 ,𝜆 (T , 𝑥0), then by the
independent behavior of the particles in BRW, we have that

(𝑥𝑡 )𝑡≥0
𝑑
=

&'(
∑

𝑣:𝑥0 (𝑣)>0

𝑥0 (𝑣)∑
𝑖=1

𝑥 (𝑣,𝑖)𝑡
)*+𝑡≥0

, (54)

where (𝑥 (𝑣,𝑖)𝑡 )𝑣,𝑖 are independent realizations of the processes BRW 𝑓 ,𝜆 (T ,1𝑣 ). Hence, if 𝑇 (𝑣,𝑖,𝑢)ext
denotes the local extinction time of (𝑥 (𝑣,𝑖)𝑡 )𝑡≥0 at u, then a union bound combined with (53) gives

P

(
𝑇brw

ext (T , 𝑥0, 𝑢) > 𝑡
)
= P

(
max
𝑣,𝑖

𝑇 (𝑣,𝑖,𝑢)ext > 𝑡

)
≤

∑
𝑣:𝑥0 (𝑣)>0

𝑥0 (𝑣)∑
𝑖=1
P

(
𝑇 (𝑣,𝑖,𝑢)ext > 𝑡

)
≤

∑
𝑣:𝑥0 (𝑣)>0

𝑥0 (𝑣)∑
𝑖=1

𝑐1 (𝑣)𝑒−𝑐2𝑡 ,

that is, exponential decay of the distribution of the local extinction time (with the same constant in the
exponent for any |𝑥0 |). This finishes the proof. �

4.6. Max-penalty: global extinction on trees when growth is limited

In this section, we consider rooted trees. The root will always be denoted by ∅. We always assume that
trees have no loops or parallel edges. For any vertex u of T , we keep using the notation 𝜋↓𝑢 for the
geodesic from ∅ to u. Given 𝜇 > 0, for each vertex u in T we let

𝜁 (𝑢) :=
𝔩 (𝜋)−1∏
𝑖=0

max(𝑑𝜋𝑖 , 𝑑𝜋𝑖+1 )−𝜇, where 𝜋 = 𝜋↓𝑢 , (55)

so that (recalling (33), and recalling that we exclude parallel edges, so that e(𝜋𝑖 , 𝜋𝑖+1) = 1) we have

𝑧(𝜋↓𝑢) = 𝜆𝔩 (𝜋↓𝑢) · 𝜁 (𝑢). (56)

We will write Gen𝑁 (T ) for the set of vertices at graph distance N from ∅, for 𝑁 ∈ N.
Lemma 4.7. Let T be a tree with root ∅. Fix 𝜇 ∈ [1/2, 1), 𝜆 > 0 and assume that

∞∑
𝑁=0
(2𝜆)𝑁

∑
𝑢∈Gen𝑁 (T )

𝜁 (𝑢) < ∞. (57)

Then, BRW 𝑓 ,𝜆 (T ,1∅) with penalty function 𝑓 (𝑥, 𝑦) = max(𝑥, 𝑦)𝜇 goes extinct globally.
Proof. We continue using the notation 𝒯0 = {𝜋 ∈ 𝒯 : 𝜋0 = ∅} for the set of paths in T that start at
the root. Repeating the estimate in (40) and using (56), for any 𝑁 ∈ N and any vertex 𝑢 ∈ Gen𝑁 (T ) we
have 𝔩(𝜋↓𝑢) = 𝑁 , so summing over all infection paths ending at u gives∑

𝜋∈𝒯0: 𝔰 (𝜋)=𝑢
E[𝑍 (𝜋)] =

∑
𝜋∈𝒯0: 𝔰 (𝜋)=𝑢

𝑧(𝜋) ≤ (2𝜆)
𝑁

1 − 4𝜆2 · 𝜁 (𝑢).
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Then, when summing over all infection paths in the tree, we have∑
𝜋∈𝒯0

E[𝑍 (𝜋)] =
∞∑
𝑁=0

∑
𝑢∈Gen𝑁 (T )

∑
𝜋∈𝒯0: 𝔰 (𝜋)=𝑢

E[𝑍 (𝜋)]

≤ 1
1 − 4𝜆2

∞∑
𝑁=0
(2𝜆)𝑁

∑
𝑢∈Gen𝑁 (T )

𝜁 (𝑢) < ∞

by the assumption. This shows that, starting from a single particle at the root, the expected number of
particles ever born (overall in T ) is finite, so this number is finite almost surely. This implies global
extinction. �

In the applications we have in mind, rather than verifying (57) directly, we will verify that
∞∑
𝑁=1
(2𝜆)𝑁

∑
𝑢∈Gen𝑁 (T )

𝜁 (𝑢) < ∞, (58)

where 𝜁 (𝑢) is defined for all 𝑢 ≠ ∅ by

𝜁 (𝑢) := (𝑑∅)−𝜇 ·
𝔩 (𝜋)−1∏
𝑖=1
(𝑑𝜋𝑖 − 1)−𝜇, where 𝜋 = 𝜋↓𝑢 (59)

where 𝑑𝜋𝑖 ≥ 2 as we assumed no vertices are leaves in the tree. We leave 𝜁 undefined at the root. Clearly,
by (55), 𝜁 (𝑢) ≤ 𝜁 (𝑢) for all 𝑢 ≠ ∅, so (58) implies (57).

Proof of Theorem 2.5(c). We assume that the offspring distribution of the Galton-Watson tree satisfies
E[𝐷1−𝜇] < ∞. We claim that, for any 𝑁 ≥ 1,

E

⎡⎢⎢⎢⎢⎣
∑

𝑢∈Gen𝑁 (T )
𝜁 (𝑢)

⎤⎥⎥⎥⎥⎦ = (E[𝐷1−𝜇])𝑁 . (60)

This is obvious in case 𝑁 = 1. Assume that it has been proved for N. Recalling that 𝑑𝑣 ≥ 2 for all v
except possibly the root, for the induction step, by (59), we note that∑

𝑢∈Gen𝑁+1 (T )
𝜁 (𝑢) =

∑
𝑣 ∈Gen𝑁 (T )

𝜁 (𝑣)
∑

𝑢∈Gen𝑁+1 (T ):
𝑢∼𝑣

(𝑑𝑣 − 1)−𝜇

=
∑

𝑣 ∈Gen𝑁 (T )
𝜁 (𝑣) · (𝑑𝑣 − 1) · (𝑑𝑣 − 1)−𝜇 =

∑
𝑣 ∈Gen𝑁 (T )

𝜁 (𝑣) · (𝑑𝑣 − 1)1−𝜇 . (61)

Let T𝑁 denote the truncation of T at generation N, that is, T𝑁 is the subgraph of T induced by the set
of vertices at graph distance at most N from ∅. Note that T𝑁 does not include information about the
offsprings of vertices in generation N, and conditioned on T𝑁 , the sizes of these offsprings are iid, with
same law as D. Taking expectations in (61), we have

E

⎡⎢⎢⎢⎢⎣
∑

𝑢∈Gen𝑁+1 (T )
𝜁 (𝑢)

⎤⎥⎥⎥⎥⎦ = E

⎡⎢⎢⎢⎢⎣E
⎡⎢⎢⎢⎢⎣

∑
𝑣 ∈Gen𝑁 (T )

𝜁 (𝑣) · (𝑑𝑣 − 1)1−𝜇
������T𝑁

⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦

= E

⎡⎢⎢⎢⎢⎣
∑

𝑣 ∈Gen𝑁 (T )
𝜁 (𝑣) · E

[
(𝑑𝑣 − 1)1−𝜇

��T𝑁 ]⎤⎥⎥⎥⎥⎦
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= E

⎡⎢⎢⎢⎢⎣
∑

𝑣 ∈Gen𝑁 (T )
𝜁 (𝑣)

⎤⎥⎥⎥⎥⎦ · E[𝐷1−𝜇] = (E[𝐷1−𝜇])𝑁+1,

where the last equality follows from the induction hypothesis. This completes the proof of (60).
Now, if 𝜆 < (2E[𝐷1−𝜇])−1, then

E

⎡⎢⎢⎢⎢⎣
∞∑
𝑁=1
(2𝜆)𝑁 ·

∑
𝑢∈Gen𝑁 (T )

𝜁 (𝑢)
⎤⎥⎥⎥⎥⎦ =

∞∑
𝑁=1
(2𝜆 · E[𝐷1−𝜇])𝑁 < ∞.

Hence,
∑∞

𝑁=1(2𝜆)𝑁 ·
∑
𝑢∈Gen𝑁 (T ) 𝜁 (𝑢) is finite for almost all realizations of T . It then follows from

Lemma 4.7 (and the observation following its proof) that there is global extinction of the penalized
branching random walk for almost every realization of T . �

We now see further applications of Lemma 4.7, the proof of Corollary 2.7.

Proof of Corollary 2.7. The case of trees with finite upper branching number b follows from verifying
condition (57) with the simple bound 𝜁 (𝑢) ≤ 1 for all u. For the case of spherically symmetric trees,
we can verify condition (58) directly instead of working with the branching number. Note that, for any
𝑁 ≥ 1, we have

𝜁 (𝑢) = (𝑑0)−𝜇
𝑁−1∏
𝑖=1
(𝑑𝑖 − 1)−𝜇 for any 𝑢 ∈ Gen𝑁 (T ),

so ∑
𝑢∈Gen𝑁 (T )

𝜁 (𝑢) = (𝑑0)−𝜇
𝑁−1∏
𝑖=1
(𝑑𝑖 − 1)−𝜇 · |Gen𝑁 (T ) | = (𝑑0)1−𝜇

𝑁−1∏
𝑖=1
(𝑑𝑖 − 1)1−𝜇,

and then

(2𝜆)𝑁
∑

𝑢∈Gen𝑁 (T )
𝜁 (𝑢)

= exp

{
𝑁

(
log(2) + log(𝜆) + (1 − 𝜇) (log 𝑑0)

𝑁
+ 1 − 𝜇

𝑁

𝑁−1∑
𝑖=1

log(𝑑𝑖 − 1)
)}

.

Now, it is easy to check that lim sup 1/𝑁 ·
∑𝑁−1
𝑖=1 log(𝑑𝑖 − 1) ≤ log br(T ), so if 𝜆 < e−(1−𝜇) log br(T ) /2,

then there exists 𝑐 < 0 such that the expression inside parentheses above is smaller than c for N large
enough. It readily follows that (58) is satisfied, so global extinction follows from Lemma 4.7. �

4.7. Max-penalty: fast extinction when 𝜇 ∈ [1/2, 1)

We close this section by proving a result that bounds the survival of BRW 𝑓 ,𝜆 for 𝑓 (𝑥, 𝑦) = max(𝑥, 𝑦)𝜇,
𝜇 ∈ [1/2, 1) on any graph, both in space and in time. We will use this result in Section 5 to prove
Theorem 2.9(a), stating that the max-penalty contact process goes quickly extinct on the configuration
model whenever 𝜏 > 3.

We again go back to the genealogic branching random walk construction of Section 3.2. For a graph
𝐺 = (𝑉, 𝐸), recall the definition of the set of genealogical labels 𝒯 from Definition 3.3, the notations
𝔩(𝜋) and 𝔰(𝜋), the construction of (𝑦

𝑡
)𝑡≥0 in Definition 3.4 and its relation to the branching random

walk (𝑥𝑡 )𝑡≥0 given in Lemma 3.5. Here we will take these processes with birth rate 𝜆 and max-penalty
function with exponent 𝜇, 𝑓 (𝑥, 𝑦) = max(𝑥, 𝑦)𝜇, so that 𝑟 (·, ·) is as in (32). As before, for 𝜋 with
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𝔩(𝜋) ≥ 1, 𝑍 (𝜋) denotes the number of particles with label 𝜋 born in the whole history of the process.
We let 𝑧(·) be as in (33). Finally, recall the first backtracking index 𝜏(·) and the backtracking erasure
function 𝑔(·) from Definition 4.2.

Lemma 4.8. Let 𝜇 ∈ [1/2, 1) and 𝐺 = (𝑉, 𝐸) be a graph with a distinguished vertex 𝑣̄. Assume that
for some constant ℓ > 0, e(𝑢, 𝑣) ≤ ℓ for any 𝑢, 𝑣 ∈ 𝑉 . Fix 𝑁 ≥ 2 and let 𝑏𝑁 denote the number of
non-backtracking paths of length at most N started at 𝑣̄,

𝑏𝑁 := |{𝜋 ∈ 𝒯 : 𝜋0 = 𝑣̄, 𝔩(𝜋) ≤ 𝑁, 𝜏(𝜋) = ∞}|. (62)

Consider the penalized branching random walk (𝑥 ( 𝑣̄)𝑡 )𝑡≥0 on G with penalization function 𝑓 (𝑥, 𝑦) =
max(𝑥, 𝑦)𝜇, birth rate 𝜆 < 1/(4ℓ) and started from a single particle, located at 𝑣̄. Then, for any fixed
constant 𝐶 > 1,

P

(
(𝑥 ( 𝑣̄)𝑡 ) dies before time 𝐶𝑁, and never reaches
any vertex at graph distance 𝑁 from 𝑣̄

)
> 1 − 2𝑏𝑁

(
eℓ · (4ℓ𝜆)𝑁 + e−𝑁 (𝐶−1)2/(2𝐶)

)
.

(63)

Proof. Let (𝑦
𝑡
)𝑡≥0 be the genealogic branching random walk corresponding to (𝑥𝑡 )𝑡≥0 as in Lemma 3.5;

in particular, 𝑦0 ((𝑣̄)) = 1 and 𝑦0 (𝜋) = 0 for any 𝜋 ≠ 𝑣̄. We note that{
(𝑥𝑡 ) is alive at time 𝐶𝑁, or reaches some vertex at distance 𝑁 from 𝑣̄

}
⊂ {𝑦𝐶𝑁 (𝜋) > 0 for some 𝜋 ∈ 𝒯 with 𝜋0 = 𝑣̄, 𝔩(𝜋) < 𝑁}
∪ {𝑦𝑡 (𝜋) > 0 for some 𝜋 ∈ 𝒯 with 𝜋0 = 𝑣̄, 𝔩(𝜋) = 𝑁 and some 𝑡 > 0}.

Using a union bound and the inequalities P(𝑦𝐶𝑁 (𝜋) > 0) ≤ E[𝑦𝐶𝑁 (𝜋)] and P(𝑦𝑡 (𝜋) > 0 for some 𝑡) ≤
e · E[𝑍 (𝜋)] = e · 𝑧(𝜋) from Corollary 3.7, we have

P

(
(𝑥𝑡 ) is alive at time 𝐶𝑁, or reaches
some vertex at distance 𝑁 from 𝑣̄

)
≤

∑
𝜋∈𝒯:
𝜋0=𝑣̄ ,

𝔩 (𝜋)<𝑁

E[𝑦𝐶𝑁 (𝜋)] + e ·
∑
𝜋∈𝒯:
𝜋0=𝑣̄ ,

𝔩 (𝜋)=𝑁

𝑧(𝜋). (64)

We bound the two sums in the rhs separately. Using (33) the following bound holds for any path:

𝑧(𝜋) ≤ (ℓ𝜆)𝔩 (𝜋) , (65)

which follows from max(𝑑𝑢 , 𝑑𝑣 )𝜇 ≥ 1 and the assumption that e(𝑢, 𝑣) ≤ ℓ.
We first deal with the second sum in (64). Recall that if 𝜋′ ∈ (𝑔 (𝑘) )−1(𝜋), then 𝔩(𝜋′) = 𝔩(𝜋) + 2𝑘 .

Then, we break the sum as follows:∑
𝜋:𝜋0=𝑣̄ ,
𝔩 (𝜋)=𝑁

𝑧(𝜋) =
∑
(𝑚,𝑘):

𝑚+2𝑘=𝑁

∑
𝜋:𝜋0=𝑣̄ ,
𝔩 (𝜋)=𝑚,
𝜏 (𝜋)=∞

∑
𝜋′ ∈(𝑔 (𝑘) )−1 (𝜋)

𝑧(𝜋′).

Using (39) in Corollary 4.6, the right-hand side is at most∑
𝜋:𝜋0=𝑣̄ ,
𝔩 (𝜋)=𝑁

𝑧(𝜋) ≤
∑
(𝑚,𝑘):

𝑚+2𝑘=𝑁

∑
𝜋:𝜋0=𝑣̄ ,
𝔩 (𝜋)=𝑚,
𝜏 (𝜋)=∞

2𝑚 · (4𝜆2ℓ)𝑘 · 𝑧(𝜋).
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Using (65) and 𝑏𝑁 from (62), this is at most∑
(𝑚,𝑘):

𝑚+2𝑘=𝑁

∑
𝜋:𝜋0=𝑣̄ ,
𝔩 (𝜋)=𝑚,
𝜏 (𝜋)=∞

2𝑚 · (4ℓ𝜆2)𝑘 · (ℓ𝜆)𝑚

=
∑
(𝑚,𝑘):

𝑚+2𝑘=𝑁

(4ℓ)𝑚+𝑘 · 𝜆𝑚+2𝑘 · |{𝜋 : 𝜋0 = 𝑣̄, 𝔩(𝜋) = 𝑚, 𝜏(𝜋) = ∞}|

≤ 𝑏𝑁 ·
∑
(𝑚,𝑘):

𝑚+2𝑘=𝑁

(4ℓ)𝑚+𝑘 · 𝜆𝑚+2𝑘 .

Using that 𝑚 + 2𝑘 = 𝑁 implies that 𝑚 + 𝑘 = (𝑁 +𝑚)/2 for each 𝑚 ∈ 0, . . . , 𝑁 , the above sum is at most∑
𝜋:𝜋0=𝑣̄ ,
𝔩 (𝜋)=𝑁

𝑧(𝜋) ≤ 𝑏𝑁 ·
𝑁∑
𝑚=0
(4ℓ) (𝑁+𝑚)/2 · 𝜆𝑁 = (2ℓ1/2𝜆)𝑁 · 𝑏𝑁 ·

𝑁∑
𝑚=0
(2ℓ1/2)𝑚

≤ 2ℓ1/2(4ℓ𝜆)𝑁 · 𝑏𝑁 . (66)

We now turn to the first term in (64). Using (25), we have∑
𝜋:𝜋0=𝑣̄ ,
𝔩 (𝜋)<𝑁

E[𝑦𝐶𝑁 (𝜋)] ≤
(

max
0≤𝑚<𝑁

(𝐶𝑁)𝑚
𝑚!

e−𝐶𝑁

)
·

∑
𝜋:𝜋0=𝑣̄ ,
𝔩 (𝜋)<𝑁

𝑧(𝜋). (67)

Let us bound the sum in the right-hand side using (39) with max 𝑒(𝑢, 𝑣) ≤ ℓ and then (65) as∑
𝜋:𝜋0=𝑣̄ ,
𝔩 (𝜋)<𝑁

𝑧(𝜋) ≤
∑

𝜋:𝜋0=𝑣̄ ,
𝔩 (𝜋)<𝑁 ,
𝜏 (𝜋)=∞

∞∑
𝑘=0

∑
𝜋′ ∈(𝑔 (𝑘) )−1 (𝜋)

𝑧(𝜋′)

(39)
≤ 1

1 − 4ℓ𝜆2

∑
𝜋:𝜋0=𝑣̄ ,
𝔩 (𝜋)<𝑁 ,
𝜏 (𝜋)=∞

2𝔩 (𝜋) 𝑧(𝜋)
(65)
≤ 1

1 − 4ℓ𝜆2

∑
𝜋:𝜋0=𝑣̄ ,
𝔩 (𝜋)<𝑁 ,
𝜏 (𝜋)=∞

(2ℓ𝜆)𝔩 (𝜋) .

Since 𝜆 < 1/(4ℓ) with ℓ ≥ 1, we have 1
1−4ℓ𝜆2 < 2 and 2ℓ𝜆 < 1/2 < 1, so the last factor in (67) is smaller

than

2|{𝜋 : 𝜋0 = 𝑣̄, 𝔩(𝜋) < 𝑁, 𝜏(𝜋) = ∞}| ≤ 2𝑏𝑁 . (68)

Next, the expression inside the maximum in (67) equals P(𝑊 = 𝑚) for W having the Poisson(𝐶𝑁)
distribution. We bound

max
0≤𝑚<𝑁

P(𝑊 = 𝑚) ≤ P(𝑊 ≤ 𝑁).

We use a Chernoff bound for Poisson random variables: for 𝑋 ∼ Poisson(𝜈) we have P(𝑋 ≤ 𝜈 − 𝑡) ≤
e−𝑡2/(2𝜈) , see [67, Exercise 2.21]. This gives

P(𝑊 ≤ 𝑁) ≤ exp
{
− (𝐶𝑁 − 𝑁)2

2𝐶𝑁

}
= exp

{
− (𝐶 − 1)2

2𝐶
· 𝑁

}
.

Combining this with (68) in (67) and (66) completes the proof of (63). �
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5. The configuration model: fast extinction via loop erasure

In this section we prove Theorem 2.9(a). This theorem says that the contact process CP 𝑓 ,𝜆 and the
branching random walk BRW 𝑓 ,𝜆 go extinct quickly for small 𝜆 > 0 on the configuration model when
𝑓 (𝑥, 𝑦) = max(𝑥, 𝑦)𝜇 with 𝜇 ∈ [1/2, 1) and the degree distribution is lighter than a power-law with
exponent 𝜏 > 3. The proof idea is the following. Fixing a large constant ℓ, first, we show that with
probability 1 − 𝑜(1/𝑛), there are at most ℓ surplus edges in the r-neighborhood 𝐵𝑟 (𝑢𝑛) of a uniformly
chosen vertex 𝑢𝑛 with 𝑟 = 𝛿 log 𝑛 for some small 𝛿 > 0. That is, one can remove at most ℓ edges from
𝐵𝛿 log 𝑛 (𝑢𝑛) to obtain a tree. Then, we apply Lemma 4.8 to show that the expected number of particles of
BRW 𝑓 ,𝜆 on infection paths in 𝐵𝛿 log 𝑛 (𝑢𝑛) that reach the boundary 𝜕𝐵𝛿 log 𝑛 (𝑢𝑛) decays exponentially
for small 𝜆. This implies that BRW 𝑓 ,𝜆 dies out inside 𝐵𝛿 log 𝑛 (𝑢𝑛) before reaching 𝜕𝐵𝛿 log 𝑛 (𝑢𝑛) with
probability at least 1 − 𝑜(1/𝑛). A union bound over the n vertices then finishes the proof.

Our first goal is to prove a statement about the surplus edges of 𝐵𝛿 log 𝑛 (𝑢𝑛), and then we move on to
the analysis of infection paths of BRW 𝑓 ,𝜆. The number of surplus edges of a (sub)graph 𝐻 = (𝑉𝐻 , 𝐸𝐻 )
is given by |𝐸𝐻 | − (|𝑉𝐻 | − 1). Recall the configuration model from Definition 1.9 and that 𝑒(𝑢, 𝑣)
denotes the number of edges between vertices 𝑢, 𝑣.

Proposition 5.1. Consider the configuration model with degree sequence 𝑑𝑛 satisfying Assumption 1.10,
and Assumptions 1.11 and 1.12 with some 𝜏, 𝜀, 𝑐𝑢 , 𝑧0 (for all sufficiently large n) with 𝜏(1 − 𝜀) > 3.
Fix some 𝛿 > 0. Let 𝑢𝑛 be a uniformly chosen vertex in [𝑛] and let Surp𝛿 log 𝑛 (𝑢𝑛) denote the number
of surplus edges in 𝐵𝛿 log 𝑛 (𝑢𝑛). Then, for all 𝜀′ ∈ (0, (𝜏(1 − 𝜀) − 3)/2 there exists 𝛿 > 0 and 𝛿′ > 0 so
that for any ℓ > (𝜏(1 − 𝜀) − 1)/(𝜏(1 − 𝜀) − 3 − 2𝜀′)

P(|𝐵𝛿 log 𝑛 (𝑢𝑛) | ≥ 𝑛(1+𝜀
′)/(𝜏 (1−𝜀)−1) or Surp𝛿 log 𝑛 (𝑢𝑛) ≥ ℓ) ≤ 𝑛−1−𝛿′ (69)

Finally, for any ℓ > 3 ∨ (𝜏(1 − 𝜀) − 1)/(𝜏(1 − 𝜀) − 3), there exists some 𝛿′ > 0 that

P( max
𝑢,𝑣 ∈[𝑛]

𝑒(𝑢, 𝑣) ≥ ℓ) ≤ 𝑛−1−𝛿′ . (70)

Observe that with probability 1/𝑛 the root’s degree is the maximal degree in the graph, which can
be as high as 𝑂 (𝑛1/(𝜏 (1−𝜀)−1), so 𝜀′ > 0 in (69) is necessary for the bound to be true. The condition
𝜀′ ∈ (0, (𝜏(1 − 𝜀) − 3)/2 ensures on the one hand that 𝜁 := (1 + 𝜀′)/(𝜏(1 − 𝜀) − 1) < 1/2 and on the
other hand that the required lower bound (𝜏(1 − 𝜀) − 1)/(𝜏(1 − 𝜀) − 3 − 2𝜀′) = 1/(1 − 2𝜁) on ℓ is
positive. If one aims to bound the maximal multiplicity of edges inside 𝐵𝛿 log 𝑛, the inequality (69) also
includes that, since multiple edges also count as surplus edges. For generality we include the stronger
result in (70) here.

The proof is based on a breadth-first-search exploration process of 𝐵𝛿 log 𝑛 (𝑢𝑛), and a coupling to a
(power-law) branching process tree T #

𝛿 log 𝑛 so that the tree contains 𝐵𝛿 log 𝑛 (𝑢𝑛). First we give a good
bound on the size of the tree that holds with probability 1 − 𝑜(1/𝑛). When the offspring distribution
decays exponentially, this is fairly easy, but when it follows for instance a power law, we need to develop
some new bounds.

Hence, the next lemma bounds the kth moment of the size of (truncated) power-law BP trees, but
before that, we give some definitions. Let (𝜁𝑛)𝑛≥1 be a sequence of discrete measures onN that satisfies

𝜏′ ∉ N : 𝜁𝑛 (𝑧) ≤ 𝑐𝑢𝑧
−(𝜏′−1) , 𝑀𝑛 := max support(𝜁𝑛) ≤ 𝐶𝑢𝑛

1/(𝜏′−1) , (71)

Usually 𝜁𝑛 is the size-biased measure of an empirical degree sequence 𝑑𝑛 satisfying Assumptions 1.10
and (1.12). For each integer 𝑘 ≥ 1, there exists 𝐶𝑘 > 0 such that, if n is large enough, the k-th moment
can be bounded by an integral of the rhs of (71) yields that the kth moment

𝑀𝑛∑
𝑧=1

𝑧𝑘 · 𝜁𝑛 (𝑧) ≤ 𝑐𝑢 +
𝑀𝑛∑
𝑧=1

𝑐𝑢𝑧
𝑘−(𝜏′−1) ≤ 𝐶𝑘 · 𝑛ℎ𝑘 (72)
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where

ℎ𝑘 := max{(𝑘 + 1)/(𝜏′ − 1) − 1, 0}. (73)

Whenever 𝜏′ > 2, the coefficient of 𝑘+1 in ℎ𝑘 is positive but less than 1. Thus, 𝑘 ↦→ ℎ𝑘 is non-decreasing
and, due to the additive term −1, for any 𝑘, ℓ, the super-additivity property holds:

ℎ𝑘 + ℎℓ ≤ ℎ𝑘+ℓ . (74)

Lemma 5.2. Let T # be a Galton-Watson tree with offspring distribution 𝜁𝑛 satisfying (71) with 𝜏′ > 3,
and for each r, let 𝑍𝑟 be the size of its generation r. For any integer 𝑘 ≥ 1, there exists ℭ𝑘 > 0 such that
the following holds for all sufficiently large n:

E[(𝑍𝑟 )𝑘 ] ≤ ℭ𝑘 · 𝑛ℎ𝑘 · eℭ𝑘𝑟 for all 𝑟 ≥ 0. (75)

The criterion 𝜏′ > 3 is important: this guarantees that the mean offspring E[X ] = E[X𝑛] does not
grow with n. BPs with 𝜏′ ∈ (2, 3) grow doubly-exponentially, and (75) does not hold for them. The
importance here is that the rhs of (75) only depends on the generation number r exponentially, that
is, the constant ℭ𝑘 in the exponential growth does not depend on n. This is non-trivial, since the k-th
moment of the offspring distribution itself does, but it only enters the bound once, as the prefactor 𝑛ℎ𝑘 .

Proof of Lemma 5.2. We will argue by induction over k. Let X be a random variable distributed as 𝜁𝑛
(we will generally omit the dependence on n).

For the base case 𝑘 = 1, recalling (75), note that ℎ1 = 0 since 𝜏′ > 2; hence, E[X ] is bounded by
the constant 𝐶1 which does not depend on n (equivalently, in ℎ𝑘 the maximum is at 0 in (73)). The
right-hand side of (75) is satisfied in this case since

E[𝑍𝑟 ] = E[X ]𝑟 ≤ (𝐶1)𝑟 = 𝑛ℎ1 · elog(𝐶1)𝑟 .

Now assume that we have proved (75) for 𝑗 = 1, . . . , 𝑘 − 1, that is, assume that we have already found
constants ℭ1, . . . ,ℭ𝑘−1 such that

E[(𝑍𝑟 ) 𝑗 ] ≤ ℭ 𝑗 · 𝑛ℎ 𝑗 · eℭ 𝑗𝑟 for all 𝑗 ∈ {1, . . . , 𝑘 − 1} and all 𝑟 ≥ 0, (76)

and we want to find ℭ𝑘 so that (75) holds. Let 𝔣(𝑠) denote the probability-generating function of X ,

𝔣(𝑠) :=
∑
𝑧≥1

𝑠𝑧 · P(X = 𝑧) =:
∑
𝑧≥1

𝑠𝑧 · 𝜈̂𝑛 (𝑧), 𝑠 ∈ R.

Since 𝜁𝑛 has finite support, 𝔣 is well defined for any s; it is also infinitely differentiable, with derivative
of order m at 𝑠 = 1 satisfying

𝔣 (𝑚) (1) = E[X (X − 1) · · · (X − 𝑚 + 1)] .

For any 𝑟 ∈ N, let 𝔣𝑟 denote the r-fold composition of 𝔣 with itself (i.e., 𝔣0 is the identity function, 𝔣1 = 𝔣
and 𝔣𝑟 = 𝔣 ◦ 𝔣𝑟−1 for 𝑟 > 1). It is well-known that 𝔣𝑟 is the probability-generating function of 𝑍𝑟 [3],
which is again well defined and infinitely differentiable for all s,

𝔣𝑟 (𝑠) =
∞∑
𝑧=1

𝑠𝑧 · P(𝑍𝑟 = 𝑧), 𝑠 ∈ R, and 𝔣 (𝑚)𝑟 (1) = E[𝑍𝑟 (𝑍𝑟 − 1) · · · (𝑍𝑟 − 𝑚 + 1)] .

We claim that there exists ℭ′𝑘 > 0 such that

𝔣 (𝑘)𝑟 (1) ≤ ℭ′𝑘 · 𝑛
ℎ𝑘 · eℭ′𝑘𝑟 for all 𝑟 ≥ 0. (77)

https://doi.org/10.1017/fms.2025.10144 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10144


36 Z. Bartha, J. Komjáthy and D. Valesin

Before proving this, let us show how to use it together with the induction hypothesis to obtain (75) (with
a constant ℭ𝑘 that is possibly different from ℭ′𝑘 ). We bound

E[(𝑍𝑟 )𝑘 ] ≤ E[𝑍𝑟 (𝑍𝑟 − 1) · · · (𝑍𝑟 − (𝑘 − 1))]
+ |E[(𝑍𝑟 )𝑘 ] − E[𝑍𝑟 (𝑍𝑟 − 1) · · · (𝑍𝑟 − (𝑘 − 1))] |

≤ 𝔣 (𝑘)𝑟 (1) +
𝑘−1∑
𝑗=1
|𝑎𝑘−1, 𝑗 | · E[𝑍 𝑗

𝑟 ],

where 𝑎𝑘−1, 𝑗 is the coefficient of 𝑥 𝑗 in the polynomial 𝑥(𝑥−1) · · · (𝑥−(𝑘−1)). By (77) and the induction
hypothesis, the right-hand side above is smaller than

E[(𝑍𝑟 )𝑘 ] ≤ ℭ′𝑘 · 𝑛
ℎ𝑘 · eℭ′𝑘𝑟 +

𝑘−1∑
𝑗=1
|𝑎𝑘−1, 𝑗 | · ℭ 𝑗 · 𝑛ℎ 𝑗 · eℭ 𝑗𝑟 .

Since 𝑗 ↦→ ℎ 𝑗 is increasing, we can choose ℭ𝑘 (not depending on n or r) such that the above expression
is smaller than ℭ𝑘 · 𝑛ℎ𝑘 · eℭ𝑘𝑟 for all r. This proves (75) once (77) is proved. To prove (77), fix 𝑟 ≥ 1.
We start by writing

𝔣 (𝑘)𝑟 (1) = (𝔣 ◦ 𝔣𝑟−1) (𝑘) (1). (78)

We will use the chain rule for higher-order derivatives (also known as Faà di Bruno’s formula); let us
briefly state it. Let 𝑓 , 𝑔 : 𝐼 → R be functions defined in an open interval I containing 𝑠 ∈ R. Fix 𝑘 ∈ N
and assume that f and g are k times differentiable in s. Let P𝑘 denote the set of partitions of {1, . . . , 𝑘}.
For some P = {𝐵1, . . . , 𝐵ℓ } ∈ P𝑘 , we let |P | = ℓ be the number of blocks in P , and for 𝐵 ∈ P similarly
we write |𝐵 | for the number of elements in B. Let then P𝑘,ℓ ⊂ P𝑘 be the set of partitions containing ℓ
blocks. Then,

( 𝑓 ◦ 𝑔) (𝑘) (𝑠) =
∑

P ∈P𝑘

𝑓 ( |P |) (𝑔(𝑠)) ·
∏
𝐵∈P

𝑔 ( |𝐵 |) (𝑠)

=
𝑘∑
ℓ=1

∑
{𝐵1 ,...,𝐵ℓ }∈P𝑚,ℓ

𝑓 (ℓ) (𝑔(𝑠)) ·
ℓ∏
𝑗=1

𝑔 ( |𝐵 𝑗 |) (𝑠),

Using this formula with 𝑓 = 𝔣 and 𝑔 = 𝔣𝑟−1 (together with 𝔣𝑟−1(1) = 1) in (78), we have

𝔣 (𝑘)𝑟 (1) = (𝔣 ◦ 𝔣𝑟−1) (𝑘) (1) =
𝑘∑
ℓ=1

∑
{𝐵1 ,...,𝐵ℓ }∈P𝑘,ℓ

𝔣 (ℓ) (1) ·
ℓ∏
𝑗=1

𝔣
( |𝐵 𝑗 |)
𝑟−1 (1). (79)

We now inspect each term in (79). The value ℓ = 1 gives the trivial partition which consists of a single
block {1, . . . , 𝑘}. The corresponding term is

𝔣′(1) · 𝔣 (𝑘)𝑟−1(1) = E[X ] · 𝔣
(𝑘)
𝑟−1(1) when ℓ = 1. (80)

Now fix a partition P = {𝐵1, . . . , 𝐵ℓ } with ℓ ≥ 2. The corresponding term in (79) equals

𝔣 (ℓ) (1) ·
ℓ∏
𝑗=1

𝔣
( |𝐵 𝑗 |)
𝑟−1 (1) = E[X (X − 1) · · · (X − ℓ + 1)]

·
∏
𝑗≤ℓ
E[𝑍𝑟−1(𝑍𝑟−1 − 1) · · · (𝑍𝑟−1 − |𝐵 𝑗 | + 1)]

≤ E[X ℓ] ·
∏
𝑗≤ℓ
E[(𝑍𝑟−1) |𝐵 𝑗 | ]

(72)
≤ 𝐶ℓ · 𝑛ℎℓ ·

∏
𝑗≤ℓ
E[(𝑍𝑟−1) |𝐵 𝑗 | ] .
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Since ℓ ≥ 2, each block has size |𝐵 𝑗 | < 𝑘 . We thus use the induction hypothesis (76) to bound the rhs as

𝔣 (ℓ) (1) ·
ℓ∏
𝑗=1

𝔣
( |𝐵 𝑗 |)
𝑟−1 (1) ≤ 𝐶ℓ · 𝑛ℎℓ ·

ℓ∏
𝑗=1

ℭ |𝐵 𝑗 | · 𝑛
ℎ|𝐵𝑗 | · eℭ|𝐵𝑗 | (𝑟−1)

= 𝐶ℓ

( ℓ∏
𝑗=1

ℭ |𝐵 𝑗 | · e
∑ℓ

𝑗=1 ℭ|𝐵𝑗 | · (𝑟−1)
)
· 𝑛ℎℓ+

∑ℓ
𝑗=1 ℎ|𝐵𝑗 |

≤ 𝑐′e𝐶
′ (𝑟−1) · 𝑛ℎℓ+

∑ℓ
𝑗=1 ℎ|𝐵𝑗 | , (81)

where 𝑐′, 𝐶 ′ are constants that neither depend on r nor on the partition P , and are given by

𝑐′ := (max
𝑖≤𝑘

𝐶𝑖) · (max
𝑖≤𝑘−1

ℭ𝑖)𝑘 , 𝐶 ′ := 𝑘 · max
𝑖≤𝑘−1

ℭ𝑖 .

We inspect the exponent of n that appears in (81), and set out to prove the inequality

ℎℓ +
∑
𝑗≤ℓ

ℎ |𝐵 𝑗 | ≤ ℎ𝑘 . (82)

We consider two cases. The first case is when ℎℓ = 0. The superadditivity (74) yields that

ℎℓ +
∑
𝑗≤ℓ

ℎ |𝐵 𝑗 | ≤ ℎ∑
|𝐵 𝑗 | = ℎ𝑘 .

The second case is ℎℓ > 0, with a more involved proof. Recall ℎ𝑘 from (73). We write 𝛼 := 1
𝜏′−1 and

𝛽 := 1 − 1
𝜏′−1 , so that ℎ𝑖 = max(𝛼𝑖 − 𝛽, 0) for any i, and carry out some formal rearrangements:

ℎℓ +
∑
𝑗≤ℓ

ℎ |𝐵 𝑗 | = 𝛼ℓ − 𝛽 +
∑

𝑗:ℎ|𝐵𝑗 |>0
(𝛼 |𝐵 𝑗 | − 𝛽) = −𝛽 +

ℓ∑
𝑗=1

𝛼 +
∑

𝑗:ℎ|𝐵𝑗 |>0
(𝛼 |𝐵 𝑗 | − 𝛽)

= −𝛽 +
∑

𝑗:ℎ|𝐵𝑗 |=0
𝛼 +

∑
𝑗:ℎ|𝐵𝑗 |>0

(𝛼 |𝐵 𝑗 | + 𝛼 − 𝛽)

≤ −𝛽 +
∑

𝑗:ℎ|𝐵𝑗 |=0
𝛼 |𝐵 𝑗 | +

∑
𝑗:ℎ|𝐵𝑗 |>0

(𝛼 |𝐵 𝑗 | + 𝛼 − 𝛽).

By the assumption in the lemma that 𝜏′ > 3, 𝛼 − 𝛽 < 0. Since {𝐵1, . . . , 𝐵ℓ } ∈ P𝑘,ℓ , that is, the blocks
partition {1, . . . , 𝑘},

∑
𝑗≤ℓ |𝐵 𝑗 | = 𝑘 holds which gives that

ℎℓ +
∑
𝑗≤ℓ

ℎ |𝐵 𝑗 | ≤ −𝛽 +
∑

𝑗:ℎ|𝐵𝑗 |=0
𝛼 |𝐵 𝑗 | +

∑
𝑗:ℎ|𝐵𝑗 |>0

𝛼 |𝐵 𝑗 | = 𝛼𝑘 − 𝛽 = ℎ𝑘 .

This completes the proof of (82). We substitute it as an upper bound in (81) to obtain that for any
P ∈ P𝑘,ℓ for any ℓ ≥ 2,

𝔣 (ℓ) (1) ·
∏
𝐵∈P

𝔣 ( |𝐵 |)𝑟−1 (1) ≤ 𝑐′e𝐶
′ (𝑟−1) · 𝑛ℎ𝑘 .

Substituting this bound into (79) and using (80) for ℓ = 1, we arrive at

𝔣 (𝑘)𝑟 (1) ≤ 𝑐′′e𝐶
′ (𝑟−1) · 𝑛ℎ𝑘 + E[X ] · 𝔣 (𝑘)𝑟−1(1),
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where 𝑐′′ := 𝑐′ · |P𝑘 | = 𝑐′2𝑘 . This bound can now be used recursively: the same inequality (with (𝑟, 𝑟−1)
replaced by (𝑟−1, 𝑟−2)) can be used to bound 𝔣 (𝑘)𝑟−1(1) on the right-hand side, and then further. This gives

𝔣 (𝑘)𝑟 (1) ≤ 𝑐′′e𝐶
′ (𝑟−1) · 𝑛ℎ𝑘 · (1 + E[X ] + E[X ]2 + · · · + E[X ]𝑟 )

≤ 𝑐′′e𝐶
′ (𝑟−1) · E[X ]𝑟+1 · 𝑛ℎ𝑘 .

Now, we can choose ℭ′𝑘 > 0 such that the right-hand side above is smaller than ℭ′𝑘eℭ′𝑘𝑟 · 𝑛ℎ𝑘 for all r.
This completes the proof of (77). �

We now proceed to embed 𝐵𝑟 (𝑢𝑛) in Proposition 5.1 to a branching process that satisfies the
conditions of Lemma 5.2. Recall 𝜈𝑛 (𝑧) = 𝑛𝑧/𝑛 from (8). Define the size-biased version and the down-
shifted size-biased version of 𝜈𝑛 as

𝜈★𝑛 (𝑧) :=
𝑧𝜈𝑛 (𝑧)
E[𝐷𝑛]

, and 𝜈̃𝑛 (𝑧) :=
(𝑧 + 1)𝜈𝑛 (𝑧 + 1)
E[𝐷𝑛]

=
(𝑧 + 1)𝑛𝑧+1∑

𝑖≤𝑛 𝑑𝑖
. (83)

If 𝐷𝑛 ∼ 𝜈𝑛, 𝐷
★
𝑛 ∼ 𝜈★𝑛 , then 𝐷★

𝑛 − 1 ∼ 𝜈̃𝑛. It is well-known that 𝜈𝑛
𝑑
≤ 𝜈★𝑛 , that is, the size-biased version

of a random variable on N stochastically dominates the original measure. This follows from Harris’
inequality: P(𝐷★

𝑛 > 𝑧)E[𝐷𝑛] = E[𝐷𝑛1{𝐷𝑛>𝑧 }] ≥ E[𝐷𝑛]P(𝐷𝑛 > 𝑧) for any 𝑧 > 0. The next definition
makes the tail of any starting distribution 𝜈 having a 𝑞 > 1 moment slightly heavier so that it also
stochastically dominates 𝜈.
Definition 5.3 (𝜂-heavier-transformation of a probability measure). Let 𝜈 be a probability measure so
that 𝜈(𝑧) ≤ 𝑧−𝜏

′ holds for all sufficiently large 𝑧 > 0. Let 𝜂 satisfy that 𝜏′(1 − 𝜂) > 1, and given a
distribution 𝜈, let 𝑧#

0 ≥ 1 be the smallest integer that satisfy the following:

min
𝑧≥𝑧#

0 :𝜈 (𝑖)≠0
𝜈(𝑖)−𝜂 ≥ 8/7,

∑
𝑧≥𝑧#

0

𝜈(𝑖)1−𝜂 < 7/8. (84)

Choose a normalizing factor 𝑍 := 𝑍 (𝜂, 𝜈) so that the following measure is a probability measure:

𝜈#(𝑧) :=

{
0 if 𝑧 ≤ 𝑧#

0,

𝜈(𝑧)1−𝜂/𝑍 if 𝑧 > 𝑧#
0

(85)

The choice 7/8 is quite arbitrary in (84), any number strictly less than 1 would serve our purposes.
Claim 5.4 (Stochastic domination between 𝜈 and 𝜈#). Let 𝜈 be a probability measure so that for some
𝜏′ > 1, 𝜈(𝑧) ≤ 𝑧−𝜏

′ holds for all sufficiently large 𝑧 > 0. Then the measure 𝜈# exists and stochastically
dominates 𝜈 for all 𝜂 satisfying 𝜏′(1 − 𝜂) > 1, and has finite q-th moment for all 𝑞 < 𝜏′(1 − 𝜂) − 1.
Finally, 𝑍 < 7/8.
Proof. Suppose the measure exists. Then 𝑍 < 7/8 follows from the second criterion in (84) since
𝑍 =

∑
𝑖>𝑧#

0
𝜈(𝑖)1−𝜂 ≤ 7/8. For 𝑧 ≤ 𝑧#

0, 𝜈#([0, 𝑧]) ≤ 𝜈([0, 𝑧]) is immediate from the first row in (85).
For 𝑧 > 𝑧#

0, we aim to show 𝜈((𝑧,∞)) ≤ 𝜈#((𝑧,∞)), which is equivalent to

𝑍
∑
𝑖>𝑧

𝜈(𝑖) ≤
∑
𝑖>𝑧

𝜈(𝑖)1−𝜂 ,

which holds since 𝑍 < 7/8 and 𝜈(𝑖) < 1 implies that 𝜈(𝑖) ≤ 𝜈(𝑖)1−𝜂 for each 𝑖 > 𝑧. To see the
moment conditions, for all 𝑧 ≥ 1 it holds that 𝑍𝜈# (𝑧) ≤ 𝜈(𝑧)1−𝜂 , and so the qth moment is finite
whenever

∑
𝑧≥𝑧#

0
𝑧𝑞𝜈(𝑧)1−𝜂 < ∞, which in turn is at most

∑
𝑧≥𝑧#

0
𝑧𝑞𝑧−𝜏

′ (1−𝜂) . This sum is convergent if
𝑞 − 𝜏′(1 − 𝜂) < −1, equivalently if 𝑞 < 𝜏′(1 − 𝜂) − 1. This also gives with 𝑞 = 0 that 𝜏′(1 − 𝜂) > 1 is
indeed sufficient for 𝑧#

0 in (84) to exist and the normalizing factor Z to be finite. �
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The following exploration process gradually constructs the configuration model by matching
half-edges sequentially in a way that reveals the graph neighborhood of a vertex 𝑣0, 𝐵𝑟 (𝑣0), in a breadth-
first search manner. The exploration also immediately couples the r-neighborhood 𝐵𝑟 (𝑣0) to the first r
generations of a random rooted tree T expl

𝑟 so that |𝐵𝑟 (𝑣0) | ≤ |T expl
𝑟 | holds a.s. under the coupling.

Construction 5.5 (Exploration of the neighborhood of a vertex). We take as input a degree sequence 𝑑𝑛,
a starting vertex 𝑣0, a target radius r, and an additional offspring distribution 𝜁 . The coupled exploration
of 𝐵𝑟 (𝑣0) in the configuration model CM(𝑑𝑛) is then as follows:
Step 0. Initialization. To initialize, we set 𝑣0 active and reveal its half-edges (say ℎ1, . . . ℎ𝑑𝑣0

) and
set also all of its half-edges active. We introduce the list of the active vertices 𝐴𝑣 (0) := {𝑣0} and of the
active half-edges 𝐴ℎ (0) := {ℎ1, . . . , ℎ𝑑𝑣0

}, and we set Ex𝑣 (0) := ∅,Exℎ (0) := ∅ for the list of explored
vertices and half-edges, respectively.
Step s. Exploring a half-edge. In each discrete step 𝑠 ≥ 1 we take the first half-edge ℎ𝑠 from 𝐴ℎ (𝑠 − 1),
in a first-in-first-out (breadth-first search) order, and reveal the half-edge 𝑚(ℎ𝑠) it is matched to. We
then append ℎ𝑠 and 𝑚(ℎ𝑠) to the end of the list of explored half-edges Exℎ (𝑠 − 1), obtaining Exℎ (𝑠),
and we remove ℎ𝑠 from the active half-edges 𝐴ℎ (𝑠 − 1), and also remove 𝑚(ℎ𝑠) from it if it happened
to belong to 𝐴ℎ (𝑠 − 1). Then we carry out three more substeps:
Substep s.(i): Adding newly discovered vertices. If the vertex 𝑣(𝑚(ℎ𝑠)) that 𝑚(ℎ𝑠) is attached to is a
new vertex, that is, not in 𝐴𝑣 (𝑠−1), then we append 𝑣(𝑚(ℎ𝑠)) to the end of the list 𝐴𝑣 (𝑠−1), obtaining
𝐴𝑣 (𝑠), and we append the remaining 𝑋 (𝑛)𝑠 many half-edges of 𝑣(𝑚(ℎ𝑠)) to the end of the active half-edge
list, obtaining 𝐴ℎ (𝑠). We call 𝑋 (𝑛)𝑠 the forward degree of the vertex discovered in step s.
Substep s.(ii) Handling loops and creating ghost subtrees. If, however, the half-edge 𝑚(ℎ𝑠) is already
active and it is attached to an active vertex 𝑣(𝑚(ℎ𝑠)), then we call this a collision at step s. This creates a
loop and hence a surplus edge in 𝐵𝑟 (𝑣0). We then do the following: in 𝐵𝑟 (𝑣0) we create the loop formed
by (ℎ𝑠 , 𝑚(ℎ𝑠)), and in T expl

𝑟 we create two “ghost” subtrees as follows. Let 𝑟1 := 𝑑𝐺 (𝑣0, 𝑣(ℎ𝑠)), 𝑟2 :=
𝑑𝐺 (𝑣0, 𝑣(𝑚(ℎ𝑠))), respectively. We then sample two independent branching processes, T #,𝑠1

𝑟−𝑟1 and T #,𝑠2
𝑟−𝑟2

with offspring distribution 𝜁 , (the first one has depth 𝑟 − 𝑟1 while the second one has depth 𝑟 − 𝑟2) and
attach their root to the half-edges ℎ𝑠 and 𝑚(ℎ𝑠) respectively, and add these ghost-subtrees to T expl

𝑟 .
Substep s.(iii): Checking for vertices being fully explored. If the half-edges of the vertices 𝑣(ℎ𝑠) and/or
𝑣(𝑚(ℎ𝑠)) are all explored after substep s.(ii), then we append 𝑣(ℎ𝑠) and/or 𝑣(𝑚(ℎ𝑠)) also to the set of
explored vertices Ex𝑣 (𝑠), otherwise we keep them active.
Stopping condition. The exploration stops when we have matched all half-edges belonging to vertices
at graph distance 𝑟 − 1 from 𝑣0. We denote the number of needed steps by 𝑡 (𝑟).
Output. The output is the graph 𝐵𝑟 (𝑣0) and the tree T expl

𝑟 . We denote the number of half-edges added
in step s to the active half-edges by 𝑋 (𝑛)𝑠 , giving the random sequence 𝑋 (𝑛)1 , 𝑋 (𝑛)2 , . . . , 𝑋 (𝑛)

𝑡 (𝑟 ) , with the
convention that we set 𝑋 (𝑛)𝑠 := 0 if a collision have occurred at step s and no new vertex was added. We
denote by Coll𝑟 (𝑣0) the number of collisions that occurred during the process.

Observation 5.6. The exploration reveals the whole graph (including all loops) within 𝐵𝑟−1(𝑣0), and
also the size of 𝐵𝑟 (𝑣0). To see the latter, by the stopping condition, we have explored all vertices in
generation 𝑟 − 1, and their forward degrees, say 𝑋 (𝑛)𝑠𝑟−1 , . . . , 𝑋

(𝑛)
𝑡𝑟−1

are thus known. Matching then all
these half-edges reveals edges between at least one vertex in generation 𝑟 − 1, and the other vertex can
be either in generation 𝑟 − 1 or r. For each edge where the other vertex is also in generation 𝑟 − 1, a
loop between two vertices in generation 𝑟 − 1 arises, and the size of 𝐵𝑟 (𝑣0) is reduced by 2 compared
to

∑
𝑖∈[𝑠𝑟−1 ,𝑡𝑟−1 ] 𝑋

(𝑛)
𝑖 . Each collision where two edges lead to the same vertex in generation r, reduces

the size of 𝐵𝑟 (𝑣0) compared to
∑
𝑖∈[𝑠𝑟−1 ,𝑡𝑟−1 ] 𝑋

(𝑛)
𝑖 by 1. Note that |𝐵𝑟 (𝑣0) | ≤ |T expl

𝑟 | for any offspring
distribution 𝜁 .

Observation 5.7. All surplus edges are either self-loops, multiple edges, or between two vertices, say
𝑣, 𝑣′ so that the distance between |𝑑𝐺 (𝑢𝑛, 𝑣) − 𝑑𝐺 (𝑢𝑛, 𝑣′) | ≤ 1. Indeed, when a surplus edge is created,
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the half-edge ℎ𝑠 is matched to an active half-edge in 𝐴ℎ (𝑠−1). All half-edges in 𝐴ℎ (𝑠−1) either belong
to the same generation as 𝑣(ℎ𝑠) or they belong to the next generation.

Recall the size biasing from (83) and the hash-transformation of a measure from (85) in Definition 5.3.
Lemma 5.8. Consider Construction 5.5 started from a uniformly chosen vertex 𝑣0 := 𝑢𝑛 on the config-
uration model CM(𝑑𝑛) so that (𝑑𝑛)𝑛≥1 satisfies Assumptions 1.10 and 1.12 with some 𝜏, 𝜀, 𝑐𝑢 , 𝑧0 for
all sufficiently large n so that 𝜏(1 − 𝜀) > 2 in (11). Let 𝜂 > 0 be so that (𝜏(1 − 𝜀) − 1) (1 − 𝜂) > 1.
Assume that the number of exploration steps 𝑡 (𝑟) ≤

∑
𝑖∈[𝑛] 𝑑𝑖/17. Then, for all sufficiently large n, the

forward-degree sequence (𝑋 (𝑛)𝑠 )𝑠≤𝑡 (𝑟 ) is stochastically dominated by an iid sequence (𝑌𝑠)𝑠≤𝑡 (𝑟 ) from
(𝜈★𝑛 )# defined from (83) and (85). Under Assumption 1.12 this measure satisfies for some constant 𝑐′𝑢:

(𝜈★𝑛 )#(𝑧) ≤ 𝑐′𝑢𝑧
−(𝜏 (1−𝜀)−1) (1−𝜂) . (86)

As a result, there exists a coupling 𝐵𝑟 (𝑢𝑛) ⊆ T expl
𝑟 ⊆ T #

𝑟 where T #
𝑟 is the first r generations of a

branching process having iid offspring from (𝜈★𝑛 )#(𝑧).
Remark 5.9. With the same method it could also be proved that (𝑋 (𝑛)𝑠 )𝑠≤𝑡 (𝑟 ) is stochastically dominated
by an iid sequence (𝑍𝑠)𝑠≤𝑡 (𝑟 ) from (𝜈̃𝑛)# defined from (83) and (85), the 𝜂-heavier transformation of the
down-shifted size-biased version of 𝜈𝑛. In that case, however, the root’s degree 𝑑𝑢𝑛 cannot necessarily
be dominated by (𝜈̃𝑛)#. Further, (𝜈̃𝑛)# and (𝜈★𝑛 )# both satisfy the same inequality (86), so for simplicity
we dominate by a “usual” GW tree T #

𝑟 where all vertices have the same offspring distribution.
The proof will follow from the following statement and Construction 5.5.

Claim 5.10 (Domination and size-biasing during the exploration). Let 𝜈𝑛 be the empirical measure
of 𝑑𝑛 = (𝑑1, . . . 𝑑𝑛) in (8) satisfying that 𝜈★𝑛 (𝑧) ≤ 𝑐𝑢𝑧

−𝜏′ for all 𝑧 ≥ 𝑧0 for some 𝜏′ > 1 in (83).
For a subset Δ ⊂ [

∑
𝑖≤𝑛 𝑑𝑖], remove the half-edges with label in Δ to obtain a new degree sequence

𝑑Δ𝑛 := (𝑑 ′11𝑑′1≠0, . . . 𝑑
′
𝑛1𝑑′𝑛≠0), and let 𝜈★𝑛,Δ denote the size-biased version of the empirical distribution

of 𝑑Δ𝑛 . Then, for any choice of Δ with |Δ | ≤ (
∑
𝑖∈[𝑛] 𝑑𝑖)/8, 𝜈★𝑛,Δ is stochastically dominated by (𝜈★𝑛 )#

for any 𝜂 so that 𝜏′(1 − 𝜂) > 1.
Proof. We assume here that 𝜈★𝑛 (𝑧) ≤ 𝑐𝑢𝑧

−𝜏′ for all 𝑧 ≥ 𝑧0. Then, Claim 5.4 gives that 𝜈★𝑛 is stochastically
dominated by (𝜈★𝑛 )# whenever 𝜏′(1 − 𝜂) > 1. So when Δ = ∅ then the statement holds. Recall that
𝜈𝑛 (𝑧) = 𝑛𝑧/𝑛, and let ℎ𝑛 :=

∑
𝑖∈[𝑛] 𝑑𝑖 . Then

∑
𝑖∈[𝑛] 𝑑

′
𝑖1𝑑′𝑖≠0 = ℎ𝑛 − |Δ | since we removed |Δ | many

half-edges. Recall 𝑧#
0 from (84) and (85). Let us first consider any 𝑧 < 𝑧#

0. Clearly 𝜈★𝑛,Δ ([0, 𝑧]) ≥ 0 while
(𝜈★𝑛 )#([0, 𝑧]) = 0 so the criterion for stochastic domination 𝜈★𝑛,Δ ([0, 𝑧]) ≥ (𝜈

★
𝑛 )#([0, 𝑧]) holds in this

case. Let now 𝑧 ≥ 𝑧#
0. Observe that all degrees can only decrease by removing half-edges, hence writing

𝑛′𝑖 :=
∑

𝑗∈[𝑛] 1𝑑′𝑗=𝑖 for the number of vertices of degree i after removing the half-edges with label in Δ , it
holds that

∑
𝑖>𝑧 𝑖𝑛

′
𝑖 ≤

∑
𝑖>𝑧 𝑖𝑛𝑖 relating to (83). Now we look at the upper tail using that |Δ | ≤ 𝑛E[𝐷𝑛]/8

𝜈★𝑛,Δ ((𝑧,∞)) =
∑
𝑖>𝑧 𝑖𝑛

′
𝑖

ℎ𝑛 − |Δ |
≤

∑
𝑖>𝑧 𝑖𝑛𝑖

𝑛E[𝐷𝑛] (1 − 1/8) = 𝜈★𝑛 ((𝑧,∞)) · 8/7.

At the same time, using that 𝑍 < 7/8 in Claim 5.4, the tail of (𝜈★𝑛 )# satisfies:

(𝜈★𝑛 )#((𝑧,∞)) =
1
𝑍

( ∑
𝑖>𝑧

𝜈★𝑛 (𝑖)1−𝜂
)
≤ 𝜈★𝑛 ((𝑧,∞))/𝑍 ≥ 𝜈★𝑛 ((𝑧,∞)) · 8/7.

Hence the stochastic domination criterion 𝜈★𝑛,Δ ((𝑧,∞)) ≤ (𝜈
★
𝑛 )#((𝑧,∞)) is satisfied. �

Proof of Lemma 5.8. Let us write ℎ𝑛 :=
∑
𝑖≤𝑛 𝑑𝑖 . Consider step (s) of Construction 5.5, when we match

half-edge ℎ𝑠 . Its pair 𝑚(ℎ𝑠) is chosen uniformly among the available ℎ𝑛 − 2𝑠 − 1 many half-edges at
step s. At this point the half-edges not available for matching to ℎ𝑠 form the set Δ𝑠 := Exℎ (𝑠−1) ∪ {ℎ𝑠}.
Consider the “available” degrees at this moment, say 𝑑 (𝑠)𝑛 := (𝑑 (𝑠)1 1

𝑑 (𝑠)1 ≠0, . . . , 𝑑
(𝑠)
𝑛 1

𝑑 (𝑠)𝑛 ≠0), where 𝑑 (𝑠)𝑗
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is the number of not-matched half-edges of vertex j before step s if ℎ𝑠 is not attached to vertex j and
1 less if ℎ𝑠 is attached to vertex j. Since we choose the half-edge 𝑚(ℎ𝑠) uniformly at random from the
currently available half-edges, the vertex 𝑣(𝑚(ℎ𝑠)) that 𝑚(ℎ𝑠) is attached to is chosen size-biasedly
from 𝑑 (𝑠)𝑛 , conditionally independently of previous matchings, that is, its forward degree then

P(𝑋 (𝑛)𝑠 = 𝑖 − 1) = P(𝑑 (𝑠)
𝑣 (𝑚(ℎ𝑠)) = 𝑖) =

𝑖
∑

𝑗∈[𝑛] 1{𝑑 (𝑠)𝑗 =𝑖 }

ℎ𝑛 − 2𝑠 − 1
= 𝜈★𝑛,Δ𝑠

(𝑖),

with Δ𝑠 := Exℎ (𝑠 − 1) ∪ {ℎ𝑠}. In particular 𝑋 (𝑛)𝑠 + 1 follows the measure 𝜈★𝑛,Δ𝑠
(𝑖) in Claim 5.10. Thus,

let us apply Claim 5.4 with Δ𝑠 := Exℎ (𝑠− 1) ∪ {ℎ𝑠}, that is, removing the set of unavailable half-edges.
Since 𝑡𝑟 ≤ ℎ𝑛/17, we have |Δ𝑠 | ≤ 2ℎ𝑛/17 + 1 ≤ ℎ𝑛/8 so Claim 5.10 applies. By Claim 5.10, the
measure 𝜈★𝑛,Δ𝑠

(𝑖) is stochastically dominated by (𝜈★𝑛 )# for each s, so let 𝑌𝑠 be such a random variable.
Using the conditional independence of the consecutive matchings, one can thus construct a coupling
where 𝑋 (𝑛)𝑠 ≤ 𝑋 (𝑛)𝑠 + 1 ≤ 𝑌𝑠 and 𝑌𝑠 are iid from (𝜈★𝑛 )#. Further, since 𝑢𝑛 is a vertex chosen uniformly
at random, the root’s degree 𝑑𝑢𝑛 has distribution 𝜈𝑛. By below (83), the measure 𝜈★𝑛 stochastically
dominates 𝜈𝑛. So it holds that

𝜈𝑛
𝑑
≤ 𝜈★𝑛

𝑑
≤ (𝜈★𝑛 )#,

and thus one can construct a coupling where 𝑑𝑢𝑛 ≤ 𝑌0 with𝑌0 from (𝜈★𝑛 )#. To finish, recall that whenever
the exploration discovers a loop at some step s, it appends two ghost subtrees to the half-edges ℎ𝑠 and
𝑚(ℎ𝑠) exactly so that their last generation ends at distance r from 𝑢𝑛. Setting the offspring distribution
of these branching processes to be also (𝜈★𝑛 )# gives then a coupling where 𝐵𝑟 (0) is embedded in T expl

𝑟

which are both embedded in T #
𝑟 , a branching process where all vertices have iid degree from 𝜈̂𝑛.

Using Assumption 1.12 we now bound (𝜈★𝑛 )#(𝑧) for all 𝑧 ≥ 𝑧#
0 ∨ 𝑧0. Since we assumed 𝜈𝑛 (𝑧) ≤

𝑐𝑢𝑧
−𝜏 (1−𝜀) with 𝜏(1 − 𝜀) > 2, it holds for some finite constant 𝑚 that E[𝐷𝑛] < 𝑚 < ∞ uniformly

for all n, and Assumption 1.10 also ensures that E[𝐷𝑛] ≥ 𝑚 for some 𝑚, uniformly for all n. Hence
𝜈★𝑛 (𝑧) ≤ 𝑐𝑢 (𝑧 + 1)𝑧−𝜏 (1−𝜀) /𝑚 for all n and all 𝑧 ≥ 𝑧0. Finally, for all 𝑧 ≥ 𝑧#

0 ∨ 𝑧0

(𝜈★𝑛 )#(𝑧) =
1
𝑍
𝜈★𝑛 (𝑧)1−𝜂 =

𝑐
1−𝜂
𝑢

𝑍𝑚1−𝜂 𝑧
1−𝜂𝑧−𝜏 (1−𝜀) (1−𝜂) ≤ 𝑐′𝑢𝑧

−(𝜏 (1−𝜀)−1) (1−𝜂) ,

which proves (86). The condition (𝜏(1 − 𝜀) − 1) (1 − 𝜂) > 1 is necessary for the hash-measure to exist
in Claim 5.4. �

We are ready to prove Proposition 5.1.
Proof of Proposition 5.1. We start by applying Lemma 5.8. This gives that 𝐵𝑟 (𝑢𝑛) is contained in a BP
tree T #

𝑟 as long as the number of half-edges explored is 𝑡 (𝑟) < 𝑛E[𝐷𝑛]/17, with offspring distribution
𝜈̂𝑛 defined in (86). Next, we ensure that this measure satisfies the conditions (71) so that we can use
the moment bounds of Lemma 5.2. To see (71) is satisfied, we observe that 𝜈̂𝑛 has power-law exponent
𝜏′ − 1 := (𝜏(1 − 𝜀) − 1) (1 − 𝜂) > 2, that is, 𝜏′ > 3, and we can easily ensure that 𝜏′ ∉ N by changing 𝜂
if necessary. The condition on the maximum of the support in (71) follows from Assumption 1.12 since
the exponent 1/(𝜏(1 − 𝜀) − 1) there is less than 1/(𝜏′ − 1) which is allowed in (71). Hence Lemma 5.2
is applicable for the BP tree T #

𝑟 in Lemma 5.8.
By Observation 5.6, in order to also bound the surplus edges in 𝐵𝛿 log 𝑛 we need to reveal the size

of one more generation, and so we set out to bound |T #
𝛿 log 𝑛+1 | for some 𝛿 > 0. Set 𝑟𝑛 := 𝛿 log 𝑛 + 1.

Let 𝑘 ∈ N, and 𝜁 > 0 to be determined later. We use first the increasing function 𝑥𝑘 , then Markov’s
inequality, and then Minkowski’s inequality in the second inequality:

P
(
|T #
𝑟𝑛 | ≥ 𝑛𝜁

)
= P

(
(|T #

𝑟𝑛 |)
𝑘 ≥ 𝑛𝑘𝜁

)
≤ 𝑛−𝑘𝜁E

⎡⎢⎢⎢⎢⎣
(∑
𝑖≤𝑘𝑛

𝑍𝑖

) 𝑘⎤⎥⎥⎥⎥⎦ ≤ 𝑛−𝑘𝜁

(∑
𝑖≤𝑟𝑛
E
[
𝑍 𝑘
𝑖

]1/𝑘
) 𝑘
.
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We now apply Lemma 5.2 on E[𝑍 𝑘
𝑖 ] for each 𝑖 ≤ 𝑟𝑛:

P
(
(|T #

𝑟𝑛 |)
𝑘 ≥ 𝑛𝑘𝜁

)
≤ 𝑛−𝑘𝜁

(∑
𝑖≤𝑟𝑛
(ℭ𝑘 · 𝑛ℎ𝑘 · eℭ𝑘 𝑖)1/𝑘

) 𝑘
= 𝑛−𝑘𝜁 · ℭ𝑘 · 𝑛ℎ𝑘

(∑
𝑖≤𝑟𝑛

eℭ𝑘 𝑖/𝑘

) 𝑘
.

The sum on the rhs is geometric and since ℭ𝑘 > 0, it is at most 𝐶 ′e(ℭ𝑘/𝑘)𝑟𝑛 for some constant 𝐶 ′, with
𝑟𝑛 = 𝛿 log 𝑛 + 1, which gives

P
(
(|T #

𝑟𝑛 |)
𝑘 ≥ 𝑛𝑘𝜁

)
≤ 𝑛−𝑘𝜁 · ℭ𝑘 · 𝑛ℎ𝑘𝐶 ′𝑘𝑛𝛿ℭ𝑘 = 𝐶𝑛−𝑘𝜁+ℎ𝑘+𝛿ℭ𝑘 .

We inspect the exponent of n. Recall that ℎ𝑘 = ((𝑘 + 1)/(𝜏′ − 1) − 1) ∨ 0 from (73). Since 𝜏′ − 1 > 2,
we may write

−𝑘𝜁 + ℎ𝑘 + 𝛿ℭ𝑘 = −𝑘 (𝜁 − 1
𝜏′−1 ) − (1 −

1
𝜏′−1 ) + 𝛿ℭ𝑘 . (87)

The exponent of n can be made strictly less than −1 for sufficiently large k if 𝜁 > 1/(𝜏′ − 1). Since
𝜏′ − 1 = (𝜏(1 − 𝜀) − 1) (1 − 𝜂) with 𝜂 arbitrarily small, this yields the formulation |𝐵𝛿 log 𝑛 (𝑢𝑛) | >
𝑛(1+𝜀

′)/(𝜏 (1−𝜀)−1) in (69) of the proposition. For any such 𝜁 one can now choose 𝑘 ∈ N so large that the
exponent goes below −1, in particular any k satisfying 𝑘 > 𝜁/(𝜏′ − 1) − 1 is a good choice. Given k, one
now chooses 𝛿 small enough so that the whole exponent in (87) still stays below −1, giving also 𝛿′ > 0.

By the coupling 𝐵𝛿 log 𝑛 (𝑢𝑛) ⊆ 𝐵𝛿 log 𝑛+1 (𝑢𝑛) ⊆ T #
𝛿 log 𝑛+1, we have just proved

P(Asize) := P
(
|𝐵𝛿 log 𝑛+1(𝑢𝑛) | ≤ 𝑛(1+𝜀

′)/(𝜏 (1−𝜀)−1) ) ≥ 1 − 𝑛−1−𝛿′ , (88)

and then by monotonicity {|𝐵𝛿 log 𝑛 (𝑢𝑛) | ≤ 𝑛(1+𝜀
′)/(𝜏 (1−𝜀)−1) } also holds with the same error probability.

Now we start bounding the surplus edges inside 𝐵𝛿 log 𝑛 (𝑢𝑛). On the event Asize, the exploration in
Construction 5.5 finishes in 𝑡 (𝛿 log 𝑛) ≤ 𝑛𝜁 with 𝜁 := (1+𝜀′)/(𝜏(1−𝜀)−1) steps, and by Observation 5.6,
the exploration reveals 𝐵𝛿 log 𝑛 (𝑢𝑛) and all surplus edges inside. We estimate the probability of a collision
from above at each step of the exploration. When the exploration is at step s, a collision happens if the
half-edge ℎ𝑠 is matched to one of the active half-edges in 𝐴ℎ (𝑠 − 1), see substep s.(ii) in Construction
5.5. The size of 𝐴ℎ (𝑠 − 1) is at any time no more than the total size of 𝐵𝛿 log 𝑛+1(𝑢𝑛), that is, at most 𝑛𝜁 .
Hence, since 𝑠 ≤ 𝑛𝜁 on Asize also, and so

P(a surplus edge is created at step 𝑠) ≤ 𝑛𝜁

ℎ𝑛 − 2𝑠 − 1
≤ 2
E[𝐷𝑛]

𝑛𝜁−1 := 𝑐𝑛𝜁−1,

uniformly for all 𝑠 ≤ 𝑛𝜁 , and conditionally independent of other steps. One can thus dominate the se-
quence of indicators of whether a surplus edge is created at step s by an iid sequence of 𝑛𝜁 many Bernoulli
random variables with mean 2𝑛𝜁−1

E[𝐷𝑛]. Thus, the number of collisions is at most Bin(𝑛𝜁 , 𝑐𝑛𝜁−1).
Since 𝜁 = (1 + 𝜀′)/(𝜏(1 − 𝜀) − 1), and we assumed 𝜏(1 − 𝜀) − 1 > 2 and 𝜀′ ∈ (0, (𝜏(1 − 𝜀) − 3)/2, we
have 𝜁 < 1/2, and so the mean, Θ(𝑛2𝜁−1) tends to zero for 𝜀′ in this interval. For some ℓ to be chosen
later, we bound

P(Surp𝛿 log 𝑛 (𝑢𝑛) ≥ ℓ | Asize) ≤ P(Bin(𝑛𝜁 , 𝑐𝑛𝜁−1) ≥ ℓ)

≤
∑
𝑖≥ℓ

(
𝑛𝜁

𝑖

)
(𝑐𝑛𝜁−1)𝑖 ≤

∞∑
𝑖=ℓ

(𝑐𝑛2𝜁−1)𝑖 ≤ 𝑐′𝑛(2𝜁−1)ℓ ,

where we used that
(𝑛𝜁

𝑖

)
≤ 𝑛𝜁 𝑖 , and that the geometric sum in the middle has base less than 1 for

all sufficiently large n since 2𝜁 − 1 < 0. Choose now ℓ so large that the exponent of n on the rhs,
(2𝜁 − 1)ℓ < −1, that is, ℓ > 1/(1 − 2𝜁). Then one has for some 𝛿′ > 0 that

P(Surp𝛿 log 𝑛 (𝑢𝑛) ≥ ℓ | Asize) ≤ 𝑛−1−𝛿′ . (89)
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One can compute using 𝜁 that ℓ ≥ 𝜏 (1−𝜀)−1
𝜏 (1−𝜀)−3−2𝜀′ which also shows that 𝜏(1 − 𝜀) > 3 is necessary for

the argument to work. Combining now (88) with (89) with a union bound finishes the proof of (69).
Finally we estimate the maximal multiplicity of the edges in the whole graph. We introduce 1(ℓ)𝑢,𝑣 := 1
if there are at least ℓ edges between vertex u and v. Then by Markov’s inequality, and pairing ℓ chosen
half-edges from u and from v together yields that

P

(
max

𝑢,𝑣 ∈[𝑛]
𝑒(𝑢, 𝑣) ≥ ℓ

)
= P

( ∑
𝑢,𝑣 ∈[𝑛]

1(ℓ)𝑢,𝑣 ≥ 1
)
≤ E

[ ∑
𝑢,𝑣 ∈[𝑛]

1(ℓ)𝑢,𝑣

]
≤

∑
𝑢,𝑣

𝑑ℓ𝑢𝑑
ℓ
𝑣

(ℎ𝑛 − 2ℓ − 1)ℓ
≤ 𝑐𝑛2

E[𝐷ℓ
𝑛]2/𝑛ℓ

(90)

for some constant 𝑐 > 0. Using (11) and (12) in Assumption 1.12, with 𝑀𝑛 := 𝐶𝑢𝑛
1/(𝜏 (1−𝜀)−1) and so

one bounds the moment as

E[𝐷ℓ
𝑛] ≤

∑
𝑧≤𝑀𝑛

𝑐𝑢𝑧
ℓ−𝜏 (1−𝜀) ≤ 𝑐

∫ 𝑀𝑛

1
𝑧ℓ−𝜏 (1−𝜀)d𝑧

≤ 𝐶𝑀 (ℓ+1−𝜏 (1−𝜀))∨0
𝑛 = 𝑛(ℓ/(𝜏 (1−𝜀)−1)−1)∨0,

similarly to ℎℓ in (73). If now the maximum is at 0 in the exponent, one obtains ℓ > 3 is necessary
for the exponent to be below −1, and if the maximum is at the other term ℓ/(𝜏(1 − 𝜀) − 1) − 1 then
one obtains ℓ > (𝜏(1 − 𝜀) − 1)/(𝜏(1 − 𝜀) − 3) then the exponent in (90) is less than −1. Hence
ℓ > 3 ∨ (𝜏(1 − 𝜀) − 1)/(𝜏(1 − 𝜀) − 3) is a sufficient choice, finishing the proof of (70) and thus the
proposition. �

With Proposition 5.1 at hand, we now move on to analyze the contact process on 𝐵𝛿 log 𝑛 (𝑢𝑛). On the
event in (69), 𝐵𝛿 log 𝑛 (𝑢𝑛) has at most ℓ surplus edges. By Observation 5.7, all the surplus edges created
during the exploration are either self-loops, multiple edges, or the distance between the root 𝑢𝑛 and the
two end-vertices of the surplus edge differ by at most 1. We will apply the next lemma to bound the
number of nonbacktracking infection paths of the contact process on 𝐵𝛿 log 𝑛 (𝑢𝑛).

Recall from Definition 3.3 that 𝒯(𝐺) denotes the genealogical label of particles in the contact
process, equivalently, the set of possible infection paths 𝜋 on G. Recall also that 𝔩(𝜋) is the length of the
path (number of edges) from (21), while 𝜏(𝜋) in (34) denotes the location of the first backtracking step
on the path, with the convention that 𝜏(𝜋) = ∞ if the path is nonbacktracking.

Lemma 5.11. Let T = (𝑉, 𝐸) be a tree with root ∅; assume that T has no self-loops or parallel edges.
Let 𝑁, 𝑘 ∈ N. Let 𝑢1, 𝑣1, 𝑢2, 𝑣2, . . . , 𝑢𝑘 , 𝑣𝑘 ∈ 𝑉 be (not necessarily distinct) vertices such that for all
𝑖 ∈ {1, . . . , 𝑘}

0 ≤ distT (∅, 𝑢𝑖) ≤ distT (∅, 𝑣𝑖) ≤ distT (∅, 𝑢𝑖) + 1. (91)

Consider another graph T (𝑘) on the same vertex set V, with edge set 𝐸 ′ := 𝐸 ∪{𝑢1, 𝑣1}∪ . . .∪{𝑢𝑘 , 𝑣𝑘 }.
Let T𝑁 := {𝑣 ∈ 𝑉 : distT (∅, 𝑣) ≤ 𝑁} as before, and define

B𝑁 := {𝜋 ∈ 𝒯(T (𝑘) ) : 𝜋0 = ∅, 𝔩(𝜋) ≤ 𝑁, 𝜏(𝜋) = ∞}. (92)

Then |B𝑁 | ≤ (2𝑘 + 1)𝑁 |T𝑁 |.

The lemma allows for self-loops and multiple edges, these also satisfy (91).

Proof. We start by introducing a labeling of the directed edges of any path 𝜋 ∈ B𝑁 , describing whether
the edge uses a surplus edge in one of the two possible directions, or the edge is not a surplus edge. So
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introducing the symbol o for the latter, we define the set of possible labels L, and we then introduce
Seq𝑁 as the set of length-N sequences with elements from L with a vertex in T appended at the end:

L :=
⋃

1≤𝑖≤𝑘
{(𝑢𝑖 , 𝑣𝑖), (𝑣𝑖 , 𝑢𝑖)} ∪ {𝑜}, (93)

Seq𝑁 := {(𝑠1, 𝑠2, . . . , 𝑠𝑁 , 𝑣) : 𝑠 𝑗 ∈ L, 𝑣 ∈ 𝑉, distT (∅, 𝑣) ≤ 𝑁}. (94)

Observe that |L| ≤ 2𝑘 + 1 (self-loops and multiple edges can make this inequality strict) and thus
|Seq𝑁 | ≤ (2𝑘 +1)𝑁 |T𝑁 |. Therefore, if we show that there is an injection from B𝑁 to Seq𝑁 , it will yield

|B𝑁 | ≤ |Seq𝑁 | ≤ (2𝑘 + 1)𝑁 |T𝑁 |,

proving the lemma. We now construct this injection.
Fix any 𝜋 = (𝜋0, 𝜋1, . . . , 𝜋𝑚) ∈ B𝑁 , where 𝑚 = 𝔩(𝜋). We think of this path as the sequence

(𝑒1, 𝑒2, . . . , 𝑒𝑚) with 𝑒 𝑗 = (𝜋 𝑗−1, 𝜋 𝑗 ) a directed edge. By the definition of B𝑁 in (92), 𝑚 ≤ 𝑁 . Recalling
the labels from (93), for each 1 ≤ 𝑗 ≤ 𝑚 define

𝑠 𝑗 :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑢𝑖 , 𝑣𝑖) if 𝑒 𝑗 = (𝑢𝑖 , 𝑣𝑖) for some 𝑖 ≤ 𝑘,

(𝑣𝑖 , 𝑢𝑖) if 𝑒 𝑗 = (𝑣𝑖 , 𝑢𝑖) for some 𝑖 ≤ 𝑘,

𝑜 otherwise.

Furthermore, define 𝑠 𝑗 = 𝑜 for each 𝑚 + 1 ≤ 𝑗 ≤ 𝑁 , and finally, let 𝑣 = 𝜋𝑚. By the condition (91), each
edge in 𝜋 can only change the distance from ∅ by at most 1, thus distT (∅, 𝑣) ≤ 𝑁 . Hence, we associate
a vector 𝐿(𝜋) := (𝑠1, . . . , 𝑠𝑁 , 𝑣) ∈ Seq𝑁 to each 𝜋 ∈ B𝑁 . We will show that this mapping is injective,
that is, (𝑠1, . . . , 𝑠𝑁 , 𝑣) uniquely encodes the path 𝜋.

For each 1 ≤ 𝑗 ≤ 𝑁 the label 𝑠 𝑗 reveals whether the edge 𝑒 𝑗 crosses one of the surplus edges {𝑢𝑖 , 𝑣𝑖},
and if so, in which direction. Between two consecutive crossings, 𝜋 is a nonbacktracking path on the
edges of the tree T , hence it is uniquely determined, since in a tree there is a single nonbacktracking
path between any two vertices: for example, if 𝑠 𝑗 = (𝑢𝑖 , 𝑣𝑖) and 𝑠 𝑗′ = (𝑢𝑖′ , 𝑣𝑖′ ) for 𝑗 < 𝑗 ′ and
𝑠 𝑗+1 = . . . = 𝑠 𝑗′−1 = 𝑜, then (𝜋 𝑗 , . . . , 𝜋 𝑗′−1) is the unique geodesic (i.e., nonbacktracking shortest path)
in T from 𝑣𝑖 to 𝑢𝑖′ . A similar argument shows that if 𝑗max = max{ 𝑗 : 𝑠 𝑗 ≠ 𝑜}, then (𝜋 𝑗max , . . . , 𝜋𝔩 (𝜋) ) is
the unique geodesic in T from the endpoint of 𝑠 𝑗max to v, the endpoint of 𝜋. This shows that the defined
map is indeed injective, finishing the proof. �

Proof of Theorem 2.9(a). Let 𝐺𝑛 be a realization of CM(𝑑𝑛). Recalling from Lemma 3.8 the stochastic
domination between CP and BRW, and that a branching random walk with initial configuration 𝜉

0
can

be realized as the sum of independent BRWs, each started from a single particle present in 𝜉
0
, we obtain

that

CP 𝑓 ,𝜆 (𝐺𝑛, 1𝐺𝑛
)
𝑑
≤ BRW 𝑓 ,𝜆 (𝐺𝑛, 1𝐺𝑛

) =
∑
𝑣 ∈[𝑛]

BRW 𝑓 ,𝜆 (𝐺𝑛,1𝑣 ) =:
∑
𝑣 ∈[𝑛]

𝑥 (𝑣)𝑡 ,

where the branching random walks 𝑥 (𝑣)𝑡 are independent given 𝐺𝑛. Let now 𝑇ext denote the extinction
time of BRW 𝑓 ,𝜆 (𝐺𝑛, 1𝐺𝑛

), and let 𝑇 (𝑣)ext denote the extinction time of 𝑥 (𝑣)𝑡 . Then 𝑇ext = max𝑣 ∈[𝑛] 𝑇 (𝑣)ext .
Hence for any 𝑡 > 0,

P
(
𝑇ext > 𝑡

)
= P

(
∃𝑣 ∈ [𝑛] : 𝑇 (𝑣)ext > 𝑡

)
≤ 𝑛 ·

(1
𝑛

∑
𝑣 ∈[𝑛]

P
(
𝑇 (𝑣)ext > 𝑡

) )
= 𝑛 · P

(
𝑇 (𝑢𝑛)

ext > 𝑡
)
, (95)

where 𝑢𝑛 is a uniformly chosen vertex. We will show that for some𝐶 > 0, P
(
𝑇 (𝑢𝑛)

ext > 𝐶 log 𝑛
)
= 𝑜(1/𝑛).

which then shows that the extinction time is 𝑂P (log 𝑛) by (95).
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We first apply Proposition 5.1, which is applicable since its conditions coincide with that of
Theorem 2.9(a). Proposition 5.1 then gives constants 𝛿, 𝛿′, 𝜀′, ℓ > 0 and 𝜁 := (1+𝜀′)/(𝜏(1−𝜀)−1) < 1/2
so that the event

Agood (𝑢𝑛) := { max
𝑢,𝑣 ∈[𝑛]

𝑒(𝑢, 𝑣) ≤ ℓ} ∩
{
|𝐵𝛿 log 𝑛 (𝑢𝑛) | ≤ 𝑛𝜁

}
∩

{
Surp𝛿 log 𝑛 (𝑢𝑛) ≤ ℓ

}
holds with probability 1 − 2𝑛−1−𝛿′ . On the event Agood(𝑢𝑛), there are at most ℓ surplus edges in
𝐵𝛿 log 𝑛 (𝑢𝑛), so we may apply Lemma 5.11 to see that the set of nonbacktracking infections paths in
𝐵𝛿 log 𝑛 (𝑢𝑛) = T (ℓ) starting at 𝑢𝑛 of length 𝑁 = 𝛿 log 𝑛, defined in (92) satisfies on the event Agood(𝑢𝑛)
that

|B𝛿 log 𝑛 | ≤ (2ℓ + 1) 𝛿 log 𝑛 |T𝛿 log 𝑛 | ≤ 𝑛𝛿 log(2ℓ+1) |𝐵𝛿 log 𝑛 (𝑢𝑛) | ≤ 𝑛𝜁+𝛿 log(2ℓ+1) .

Now we apply Lemma 4.8, with ℓ as the maximal number of multiple edges and 𝑣̄ := 𝑢𝑛. The main
result there, (63) turns into, with 𝑁 = 𝛿 log 𝑛 and 𝜆 < 1/(4ℓ),

P

(
(𝑥 (𝑢𝑛)

𝑡 ) dies before time 𝐶𝛿 log 𝑛, and never reaches
any vertex at graph distance 𝛿 log 𝑛 from 𝑢𝑛

)
> 1 − 2|B𝛿 log 𝑛 |

(
eℓ · (4ℓ𝜆) 𝛿 log 𝑛 + e−𝛿 log 𝑛(𝐶−1)2/(2𝐶)

)
≥ 1 − 2𝑛𝜁+𝛿 log(2ℓ+1)

(
eℓ𝑛−𝛿 | log(4ℓ𝜆) | + 𝑛−𝛿 (𝐶−1)2/2𝐶

)
.

(96)

Distributing the brackets, there are two error terms, the first one is

2𝑒ℓ · 𝑛𝜁+𝛿 log(2ℓ+1)−𝛿 | log(4ℓ𝜆) | ≤ 𝑛−1−𝛿′

whenever 4ℓ𝜆 is small enough so that the exponent of n goes below −1 − 𝛿′, in particular when

𝜆 <
1
4ℓ

exp
(
− 1

𝛿 (1 + 𝛿
′ + 𝜁 + 𝛿 log(2ℓ + 1))

)
. (97)

The second error term is

2𝑛𝜁+𝛿 log(2ℓ+1)−𝛿 (𝐶−1)2/(2𝐶) ≤ 𝑛−1−𝛿′

whenever C is so large that the exponent of n goes below−1−𝛿′, in particular using that (𝐶−1)2/(2𝐶) >
(𝐶 − 1)/4 the exponent is below −1 whenever

𝐶 > 1 + 4 1
𝛿 (1 + 𝛿

′ + 𝜁 + 𝛿 log(2ℓ + 1)).

This shows that for all 𝜆 sufficiently small (satisfying (97)), the event in (96) holds with probability at
least 1−𝑛−1−𝛿′ . On this event, the process 𝑥 (𝑢𝑛)

𝑡 never leaves the ball 𝐵𝛿 log 𝑛 (𝑢𝑛), in particular the process
never sees other parts of the graph. In other words, extinction of 𝑥 (𝑢𝑛)

𝑡 on 𝐵𝛿 log 𝑛 (𝑢𝑛) without reaching
the boundary of 𝐵𝛿 log 𝑛 (𝑢𝑛) implies extinction of 𝑥 (𝑢𝑛)

𝑡 on 𝐺𝑛. Hence, the event {𝑇 (𝑢𝑛)
ext > 𝐶𝛿 log 𝑛} is

covered by the complement of the event in (96), P(𝑇 (𝑢𝑛)
ext > 𝐶𝛿 log 𝑛) ≤ 2𝑛−1−𝛿′ . Substituting this back

to (95) finishes the proof. �

6. Proofs of survival on Galton-Watson trees

In this section we present proofs of survival regimes. We start with (only) global survival – Theorem
2.5(b), then we prove Theorems 2.1 and 2.5 (a) in Section 6.2.
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6.1. Max-penalty: global survival via infinite infection rays on heavy tailed GW trees

To prove global survival for the max-penalty with 𝜇 ∈ [1/2, 1) on GW trees with sufficiently fat-tailed
offspring distributions, that is, Theorem 2.5(b), we will show the existence of a (random) infinite ray in
the Galton-Watson tree on which the infection survives forever.

Definition 6.1 (Down-directed contact process). Let T be any (given) tree with root ∅. Consider the
directed graph T ↓ where each edge {𝑢, 𝑣} of T is directed away from the root, that is, from parent to
child. Then we denote by CP↓𝑓 ,𝜆 (T , 𝜉

0
) = (𝜉↓

𝑡
)𝑡≥1 the degree-penalized contact process in Definition 1.1

on the directed graph T ↓ with initial state 𝜉
0
.

One can obtain the down-directed contact process T ↓(T , 𝜉
0
) from the graphical construction of the

original CP 𝑓 ,𝜆 (T , 𝜉
0
) by deleting the Poisson point processes that represent infections from child to

parent (i.e., upward in the tree), and leaving only those infection paths intact which only contain parent-
to-child infection events. Hence, for every given tree T and starting state 𝜉

0
∈ {0, 1}𝑉 (T ) it holds

that

CP↓𝑓 ,𝜆 (T , 𝜉
0
)
𝑑
≤ CP 𝑓 ,𝜆 (T , 𝜉

0
). (98)

The next proposition shows that CP↓𝑓 ,𝜆 survives globally with positive probability on a Galton-Watson
tree:

Proposition 6.2. Let T be a Galton-Watson tree with offspring distribution D satisfying Definition 1.7
for some 𝛼 > 0 and P(𝐷 ≥ 1) = 1. Suppose 𝑓 (𝑥, 𝑦) = max(𝑥, 𝑦)𝜇, and moreover 𝜇 + 𝛼 < 1. Then the
down-directed contact process CP↓𝑓 ,𝜆 (T ,1∅) exhibits global survival with positive probability on T for
any 𝜆 > 0, for almost all realizations T of the Galton-Watson tree.

Proof of Theorem 2.5(b). The result follows from Proposition 6.2 by using the stochastic domination
in (98). �

Proof of Proposition 6.2. In this proof we denote by 𝐷𝑣 = 𝑑𝑣 − 1 the out-degree (number of children)
of the vertex v in T ↓. Let Aglob be the event that CP↓𝑓 ,𝜆(T ,1∅) survives globally. Let B𝐾 = {∃𝑡0 ≥ 0,
∃𝑣 ∈ 𝑉 (T ), deg(𝑣) ≥ 𝐾 : 𝜉↓𝑡0 (𝑣) = 1} be the event that CP↓𝑓 ,𝜆 ever reaches a vertex with degree at least
K for a large enough K decided later. This event has strictly positive probability 𝑝𝐾 with lower bound
depending only on K, since 𝑝𝐾 ≥ P(𝐷∅ ≥ 𝐾) > 0.

P(Aglob) ≥ P(B𝐾 )P(Aglob | B𝐾 ), (99)

so it is enough to show that P(Aglob | B𝐾 ) > 0 for some large enough K. Fix some constants 1 < 𝑠1 < 𝑠2
to be chosen later.

Consider a vertex v with degree 𝐷𝑣 = 𝐿 ≥ 𝐾 in the Galton-Watson tree and let N (𝑣, [𝐿𝑠1 , 𝐿𝑠2 ]) and
𝑁 (𝑣, [𝐿𝑠1 , 𝐿𝑠2]) be the set and number of children of v in T with degrees in [𝐿𝑠1 , 𝐿𝑠2], respectively.
Since the children have iid degrees, 𝑁 (𝑣, [𝐿𝑠1 , 𝐿𝑠2])) is binomially distributed with parameters L and
P(𝐷 ∈ [𝐿𝑠1 , 𝐿𝑠2]). We bound its mean from below using (6). Given some 𝜀 ∈ [0, 𝛼(𝑠2 − 𝑠1)/(𝑠2 + 𝑠1)),
assuming 𝐿 > 𝐾0(𝜀) so that (6) holds,

E[𝑁 (𝑣, [𝐿𝑠1 , 𝐿𝑠2]) | 𝐷𝑣 = 𝐿] = 𝐿
(
P(𝐷 ≥ 𝐿𝑠1 ) − P(𝐷 ≥ 𝐿𝑠2 )

)
≥ 𝐿

( 1
𝐿𝑠1 (𝛼+𝜀)

− 1
𝐿𝑠2 (𝛼−𝜀)

)
= 𝐿1−𝛼𝑠1−𝜀𝑠1

(
1 − 𝐿−𝛼(𝑠2−𝑠1)+𝜀 (𝑠2+𝑠1)

)
.
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By the assumption that 𝑠2 > 𝑠1 and 𝜀 < 𝛼(𝑠2 − 𝑠1)/(𝑠2 + 𝑠1), we obtain the existence of 𝐾1(𝜀, 𝑠2, 𝑠1, 𝛼)
such that the second factor on the rhs above is at least 1/2 for all 𝐿 > 𝐾1(𝜀, 𝑠2, 𝑠1, 𝛼) ∨ 𝐾0(𝜀). Hence
for all such L,

E
[
𝑁 (𝑣, [𝐿𝑠1 , 𝐿𝑠2 ]) | 𝐷𝑣 = 𝐿

)
≥ 𝐿1−𝛼𝑠1−𝜀𝑠1/2. (100)

We now require that 𝑠1, 𝜀 is such that 1 − 𝛼𝑠1 − 𝜀𝑠1 > 0, then the mean tends to infinity with L. Using
now Chernoff’s bound on this Binomial random variable we obtain that

P(A1 (𝑣, 𝐿) |𝐷𝑣 = 𝐿) := P
(
𝑁 (𝑣, [𝐿𝑠1 , 𝐿𝑠2]) > 𝐿1−𝛼𝑠1−𝜀𝑠1/4 | 𝐷𝑣 = 𝐿

)
≥ 1 − exp

(
− 𝐿1−𝛼𝑠1−𝜀𝑠1/48

)
=: 1 − err1 (𝐿).

(101)

Assume now that CP↓𝑓 ,𝜆 has reached vertex v at some time, and that A1(𝑣, 𝐿) holds for v. Let now
A2 (𝑣, 𝐿) be the event that v infects at least one of the first 𝐿1−𝛼𝑠1−𝜀𝑠1/4 many children within
the set N (𝑣, [𝐿𝑠1 , 𝐿𝑠2 ]) before healing. We bound the complement of this event using that the de-
gree of such a child is in the interval [𝐿𝑠1 , 𝐿𝑠2 ], which gives that the infection rate from v to any
child 𝑢 ∈ N (𝑣, [𝐿𝑠1 , 𝐿𝑠2]) is at least 𝑟 (𝑣, 𝑢) = 𝜆 max(𝐿, 𝐷𝑢)−𝜇 ≥ 𝜆𝐿−𝜇𝑠2 (since we assumed that
𝑠2 > 𝑠1 > 1). We obtain that

P(¬A2 (𝑣, 𝐿) | 𝑣 ever infected, 𝐷𝑣 = 𝐿,A1 (𝑣, 𝐿))

=
1

1 +
∑
{𝑟 (𝑣, 𝑢𝑖) : 𝑢𝑖 ∈ N (𝑣, [𝐿𝑠1 , 𝐿𝑠2]), 𝑖 ≤ 𝐿1−𝛼𝑠1−𝜀𝑠1/4}

≤ 1
1 + 𝜆𝐿1−𝛼𝑠1−𝜇𝑠2−𝜀𝑠1/4

≤ 8𝜆−1𝐿−(1−𝛼𝑠1−𝜇𝑠2−𝜀𝑠1) =: err2(𝐿), (102)

where we used that L is sufficiently large, and the assumption that 1−𝛼𝑠1−𝜇𝑠2−𝜀𝑠1 > 0 to obtain the last
line. This assumption can be satisfied with 𝑠2 > 𝑠1 > 1 and 𝜀 > 0 small enough whenever 1−𝛼− 𝜇 > 0,
which is true since we assumed 𝛼 + 𝜇 < 1. Also note that it cannot be satisfied when 𝛼 + 𝜇 ≥ 1.

We use the error bound in (102) repeatedly. Let now 𝑣0 be the first vertex reached by CP↓𝑓 ,𝜆 with
degree at least K in the event B𝐾 in (99), and let 𝐷𝑣0 denote its random degree. We now define a random
infection ray (𝑣0, 𝑣1, . . . , 𝑣𝑚, 𝑣𝑚+1 . . . ) recursively. Suppose we already defined (𝑣0, . . . , 𝑣𝑚) for some
𝑚 ≥ 0, and their degrees (𝐷𝑣0 , . . . , 𝐷𝑣𝑚 ). We now check whether the eventA1 (𝑣𝑚, 𝐷𝑣𝑚 )∩A2(𝑣𝑚, 𝐷𝑣𝑚 )
holds, and if so, then we choose any vertex 𝑣𝑚+1 ∈ N (𝑣𝑚, [𝐷𝑠1

𝑣𝑚 , 𝐷
𝑠2
𝑣𝑚 ]) that is infected by 𝑣𝑚 before

𝑣𝑚 heals. We now obtain the existence of an infinite ray by taking the limit of the nested sequence of
events:

P
(
(𝑣0, . . . , 𝑣𝑚, . . . ) exists

)
= lim

𝑚0→∞
P

(
∩𝑚≤𝑚0 {𝑣𝑚+1 exists}

)
= lim

𝑚0→∞

𝑚0∏
𝑚=0
P

(
𝑣𝑚+1 exists | (𝑣0, . . . , 𝑣𝑚) exists

)
,

We denote by F𝑚 the sigma-algebra generated by

∪𝑖≤𝑚−1{A1(𝑣𝑖 , 𝐷𝑣𝑖 ),A2(𝑣𝑖 , 𝐷𝑣𝑖 ), 𝑣𝑖 , 𝐷𝑣𝑖 } ∪ {𝑣𝑚, 𝐷𝑣𝑚 }.

That is, we reveal the degree and existence of 𝑣𝑚, but not whether A1(𝑣𝑚, 𝐷𝑣𝑚 ) ∩A2(𝑣𝑚, 𝐷𝑣𝑚 ) holds
since those events already give 𝑣𝑚+1. Using this sigma-algebra, we can use the Markov property of
CP↓𝑓 ,𝜆, lower bound the probability of existence of 𝑣0 by P(B𝐾 ), and that of 𝑣𝑚+1 by the conditional
probability of A1 (𝑣𝑚, 𝐷𝑣𝑚 ) ∩A2(𝑣𝑚, 𝐷𝑣𝑚 ) to obtain
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P
(
(𝑣0, . . . , 𝑣𝑚, . . . ) exists

)
≥ lim

𝑚0→∞
P(B𝐾 )E

[
𝑚0∏
𝑚=0
P

(
A1(𝑣𝑚, 𝐷𝑣𝑚 ) ∩A2 (𝑣𝑚, 𝐷𝑣𝑚 ) | F𝑚

)]
≥ P(B𝐾 ) lim

𝑚0→∞

[
𝑚0∏
𝑚=1
P

(
A1(𝑣𝑚, 𝐷𝑣𝑚 ) ∩A2(𝑣𝑚, 𝐷𝑣𝑚 ) | 𝑣𝑚 ever infected, 𝐷𝑣𝑚

)]
. (103)

Observe that now the calculations in (101) and (102) apply, and the mth factor is, conditionally on 𝐷𝑣𝑚 ,
at least 1 − err1 (𝐷𝑣𝑚 ) − err2(𝐷𝑣𝑚 ). We inductively show that the mth factor in the product above is at
least

1 − err1 (𝐾𝑠𝑚
1 ) − err2 (𝐾𝑠𝑚

1 ), (104)

by showing that 𝐷𝑣𝑚 ≥ 𝐾𝑠𝑚
1 whenever 𝑣𝑚 exists. Monotonicity of err1 (𝐿)+err2 (𝐿) in L then immediately

yields the lower bound (104), as follows. Since we assumed 𝐷𝑣0 ≥ 𝐾 = 𝐾𝑠0
1 , the induction starts. Assume

now that 𝐷𝑣𝑚−1 ≥ 𝐾𝑠𝑚−1
1 . Then per definition, (see below (102)), 𝐷𝑣𝑚 ∈ [𝐷

𝑠1
𝑣𝑚−1 , 𝐷

𝑠2
𝑣𝑚−1 ]. Using now

the induction hypothesis immediately gives (104). Hence, we return to (103), for a.e. realization in the
conditional expectation the lower bound in (104) holds, hence,

P
(
(𝑣0, . . . , 𝑣𝑚, . . . ) exists

)
≥ P(B𝐾 )

∞∏
𝑖=1
(1 − err1 (𝐾𝑠𝑚

1 ) − err2(𝐾𝑠𝑚
1 ))

≥ P(B𝐾 )
(
1 −

∞∑
𝑚=0

err1 (𝐾𝑠𝑚
1 ) + err2(𝐾𝑠𝑚

1 )
)
.

(105)

Using the values of err1(𝐾𝑠𝑚
1 ) + err2(𝐾𝑠𝑚

1 ) from (101), (102), given that

1 < 𝑠1 < 𝑠2, 1 − 𝛼𝑠1 − 𝜇𝑠2 − 𝜀𝑠1 > 0, 1 − 𝛼𝑠1 − 𝜀𝑠1 > 0, (106)

the sum on the right hand side is summable in m, and both terms decrease faster then geometrically
in m, hence they are dominated by a constant times their first term:

∞∑
𝑚=0

exp(−𝐾𝑠𝑚
1 (1−𝛼𝑠1−𝜀𝑠1) /48) +

∞∑
𝑚=0

8𝜆−1𝐾−𝑠
𝑚
1 (1−𝛼𝑠1−𝜇𝑠2−𝜀𝑠1)

≤ 𝐶 exp(−𝐾1−𝛼𝑠1−𝜀𝑠1/48) + 𝐶𝜆−1𝐾−(1−𝛼𝑠1−𝜇𝑠2−𝜀𝑠1) . (107)

One can check that the system of inequalities in (106) is solvable whenever 1−𝛼−𝜇 > 0. Namely, choose
first 1 < 𝑠1 < 𝑠2 close enough to 1 so that 1 − 𝛼𝑠1 − 𝜇𝑠2 > 0 holds. Choose then 𝜀 > 0 small enough
so that (100) and (106) hold as well, and finally one can set K sufficiently large so that all inequalities
above are valid. In particular, given now any 𝜆 > 0 (i.e., small), one can choose K sufficiently large so
that the sum in (107) is at most 1/2, and then we obtain in (105) that an infinite infection ray exists
with probability at least P(A𝐾 )/2, which is strictly positive. Hence, global survival occurs with strictly
positive probability, whenever 𝛼 + 𝜇 < 1, finishing the proof. �

6.2. Product penalty: local survival using a row of star-graphs when 𝜇 < 1/2

We will prove local survival of CP 𝑓 ,𝜆 (for both product and maximum penalty) when 𝜇 ∈ [0, 1/2) on
the Galton-Watson tree, with at last stretched exponential offspring distributions, that is, Theorem 2.1
in multiple steps.

The idea is the following: As a direct consequence of known results about star graphs that goes back
to Berger, Borgs, Chayes and Saberi [5], in Claim 6.6 we prove that when 𝜇 < 1/2, the infection survives
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Figure 2. The graph 𝐻𝐾,ℓ (𝐾 ) .

on a star-graph of degree K, which consists of a degree-K vertex and its degree-1 neighbors, for a time
𝑇𝐾 = exp(Θ(𝜆2𝐾1−2𝜇)) with probability very close to 1. Moreover, throughout this time the star will
be infested, by which we mean that a sufficiently high fraction of its vertices are infected.

We then show that a star-graph that is infested for time 𝑇𝐾 , sends the infection through a path of
length ℓ to another such star-graph with probability close to 1 if and only if ℓ = 𝑜(log𝑇𝐾 ). Hence we
need that ℓ = 𝑜(𝐾1−2𝜇) so that the infection successfully infests another star-graph.

Let 𝐻𝐾,ℓ (𝐾 ) be a graph that consists of a one-ended infinite row of star-graphs of degree K,
(𝑣1, 𝑣2, . . . ), with paths of length ℓ(𝐾) = 𝑜(𝐾1−2𝜇) between two consecutive stars. We show that the
degree-penalized contact process survives forever on 𝐻𝐾,ℓ (𝐾 ) with positive probability, as long as K is
sufficiently large compared to 𝜆. We do this by mapping the process on 𝐻𝐾,ℓ (𝐾 ) to a discrete time analog
of the contact process on N+ = {1, 2, . . . } corresponding to the infinite row of star-graphs (𝑣1, 𝑣2, . . . ).

Finally, we prove that 𝐻𝐾,ℓ (𝐾 ) can be embedded almost surely in a Galton-Watson tree T𝐷 in a way
that in the embedding, every vertex in 𝐻𝐾,ℓ (𝐾 ) has degree at most M times its degree in 𝐻𝐾,ℓ (𝐾 ) .
This only changes 𝜆 in the arguments above by a constant factor, that is, to 𝜆̃ := 𝜆/𝑀2𝜇, so if CP 𝑓 ,𝜆

survives on 𝐻𝐾,ℓ (𝐾 ) whenever K is sufficiently large, then the same is true for CP 𝑓 ,𝜆̃ by increasing K
if necessary. For the embedding to be possible, the tail of D must be heavier than stretched exponential
with stretch-exponent 1 − 2𝜇, in the sense of Definition 1.8, which is the mildest condition possible for
this proof to work.

6.2.1. Embedding stars in the Galton-Watson tree
We now make the former outline precise, starting with the definition of the infinite row of star-graphs
and the embedding that does not increase degrees too much.

Definition 6.3 (Infinite path of stars and M-embedding). Given two integers𝐾, ℓ ≥ 1, let 𝐻 = 𝐻𝐾,ℓ be an
infinite graph defined as follows: we start by taking an infinite path (𝑣1,P1, 𝑣2,P2, . . . , 𝑣𝑖 ,P𝑖 , 𝑣𝑖+1, . . . ),
where for all 𝑖 ≥ 1 the paths P𝑖 = (𝑢 (𝑖)1 , . . . , 𝑢 (𝑖)ℓ ) have length ℓ, and then to each 𝑣𝑖 , 𝑖 ∈ N we attach
K additional neighbors 𝑤 (𝑖)1 , . . . , 𝑤 (𝑖)𝐾 , each with deg𝐻 (𝑤

(𝑖)
𝑗 ) = 1, which we call leaves. We call K the

star-degree of 𝐻𝐾,ℓ and ℓ the connecting-path length, which might depend on K. See Figure 2.
We say that 𝐻 = 𝐻𝐾,ℓ is (degree-factor) M-embedded in a graph G if G contains 𝐻𝐾,ℓ as subgraph,

and for all vertices 𝑣 ∈ 𝐻𝐾,ℓ ⊆ 𝐺 it holds that

deg𝐺 (𝑣)
deg𝐻 (𝑣)

≤ 𝑀. (108)

The next lemma shows that for large K, 𝐻𝐾,ℓ can be M-embedded almost surely into a Galton-
Watson tree T with offspring distribution D. The proof reveals that the tail of D determines the minimal
ℓ = ℓ(𝐾) that is possible for the embedding to hold almost surely.

Lemma 6.4. Let T be a Galton-Watson tree with degree distribution D so that the tail of D is heavier
than stretched exponential with stretch-exponent 1− 2𝜇, in the sense of Definition 1.8, along the infinite
sequence (𝑧𝑖)𝑖≥1, and prefactor 𝑔(𝑧) → 0 as 𝑧 → 0. Then there exists a constant 𝑀 ≥ 1, such that
𝐻𝐾,ℓ (𝐾 ) can be M-embedded in T for all sufficiently large K such that 2𝐾 ∈ {𝑧𝑖 , 𝑖 ≥ 1}, for almost all
realizations of T , whenever

ℓ(𝐾) ≥ 21−2𝜇
√
𝑔(2𝐾)𝐾1−2𝜇 = 𝑜(𝐾1−2𝜇). (109)
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Proof. First, fix some small constant 𝜀 > 0 decided later. Let E[𝐷] := 𝑞 > 1, and define
𝐷𝑀 := 𝐷1𝐷<𝑀 , that is, the distribution where P(𝐷𝑀 = 0) = P(𝐷 = 0) + P(𝐷 ≥ 𝑀) and
P(𝐷𝑀 = 𝑘) = P(𝐷 = 𝑘) for all 𝑘 ∈ [1, 𝑀). Given 𝜀 > 0, we choose 𝑀 > 2 such that both of
the following inequalities hold:

𝑞𝑀 := E[𝐷𝑀 ] = E[𝐷1{𝐷 < 𝑀}] ≥ E[𝐷] − 𝜀 > 1 + 2𝜀,
P(𝐷 < 𝑀) ≥ 1 − 𝜀.

(110)

It is clear that 𝐷𝑀 can be coupled to D such that P(𝐷𝑀 ≤ 𝐷) = 1, and this embedding can be done
for each vertex of the original Galton Watson tree T , obtaining a sub-forest F𝑀 of T . The embedding
can be done by first sampling 𝐷𝑣 ∼ 𝐷 many children for each vertex v, and then accepting the number
of offspring as it is when 𝐷𝑣 is between 0 and 𝑀 − 1, but setting the degree of v in F𝑀 to be 0 when
𝐷𝑣 ≥ 𝑀 . We will denote the distribution of a single tree in F𝑀 by T𝑀 , which is a branching process
with offspring distribution 𝐷𝑀 .

Define the event, for 2𝐾 ∈ {𝑧𝑖}𝑖≥1,

A1 := {∃𝑣 ∈ T : 𝐷𝑣 = 2𝐾}.

Since we assumed P(𝐷 = 0) = 0, T survives almost surely and so P(A1) = 1. Take then the vertex
𝑣 ∈ T that is closest to the root ∅ and has 𝐷𝑣 = 2𝐾 , and set it to 𝑣1 in 𝐻𝐾,ℓ of the embedding. Clearly
𝑣1 then satisfies (108) since its degree in T is 2𝐾 ≤ 𝑀𝐾 by our assumption that 𝑀 ≥ 2.

Similarly as in the proof of Proposition 6.2 below (99), let N (𝑣, [𝑎, 𝑏]), 𝑁 (𝑣, [𝑎, 𝑏]) denote the set
and number of children of a vertex 𝑣 ∈ T with offspring in the interval [𝑎, 𝑏]. Consider now the event
Achild(𝑣1) := {𝑁 (𝑣1, [0, 𝑀)) ≥ 𝐾 + 1}. Since 𝐷𝑣1 = 2𝐾 per assumption, and the children of 𝑣1 have
iid degrees, using (110), each of these children has offspring less than M with probability at least 1− 𝜀.
Hence, using the concentration of Binomial random variables (e.g., a Chernoff’s bound), whenever
𝜀 < 1/8 (which we safely assume), for all K sufficiently large,

P
(
Achild(𝑣1)

)
= P

(
𝑁 (𝑣1, [0, 𝑀)) ≥ 𝐾 + 1

)
≥ P( Bin(2𝐾, 1 − 𝜀) > 𝐾) ≥ 1 − e−𝐾/12.

(111)

On the event Achild(𝑣1), we label by 𝑤1, 𝑤2, . . . , 𝑤𝐾+1 the first 𝐾 + 1 children in N (𝑣1, [0, 𝑀)).
Including the edge towards 𝑣1, the total degree of any of these vertices in T is at most M, satisfying
thus the degree factor M in (108). So, 𝑣1 and any K out of the children 𝑤1, . . . , 𝑤𝐾+1 may serve as the
embedding of 𝑤 (1)1 , . . . , 𝑤 (1)𝐾 of 𝐻𝐾,ℓ , and any one of these children may take the role of 𝑢 (1)1 of the path
P1 in 𝐻𝐾,ℓ .

From each of these vertices 𝑤𝑖 we start the (embedded) branching process T𝑀 (𝑤𝑖) ⊆ T (𝑤𝑖) with
offspring distribution 𝐷𝑀 . Let the number of descendants of 𝑤𝑖 in T𝑀 (𝑤𝑖) in generation ℓ (that is,
of distance ℓ from 𝑤𝑖) be 𝑍 (𝑖)ℓ for each ℓ ≥ 1. It is well-known that 𝑊 (𝑖)ℓ := 𝑍 (𝑖)ℓ /𝑞

ℓ
𝑀 is a martingale

for each i [3], and that limℓ→∞𝑊 (𝑖)ℓ = 𝑊 (𝑖)∞ exists a.s. Since E[𝐷𝑀 ] = 𝑞𝑀 > 1 + 2𝜀, this branching
process is supercritical, and because 𝐷𝑀 is bounded by M, the Kesten-Stigum Theorem gives that
𝜂 := P(𝑊 (𝑖)∞ ≠ 0) > 0 is the probability that the corresponding branching process T𝑀 survives
indefinitely. It follows then that, for any i,

lim
ℓ→∞
P(𝑍 (𝑖)ℓ ≥ (𝑞𝑀 − 𝜀)

ℓ) = lim
ℓ→∞
P

(
𝑍 (𝑖)ℓ
𝑞ℓ𝑀
≥

(
𝑞𝑀 − 𝜀
𝑞𝑀

)ℓ )
= P(𝑊 (𝑖)∞ > 0) = 𝜂.

By (110), 𝑞𝑀 − 𝜀 > 1 + 𝜀 and consequently, there exists a (deterministic) ℓ0 only depending on 𝐷𝑀

(but not on K) such that for all ℓ > ℓ0 we have

P(B𝑖) := P(𝑍 (𝑖)ℓ ≥ (𝑞𝑀 − 𝜀)
ℓ) ≥ 𝜂/2. (112)
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Denote the set of individuals in the ℓ-th generation of T𝑀 (𝑤𝑖) by G (𝑖)ℓ for each 𝑖 = 1, 2, . . . , 𝐾 , and let
Gℓ = ∪𝐾𝑖=1G

(𝑖)
ℓ . Since (𝑤𝑖)𝑖≤𝐾 are siblings, Gℓ is embedded in T also in the same (possibly other than ℓ)

generation. We now return to the original branching process T for a single generation. For each 𝑣 ∈ Gℓ
consider i.i.d. copies 𝐷𝑣 of D (that is, without the truncation at M used so far), and define the events for
𝑖 ≤ 𝐾:

B̃𝑖 := {∃𝑢 (𝑖) ∈ G (𝑖)ℓ : 𝐷𝑢(𝑖) = 2𝐾} (113)

for each 𝑖 = 1, . . . , 𝐾 + 1. By (112) we have P(B𝑖) ≥ 𝜂/2. Furthermore, since on the event B𝑖

P(¬B̃𝑖 | B𝑖) ≤
(
1 − P(𝐷 = 2𝐾)

) (𝑞𝑀−𝜀)ℓ

≤ exp
(
− P(𝐷 = 2𝐾) (𝑞𝑀 − 𝜀)ℓ

)
.

Since we have assumed 2𝐾 ∈ {𝑧𝑖}𝑖≥1 in Definition 1.8, we can use the bound

P(𝐷=2𝐾) ≥ exp(−𝑔(2𝐾) (2𝐾)1−2𝜇)

for the function 𝑔(2𝐾) → 0 as 𝐾 → 0 in Definition 1.8. Hence, 𝑔(2𝐾) = 𝑜(
√
𝑔(2𝐾)) but at the same

time
√
𝑔(2𝐾) → 0 as 𝐾 →∞. We then also use that 𝑞𝑀 − 𝜀 > 1+ 𝜀 by assumption, and so by choosing

ℓ = ℓ(𝐾) ≥
√
𝑔(2𝐾)(2𝐾)1−2𝜇, one can compute that (2𝐾)1−2𝜇 (

√
𝑔(2𝐾) log(𝑞𝑀 − 𝜀) − 𝑔(2𝐾)) → ∞

and so for all sufficiently large K it holds that

P(¬B̃𝑖 | B𝑖) ≤ exp
(
− e−𝑔 (2𝐾 ) (2𝐾 )

1−2𝜇 (𝑞𝑀 − 𝜀)ℓ (𝐾 )
)

≤ exp
(
− e(2𝐾 )

1−2𝜇 (
√
𝑔 (2𝐾 ) log(𝑞𝑀−𝜀)−𝑔 (2𝐾 )) ) ≤ 1/2.

(114)

Combining (112) and (114) yields

P(B̃𝑖) ≥ P(B𝑖) · P(B̃𝑖 | B𝑖) ≥ (𝜂/2) · (1/2) ≥ 𝜂/4.

Now we define the event that at least two events B̃𝑖 , B̃ 𝑗 happen for 𝑣1:

Ã(𝑣1) := {∃𝑖, 𝑗 : 𝑖 ≠ 𝑗 : B̃𝑖 ∩ B̃ 𝑗 holds}. (115)

Now consider the number of indices 𝑖 ≤ 𝐾 + 1 for which B̃𝑖 holds. By (113), on the event Achild(𝑣1)
in (111), this number stochastically dominates a binomial random variable with parameters 𝐾 + 1 and
𝜂/4. Hence, by the definition of Ã(𝑣1) in (115), it holds for some constant 𝑐(𝜂) > 0 that

P(Ã(𝑣1) | Achild(𝑣1)) ≥ P(Bin(𝐾 + 1, 𝜂/4) ≥ 2)
= 1 − (1 − 𝜂/4)𝐾+1 − 𝐾 (𝜂/4) (1 − 𝜂/4)𝐾 ≥ 1 − e−𝑐 (𝜂)𝐾 .

Combining this with (111), we obtain that for all sufficiently large K,

P(Achild(𝑣1) ∩ Ã(𝑣1)) ≥ 1 − e−𝑐 (𝜂)𝐾 − e−𝐾/12 ≥ 1 − 𝜀. (116)

On the event Ã(𝑣1) ∩ Achild(𝑣1), there are two vertices 𝑣2,1, 𝑣2,2 such that their most recent common
ancestor is the starting vertex 𝑣1, and deg(𝑣2,1), deg(𝑣2,2) = 2𝐾 , and 𝑑𝐺 (𝑣1, 𝑣2,1) = 𝑑𝐺 (𝑣1, 𝑣2,2) =
ℓ(𝐾) ≥

√
𝑔(2𝐾)(2𝐾)1−2𝜇 with ℓ(𝐾) = 𝑜(𝐾1−2𝜇), and the paths P1,1,P1,2 joining v with 𝑣2,1 and

𝑣2,2 respectively are edge-disjoint with all internal vertices having degree at most M. Observe that
(𝑣1,P1,1, 𝑣2,1) and (𝑣1,P1,2, 𝑣2,2) both serve as a factor M-embedding of the vertices in (𝑣1,P1, 𝑣2) in
𝐻𝐾,ℓ (𝐾 ) , hence we may choose any of them for the embedding. Further, the vertices 𝑣2,1 and 𝑣2,2 have
degree 2𝐾 in T , hence, using the argument between (111) and (115), one can repetitively apply the
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procedure of checking whether the events Achild(·) ∩ Ã(·) hold for these vertices, and the vertices then
found by either Achild(𝑣2,1) ∩ Ã(𝑣2,1) or Achild(𝑣2,2) ∩ Ã(𝑣2,2) may all serve as the embedding of the
path P2 and 𝑣3, and so on.

We thus consider an auxiliary “renormalised” branching process. We say that 𝑣1 has 2 children
(in this case 𝑣2,1, 𝑣2,2) with probability (at least) 1 − 𝜀 in (116) and 0 otherwise. Observe that the
path leading to any vertex in generation j of this branching process serves as an M-embedding of
(𝑣1,P1, 𝑣2, . . . ,P 𝑗−1, 𝑣 𝑗 ). This renormalised branching process is supercritical. Hence, it survives with
positive probability, giving that the M-embedding of the infinite graph 𝐻𝐾,ℓ (𝐾 ) exists in T , starting
from 𝑣1, with positive probability. Kolmogorov’s 0-1 law finishes the proof that T then has a proper
M-embedding of 𝐻𝐾,ℓ (𝐾 ) somewhere in T with probability 1. �

We now define star-graphs (subgraphs of 𝐻𝐾,ℓ ) and the notion of infested stars.
Definition 6.5. A star-graph S of degree K is a graph which consists of one vertex v of degree
deg𝑆 (𝑣) = 𝐾 (its center) and its K neighbors (𝑤𝑖)𝑖≤𝐾 , each of degree deg𝑆 (𝑤𝑖) = 1 that we call leaves.
Consider the classical contact process with infection rate r on S. We will call such a star r-infested at
some time t by the contact process if at least 𝑟𝐾/(16𝑒2) of its leaves are infected.

The next claim adapts [53, Lemma 3.1] to the degree-penalized contact process on S. The claim
shows that starting with only the center infected, a star-graph is 𝜆𝐾−𝜇-infested for a time interval of
length𝑇𝐾 ≥ exp(𝑐𝑟2𝐾) = exp(𝑐𝜆2𝐾1−2𝜇) with high probability, and during this time-interval the center
vertex v is infected more than half of the time. Writing r for the rate of infection of the classical contact
process on a star-graph, [53, Lemma 3.1] holds under the condition that 𝑟2𝐾 is uniformly bounded away
from 0. Since in the degree-penalized CP, the rate across the edges of the star-graph is 𝑟 = 𝜆𝐾−𝜇, we
shall require that 𝜆2𝐾1−2𝜇 is uniformly bounded away from 0.
Claim 6.6 (Lemma 3.1 of [53] adapted). Assume 𝜇 < 1/2, 𝜆 < 1. Consider a star-graph S of degree K
with center v. Let 𝜉𝑡 denote the contact process CP on S where 𝑟 (𝑣, 𝑢) = 𝑟 (𝑢, 𝑣) = 𝜆/𝐾𝜇. Then there
exists a constant 𝑐1 > 0 such that

P

(
|𝜉

1
| ≥ 𝜆𝐾1−𝜇/(4𝑒) | 𝜉0 (𝑣) = 1

)
≥ (1 − 𝑒−𝑐1𝜆𝐾

1−𝜇 )/𝑒. (117)

Further, let 𝑇𝐾 := exp(𝑐1𝜆
2𝐾1−2𝜇). If 𝜆2𝐾1−2𝜇 > 32𝑒2, then

P

(
𝜉
𝑇𝐾

≠ 0
��� |𝜉0
| ≥ 𝜆𝐾1−𝜇/(8𝑒)

)
≥ 1 − 𝑒−𝑐1𝜆

2𝐾 1−2𝜇
=: 1 − err𝜆,𝐾 . (118)

Moreover,

P

(
𝑆 is 𝜆𝐾−𝜇-infested for all 𝑡 ∈ [0, 𝑇𝐾 ] and

∫ 𝑇𝐾

0
𝜉𝑡 (𝑣) ≥ 𝑇𝐾 /2

��� |𝜉0
| ≥ 𝜆𝐾1−𝜇/(8𝑒)

)
≥ 1 − err𝜆,𝐾 . (119)

The proof of Claim 6.6 is very similar to [53, Lemma 3.1], therefore we include it in the Appendix.

6.2.2. Contact process on an infinite line of stars
We continue by studying the spread of the infection on 𝐻𝐾,ℓ (𝐾 ) . In particular, we prove that the
probability that an infested star passes on the infestation to a neighboring star in 𝐻𝐾,ℓ (𝐾 ) can be made
arbitrarily close to 1 with the right choice of the parameters.
Claim 6.7. For each fixed small 𝜆 > 0 and 𝛿 > 0 there is a 𝐾𝜆, 𝛿 such that the following holds for all
𝐾 ≥ 𝐾𝜆, 𝛿 . Consider the degree-penalized contact process CP 𝑓 ,𝜆 on 𝐻𝐾,ℓ (𝐾 ) with 𝑓 = (𝑥𝑦)𝜇 for some
𝜇 < 1/2. Consider two consecutive stars 𝑣𝑖 , 𝑣𝑖+1 in 𝐻𝐾,ℓ (𝐾 ) in Definition 6.3, with ℓ(𝐾) = 𝑜(𝐾1−2𝜇),
and let 𝑇𝐾 := exp(𝑐1𝜆

2𝐾1−2𝜇) from Claim 6.6. Suppose that 𝑣𝑖 is 𝜆𝐾−𝜇-infested at some time 𝑡0. Then
at time 𝑡0 + 𝑇𝐾 , 𝑣𝑖+1 is 𝜆𝐾−𝜇-infested with probability at least 1 − 𝛿.
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Proof. In Definition 6.3, we denoted the vertices on the path P𝑖 connecting 𝑣𝑖 to 𝑣𝑖+1 by 𝑢 (𝑖)1 , 𝑢 (𝑖)2 , . . . 𝑢 (𝑖)ℓ .
In this proof we will omit the superscript and denote absolute constant factors by c that we specify on
the go. Further, | · | means the Lebesgue measure of a set in R. We define the event and bound its
probability from below using (119):

P(A1 (𝑣𝑖)) := {𝑣𝑖 is 𝜆𝐾−𝜇-infested for all 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇𝐾 ]} ≥ 1 − e𝑐1𝜆
2𝐾 1−2𝜇 ≥ 1 − 𝛿/8, (120)

whenever 𝐾 ≥ log(8/𝛿)𝜆−2/(1−2𝜇) /𝑐1 =: 𝐾0(𝛿). For some 𝑡𝐾 to be determined later, partition the time
interval [𝑡0, 𝑡0 + 𝑇𝐾 ] into 𝑚𝐾 = �𝑇𝐾 /𝑡𝐾 � disjoint consecutive intervals of length 𝑡𝐾 followed by one
potentially shorter time interval, denoted by 𝐽1, . . . 𝐽𝑚𝐾 and 𝐽𝑚𝐾+1 (for the remaining time of length
𝑇𝐾 − 𝑚𝐾 𝑡𝐾 ≤ 𝑡𝐾 ). We would like to use the infested status of the star around 𝑣𝑖 to help transmit the
infection along the path 𝑣𝑖 , 𝑢

(𝑖)
1 , . . . , 𝑢 (𝑖)ℓ . For this we start with establishing that 𝑣𝑖 itself is in an infected

state shortly after the beginning of the time interval 𝐽 𝑗 . While the probability of such an event is not
explicitly mentioned in Claim 6.6, it can be obtained from its proof. Namely, since 𝑣𝑖 is infested at
time 𝑡0 by assumption, it is also infested for all times 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇𝐾 ], and the proof of Claim 6.6
reveals that 𝜉𝑡 (𝑣𝑖) stochastically dominates a two-state Markov chain (say 𝜂𝑡 ) on {0, 1} with transition
rate 𝑞0,1 = 𝜆2𝐾1−2𝜇/(16e2) and 𝑞1,0 = 1. So, regardless of the value of 𝜉𝐽−𝑗 (𝑣𝑖), the value of 𝜉𝐽−𝑗 +1(𝑣𝑖)
stochastically dominates the value of 𝜂1 |{𝜂0 = 0}, which equals 1 with probability more than 1/2.
Formally, for each interval 𝐽 𝑗 = [𝐽−𝑗 , 𝐽+𝑗 ) with 𝑗 ≤ 𝑚𝐾 , let 𝜏𝑗 denote the first time in 𝐽 𝑗 when 𝜉𝑡 (𝑣𝑖) = 1.
Define then the event that

A2(𝐽 𝑗 ) := {𝜏𝑗 ≤ 𝐽−𝑗 + 1}. (121)

Then by the above argument, P(A2 (𝐽 𝑗 )) ≥ 1/2 for all 𝐽 𝑗 , and the Markov property of the process
ensures that A2(𝐽 𝑗 ) 𝑗≤𝑚𝑘 are independent. Then Chernoff’s bound yields that

P(A3 (𝑣𝑖)) := P
(
#{ 𝑗 ≤ 𝑚𝐾 : A2 (𝐽 𝑗 ) holds} ≥ 𝑚𝐾 /4

)
≥ P

(
Bin(𝑚𝐾 , 1/2) ≥ 𝑚𝐾 /4

)
≥ 1 − e−𝑐𝑚𝑘 ,

(122)

for 𝑐 = 1/48. Consider now { 𝑗 : A2 (𝐽 𝑗 ) holds}, and for each such j, call such 𝐽 𝑗 successful if there
is some time 𝑡 ∈ 𝐽 𝑗 when at least 𝜆𝐾1−𝜇/(4𝑒) many leaves in the star-graph of 𝑣𝑖+1 are infected. We
now lower bound the probability of the event that 𝐽 𝑗 is successful conditioned on A2(𝐽 𝑗 ), as follows.
Define a sequence of time-moments 𝑠ℎ := 𝜏𝑗 + ℎ4𝜇 for ℎ ∈ {0, . . . , ℓ + 1}, and for ℎ = 1, . . . , ℓ we
recursively check whether 𝑢ℎ is infected at time 𝑠ℎ , given that 𝑢ℎ−1 is infected at 𝑠ℎ−1 (setting 𝑢0 := 𝑣𝑖),
and that whether 𝑣𝑖+1 =: 𝑢ℓ+1 is infected at time 𝑠ℓ+1 given that 𝑢ℓ is infected at time 𝑠ℓ . We also set
𝑠ℓ+2 := 𝑠ℓ+1+1 and check whether at least 𝜆𝐾1−𝜇/(4𝑒) many leaves in the star of 𝑣𝑖+1 are infected at time
𝑠ℓ+2, given that 𝑣𝑖+1 is infected at time 𝑠ℓ+1. We shall thus bound, for some constant c, the time-interval
lengths and their number as

𝑡𝐾 := 4𝜇 (ℓ + 2) + 2 ≤ (4𝜇 ∨ 2) (ℓ + 3), 𝑚𝐾 = �𝑇𝐾 /𝑡𝐾 � ≥ 𝑐 𝑇𝐾 /ℓ. (123)

Returning to an interval 𝐽 𝑗 being successful, denote the infection status of the set of leaves in the star
around 𝑣𝑖+1 by 𝜉 (𝑖+1)

𝑡
. Then, using the strong Markov property, we can lower bound

P(𝐽 𝑗 successful | A2 (𝐽 𝑗 )) ≥ P
(
|𝜉 (𝑖+1)
𝑠ℓ+2
| ≥ 𝜆𝐾1−𝜇/(4𝑒) | 𝜉𝜏 𝑗 (𝑣𝑖) = 1

)
(124)

≥ P(𝜉𝑠1 (𝑢1) = 1 | 𝜉𝜏 𝑗 (𝑣𝑖) = 1)
ℓ+1∏
ℎ=2
P

(
𝜉𝑠ℎ (𝑢ℎ) = 1 | 𝜉𝑠ℎ−1 (𝑢ℎ−1) = 1

)
(125)

· P(|𝜉 (𝑖+1)
𝑠ℓ+2
| ≥ 𝜆𝐾1−𝜇/(4𝑒) | 𝜉𝑠ℓ+1 (𝑣𝑖+1) = 1). (126)
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On the last factor we shall use Claim 6.6 shortly, but first we bound the probability of each other factor
in (125) from below by requiring that the sender vertex 𝑢ℎ−1 infects 𝑢ℎ during a time interval of length
4𝜇 from below, and then 𝑢ℎ stays infected for the rest of the time-interval. More generally, along an edge
(𝑢, 𝑣), for any two time-moments 𝑡 < 𝑡 ′, with infection rate r along the edge,

P(𝜉𝑡′ (𝑣) = 1 | 𝜉𝑡 (𝑢) = 1) ≥
∫ 𝑡′−𝑡

𝜏=0
(e−𝜏) (𝑟e−𝑟 𝜏)e−( (𝑡′−𝑡)−𝜏)d𝜏 = e−(𝑡

′−𝑡)
(
1 − e−𝑟 (𝑡

′−𝑡)
)
.

On the path (𝑢0, 𝑢1, 𝑢2, . . . , 𝑢ℓ , 𝑢ℓ+1) (with 𝑢0 := 𝑣𝑖 , 𝑢ℓ+1 := 𝑣𝑖+1), we apply this lower bound with
𝑡 ′ − 𝑡 = 4𝜇 along each edge, with rates 𝑟 (𝑢ℎ−1, 𝑢ℎ) = 𝜆/4𝜇 for all ℎ ∈ {2, . . . , ℓ}, and 𝑟 (𝑢0, 𝑢1) =
𝑟 (𝑢ℓ , 𝑢ℓ+1) = 𝜆/(2𝐾)𝜇. For (126), we recall that 𝑠ℓ+2 − 𝑠ℓ+1 = 1, so here (117) directly applies, hence

P(𝐽 𝑗 is successful | A2(𝐽 𝑗 )) ≥ e−1 (1 − e−𝑐1𝜆𝐾
1−𝜇 )

·
(
e−4𝜇 (

1 − e−4𝜇𝜆/(2𝐾 )𝜇 ) )2 ℓ∏
ℎ=1

e−4𝜇
(
1 − e−4𝜇 ·𝜆/4𝜇

)
.

Then we may apply that 1 − e−𝑥 ≥ 𝑥/2 for all 𝑥 < 1/2 to arrive at

P(𝐽 𝑗 is successful | A2(𝐽 𝑗 )) ≥ (1 − e−𝑐1𝜆𝐾
1−𝜇 )𝑒−4𝜇 (ℓ+2)−1 (𝜆/2)ℓ (2𝐾)−2𝜇

≥ 𝑐(𝑐2𝜆)ℓ𝐾−2𝜇 =: 𝑞𝐾 ,
(127)

for some constant 𝑐 > 0 and 𝑐2 := e−4𝜇/2, as long as (1 − e−𝑐1𝜆𝐾
1−𝜇 ) ≥ 1/2 which is ensured since we

already assumed 𝐾 ≥ 𝐾0(𝛿) at (120). Since the time-intervals are disjoint, on A3(𝑣𝑖) from (122), by
the strong Markov property, the indicators of the events {𝐽 𝑗 successful} stochastically dominate 𝑚𝐾 /4
independent trials (with 𝑚𝐾 from (123)), each with success probability 𝑞𝐾 from (127). Let A4(𝑣𝑖) be
the event that at least one of the intervals is successful. Then

P(A4 (𝑣𝑖) | A1(𝑣𝑖) ∩A3(𝑣𝑖)) ≥ 1 − (1 − 𝑞𝐾 )𝑚𝐾 /4 ≥ 1 − e−𝑚𝐾𝑞𝐾 /4, (128)

where we used that 1 − 𝑥 ≥ e−𝑥/2 for all 𝑥 < 1/4, which is applicable since 𝑞𝐾 in (127) tends to 0
with K. We now analyze the exponent 𝑚𝐾 𝑞𝐾 as a function of K on the rhs of (128).The assumption in
this claim is that ℓ(𝐾) = 𝑜(𝐾1−2𝜇) (in contrast to (109) which is more specific). So, we may assume
wlog that ℓ(𝐾) can be written in the form

ℓ(𝐾) := 𝑔̃(𝐾)𝐾1−2𝜇 for 𝑔̃(𝐾) → 0 as 𝐾 →∞. (129)

Recalling from (119) that 𝑇𝐾 = exp(𝑐1𝜆
2𝐾1−2𝜇), and 𝑚𝐾 ≥ 𝑐𝑇𝐾 /ℓ(𝐾) from (123), as well as (127),

we obtain using the fact that 1/ℓ(𝐾) ≥ 𝐾−(1−2𝜇) :

𝑚𝐾 𝑞𝐾 ≥ 𝑐(𝑇𝐾 /ℓ) · (𝑐2𝜆)ℓ𝐾−2𝜇 = 𝑐 exp
(
𝑐1𝜆

2𝐾1−2𝜇 + 𝑔̃(𝐾)𝐾1−2𝜇 log(𝑐2𝜆)
)
𝐾−1

= 𝑐 exp
(
𝜆2𝐾1−2𝜇 (𝑐1 − 𝑔̃(𝐾) | log(𝑐2𝜆) |/𝜆2) − log(𝐾)

)
.

We now argue that for any small fixed 𝜆 > 0 we can choose K sufficiently large so that the rhs tends to
infinity. First choose 𝐾 (𝑔, 𝜆) so large that for all 𝐾 ≥ 𝐾 (𝑔, 𝜆) the inequality

𝑔̃(𝐾) | log(𝑐2𝜆) |/𝜆2 < 𝑐1/2
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holds. This is doable since 𝑔̃(𝐾) → 0. For all 𝐾 > 𝐾 (𝑔, 𝜆) we thus have

𝑚𝐾 𝑞𝐾 ≥ 𝐶 exp
(
𝜆2𝐾1−2𝜇𝑐1/2 − log(𝐾)

)
.

We now further increase 𝐾 (𝑔, 𝜆) if necessary so that 𝑚𝐾 𝑞𝐾 ≥ log(8/𝛿)/𝑐. (We comment that by wlog
assuming a monotonically decreasing 𝑔̃, the minimal 𝐾 (𝑔, 𝜆) can be chosen as a constant multiple of

𝑔̃ (−1) (𝑐1𝜆
2/(2| log(𝑐2𝜆) |)

)
∨ 𝜆−(2+𝜀)/(1−2𝜇)

for some 𝜀 > 0, for all 𝜆 sufficiently small.) Returning to (128), and using (120), (122) we see that

P(A4 (𝑣𝑖) | A3(𝑣𝑖) ∩A1(𝑣𝑖)) ≥ 1 − 𝛿/8 and P(A4 (𝑣𝑖) ∩A3(𝑣𝑖) ∩A1(𝑣𝑖)) ≥ 1 − 𝛿/2.

On the event A4 (𝑣𝑖) ∩A3(𝑣𝑖) ∩A1 (𝑣𝑖), at least one 𝐽 𝑗 is successful, and by (124), that means that at
least 𝜆𝐾1−2𝜇/(4𝑒) leaves in the star of 𝑣𝑖+1 are infected at some time in the interval [𝑡0, 𝑡0 +𝑇𝐾 ]. Using
the strong Markov property, and applying now (119), 𝑣𝑖+1 stays 𝜆𝐾−𝜇 infested during the rest of the
time interval [𝑡0, 𝑡0 + 𝑇𝐾 ] with probability 1 − exp(−𝑐1𝜆

2𝐾1−2𝜇) ≥ 1 − 𝛿/4 by our initial assumption
that 𝐾 ≥ 𝐾0(𝛿). This finishes the proof. �

6.2.3. Local survival through renormalization
Having established Lemma 6.4 and Claim 6.7 we are in a position to prove Theorems 2.1 and 2.5(a) by
showing that the embedded structure 𝐻𝐾,ℓ (𝐾 ) sustains the infection (locally) indefinitely with positive
probability. This is formalized below in Lemma 6.8. The proof of this has two steps. The first step is a
time-renormalization. Based on the results of Claim 6.7, we prove that on 𝐻𝐾,ℓ (𝐾 ) the infection moves
between neighboring centers with large enough probability on a specified discrete time-scale, leading
to a renormalized version of the contact process on N. The second step is to establish a relationship
between this renormalized contact process and a certain oriented percolation model, which then can
be analyzed by techniques from percolation theory, involving a Peierls-type argument. This connection
was already used in [24] to derive various results for the contact process on Z.

Lemma 6.8. For any fixed 𝜇 < 1/2 and 𝜆 > 0, there is a 𝐾0(𝜆) such that the following holds for all
𝐾 > 𝐾0(𝜆). Let 𝐻 = 𝐻𝐾,ℓ (𝐾 ) be the graph defined in Definition 6.3 with ℓ(𝐾) = 𝑜(𝐾1−2𝜇) and with 𝑣1
being the center of its first star. Consider the penalty function 𝑓 (𝑥, 𝑦) = (𝑥𝑦)𝜇. Then both the contact
process CP 𝑓 ,𝜆 (𝐻,1𝑣1) and BRW 𝑓 ,𝜆 (𝐻,1𝑣1) exhibit local survival with positive probability.

Proof. By the stochastic domination between CP 𝑓 ,𝜆 (𝐻,1𝑣1) and BRW 𝑓 ,𝜆 (𝐻,1𝑣1) in Lemma 3.8, it is
enough to prove the statement for CP 𝑓 ,𝜆 (𝐻,1𝑣1). For fixed𝜆 > 0, we choose a small 𝛿 > 0 specified later.
Then we choose K large enough such that 𝐾 ≥ 𝐾𝜆, 𝛿 as in Claim 6.7. Finally, let 𝑇𝐾 = exp(𝑐1𝜆

2𝐾1−2𝜇)
as in Claim 6.6. Then, Claim 6.7 yields the following: for any 𝑣𝑖 in 𝐻𝐾,ℓ (𝐾 ), if 𝑣𝑖 is 𝜆𝐾−𝜇-infested at
some time 𝑡0, then 𝑣𝑖+1 is 𝜆𝐾−𝜇-infested by 𝑣𝑖 at time 𝑡0+𝑇𝐾 with probability at least 1−𝛿, and the same
holds for 𝑣𝑖−1 when 𝑖 ≥ 2. (However, these two events are not necessarily independent.) Throughout
this proof, the term “infested” will refer to “𝜆𝐾−𝜇-infested.”

Now we construct an oriented percolation model, which we couple with CP 𝑓 ,𝜆 (𝐻,1𝑣1) so that it
dominates from below CP 𝑓 ,𝜆 (𝐻,1𝑣1) restricted to the vertices {𝑣1, 𝑣2, . . .} at times {𝑇𝐾 , 2𝑇𝐾 , . . .}. Let
H be an oriented graph on the vertex set

𝑉H = {(𝑥, 𝑦) ∈ Z+ × Z+ : 𝑥 + 𝑦 even}

with the oriented (equivalently, directed) edge set

𝐸H = {((𝑥1, 𝑦1), (𝑥2, 𝑦1 + 1)) ∈ 𝑉H ×𝑉H : |𝑥2 − 𝑥1 | = 1}. (130)
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Observe that H is isomorphic to a subgraph (a cone) of Z+ ×Z+ as a graph but the edges are “diagonal”
and have Euclidean length

√
2. In H, we will refer to the vertex sets {(𝑥, 1)}𝑥∈Z+ and {(1, 𝑦)}𝑦∈Z+ as

the x- and y-axis, respectively. For every oriented edge 𝑒 = ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) – where 𝑦2 = 𝑦1 + 1 and
𝑥2 = 𝑥1 ± 1 by (130) – define the event A𝑒 = A(𝑥1 ,𝑦1) , (𝑥2 ,𝑦2) that either 𝑣𝑥1 is not infested at time 𝑦1𝑇𝐾 ,
or 𝑣𝑥1 is infested at time 𝑦1𝑇𝐾 and it infests 𝑣𝑥2 by time 𝑦2𝑇𝐾 in the sense of Claim 6.7. The same claim
shows that

P(A𝑒) ≥ 1 − 𝛿 for every 𝑒 ∈ 𝐸H. (131)

Now let 𝜂 : 𝑉H → {0, 1} be a function on the vertices of H defined recursively as

𝜂((𝑥, 1)) = 1{𝑥 = 1},

𝜂((𝑥, 𝑦 + 1)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝜂(𝑥 − 1, 𝑦) = 1 and A(𝑥−1,𝑦) , (𝑥,𝑦+1) holds, or

𝜂(𝑥 + 1, 𝑦) = 1 and A(𝑥+1,𝑦) , (𝑥,𝑦+1) holds,
0 otherwise.

(132)

Define the event

I1 = {𝑣1 is infested at time 𝑇𝐾 in CP 𝑓 ,𝜆 (𝐻,1𝑣1)}, (133)

which exactly corresponds to 𝜂((1, 1)) = 1. Then, conditioned on I1, 𝜂(𝑥, 𝑦) = 1 exactly when there
is an “infestation” path 𝜋 of length 𝔩(𝜋) = 𝑦 through stars (𝑣𝜋1 = 𝑣1, 𝑣𝜋2 , . . . , 𝑣𝜋𝑦 = 𝑣𝑥) so that 𝑣𝜋 𝑗 is
infested by 𝑣𝜋 𝑗−1 at time 𝑗𝑇𝐾 . So, on I1,

(
𝜂(𝑥, 𝑦)

)
(𝑥,𝑦) ∈𝑉H

𝑑
≤

(
𝜉𝑦𝑇𝐾 (𝑣𝑥)

)
(𝑥,𝑦) ∈𝑉H

. (134)

We now define a subgraph of H. Let us declare each edge 𝑒 ∈ 𝐸H open if and only if 1{A𝑒} = 1,
closed otherwise, and denote the graph of open edges by 𝐺 (H). This is a percolation model, where the
outgoing edges from a vertex (𝑥, 𝑦) are dependent, however, the outgoing edges from distinct vertices
are independent due to the strong Markov property and Claim 6.7. The open connected component of
(1, 1) is

C(1,1) = {(𝑥, 𝑦) ∈ 𝑉H : there is an oriented path of open edges from (1, 1) to (𝑥, 𝑦)}. (135)

Then, comparing C(1,1) to {(𝑥, 𝑦) : 𝜂(𝑥, 𝑦)} = 1} in (132), which is defined recursively as precisely
those vertices that are accessible from (1, 1) via an oriented path of open edges in H, we obtain that
{(𝑥, 𝑦) : 𝜂(𝑥, 𝑦)} = 1} = C(1,1) .

Now we carry out a Peierls-type argument to prove local survival of CP 𝑓 ,𝜆. Due to the coupling
and stochastic domination in (134), and (135), it is enough to show that with positive probability C(1,1)
contains infinitely many vertices of the form (1, 𝑦). This implies for CP 𝑓 ,𝜆 that 𝑣1 is infested at times
𝑦𝑇𝐾 , for infinitely many y, which guarantees local survival. Let

𝑌max = sup{𝑦 ∈ Z+ : (1, 𝑦) ∈ C(1,1) }. (136)

We will prove that for small enough 𝛿 > 0 in (131) it holds that P(𝑌max = ∞) > 3/4.
Assume to the contrary that {𝑌max = 𝑘} for some 𝑘 < ∞. We now construct a path of length k,

which starts from the y-axis next to (1, 𝑘), and forms a part of the boundary of C (1, 1) containing
enough closed edges in H. Define for each edge 𝑒 = ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) ∈ 𝐸H its (unoriented) dual
𝑒′ = {(𝑥1, 𝑦2), (𝑥2, 𝑦1)}. The dual edges connect vertices on the dual lattice H′ := {(𝑥, 𝑦) ∈ Z+ × Z+ :
𝑥 + 𝑦 odd}. We declare the dual edge 𝑒′ closed if e is closed, and open if e is open. We then define the
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Figure 3. This example shows a finite oriented cluster of the origin C(1,1) : filled black circles are vertices
in C(1,1) while empty black circles are vertices that do not belong to C(1,1) . The oriented, black edges
are open in H, while the closed edges of H are not drawn. The red contour and red vertices belong
to the dual lattice H′. Since 𝑌max = 5, the dual contour 𝜋𝜕 starts from (1, 6), and follows the closed
dual edges colored red, ending at (2, 1). Edges of H pointing out of C(1,1) are all closed (not drawn),
whereas edges pointing into C(1,1) may be open – such as the edge ((5, 3), (4, 4)) – or closed.

(outer edge-) boundary of C(1,1) as the set of dual edges

𝜕C(1,1) = {𝑒′ : exactly one of the two endpoints of 𝑒 is in C(1,1) }. (137)

Since H is a cone in Z+ × Z+, and C(1,1) is connected per definition, 𝜕C(1,1) is a union of connected
contours in H′, which along with (parts of) the x- and y-axes encircle C(1,1) . Assume now that the event
{𝑌max = 𝑘} occurs. This implies that (1, 𝑘) ∈ C(1,1) and (1, 𝑘 + 2) ∉ C(1,1) . So, define the edges and
their duals

𝑒𝑘,1 = ((1, 𝑘), (2, 𝑘 + 1)), 𝑒′𝑘,1 = {(1, 𝑘 + 1), (2, 𝑘)},
𝑒𝑘,2 = ((2, 𝑘 + 1), (1, 𝑘 + 2)), 𝑒′𝑘,2 = {(1, 𝑘 + 1), (2, 𝑘 + 2)}.

Now, if (2, 𝑘 + 1) ∉ C(1,1) , then since (1, 𝑘) ∈ C(1,1) , the dual edge 𝑒′𝑘,1 ∈ 𝜕C(1,1) (and 𝑒′𝑘,2 ∉ 𝜕C(1,1) ).
In this case, define 𝑒𝑘 = 𝑒𝑘,1. On the other hand, if (2, 𝑘 + 1) ∈ C(1,1) , then since (1, 𝑘 + 2) ∉ C(1,1) , the
dual edge 𝑒′𝑘,2 ∈ 𝜕C(1,1) (and 𝑒′𝑘,1 ∈ 𝜕C(1,1) ). In this case, define 𝑒𝑘 = 𝑒𝑘,2. In both of these cases, the
vertex (1, 𝑘 + 1) is the starting point of the dual 𝑒′𝑘 , which is in 𝜕C(1,1) , and the other dual edge with
endpoint (1, 𝑘 +1) is not in 𝜕C(1,1) . Then we start exploring 𝜕C(1,1) , starting from 𝑒′1 := 𝑒′𝑘 by following
the dual edges in this connected component of 𝜕C(1,1) . That is, the next dual edge in the path, denoted
by 𝑒′2, is incident to (2, 𝑘) if 𝑒′1 = {(1, 𝑘 + 1), (2, 𝑘)} and to (2, 𝑘 + 2) if 𝑒′1 = {(1, 𝑘 + 1), (2, 𝑘 + 2)}.
Then we continue from the other endpoint of 𝑒′2, and so on. We continue this exploration process either
indefinitely (if C(1,1) is infinite), or until we reach the x-axis (if C(1,1) is finite). As we explain next, these
are the only two possible outcomes. For an example of the second outcome, see Figure 3.

Denote by 𝜋𝜕 = (𝑒′1, 𝑒
′
2, . . .) the path (as a sequence of dual edges) obtained this way. It is possible

that 𝜋𝜕 visits the y-axis above (1, 𝑘 + 1) (say at (1, 𝑦′) with 𝑦′ > 𝑘), but since 𝑌max = 𝑘 , this can only
happen when (2, 𝑦′) ∈ C(1,1) and (1, 𝑦′ + 1) ∉ C(1,1) , and then we can always continue the path 𝜋𝜕 by
traversing the dual edge {(1, 𝑦′), (2, 𝑦′ + 1)}. However, 𝜋𝜕 cannot visit the y-axis below (1, 𝑘), since
then we would have encircled the entire C(1,1) , starting from (1, 𝑘 + 1), without containing (1, 1), a
contradiction. Hence, one of the two remaining cases happens. We either find an infinite path 𝜋𝜕 in
𝜕C(1,1) , and then we set 𝜋𝜕 (𝑘) to be the sequence of its first k edges. Or, we find a finite path 𝜋𝜕 that
reaches the x-axis, in particular, the dual vertex (2, 1). This path has length at least k, since the path
starts at (1, 𝑘 + 1), and the y coordinate only changes by ±1 between consecutive vertices on the path.
In this case we again set 𝜋𝜕 (𝑘) to be the sequence of the first k edges of 𝜋𝜕.
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We now categorize edges of 𝜋𝜕 (𝑘) (all are in 𝜕C(1,1) ) as follows. Recall that edges of H in (130) are
oriented (directed), and recall (137). Given C(1,1) let us call the dual edge 𝑒′ ∈ 𝜕C(1,1) an outward dual
edge, if for the edge 𝑒 = ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) it holds that (𝑥1, 𝑦1) ∈ C(1,1) and (𝑥2, 𝑦2) ∉ C(1,1) and let us
call 𝑒′ an inward dual edge if (𝑥1, 𝑦1) ∉ C(1,1) and (𝑥2, 𝑦2) ∈ C(1,1) . Per definition of C(1,1) in (135), the
outward edges and their duals are all closed. However, C(1,1) does not determine the status of inward
dual edges.

We now prove that for any realization of C(1,1) , at least half of the edges of 𝜋𝜕 (𝑘) are outward dual
edges, and hence closed. Let us introduce the notation 𝜋0 = (1, 𝑘 +1), 𝜋1, 𝜋2, . . . , 𝜋𝑘 , . . . for the vertices
of the path 𝜋𝜕 in order, and define the directed edge 𝑒′𝑖 = (𝜋𝑖−1, 𝜋𝑖) for all 𝑖 ≥ 1 (the directed version
of 𝑒′𝑖). Then for all outward dual edges 𝑒′𝑖 ∈ 𝜋𝜕, 𝑒′𝑖 is pointing to the right (in the direction of increasing x
coordinate), and for all inward dual edges 𝑒′𝑖 ∈ 𝜋𝜕, 𝑒′𝑖 is pointing to the left (in the direction of decreasing
x coordinate). Since 𝜋𝜕 (𝑘) starts from (1, 𝑘 + 1), which is part of the y-axis, and remains in the positive
quadrant, at least half of its dual edges have to be directed to the right, thus, duals of outward edges.
Hence, at least 𝑘/2 dual edges in 𝜋𝜕 (𝑘) are closed. Further, since every vertex in 𝑉H has at most two
outgoing (nondual) edges, in every possible realization (𝑒′1, 𝑒

′
2, . . . , 𝑒

′
𝑘 ) of 𝜋𝜕 (𝑘) we can find 𝑘/4 edges

that are all closed and that their oriented nondual edges in H all start from different vertices.
By (131), the probability that a given edge (and its dual) is closed is at most 𝛿. As mentioned

before (135), the status of different edges are not independent, however, A(𝑥1 ,𝑦1) , (𝑥2 ,𝑦2) is independent
of A(𝑥′1 ,𝑦′1) , (𝑥′2 ,𝑦′2) if (𝑥1, 𝑦1) ≠ (𝑥 ′1, 𝑦

′
1). That is, two edges 𝑒1, 𝑒2 ∈ 𝐸H are open or closed independently

if their starting points are distinct.
We call a given connected path (𝑒′1, . . . , 𝑒

′
𝑘 ) of dual edges eligible if it is a possible realization of

𝜋𝜕 (𝑘) (of which one requirement is that one of the endpoints of 𝑒′1 is (1, (𝑘 + 1))). Then, for all such
(𝑒′1, 𝑒

′
2, . . . , 𝑒

′
𝑘 ),

P
(
𝜋𝜕 (𝑘) = (𝑒′1, . . . , 𝑒

′
𝑘 )

)
≤ 𝛿𝑘/4. (138)

Next, we upper bound the number of eligible paths (𝑒′1, . . . , 𝑒
′
𝑘 ). Since (𝑒′1, . . . , 𝑒

′
𝑘 ) is a path starting

from (1, 𝑘 + 1) on the dual lattice H′ isomorphic to a quadrant of Z2, each of the k steps in the
exploration of 𝜋𝜕 (𝑘) can be taken in one of at most three directions. This yields that the number of
possible trajectories is at most 3𝑘 . Therefore, by a union bound,

P(𝑌max = 𝑘) ≤ P&'(
⋃

(𝑒′1 ,...,𝑒
′
𝑘
) eligible

{𝜋𝜕 (𝑘) = (𝑒′1, . . . , 𝑒
′
𝑘 )}

)*+ ≤ 3𝑘𝛿𝑘/4. (139)

Then (139) implies that

P(𝑌max < ∞) =
∞∑
𝑘=1
P(𝑌max = 𝑘) ≤

∞∑
𝑘=1

3𝑘𝛿𝑘/4 < 1/4, (140)

whenever 𝛿 ∈ (0, (1/15)4). Consequently, P(𝑌max = ∞) > 3/4. Finally, recalling I1 from (133),
P(I1) > 1/3 for large enough K by Claim 6.6. By the stochastic dominance in (134), it follows from a
union bound that

P
(
CP 𝑓 ,𝜆 (𝐻,1𝑣1) survives locally at 𝑣1

)
≥ P

(
I1 ∩ {𝑌max = ∞}

)
≥ 1 − 2/3 − 1/4 > 0.

This proves local survival of CP 𝑓 ,𝜆 (𝐻,1𝑣1) with positive probability. �

Proof of Theorem 2.1. Lemma 6.4 states that for some 𝑀 ≥ 1 there exists 𝐾1 such that for 𝐾 > 𝐾1 and
ℓ(𝐾) as in (109) 𝐻𝐾,ℓ (𝐾 ) can be M-embedded in T almost surely. Set 𝜆̄ = 𝜆/𝑀2𝜇 and let 𝐾0(𝜆̄) be given
by Lemma 6.8. Now let 𝐾 > max(𝐾0 (𝜆̄), 𝐾1). Then Lemma 6.4 yields that 𝐻𝐾,ℓ (𝐾 ) can be M-embedded
in T almost surely. Let 𝑣1 be the center of the first star in the embedded 𝐻𝐾,ℓ (𝐾 ) . Recalling (108) in
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Definition 6.3, we observe that the process CP 𝑓 ,𝜆 (T ,1𝑣1) restricted to the vertices of the embedded
𝐻𝐾,ℓ (𝐾 ) is stochastically dominated from below by the process CP 𝑓 ,𝜆̄ (𝐻𝐾,ℓ (𝐾 ) ,1𝑣1) on a standalone
copy of 𝐻𝐾,ℓ (𝐾 ) . Combining this with Lemma 6.8 and 𝐾 ≥ 𝐾0(𝜆̄) implies that CP 𝑓 ,𝜆̄ (𝐻𝐾,ℓ (𝐾 ) ,1𝑣1)
survives locally with positive probability. This, along with the fact that with positive probability,
CP 𝑓 ,𝜆 (T ,1∅) infects 𝑣1 at some point in time finishes the proof. �

Proof of Theorem 2.5(a). This is an easy consequence of Theorem 2.1 by stochastic domination, noting
that max(𝑑𝑢 , 𝑑𝑣 )𝜇 ≤ (𝑑𝑢𝑑𝑣 )𝜇. �

7. The configuration model: k-cores sustain the infection when stars do not

In this section we will prove part (b) of Theorem 2.8. A crucial difference between the classical contact
process and the degree-dependent version in this regime is that star-graphs do not sustain the infection,
in fact they heal quickly when 𝜇 > 1/2, by Claim 6.6. However, we know from Section 6.1 that the
approximating Galton-Watson tree shows global survival (only), which suggests long survival on the
configuration model. So we set out to find a new structure – a subgraph – embedded in the configuration
model that sustains the degree-dependent contact process for a long time. Generally speaking, any
(sparse) graph can sustain the infection linearly long in its number of edges (or vertices), hence to prove
exponentially long survival in n we aim for this subgraph to have linearly many vertices in n.

To find such a subgraph, we need to take into account that vertices that have either too high or too
low degree cannot sustain the infection, either because the penalty f on them is too high or because
𝜆 is assumed to be close to 0. The subgraph we found is the k-core – a maximal subgraph of the
configuration model where each vertex has degree at least k inside the same subgraph – but with a twist:
in the original configuration model with fat-tailed degrees, the k-core contains vertices of very high
degree (e.g., polynomials of n). However, the degree-dependent CP near these vertices would have too
high penalty f, so we need to exclude them from the k-core.

As a result we look at the k-core of not the original configuration model, but the subgraph obtained
after removing all vertices of degree above a threshold value M, where now M is a constant depending
only on k but not on the total number of vertices n. It is a priori unclear whether such a low truncation
value even produces a connected graph, let alone contains a linear-sized k-core (i.e., containing at least
some constant times n vertices). So our first step is to study the dependence between 𝑀 = 𝑀 (𝑘) and k so
that a linear sized k-core still exists in the configuration model where all vertices of degree above M are
removed. As we will see, the exact relation between k and 𝑀 (𝑘) will be crucial on whether the infection
manages to spread: indeed, any vertex in the k-core can spread to (typically) k vertices while it (typically)
experiences rate 𝜆𝑀 (𝑘)−𝜇 coming from the original degrees. Intuitively, CP will survive on the k-core
if 𝑘𝑀 (𝑘)−𝜇 is growing with k, which limits the value of 𝑀 (𝑘) to a polynomial of k. We will show that
“essentially the lowest” power of k we can achieve so that a linear k-core exists is 𝑀 (𝑘) = 𝑘 (1+𝑜 (1))/(3−𝜏) ,
which then readily yields the 𝜇 < 3 − 𝜏 − 𝑜(1) criterion for survival in Theorem 2.8.

After finding the linear-sized k-core on vertices of degree at most 𝑀 (𝑘), we show that CP 𝑓 ,𝜆 survives
on this k-core. For this step, our proof is a nontrivial adaptation of the proof of [56, Theorem 1.2(b)],
which shows long survival in the original contact process model on (𝑑 + 1)-regular random graphs,
when 𝜆 is above the lower critical 𝜆1(T𝑑) on d-regular trees needed for global survival [57]. However, in
our case we have 𝜆 arbitrarily close to 0. Fortunately, we can choose k as a function of 𝜆 that makes the
process locally supercritical. This also makes the proof different from that in [56] even beyond finding
the k-cores. First, we define the k-core of a graph.

Definition 7.1. Let G be any simple, finite graph. For a fixed positive integer k, the k-core of G is the
largest induced subgraph Core𝑘 (𝐺) of G such that every vertex in Core𝑘 (𝐺) has degree at least k within
Core𝑘 (𝐺).

It is not hard to see that the k-core Core𝑘 (𝐺) in Definition 7.1 is well-defined – but may be empty –
by the following algorithm producing it. First, delete all vertices of G that have degree less than k along
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with their incident edges. Then do the same with the resulting graph, repeatedly, until no new vertex is
deleted. The output of this algorithm is the unique largest induced subgraph of G with all degrees at
least k. Note that the k-core of a graph might be empty or may contain more than one component.

7.1. The subgraph spanned on low-degree vertices contains a k-core

Our first goal is to prove the existence of a k-core in the configuration model after we remove all vertices
with too high degrees. Throughout this section, we work with the configuration model CM(𝑑𝑛) =: 𝐺
in Definition 1.9 on the degree sequence 𝑑𝑛 = (𝑑1, . . . , 𝑑𝑛) that satisfies the regularity assumptions in
Assumption 1.10, and the weak power-law empirical degrees of Assumption 1.11 with exponent 𝜏 > 2
and error 𝜀 > 0.

We now set up the procedure of removing all vertices above some degree M and the edges attached
to those in CM(𝑑𝑛). This is often called a targeted attack on the graph. Because the graph is formed
by a random matching, and the half-edges that have one endpoint at a vertex with degree larger than M
and another endpoint at a vertex with degree at most M are also removed, the degrees in the remaining
graph are random.

Definition 7.2 (Configuration model under targeted attack). Consider the configuration model CM(𝑑𝑛)
in Definition 1.9 on the degree sequence 𝑑𝑛 = (𝑑1, . . . , 𝑑𝑛). Fix some value 𝑀 ≥ 0. Denote

V≤𝑀 := {𝑖 ≤ 𝑛 : 𝑑𝑖 ≤ 𝑀}, 𝑉≤𝑀 := |V≤𝑀 |, 𝐻≤𝑀 :=
𝑛∑
𝑖=1

𝑑𝑖1{𝑑𝑖≤𝑀 },

V>𝑀 := {𝑖 ≤ 𝑛 : 𝑑𝑖 > 𝑀}, 𝑉>𝑀 := |V≥𝑀 |, 𝐻>𝑀 :=
𝑛∑
𝑖=1

𝑑𝑖1{𝑑𝑖>𝑀 },

(141)

Let 𝐺𝑛 [V≤𝑀 ] denote the (random) subgraph of CM(𝑑𝑛) that is spanned on the vertex set V≤𝑀 . For
any 𝑣 ∈ V≤𝑀 , we denote the random degree of v in 𝐺𝑛 [V≤𝑀 ] by 𝑑𝑣 , and we write 𝑛̃𝑖 for the number of
vertices with degree i in 𝐺𝑛 [V≤𝑀 ]. For any 𝑧 ≥ 0 define

𝐹𝑛,𝑀 (𝑧) :=
1

𝑉≤𝑀

∑
𝑣 ∈V≤𝑀

1{𝑑𝑖≤𝑧 } =
1

𝑉≤𝑀

∑
𝑖≤𝑧

𝑛̃𝑖 , (142)

and let 𝐷𝑛,𝑀 denote a random variable with cdf 𝐹𝑛,𝑀 (𝑧).

Observe that 𝐹𝑛,𝑀 (𝑧) is the new empirical distribution of the degrees, after the targeted attack. This
distribution is random, caused by the random matching that generated the graph before the attack. The
quantities in (141) all depend on n, which we suppress in notation. We are ready to state the existence
of the k-core in the configuration model under attack.

Theorem 7.3. Consider the configuration model CM(𝑑𝑛) =: 𝐺𝑛 in Definition 1.9 on the degree sequence
𝑑𝑛 = (𝑑1, . . . , 𝑑𝑛) that satisfies the regularity assumptions in Assumption 1.10, and the weak power-law
empirical degrees of Assumption 1.11 with exponent 𝜏 ∈ (2, 3) and error 𝜀 > 0. Let

𝜂min :=
(3 − 𝜏)

(3 − 𝜏) − 𝜀(𝜏 − 1) ·
1 + 𝜀
1 − 𝜀 − 1, (143)

and assume 𝜏, 𝜀 are such that 𝜂min ∈ [0,∞). Fix a large enough positive integer k, and for any 𝜂 > 𝜂min
let 𝑀 := 𝑀𝑘,𝜂 = 𝑘 (1+𝜂)/(3−𝜏) . Let 𝐺𝑛 [V≤𝑀 ] be the configuration model under attack in Definition 7.2,
and denote by Core𝑘 (𝐺𝑛 [V≤𝑀 ]) its k-core. Then there exists some 𝜌 = 𝜌(𝑘) > 0 such that

lim
𝑛→∞
P

(
|Core𝑘 (𝐺𝑛 [V≤𝑀 ]) | ≥ 𝜌𝑛

)
= 1, (144)
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Further, conditioned on its vertex set and degree sequence, Core𝑘 (𝐺𝑛 [V≤𝑀 ]) is itself a configuration
model.

Remark 7.4 (Asymptotics of 𝜌). The proof of Theorem 7.3 shows that there exists a constant 𝑐′ > 0
such that

𝜌(𝑘) > 𝑐′𝑘
− (𝜏−1) (1+𝜀)
(2−(𝜏−1) (1+𝜀)) . (145)

Note that in this lower estimate only the lower bound exponent in Assumption 1.11 appears. We
comment that 𝜂min ∈ [0,∞) implies that 𝜀 < (3 − 𝜏)/(𝜏 − 1), which is exactly the condition that the
lower bound on the tail-exponent, (𝜏 − 1) (1 + 𝜀) in (9), stays strictly below 2. Hence a k-core exists for
all k when the estimates on the empirical power law are so that the tail is always heavier than a power
law with infinite variance. Without the truncation at M, that is, for pure power laws, such a result is
already known, see [37] and [28]. Here we specify the truncation value M for which the result stays
valid. We comment that when 𝜀 = 0 in Assumption 1.11, then our proof can be strengthened so that
𝑀 = Θ(𝑘1/(3−𝜏) ) guarantees the existence of a large k-core after the targeted attack.

We will prove Theorem 7.3 below using the following two lemmas and the results of Janson and
Luczak [37] that we will state soon. The first lemma says that the random empirical distribution of
𝐺𝑛 [V≤𝑀 ] converges in probability, assuming the regularity assumptions on the original degrees. We
use notation from Definition 7.2. Given the degree sequence 𝑑𝑛, 𝐷𝑛 stands for the random variable that
follows the empirical distribution 𝐹𝑛 of 𝑑𝑛 in (8), and D is the random variable following the limiting
distribution in Assumption 1.10. Define then

𝑞𝑛,𝑀 := E[𝐷𝑛1{𝐷𝑛≤𝑀 }]/E[𝐷𝑛], 𝑞𝑀 := E[𝐷1{𝐷≤𝑀 }]/E[𝐷], (146)

and we collect the errors below M between the n-dependent degree distribution 𝐷𝑛 and the limit D as
follows:

𝛿𝑛 := max
{
|𝑞𝑛,𝑀/𝑞𝑀 − 1|, | (1 − 𝑞𝑛,𝑀 )/(1 − 𝑞𝑀 ) − 1|,

max
𝑖≤𝑀,P(𝐷=𝑖)=0

P(𝐷𝑛 = 𝑖), max
𝑖≤𝑀,P(𝐷=𝑖)≠0

|P(𝐷𝑛 = 𝑖)/P(𝐷 = 𝑖) − 1|
}
,

(147)

with 𝛿𝑛 → 0 when Assumption 1.10 holds. Typically, for M large 𝑞𝑀 is close to 1 so the relative error
of 1− 𝑞𝑀,𝑛 to 1− 𝑞𝑀 is driving the maximum in the first row, while the second row is only over values
𝑖 ≤ 𝑀 .

Lemma 7.5 (Degree distribution of CM under attack). Consider the configuration model CM(𝑑𝑛) in
Definition 1.9 on the degree sequence 𝑑𝑛 = (𝑑1, . . . , 𝑑𝑛) that satisfies the regularity assumptions in
Assumption 1.10. Fix any 𝑀 > 0 constant, and let 𝑞𝑛,𝑀 , 𝑞𝑀 , 𝛿𝑛 as in (146) and (147). Define the
following random variable 𝐷𝑀 : for all 𝑖 ≤ 𝑀 , let

𝑝𝑀 (𝑖) := P(𝐷𝑀 = 𝑖) =
𝑀∑
𝑗=𝑖

P(𝐷 = 𝑗)
P(𝐷 ≤ 𝑀)

(
𝑗

𝑖

)
𝑞𝑖𝑀 (1 − 𝑞𝑀 )

𝑗−𝑖

= P(Bin(𝐷, 𝑞𝑀 ) = 𝑖 | 𝐷 ≤ 𝑀).

(148)

Let 𝑋𝑛,𝑀 (𝑖) := 𝑛̃𝑖/𝑉≤𝑀 = P(𝐷𝑛,𝑀 = 𝑖 | 𝐺𝑛 [V≤𝑀 ]) be the random empirical degree distribution of
𝐺𝑛 [V≤𝑀 ]. Then for all 𝜀𝑛 > 0 that satisfies 𝜀𝑛 � max{𝛿𝑛, 1/

√
𝑛},

P

(
sup
𝑖≤𝑀

��𝑋𝑛,𝑀 (𝑖) − 𝑝𝑀 (𝑖)
�� ≥ 𝜀𝑛

)
= 𝑂

(
𝑀3

𝑛𝜀2
𝑛

)
→ 0. (149)
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Further, lim𝑛→∞ E[𝐷𝑛,𝑀 | 𝐺𝑛 [V≤𝑀 ]] = E[𝐷𝑀 ] in probability. So, the empirical degree distribution
𝐷𝑛,𝑀 of 𝐺𝑛 [V≤𝑀 ] satisfies Assumption 1.10 with probability tending to 1. Furthermore, 𝐺𝑛 [V≤𝑀 ] is
itself a configuration model on its vertex set, conditioned on the degrees of its vertices.

The second lemma proves that the limiting degree distribution of 𝐺𝑛 [V≤𝑀 ] is a truncated weak
power law with truncation close to M if the original degree distribution satisfied the weak power law
assumption.
Lemma 7.6 (Truncated power laws after targeted attack). Consider the configuration model CM(𝑑𝑛)
in Definition 1.9 on the degree sequence 𝑑𝑛 = (𝑑1, . . . , 𝑑𝑛) that satisfies the regularity assumptions
in Assumption 1.10, and the power-law empirical degrees of Assumption 1.11 with exponent 𝜏 and
exponent-error 𝜀 ≥ 0. Let 𝑀 > 0 be a constant (i.e., not depending on n, but it may depend on 𝜀),
and let

𝑧̃max(𝑀) := 2−1 (𝑐ℓ/(2𝑐𝑢))
1

(𝜏−1) (1+𝜀) 𝑀 (1−𝜀)/(1+𝜀) . (150)

Consider the limiting degree distribution 𝐹𝑀 (𝑧) =:
∑
𝑖≤𝑧 𝑝𝑀 (𝑖) in (148) of 𝐺𝑛 [V≤𝑀 ] in Lemma 7.5.

Then there exist constants 𝑐̃ℓ , 𝑐̃𝑢 , 𝑀0, such that whenever 𝑀 ≥ 𝑀0, for all 𝑧 ∈ [𝑧0, 𝑧̃max(𝑀)], it holds
that

𝑐̃ℓ

𝑧 (𝜏−1) (1+𝜀) ≤ 1 − 𝐹𝑀 (𝑧) ≤
𝑐̃𝑢

𝑧 (𝜏−1) (1−𝜀) . (151)

The proof shows that 𝑐̃ℓ = 𝑐ℓ2−(𝜏−1) (1+𝜀)−2 and 𝑐̃𝑢 = 2𝑐𝑢 are valid choices (although they may not be
optimal). Since the proofs of Lemmas 7.5 and 7.6 are fairly standard, we provide them in the Appendix
on pages 78 and 82.

With these lemmas at hand, the proof of Theorem 7.3 relies on the result of Janson and Luczak [37],
describing the k-core of the configuration model. To state this result, we introduce some notation.

For a random variable D and 𝑝 ∈ [0, 1], we let 𝑋𝐷,𝑝 denote a random variable with Binomial(𝐷, 𝑝)
distribution. That is,

P(𝑋𝐷,𝑝 = 𝑟) =
∞∑
𝑙=𝑟

P(𝐷 = 𝑙)
(
𝑙

𝑟

)
𝑝𝑟 (1 − 𝑝)𝑙−𝑟 .

We then define the following functions:

ℎ(𝐷, 𝑝) := E[𝑋𝐷,𝑝1{𝑋𝐷,𝑝 ≥ 𝑘}], ℎ1 (𝐷, 𝑝) := P(𝑋𝐷,𝑝 ≥ 𝑘). (152)

Note that both h and ℎ1 are increasing in p, and ℎ(𝐷, 0) = ℎ1 (𝐷, 0) = 0. Moreover, ℎ(𝐷, 1) =
E[𝐷1{𝐷 ≥ 𝑘}] ≤ E[𝐷], and ℎ1 (𝐷, 1) = P(𝐷 ≥ 𝑘) ≤ 1.

Then the theorem of Janson and Luczak is as follows. They use the same regularity Assumption 1.10
as we do.
Theorem 7.7 (Theorem 2.3 in [37]). Consider the configuration model 𝐺𝑛 := CM(𝑑𝑛) in Definition 1.9
on the degree sequence 𝑑𝑛 = (𝑑1, . . . , 𝑑𝑛) that satisfies the regularity assumptions in Assumption 1.10.
For 𝑘 ≥ 2 be fixed, let Core𝑘 := Core𝑘 (𝐺𝑛) be the k-core of 𝐺𝑛. Let

𝑝 := max{𝑝 ≤ 1 : E[𝐷]𝑝2 = ℎ(𝐷, 𝑝)}. (153)

Then, if 𝑝 > 0 and E[𝐷]𝑝2 < ℎ(𝐷, 𝑝) for p in some interval (𝑝 − 𝜀, 𝑝), then Core𝑘 (𝐺𝑛) is nonempty
whp, and

|V (Core𝑘 ) |/𝑛
P−→ ℎ1 (𝐷, 𝑝), |E (Core𝑘 ) |/𝑛

P−→ ℎ(𝐷, 𝑝)/2 = E[𝐷]𝑝2/2. (154)

We first need a small extension of this theorem.
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Claim 7.8. Suppose there is a value 𝑝− where E[𝐷]𝑝2
− < ℎ(𝐷, 𝑝−) holds (see below (153)). Then,

there is a nonzero fixed point 𝑝★ > 𝑝− of (153) so that in the interval (𝑝★, 𝑝★ − 𝜀) the inequality
E[𝐷]𝑝2 < ℎ(𝐷, 𝑝) holds. Then, Corek (𝐺𝑛) is nonempty and

P

(
|V (Corek) |/𝑛 ≤ ℎ1 (𝐷, 𝑝−)(1 − 𝜀)

)
≤ P

(
|V (Corek) |/𝑛 ≤ ℎ1 (𝐷, 𝑝★) (1 − 𝜀)

)
→ 0

(155)

as 𝑛→∞.

Sketch of proof. The first statement, namely that 𝑝★ exists, follows from the continuity of the function
E[𝐷]𝑝2− ℎ(𝐷, 𝑝). The second statement, that the size of the k-core is at least ℎ1(𝐷, 𝑝★) (1−𝜀), follows
from the proof of [37, Theorem 2.3]. Namely, the only case where the proof of [37, Theorem 2.3] does
not apply directly is where the function 𝑓 (𝑝) = 𝐸 [𝐷]𝑝2 − ℎ(𝐷, 𝑝) does not cross the 0-line at its
maximal 0 but rather, it touches it. Nevertheless, if one finds a smaller value 𝑝− where the function
𝑓 (𝑝) is in the negative, it implies that there must be zero-point 𝑝★ of f where the function crosses the
0 level line. In this case the proof there yields that the density of the k-core is at least ℎ1 (𝐷, 𝑝★), hence
(155) holds. This can be found on [37, page 56-57], where a value 𝑝− for which 𝑓 (𝑝−) < 0 implies
the upper bound on the stopping time of a pruning algorithm generating the k-core for (154). That is,
the continuous time pruning algorithm of sequentially removing vertices of degrees at least k and their
outgoing edges is guaranteed to stop by time 𝑡 = − log(𝑝−), that is, one can set 𝑡2 = − log(𝑝−) at the
bottom [37, page 9]. An upper bound on the stopping of the pruning algorithm gives a lower bound
on the number of remaining vertices forming the k-core. In our case, by not knowing whether 𝑝− is
adjacent to the maximal fixed point and whether f touches or crosses 0 there, we lose the upper bound
on the k-core size.

With Lemmas 7.5 and 7.6 at hand, we are ready to prove Theorem 7.3 by checking the conditions of
Theorem 7.7 and Claim 7.8.

Proof of Theorem 7.3. First, we prove (144) holds: we will check that the conditions of Theorem 7.7 hold
for 𝐺𝑛 [V≤𝑀 ] with probability tending to 1. First, Lemma 7.5 implies that 𝐺𝑛 [V≤𝑀 ] is a configuration
model (conditioned on its vertices and their degrees), and its (random) degree sequence satisfies
Assumption 1.10 with probability tending to 1. We will use the notations of Lemmas 7.5 – 7.6, so, 𝐷𝑀

denotes the limiting degree distribution of 𝐺𝑛 [V≤𝑀 ]. Since ℎ(𝐷𝑀 , 𝑝) in (152) is a continuous function
of p, it is enough for us to find a particular choice of p with E[𝐷𝑀 ]𝑝2 < ℎ(𝐷𝑀 , 𝑝). Based on the tail
probabilities of 𝐷𝑀 from (151), in particular the exponent 𝜏 ∈ (2, 3) and the constant 𝑐̃ℓ in the lower
bound, which holds for 𝑧 ∈ [𝑧0, 𝑧̃max(𝑀)] with 𝑧̃max(𝑀) defined in (150), our goal is to find two positive
constants 𝑎− < 𝑎+ and 𝜉 > 3 − 𝜏 and an interval

𝐼𝑝 := [𝑝−, 𝑝+] :=
[
𝑎−𝑘

−( 𝜉/(3−𝜏)−1) , 𝑎+𝑘
−( 𝜉/(3−𝜏)−1)

]
. (156)

We will show that when 𝑝 ∈ 𝐼𝑝 , then E[𝐷𝑀 ]𝑝2 < ℎ(𝐷𝑀 , 𝑝). Using (152), and that 𝑋𝑙1 , 𝑝 stochastically
dominates 𝑋𝑙2 , 𝑝 when 𝑙2 > 𝑙1, we estimate, for some constant 𝛽 and exponent 𝜉 > 3 − 𝜏 to be chosen
later,

ℎ(𝐷𝑀 , 𝑝) =
𝑀∑
𝑙=𝑘

P(𝐷𝑀 = 𝑙)
𝑙∑

𝑟=𝑘

𝑟 ·P(𝑋𝑙, 𝑝 = 𝑟)

≥
𝑀∑

𝑙=𝛽𝑘 𝜉/(3−𝜏)

P(𝐷𝑀 = 𝑙)E
[
𝑋𝑙, 𝑝1{𝑋𝑙, 𝑝 ≥ 𝑘}

]
≥ P

(
𝐷𝑀 ≥ 𝛽𝑘 𝜉/(3−𝜏)

)
E
[
𝑋𝛽𝑘 𝜉/(3−𝜏) , 𝑝1{𝑋𝛽𝑘 𝜉/(3−𝜏) , 𝑝 ≥ 𝑘}

]
. (157)
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We bound the first factor on the rhs of (157) first. Recalling that the tail-bound on P(𝐷𝑀 > 𝑧) in (151),
we get

P
(
𝐷𝑀 ≥ 𝛽𝑘 𝜉/(3−𝜏)

)
≥ 𝑐̃ℓ

(
𝛽𝑘 𝜉/(3−𝜏)

)−(𝜏−1) (1+𝜀)
, (158)

on the condition that 𝛽𝑘 𝜉/(3−𝜏) ≤ 𝑧̃max(𝑀) which we now check. (This is the place where we need
that the truncation point M is high enough.) We expand 𝑧̃max(𝑀) in (150) as a function of k using that
𝑀 = 𝑘 (1+𝜂)/(3−𝜏) below (143). We write 𝐶 for the prefactor in (150) that only depends on 𝑐ℓ , 𝑐𝑢 , 𝜏, 𝜀:

𝑧̃max(𝑀) = 𝐶𝑀 (1−𝜀)/(1+𝜀) = 𝐶𝑘

(
1+𝜂
3−𝜏

)
(1−𝜀)/(1+𝜀)

. (159)

Treating 𝛽, 𝐶 as constants while k can be chosen arbitrarily large, the rhs of (159) is larger than 𝛽𝑘 𝜉/(3−𝜏)

for all sufficiently large k when

𝜉 < (1 + 𝜂) (1 − 𝜀)/(1 + 𝜀), (160)

which shall lead to the assumption that 𝜂 > 𝜂min in (143) shortly. Next, we bound the second factor on the
rhs of (157). For any variable X, it holds that E[𝑋1{𝑋 ≥𝑘 }] = E[𝑋] −E[𝑋1{𝑋<𝑘 }] ≥ E[𝑋] − 𝑘P(𝑋 < 𝑘).
In (157) 𝑋 ∼ Bin(𝛽𝑘 𝜉/(3−𝜏) , 𝑝), and with the choice 𝑎− := 2/𝛽, we can lower bound its mean using
that 𝑝 > 𝑝− in (156) as 𝛽𝑘 𝜉/(3−𝜏) 𝑝 > 2𝑘 𝜉/(3−𝜏) 𝑘−( 𝜉/(3−𝜏)−1) = 2𝑘 . Hence, a Chernoff bound applies
and we obtain that

𝑘P
(
𝑋𝛽𝑘 𝜉/(3−𝜏) , 𝑝 < 𝑘

)
≤ 𝑘 exp

(
−𝛽𝑘 𝜉/(3−𝜏) 𝑝/8

)
≤ 𝑘 exp(−𝑘/4), (161)

for all 𝑝 > 𝑝− in (156). Using again that 𝑝 > 𝑝− implies 𝛽𝑘 𝜉/(3−𝜏) 𝑝 ≥ 2𝑘 , the second factor in (157)
can be bounded from below for all sufficiently large k as

E[𝑋𝛽𝑘 𝜉/(3−𝜏) , 𝑝1{𝑋𝛽𝑘 𝜉/(3−𝜏) , 𝑝 ≥ 𝑘}] ≥ 𝛽𝑘 𝜉/(3−𝜏) 𝑝 − 𝑘 exp(−𝑘/4) ≥ 𝛽𝑘 𝜉/(3−𝜏) 𝑝/2. (162)

Substituting (158) and (162) into (157) gives, for all 𝛽, 𝑝 > 𝑝− in (156) and all 𝜉 > 3 − 𝜏 > 0 that

ℎ(𝐷𝑀 , 𝑝) ≥ (𝑐̃ℓ/2) · 𝛽1−(𝜏−1) (1+𝜀) 𝑘 (1−(𝜏−1) (1+𝜀)) 𝜉/(3−𝜏) 𝑝. (163)

Thus, ℎ(𝐷𝑀 , 𝑝) > E[𝐷𝑀 ]𝑝2 holds when

(𝑐̃ℓ/2)𝛽1−(𝜏−1) (1+𝜀) 𝑘 (1−(𝜏−1) (1+𝜀)) 𝜉/(3−𝜏) > E[𝐷𝑀 ]𝑝. (164)

At this point we still have the freedom of choosing 𝛽 and 𝜉 > 3 − 𝜏 provided that the relation between
𝜂, 𝜉 in (160) holds. Since 𝑝 < 𝑎+𝑘

−( 𝜉/(3−𝜏)−1) in (156), first we compare the powers of k on both sides.
The inequality (164) holds for all sufficiently large k if

(1 − (𝜏 − 1) (1 + 𝜀))𝜉/(3 − 𝜏) ≥ −(𝜉/(3 − 𝜏) − 1).

After elementary computations, the smallest 𝜉 that satisfies this inequality, and hence the threshold 𝜂
for (160) is

𝜉 ≥ 𝜉min :=
3 − 𝜏

3 − 𝜏 − 𝜀(𝜏 − 1) , 𝜂 > 𝜂min =
𝜉min(1 + 𝜀)

1 − 𝜀 − 1, (165)

which equals 𝜂min in (143). Comparing now constants on the two sides of (164) yields that

𝑎+ := (𝑐̃ℓ/2E[𝐷𝑀 ])𝛽1−(𝜏−1) (1+𝜀) .
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Solving the inequality 𝑎− = 2/𝛽 < 𝑎+ gives that the interval 𝐼𝑝 is nonempty whenever

𝛽 >
(
4E[𝐷𝑀 ]/𝑐̃ℓ

)1/[2−(𝜏−1) (1+𝜀) ]
.

Summarizing, we have found that whenever 𝛽 satisfies this inequality, and p is in the interval

𝐼𝑝 =
[
(2/𝛽) · 𝑘−(1/(3−𝜏−𝜀 (𝜏−1))−1) , (𝑐̃ℓ/2E[𝐷𝑀 ])𝛽1−(𝜏−1) (1+𝜀) 𝑘−(1/(3−𝜏−𝜀 (𝜏−1))−1)

]
,

then the required inequality for the existence of the k-core holds. This implies that 𝑝 > 𝑝+, and we can
estimate the asymptotic proportion of the k-core (154), ℎ1 (𝐷𝑀 , 𝑝) ≥ ℎ1 (𝐷𝑀 , 𝑝+) following similar
steps as in (157):

ℎ1(𝐷𝑀 , 𝑝) ≥ P(𝐷𝑀 ≥ 𝑘 𝜉/(3−𝜏) )P
(
𝑋𝑘 𝜉/(3−𝜏) , 𝑝+ ≥ 𝑘

)
≥ 𝑐̃ℓ 𝑘

−𝜉 (𝜏−1) (1+𝜀)/(3−𝜏) (1 − exp(−𝑘/4)),

using the same 𝜉 = 𝜉min and Chernoff bound as in (165) and in (161), yielding (145) in Remark 7.4.
Finally, we need to check that conditioned on its vertex set and degree sequence, Core𝑘 (𝐺𝑛 [V≤𝑀 ])

is itself a configuration model. This follows from the fact that every matching of half-edges within
Core𝑘 (𝐺𝑛 [V≤𝑀 ]), given its degree sequence, has equal probability by the construction of the configu-
ration model. �

This finishes the first combinatorial part, that is, the existence of a large k-core. We now (slowly)
transition to studying the contact process on the k-core. The proof of Theorem 2.8(b) is based on a
structural property of Core𝑘 (𝐺𝑛 [V≤𝑀 ]) that we define next. This structural property guarantees that an
infected set of vertices can pass the infection to many other vertices in a unit time step.

Definition 7.9 ((𝛿, 𝑘)-expansion). Fix any 𝛿 ∈ (0, 1) and an even positive integer k. We say that a
(multi)graph G on n vertices is (𝛿, 𝑘)-good if for every set {𝑣1, . . . , 𝑣 �𝛿𝑛� } of �𝛿𝑛� vertices in G, we
can choose a subset I𝑔 of the indices of size |I𝑔 | ≥ �𝛿𝑛�/8 such that each 𝑣𝑖 : 𝑖 ∈ I𝑔 has 𝑘/2 neighbors
𝑤𝑖,1, . . . , 𝑤𝑖,𝑘/2 in G such that the vertices 𝑣𝑖 , 𝑖 ∈ I𝑔 and 𝑤𝑖, 𝑗 , 𝑖 ∈ I𝑔, 𝑗 ≤ 𝑘/2 are all distinct.

A graph being (𝛿, 𝑘)-good is somewhat stronger than requiring that the 1-neighborhood of any �𝛿𝑛�
many vertices expands by a factor 𝑘/16, since we need enough individual vertices that expand to 𝑘/2
different vertices. The following lemma proves that Core𝑘 (𝐺𝑛 [V≤𝑀 ]) has the (𝛿, 𝑘)-good property for
small enough 𝛿 > 0.

Lemma 7.10. Consider the configuration model CM(𝑑𝑛) =: 𝐺𝑛 in Definition 1.9 on the degree sequence
𝑑𝑛 = (𝑑1, . . . , 𝑑𝑛) so that for an even integer 𝑘 ≥ 128 and constant 𝜁 > 1, 𝑑𝑖 ∈ [𝑘, 𝑘 𝜁 ] holds for all
𝑖 ∈ [𝑛]. Then there exists some 𝛿0 = 𝛿0(𝑘, 𝜁) > 0 independent of n, such that for all 𝛿 < 𝛿0,

P(𝐺𝑛 is (𝛿, 𝑘)-good) > 1 − 𝑒−𝑛𝛿 log(1/𝛿)/8. (166)

Proof. Let 𝑣1, . . . , 𝑣 �𝛿𝑛� be distinct fixed vertices in 𝐺𝑛. We will explore, that is, gradually reveal the
neighbors of these vertices, as follows. In the first exploration step, we reveal the first k edges adjacent
to 𝑣1 (according to an arbitrary ordering), one by one. When revealing an edge, we say that a collision
happens at 𝑣1 if the revealed edge either leads to one of 𝑣1, 𝑣2, . . . , 𝑣 �𝛿𝑛� , or is parallel to an edge
revealed earlier (note that we allow self-loops and multiple edges in 𝐺𝑛). During this first step, as soon
as the number of collisions at 𝑣1 reaches two, we stop revealing the connections of 𝑣1 and color 𝑣1 red.
If the number of collisions does not reach two by the end of step 1, we color 𝑣1 green, and we assign the
revealed distinct neighbors of 𝑣1, outside the set {𝑣1, . . . , 𝑣 �𝛿𝑛� }, the labels 𝑤1,1, 𝑤1,2, . . . , 𝑤1,𝑛1 . Here,
𝑛1 ∈ [𝑘 − 1, 𝑘], since there was at most one collision.

In the second step we reveal the first k edges adjacent to 𝑣2, one by one, including the potential edges
(at most two) that lead to 𝑣1 and have already been revealed. Now we say that a collision happens at 𝑣2
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if a revealed edge either leads to one of 𝑣1, 𝑣2, . . . , 𝑣 �𝛿𝑛� , (except when it was already revealed starting
from 𝑣1, and thus the collision happened at 𝑣1 in which case we do not count it as a new collision), or
it leads to one of 𝑤1,1, 𝑤1,2, . . . , 𝑤1,𝑛1 (in case 𝑣1 was colored green), or is parallel to an edge already
revealed at 𝑣2. Again, as soon as the number of collisions at 𝑣2 reaches two during this step, we stop
revealing the edges of 𝑣2 and color 𝑣2 red. If the number of collisions at 𝑣2 does not reach two by the
end of the step, we color 𝑣2 green, and assign the revealed distinct neighbors of 𝑣2, outside the set
{𝑣1, . . . , 𝑣 �𝛿𝑛� , 𝑤1,1, 𝑤1,2, . . . , 𝑤1,𝑛1 } the labels 𝑤2,1, 𝑤2,2, . . . , 𝑤2,𝑛2 . Here, 𝑛2 ∈ [𝑘 − 3, 𝑘], since at
most three edges caused collisions at either 𝑣1 (these can connect to 𝑣2) or 𝑣2.

We then continue this procedure, in each step revealing the first k connections of 𝑣3, . . . , 𝑣 �𝛿𝑛�
analogously to the above, with one modification: if at the beginning of step i, when starting to reveal
the neighbors of vertex 𝑣𝑖 (𝑖 ≥ 2), 𝑣𝑖 already has at least 𝑘/4 adjacent revealed edges coming from the
already processed vertex set {𝑣1, 𝑣2, . . . , 𝑣𝑖−1}, then we do not reveal any new connections at 𝑣𝑖 , but
color it blue, and continue to the next step 𝑖 + 1, with 𝑣𝑖+1.

After all the �𝛿𝑛� steps are done, let I𝑔 := {𝑖1, . . . , 𝑖𝑔} denote the indices and {𝑣𝑖1 , . . . , 𝑣𝑖𝑔 } be the set
of green vertices (subset of {𝑣1, . . . , 𝑣 �𝛿𝑛� }). We will prove that with probability at least 1 − exp(−𝐶𝑛)
for some constant 𝐶 > 0, |I𝑔 | ≥ �𝛿𝑛�/8 and 𝑛𝑖 ≥ 𝑘/2 for all 𝑖 ∈ I𝑔. So, the green vertices along
with their revealed neighbors {𝑤𝑖, 𝑗 : 𝑖 ∈ I𝑔, 𝑗 ≤ 𝑛𝑖} demonstrate the (𝛿, 𝑘)-good property of 𝐺𝑛 in
Definition 7.9.

Later, we take a union bound over all subsets of size �𝛿𝑛�, but for now we fix a choice of
{𝑣1, . . . , 𝑣 �𝛿𝑛� }. First, we bound the number of blue vertices. When at step j, we reveal at most two
edges that connect 𝑣 𝑗 to some 𝑣 𝑗′ , for 𝑗 ′ > 𝑗 . Hence, we reveal at most 2�𝛿𝑛� edges with both end-
points in the set {𝑣1, . . . , 𝑣 �𝛿𝑛� }, which we call internal edges. These involve at most 4�𝛿𝑛� half-edges
at {𝑣1, . . . , 𝑣 �𝛿𝑛� }. Since more than 16�𝛿𝑛�/𝑘 vertices adjacent to at least 𝑘/4 internal edges would
involve more than 4�𝛿𝑛� half-edges, by the pigeonhole principle, for all 𝑘 ≥ 128:

|Blue vertices| = |{𝑖 ∈ [�𝛿𝑛�] : 𝑣𝑖 is adjacent to at least 𝑘/4 internal edges}|
≤ 4�𝛿𝑛�/(𝑘/4) = 16�𝛿𝑛�/𝑘 ≤ �𝛿𝑛�/8.

(167)

Hence, the exploration reveals the neighborhood of at least 7�𝛿𝑛�/8 and at most �𝛿𝑛� vertices that can
be either red or green. Next, we bound the number of red vertices. Here we use that 𝐺𝑛 is a configuration
model, with all degrees in the interval [𝑘, 𝑘 𝜁 ]. Thus we can carry out the exploration process above
by matching the first (at most) k half-edges of each vertex under consideration. After revealing the jth
edge, for 𝑗 ≤ 𝑘 �𝛿𝑛� − 1, we have discovered at most j new vertices and so half-edges attached to at
most �𝛿𝑛� + 𝑗 vertices can cause a collision when matching the 𝑗 + 1th half-edge. And, there are at
least 𝑛𝑘 − 2 𝑗 − 1 remaining unmatched half-edges to choose from. Let us denote by F 𝑗 the 𝜎-algebra
generated by the outcome of the matching of the first j half-edges. Then, for all 𝑘 > 2 and sufficiently
small 𝛿 = 𝛿(𝑘) > 0, and for any realization in F 𝑗

P(collision at 𝑗 + 1st edge | F 𝑗 ) ≤
(�𝛿𝑛� + 𝑗)𝑘 𝜁
𝑛𝑘 − 2 𝑗 − 1

≤ (𝛿𝑛 + 𝛿𝑛𝑘)𝑘
𝜁

(1 − 2𝛿)𝑛𝑘 ≤ 2𝛿𝑘 𝜁 .

Let 𝑌 𝑗 = 1 if revealing the 𝑗 th edge causes a collision and 𝑌 𝑗 = 0 otherwise. Then (𝑌1, 𝑌2, . . .) is
dominated by a sequence of i.i.d. Bernoulli variables with parameter 2𝛿𝑘 𝜁 . We color 𝑣𝑖 red if at least
two collisions happen at step i, that is, if at least 2 of the 𝑌 𝑗 variables corresponding to the at most k
revealed edges at 𝑣𝑖 are 1. So, with 𝑋𝑛,𝑝 a binomial variable as before, independently across different 𝑣𝑖 ,

P(𝑣𝑖 is red) ≤ P(𝑋𝑘,2𝛿𝑘𝜁 ≥ 2) ≤ 𝑘24𝛿2𝑘2𝜁 = 4𝛿2𝑘2+2𝜁 . (168)

Combining (167) and (168) yields that the number of red vertices is stochastically dominated by a
Binomial random variable with parameters �𝛿𝑛� and 4𝛿2𝑘2+2𝜁 =: 𝑞. Hence, by a crude upper bound on
the binomial coefficients,
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P(|𝑖 : 𝑣𝑖 is red| ≥ 3�𝛿𝑛�/4) ≤ P(𝑋 �𝛿𝑛�,𝑞 > 3�𝛿𝑛�/4) =
∑

𝑟>3 �𝛿𝑛�/4

(
�𝛿𝑛�
𝑟

)
𝑞𝑟 (1 − 𝑞) �𝛿𝑛�−𝑟

≤ �𝛿𝑛�2 �𝛿𝑛�𝑞3 �𝛿𝑛�/4 = �𝛿𝑛�2 �𝛿𝑛�
(
4𝛿2𝑘2+2𝜁 )3 �𝛿𝑛�/4

. (169)

after substituting the value of q. Rewriting (169) we obtain for small enough 𝛿 = 𝛿(𝑘) > 0,

P(|𝑖 : 𝑣𝑖 is red| ≥ 3�𝛿𝑛�/4)
≤ �𝛿𝑛� exp

(
(3/2) log(𝛿) �𝛿𝑛� + (5/2) log(2) �𝛿𝑛� + (3/4) log(𝑘2+2𝜁 ) �𝛿𝑛�

)
≤ 𝐶 exp

(
− (5/4) log(1/𝛿)𝛿𝑛

)
.

(170)

We bound the number of ways to choose the �𝛿𝑛� vertices 𝑆 = {𝑣1, . . . , 𝑣 �𝛿𝑛� }:(
𝑛

�𝛿𝑛�

)
≤ 𝑛 �𝛿𝑛�

(�𝛿𝑛�)! ≤
𝑛𝛿𝑛

exp
(
𝛿𝑛 log(𝛿𝑛) − 𝛿𝑛

) = exp
(
𝛿𝑛(1 + log(1/𝛿))

)
. (171)

Combining (170) and (171), we obtain for some positive constant C that for all small enough
𝛿 = 𝛿(𝑘) > 0,

P(∃𝑆 ⊂ 𝐺 : |𝑆 | = �𝛿𝑛�, at least 3�𝛿𝑛�/4 red vertices in 𝑆)
≤ exp

(
𝛿𝑛(1 + log(1/𝛿)) − (5/4) log(1/𝛿)

)
< exp

(
− 𝑛𝛿 log(1/𝛿)/8

)
.

Combining this with (167), we obtain that with probability at least 1 − exp(−𝐶𝑛), for any choice
of 𝑣1, . . . , 𝑣 �𝛿𝑛� , there are at least �𝛿𝑛�/8 green vertices among 𝑣1, . . . , 𝑣 �𝛿𝑛� . The green vertices, per
design, have at most one collision among their at least 3𝑘/4 revealed edges. Hence, each green vertex has
at least 𝑘/2 neighbors in 𝐺𝑛, that are all distinct from each other and from 𝑣1, . . . , 𝑣 �𝛿𝑛� , demonstrating
the (𝛿, 𝑘)-good property. This finishes the proof. �

The next lemma studies a contact process with lower infection rate than CP 𝑓 ,𝜆 with 𝑓 = max(𝑥, 𝑦)𝜇
on a (𝛿, 𝑘)-good graph and shows that when �𝛿𝑛� vertices are infected, their neighborhood sustains the
infection for a unit of time:

Lemma 7.11. Fix some 𝜆 > 0, 𝜇 ∈ [1/2, 1) and 𝜁 > 1 satisfying 𝜇𝜁 < 1. Then there exist constants
𝐶 ′ > 0 and 𝑘0 = 𝑘0 (𝜆, 𝜇, 𝜁) so that for all 𝑘 > 𝑘0 even, the following holds. Let 𝐺𝑛 be any multi-graph
with degree sequence 𝑑𝑛 = (𝑑1, . . . , 𝑑𝑛) satisfying 𝑑𝑖 ∈ [𝑘, 𝑘 𝜁 ] for all 𝑖 ∈ [𝑛], so that 𝐺𝑛 is (𝛿, 𝑘)-good
for some fixed 𝛿 > 0. Let (𝜉

𝑡
)𝑡≥0 be a contact process CP 𝑓+ ,𝜆 with 𝑓+(𝑥, 𝑦) ≡ 𝑘 𝜁 𝜇 on 𝐺𝑛. Then, for all

sufficiently large n, and any 𝑡 ≥ 0,

P

(
|𝜉
𝑡+1
| ≥ �𝛿𝑛�

��� |𝜉
𝑡
| ≥ �𝛿𝑛�

)
≥ 1 − exp(−𝑛𝛿/(193𝑒)). (172)

By (20) in Corollary 3.2, the process CP 𝑓+ ,𝜆 on 𝐺𝑛 dominates from below the contact process CP 𝑓 ,𝜆

with 𝑓 (𝑥, 𝑦) = max(𝑥, 𝑦)𝜇, since 𝑓 (𝑑𝑢 , 𝑑𝑣 ) = max(𝑑𝑢 , 𝑑𝑣 )𝜇 ≤ 𝑘 𝜁 𝜇 = (max𝑖≤𝑛 𝑑𝑖)𝜇.

Proof. We shall fix 𝑘 > 400. Since |𝜉
𝑡
| ≥ �𝛿𝑛� in the conditioning in (172), denote the first �𝛿𝑛�

infected vertices by 𝑆𝑡 := {𝑣1, . . . , 𝑣 �𝛿𝑛� }. Since 𝐺𝑛 is (𝛿, 𝑘)-good, choose the index set I𝑔 with size
|I𝑔 | ≥ �𝛿𝑛�/8 guaranteed by the (𝛿, 𝑘)-good property in Definition 7.9 and write 𝑤𝑖,1, . . . , 𝑤𝑖,𝑘/2 for
the distinct neighbors of each 𝑣𝑖 , 𝑖 ∈ I𝑔. For each 𝑖 ∈ I𝑔 define the event A(𝑣𝑖) as

A(𝑣𝑖) := {𝑣𝑖 infects at least 87 vertices among 𝑤𝑖,1, . . . , 𝑤𝑖,𝑘/2

that stay infected by time 𝑡 + 1}.
(173)
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We will prove that

P(B) := P
( ∑
𝑖∈I𝑔

1A(𝑣𝑖) ≥ �𝛿𝑛�/(32𝑒)
)
≥ 1 − exp(−𝛿𝑛/(193𝑒)). (174)

Then, on the event B, at least 87�𝛿𝑛�/(32𝑒) vertices among {𝑤𝑖, 𝑗 }1≤𝑖≤�𝛿𝑛�,1≤ 𝑗≤𝑘/2 are infected at time
𝑡 + 1, and since 32𝑒 ≈ 86.98, this implies that |𝜉

𝑡+1
| ≥ �𝛿𝑛� holds in (172), proving the lemma.

For (174), we first give a lower bound on P(A(𝑣𝑖)) in (173). The probability that 𝑣𝑖 does not heal
in the time interval [𝑡, 𝑡 + 1] is 1/𝑒. Given that 𝑣𝑖 does not heal, it infects each of 𝑤𝑖,1, . . . , 𝑤𝑖,𝑘/2, in
the time interval [𝑡, 𝑡 + 1], with probability at least 1 − exp(−𝜆𝑘−𝜇𝜁 ), as the infection rate 𝑟 (𝑣𝑖 , 𝑤𝑖, 𝑗 )
from 𝑣𝑖 to 𝑤𝑖, 𝑗 is 𝜆𝑘−𝜇𝜁 . A given 𝑤𝑖, 𝑗 infected in the time interval [𝑡, 𝑡+1] stays infected until 𝑡 + 1
with conditional probability at least 1/𝑒. So, given that 𝑣𝑖 does not heal until time 𝑡+1, the number
of infected vertices among 𝑤𝑖,1, . . . , 𝑤𝑖,𝑘/2 at time 𝑡 + 1 is stochastically dominated from below by a
Binomial random variable with parameters 𝑘/2 and (1/𝑒) (1− exp(−𝜆𝑘−𝜇𝜁 )) ≥ (1/𝑒) (𝜆𝑘−𝜇𝜁 /2) := 𝑝.
This lower bound holds whenever 𝑘 ≥ 𝜆−1/𝜇𝜁 , which holds for all 𝑘 ≥ 2 when 𝜆 < 1 and for all
sufficiently large k when 𝜆 > 1. Hence,

P(A(𝑣𝑖)) ≥ P(𝜉𝑠 (𝑣𝑖) = 1 ∀𝑠 ∈ [𝑡, 𝑡 + 1]) · P(𝑋𝑘/2, 𝑝 ≥ 87) ≥ e−1 · P(𝑋𝑘/2, 𝑝) ≥ 87).

The mean E[𝑋𝑘, 𝑝] = 𝜆𝑘1−𝜇𝜁 /(4𝑒) and since 𝜇𝜁 < 1, this quantity grows with k, and we can choose k
large enough so that E[𝑋𝑘, 𝑝] ≥ 2 · 87. Then, by a Chernoff bound,

P(A(𝑣𝑖)) ≥ 𝑒−1 · P(𝑋𝑘/2, 𝑝 ≥ 87) ≤ e−1(1 − e−2·87/12) ≥ 1/(2𝑒).

Now we use Corollary 3.2 to obtain 1A𝑖 , 𝑖 ∈ I𝑔 is stochastically dominated from below by independent
events with success probability 1/(2𝑒). Thus, another Chernoff bound finishes the proof of (174):

P(B) ≥ P(𝑋 � �𝛿𝑛�/8�,1/(2𝑒) ≥ �𝛿𝑛�/(32𝑒)) ≥ 1 − exp
(
− �𝛿𝑛�/(16 · 12𝑒)

)
,

completing the proof of the lemma with 𝐶 ′ := 1/(193𝑒) where we increased 16 · 12 = 192 by one to
compensate for dropping the integer part. �

With Theorem 7.3, and Lemmas 7.10 and 7.11 at hand, we are ready to prove Theorem 2.8(b).

Proof of Theorem 2.8(b). Observe that in (143) in Theorem 7.3,

𝜁min :=
𝜂min + 1

3 − 𝜏 =
1

3 − 𝜏 − 𝜀(𝜏 − 1) ·
1 + 𝜀
1 − 𝜀 . (175)

The inequality (18), that is, that 𝜇 < (3− 𝜏 − 𝜀(𝜏 − 1)) (1 + 𝜀)/(1− 𝜀) and (175) together imply that for
all 𝜇 satisfying (18) one can choose 𝜁 > 𝜁min so that 𝜁 𝜇 < 1 also holds. Fix such a 𝜁 . Then, Theorem 7.3
states that for all sufficiently large but fixed k even, a linear sized k-core of CM(𝑑𝑛) exists after removing
all vertices of degree larger than 𝑀 = 𝑘 (1+𝜂)/(3−𝜏) =: 𝑘 𝜁 , that is, for all 𝜀′ > 0, for all sufficiently large n,

P(A𝑛) := lim
𝑛→∞
P

(
|Core𝑘 (𝐺𝑛 [V≤𝑘𝜁 ]) | ≥ 𝜌𝑛

)
= 1 − 𝜀′/3, (176)

and conditioned on its vertex set and degree sequence, Core𝑘 (𝐺𝑛 [V≤𝑘𝜁 ]) is itself a configuration model.
Applying Lemma 7.10 on Core𝑘 (𝐺𝑛 [V≤𝑘𝜁 ]) then yields that for all small enough 𝛿 > 0

P(B𝑛 | A𝑛) := P(Core𝑘 (𝐺𝑛 [V≤𝑘𝜁 ]) is (𝛿, 𝑘)-good | A𝑛)
> 1 − 𝑒−𝑛𝜌(𝑘) 𝛿/8 > 1 − 𝜀′/4.

(177)
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Consider the process (𝜉
𝑡
)𝑡≥0 ∼ CP 𝑓 ,𝜆 with 𝑓 (𝑥, 𝑦) = max(𝑥, 𝑦)𝜇 on 𝐺𝑛. For any 𝑡 ≥ 0 define the event

I𝑡 := {at least 𝛿𝜌𝑛 vertices of Core𝑘 (𝐺𝑛 [V≤𝑘𝜁 ]) are infected at time 𝑡}.

On the event A𝑛 ∩ B𝑛, all vertices in 𝐻𝑛 := Core𝑘 (𝐺𝑛 [V≤𝑘𝜁 ]) have original degrees in the interval
[𝑘, 𝑘 𝜁 ]within𝐺𝑛, hence CP 𝑓 ,𝜆 restricted to𝐻𝑛 is dominated from below by a contact process on𝐻𝑛 with
𝑓 (𝑥, 𝑦) = 𝑘 𝜁 𝜇, exactly as in Lemma 7.11. Hence, Lemma 7.11 applies for 𝐻𝑛 := Core𝑘 (𝐺𝑛 [V≤𝑘𝜁 ]),

P(I𝑡+1 | A𝑛 ∩ B𝑛 ∩ I𝑡 ) > 1 − 𝑒−𝑛𝜌(𝑘) 𝛿/(193𝑒) . (178)

whenever k is larger than 𝑘0 = 𝑘0 (𝜆, 𝜇, 𝜂). This latter condition dictates our choice of k. Starting from
the all-infected initial condition, (178) implies that on the event A𝑛 ∩ B𝑛 the extinction time of CP 𝑓 ,𝜆

is dominated from below by a geometric random variable with success probability exp(−𝐶 ′𝑛). Hence,
the process survives until time exp(𝑛𝐶 ′/2) with probability at least 1− 𝜀′/3. Combining this with (176)
and (177) yields that the process CP 𝑓 ,𝜆 (𝐺𝑛, 1𝐺𝑛

) exhibits long survival, finishing the proof. �

8. The configuration model: survival through a network of stars

The proof of Theorem 2.3 (a) (which then implies Theorem 2.8(a)) follows the proof of Theorem 4 in [6],
that is, the proof of the exponentially long survival of the classical contact process on the configuration
model with subexponentially tailed degree distributions. We need some modifications to adapt the proof
there to the degree-penalized model. Since the proof in [6] is rather lengthy, we only provide an outline
of the main steps, and we focus on explaining the necessary modifications for the degree-penalized
version. We direct the interested reader to [6, Section 6, 7] for a full proof.

A common way to show exponentially long survival for the classical contact process is to find
Θ(𝑛) many embedded star-graphs in the configuration model with paths of bounded degree vertices
connecting them (similarly as we proved local survival on Galton Watson trees in Section 6 here for the
penalized version). The exact structure in this case, corresponding to [6, Definition 5.1], is an embedded
expander-graph.

For a graph H, and a subset of vertices 𝐴 ⊂ 𝑉 (𝐻) we denote by N𝐻 (𝐴, 𝑟) the set of vertices at most
distance r from A. For some 𝑚 ≥ 1, let also deg𝐺,≤𝑚(𝑢) denote the number of neighbors of vertex u in
G that have degree at most m.
Definition 8.1. Let 𝐻 = (𝑉 (𝐻), 𝐸 (𝐻)) be a graph with |𝑉 (𝐻) | ≤ |𝑉 (𝐺) |. We say that H is an
𝛼-expander if for every subset 𝐴 ⊂ 𝑉 (𝐻) with |𝐴| ≤ 𝛼 |𝑉 (𝐻) |,

|N𝐻 (𝐴, 1) | ≥ 2|𝐴|. (179)

Let G be a connected graph with |𝑉 (𝐺) | ≥ |𝑉 (𝐻) |. We say that H is an (𝑅, 𝑚, 𝑗)-embedded 𝛼-expander
in G if there is a choice of vertices 𝑊0 ⊆ 𝑉 (𝐺) with |𝑊0 | = |𝑉 (𝐻) | with a one-to-one map between
𝑊0 and 𝑉 (𝐻), so that there exist, for each edge (𝑢, 𝑣) ∈ 𝐸 (𝐻) an associated path 𝜋𝐺𝑢,𝑣 in G between
𝑢, 𝑣 ∈ 𝑊0 that satisfies

|𝜋𝐺𝑢,𝑣 | ≤ 𝑅 for all 𝑢, 𝑣 ∈ 𝐸 (𝐻𝑊0), (180)

deg𝐺 (𝑤) ∈ [2, 𝑚] for all 𝑤 ∈ 𝜋𝐺𝑢,𝑣 \ {𝑢, 𝑣}, 𝑢, 𝑣 ∈ 𝑊0, (181)

deg𝐺 (𝑢) ∈ [ 𝑗 , 2 𝑗], and deg𝐺,≤𝑚(𝑢) ≥ 𝑗/2 for all 𝑢 ∈ 𝑊0. (182)

Observe that (179) is the expansion property of H, while (182) ensures that the embedded vertices
of 𝑊0 serve as star-graphs in G, that is, they have sufficiently high degree. Meanwhile, (180) and (181)
ensure that the paths corresponding to each edge of H are fairly short and occur on low-degree vertices,
so that even the degree-penalized contact process can pass through them with good probability. Next,
we prove the following structural lemma, corresponding to [6, Lemma 6.1].
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Lemma 8.2. Consider the configuration model 𝐺𝑛 := CM(𝑑𝑛) in Definition 1.9 on the degree sequence
𝑑𝑛 = (𝑑1, . . . , 𝑑𝑛) that satisfies the regularity assumptions in Assumption 1.10. Suppose that its limiting
degree distribution D has heavier tails than stretched-exponential with stretch-exponent 𝜁 , for some
𝜁 > 0, as in Definition 1.8. Then, for any sufficiently large 𝑚 > 0 there exists a 𝑗0 > 𝑚 such that
whenever 𝑗 > 𝑗0 then there exists 𝛼, 𝛽, 𝑅 > 0 with 𝑅 ≤ 𝑜( 𝑗 𝜁 ) such that the following holds whp. The
graph 𝐺𝑛 contains an (𝑅, 𝑚, 𝑗)-embedded 𝛼-expander 𝐻 := 𝐻𝑊0 on the vertex set 𝑊0 with |𝑊0 | ≥ 𝛽𝑛.

Proof. We choose m so high that

𝑏̄ :=
E[𝐷 (𝐷 − 1)1{𝐷≤𝑚}]
E[𝐷1{𝐷≤𝑚}]

≥ E[𝐷 (𝐷 − 1)]
E[𝐷] (1 − 𝜀) and

E[𝐷1{𝐷≤𝑚}] ≥ (1 − 𝜀)E[𝐷] .
(183)

The proof is similar to the proof of [6, Lemma 6.1], and consists of the following steps.
Step 1. Targeted attack. Recall the configuration model under targeted attack from Definition 7.2. Here
we carry out the attack above degree 2 𝑗 (considering (182) and (181)), and we denote the remaining
graph by 𝐺𝑛 [V≤2 𝑗 ], and the degree of a vertex v in 𝐺𝑛 [V≤2 𝑗 ] by 𝑑𝑣 . This ensures that all remaining
degrees are at most 2 𝑗 .

The second criterion in (183) ensures that each half-edge of a vertex with degree in the interval
[ 𝑗 , 2 𝑗] is matched to a vertex with degree below m with probability at least 1 − 𝜀. Hence, denoting by
𝑢 𝑗 := P(𝐷 ∈ [ 𝑗 , 2 𝑗]), a Chernoff bound similar as in [6, Lemma 7.1, part (4) and Claim 7.2] ensures
that there are at least 𝜀𝑛𝑢 𝑗 many vertices with deg𝐺 (𝑢) ∈ [ 𝑗 , 2 𝑗] and deg𝐺,≤𝑚(𝑢) ≥ 𝑗/2, as required
in (182).
Step 2. Exploration. Let 𝑊 := {𝑣 ∈ 𝐺𝑛 : deg𝐺𝑛

(𝑣) ∈ [ 𝑗 , 2 𝑗], deg𝐺𝑛 ,≤𝑚(𝑣) ∈ [ 𝑗/2, 2 𝑗]}. We find the
vertex set 𝑊0 of 𝐻𝑊0 as a subset of W. We explore the R-neighborhood in 𝐺𝑛 [V≤2 𝑗 ] of each vertex
𝑤 ∈ 𝑊 simultaneously, but we refrain from exploring vertices that have degree (within 𝐺𝑛) higher
than m, as we explain now in more detail. As is usual for the configuration model, we construct the
graph along with the exploration, see, for example, [67]. That is, we put all half-edges attached to vertices
in W –initially in an arbitrary order – in an active list and call these unmatched, also all other half-edges
in the graph are initially unmatched (but not active). Due to the uniform matching property, we then
sequentially may choose the currently first half-edge ℎ∗ in the active list and match it to a uniformly
chosen yet unmatched half-edge, its pair 𝑝(ℎ∗), forming a new edge. We remove these two half-edges
from the set of unmatched/active list. We call 𝑣(𝑝(ℎ∗)) the vertex that 𝑝(ℎ∗) belongs to. If the degree
of 𝑣(𝑝(ℎ∗)) is at most m, if any, we append the not- active unmatched half-edges adjacent to 𝑣(𝑝(ℎ∗))
to the end of the active list. If however the vertex 𝑣(𝑝(ℎ∗)) has degree above m, we keep the rest of its
unmatched half-edges in the unmatched not-active list. This way we explore the neighborhood of W in
V≤2 𝑗 generation by generation, but we do not follow the neighborhood of vertices with degree > 𝑚,
which become leaves in the exploration tree (unless there is an overlap and such a vertex is matched
to more than once). As we explore in a breadth-first-search manner, there is an associated exploration
tree and thus it is possible to keep track of parents/generation numbers during this exploration. As the
exploration is indexed by discrete steps, there is a (random) step number when we finish exploring the
Rth generation, that is, revealing all vertices that are at distance at most R from 𝑊0 reachable from paths
with vertices of degree ≤ 𝑚 except the first and possibly the last vertex. Each at-this-moment active half-
edge can be associated to the edge boundary of the R-neighborhood of some vertex 𝑤 ∈ 𝑊0. We denote
these exploration-R-neighborhoods by N≤2 𝑗 ,𝑚 (𝑤, 𝑅) for each 𝑤 ∈ 𝑊0. We need to bound the overlap
of these neighborhoods. For this, we follow [6] and notice that an overlap between N≤2 𝑗 ,𝑚 (𝑤, 𝑅) and
N≤2 𝑗 ,𝑚 (𝑤′, 𝑅) means that 𝑤′ is part of N≤2 𝑗 ,𝑚 (𝑤, 2𝑅).

The criteria in (183) implies, by standard coupling arguments (see, e.g., [6] or [7]) that the exploration
inside V≤2 𝑗 with refraining to explore vertices with degree > 𝑚 (except those in 𝑊0 that we claimed
initially active), can be approximated by a supercritical branching process with mean offspring 𝑏̄ from
the first generation onward. Also, the total number of half-edges in 𝐺𝑛 [V≤2 𝑗 ] ≥ (1 − 𝜀)𝑛E[𝐷] since
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𝑗 > 𝑚), which can be used to derive an upper bound on the probabilities that we match to a particular
vertex at any time during the exploration. Following notation in [6], here we introduce a new parameter
r that (contrary to usual notation for radius) is controlling the number of allowed overlaps between
neighborhoods of vertices in 𝑊0. Given 𝑗 , 𝑅, we choose the value of the integer r so that for a 𝑤 ∈ 𝑊
the expected number of vertices of 𝑊0 that lie in the neighborhood N≤2 𝑗 ,𝑚 (𝑤, 2𝑅) in the exploration
is small compared to r. Then it will be unlikely that different neighborhoods N≤2 𝑗 ,𝑚 (𝑤, 𝑅) intersect in
more than r vertices. To determine r, we note that degrees of explored vertices in the exploration are
≤ 𝑚 while we also may match to vertices of degree ≤ 2 𝑗 and some of these (with degree in [ 𝑗 , 2 𝑗])
may be the ones being part of 𝑊0. So we estimate the size of the (2𝑅− 1)-st generation of the branching
process and then we sample the degrees in generation 2𝑅 according to size-biased distribution 𝐷★

𝑗 of
𝐷1𝐷≤2 𝑗 :

E[|N≤2 𝑗 ,𝑚 (𝑣, 2𝑅) ∩𝑊0 |] ≈ E[𝜕N (𝑣, 2𝑅 − 1)]P(𝐷★
𝑗 ∈ [ 𝑗 , 2 𝑗]) ≈ 𝑗 𝑏̄2𝑅−1 ·

𝑢 𝑗 𝑗

𝑑
(184)

where 𝑢 𝑗 = P( 𝑗 ≤ 𝐷 ≤ 2 𝑗) and 𝑑 = E[𝐷]. Since the above contains 𝜀 errors both in the numerator and
denominator, we set the requirement that

𝑏̄2𝑅−1 𝑗2𝑢 𝑗

𝑑
≤ 𝑟

10
. (185)

Step 3. Graph contraction. We carry out a graph contraction on 𝐺𝑛 [V≤2 𝑗 ] as follows: We associate
a vertex 𝑣𝑤 to each of the neighborhoods N≤2 𝑗 ,𝑚 (𝑤, 𝑅), 𝑤 ∈ 𝑊 , forming the (contracted) vertex set
𝑉 ′. We associate to 𝑣𝑤 ∈ 𝑉 ′ as many half-edges as there are unmatched half-edges adjacent to any
vertex in N≤2 𝑗 ,𝑚 (𝑤, 𝑅) after the exploration process in Step 2 finishes exploring generation R of 𝑊0.
Furthermore, let 𝑉 ′′ be the set of vertices of 𝐺𝑛 [V≤2 𝑗 ] that have not been touched in the exploration
process, i.e., vertices that belong to none of the neighborhoods ∪𝑤 ∈𝑊N≤2 𝑗 ,𝑚 (𝑤, 𝑅). Then the graph
𝐺 ′𝑛 is obtained by matching the half-edges of the vertex set 𝑉 ′ ∪ 𝑉 ′′ uniformly at random. About the
degrees of vertices in 𝑉 ′ in 𝐺 ′𝑛, that is, the number of unmatched half-edges in each N≤2 𝑗 ,𝑚 (𝑤, 𝑅),
[6, Lemma 7.5] proves the following:

There exists positive constant 𝜀′, 𝜀′′, 𝑅0, depending only on the degree sequences (𝑑𝑛)𝑛≥1, such that
for all bounded positive numbers 𝑅1, 𝑅, 𝑟 satisfying

𝑅0 ≤ min{𝑅1, 𝑅 − 𝑅1}, 800𝑟 ≤ 𝜀′2 (𝑏̄(1 − 𝜀′′))𝑅1−1 𝑗 , (186)

𝑏̄2𝑅1−1 𝑗2𝑢 𝑗

𝑑
≤ 1

104 ,
𝑏̄2𝑅−1 𝑗2𝑢 𝑗

𝑑
≤ 𝑟

10
, (187)

the number of vertices in 𝑉 ′ with degree at least M is at least (𝜀′/2) |𝑉 ′ | whp, where

𝑀 =
𝜀′3 (𝑏̄(1 − 𝜀′′))𝑅−1 𝑗

8
.

Note that this is reasonable, as a typical degree of a 𝑤𝑣 , 𝑣 ∈ 𝑉 ′ has cca ≈ 𝑗 𝑏̄𝑅−1 many unmatched
half-edges after finishing generation R, via the coupling to a branching process, and M is on the same
scale but much smaller. Note also that M grows with j, in fact all 𝑅, 𝑅1, 𝑟 are dependent on and growing
with j, while 𝑅0, 𝜀, 𝜀

′′ are not.
Step 4. Given that the conditions (186)-(187) are satisfied, [6] proves the existence of a high-degree core
in 𝐺 ′𝑛, which is an (𝑅, 𝑚, 𝑗)-embedded 𝛼-expander in 𝐺𝑛 (the core-number is chosen so that vertices
that are not in 𝑉 ′ have too low degree to be part of the core of 𝐺 ′𝑛, so the core will be a subset of W).
Here we mean core in the sense of Definition 7.1. [6] chooses 𝑟, 𝑅, 𝑅1 as the solution to the following
equations:
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𝑏̄2𝑅−1 𝑗2𝑢 𝑗

𝑑
=

𝑟

10
, (188)

𝜀′2 (𝑏̄(1 − 𝜀′′))𝑅1−1 𝑗 = 800𝑟, (189)

𝑏̄2𝑅1−1 =
𝑑

104 𝑗2𝑢 𝑗
. (190)

It is relatively easy to check that for large j this set of choices satisfies then (186)-(187). We also set
𝑟, 𝑅, 𝑅1 given by (188)–(190), and now compute the value of R: Combining (188) and (189) gives the
relation between 𝑅1 and R:

2𝑅 − 1 = (𝑅1 − 1) · log(𝑏̄(1 − 𝜀′′))
log(𝑏̄)

+
log

(
𝑑𝜀′2

8000 𝑗𝑢 𝑗

)
log(𝑏̄)

. (191)

Next, we note that (190) yields

2𝑅1 − 1 =
log

(
𝑑

104 𝑗2𝑢 𝑗

)
log(𝑏̄)

. (192)

Since we assume that E[𝐷2] < ∞, it holds that lim 𝑗→∞ 𝑗2𝑢 𝑗 = lim 𝑗→∞ 𝑗2
P(𝐷 ∈ [ 𝑗 , 2 𝑗]) = 0. So 𝑅1

can be chosen arbitrarily large by increasing j. Using this in (191) yields

2𝑅 − 1 ≈
log

(
𝑑

104 𝑗2𝑢 𝑗

)
2 log(𝑏̄)

· log(𝑏̄(1 − 𝜀′′))
log(𝑏̄)

+
log

(
𝑑𝜀′2

8000 𝑗𝑢 𝑗

)
log(𝑏̄)

,

𝑅 ≈
log

(
𝑑

104 𝑗2𝑢 𝑗

)
4 log(𝑏̄)

+
log

(
𝑑𝜀′2

8000 𝑗𝑢 𝑗

)
2 log(𝑏̄)

. (193)

In [6, Theorem 4], the degree distribution of 𝐺𝑛 is subexponential, that is, 𝑢 𝑗 = 𝑒−𝑜 ( 𝑗) . Then, the rhs
of (193) is 𝑜( 𝑗). In our case, the degree distribution has heavier tails than stretched-exponential with
stretch-exponent 𝜁 , that is, 𝑢 𝑗 = 𝑒−𝑜 ( 𝑗

𝜁 ) . Therefore, the rhs of (192) is 𝑜( 𝑗 𝜁 ), finishing the proof. �

Proof of Theorem 2.3 (a), outline. With Lemma 8.2 at hand, the proof can be word-by-word adapted
from the proof of [6, Theorem 4] with the difference that we use Claim 6.7 for the degree-penalized
process, in place of [6, Lemma 6.2]. Both [6, Lemma 6.2] and our Claim 6.7 ensure that given that a
star is infested, the infection reaches the next star at most 2𝑅 away with probability close to 1. For us,
2𝑅 = 𝑜( 𝑗1−2𝜇) is necessary for Claim 6.7, hence the assumption of heavier than stretched exponential
decay with exponent 1 − 2𝜇 for the degree-penalized process. In comparison, in [6], 𝑅 = 𝑜( 𝑗) is
necessary for [6, Lemma 6.2], which leads to the assumption of subexponential tails there. We note that
j depends on the infection rate 𝜆. �

Proof of Theorem 2.8(a). This is an easy consequence of Theorem 2.3(a) by stochastic domination,
noting that max(𝑑𝑢 , 𝑑𝑣 )𝜇 ≤ (𝑑𝑢𝑑𝑣 )𝜇. �

Remark 8.3. Here we highlight the difference between the expander that [6, Theorem 4] uses vs. what
we describe in Lemma 8.2 and the reason for the choice of difference. In Section 6.2, we have seen
the following: a star-graph of degree 𝑗 = 𝑗 (𝜆) that survives until exp(𝑐 𝑗1−2𝜇) long time can transfer
the infection along a path of length 𝑜( 𝑗1−2𝜇) if the path contains only constant degree vertices (say,
at most degree m, neither depending on j nor on 𝜆). If we would allow the path to contain vertices of
any degree up to j, the penalty along the path increases and along such a path whp transmission within
exp(𝑐 𝑗1−2𝜇) long time only happens up to distance 𝑜( 𝑗1−2𝜇/log 𝑗), which can be seen by adapting the
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proof of Claim 6.7. Thus, to obtain a sharp result, in Definition 8.1, in addition to the constraints (179),
(180), (182) that are all already present in [6], we have added (181), that restricts the embedded paths
connecting the stars of degree j to contain only low-degree vertices of degree at most m. Without the
restriction in (181), the proof in [6] word-by-word carries through for the degree-penalized CP as well,
but gives a weaker result: R can only be set in the proof to 𝑅 = 𝑜( 𝑗1−2𝜇/log 𝑗), which then, by (193),
would result in the slightly stronger assumption on the degree distribution

P(𝐷 = 𝐾) ≥ exp{−𝑔(𝐾)𝐾1−2𝜇/log(𝐾)} (194)

along an infinite subsequence (𝐾𝑖)𝑖≥1 and with some function g such that 𝑔(𝑥) → 0 as 𝑥 → ∞. For
limiting degree distributions satisfying (194), the proof of [6, Theorem 4] goes through for the degree-
penalized version without any modifications. The modification (181) thus eliminates the extra 1/log(𝐾)
factor in the tail-requirement on D in (194) so that the same assumption as for GW trees, Definition 1.8
with 𝜁 = 1 − 2𝜇 is enough.

A. Appendix: Proofs of technical lemmas

A.1. Proof of the statement in Example 1.13

Assumption 1.10 is a consequence of the law of large numbers. To prove Assumptions 1.11, and 1.12, we
also need to consider n-dependent values for 𝜈𝑛 (𝑧) and 1− 𝐹𝑛 (𝑧) which makes the statement nontrivial.
We bound the maximum degree first, this immediately gives (12) in Assumption 1.12. Here we use that
P(𝐷 ≥ 𝑧) ≤ 1/𝑧𝛼−𝜀′ ≤ 1/𝑧𝛼(1−𝜀′) holds for all 𝜀′ to estimate that the probability that (12) fails to hold
for given 𝑛, 𝐶𝑢 , 𝜀1 > 0 is

P

(
max
𝑖≤𝑛

𝐷𝑛,𝑖 > 𝑛1/(𝛼(1−𝜀1))
)
≤ 𝑛P

(
𝐷 > 𝑛1/(𝛼(1−𝜀1))

)
≤ 𝑛𝑛−(𝛼(1−𝜀

′)/( (𝛼(1−𝜀1)) = 𝑛1−(1−𝜀′)/(1−𝜀1) . (A.1)

For any fixed 𝜀1 > 0, choose 𝜀′ := 𝜀1/2 and then the exponent of n is negative. Hence, with probability
tending to 1, we have max 𝑑𝑖 ≤ 𝑛1/(𝛼(1−𝜀1)) =: 𝑧max(𝜀1) for any fixed 𝜀1. We can rewrite the exponent
to obtain that 𝛼 = 𝜏 − 1. This means that 𝜈𝑛 (𝑧) has discrete support on [0, 𝑛1/𝛼(1−𝜀1) ] with probability
tending to 1, hence it is enough to consider 𝑧 ∈ N in this range. We now recall that for any Binomial
random variable with parameters n and p, and any 𝑐 > 1,

P(Bin(𝑛, 𝑝) ≥ 𝑐𝑛𝑝) ≤ exp(−𝑛𝑝(𝑐 log 𝑐 + 1 − 𝑐)) = exp(−𝑛𝑝𝑐(log 𝑐 + 1/𝑐 − 1)). (A.2)

Clearly the right-hand side is tending to 0 as long as 𝑛𝑝𝑐 → ∞ and log 𝑐 → ∞ both hold. We start by
estimating the upper tail for Assumption 1.11, so that we prove (13). Our goal is to show that for all
𝑧 ≤ 𝑛1/(𝛼(1−𝜀1)) = 𝑧max, for some 𝜀2 > 0 that is still arbitrarily small, whp

P
(
∀𝑧 ∈ [𝑧0(𝜀2/2), 𝑧max(𝜀1)] : 1 − 𝐹𝑛 (𝑧) ≤ 𝑧−𝛼(1−𝜀2) ) → 1. (A.3)

Note that 𝑛(1 − 𝐹𝑛 (𝑧)) is the number of vertices with degree above z, which has Bin(𝑛, P(𝐷 > 𝑧))
distribution. For all 𝑧 ≥ 𝑧0(𝜀′) this is stochastically dominated from above by a Bin(𝑛, 𝑧−𝛼(1−𝜀′) )
distribution. Hence,

P

(
1 − 𝐹𝑛 (𝑧) ≥ 𝑧−𝛼(1−𝜀2)

)
≤ P

(
Bin(𝑛, 𝑧−𝛼(1−𝜀′) ) ≥ 𝑛𝑧−𝛼(1−𝜀2)

)
.

Now we apply (A.2) with 𝑝 = 𝑧−𝛼(1−𝜀
′) and 𝑐 = 𝑧−𝛼(1−𝜀2)+𝛼(1−𝜀′) = 𝑧𝛼(𝜀2−𝜀′) . The exponent of

z is positive whenever 𝜀2 > 𝜀′ which we already we may safely assume since 𝜀′ can be chosen
arbitrarily, hence log 𝑐 → ∞. Further, 𝑛𝑝𝑐 = 𝑛𝑧−𝛼(1−𝜀2) tends to ∞ exactly when 𝑧 = 𝑜(𝑛1/(𝛼(1−𝜀2)) )
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which can be made always true in the range [1, 𝑛1/(𝛼(1−𝜀1)) ] of the empirical distribution by choosing
𝜀2 ≥ 𝜀1 ≥ 𝜀′ := 𝜀2/2, but all of them arbitrarily small. At 𝑧max(𝜀1) the exponent in (A.2) becomes
minimal and is at least constant times 𝑛𝑝𝑐 = 𝑛𝑧−𝛼(1−𝜀2)

max = 𝑛𝑛−(1−𝜀2)/(1−𝜀1) = 𝑛+𝛿 . Taking a union
bound over all 𝑧 ∈ [1, 𝑛1/(𝛼(1−𝜀1)) ] and the bound in (A.1) we obtain that

1 − P(∀𝑧 ≥ 1 : 1 − 𝐹𝑛 (𝑧) ≤ 𝑧−𝛼(1−𝜀2) ) = P(∃𝑖 ≤ 𝑛 : 𝐷𝑖 > 𝑧max(𝜀1))
+ P

(
∃𝑧 ≤ 𝑧max(𝜀1) : 1 − 𝐹𝑛 (𝑧) ≤ 𝑧−𝛼(1−𝜀2) )

≤ 𝑛1−(1−𝜀′)/(1−𝜀1) + 𝑛1/(𝛼(1−𝜀1)) exp(−𝑛𝛿) → 0.

This finishes the proof of (A.3) and the upper bound in Assumption 1.11. To prove the lower bound we
need the opposite direction, that is, for all 𝑐 ≤ 1/2,

P(Bin(𝑛, 𝑝) ≤ 𝑐𝑛𝑝) ≤ exp(−𝑛𝑝/8), (A.4)

as long as 𝑛𝑝 → ∞. We now estimate 𝑛(1 − 𝐹𝑛 (𝑧)) = Bin(𝑛, P(𝐷 > 𝑧)) stochastically from below by
Bin(𝑛, 𝑧−(𝛼+𝜀′) ) ≥ Bin(𝑛, 𝑧−𝛼(1+𝜀′) ) which is true for all fixed 𝜀′ and all 𝑧 > 𝑧0(𝜀′), since the lower
bound here is coming from (6). So let us set 𝑧 (ℓ)max(𝜀, 𝑛) in Assumption 1.11 to be 𝑛1/(𝛼(1+𝜀)) , and then
the mean 𝑛(𝑧 (ℓ)max(𝜀, 𝑛))−(𝛼(1+𝜀

′)) = 𝑛1−(1+𝜀′)/(1+𝜀) tends to infinity whenever 𝜀′ < 𝜀. Further, if 𝜀′ < 𝜀

then also 𝑛𝑧−𝛼(1+𝜀) ≤ 𝑛𝑧−𝛼(1+𝜀
′) /2 for all 𝑧 ≤ 𝑧 (ℓ)max(𝜀, 𝑛), and so (A.4) applies with 𝑝 = 𝑧−𝛼(1+𝜀

′) . By
a union bound then

P

(
∃𝑧 ∈ [𝑧0, 𝑧

(ℓ)
max(𝜀, 𝑛)] : 1 − 𝐹𝑛 (𝑧) ≤ 𝑧−𝛼(1+𝜀)

)
≤ 𝑛1/(𝛼(1+𝜀)) exp(−𝑛1−(1+𝜀′)/(1+𝜀) /8),

which tends to 0. It remains to prove (11) in Assumption 1.12, and here we can use the extra assump-
tion (14). Namely, following the bound on the maximum in (A.1). We want to prove that

P

(
∃𝑧 ∈ [𝑧0, 𝑧max(𝜀1)] : 𝜈𝑛 (𝑧) ≥ 𝑧−𝜏 (1−𝜀)

)
→ 0.

In this case 𝑛𝜈𝑛 (𝑧) = 𝑛𝑧 = Bin(𝑛, P(𝐷 = 𝑧)) which is stochastically dominated by Bin(𝑛, 𝑧−𝜏 (1−𝜀′) ),
and returning to (A.2), now 𝑐 = 𝑧𝜏 (𝜀−𝜀

′) tends to infinity whenever 𝜀 > 𝜀′, and now 𝑛𝑧−𝜏 (1−𝜀) takes the
role of 𝑛𝑝𝑐. This tends to infinity whenever 𝑧 = 𝑜(𝑛1/(𝜏 (1−𝜀)) ), which is much less than the maximum
degree 𝑧max(𝜀1) = 𝑛1/(𝜏−1) (1−𝜀1) for small 𝜀 > 0. Nevertheless, we can set a reasonable 𝜀, namely,
whenever we set 𝜀 > 1/𝜏, for example, set 𝜀 := 1/𝜏 + 𝛿, then 𝑛𝑧−𝜏 (1−𝜀) = 𝑛𝑧−𝜏 (1−1/𝜏−𝛿) = 𝑛𝑧−(𝜏−1−𝛿) ,
and so for 𝑧max = 𝑛1/(𝜏−1) (1−𝜀1) this is 𝑛𝑛−(𝜏−1−𝛿)/(𝜏−1) (1−𝜀1) , which has a positive exponent whenever
𝛿 > 𝜀1 (𝜏 − 1). Since 𝜀1 was arbitrarily small, 𝛿 is thus also arbitrarily small. This, together with a union
bound with (A.1) finishes the proof of (15):

1 − P(∀𝑧 ≥ 1 : 𝜈𝑛 (𝑧) ≤ 𝑧−𝜏 (1−1/𝜏+𝛿) ) = P(∃𝑖 ≤ 𝑛 : 𝐷𝑖 > 𝑧max(𝜀1))
+ P

(
∃𝑧 ≤ 𝑧max(𝜀1) : 𝜈𝑛 (𝑧) ≤ 𝑧−𝜏 (1−1/𝜏+𝛿) )

≤ 𝑛1−(1−𝜀′)/(1−𝜀1) + 𝑛1/(𝜏−1) (1−𝜀1)) exp(−𝑛𝛿) → 0.

If one considers truncated power-law distributions with maximal degree 𝑧max,tr = 𝑜(𝑛1/𝜏), then
𝑛𝑧−𝜏 (1−𝜀)max,tr →∞ for all possible values z, hence the proof above works with 𝜀 > 0 arbitrary.

A.2. Proof of long survival on stars

Proof of Claim 6.6. Denote the neighbors of v by 𝑤1, . . . , 𝑤𝐾 . Define

A1 = {𝜉𝑣𝑡 (𝑣) = 1 for all 𝑡 ∈ [0, 1]},
A2 =

{��{𝑖 : 𝜉𝑣1 (𝑤𝑖) = 1
}�� ≥ 𝜆𝐾1−𝜇/(4𝑒)

}
.
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Since v recovers at rate 1, P(A1 | 𝜉0 (𝑣) = 1) = 1/𝑒. Conditioning on A1, v infects each of 𝑤𝑖 during
[0, 1] with rate 𝜆𝐾−𝜇, independently of each other. Hence, for 𝑖 = 1, . . . , 𝐾 ,

P(𝑣 infects 𝑤𝑖 at some 𝑡 ∈ [0, 1]) = 1 − 𝑒−𝜆𝐾−𝜇 ≥ 𝜆𝐾−𝜇/2,

using that 𝜆𝐾−𝜇 < 1. Each 𝑢𝑖 that becomes infected during [0, 1] is still infected at time 1 with
conditional probability at least 1/𝑒. Hence,��{𝑖 : 𝜉𝑣1 (𝑤𝑖) = 1

}�� | A1 � 𝑋 ∼ Bin(𝐾, 𝜆𝐾−𝜇/(2𝑒)),

where � stands for stochastic domination. By a standard Chernoff bound, this yields

P(A2 | A1) ≥ P
(
𝑋 ≥ 𝜆𝐾1−𝜇/(4𝑒)

)
≥ 1 − 𝑒−𝜆𝐾 1−𝜇/(16𝑒) . (A.5)

Therefore,

P(A2) ≥ P(A1) · P(A2 | A1) ≥
(
1 − 𝑒−𝜆𝐾 1−𝜇/(16𝑒)

)
/𝑒,

finishing the proof of (117) in Claim 6.6.
We now turn to proving (118) and (119). Starting from time 0, we declare each unit time-interval

[𝑠, 𝑠 + 1] for 𝑠 ∈ N successful if the following events jointly occur:

B1
𝑠 =

{
|{𝑖 : 𝜉𝑠 (𝑤𝑖) = 1}| ≥ 𝜆𝐾1−𝜇/(8𝑒)

}
,

B2
𝑠 =

{
|{𝑖 : 𝜉𝑡 (𝑤𝑖) = 1 for all 𝑡 ∈ [𝑠, 𝑠 + 1]}| ≥ 𝜆𝐾1−𝜇/(16𝑒2)

}
,

B3
𝑠 =

{∫ 𝑠+1

𝑠
𝜉𝑡 (𝑣) d𝑡 ≥ 0.55

}
,

B4
𝑠 =

{
|{𝑖 : 𝜉𝑠+1(𝑤𝑖) = 1}| ≥ 𝜆𝐾1−𝜇/(8𝑒)

}
.

(A.6)

Here B1
𝑠 is the event that a large enough number of leaves of the star are infected at the beginning of the

time interval [𝑠, 𝑠 + 1], which will be enough to sustain the infestation during the whole period, while
B4
𝑠 is the corresponding event for the end of the time interval. B2

𝑠 is the event that the star is infested
during [𝑠, 𝑠 + 1], while B3

𝑠 is the event that the center is infected a bit more than half the time during the
time interval [𝑠, 𝑠 + 1]. Note that B4

𝑠 = B1
𝑠+1 for all s and that B1

0 holds by the condition of the Lemma.
One can see that if B1

𝑠 ∩B2
𝑠 ∩B3

𝑠 ∩B4
𝑠 holds for all 𝑠 ∈ {0, 1, . . . , �𝑇𝐾 �}, given that |𝜉0 | ≥ 𝜆𝐾1−𝜇/8e,

then the event on the left-hand side of (119) holds (we demand in B3
𝑠 a little bit more than 1/2 of the

time being infected, so that even if v is healthy during [�𝑇𝐾 �, 𝑇𝐾 , this does not cause a problem on the
total infected time being above 𝑇𝐾 /2. Further, (118) is a direct consequence of (119), so it is enough to
bound the probability of the intersection of these events.

We now fix some 𝑠 ∈ N and bound the conditional probabilities of each of these events given the
previous ones. First, any leaf of the star that is infected at time s will stay infected during the whole
interval [𝑠, 𝑠 + 1] with conditional probability at least 1/𝑒, conditioned on any trajectory of the process
on the other vertices. Formally, for any 𝑖 = 1, . . . , 𝐾 ,

inf
𝜂
P

(
𝜉𝑡 (𝑤𝑖) = 1 for all 𝑡 ∈ [𝑠, 𝑠 + 1] | 𝜉𝑠 (𝑤𝑖) = 1,
𝜉 ≡ 𝜂 on [𝑠, 𝑠 + 1] on all vertices apart from 𝑢𝑖

)
≥ 1/𝑒.

Hence, by a Chernoff bound similar to (A.5),

P(B2
𝑠 | B1

𝑠 ) ≥ 1 − 𝑒−𝜆𝐾 1−𝜇/(64𝑒2) . (A.7)

We will now give a bound on P(B3
𝑠 | B1

𝑠 ∩ B2
𝑠 ), using that an infested star has enough leaves infected at

every time to send back the infection to the center frequently enough to keep it infected for at least half
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of the time. Formally, given B1
𝑠 ∩B2

𝑠 , (𝜉𝑡 (𝑣))𝑡 ∈[𝑠,𝑠+1] is a Markov process on the state space {0, 1} with
transition rates

𝑄01 ≥ 𝜆𝐾1−𝜇 · 𝜆𝐾−𝜇/(16𝑒2) = 𝜆2𝐾1−2𝜇/(16𝑒2), 𝑄10 = 1,

and some starting state 𝜉𝑠 (𝑣). Let us introduce auxiliary Markov processes (𝑌𝑡 )𝑡≥0, (𝑌 ′𝑡 )𝑡≥0 and (𝑌 ′′𝑡 )𝑡≥0
on {0, 1}, all starting from the same initial state 𝜉𝑠 (𝑣), with transition rates

𝑞01 = 𝜆2𝐾1−2𝜇/(16𝑒2), 𝑞10 = 1 of 𝑌,
𝑞′01 = 1, 𝑞′10 = 16𝑒2/(𝜆2𝐾1−2𝜇) of 𝑌 ′,
𝑞′′01 = 1, 𝑞′′10 = 1/2 of 𝑌 ′′,

respectively. Note that 𝑌 ′ is a time-changed (slowed-down) version of Y, and 𝑌 ′′ is stochastically
dominated by 𝑌 ′ when (16𝑒2)/(𝜆2𝐾1−2𝜇) < 1/2. Then, recalling (A.6), we have

P(B3
𝑠 | B1

𝑠 ∩ B2
𝑠 ) ≥ P

(∫ 1

0
𝑌𝑡 d𝑡 ≥ 0.55

)
= P

&'( 16𝑒2

𝜆2𝐾1−2𝜇

∫ 𝜆2𝐾1−2𝜇

16𝑒2

0
𝑌 ′𝑡 d𝑡 ≥ 0.55)*+

≥ P&'( 16𝑒2

𝜆2𝐾1−2𝜇

∫ 𝜆2𝐾1−2𝜇

16𝑒2

0
𝑌 ′′𝑡 d𝑡 ≥ 0.55)*+. (A.8)

Note that the stationary distribution of 𝑌 ′′ is (𝜋0, 𝜋1) = (1/3, 2/3). The large deviation principle for
Markov chains (see for example [22]) yields that the time average of 𝑌 ′′𝑡 on the right-hand side of (A.8)
is close to 𝜋1 with large probability, as 𝐾 →∞:

P
&'( 16𝑒2

𝜆2𝐾1−2𝜇

∫ 𝜆2𝐾1−2𝜇

16𝑒2

0
𝑌 ′′𝑡 d𝑡 ≥ 0.55)*+ ≥ 1 − exp{−𝑐𝜆2𝐾1−2𝜇}. (A.9)

Combining (A.8) and (A.9) gives

P(B3
𝑠 | B1

𝑠 ∩ B2
𝑠 ) ≥ 1 − exp{−𝑐𝜆2𝐾1−2𝜇} (A.10)

for some 𝑐 > 0.
Given B3

𝑠 , during [𝑠, 𝑠 +1], v spends at least 1/2 time in total in state 1, during which it infects all the
leaves with rate 𝜆𝐾1−𝜇. Each leaf infected this way is still infected at 𝑠 + 1 with conditional probability
at least 1/𝑒. Hence, for B4

𝑠 given by (A.6), another Chernoff bound, similar to (A.5), yields

P(B4
𝑠 | B1

𝑠 ∩ B2
𝑠 ∩ B3

𝑠 ) ≥ 1 − 𝑒−𝜆𝐾 1−𝜇/(32𝑒) . (A.11)

Combining (A.7), (A.10) and (A.11) yields

P(B1
𝑠 ∩ B2

𝑠 ∩ B3
𝑠 ∩ B4

𝑠 | B1
𝑠 ) ≥ 1 − exp{−𝑐′𝜆2𝐾1−2𝜇} (A.12)

for some 𝑐′ > 0. In words, (A.12) states the following: given that a large enough number of leaves (at
least 𝜆𝐾1−𝜇/(8𝑒)) are infected at time s, the conditional probability that the time-interval [𝑠, 𝑠 + 1] will
be successful (in the sense discussed around (A.6)) is at least 1 − exp{−𝑐′𝜆2𝐾1−2𝜇}. The fact that the
time-interval [𝑠, 𝑠 + 1] is successful includes the event B4

𝑠 = B1
𝑠+1, that is, that a large enough number

of leaves are infected at time 𝑠 + 1 as well. Hence, using (A.12) iteratively (for 𝑠 = 0, 1, . . .) shows that,
given B1

0 = {|𝜉
0
| ≥ 𝜆𝐾1−𝜇/(8𝑒)}, the number of consecutive successful time-intervals [0, 1], [1, 2], . . .

stochastically dominates a Geometric random variable with parameter exp{−𝑐′𝜆2𝐾1−2𝜇}. Consequently
(using a union bound with (A.12)), there exists a constant 𝑐1 > 0 such that, with𝑇𝐾 := exp(𝑐1𝜆

2𝐾1−2𝜇),
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P

(
[0, 1],[1, 2], . . . , [�𝑇𝐾 �, �𝑇𝐾 �] are all successful time-intervals

��� |𝜉0
| ≥ 𝜆𝐾1−𝜇/(8𝑒)

)
≥ 1 − exp(−𝑐1𝜆

2𝐾1−2𝜇). (A.13)

Recalling how successful time intervals are defined in terms of the events in (A.6), (A.13) implies
both (118) and (119) in the claim. �

A.3. Proofs about the degrees in the configuration model

Proof of Lemma 7.5. We will consider 𝑛̃𝑖 :=
∑𝑛

𝑗=1 1{𝑑 𝑗=𝑖,𝑑 𝑗 ≤𝑀 } which gives the number of vertices
with degree i in 𝐺𝑛 [V≤𝑀 ]. Then the (random) empirical mass function of 𝐹𝑛,𝑀 can be written as

𝑋𝑛,𝑀 (𝑖) = P(𝐷𝑛,𝑀 = 𝑖 | 𝐺𝑛 [V≤𝑀 ]) =
𝑛̃𝑖

𝑉≤𝑀
=

(𝑉≤𝑀
𝑛

)−1
· 𝑛̃𝑖
𝑛
. (A.14)

We can now analyze both factors on the rhs separately. The first factor is already given by (141), and
can be exactly described using 𝐷𝑛 with cdf in (8)

𝑉≤𝑀
𝑛

=
𝑛𝐹𝑛 (𝑀)

𝑛
= 𝐹𝑛 (𝑀) = P(𝐷𝑛 ≤ 𝑀). (A.15)

By the definition of 𝛿𝑛 in (147), this falls in the range P(𝐷 ≤ 𝑀) ± 𝑀𝛿𝑛. Turning to the second factor
𝑛̃𝑖/𝑛 in (A.14), we introduce 𝑛ℓ := |Vℓ | =

∑𝑛
𝑗=1 1{𝑑 𝑗=ℓ } the number of degree-ℓ vertices in the original

graph. Then we can carry out a first and second moment method, that is, we take expectation over the
realization of the matching and hence the graph 𝐺𝑛 [V≤𝑀 ]. We start with the first moment:

1
𝑛
E[𝑛̃𝑖] =

1
𝑛

𝑀∑
ℓ=𝑖

∑
𝑣 ∈Vℓ

E[1{𝑑𝑣=𝑖 } | 𝑑𝑣 = ℓ] = 1
𝑛

𝑀∑
ℓ=𝑖

∑
𝑣 ∈Vℓ

P(𝑑𝑣 = 𝑖 | 𝑑𝑣 = ℓ). (A.16)

To analyze P(𝑑𝑣 = 𝑖 | 𝑑𝑣 = ℓ), we first deal with self-loops at 𝑣 ∈ Vℓ . Labeling the half-edges of v as
ℎ1, ℎ2, . . . , ℎℓ , the number of self-loops at v is 𝑆𝑣 :=

∑
1≤𝑠,𝑡≤ℓ 1{ℎ𝑠↔ℎ𝑡 }, with↔ standing for the event

that the two half-edges are matched to each other. We denote the total number of half-edges in the graph
by 𝐻𝑛 = E[𝐷𝑛]𝑛, and then a first moment method yields, as ℓ ≤ 𝑀 ,

P(𝑆𝑣 ≥ 1) ≤ E[𝑆𝑣 ] =
(
ℓ

2

)
1

𝐻𝑛 − 1
≤ 𝑀2

E[𝐷𝑛]𝑛
. (A.17)

Recall from (141) in Definition 7.2 that we denote by 𝐻≤𝑀 and 𝐻>𝑀 the number of half-edges attached
to vertices of degree at most M and larger than M, respectively. Partition now the ℓ half-edges of v into
(arbitrary) two groups of size i and ℓ − 𝑖, respectively: ℎ𝑠1 , . . . , ℎ𝑠𝑖 and ℎ𝑠𝑖+1 , . . . , ℎ𝑠ℓ , and let us write
informally

A{𝑠1 ,...,𝑠𝑖 } :=
{
{ℎ𝑠1 , . . . , ℎ𝑠𝑖 } ↔ V≤𝑀 , {ℎ𝑠𝑖+1 , . . . , ℎ𝑠ℓ } ↔ V>𝑀 , 𝑆𝑣 = 0

}
for the event that the half-edges ℎ𝑠1 , . . . , ℎ𝑠𝑖 are all matched to half-edges belonging to vertices in V≤𝑀 ,
the half-edges ℎ𝑠𝑖+1 , . . . , ℎ𝑠ℓ are all matched to half-edges belonging to vertices in V>𝑀 , and there is no
self-loop created among ℎ𝑠1 , . . . , ℎ𝑠𝑖 . Then, matching half-edges one by one, we come to

P(A{𝑠1 ,...,𝑠𝑖 }) =
𝑖−1∏
𝑎=0

𝐻≤𝑀 − ℓ − 𝑎
𝐻𝑛 − 2𝑎 − 1

·
ℓ−𝑖−1∏
𝑏=0

𝐻>𝑀 − 𝑏

𝐻𝑛 − 2(𝑖 + 𝑏) − 1
.
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Observe that per definition 𝐻≤𝑀 = 𝑛E[𝐷𝑛1{𝐷𝑛≤𝑀 }] and 𝐻𝑛 = 𝑛E[𝐷𝑛] so one can compute, using
also that ℓ ≤ 𝑀 , that each factor in the first product is 𝑞𝑛,𝑀 (1 +𝑂 (𝑀/𝑛)) and each factor in the second
product is (1 − 𝑞𝑛,𝑀 ) (1 + 𝑂 (𝑀/𝑛)). Considering all the possible partitions of the half-edges into two
groups of i and ℓ − 𝑖 half-edges, and using that there are ℓ ≤ 𝑀 factors in the two products together, we
arrive at

P(𝑑𝑣 = 𝑖 | 𝑑𝑣 = ℓ) ≥
∑

{𝑠1 ,...,𝑠𝑖 }⊂[ℓ ]
P
(
A{𝑠1 ,...,𝑠𝑖 }

)
=

(
ℓ

𝑖

)
𝑞𝑖𝑛,𝑀 (1 − 𝑞𝑛,𝑀 )

ℓ−𝑖 (1 +𝑂 (
𝑀 2

𝑛

) )
.

(A.18)

A similar upper bound holds: we account for the error caused by the event that there might be self-loops
at v in (A.17),

P(𝑑𝑣 = 𝑖 | 𝑑𝑣 = ℓ) ≤ P(𝑆𝑣 ≥ 1) +
∑

{𝑠1 ,...,𝑠𝑖 }⊂[ℓ ]
P
(
A{𝑠1 ,...,𝑠𝑖 }

)
= 𝑂

(
𝑀 2

𝑛

)
+

(
ℓ

𝑖

)
𝑞𝑖𝑛,𝑀 (1 − 𝑞𝑛,𝑀 )

ℓ−𝑖 (1 +𝑂 (
𝑀 2

𝑛

) )
.

(A.19)

Using these bounds in (A.16), and that |Vℓ |/𝑛 = P(𝐷𝑛 = ℓ), we arrive at

1
𝑛
E[𝑛̃𝑖] =

𝑀∑
ℓ=𝑖

P(𝐷𝑛 = ℓ)
(
𝑂

(
𝑀 2

𝑛

)
+

(
ℓ

𝑖

)
𝑞𝑖𝑛,𝑀 (1 − 𝑞𝑛,𝑀 )

ℓ−𝑖 (1 +𝑂 (
𝑀 2

𝑛

) ) )
= 𝑂

(
𝑀 2

𝑛

)
P(𝐷𝑛 ≤ 𝑀) +

(
1 +𝑂

(
𝑀 2

𝑛

) ) 𝑀∑
ℓ=𝑖

P(𝐷𝑛 = ℓ)
(
ℓ

𝑖

)
𝑞𝑖𝑛,𝑀 (1 − 𝑞𝑛,𝑀 )

ℓ−𝑖 .

Combining this with (A.14) and (A.15), (recalling also that given (𝑑1, . . . 𝑑𝑛), 𝑉<𝑀 is deterministic),
we obtain that

E[𝑋𝑛,𝑀 (𝑖)] =
1

𝑉≤𝑀
E[𝑛̃𝑖]

= 𝑂
(
𝑀 2

𝑛

)
+

(
1 +𝑂

(
𝑀 2

𝑛

) ) 𝑀∑
ℓ=𝑖

P(𝐷𝑛 = ℓ)
P(𝐷𝑛 ≤ 𝑀)

(
ℓ

𝑖

)
𝑞𝑖𝑛,𝑀 (1 − 𝑞𝑛,𝑀 )

ℓ−𝑖 .

(A.20)

We can here observe that the rhs gives the probability P(Bin(𝐷𝑛, 𝑞𝑛,𝑀 ) = 𝑖 | 𝐷𝑛 ≤ 𝑀). Since
P(𝐷𝑛 ≤ 𝑀) → P(𝐷 ≤ 𝑀) and 𝑞𝑛,𝑀 → 𝑞𝑀 by Assumption 1.10, the rhs of (A.20) tends to

lim
𝑛→∞
E[𝑋𝑛,𝑀 (𝑖)] =

𝑀∑
ℓ=𝑖

P(𝐷 = ℓ)
P(𝐷 ≤ 𝑀)

(
ℓ

𝑖

)
𝑞𝑖𝑀 (1 − 𝑞𝑀 )

ℓ−𝑖

= P(Bin(𝐷, 𝑞𝑀 ) = 𝑖 | 𝐷 ≤ 𝑀) =: P(𝐷𝑀 = 𝑖) =: 𝑝𝑀 (𝑖),

(A.21)

where we recognised that the formula on the right hand-side of the first row equals the second row,
which ensures that this is a proper random variable. As 𝑝𝑀 (𝑖) is lim𝑛→∞ E[𝑋𝑛,𝑀 (𝑖)], we now set out
to prove that the random empirical distribution 𝐹𝑛,𝑀 – with pointmasses 𝑋𝑛,𝑀 (𝑖) at i – converges
pointwise for each 𝑖 ≤ 𝑀 to 𝑝𝑀 (𝑖), in probability. Then (148) will be the limit random variable in the
lemma statement.

To achieve this, first we bound the difference between E[𝑋𝑛,𝑚 (𝑖)] and its limit 𝑝𝑀 (𝑖). Recalling
the definition of 𝛿𝑛 from (147) we may write 𝑞𝑛,𝑀 = 𝑞𝑀 (1 ± 𝛿𝑛), 1 − 𝑞𝑛,𝑀 = (1 − 𝑞𝑀 ) (1 ± 𝛿𝑛) and
similarly we can use that P(𝐷𝑛 = ℓ) = P(𝐷 = ℓ) (1 ± 𝛿𝑛) when the limit P(𝐷 = ℓ) is nonzero and
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otherwise P(𝐷𝑛 = ℓ) ≤ 𝛿𝑛. So, we subtract (A.20) from the right-hand side of the first row in (A.21) to
obtain after elementary error-estimates that��E[𝑋𝑛,𝑀 (𝑖)] − 𝑝𝑀 (𝑖)

�� ≤ 𝑂
(
𝑀 2

𝑛

)
+𝑂

(
𝑀 2

𝑛 + 𝑀
2𝛿𝑛

)
P(𝐷𝑀 = 𝑖)

= 𝑂
(
𝑀 2

𝑛 + 𝛿𝑛𝑀
2) . (A.22)

This finishes comparing the first moments. We now turn to the variance in (A.14). Clearly

Var
(
𝑋𝑛,𝑀 (𝑖)

)
= Var

( 𝑛̃𝑖
𝑉≤𝑀

)
=

(𝑉≤𝑀
𝑛

)−2
· Var(𝑛̃𝑖)

𝑛2 . (A.23)

The first factor on the rhs is P(𝐷𝑛 ≤ 𝑀)−2. Using the indicator representation of 𝑛̃𝑖 , we compute using
the covariance formula that

Var(𝑛̃𝑖)
𝑛2 =

1
𝑛2

𝑀∑
ℓ,ℓ′=𝑖

∑
𝑣 ∈Vℓ ,
𝑢∈Vℓ′

(
P
(
𝑑𝑣 = 𝑖, 𝑑𝑢 = 𝑖 | 𝑑𝑣 = ℓ, 𝑑𝑢 = ℓ′

)
− P

(
𝑑𝑣 = 𝑖, | 𝑑𝑣 = ℓ

)
P
(
𝑑𝑢 = 𝑖 | 𝑑𝑢 = ℓ′

) )
.

(A.24)

When 𝑢 = 𝑣, the two vertices are the same, the (co)variance is at most 1, and the summation contains
only at most n terms, hence the error coming from coinciding 𝑢, 𝑣 is 𝑂 (1/𝑛)P(𝐷𝑛 ≤ 𝑀) when summed
also over ℓ = ℓ′. Now we treat the case when 𝑢 ≠ 𝑣. For P

(
𝑑𝑣 = 𝑖 | 𝑑𝑣 = ℓ

)
and P

(
𝑑𝑢 = 𝑖 | 𝑑𝑢 = ℓ′

)
we

can use the bounds in (A.18) and (A.19). Similarly to there, we compute the first term P
(
𝑑𝑣 = 𝑖, 𝑑𝑢 =

𝑖 | 𝑑𝑣 = ℓ, 𝑑𝑢 = ℓ′
)

as well. Let 𝑆𝑢,𝑣 denote the number of self-loops at the two vertices 𝑢, 𝑣 together
plus the number of edges between u and v. Then a first moment method yields

P(𝑆𝑢,𝑣 ≥ 1) ≤ E[𝑆𝑢,𝑣 ] =
1

𝐻𝑛 − 1

((
ℓ

2

)
+

(
ℓ′

2

)
+ ℓℓ′

)
≤ 2𝑀2

E[𝐷𝑛]𝑛
. (A.25)

Now we label the half-edges ℎ (𝑣 )1 , . . . , ℎ (𝑣 )ℓ and ℎ (𝑢)1 , . . . , ℎ (𝑢)ℓ′ of v and u, respectively, and parti-
tion them into two subsets each, defined by the index sets {𝑠1, . . . , 𝑠𝑖}, {𝑠𝑖+1, . . . , 𝑠ℓ } ⊂ [ℓ] and
{𝑡1, . . . , 𝑡𝑖}, {𝑡𝑖+1, . . . , 𝑡ℓ′ } ⊂ [ℓ′]. We introduce the event

A{𝑠1 ,...,𝑠𝑖 ,𝑡1 ,...,𝑡𝑖 } :=
{
{ℎ (𝑣 )𝑠1 , . . . , ℎ

(𝑣 )
𝑠𝑖 , ℎ

(𝑢)
𝑡1
, . . . , ℎ (𝑢)𝑡𝑖 } ↔ V≤𝑀 ,

{ℎ (𝑣 )𝑠𝑖+1 , . . . , ℎ
(𝑣 )
𝑠ℓ , ℎ

(𝑢)
𝑡𝑖+1 , . . . , ℎ

(𝑢)
𝑡ℓ′
} ↔ V>𝑀 , 𝑆𝑢,𝑣 = 0

}
,

the event that the half-edges ℎ (𝑣 )𝑠1 , . . . , ℎ
(𝑣 )
𝑠𝑖 , ℎ

(𝑢)
𝑡1
, . . . , ℎ (𝑢)𝑡𝑖 are all matched to half-edges belonging to

vertices in V≤𝑀 , the half-edges ℎ (𝑣 )𝑠𝑖+1 , . . . , ℎ
(𝑣 )
𝑠ℓ , ℎ

(𝑢)
𝑡𝑖+1 , . . . , ℎ

(𝑢)
𝑡ℓ′

are all matched to half-edges belonging to
vertices in V>𝑀 , and there is no self-loop and edge created at and between u and v. Then

P(A{𝑠1 ,...,𝑠𝑖 ,𝑡1 ,...,𝑡𝑖 }) =
2𝑖−1∏
𝑎=0

𝐻≤𝑀 − ℓ − ℓ′ − 𝑎
𝐻𝑛 − 2𝑎 − 1

·
ℓ+ℓ′−2𝑖−1∏

𝑏=0

𝐻>𝑀 − 𝑏

𝐻𝑛 − 2(2𝑖 + 𝑏) − 1
.

Using that ℓ, ℓ′ ≤ 𝑀 , one can compute that each factor in the first product is 𝑞𝑛,𝑀 (1 + 𝑂 (𝑀/𝑛)) and
each factor in the second product is (1 − 𝑞𝑛,𝑀 ) (1 + 𝑂 (𝑀/𝑛)). Hence, similarly to (A.18) and (A.19),
summing over all possible partitions, we obtain the lower bound

P
(
𝑑𝑣 = 𝑖,𝑑𝑢 = 𝑖 | 𝑑𝑣 = ℓ, 𝑑𝑢 = ℓ′

)
≥

(
ℓ

𝑖

)
𝑞𝑖𝑛,𝑀 (1 − 𝑞𝑛,𝑀 )

ℓ−𝑖
(
ℓ′

𝑖

)
𝑞𝑖𝑛,𝑀 (1 − 𝑞𝑛,𝑀 )

ℓ′−𝑖 (1 +𝑂 (𝑀 2

𝑛 )
)
.

https://doi.org/10.1017/fms.2025.10144 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10144


80 Z. Bartha, J. Komjáthy and D. Valesin

and the upper bound is the same as the rhs with an additive 𝑂
(
𝑀 2

𝑛

)
coming from (A.25). We see that

this is the same bound as the one in (A.19), multiplied together for u and v. Hence, returning to (A.24),
when we take the difference of the two terms, the summand 1 in the (1 + 𝑂

(
𝑀 2

𝑛

)
) factor cancels, and

each summand can be upper bounded as��P(𝑑𝑣 = 𝑖, 𝑑𝑢 = 𝑖 | 𝑑𝑣 = ℓ, 𝑑𝑢 = ℓ′
)
− P

(
𝑑𝑣 = 𝑖, | 𝑑𝑣 = ℓ

)
P
(
𝑑𝑢 = 𝑖 | 𝑑𝑢 = ℓ′

) ��
≤ 𝑂

(
𝑀 2

𝑛

)
+𝑂

(
𝑀 2

𝑛

) (ℓ
𝑖

)
𝑞𝑖𝑛,𝑀 (1 − 𝑞𝑛,𝑀 )

ℓ−𝑖
(
ℓ′

𝑖

)
𝑞𝑖𝑛,𝑀 (1 − 𝑞𝑛,𝑀 )

ℓ′−𝑖 .

We account for the 𝑂 (1/𝑛)P(𝐷𝑛 ≤ 𝑀) error coming from 𝑢 = 𝑣, and use |Vℓ |/𝑛 = P(𝐷𝑛 = ℓ) and
|Vℓ′ |/𝑛 = P(𝐷𝑛 = ℓ′), then we obtain in (A.24) that

Var(𝑛̃𝑖)
𝑛2 ≤ 𝑂 ( 1

𝑛 )P(𝐷𝑛 ≤ 𝑀) +𝑂
(
𝑀 2

𝑛

) 𝑀∑
ℓ,ℓ′=𝑖

P(𝐷𝑛 = ℓ)P(𝐷𝑛 = ℓ′)

·
(
1 +

(
ℓ

𝑖

)
𝑞𝑖𝑛,𝑀 (1 − 𝑞𝑛,𝑀 )

ℓ−𝑖
(
ℓ′

𝑖

)
𝑞𝑖𝑛,𝑀 (1 − 𝑞𝑛,𝑀 )

ℓ′−𝑖
)

≤ 𝑂 (𝑀 2

𝑛 )
(
P(𝐷𝑛 ≤ 𝑀) + 2P(𝐷𝑛 ≤ 𝑀)2

)
,

where the last row is a far-from-sharp upper bound.
Wlog we may assume M is large enough for P(𝐷𝑛 ≤ 𝑀) ≥ 1/2 to hold. Using the previous inequality

in (A.23), and that the first factor there is 1/P(𝐷𝑛 ≤ 𝑀)2, we come to

Var
(
𝑋𝑛,𝑀 (𝑖)

)
≤ 𝑂 (𝑀 2

𝑛 )
(
2 + 1/P(𝐷𝑛 ≤ 𝑀)

)
= 𝑂 (𝑀 2

𝑛 ), (A.26)

which is true uniformly in i, that is, the factor 𝑂 (𝑀2/𝑛) is not depending on i.
We now are ready to prove the bound in (149) in Lemma 7.5. Recall that 𝑋𝑛,𝑀 (𝑖) := 𝑛̃𝑖/𝑉≤𝑚 =

P(𝐷𝑛,𝑀 = 𝑖 | 𝐺𝑛 [V≤𝑀 ]). We can replace the supremum on the left-hand side of (149) by a “there
exists,” followed by a union bound and a triangle inequality:

P

(
sup
𝑖≤𝑀

��𝑋𝑛,𝑀 (𝑖) − 𝑝𝑀 (𝑖)
�� ≥ 𝜀𝑛

)
≤

∑
𝑖≤𝑀
P

(��𝑋𝑛,𝑀 (𝑖) − 𝑝𝑀 (𝑖)
�� ≥ 𝜀𝑛

)
∑
𝑖≤𝑀

(
P

(��𝑋𝑛,𝑀 (𝑖) − E[𝑋𝑛,𝑀 (𝑖)]�� ≥ 𝜀𝑛/2
)
+ P

(��E[𝑋𝑛,𝑀 (𝑖)] − 𝑝𝑀 (𝑖)
��� ≥ 𝜀𝑛/2

))
.

(A.27)

The second probability in the second row is either 0 or 1 as it involves only deterministic quantities. Recall
that we computed E[𝑋𝑛,𝑀 (𝑖)] in (A.20), and lim𝑛→∞ E[𝑋𝑛,𝑀 (𝑖)] = P(𝐷𝑀 = 𝑖) := 𝑝𝑀 (𝑖) in (A.21)
per our definition of 𝑝𝑀 (𝑖) in (A.21) and (148). By (A.22), |E[𝑋𝑛,𝑀 (𝑖)] − 𝑝𝑀 (𝑖) | ≤ 𝑂 (𝑀2/𝑛+𝑀2𝛿𝑛).
Thus, whenever 𝜀𝑛 � 𝑂 (𝑀2/𝑛 + 𝑀2𝛿𝑛) (that we assumed in Lemma 7.5), the second probability on
the right-hand side is 0 simultaneously for all 𝑖 ≤ 𝑀 , for all n is sufficiently large. On each term in the
first sum we can apply Chebyshev’s inequality, and use the bound on the variance of 𝑋𝑛,𝑀 (𝑖) in (A.26)
as follows:

P

(
sup
𝑖≤𝑀

��𝑋𝑛,𝑀 (𝑖) − 𝑝𝑀 (𝑖)
�� ≥ 𝜀𝑛

)
≤

∑
𝑖≤𝑀
P

(��𝑋𝑛,𝑀 (𝑖) − E[𝑋𝑛,𝑀 (𝑖)]�� ≥ 𝜀𝑛/2
)

≤
∑
𝑖≤𝑀

4𝜀−2
𝑛 Var(𝑋𝑛,𝑀 (𝑖)) = 𝑂

(
𝑀 3

𝑛𝜀2
𝑛

)
,

(A.28)

where we summed over 𝑖 ≤ 𝑀 to obtain the last bound. The rhs tends to zero as 𝑛 → ∞ by the
assumption that 𝜀𝑛 � 1/

√
𝑛 implying 𝑛𝜀2

𝑛 →∞. This finishes the proof of (149).
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Recall that 𝐷𝑛,𝑀 denotes a random variable with random mass function 𝑋𝑛,𝑀 (𝑖). We compute the
limit of the (random) mean of the empirical distribution 𝐹𝑛,𝑀 of 𝐺𝑛 [V≤𝑀 ] using (A.28)

E
[
𝐷𝑛,𝑀 | 𝐺𝑛 [V≤𝑀 ]

]
=

𝑀∑
𝑖=1

𝑖𝑋𝑛,𝑀 (𝑖)
P−→

𝑀∑
𝑖=1

𝑖𝑝𝑀 (𝑖) = E
[
𝐷𝑀

]
.

Finally, the fact that 𝐺𝑛 [V≤𝑀 ] is a configuration model, conditioned on its vertices and their degrees,
follows from the fact that every matching of its half-edges have equal probability under the law of the
configuration model 𝐺𝑛. This finishes the proof of Lemma 7.5. �

Proof of Lemma 7.6. We analyze now the limiting distribution in (148) under the assumption that the
original empirical distribution sequence (𝐹𝑛)𝑛≥1 satisfies both Assumptions 1.10 and 1.11. In particular,
Assumption 1.11 implies that the cdf of the limiting distribution 𝐹𝐷 of 𝐷𝑛 satisfies (9) for all 𝜀 > 0
such that for all 𝑛 ≥ 𝑛0 (𝜀), and for all 𝑧 ≥ 𝑧0 that

𝑐ℓ

𝑧 (𝜏−1) (1+𝜀) ≤ 1 − 𝐹𝐷 (𝑧) ≤
𝑐𝑢

𝑧 (𝜏−1) (1−𝜀) . (A.29)

and E[𝐷] < ∞ by assumption. We observe first that 𝐷𝑀 in (148) is a binomial thinning of (𝐷 |𝐷 ≤ 𝑀),
hence 𝐷𝑀 is stochastically dominated from above by (𝐷 |𝐷 ≤ 𝑀). So, by the definition of stochastic
domination,

1 − 𝐹𝑀 (𝑧) = P(𝐷𝑀 > 𝑧) ≤ P(𝐷 > 𝑧 | 𝐷 ≤ 𝑀) = (1 − 𝐹𝐷 (𝑧)) − (1 − 𝐹𝐷 (𝑀))
𝐹𝐷 (𝑀)

. (A.30)

Using now (A.29), estimating the numerator from above and the denominator from below, assuming
that M is such that 𝑐𝑢𝑀−(𝜏−1)/2 ≤ 1/2, for all 𝜀 ∈ (0, (𝜏 − 1)/2] it holds for all 𝑧 ∈ [𝑧0, 𝑀] that

1 − 𝐹𝑀 (𝑧) ≤
𝑐𝑢𝑧
−(𝜏−1) (1−𝜀)

1 − 𝑐𝑢𝑀−(𝜏−1) (1−𝜀) ≤
𝑐𝑢𝑧
−(𝜏−1) (1−𝜀)

1 − 𝑐𝑢𝑀−(𝜏−1)/2 ≤ 2𝑐𝑢𝑧−(𝜏−1) (1−𝜀) (A.31)

which finishes the proof of the upper bound in (151) with 𝑐̃𝑢 = 2𝑐𝑢 . For the lower bound in (151) we will
also need a lower bound on P(𝐷 > 𝑧 | 𝐷 ≤ 𝑀). Using the rhs of (A.30), estimating the denominator by
at most 1, and the numerator using (A.29), we obtain

P(𝐷 > 𝑧 | 𝐷 ≤ 𝑀) ≥ 𝑐ℓ 𝑧
(𝜏−1) (1+𝜀) − 𝑐𝑢𝑀−(𝜏−1) (1−𝜀)

= 𝑐ℓ 𝑧
−(𝜏−1) (1+𝜀) (1 − (𝑧 (𝜏−1) (1+𝜀) /𝑀 (𝜏−1) (1−𝜀) ) · (𝑐𝑢/𝑐ℓ)

)
. (A.32)

Here we require that the second factor is at least, say, 1/2, which leads to

P(𝐷 > 𝑧 | 𝐷 ≤ 𝑀) ≥ (𝑐ℓ/2)𝑧−(𝜏−1) (1+𝜀)

for all 𝑧 ≤ (𝑐ℓ/(2𝑐𝑢))
1

(𝜏−1) (1+𝜀) 𝑀1− 2𝜀
1+𝜀 =: 𝑧̃′max(𝑀).

(A.33)

Observe that even without considering the binomial thinning in (148), one cannot hope to prove a lower
bound for z too close to M. Nevertheless, 𝑧̃′max(𝑀) is growing with M for all 𝜀 < 1, and it gets closer
to Θ(𝑀) as 𝜀 is smaller, which intuitively means that the sharper bound one has on the tail of D, the
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sharper bound we can also get on probabilities of D falling in given intervals. Nevertheless, even for
𝜀 = 0, we must require 𝑧 ≤ 𝑐2𝑀 for some constant 𝑐2 ≤ 1.

Now we compute the thinning probability in (148):

1 − 𝑞𝑀 = E[𝐷]−1
E[𝐷1{𝐷>𝑀 }] = E[𝐷]−1

(
𝑀P(𝐷 > 𝑀) +

∞∑
𝑗=𝑀

P(𝐷 > 𝑗)
)

≤ E[𝐷]−1 (𝑐𝑢𝑀1−(𝜏−1) (1−𝜀) +
∞∑
𝑗=𝑀

𝑐𝑢 𝑗
−(𝜏−1) (1−𝜀) ) ≤ 𝑐𝑢,1𝑀

1−(𝜏−1) (1−𝜀) ,

(A.34)

for some constant 𝑐𝑢,1 > 0 (that does not depend on M) and a similar lower bound holds 1 − 𝑞𝑀 ≥
𝑐ℓ,1𝑀

1−(𝜏−1) (1+𝜀) . Then, using the Binomial representation in (148), and then stochastic domination of
Bin( 𝑗 , 𝑞) by Bin( 𝑗★, 𝑞) when 𝑗 ≤ 𝑗★, we obtain that for all 𝑗★ ≥ 𝑧,

P(𝐷𝑀 ≥ 𝑧) =
𝑀∑
𝑗=𝑧

P(𝐷 = 𝑗)
P(𝐷 ≤ 𝑀) P

(
Bin( 𝑗 , 𝑞𝑀 ) ≥ 𝑧

)
≥ P

(
Bin( 𝑗★, 𝑞𝑀 ) ≥ 𝑧

)
P
(
𝐷 ≥ 𝑗★ | 𝐷 ≤ 𝑀

)
,

(A.35)

and we can optimize the value 𝑗★ = 𝑗★(𝑧) ≥ 𝑧 to obtain a sharp enough bound. For the second factor
on the rhs we may use (A.33). Moving to the “complement” binomial, we estimate the first factor in
(A.35) as

P(Bin( 𝑗★, 𝑞𝑀 ) ≥ 𝑧) = P(Bin( 𝑗★, 1 − 𝑞𝑀 ) ≤ 𝑗★ − 𝑧)
= 1 − P(Bin( 𝑗★, 1 − 𝑞𝑀 ) > 𝑗★ − 𝑧).

(A.36)

We observe that the thinning probability 1 − 𝑞𝑀 in (A.34) tends to zero with M. So, when 𝑧 ≤ 𝑧̃′max/2,
we may take 𝑗★(𝑧) := 2𝑧 and use Markov’s inequality on the rhs in (A.36) to obtain

1 − P
(
Bin(2𝑧, 1 − 𝑞𝑀 ) > 𝑧

)
≥ 1 − 2𝑧(1 − 𝑞𝑀 )

𝑧
= 1 − 2(1 − 𝑞𝑀 ) ≥ 1/2

for all M large enough so that 𝑐𝑢,1𝑀1−(𝜏−1) (1−𝜀) < 1/4. Using this bound in (A.35), along with (A.33),
we obtain for all 𝑧 < 𝑧̃max/2 that

P(𝐷𝑀 ≥ 𝑧) ≥ P
(
𝐷 ≥ 2𝑧 | 𝐷 ≤ 𝑀

)
/2 ≥ (𝑐ℓ/4) (2𝑧)−(𝜏−1) (1+𝜀) ,

which finishes the proof by choosing

𝑐̃ℓ := 2−(𝜏−1) (1+𝜀)−2𝑐ℓ and 𝑧̃max(𝑀) := 2−1 (𝑐ℓ/(2𝑐𝑢))
1

(𝜏−1) (1+𝜀) 𝑀1− 2𝜀
1+𝜀 . �
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