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Abstract
Laser interferometric Gravitational Wave telescopes are limited in sensitivity by seismic noise in the low
frequency region (below a 10 Hz). The aim of this research is to improve performance of an advanced
displacement sensor and an ultra-low noise inertial sensor, that can help measuring and correcting for
seismically induced motion of the GW detetctor’s test masses.

In a Rasnik, light from a back-illuminated encoded ChessField mask is projected onto a pixel image
sensor, and the relative position is tracked between mask and sensor. In past experiments, Rasnik
was modelled to have resolution of below ∼0.5 nm in X and Y, while RMS resolutions of ∼25 nm
were measured [1], a longstanding discrepancy central to this research. It was found that, analyzing
spectral information of Rasnik response data, Rasnik did in fact reach its sub-nm modelled noise floor.
A resolution floor of 𝐴 = 270 pm/√Hz was measured, shown to be limited by SNR of the pixel content
and white noise aliasing. What is more, with a different setup, an optical magnification trick was shown
to result in RMS resolution gain.

For the forced-feedback accelerometer with interferometric readout, Heijningen [2] measured dis-
placement sensitivities of up to 8 fm/√Hz above 30 Hz, while the instrument was modelled to be shot
noise limited at 3 fm/√Hz - another discrepancy this research attempted to explain. A significant re-
duction of the thermal noise of the instrument’s mechanics was achieved by re-designing the feedback
actuator. After that, the accelerometer’s performance was re-evaluated on a ultra-low vibration plat-
form. A resolution of 50 fm/√Hzwasmeasured, a factor 30 above themodelled shot noise. Sub-optimal
relative intensity fluctuations in the laser, as well as laser frequency noise, were found to be responsible.
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1
Introduction

Gravity is everywhere. Of the four fundamental physical forces, gravity is the most familiar and com-
monplace to people, but it is also the least understood. It is the weakest force of the four fundamental
forces, but it is the driving force empowering the most luminous and extreme astronomical phenomena
in our Universe. For humans, it enables so many minor activities of daily life that we are accustomed
to its presence. Not many people have asked themselves why apples fall from trees, or why we can-
not make a distinction between force from gravitational charge and from an accelerating frame. The
ones who questioned these matters, entered a remarkably fundamental domain. Asking yourself what
gravity is, will eventually lead you to addressing yourself rather philosophical questions. What is mass,
and what are space and time in which the mass exists?

In 1687, Sir Isaac Newton published a book called The Mathematical Principles of Philosophy, better
known as Principia, describing three laws of motion and a law of universal gravitation [3] . With his laws
he verified Kepler’s observations of elliptical planetary orbits (except for Mercury’s orbits), and lay the
foundation for the intuitive, still widely used classical Newtonian mechanics. Newton related force to
acceleration and mass to gravitational charge, which he described to be instantaneous. Newton was
awed by the equivalence of inertial mass and gravitational weight, but he could not explain it.

More than two hundred years later, these matters received Albert Einstein’s attention. Based on
the famous results of the first interferometer experiment by Michelson and Morley in 1887 - stating that
light travels with the same velocity with respect to any moving observer [4] - Einstein wrote the Special
Theory of Relativity, in which he concluded that space and time are intertwined [5]. After 10 years of
hard effort, Einstein was able to include the presence of gravity into his theory, published in a set of
papers in 1915-1918, coined the General Theory of Relativity (GR). In his theory, Einstein stated that
the gravitational field of a massive body is actually defined by the curvature of the space-time metric
around it. Other objects close to this body will move along the curved geodesics of space-time, see
Figure 1.1. Movement along bend curvature results in what we observe as gravitational acceleration.

Figure 1.1: Mass bodies define their surrounding
space-time geometry. Objects close to this body
will follow the curvatures, experienced as gravita-
tional acceleration. Credit: NASA.
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2 1. Introduction

Figure 1.2: Two coalescing neutron stars, emit-
ting GW radiation as ripples through space-time.
Credit: R. Hurt/Caltech-JPL.

In this picture, Einstein explained the equivalence principle of inertial and gravitational force.

An astonishing conclusion of GR is that changes in space-time curvature resolve through the vacuum
metric at the speed of light. Regarding this finding, Einstein stated that disruptions in the space-time
metric should involve Gravitational Waves (GWs) emitted from the source of the disruption and he de-
rived the wave equations describing their behaviour [6, 7]. GWs traverse the vacuum space-time metric
like ripples, at the speed of light, thus closely resembling electromagnetic radiation. Their propagation
through space-time is depicted in Figure 1.2 Their amplitudes of deforming the space-time metric were
determined to be extremely small, and even GWs from the most intense astronomical events were
expected to cause relative length changes in the order of ℎ ∼ 10 [2]. Where ℎ is called strain, the
dimensionless amplitude for relative length changes induced by a GW.

The General Theory of Relativity was tested by Einstein himself in 1915, by accurately forecasting
Mercury’s deviating ellipses [8], and, more convincingly, by Sir Arthur Eddington in 1919, who showed
that light rays followed a space-time curvature around an eclipsed sun [9]. However, at the time,
Gravitational Waves remained a rather theoretical conjecture of GR. For a long period, Einstein even
assumed that GWs were merely mathematical construct without physical meaning [10]. In the end,
Einstein became convinced of the existence of GWs, but he still doubted that mankind would ever be
able to create an instrument sensitive enough to measure them.

This challenge was first seriously accepted by Joseph Weber in the 1960s. Weber constructed multiple
two meters long, half a meter in diameter, aluminum antennae. GWs with frequencies close to the
longitudinal resonance frequency of the bars should harmonically excite them, and Weber assumed he
could measure GW induced longitudinal changes with piezoelectric crystals [11]. In 1969, Weber said
he detected GWs [12], sparking international interest and GW-enthusiasm. However, his results could
not be verified by other scientists. Until 2009, improvements were made to the resonant antennae,
leading to maximal strain sensitivities of below ℎ = 10 at 𝑓 = 850 - 950 Hz [13]. Ultimately, the
resonant bars never detected a Gravitational Wave and this endeavour was dropped.

The setback of the non-repeatability of Weber’s experiment did not stop GW experimentalists to
continue their efforts to find a GW. In the 1970s Rainier Weiss developed a method to measure GWs
with a km arm interferometer, based on the conceptual framework of Felix Pirani, published in 1956 [10].
Weiss proposed that if the arms of an interferometer were sufficiently long, the space-time deformation
of a passing GWwould create enough strain ℎ to cause a detectable change in the interference pattern.
This method drew support from the community as a new promising approach to find GWs.

Based on Weiss’ interferometer method, Weiss, together with theoretical physicist Kip Thorne and
experimentalist Ron Drever (and in a later stadium Barry Barish), founded the US collaboration that
completed the two LIGO detectors. In parallel, a French-Italian collaboration completed the Virgo de-
tector in 2003 in Italy, and a British-German collaboration created GEO600, a R&D inclined GW ob-
servatory in Germany completed in 2002 [10]. In the meantime, prototype detectors in Japan, such
as TAMA300 and CLIO, proved the feasibility of the first underground and cryogenically operated GW
detector called KAGRA, which is expected to be in operation as of late 2019 [14]. Plans for third gen-
eration GW observatories, underground or even in space, are at advanced stages.
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On 14 September 2015, after decades of persistent work, the GW communities’ efforts were rewarded
with a double observation of the two LIGO detectors. The detectors had observed the merging of two
black holes. Consequently, Weiss, Thorne and Barish were awarded the Nobel prize for physics in
2016. Many observations have been made since, by both LIGO and Virgo, opening up a complete
new window onto the Universe. Together with optical and neutrino telescopes, scientists are now
able to observe (the same) astrophysical events through three different channels - this is called multi-
messenger astronomy.

Immense scientific projects, such as the second generation telescopes LIGO, Virgo and KAGRA
as well as the third generation telescopes that are yet to be build, can be justified by the contributions
to physics they provide. With the GW strain sensitivities increasing with each new detector, and ex-
pansion of the observable spectrum, insights for theoretical physics, cosmology and astrophysics are
gained based on their observations [15]. GWs contain a signature of information about the source
that has created them, as well as the nature of the local space-time geometry of a source. It provides
valuable insights on how mass and geometry behave in extreme conditions. Amaro-Seoane et al. [16]
listed the following contributions for fundamental physics, astrophysics and cosmology.

For fundamental physics, GWs can test different theories of gravity that compete with that of Einstein.
Moreover, (not yet observed) GWs emitted from black holes would tell us how gravity behaves at ex-
treme circumstances. GWs might even contribute to string-theory, which expects that GWs traverse a
different set of dimensions than the four-dimensional Universe that we perceive.

With electromagnetic (EM) telescopes, astrophysics has revealed the existence of supernovae
(imploding-exploding giant starts), gamma-ray bursts (short-lived and extremely powerful gamma en-
ergy emitters) and radio pulsars (extremely dense objects rotating at radio frequency). These phenom-
ena are believed to be situated in high gravity environments, and could possibly emit GWs besides the
already measurable EM radiation. Multi-messenger astronomy could reveal mechanisms behind these
processes.

EM telescopes can only see as far as to about 380,000 years after the Big Bang, when light was able
to escape the extremely hot and dense environment. Optical telescopes cannot look back further into
that Primordial Universe. However, as gravity existed in that period, third generation GW observatories
might reveal a sort of stochastic background signal (much like the Cosmic Microwave Background)
that contains information about the Primordial Universe. Another contribution to cosmology will be the
use of compact binary GWs as standard candles: objects whose distance can be accurately retrieved
from their luminosity. These GW candles, complemented with EM measurements, can be used to fit
cosmological population models, from which it will, for instance, be possible to calculate dark matter
and dark energy densities.

The above-mentioned are processes that scientists anticipated GWs would improve our under-
standing of. However, just as EM telescopes unravelled phenomena unimagined at the time, GW
observations might reveal exotic processes in our Universe that no one could have ever conceived.

This thesis describes research performed on two sensor instruments that could be used in upgrades
of second generation and in ground-based third generation GW observatories. They measure ground-
induced acceleration or relative position and can be used to create feedback signals to reduce the
motion of suspended parts of the interferometer detectors.

This chapter outlines the principles of Gravitational Waves and GW telescopes, in Sections 1.1 and
1.2. In Section 1.3 the relevance of the instruments for the low frequency band of GW interferometers
is discussed. Research on both instruments is described in Chapter 2 (the relative position sensor)
and Chapter 3 (the accelerometer). General conclusions are written in Chapter 4.

1.1. Gravitational waves
1.1.1. GR and the space-time perturbation
The GW derivations of this section are based on Einstein’s famous 1918 article On Gravitational Waves
[7]. FromEinstein’s Special Theory of Relativity the space-time distance 𝑑𝑠 between two arbitrary points
is given as:

𝑑𝑠 = 𝜂 𝑑𝑥 𝑑𝑥 (1.1)
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The sub and superscripts on the right-hand side are shorthand vector representations from Einstein’s
summation convention, introduced to physics for notational brevity by Einstein, in 1916 [17]. The
(𝑥,𝑦,𝑧,𝑡) coordinates are contained in the 𝑑𝑥 terms and 𝜂 denotes the Minkowski Cartesian flat space-
time metric:

𝜂 = (
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) (1.2)

To generalize Equation 1.1 to GR, the flat Minkowski space must be replaced by a matrix that contains
curvature information, representing gravitation in space-time:

𝑑𝑠 = 𝑔 𝑑𝑥 𝑑𝑥 (1.3)
All space-time geodesics are concealed in the 𝑔 metric. According to GR, mass, energy and space-
time curvature are related to each other via ten coupled and non-linear differential equations, the Ein-
stein Field Equations (EFE).

𝐺 = 𝑅 − 12𝑔 𝑅 = 8𝜋𝐺
𝑐 𝑇 (1.4)

𝐺 is the Einstein tensor, containing space-time information. 𝑅 is the Ricci curvature tensor and 𝑅
is the Ricci scalar curvature, both describing metric contractions. 𝐺 is Newton’s gravitational constant,
and 𝑇 is the stress-energy tensor, containing mass, energy and momentum information of the source.

The EFE simplify to linear differential equations when only aminor linear perturbation to theMinkovski
metric 𝜂 of 𝑔 is regarded:

𝑔 = 𝜂 + 𝜖ℎ (1.5)
And from a transverse traceless (TT) transformation, which defines the coordinates of Equation 1.4 by
world lines of free-falling test masses [18], the EFE simplify to the form [2]:

8𝜋𝐺
𝑐 𝑇 = −12𝜖�ℎ (1.6)

with � the Four space d’Alembertian operator, defined as:

� ≡ −1
𝑐

𝜕
𝜕𝑡 + 𝜕

𝜕𝑥 𝜕𝑥 (1.7)

Far away from the source the stress-energy tensor 𝑇 vanishes, and a three dimensional wave equa-
tion remains:

(−1𝑐
𝜕
𝜕𝑡 + 𝜕

𝜕𝑥 𝜕𝑥 )ℎ = 0 (1.8)

the perturbation tensor ℎ can be expressed as a combination of two planar waves in 𝑥 and 𝑦, if the
wave is travelling in 𝑧. The two polarizations are expressed as:

ℎ (𝑡) = ℎ (𝑡 − 𝑧/𝑐) + ℎ× (𝑡 − 𝑧/𝑐) (1.9)
Where the wave forms are contained in the orthogonal 4 × 4 matrices:

ℎ = (
0 0 0 0
0 ℎ 0 0
0 0 −ℎ 0
0 0 0 0

) ℎ× = (
0 0 0 0
0 0 −ℎ 0
0 ℎ 0 0
0 0 0 0

) (1.10)

Their propagation through space-time are schematically depicted in Figure 1.3. The linear waveform
perturbation ℎ is called 𝑠𝑡𝑟𝑎𝑖𝑛, and, for some astronomical sources, it can be measured by GW
telescopes. The strain measurement contains signature information about the astronomical source
that created the GW, such as distance, location, frequency and energy. The principles of measuring
ℎ are explained in short in Section 1.2.
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Figure 1.3: A passing GW travelling orthogonal to
the plane displaces the four white points in space
in two polarities, oriented at 45∘ with respect to
each other. From [19].

1.1.2. Astronomical sources of Gravitational Waves
From a multipolar expansion of the stress-energy tensor 𝑇 , the way in which astrophysical sources
generate a GW strain is described by [20]:

ℎ = 2 𝐺𝑟𝑐 �̈� (1.11)

Gravitational waves are thus created from �̈� , the second derivative of the gravitational quadrupole
moment of an object. The distance from the source is denoted 𝑟. Different GW sources emit at differ-
ent strain amplitudes at varying frequencies, see Figure 1.4. Currently, physicists maintain that there
are four main sources that emit gravitational radiation: compact binaries, continuous wave sources,
stochastic background radiation and core-collapse supernovae [16].

Compact binary coalescences Blackhole-blackhole (BH-BH), blackhole-neutron star (BH-NS) and
neutron star-neutron star (NS-NS) inspirals and mergers are labelled compact binary coalescences.
From the GW signature of a compact binary coalescence, the mass of a NS and the mass and spin of
a BH can be derived [15]. From this, for instance the maximum mass of a NS could be derived and
its equation-of-state constrained, an unresolved problem in theoretical physics [15, 16]. The distance
range of observing compact binary coalescences increases with improved strain sensitivities of GW
observatories.

A GW amplitude is determined from the ratio of a certain combination of binary masses and the
luminosity distance. As chirp signals from NS-NS inspirals have measurable amplitudes of signals and
masses, their precise luminosity distances can be inferred [16]. These luminosity distances could be
utilized as standard candles, which are of importance for testing cosmological models [15].

From a GW signal, the redshift of a source cannot be determined, but with complementary infor-
mation from optical telescopes, high-precision multi-messenger astronomy becomes possible. From
this, coalescence rates as a function of redshift could be constructed, revealing knowledge on the his-
tory of cosmic compact object formation history [16]. What is more, star metallacity and massive stars
evolutions can be constructed from multi-messenger astronomy [16].

Continuouswave sources Continuous sources typically last for a few weeks or years, have constant
amplitude and slowly varying frequency. For instance, rapidly rotating non-axisymmetric neutron stars,
either isolated (pulsars) or in binary systems, emit continuous GWs. Measuring at a certain strain
sensitivity, spindown GW energy limits of pulsars can be derived [16].

Stochastic background Stochastic backgroundGW radiation can be detected by the cross-correlation
of at least two GW telescopes [16]. The stochastic background radiation can have two origins: cos-
mological and astrophysical. The cosmological background would be a relic of gravitational processes
in the early Universe, but that could be masked by the astrophysical background radiation, produced
by the forming of galaxies and stars (from binary NS, rotating NS with quadrupole moments and core-
collapse supernovae). Detection of astrophysical background radiation would put constraint on physical
properties of compact objects and redshift evolutions [16].
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Figure 1.4: Ampltiude spectral density plot of typical strains for GW sources, and the IPTA, LISA and AdLIGO observatories.
From [21].

Core-collapse supernovae Type II supernovae, the most energetic events in the Universe, are not
fully understood by astrophysicists. A type II supernova is a phenomenon where the core of a massive
star implodes from its own gravitational force, which is followed by an extreme shock-wave explosion
of outer crusts. In theses processes, an excessive amount of neutrinos is released, but also GWs and
EM radiation, making Type II supernovae excellent candidates for multi-messenger astronomy. From
these observations, for instance, constraints could be deducted for the mass of neutrino’s and gravitons
[15].

Second generation telescopes could scan for core-collapse supernovae in the Milky way, and third
generation telescopes will be able to look further. Most GW emission of core-collapse supernovae
occurs at frequency range 𝑓 = 200 - 1000 Hz, but also low frequency GWmemory emission in 0-20 Hz
is emitted in the remnants of the supernovae, possibly detectable by the third generation observatories
[16].

And new sources? With ever advancing technology the twentieth century has been a golden era for
astrophysics, with telescopes scanning the sky over the entire EM spectrum. As EM observations have
revealed phenomena in the Universe that were not known when discovered, GW observations might
also reveal never hypothesized phenomena.

1.2. Gravitational waves telescopes
1.2.1. A giant Michelson-Morley interferometer
The goal of a GW telescope is to observe a strain ℎ, the relative displacement between two points
in space, induced by a GW. In order to measure ℎ, GW detectors track relative distances of freely-
falling mirrors, or test masses. The distances are measured by means of a km scale Michelson-Morley
interferometer, where difference in the travel time of light in the two arms is a measure of strain induced
in the system, see Figure 1.5. The arms are typically a few km long for second generation telescopes,
but by employing Fabry-Pérot cavities, the total travel distance of light in each arm is lengthened to
around thousand km, as the telescope’s sensitivity increases with light distance travelled. Resolution



1.2. Gravitational waves telescopes 7

Fabry-Pérot cavity

Power recycling
mirror

Beam Splitter

Photodetector

Figure 1.5: A schematic overview of a second generation interferometric Gravitational Waves telescope. Light from the laser
passes the power recycling mirror and is split into two arms with Fabry-Pérot cavities, or light storage arms, that effectively
lengthen the total distance travelled by the light to over 840 km for AdVirgo and 1100 km for AdLIGO. The output signal on the
photodetector is proportional to the difference in phases of the light coming from both arms, and thus to strain from a passing
GW that stretches the distance between test masses in one arm, and squeezes the distance in the other. Credit: LIGO.

of the interference pattern on the photodiode is enhanced by using a partially reflective mirror, called
the power recycling mirror, placed between the laser and the beam splitter. A sizeable amount of the
light that travels back to the laser is reflected back into the interferometer by the power recycling mirror,
effectively boosting the power of the laser light to several kW. Many components of the setup, like the
test masses, the photodiode and auxiliary optical tables, are suspended and in vacuum in order to
attenuate seismic motion.

A strain ℎ(𝑡) is sensed by a GW telescope as a minor perturbation of space-time made up of the
two components [16]:

ℎ(𝑡) = 𝐹 (𝜃, 𝜑, 𝜙)ℎ (𝑡) + 𝐹×(𝜃, 𝜑, 𝜙)ℎ×(𝑡) (1.12)

where 𝐹 (𝜃, 𝜑, 𝜙) and 𝐹×(𝜃, 𝜑, 𝜙) are antennae responses to the+ and× strain polarizations, depending
on the polarization angle 𝜙 and the angles (𝜃, 𝜑) that describe the location of the object in sky. Using
multiple detectors, (𝜃, 𝜑) and ℎ (𝑡) and ℎ×(𝑡) can be accurately derived from triangulation techniques
[16].

Current second generation GW telescopes that are based on the principles described in this sec-
tion, are the advanced Virgo (AdVirgo) detector in Italy, the two advanced LIGO (AdLIGO) detectors in
Livingston and Hanford (US), the KAGRA detector in Japan and the GEO600 research and develop-
ment facility in Germany. A new Indian based LIGO detector has been approved and will eventually
join the GW observatory network as a fifth participant.

The two LIGO detectors and Virgo are currently the only observatories that have sufficient strain
sensitivity to measure GWs. However, KAGRA, with similar strain sensitivities, is expected to join the
O3 observation as of late 2019.

1.2.2. Strain sensitivity and sensitivity limitations
Strain sensitivity is the most important characteristic of a GW detector. This figure is generally depicted
in a strain Amplitude Spectral Density (ASD) graph, telling the minimum ℎ amplitude the detector is
able to measure at a given frequency. Sensitivity curves for second and third generation telescopes
are plotted in Figure 1.6. Strain sensitivity is directly proportional to the distance of the light travelled
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Figure 1.6: The strain ASDs of second genera-
tion telescopes (LIGO and Virgo) and their up-
grades (AdLIGO and AdVirgo), as well as pro-
jected strain ASD scenarios for the third gener-
ation Einstein Telescope (ET). From [22].

through each arms’ cavity.
Sensitivity of interferometric GW detectors are limited by threemain sources of noise: seismic noise,

quantum noise and thermal noise. Each noise source limits the detector in a different frequency band,
see Figure 1.7.

Seismic noise As for a km scale GW interferometer, relative displacement measurements of below
10 m/√Hz are required, whereas the ground can move with amplitudes of 10 m√Hz, the test
masses are suspended with multiple stage pendula and spring systems in order to attenuate seismic
motion. The isolation of seismic noise is the central theme of this research, and its principles are lined
out in more detail in Section 1.3. Seismic noise becomes limiting at low frequency (below10 Hz).

Thermal noise A fundamental thermodynamic phenomenon is that energy in a system scales with
the product 𝑘 𝑇, the Boltzmann constant times temperature. This thermal energy induces random
Brownian motion of the atoms that make up the coating layer on the mirrors, or the suspension fiber
of the test masses, adding a white noise contribution to the detector signal. As this noise scales with
temperature, future GW observatories tend to operate their suspensions in cryogenic conditions. For
the accelerometer instrument (described in Chapter 3), thermal noise limits the instrument’s sensitivity
at low frequency, and details of this noise source are elaborated on in Section 3.2.2. Typically, thermal
noise is limiting at low and intermediate frequency (40 - 400 Hz).

Quantum noise For GW interferometers, quantum noise is the label for an ensemble of noise contri-
butions that arise from the quantum nature of the light source and the photodetection process. Heisen-
berg’s uncertainty principle constraints the measurement of physical quantities in two noise sources:

• Radiation pressure noise is induced by the radiation of the light source that causes momen-
tum variations on the mirrors. Due to the statistical spread of the amount of photons, random
momentum fluctuations are created.

• Shot noise is also a result of the quantum behaviour of a beam of photons. The random spread
in their number 𝑁 falling on the photodetector, creates a statistical error in the signal of 𝜎 = √𝑁.

The two quantum noise sources are connected in such a way that increasing laser power would improve
a GW detector’s sensitivity at higher frequency due to an increase in the number of photons, but it
would reduce sensitivity at lower frequency from an increased uncertainty in mirror momentum [2]. A
technique called squeezing is invented to direct phase noise towards amplitude noise, lowering the shot
noise at high frequency at the cost of increased radiation pressure noise at intermediate frequency. For
second generation GW telescopes, radiation pressure noise contributes at intermediate frequencies
and shot noise limits at frequencies above 400 Hz.
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Figure 1.7: Noise contributions for advanced Virgo. From [23].
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(a) Virgo - Pisa, Italy (b) LIGO - Livingston, U.S. (c) LIGO - Hanford, U.S.

Figure 1.8: Aerial views of second generation GW observatories currently measuring GWs. Credits: Virgo collaboration and
Caltech/MIT/LIGO Lab.

1.2.3. Results and future plans
The first GW observation was made in September 2015, by the two LIGO detectors separately. It
was the BH-BH merger GW150914. With this observation, a long standing unproved prediction by the
General Theory of Relativity has been confirmed, leading to many scientific awards for contributors to
GW physics, of which most notably the 2017 Nobel Prize in Physics.

The GW170817 NS-NS merger, detected in O2/2017 by Virgo and LIGO, was followed by EM
observations of the aftermath of themerger by tens of EM telescopes, on Earth and in space, measuring
across the EM spectrum. After a series of BH-BH mergers, this was the first NS-NS observation by
GW telescopes, and it was also the first verification of GW emitting source of non-gravitational origins
[24]. The GW170817 observation and subsequent EM detections were considered a breakthrough for
an era of multi-messenger astronomy.

The Virgo and LIGO telescopes have been recently upgraded and are currently in the third GW
observation run, O3/2019, that started on April 1, 2019, and saw a 50% sensitivity increase with re-
spect to runs 1 and 2 [25]. The KAGRA telescope in Japan, the underground detector with test masses
suspended in cryogenic conditions, is expected to join forces as of late 2019. During O3, a GW signal
suspected to come from a BH-NS merger (S190814bv) has been observed for the first time [25]. How-
ever, Gomez et al. [25] could not rule out that the signal might come from other astrophysical sources
than a NS-BH merger.

International Pulsar Timing Array A multi-telescope collaboration of multiple institutions tries to
measure GW stochastic backgrounds emitted at very low frequency (10 - 1000 𝜇Hz) by combining
measurements of change in distances of an array of about 30 pulsars [26]. In 2016, the GWbackground
was constrained with a 2𝜎 limit on ℎ = 1.7 ⋅ 10 at a frequency of 1 yr [26].

Third generation telescopes Twomain GW third generation telescopes are the Laser Interferometer
Space Antenna (LISA) and the Einstein Telescope (ET). The design of both observatories will deviate
from the regular L-shaped GW interferometers of the second generation, as they will consist of a 60∘
triangular system with three nested detectors that are sensitive to both ℎ polarizations (see Figure
1.9). Each detector in this configuration will comprise two interferometers. There is one considerable
difference between the two telescopes: one will operate on three spacecrafts in Earth’s orbit and one
will be placed 100 m - 200 m underground.

The ET is a project of many European Union institutions, forecasted to be in operation in the 2030s.
The ET will be located underground for the stringent seismic attenuation requirements at low frequency,
and its test masses will be cooled to cryogenic temperatures for thermal noise reduction. To extent the
sensitivity frequency band, the triangular shape is adopted where one of the interferometers in each
nested detector is used for LF GW detections, and one for High-Frequency (HF) detections. The
individual interferometers will have recycled light and optical cavities in both arms. The ET is expected
to observe at 1 Hz - 10 kHz and to be about ten times more sensitive than the current advanced
telescopes. [15, 27].

LISA is a European State Agency (ESA) funded project, aimed to be operational in the 2030s. Two
of the independent interferometric configurations will observe different ℎ polarizations, whereas the
third will be used to characterize instrumental background noise, a so called Sagnac configuration.



1.3. The Low Frequency band 11

Figure 1.9: The 3-nested interferometers design
of the ET. From [22].

Its sensitive frequency band is about 0.1 mHz - 0.1 Hz [28]. A Japanese counterpart to this project,
DECIGO, with frequency band 0.1 - 10 Hz, is expected to be launched during late 2020s [29].

The extension of the observable GW frequency range, as well as improved sensitivies at already
detectable frequencies, through the ET, LISA, and other telescopes, will allow GW astronomers to scan
far deeper into the Universe and observe many more phenomena.

1.3. The Low Frequency band
1.3.1. Vibration isolation
The LF band (below 10 Hz), contains interesting GW sources, such as binary stars beyond the galaxy,
merging binary neutron stars, stellar black holes in distant galaxies, LF core-collapse supernovae rem-
nants, fast pulsars gravitational quadrupole moments, and possibly other sources (see Section 1.1.2
and specifically Figure 1.4). In this frequency region, seismic noise, coupling with optical components
in the interferometer, is a dominant contributor to the noise budget of ground based observatories, such
as AdVirgo and AdLIGO. To cope with this noise source, the detectors use a combined approach of
active and passive vibration isolation of the test masses.

For a km scale GW interferometer, relative position measurements of below 10 m/√Hz are re-
quired, whereas the ground can displace with amplitudes of up to 10 m/√Hz at the micro-seismic
peak (calculated from Figure 1.10). To filter ground amplitudes by over 11 orders of magnitude, the test
masses are suspended with multiple stage pendula and spring systems in order to passively attenuate
seismic motion above the natural frequencies of the suspensions.

To understand the mechanism of passive vibration attenuation, let’s consider a simple damped
harmonic oscillator, such as a mass suspended by means of a spring or a pendulum. Ground motion
will accelerate the frame of the suspension, introducing a force into the system. From the proof mass’
inertia, relative displacement is created between the frame and proof mass. The relative distance 𝑥 is
given as:

𝑥 (𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡) (1.13)

where 𝑥 is proof mass location and 𝑥 is the frame location. For any suspended system, the response
of 𝑥 to a displacement 𝑥 of the frame (due to ground motion) is in Fourier transforms [18]:

𝑋
𝑋 = 𝜔

𝜔 − 𝜔 + 𝑖
(1.14)
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Figure 1.10: Power spectral density (PSD) plot of
seismic noise at different sites and depths. In a
PSD, the amplitudes of ground acceleration are
squared. At about . Hz, a large peak is
visible for each spectrum. This is the microseis-
mic peak that results from waves collapsing on
the continental crust. From [30].

where 𝑀 is the mass of the suspension, 𝜔 is the angular frequency of the frame acceleration and 𝜔
is the natural frequency of the suspension. 𝑄 is the quality factor, a measure of mechanical damping
in the system (more on this in Chapter 2). In Figure 1.11 the transfer function of a 𝑓 = 1 and 𝑄 = 10
suspension is shown. It is clearly seen that, above the natural frequency, the response to ground
motion reduces with 𝑓 , whereas ground motion below 𝑓 induce flat proof mass response. In this
way, passive vibration isolators could be recognized as low pass filters for motion. Motions around the
natural frequency 𝑓 are amplified.

The attenuation of a suspension above 𝑓 can be increased more dramatically by using a chain of
𝑁 pendulums or springs. In this situation, the transfer function of Equation (1.14) will be proportional
to 𝑓 [15]. For instance, AdVirgo employs a 𝑁 = 6 pendulum chain to suspend a test mass (the
super-attenuator, depicted in Figure 1.12a), and this would attenuate ground motion with ∼ 𝑓 above
𝑓 . A ground motion of 10 m/√Hz at 10 Hz will be damped with 12 orders of magnitude to 10
m/√Hz, spanning the detector’s isolation requirements for relative position measurements of < 10
m/√Hz.

However, Figure 1.11 shows a resonance peak at 𝑓 for an attenuation system that consists of only
one suspension. Obviously, such a resonance will be introduced for every extra suspension added to
the system, creating 5 additional peaks for an AdVirgo 𝑁 = 6 suspension chain. For this reason, on
each suspension platform, AdVirgo combines the information from local sensors to actively damp the
peak resonances with local actuators. Next to that, an important feature in AdVirgo’s suspension design
is that additional inverted pendula and anti-springs are assembled into the suspensions, lowering their
natural frequencies [31].

In contrast, AdLIGO suspensions, as depicted in Figure 1.12b, are based on a more active isolation
strategy. In general, active control is performed by means of a closed feedback loop, where a sensor’s
signals are sent to a controller that generates counter-signals to environmental disturbances, which
are then sent to the actuator acting on the suspended mass. In a LIGO suspension, the first isolation
stage is a pre-isolator stage (in blue in Figure 1.12b) that controls DC positioning and alignment via
hydraulic actuators. Then, two Internal Seismic Isolation platforms (in grey in Figure 1.12b) provide
two active stages of seismic isolation and pendulum-resonances damping for frequencies below 10
Hz, using low-noise inertial sensors. Finally, the four staged suspension cascade provides passive
isolation for the mirrors above 10 Hz.

A combination of passive Virgo with active LIGO isolation is increasingly aimed for in future upgrades
of second generation observatories, as well as in the Einstein Telescope [2, 27]. This results in the need
for ever more sensitive displacement and inertial sensors.

1.3.2. Inertial and relative position sensors
Control of different suspension stages in GW detectors is done with signals from two sensors: inertial
sensors and relative position (displacement) sensors. The main difference between the two is that
inertial sensors measure absolute motion of the frame on which they are placed, whereas displacement
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Figure 1.11: Modelled proof mass response to
ground motion. In this example, the suspended
proof mass ( kg) has natural frequency

Hz and quality factor .

sensors measure the relative position between two mechanical components.

Inertial sensors In essence, the physical concept of vibration isolation is the same for an inertial
sensor, as it also consists of a frame and of a suspended mass. From the proof mass’ inertia, a relative
displacement is created between the frame and proof mass. By tracking relative distance 𝑥 absolute
frame acceleration can be derived from the forced transfer function 𝐻:

𝑋
𝐹 = 𝐻 = 1

𝑀((𝜔 − 𝜔 ) + 𝑖 )
(1.15)

Equation (1.15) states that at a specific frequency 𝜔 (= 2𝜋𝑓), the transfer function 𝐻 maintains the
amount of force 𝐹 transferred to the relative displacement 𝑋 in Fourier space. Inertial sensors have
linear - or flat - response to frame acceleration below 𝑓 . Thus, measuring 𝑋 and translating that into a
̈𝑋 output, an accelerometer is obtained. Many accelerometers operate in closed feedback loop, where

variations in measured 𝑋 signals are processed by a controller, and sent to an actuator that acts on
the proof mass. The feedback signal is used as sensor output. In this way, the flat response line is
extended over a bandwidth as defined by the controller characteristics.

Inertial sensors that are often used in isolated stages of suspensions are geophones, as the Sercel
L-4C, the Sercel L-22, and the GeoTech GS-13. In a geophone, a coil is wounded around a spring-
suspended proof mass and permanent magnets are mounted on the frame, close to the coil end. If
the coil moves with respect to the magnets as a result of proof mass inertia, an electromotive force is
induced in the coil that scales with velocity of the coil [2]. The acceleration response to the velocity
measurement is of the same shape as the line in Figure 1.11. The resolution of the most sensitive
geophone, the GeoTech GS-13 is at below 100 fm/√Hz from 20 Hz onwards.

Displacement sensors Displacement sensors measure the relative distance of one object with re-
spect to another. Such sensors cannot distinguish from which of the objects comes the motion that
creates the displacement. Therefore, these sensors are commonly not used for seismic measure-
ments, but primarily for DC positioning and low frequency control.

A widely used position sensor is the Linear Variable Differential Transformer (LVDT) that works in a
coil configuration where signals between the two components are transported via magnetic induction
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(a) 9 m long AdVirgo test mass suspension (CAD illustration). Credits: Virgo collabora-
tion.

(b) Several m long AdLIGO test mass suspension. Schematic in (a) and CAD illustration in (b). From: [32].

Figure 1.12: Virgo and LIGO test mass vibration isolation strategies. The Virgo super attenuator depicted in (a) consists of a 6
stages pendulum chain and active inertial control is performed to damp their harmonics. The LIGO mirror is suspended by four
much shorter pendulum stages, and seismic motion at low frequency is actively isolated via the two stage ISI platforms (in grey
in the schematic), using low noise inertial sensors.
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Figure 1.13: Sensitivity
curves for three GW sensors,
the LVDT, the OSEM and the
Sercel L-4C. From [2].

[33]. The displacement noise of an LVDT is about 1 nm/√Hz over a range of about 8 mm [2]. A sensor
in an environment quieter than the sensors self-noise would see its noise fed back into the system.
Therefore, this sensor is mainly used for DC alignment measurements of top pre-isolator stages.

For angular alignment and active control of the mirror and of the penultimate suspension stage,
so-called Optical Levers are used in GW detectors. For the penultimate suspension stage, a tiny mirror
is fixed to the body of the suspended mass, while for the test mass simply the reflective coating is used.
The components of the Optical Lever are placed outside the vacuum chamber. Light is sent with an
angle to the target through a viewpor,t and the reflected beam is collected through another viewport on
a Position Sensitive Detector. With a lever arm of the order of 1 m, noise leves of 1 nrad/√Hz ar typically
achieved. Two rotational angles are calculated from position changes of the beam. The functions of
the Optical Levers are: 1) damping the unwanted angular modes involving the mirror, 2) being able to
set and recover the reference angular position of each mirror, and 3) keeping the interferometer aligned
at the level of about 1 𝜇rad rms or better for locking the laser. The higher the resolution of the Optical
Lever, the more aggressive the rotational modes could be controlled, which would result in enhanced
strain ASD at LF.

At LIGO a commonly used relative position sensor is the Optical Sensor and Electro-Magnetic actu-
ator (OSEM). This integrated assembly consists of both a position sensor and an magnet-coil actuator.
A shadow sensor, mounted on one component, follows the position of a flag mounted on the other. For
feedback actuation, a magnet is attached to the flag that can be driven by a coil on the other compo-
nent. The OSEM measures at below nm/√Hz over a large bandwidth, but has a dynamic range of only
∼ 1 mm [2, 34].

Sensitivity curves of commonly used sensors, the geophone L-4C and the two relative position sensors
LVDT and OSEM are displayed in Figure 1.13. For actively damped suspended platforms, generally
a combination of inertial and relative position sensors is employed. Drift control and static positioning
(low frequency measurements) is performed by position sensors. Acceleration control is performed
above a certain threshold frequency by inertial sensors.

This research has focused on improving resolution of an inertial sensor and a displacement sensor:
the monolithic folded pendulum (FP) accelerometer and the CCD-Rasnik, both under development at
the Nikhef institute. Their performance is compared to the currently in-useGW inertial and displacement
sensors, to see whether they might be interesting alternatives for active control.

The monolithic folded pendulum accelerometer The monolithic FP accelerometer is a horizontal
inertial sensor. Folded means that the mass is suspended by a combination of two pendulum legs, one
regular and one inverted, see Figure 1.14. The legs are suspended via four thin flexures per pendulum
leg. When the ground displaces, proof mass inertia is created, and the FP accelerometer tracks the
relative position between proof mass and frame, by means of laser interferometer, see Figure 1.14.
Operating the accelerometer in a closed feedback loop allows it to measure at full dynamic range, and
to ensure a linear response over the full feedback bandwidth.
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Figure 1.14: Schematic of the monolithic FP ac-
celerometer operated in closed feedback loop,
with a voice coil as actuator and an interferom-
eter as readout sensor.
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Previous research has measured a resolution of 8 fm/√Hz from 30 Hz and onwards for the mono-
lithic FP accelerometer, but this result was more than a factor two above its modelled noise floor [2].
Inspecting Figure 1.13, it is seen that, when this precision is achieved, the accelerometer would out-
perform the geophone L-4C by more than an order of magnitude at 𝑓 = 30 - 100 Hz.

The CCD-Rasnik Rasnik has been operated in large volumes at CERN projects, measuring three
point alignments (sagitta), for many years. It has proven a robust, easy to operate and inexpensive
sensor that met the precision requirements of particle detector chambers’ alignments.

A Rasnik system consists of three components. Light from a back-illuminated mask is projected
by a lens onto an image sensor that records a sequence of images. From this sequence, a dedicated
image analysis routine determines displacements of either of the aligned objects. Past experiments
have shown that Rasnik systems typically had a time-integrated rms error of about 25 nm, while they
were modelled to operate at sub nm precision [1]. In this research experiments were conducted to
understand thid discrepancy and to improve Rasnik’s performance, to show it’s potential to operate as
relative position sensor in GW experiments.



2
Rasnik

Rasnik is a three point alignment sensor originally developed for muon detectors. To determine the
momentum of passing muons, a precise alignment of the muon detector chambers is required. The
sagitta s of a passing muon is the distance from the center of the muon arc to the center of the base,
i.e. the line connecting the two outer measured positions. From the sagitta of the muon, the radius of
its path of motion is estimated, from which its momentum is determined. The error in measuring 𝑠 is,
among others, directly related to the alignment of the detectors. For this reason Rasnik was developed,
to keep track of the sagitta of particle detectors and establish errors in alignment.

Rasnik - Red Alignment System Nikhef - has grown to be a successful project with a history of
over 30 years of R&D and many applications [1]. Rasnik systems had been employed for monitoring
alignment in the L3 muon chambers at LEP in the 1980s/90s and are still used extensively in the Atlas
detector at LHC, since the 2000s. Besides, Rasnik has served many industrial applications. Over the
years Rasnik has evolved to many different forms, such as RasDiff and RasClic [1], but the focus of
this research was on the common CCD-Rasnik.

Rasnik can measure sagittas and/or displacement at high precision over an arbitrary large range.
It is uncomplicated in design, cheap and easy to operate.

In the aforementioned experiments, Rasnik measures sagitta of three aligned components. By allowing
only one component to move with respect to the other two, a relative displacement sensor is obtained.
Based on this idea a new concept developed: to employ Rasnik as a displacement sensor in X and
Y, by mounting two components to a common base plate and fixing the other component to an inde-
pendently moving part. In past experiments, Rasnik systems have optimally been able to measure
displacement (sagitta) with a RMS of about 30 nm, while they were modelled to measure at below nm
RMS [1, 35]. The discrepancy between measurement and model is the verification of this research,
because when its causes are found a Rasnik displacement sensor with sub nanometer-scale precision
may be developed.

This chapter is devoted to find causes for the discrepancy between Rasnik’s modelled noise floor and
measured precision, and to improve Rasnik’s displacement sensing precision. In Section 2.1 the princi-
ples of a Rasnik system are explained, and its sources of error are evaluated. The optimally achievable
precision is calculated in Section 2.2, by means of a Cramér-Rao Lower Bound analysis. In Section 2.3
performances of different Rasnik systems are measured, and limitations on precision are discussed.
Conclusions are stated in Section 2.4. Lastly, future applications of Rasnik as a relative position sensor
for GW detectors are discussed in Section 2.5.

2.1. The Rasnik optical alignment system
2.1.1. Principle of operation
Rasnik’s three components are the back-illuminated ChessField-coded mask, the lens and the pixel
image sensor. Rasnik’s optical axis is defined as the line from the center of the image sensor going
through the center of the lens, pointing to the mask, see Figure 2.1. The mask defines the coordinate
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Figure 2.1: Light from a LED is diffused and back-
illuminates the ChessField encodedmask, whose
image is projected by a plano-convex singlet lens
onto a pixel image sensor. The lens is cen-
tered between the mask and sensor for focused
images. Image processing software tracks dis-
placement of either of the aligned components,
recorded as image shifts on the sensor. Rasnik’s
optical axis is depicted in red. Its crossing point
with the below left corner of the mask defines the
transversal coordinate system, indicated in light
blue.

X

Y

Mask

Lens
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sensorZ

system, as X and Y responses are specified as the distance from the below left mask corner. When
one of the aligned components moves in X or Y, the projected image will shift in this coordinate system,
and image processing software creates a response to this displacement. Only a small section of the
ChessField mask, close to the optical axis of Rasnik, is projected onto the sensor. The image process-
ing software uniquely recognizes each section, resulting in the large X and Y measurement range of
Rasnik, defined only by the size of the mask. The image processing software also determines rotation
around Z of the mask or sensor (but not of the lens), and it calculates displacement in Z from the scales
of the ChessField images. It is important to note that the image processing software cannot distinguish
which of the aligned components moves, and that X, Y and Z displacement of the lens is equivalent to
twice that displacement of the mask or cam.

2.1.2. Components of Rasnik
Figure 2.1 shows the three components of a Rasnik system: 1) the back-illuminated ChessField-coded
mask, 2) the lens and 3) the image sensor. The image analysis software is not a physical component
that could influence a measurement, and is therefore described separately in Section 2.1.3.

1) The back-illuminated ChessField mask The spatial reference of a Rasnik system is stored in the
ChessField pattern of the mask, making it the essential and only precision defining element of Rasnik.
The image processing software can decode the pattern to a position output in Cartesian coordinates.
As this algorithm regards the periodicity of black-white transitions, H. Groenstege (Nikhef) invented the
ChessField patterned mask to maximize the number of contours in X and Y. The ultimate precision of
Rasnik thus increases with the number of squares in the ChessField pattern. However, the Modulation
Transfer Function (MTF) - the ratio that tells how much contrast in the original object is retained by the
image on the sensor - decreases as spatial frequency patterns increase, and a reduction in black-white
ratio’s translates into a reduced Rasnik resoluion. In this way, the MTF sets a maximal number of
ChessField squares for which the projected image remains distinguishable.

The transversal coordinates X and Y are embedded in a coarse and fine position of the mask [1]. The
coarse position is digitally encoded in every 9 row and 9 column of the ChessField, see 2.2b. Only
a section of the full mask is projected, and these rows and columns contain information about which
section that is.

The fine position information is embedded in all transversal black-white transitions of the image.
Fitting an error function to intensity values of a row of pixels trespassing a black-white or white-black
contour will provide a contour X position. The precision of determining this position is basically depen-
dent on three factors: errors in mask contours, diffraction in the system and pixel noise in the image
sensor. The ChessField square wave nature of all contour positions is analyzed by a Fourier analysis
procedure, and its frequency and phase information determine the fine position (as explained in Section
2.1.3). The fine position defines the precision of Rasnik and it is combined with the coarse position to
provide a final X and Y response output.

The X and Y output coordinates are determined from a point in the mask plane projected onto the
sensor, see Figure 2.1. This point is the distance from the cross point of Rasnik’s optical axis with



2.1. The Rasnik optical alignment system 19

(a) A simulated ChessField image, with no diffraction and no pixel noise. (b) A typical Rasnik image, taken with the MER image sensor.

Figure 2.2: A simulated ChessField image and a typical recorded Rasnik image. Both have pixel size . m and
ChessField sizes of 120x120 m. In (b) pixel noise is visible when zooming in, diffraction is seen at contour edges and minor
irregularities are visible (for example the hair in the above right corner).

the mask’s below left corner, with respect to the ChessField’s horizontal and vertical axes. The mask
orientation thus defines Rasnik’s coordinate system, and consequently X and Y outputs are unaffected
by relative rotation between the mask and pixel image sensor around the optical axis: rot(Z).

It is important to note that only a small section of the mask’s pattern is projected onto the sensor.
Therefore, as each section of the ChessField is uniquely identified by dedicated software coding, this
results the arbitrary large detectable range over which the mask can move. This large range is typical
for Rasnik systems, and is a main advantage over other displacement or alignment sensors. What
is more, the contour precision is extremely fine (in the photo-lithographic industry, contours of a few
micrometers can be drawn with precision of < 50 nm [1]. The mask is thus Rasnik’s high precision
component and defines the large dynamic range.

The back-illuminating light source should illuminate the mask homogeneously. This is usually achieved
by using a LED that shines on an opaque Lambertian surface, which diffuses the light homogeneously.
Any small intensity noises that are still emitted through the diffusor, are disregarded as the image anal-
ysis software exploits the periodicity of the ChessField pattern. A disadvantage of using a Lambertian
surface is that only a fraction of the LED light’s intensity is diffused towards the mask. The LED used for
this research is the Luxeon Z, with color Royal Blue (𝜆 = 447.5 nm with spectral half-width Δ𝜆 / = 20
nm).

2) The lens For Rasniks, generally a plano-convex singlet spherical lens is used to project the mask
image onto the sensor. The lens is centered between the object (the mask) and image (the sensor).
Its focal length is 1/4 of the object-image distance, creating a 1:1 scaled image. Displacement of
the lens results in an image shift equivalent to twice the same displacement of the mask or sensor.
Rotating the lens around its optical axis does not affect the image.

The size of the lens diameter, and thus aperture, affects diffraction, light yield, geometry and cost
of a Rasnik system. A large diameter with aperture reduces image blurring from diffraction, and has
a high light yield, reducing pixel noise and background light disturbances. However, a large diameter
is more expensive, and it results in a large light beam space required and in a smaller Depth of Field
(DOF). The DOF is the range in the optical axis Z in which the image is projected sharply, thus it de-
termines the operating range for Z measurements. A too large diameter with aperture is undesirable
as non-linearities, such as the pincushion effect (see Section 2.1.4), may become disturbing.

A typical Rasnik aperture is small: it is in the order of 𝑓/25 (a twenty-fifth of the focal length). As
diffraction increases proportionally with decreasing aperture, diffraction from such a small aperture is
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expected to set a fundamental limit in image resolution. This makes a Rasnik diffraction limited system.
Diffraction blurs contour edges and reduces black-white ratio’s, as specified by the MTF. Together with
pixel noise diffraction creates a limit in precision of determining contour positions.

By enlarging the image of the mask on the sensor, displacements of the mask will be enlarged. This
can be done by placing the singlet lens closer to the mask, but optical aberrations are expected to
distort images too much. Therefore, a new concept was developed: placing a microscopic objective
lens near the mask. This instrument is called RasMic. The precision of RasMic, in terms of spatial
resolution of the mask displacement, is expected to improve linearly with the magnification factor of
the objective lens. RasMic’s objective lens has large aperture to reduce diffraction and increase light
strength. Displacement in Z cannot be measured though because image scaling is not proportional to
object distance. A first characterization of a such a RasMic system is made in Section 2.3.2.

3) The image sensor As its name suggests, a CCD-Rasnik system uses a CCD pixel image sensor.
However, also CMOS image sensor are used, which do not alter the system’s operation principles but
could mainly affect pixel noise. In fact, the sensors used for the characterization of RasMic (Section
2.3.2) are CMOS camera boards, taken out of Logitech C250 consumer webcams, with undefined pixel
sizes (the C300 series is known to have pixel size 𝑑 = 11.2 𝜇m though [35]). Also Pike-F100B CCD
cameras with pixel size 𝑑 = 7.4 𝜇m were used for RasMic measurements. The CMOS and Pike
sensors used for RasMic have sample frequency of about 𝑓 = 30 Hz. The Rasnik system described in
Section 2.3.3 uses the Mercury MER-051-120GC sensor with pixel size 𝑑 = 4.8 𝜇m and maximum
sampling frequency 𝑓 = 120 Hz. The theoretical performance calculations are also based on images
taken with this camera.

The size of the pixels influence Rasnik’s precision and an optimal pixel size exists to detect black-
white transitions in diffraction limited ChessField images. The pixel noise, in combination with diffrac-
tion, determines the ultimate precision of Rasnik.

2.1.3. The image analysis algorithm
The projected ChessField images are recorded by a pixel image sensor and each image is analyzed
by an image processing routine that creates a (X,Y,Z,rot(Z)) position output in the mask coordinate
system (see Figure 2.1). To find the positions of contour edges, the first Rasnik routines employed
gradient filters to the images and fitted lines over the gradients [36]. These routines’ fitting results were
imperiled by blurring, irregular illumination and unwanted artifacts in the image (such as dust spots or
hairs) [37]. Therefore a replacing algorithm was developed, called FOAM (Fourier Analysis Method).
The FOAM routine exploited the wave nature of the ChessField pattern, and was therefore largely
unaffected by the blurring, irregular illumination or artifacts in the image, because these effects do
not influence periodicity to a reasonable extent [37]. From the FOAM routine, finally the SOAP image
analysis algorithm emerged, whose principles are equal to those of FOAM, but it includes new pattern
recognition for the coarse codes. SOAP is the algorithm used for this research.

Like FOAM, SOAP computes a 2D Fourier Transform of the ChessField images, and deduces X, Y,
Z and rot(Z) from frequency and phase information of the image in Fourier space [1, 37]. The SOAP
routine broadly consists of the following steps:

• The Fast Fourier Transform. A two dimensional discrete Fourier transform is taken from the
ChessField image, whose squares are found by fitting the convolution of a square wave in X
with a square wave in Y. The FFT spectrum obtained by this calculation contains peaks with
information on the average value of the ChessField pattern and its base frequency.

• Locating the peaks and fitting. Peaks in the FFT spectrum are located by fitting 2D Gaussians
to the spectrum. From many fitted peaks, two primary peaks are selected based on similarity
of their amplitudes. Together with their first harmonics, these determine the horizontal and ver-
tical frequency of the ChessField image. The frequency is a measure of how many ChessField
squares fit into the image on the sensor. From the frequencies, the sizes of the squares are de-
termined and the optical magnification factor is derived: Z is calculated from this factor. Besides,
rotation in time space equals that in Fourier space and thus rot(Z) can be determined.
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• Peak phases. The complex phase of a Fourier transform is linearly dependent on the translation
of an input function. Therefore, the X and Y shifts of an image can be computed from the phase
information of the FFT peaks. First, the phases of the two primary peaks are resolved, and
then they are matched with the expected phases of the harmonics. The precision at which the
algorithm is able to determine these phases establishes its precision to provide its final X and Y
responses.

To summarize, from the peak locations in the FFT spectrum, the horizontal and vertical frequencies of
the ChessField image are determined, providing information to calculate Z and rot(Z). Phase informa-
tion of the peaks is evaluated to find transversal shifts. Finally, in order to create a final X and Y output,
this fine position information is combined with analysis of the digitally encoded coarse position rows
and columns.

2.1.4. Sources of error
Rasnik’s precision is defined by spatial resolution and linearity of the mask position/displacement. Spa-
tial resolution is defined as the RMS with which Rasnik can detect an X and Y displacement (or sagitta),
and linearity is the proportionality between a linearly moving mask and the subsequent response out-
put. Diffraction, causing decreased black-white ratios and contour blurring, in combination with pixel
noise of the pixel image sensor, limits Rasnik’s spatial resolution. In this section, first, errors from den-
sity variations in the medium are discussed. Then, errors intrinsic to Rasnik components, which define
Rasnik’s ultimate precision, are treated. Finally, errors from thermal variations in Rasnik mounts are
reviewed.

Density variations in air Locally in the medium, the density of the air (𝜌 ) can show variations due
to convection (thermal gradients) or air flows (pressure gradients). This creates local variations in the
medium’s index of refractin 𝑛 which results in light rays in the image beam to follow distorted paths,
creating shifts in the position of the projected image on the sensor.

When 𝜌 fluctuates randomly in the medium through which Rasnik’s light beam traverses, it results
in a rapid shifting and distorting of projected images [35]. When no gas flows are present, density
fluctuations could especially become significant close to heat dispersing components, such as the LED
and pixel sensor [38]. Density gradients and air density fluctuations become increasingly disturbing
when distances between Rasnik’s aligned components, 𝐿, increase, because the light beam passes
through a larger amount of air that facilitates these errors. The effect of density gradients increases
with 𝐿 , for instance [1]. In past measurements, a technique called ”thermal shielding” was used to
suppress density variations, where aluminum cases shielded off air exchange between the light beam
and surrounding environment [35]. This diminished thermal errors not completely however. Therefore,
placing the system in a < 1mbar vacuum environment, where the mean-free-path (mfp) is comparable
to the beam diameter, is regarded sufficient to rule out gradients in 𝜌 .

1) Errors from the back-illuminated ChessField mask For a low-cost CMOS webcam pixel sensor
with a 3 mm x 2 mm image surface, contours with 100 𝜇𝑚 distance will correspond to a total correlated
contour length of about 60 mm in X and Y. This 60 mm contour edge is drawn with a precision of below
50 nm [1]. With pixel size of 6 𝜇m, over 10 edges are sampled in one transversal direction and the
measurement precision is enhanced by a factor of more than 100, thus to below 0.5 nm. This rough
estimate of a simple CMOS webcam demonstrates the high potential precision of Rasnik. Note that
the mask is the only precision-carrying component of Rasnik.

Noise in the electric circuit of the LED light cause it to be a non-homogeneous emitter. However,
the resulting level variations in light intensity are assumed to be well below pixel noise.

2) Optical errors In a Rasnik image, contour sharpness and black-white ratios are reduced with
respect to the object (the mask), as specified by the modulation transfer function (MTF). The spatial
resolution of the projected image is therefore diffraction-limited. In a diffraction-limited image, there
exists a maximum amount of focused contour edges in one image, halting a possibility to improve
precision by reducing the ChessField squares’ sizes.
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Other optical aberrations - distortions that take place as a consequence of using real (not mathe-
matically ideal) lenses - are spherical and chromatic aberration and the pincushion distortion.

Spherical aberration is the effect where light rays away from the optical axis is refracted more than
light rays close to the axis, reducing image sharpness. This effect becomes significant for large aper-
tures, and as Rasnik lenses have small aperture, spherical aberration is not expected to limit sharpness.
Chromatic aberration is the phenomenon where the index of refraction of the lens surface depends on
𝜆, causing the incoming light to be split into different wavelength components that are diffracted at differ-
ent angles, also reducing image sharpness. The small colour spread in the used LED light (Δ𝜆/𝜆 = 20
nm / 475.5 nm = 0.045) cause this effect to be insignificant.

An effect that might cause systematic edge position deviations is the pincushion effect. This hap-
pens when a point of the object, far away from the optical axis, is magnified by the lens to a larger
extent than a point close to the optical axis, resulting in a non-linear pincushion-like image. This could
possibly reduce the linearity of Rasnik: on the edges of the image (where this effect is strongest) the
distorted contours could be projected in turns outside and inside the image as the mask moves. This
results in jumps in periodicity of the ChessField, providing X and Y responses above and below the
line of linearity. The pincushion effect is expected to take place for Rasniks with larger aperture sizes,
but even when the effect is apparant, it can be corrected for. Moreover, pincushion does not affect
precision, because the non-linear pattern is still symmetric, which leaves the square wave form fit of
the Fourier algorithm to still yield an averaged ChessField pattern.

3) Errors from the pixel sensor When photons fall on a pixel they create small photo-currents (𝑖) and
charge its capacitor over the integration time 𝑡 , producing an output charge 𝑄, expressed in number
of electrons [𝑒 ]. The input current is generated by two sources: photons and dark currents, so 𝑖 =
𝑖ph + 𝑖dc. For each pixel, the transfer function of the input current to an output charge 𝑄(𝑖) is defined
as [39]:

𝑄(𝑖) = {
𝑖𝑡 𝑒 for 0 < 𝑖 < max

𝑄max𝑒 for 𝑖 ≥ max (2.1)

Where 𝑡 is the exposure time and 𝑞 the electron charge. The saturation point is reached when 𝑖max =
max , then 𝑄 = 𝑄max. This max pixel charge is called the full well capacity (FWC) of the pixel - the

amount of charge a pixel can hold before saturating. This leads to the definition of the dynamic range
of a sensor: DN = 𝑖max/𝑖min, the ratio of saturation input and the minimum detectable input.

Noise in the output charge stems from different sources. Three independent noise contributions are
[39]:

• Photon shot noise - 𝜎 . Shot noise is a quantum noise that originates in the Poisson distributed
number of photons that hit the pixel during 𝑡 , it increases square rootely with light input 𝑖ph.

• Read noise - 𝜎 . Read noise is the combination of camera specific readout noise, reset noise
and quantization noise. Readout noise is a result of the readout electronics of the image sensor,
and reset noise represents the noise resulting from the resetting procedure of the pixel capacitor
before an image measurement. Quantization noise is the error introduced by quantization in
the ADC (analog-to-digital converter), and is dependent on the bit-depth of the image sensor; to
reduce this noise source, a higher bit sensor should be used. Quantization rms noise is equal to
√12 of a bit count. Importantly, readout noise sources are independent of the light input.

• Fixed pattern noise (FPN) - 𝜎 . FPN is the deviation from spatial variation in pixel outputs
under uniform illumination. FPN consists of pixel-varying gains (photo-response non-uniformity
- PRNU), and pixel-varying dark currents (dark signal non-uniformity -DSNU). Both are indepen-
dent of 𝑖ph, but dark currents depend on shutter time.

The total average noise of the above sources is 𝜎 = √𝜎 + 𝜎 + 𝜎 , or derived by [39] as:

𝜎 = √𝑞(𝑖ph + 𝑖dc)𝑡 + 𝜎 (2.2)
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Here, 𝑖dc represents the signal from dark currents and 𝜎 is the 𝑖ph-independent read noise variance.
The signal to noise ratio (SNR) is defined the ratio of the input current to the noise of the total input,
𝑖ph/𝜎 :

SNR(𝑖ph) =
𝑖ph𝑡

√𝑞(𝑖ph + 𝑖dc)𝑡 + 𝜎
(2.3)

Rasnik’s spatial resolution is assumed to be directly dependent on the SNR, as its algorithm relies on
black-white ratios of the pixels. Typically for pixel image sensors, at low 𝑖ph, the SNR is dominated by
dark currents and read noise (𝜎 ), while at high 𝑖ph it is increasingly dominated by shot noise. As peak
SNR occurs near saturation 𝑖max, it is desired to have a high FWC sensor.

Equation (2.3) shows that the SNR consists an 𝑖ph-dependent and an 𝑖ph-independent part. The
𝑖ph-dependent part displays the common ∼ 𝑁/√𝑁 behaviour for shot noise limited systems, as the
number of photons 𝑁 is directly related to the photo-current 𝑖ph. The SNR increases linearly when only
the 𝑖ph-independent part is regarded.

Background light A high ratio between black and white in a Rasnik image is essential for optimal
spatial resolution, because then the contours are more pronounced and the Fourier ChessField con-
volution procedure can be performed with less error. This means that the white squares should be as
bright as possible and the dark squares as dim as possible. As Rasnik is a diffraction-limited system,
the MTF sets a non-perfect black-white ratio, meaning that with increased input light intensity, the dark
squares will also have increased pixel intensities - or background light. Light from the lab also adds to
the background light, but its contribution is insignifcant.

Temperature gradients and drift Rasnik transversal measurements are not sensible to heating of
one of the three components themselves. Variation in image scaling could occur when one of the
components exchanges heat and expands or shrinks, but in principal, transversal shifts cannot result
from a temperature variation in any of the Rasnik components themselves.

However, non-homogenieties of temperature in Rasnik’s mechanics could create drift in the mea-
sured signal, negatively affecting Rasnik’s linearity. Thermal variations in Rasnik mounts can be cur-
tailed by operating Rasnik in a temperature controlled environment, and redirecting dispersed heat from
the LED and sensor to outside the medium.

2.2. Theoretical performance
2.2.1. Cramér-Rao analysis and pixel noise
CRLB analysis calculation For any estimation of an unknown but determinable parameter, there
exists a lower bound for the variance at which this parameter can be distinguished. This lower limit
can be calculated, and it is known as the Cramér-Rao lower bound (CRLB). Determining the CRLB
of a sequence of ChessField images provides a lower precision bound at which Rasnik can measure
transversal shifts. This ultimate precision is a result of pixel noise from the sensor and gradient energy
in the image.

Rasnik’s precision concerns ability to detect shifts in X and Y of a sequence of images. Each image
is an array of pixels (𝑥 , 𝑦 ) with a pixel intensity value �̂�(𝑥 , 𝑦 ). For the 8-bit MER cam �̂� can take the
values 0 < �̂� < 255.

The shifts are coordinate transformations, expressed as 𝑥 = 𝑥 − 𝑣 and 𝑦 = 𝑦 − 𝑣 . Here, the
unknown but to be estimated parameters are 𝑣 and 𝑣 . For a 2D shift estimator, the CRLB variance
is expressed as [40]:

𝑣𝑎𝑟(𝑣 ) ≥
�̂� ∑ 𝐼
𝑑𝑒𝑡(TTT) 𝑣𝑎𝑟(𝑣 ) ≥ �̂� ∑ 𝐼

𝑑𝑒𝑡(TTT) (2.4)

Where �̂� is the variance of the pixel image noise of the sensor, 𝐼 = and 𝐼 = are the transversal
gradients of an uncorrupted Rasnik image 𝐼 over the region S of the image, and TTT is the gradient
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(a) A averaged Rasnik image ̄. (b) The horizontal gradient of ̄ squared: . (c) The vertical gradient of ̄ squared: .

Figure 2.3: (a) shows an approximation of an uncorrupted Rasnik image, ̄: the average of images. Horizontal and
vertical squared gradients of ̄ are depicted in (b) and (c), respectively.

structure tensor that is obtained from the Fisher matrix FFF by TTT = �̂� FFF. The matrix TTT is expressed as
[41]:

TTT = [
∑ 𝐼 ∑ 𝐼 𝐼
∑ 𝐼 𝐼 ∑ 𝐼 ] (2.5)

and the determinant of TTT is:

𝑑𝑒𝑡(TTT) = [∑𝐼 ∑𝐼 − (∑𝐼 𝐼 ) ] (2.6)

where, in the case of the ChessField images, the cross-term is insignificant because the gradients
are perpendicular: at pixel spots where 𝐼 is large, 𝐼 is approximately zero, and vice versa. By plug-
ging Equation (2.6) (without cross-term) into Equation (2.4), the CRLB dependence on pixel noise and
gradient energy reveals itself:

𝑣𝑎𝑟(𝑣 ) ≥ �̂�
∑ 𝐼 𝑣𝑎𝑟(𝑣 ) ≥ �̂�

∑ 𝐼 (2.7)

Now it is clear that the standard deviation CRLB, 𝜎CRLB,x = √𝑣𝑎𝑟(𝑣 ), is linearly dependent on the
pixel noise of the image sensor, and inversely dependent on the gradient energy in the shift direction.
Therefore, pixel noise �̂� is desired to be minimal whereas gradients are desired to be maximal. Pixel
noise can be lowered by choosing a higher performance pixel image sensor. Gradient energy can be
increased by increasing the number of ChessField squares in the image, and by increasing the amount
of light falling on the sensor, as that will increase the difference between �̂�white and �̂�black.

Gradients 𝐼 and 𝐼 are derived from an uncorrupted ChessField image 𝐼. Kea [37] provided an
approximation to any 𝐼, with specific white-black intensities �̂�white and �̂�black, by taking the mean of
each pixel in an image sequence, resulting in an averaged image ̄𝐼. An example of an averaged
Rasnik image with its two squared gradients is given in Figure 2.3.

To calculate 𝐼 and 𝐼 from the image ̄𝐼, the Numpy Gradient function is used. This function calcu-
lates the derivatives of the pixels by means of a second order approximation:

̂𝑓( ) = 𝑓(𝑥 ) − 𝑓(𝑥 )
2ℎ + 𝒪(ℎ ) (2.8)

Where 𝑓 is the function of which the gradients are composed, which is in this case the measured pixel
intensity �̂�(𝑥 ). The pixel index location is denoted as 𝑥 and ℎ is the pixel size of the sensor.

Pixel noise The analysis was performed on images taken with the MER camera, with pixel size
𝑑pix = 4.8 𝜇m. Four Rasnik image sequences were taken at different LED light intensities, in order
to investigate the influence of the amount of light on the spatial resolution. The same experiment was
repeated with the same camera with doubled pixel sizes 𝑑pix = 9.6 𝜇m (and thus four times less pixels)
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Table 2.1: CRLB results for and translations for two pixel sizes of the image sensor.

LED current 𝐼 𝑑pix = 9.6 𝜇𝑚 𝑑pix = 4.8 𝜇𝑚
𝜎 𝜎 𝜎 𝜎

10 mA 1.2 nm 1.2 nm 0.55 nm 0.56 nm
20 mA 0.58 nm 0.60 nm 0.27 nm 0.28 nm
40 mA 0.42 nm 0.25 nm 0.12 nm 0.12 nm
80 mA 0.13 nm 0.13 nm 0.056 nm 0.058 nm

to explore how precision depends on pixel size. For both experiments, exposure time 𝑡 = 8 ms,
framerate 𝑓 = 120 Hz, and each sequence contained 𝑁 = 150 images.

To examine pixel noise, the pixel intensity �̂� and its accessory pixel noise �̂� were determined at two
pixel locations: one at a black spot and one at a white spot, see Figure 2.4. Histograms of measured
�̂�’s at both pixels, for both 𝑑pix sizes are displayed in Figure 2.5.

Figure 2.5 shows that pixel intensity �̂� increases proportionally with LED current increase, as ex-
pected. What is more, looking at Figure 2.6, the shape of the SNR increase indicates that the pixel noise
is shot noise dominated at high �̂�. Rembemer from Equation (2.3) that photon shot noise increases
with the square root of the input light, whereas other noise sources from the CCD increase linearly with
input light. Quantization rms noise is 1/√12 = 0.3 of a pixel pixel bin, which is a significant noise source
at low light intensity, but contributes increasingly less at higher intensities. The contribution of other
noise sources, as dark current noise, could not be estimated.

From Figure 2.5 it can be inferred that above 𝐼LED ≈ 135mA, the white pixels will start to reach their
maximum saturation values of �̂� = 255, and the ADCs of pixels could clip. Measuring above 𝐼LED ≈ 135
mA, a too large amount of signal will be lost, possibly resulting in non-linear responses, and measuring
in these conditions should thus be avoided. At 𝐼 ≈ 134 mA, this Rasnik system is already operating at
its exremes.

Finally, Figure 2.5 and 2.6 demonstrate that halved pixel sizes result in an approximately doubled

�̂�. This makes sense because halve 𝑑pix results in
th
input light and thus a doubled �̂�.

Cramér-Rao analysis results To finally calculate the CRLB, the gradients 𝐼 and 𝐼 of an image,
and the pixel image noise variance �̂� are required. 𝐼 and 𝐼 were determined from the averaged
image sequences ̄𝐼, see Figure 2.3. The pixel image variance �̂� was derived from the mean pixel
intensities �̂�mean of each image in the 𝑁 set of images, having an approximately constant value for
each measurement of �̂� ∼ 0.08. The CRLB results are listed in Table 2.1 for 𝑑 = 4.8 𝜇m and
𝑑 = 9.6 𝜇𝑚.

At 𝐼 = 80 mA, the Cramér-Rao analysis sets a lower bound for a transversal translation of 𝜎CRLB =
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Figure 2.5: Intensities spectra for the MER sensor with two pixel size settings. The colours of the peaks are associated with the
LED light intensity. The graphs show two intensity peaks per colour, one at the dark pixel spot (Pixel1), and one at the bright
pixel spot (Pixel2), from Figure 2.4.
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Figure 2.6: SNR’s for the two pixel sizes at differ-
ent LED light intensities, both calculated at Pixel2.

0.13 nm for 𝑑pix = 9.6 𝜇𝑚. For 𝑑pix = 4.8 𝜇𝑚, results are approximately halve for each measurement,
like their SNRs (see Figure 2.6). Presumably, these values are slightly off reality, due to the approach
to 𝐼 with the averaged ̄𝐼. The Python codes used for this Section are included in Appendix A.

2.3. Measured performance
2.3.1. Previous measurements
Rasnik performance has been studied with the SmallSpan setup [1]. In this setup, the back-illuminated
mask (with ChessField squares sized 85 𝜇m) was mounted on translational and rotational actuators,
testing Rasnik responses to systematic mask displacements. The distance between the mask and
sensor was 160 mm and placed in between was a plano-convex singlet lens with 𝑓 = 40 mm and
diameter diaphragm 2mm. The pixel image sensors used were the Logitech C250 and Pike F100B.
Both sensors recorded X and Y positions of the mask with a resolution of 60 nm (RMS). This value is the
RMS over the time range of the measurement; no spectrum was made to determine the noise ASD.
What is more, other measurements of comparable Rasnik systems operating in vacuum, employing
different image sensors, have never shown RMS values of below 25 nm [1].

2.3.2. RasMic
A new type of Rasnik system has been developed at Nikhef, called RasMic. In the RasMic design, the
central lenswasis replaced with a microscopic objective lens with large aperture, placed near the mask.
The large aperture ensured reduced diffraction and increased incoming light on the sensor. However,
it possibly also introduces pincushion effects, see Section 2.1.4. As the objective lens enlarges the
ChessField patterns, the precision in terms of mask displacement was expected to be improved by a
factor equal to the magnification factor of the objective lens. In the first such prototype, a 20x objective
was chosen and the performance was therefore expected to improve by a factor of 20: thus from a RMS
value of 25 nm from past Rasnik measurements, to about 1.3 nm. The magnification can be selected
arbitrarily - a lens with a higher magnification factor should improve precision further. A typical image
of RasMic is displayed in Figure 2.7.

To investigate linearity, a Coupled-RasMic system was build from two RasMics. The Coupled-RasMic
is a system that by design consists of two parallel coupled RasMic systems, RasMic-1 and RasMic-2,
which have their three components mounted to a common base plate, see Figure 2.8. CAM responses
from RasMic-1 and RasMic-2 are labelled CAM1 and CAM2. Themasks of the two RasMics were glued
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Figure 2.7: A typical RasMic image.

onto a common holder and were separated by a fixed distance of 54 mm. The holder enabled common
displacement of the masks in X, perpendicular to the optical axes defined by the coupled objectives
and pixel image sensors. The holder could be actuated by a dial gauge when the system was outside
vacuum, or a piezo actuator when it was in vacuum. The common X displacement should result in the
difference in X-responses of CAM1 and CAM2 to remain constant. The extent to which these subtracted
responses remain constant is a measure of linearity of Coupled-RasMic. The common base plate also
facilitated actuation in Z, the optical axis of the RasMic systems, in order to focus the images on the
sensor.

Performance over a 4.5 mm range First, the Coupled-RasMic system’s performance was measured
over its full range, which is equal to the size of the masks. Measurements were performed outside
vacuum, but an aluminum cover was placed over the complete setup to cover it from variations in the
index of air. The masks were actuated in X and Z with a manual dial micrometer gauge operating on
the holder. Over a range of 4.5 mm, response in X and Y was measured for each ΔX = 0.5 mm step
increase in a 0.6 s time interval, at a maximal frame rate of 30 Hz. Results are depicted in Figure 2.9.

Straight lines (𝑦 = a𝑥+b) were fitted through each set of 20 datapoints. The fits show that, using the
dial gauges, the masks were actuated linearly with a precision of (1−1/a) ⋅100% ≃ 0.05% over the full
4.5 mm range (about 2 𝜇m over 4.5 mm). For both RasMic systems, the residual distances from the fit
lines of the mean X-response values are displayed in Table 2.2. Subtracting the residuals of CAM1 and
CAM2 should cancel out non-linear actuation by the dial gauge, and this difference is thus a measure
of linearity of RasMic. From Table 2.2 it is calculated that the deviation from linearity of this system is
about 0.28 𝜇m per actuation ΔX. As the full experiment was conducted in over 10 minutes, the deviation
from perfect linearity is possibly due to thermal drifting effects that typically present themselves in this
timescale.

Looking at Figure 2.9 it can be seen that the Y-response lines are not horizontal, which means that
the masks were mounted under an angle with respect to the direction of actuation. From the small
angle approximation the angle is calculated as:

𝜃 ≈ 𝑌
𝑋 (2.9)

where X and Y are RasMic’s horizontal and vertical displacement responses to an actuation X from
the dial gauge, see Figure 2.10. Filling in the slope parameter of the Y-response from Figure 2.9, called
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Figure 2.8: A schematic of the parallel coupled RasMic system. Light from two LEDs (StarLED-1W-BL) back-illuminate the chess-
field masks, which are glued onto a common holder and separated by a distance of 54 mm. The masks have field squares of
4 m drawn with 50 nm precision [1]. Microscope objectives (Newport M-20X) placed near the masks form 20 times enlarged
images at 180 mm distance from the objectives. There, finally the sensors (Logitech C250) pick up the light and create pixel
images of these enlarged mask projections. The light sources, objectives and sensors are mounted on a solid common holder.
Image from [1].
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Fit to CAM1: aX=0.9995(2), b=461.4(4)
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Fit to CAM2: aY=-0.01894(8), b=3091.4(2)

Figure 2.9: X and Y-responses of both RasMic systems to displacement in X with from the dial gauge. Each datapoint contains
20 measurements taken at Hz, with a RMS of about 2-5 nm over the time recording interval of 0.6 s. The slopes of
the Y-responses indicate that the masks are mounted under a small angle with respect to the direction of actuation, see Figure
2.9.
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Table 2.2: Mean X-response measurements of CAM1 and CAM2, and their residual distances from the fitted line in Figure
2.9. The whole experiment is conducted in 670 seconds, with each position derived from 20 measurements recorded at 30 Hz.
The differences of the mean X measurements of Coupled-RasMic are listed in the fifth column. The standard deviation of this
difference is . m

CAM1 CAM2 Difference
Mean X [𝜇m] Fit residual [𝜇m] Mean X [𝜇m] Fit residual [𝜇m] 𝛿(X −X )

460.1 1.30 42.2 1.00 418.0
961.7 -0.53 543.6 -0.72 418.1
1461.0 -0.08 1042.6 0.01 418.4
1961.5 -0.83 1543.0 -0.67 418.4
2461.1 -0.68 2042.6 -0.50 418.5
2959.5 0.62 2541.0 0.83 418.5
3460.1 -0.19 3041.6 -0.04 418.5
3959.8 -0.15 3541.4 -0.03 418.4
4459.5 -0.13 4041.0 0.09 418.5
4958.5 0.67 4540.8 0.03 417.7

Figure 2.10: The mask under an angle with the
actuation axis X .

Xact

X

Y
ϴ

Common holder

aY, Equation 2.9 yields angles of 0.0121(1) rad and -0.01894(8) rad for CAM1 and CAM2 respectively,
as indicated in Figure 2.9.

What is more, the squared sum of the estimated slopes, M = √aX + aY, represents the proportion-
ality of a Rasnik response to a mechanical actuation 𝑋 . The values M for both RasMics are expected
to be equal at the level of precision of the scale of the masks, which is specified to deviate less than
5 ⋅ 10 from unity [1], two orders of magnitude below the precision of the fits, making their similarity
unvisible (see Table 2.3).

All in all, a 0.28 𝜇m deviation from linearity per ΔX = 0.5 mm actuation is shown, which is a factor
of ∼ 6 ⋅ 10 with respect to the 4.5 mm range.

Performance over a 2 𝜇m range in vacuum Air density variations assumingly deteriorate RasMic’s
spatial resolution. As the LEDs and sensors disperse heat while in operation, they could be creating
local air density variations in RasMic’s medium, besides the environmental convection flows, as dis-
cussed in Section 2.1.4. In order to investigate whether air density variations limit RasMic’s precision,
the system was placed in vacuum (𝑃 < 1 mbar).

Table 2.3: Slope values aX and aY of both RasMic systems, from Figure 2.9, and their squared sums M √aX aY.

aX aY M

CAM1 0.9995(2) 0.0121(1) 0.9996(4)
CAM2 0.9995(1) -0.01894(8) 0.9997(2)
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Figure 2.11: X-responses over a 2 m range, from the RasMic system placed in vacuum. The common mask holder is actuated
by a piezo with potential steps of 50V. For each position, 80 measurements were recorded, taking 2.4 s.

To facilitate remote actuation of the masks in vacuum, the dial gauges were replaced with piezo
high voltage actuators (PiezoSystemJena HPSt1000/25-15/7). Here, one piezo actuator was used to
displace the common holder in Z, in order to focus the RasMic images. This was necessary because
the refractive index of air vanishes when the system is pumped down to vacuum, effectively decreasing
the focal length of the objective. Actuation in X on the common holder was performed by another piezo,
to which potential steps of 50 V were applied, ranging from 0 V to 250 V. As each 50 V potential step
results in an actuation of somewhat less than 0.4 𝜇m, a range of about 2 𝜇m is encompassed, see
Figure 2.11.

The measurements in Figure 2.11 have a RMS of 𝜎 = 1.6-5 nm over the time recording interval of 2.4 s.
Comparing this with the precision of RasMic in air (Section 2.3.2), significant RMS improvement from
operating the RasMics in vacuum has not been shown.

The known non-linearity of the piezo actuator is demonstrated in Figure 2.12, where differences
between measured positions vary evidently. In this figure, the sharp peaks in the 2 𝜇m range denote
the RasMic systems’ high precision.

The linearity of Coupled-RasMic over the 2 𝜇m range was investigated by subtracting X-responses of
CAM1 and -2. Themean of each CAM1 peak from Figure 2.12a is subtracted from its CAM2 counterpart
(Figure 2.12b). The results of these differences are displayed in Figure 2.13, showing a linearity of about
2 nm per step increase over the 2 𝜇m range - a factor of 10 .

Thermal effects on linearity Figure 2.13 shows that subtracted X-responses of CAM1 and -2 in-
crease with about Δ𝑥 = 14 nm over the full measurement, which was recorded in about 122 seconds
in total. The fact that subtracted X-responses of RasMic vary in time, as displayed in Figure 2.13, has
raised the suspicion that thermal effects influence the linearity of the system. To study drifting effects,
RasMic was placed in vacuum and data was acquired for 9 hours at 1 Hz, without any actuation in
X. Results of this measurement are displayed in Figure 2.14. Over the whole measurement, 150 nm
scale variations in X-response are visible and it is expected that this was caused by thermal gradients
in the setup. However, no temperature measurement was done parallel to the drift measurement, and
thus it cannot be concluded with complete certainty that the drifting results from thermal gradients in
the mechanics. A strong indication supporting this assumption though is the steep decrease of the
measured X-response at 05:45 AM, when heating radiators of Nikhef are switched on.
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Figure 2.12: The X-response results of Figure 2.11, presented as histograms with CAM1 in (a) and CAM2 in (b). The sharp
peaks comprise 80 measurements and highlight the precision of the RasMics over a 2 m range. The known non-linearity of the
piezo actuation becomes clear from the decreasing distances between measured X-responses, from left to right.
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Figure 2.13: Difference in X-responses of the two
RasMic systems - the mean of CAM1 minus the
mean of CAM2.
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Figure 2.14: X-responses of CAM1 over a range of 9 hours at Hz, without being actuated in X.
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Figure 2.15: The below right corner of Figure 2.14, zoomed in. The 1900 data points are sampled at 30 Hz, recorded in 63.35
s. A histogram of this data is presented in Figure 2.16, and a frequency spectrum in Figure 2.17

The RasMic noise floor At 08:45 the 1 Hz experiment of the previous section was halted shortly (see
Figure 2.14), after which measuring continued at a higher sampling frequency of 30 Hz. This part of
the sequence is displayed zoomed-in in Figure 2.15, still showing a nm scale drift. A histogram was
made of these final 1900 data points (where X-response variation is minimal), over a time interval of
63.35 s, and displayed in Figure 2.16.

The determined 𝜎 = 2 nm is the total, integrated standard deviation of the datapoints over the
observable frequency band (𝑓 = 0 - 15 Hz). However, the instruments characteristic noise floor is
determined by of frequency dependent, minimum detectable amplitudes 𝐴 (𝑓):

𝑅𝑀𝑆 = √∫ |𝐴 (𝑓)|𝑑𝑓 (2.10)

To measure the instrument’s 𝐴 ’s, an ASD plot is made of this data sequence by applying the Welch
method to the data (using the scipy.signal.welch package in Python) [42]. This method is used to
estimate the power of a signal at different frequencies (PSD).

In time domain, the approach first splits the data stream of the signal into 𝑘 segments of 𝑁 points,
with a set overlap (usually 50% of 𝑁) and applies a window function to them (most commonly the
Hanning window - a bell-shaped function that smooths out segments towards the edges). Then, in
frequency domain, the FFTs of these segments are determined. At each segment 𝑘, its FFT 𝑌 , is
calculated from the 𝑁 long sequence of values 𝑦 as:

𝑌 = ∑ 𝑦 𝑒 (2.11)

which are then squared by the scipy.signal.welch function to obtain the PSD. As amplitudes are of in-
terest to resolve RasMic’s amplitude noise floor, the square root of data is taken. Results are depicted
in Figure 2.17. For the code to determine a spectrum with Welch’s method, see Appendix B.

Looking at Figure 2.17, a noise floor of about 450 pm/√Hz is observed. What is more, a small peak at
around 5.5 Hz is visible, which might indicate some sort of mechanical coupling with a Rasnik compo-
nent. Indeed, also inspecting Figure 2.11 from very close, minor oscillations in X-responses become
visible. However, no parallel seismic measurement was performed to substantiate these suspicions.
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Figure 2.16: Histogram of the 1900 CAM1 X-
responses displayed as blue dots in Figure 2.15.
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Figure 2.17: Spectrum of the RasMic data dis-
played in Figure 2.15, using Welch’s method.
With only 1900 datapoints, the FFT segments
consisted of only datapoints.
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Figure 2.18: A compact, solid Rasnik system,
with mask-lens and lens-cam distance of 60 mm.
The LED used is the Luxeon Z, colour Royal Blue
and the pizel image sensor is the CMOS MER-
051-120GC. The focal length of the lens is 30mm.

60 mm 60 mm

MER pixel sensor Connector tube Lens
f = 30 mm Mask + diff + LED

What is more, the 5.5 Hz peak might be deceiving due to under-sampling effects, as a result from
the low sampling rate of the RasMic Cams (𝑓 = 30 Hz). Under-sampling arises when the frequency
of interest is above the Nyquist frequency, the maximum observable frequency, which is half the sam-
pling frequency of a sensor. Under-sampling occurs when the sensor’s sampling frequency is not
high enough to measure the signal, and the taken samples are indistinguishable from samples of a
low-frequency alias of the high-frequency signal. The Nyquist frequency of RasMic was about 15 Hz,
leaving every frequency above it to be measured as a deceiving low-frequency alias. To extend the
observable frequency range, an image sensor with a higher sampling frequency of 𝑓 = 120 Hz was
used in following experiments.

2.3.3. Solid Rasnik
A new Rasnik construction was made that was 1) mechanically robust to counter mechanical couplings
and 2) had a higher framerate to extend observable frequencies. The back-illuminated mask, lens and
pixel image sensor were mounted solidly to a common frame, spanning about 120 mm. The sensor and
lens were attached via a cylindrical tube for precise alignment and to provide cover for local variations in
the medium’s index of refraction. The mask was back-illuminated with a LED source that could handle
currents of several hundred mA. The image sensor had pixel size 4.8 𝜇m and max frame rate 𝑓 = 120
Hz. As the MER camera cannot operate at 𝑓 whilst using its smallest pixel size, it was set to use four
merged pixels as one to create 𝑑 = 9.6 𝜇m pixels. A framerate of 120 Hz extended the observable
spectrum from 15 Hz (of the RasMic experiments) to 60 Hz. A picture of this setup is depicted in Figure
2.18. Three experiments were conducted with this Rasnik, to acquire understanding for the effects
of LED intensity, sampling frequency and density variations on the system. All results shown in this
section are Rasnik X-responses; the Y-responses are highly similar.

Input light dependency of Rasnik resolution Rasnik is limited by diffraction and pixel noise. It is
expected that Rasnik’s spatial resolution increases with increased SNR, when black-white transitions
are more pronounced. This should translate into improved Rasnik resolution from an increased amount
of light falling onto the image sensor. This hypothesis was researched by taking ASD’s of ∼30 minute
long Rasnik measurements at 𝑓 = 120 Hz, at different input light strengths, as varied with current
through the LED. The ASD’s were calculated from Welch’s method, see Section 2.3.2. In this experi-
ment, the lens and mask are shielded with plastic covers to minimize density variations in the medium.
Results are shown in Figure 2.19.

From Figure 2.19 it is confirmed that Rasnik operated at its pixel noise limit, and that spatial reso-
lution was a direct consequence of the SNRs of the pixel content. As discussed in Section 2.1.4, the
SNR of pixels is a consequence of different noise sources, depending or not on the amount of input
light. A model that takes into account input light dependent and -independent noises is:

𝐴 = √ 𝑎
𝐼LED

+ 𝑏
𝐼LED

(2.12)

because 𝐼LED ∝ 𝑖ph. In this model, the parameter 𝑎 is in units of [Am /Hz] and 𝑏 in [A m /Hz]. The
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Figure 2.19: Noise resolutions at different LED light intensities. Above I = 140 mA, the white pixels are saturated ( ̂ ) and
therefore measurements are taken at LED currents below this value.
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Figure 2.20: Noise floor versus input light, with
three different functions fit to the datapoints. The
red line takes into account only noise indepen-
dent of input light (CCD noise), whereas the blue
line takes into account only shot noise. The
green line accounts for both these effects.
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LED current 𝐼 Measured 𝐴 Modelled lower bound 𝜎
10 mA 1.9 nm/√Hz 1.2 nm
20 mA 1.1 nm/√Hz 0.58 nm
40 mA 0.68 nm/√Hz 0.24 nm
80 mA 0.46 nm/√Hz 0.13 nm

Table 2.4: Measured and modelled Rasnik resolution.

factor
LED

is the photon shot noise contribution and
LED

represents all other noise sources from the
CCD, which are independent of the light input. From Equation (2.12) it is seen that the shot noise
contribution should become increasingly dominant for higher LED currents.

This model is fitted against measurements for different LED light intensities, see Figure 2.20, with
𝑎 = 1.2 ⋅ 10 Am /Hz and 𝑏 = 2.5 ⋅ 10 A m /Hz. The relative error on parameter 𝑎 is 13.9% and on 𝑏
9.8%. For comparison, two extra cases were considered: one where 𝑏 = 0 (only SN) and one where
𝑎 = 0 (only CCD noise), see the red and blue lines in Figure 2.20. They have fit parameter errors of
16.2% and 14.0%, respectively. From these fits it seems that 𝐴 is indeed a result of both shot noise
- dependent on the input light - and CCD noise (read noise, quantization noise, dark current noise) -
independent of the input light.

Figure 2.20 shows there is expectedly still significant room to lower 𝐴 from higher input light inten-
sities. For that reason, it is suggested that in following research on Rasnik performance, image sensors
should be used with high FWC, enabling the possibility to increase the maximum number of photons
per pixel, improving the SNR and thus resolution. Other suggestions to lower pixel noise contributions
are: choosing a CCD with larger bit-depth to lower quantization noise, and cooling the pixel sensor to
reduce thermally excited dark current noise.

Folding effects Noise measurements were also conducted in shielded configuration and at 𝐼 = 130
mA, but with varying sensor framerates, see Figure 2.21. It is observed that spatial resolution improves
with increasing sampling rates. This is explained by a digital effect called folding. With folding, the white
noise above the Nyquist frequency is aliased (or folded) as white noise into the observable spectrum,
adding layers of noise on top of 𝐴 . By increasing 𝑓 , the amount of folded white noise decreases and
resolution is improved with a factor √𝑓 , see the green inversed square root line in Figure 2.21b. The
best spatial resolution of 270 pm/√Hz is therefore measured at highest framerate 𝑓 = 120 Hz.
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Figure 2.21: In a) a spectrum of Rasnik data sampled at different sampling frequencies is shown, and b) depicts the noise
floor at increasing sampling rate . An inversed square root is fitted to the datapoints with a relative error of 1.3%. All
measurements were conducted in shielded setup with mA.

For analog signals folding is prevented by using frequency cutoff filters before the signal is send to
an ADC. However, as Rasnik signals are digital (the ADC is inside the pixel image sensor) frequency
cutoffs are not straightforwardly applied. One solution would be to place an anti-aliasing filters are in
front of the CCD [43]. Another, perhaps simpler, solution to exclude folded white noise is to use an
image sensor with higher sampling frequency, improving resolution as indicated by Figure 2.21b.

Density variations in the medium and LF resolution In Section 2.3.2 it was noted that variations
in the medium had no significant effect on the integrated RMS of RasMic data. However, data was
taken in a short time interval and at low 𝑓 , making their comparison not sound. Density variations are
nonetheless expected to affect the Rasnik’s amplitude noise floor 𝐴 at low frequencies. Therefore,
an experiment was conducted where one measurement was performed with the medium shielded with
plastic covers, like in previous experiments, and one where no shielding was present. The results are
displayed in Figure 2.22, where a clear difference in the time data is visible, with large irregularities and
peaks for not shielded Rasnik X-responses. In frequency domain, these irregularities translate to an
𝐴 increasingly reduced from 𝑓 = 11 Hz to frequencies below, see Figure 2.23.

The shielded Rasnik spectrum in Figure 2.23 shows that below 𝑓 = 1 Hz, resolution deteriorates
drastically to about 30 nm/√Hz below 𝑓 = 0.01Hz. This is expectedly partly due to non-perfect shielding
of Rasnik. Still many gaps and splits allowed air from the laboratory’s environment to enter the medium
and create distortions in the direction of light. What is more, heat exchange between the sensor/LED
and the medium possibly facilitates additional convection flows. Therefore, placing the setup in vacuum
and in a temperature controlled laboratory environment, where density variations areminimized, Rasnik
LF resolution is expected to increase. For such an experiment CCD image sensors should be used, as
they disperse less heat than CMOS sensors, and heat from the LED and sensor should be redirected
towards outside the medium. These measures could eliminate density variations and enable enhanced
resolution also at low frequencies. What is more, the drifts observed in the RasMic 9 hour experiment
in vacuum, shown in Figure 2.14 in Section 2.3.2, indicate that also thermal heating of mechanics might
be responsible for LF resolution reduction.

2.4. Conclusions
Compared with previous research, a new way of interpreting spatial resolution from a Rasnik measure-
ment was established. Instead of taking the standard deviation of a set of Rasnik X-responses, which
expresses the RMS integrated over the time interval of the measurement, a spectral density plot was
construed in which the flat line represented the Rasnik white noise floor. This explained the discrep-
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Figure 2.22: X-response datapoints of a shielded (red) and not shielded (blue) Rasnik, clearly revealing light path distortions in
the medium. Images were recorded with LED mA.

Figure 2.23: Spectrum of the data from Figure
2.22, for a shielded Rasnik and a not shielded
Rasnik. To gain LF spectral resolution, data was
taken at Hz for about 15 hours, and
sample lengths of 833 seconds were taken for
the ASD.
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ancy between the CRLB modelled noise levels and the ∼ 25 nm noise resolutions obtained in previous
experiments. These measurements were in fact resolutions of Rasnik, integrated over the entire ob-
servable frequency band, where at lower frequencies influences from the environment induce noise far
above the resolution floor. This way of interpreting data was only established after RasMic experiments
were conducted, and only one spectrum of (a small sample of) RasMic data could be taken.

The RasMic experiments showed that high RMS precision of 𝜎 = 2-5 nm can be obtained over an
arbitrary large range (4.5 mm in this case). What is more, the 20x enlarged RasMic images showed
RMS improvement of indeed about a factor 20 with respect to previous Rasnik experiments. The
free resolution gain from optical magnification thus remains an attractive prospective, and research
on a small and robust RasMic system (comparable to the Solid Rasnik) with varying magnification
objectives, could indeed reveal improved spectral resolution floors.

Coupled-RasMic revealed that RasMic’s linearity, which was established to be about 280 nm over
a 4.5 mm range, and a few nm over 2𝜇m range, was possibly reduced by thermal effects in the me-
chanics. This is not an intrinsic defunct of the system and can be countered by placing the setup in
temperature controlled environment, where heat from the LED and image sensor is isolated.

Experiments with the 𝑓 = 120 Hz Solid Rasnik showed that Rasnik is, as expected, pixel noise limited.
More profoundly, the pixel noise is presumably dominated by shot noise at high input light intensities.
A maximal resolution of 𝐴 = 270 pm/√Hz is achieved above 1 Hz. Gaining resolution from more
light halted though when the light pixels in the ChessField squares reached their maximum values of
�̂� = 255 (which should be avoided). For that reason, in future Rasnik research it is advised to employ
CCD sensors with high FWC, that need a larger amount of photons before their maximum saturation
point is reached. Moreover, the CCD of choice should also have higher bit-depth to lower quantization
noise.

Distortions in the light path due to density fluctuations in the medium were shown to cause shifting
images on the sensor, and create distorted Rasnik X- and Y-responses. Especially at frequencies below
∼ 10 Hz, these distortions were responsible for heavily deteriorated resolution. With a simple plastic
cover, this effect was significantly reduced at 𝑓 = 1-10 Hz. However, it is expected that the ASD noise
floor can become flat also at below 1 Hz in a vacuum setup with a low-heat dispersing CCD sensor.
The dispersed heat from LED and sensor should be guided to outside Rasnik’s medium.

In Section 2.2.1 a precision lower bound 𝜎 = 0.13 nm for Rasnik was calculated for a sequence
of images taken at 𝑓 = 120 Hz and 𝐼 = 80mA. The measured resolution of Rasnik at these parameters
was determined to be 𝐴 = 0.46 nm/√Hz, close to the model, but still somewhat less than a factor 3
off, possibly due to the fact that the perfect, non-corrupted image 𝐼, was approached by an averaged
image ̄𝐼 in the model.

Lastly, the aliasing of white noise from above the Nyquist frequency was shown to reduce resolution.
Because of folding, the measured lower noise floor of 𝐴 = 270 pm/√Hz is therefore not the intrinsic
lower bound of Rasnik. Folding can simply be coped with by using a sensor with a higher framerate 𝑓 ,
or using a anti-aliasing filter in front of the CCD.

To conclude, a spatial resolution of 𝐴 = 270 pm/√Hz above 𝑓 = 1 Hz was obtained with Ras-
nik. The measured spatial resolutions were close, but still a bit above value the modelled perfor-
mance, based on the Cramér Rao analysis, possibly due to an estimation in the model. Using a high
FWC, large bit-depth, high framerate CCD image sensor in vacuum, penetrating 100 pm/√Hz resolu-
tion seems highly feasible. Further enhancing reslution by using a microscopic objective with 100-400x
enlargement, Rasnik should reach pm/√Hz resolution at large frequency range (from 0.01 Hz to several
hundred Hz) and with an arbitrary large dynamic range.

2.5. Future plans
High performance CCD-Rasnik The possibility of approaching pm/√Hz noise levels cause Rasnik
to be a promising GW sensor in different applications. However, before any application is made with
Rasnik for GW experiments, first it is planned to reach the pm/√Hz resolution in the laboratory. There-
fore, resolution and linearity experiments are planned for a Rasnik system in vacuum, with a high FWC,
high framerate, large bit-depth CCD image sensor, and a strong microscopic objective as lens.
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RasTilt: a tiltmeter for LF control One application of Rasnik as a displacement sensor is to use it
in a tiltmeter. This concept is called RasTilt. Tiltmeters complement accelerometers for low frequency
active feedback control of the suspensions in GW detectors. The readout sensors of tiltmeters under
study are often interferometers [44], which could reach pm/√Hz resolution, but are renown for com-
plicated alignment and are relatively expensive. Therefore, at the moment, as a tiltmeter readout a
Rasnik cannot surpass an interferometer in noise, but developing a tiltmeter with Rasniks would be
considerably simpler and cheaper.

Rasnik as Optical Lever for angular control Using a Rasnik system as Optical Lever for active
control of the mirror angular suspension modes is promising. With Rasnik resolution measured in this
research, angular measurements could already be done more than an order of magnitude preciser than
the Optical Levers currently employed at GW detectors, with nrad/√Hz over 2 m arm span. With higher
precision sensors angular control can be done more aggressively. Thus, when few pm/√Hz resolution
is reached, angular control can be done far more aggressively, lowering GW detector’s angular modes
noise at LF significantly.



3
The monolithic folded pendulum

accelerometer
As second generation GW interferometers have gained sensitivity and low-frequency detections, which
demand high precision feedback mechanisms, have become increasingly interesting, better perform-
ing custom made inertial sensors are under development, as the monolithic folded pendulum (FP)
accelerometer at Nikhef [2, 45].

The FP mechanical model was first proposed in 1993 by Blair et al. [46]. The geometry of this
model was a Watt-linkage, invented by James D Watt in 1873 [47]. By making a Watt-linkage under
gravitational restoring force, Blair et al. [46] invented the pendulum-anti-pendulum combination for LF
vibration isolation. Bertolini et al. [45] adjusted the invention to an inertial sensor, the mechanics of
which was carved out from a single piece of high-strength low-creep metallic alloy, reaching nanometer
rms noise integrated over a 0.01-150 Hz frequency band [45]. The mechanics of this device departed
from the Watt-linkage geometry by placing the legs closer to each other. This instrument is the first in
line of the FP accelerometers. Improvements have been made ever since, both to the mechanics and
to the readout. For instance, Acernese et al. [48] mapped the mechanics of the FP accelerometer with
the goal of making it attractive for in field applications.

In efforts to combine Virgo-style passive damping with LIGO-style active damping in the multi-stage
suspensions for Virgo upgrades and for the future Einstein Telescope, improvements to the FP ac-
celerometer led to the latest published results that show displacement sensitivities of up to 8 ⋅ 10
m/√Hz from 30 Hz and onwards [2]. However, such a figure is still a factor of 3 above the sensor’s
modelled performance and it can thus be improved even further.

A sizeable part of this research consisted in thoroughly investigating the thermal noise of the in-
strument’s mechanics, which limits sensitivity at low frequencies. After that, the accelerometer’s per-
formance was re-evaluated by testing it on the ultra-low vibration isolation platform available at the
institute [49].

Section 3.1 deliberates on the mechanics and operation principles of the accelerometer. Then, in Sec-
tion 3.2 thermal noise in the instrument from different damping mechanisms is evaluated by measuring
quality factors. A newly designed feedback actuator is modelled in Section 3.3 and the consequent
improvement with respect to thermal noise is discussed. The interferometer readout part is discussed
in Section 3.4, where also approaches to fully diminish laser intensity fluctuations are elaborated on,
in order to attempt to reach the shot noise limit. In Section 3.5 the accelerometer feedback loop is
characterized and final noise measurements at the vibration isolation platform are discussed.

3.1. Accelerometer mechanics
3.1.1. Mechanical model
A rough model to solve the kinematics of the FP accelerometer is sketched in Figure 3.1. A simple
pendulum of mass 𝑚 and length 𝑙 is connected via a massless rigid beam to an inverted pendulum

43
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Figure 3.1: Crude mechanical model of the ac-
celerometer, where the center of mass depends
on the pendulum masses.

𝑙1

𝑙2

𝑚1 𝑚2
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(IP), that suspends a mass 𝑚 with a leg of length 𝑙 . Both pendula arms are assumed massless and
rigid, and connected via flexures.

The restoring force on the pendulum is given by Hooke’s Law:

𝐹 = −𝑘𝑥 (3.1)

It is a sum of both the gravitational restoring force and the elastic restoring force from the flexures:
𝑘 = 𝑘 +𝑘 . As the flexures are very thin, the main restoring force is gravitational. From a small angle
approximation the gravitational spring constant is given as:

𝑘 = 𝑚 𝑔/𝑙 − 𝑚 𝑔/𝑙 (3.2)

and the natural frequency of the system follows from 𝜔 = √𝑘/𝑀, where 𝑀 = 𝑚 +𝑚 :

𝜔 = √𝑚 𝑔/𝑙 − 𝑚 𝑔/𝑙
𝑀 + 𝑘𝑀 (3.3)

Now it becomes clear that 𝑘 can be tuned to arbitrary low values by redistributing the center of mass
(COM) and leg lengths such that the first term in the square root nearly cancels the second. The
oscillator remains stable when:

𝑚 /𝑙 − 𝑚 /𝑙 ≥ −𝑘 /𝑔 (3.4)

which is in fact 𝑘 ≥ −𝑘 , or 𝑘 ≥ 0. This makes sense because a negative 𝑘 would result in a positive
- and thus non restoring - force in Equation (3.1), making the pendulum instable.

This model is a crude approximation of reality: it only validly describes a real FP when equivalent
masses and lengths are used to take into account themass distribution and themoment of inertia of both
pendula arms. A more accurate model is derived by Liu et al. [50] from the systems Lagrangian, taking
also into account the pendula arms’ masses and moments of inertia. The resulting natural frequency
of this model essentially says the same though: it can be tuned by redistributing weights between the
two pendula arms.

Next to the restoring force, viscous damping forces act on the proof mass. This damping is often
described as energy dissipation from collision with air molecules, hence the term viscous. But more
generally, it accounts for damping forces that are proportional and opposite to velocity:

𝐹 = −𝑐�̇� (3.5)

Equating the restoring force 𝐹 , the viscous force 𝐹 and a harmonic exciting force 𝐹 gives:

𝐹 = 𝐹 + 𝐹 + 𝐹 (3.6)

which results in the general equation of motion of a viscously damped oscillator:
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(a) The titanium accelerometer design

R
eg

u
la

r 
p

en
d

u
lu

m

In
ve

rt
ed

 p
en

d
u

lu
m

Proof mass

Tuning 
mass

Frame

(b) The aluminum accelerometer design

Figure 3.2: Mechanical design of the titanium and aluminum FP accelerometer.

𝑀 ̈𝑥 + 𝑘𝑥 + 𝑐 ̇𝑥 = 𝑓𝑒 (3.7)

where 𝑀 is the suspended mass, 𝑐 the velocity damping term, 𝑘 the spring stiffness and 𝜔 the angular
frequency of excitation.

Velocity damping is however not the only mechanism to damp an oscillator. Damping from internal
friction, or structural damping, in the suspension often becomes significant when the oscillator oper-
ates in vacuum. Internal friction causes the material to continue to stretch after its initial response to
an external force. From the application of external stress, the material spring regions are not stretched
elastically and do not follow Hooke’s Law: 𝐹 = −𝑘𝛿𝑥. It has become anelastic. The departure from
elastic stretching in a material causes dissipation of energy. To describe structural damping, an imagi-
nary term is added to the spring constant, resulting in a spring model where:

𝐹 = −𝑘(1 + 𝑖𝜙)𝛿𝑥 (3.8)

Here, 𝜙 is the structural loss angle, the degree of anelasticity of the spring material. 𝜙 is a measure
of the fraction of energy loss per cycle from internal friction. If the spring constant is now replaced as
𝑘 → 𝑘(1 + 𝑖𝜙) in the viscous equation of motion (Equation (3.7)), one finds the general equation of
motion of a viscously and structurally damped harmonic oscillator:

𝑀 ̈𝑥 + 𝑘(1 + 𝑖𝜙)𝑥 + 𝑐 ̇𝑥 = 𝑓𝑒 (3.9)

Mechanisms that induce viscous and structural damping are described in Section 3.2.1.

3.1.2. Material and design characteristics
The mechanical design of aluminum is comparable with that of the first FP accelerometer invented: the
proof mass is suspended from the IP leg, and the IP leg is suspended from the frame, see Figure ??.
The IP flexures are thus under tension, like the regular pendulum ones. However, frequency modes
resulting from this design, between 𝑓 = 80 - 100 Hz, were distorting the response of the accelerometer
in closed-loop and limiting the achievable gain of the control [2]. For that reason, a new design was
conceived that reduced the arms’ masses, increasing their natural frequencies, which would result in
an extended operable bandwidth for the feedback loop. This was mainly achieved by replacing the IP
arm with an arm equal to the regular pendulum arm, but with flexures under compression (see Figure
3.2a).

Besides, the new design was fabricated from titanium. As the resistivity of titanium is about 36
times less than the resistivity of aluminum, it was originally conjectured that using this material would
diminish eddy current damping (a damping effect that results from local current rings being generated
in a metal due to a moving magnet nearby. This phenomenon is more extensively discussed in Section
3.2.1). However, from Section 3.3.4 it will become clear that a main advantage of the titanium design
is that its proof mass is heavier, as the material is denser than aluminum.

Both FP accelerometers are suspended via four pairs of co-axial flex joints. The instruments are
carved out of a single block of metal. This is done to avoid shear effects at contact surfaces of sep-
arate materials, possibly generating hysteresis and structural energy dissipation [45]. The monolithic
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Table 3.1: Material and design parameters

Parameter Symbol Titanium Aluminum
Ti6Al4V AW7075-T6

Naked natural frequency 𝑓 0.42 Hz 0.47 Hz
Proof mass 𝑀proof 0.68 kg 0.5 kg

Pendulum leg mass 𝑚 0.005 kg 0.004/0.012 kg
Pendulum leg length 𝑙 50 mm 60/65 mm

Flexure length 𝑙 3.3 mm 4.5 mm
Flexure width 𝑤 6 mm 8.8 mm
Flexure thickness 𝑡 0.08 mm 0.1 mm

Density 𝜌 4400 kg m 2620 kg m
Youngs modulus 𝐸 113 ⋅ 10 kg m s 71 ⋅ 10 kg m s
Spec. heat cap. (volumetric) 𝑐 2.5 ⋅ 10 J m K 2.3 ⋅ 10 J m K
Electrical resistivity 𝜌 1.71 ⋅ 10 Ω m 5.22 ⋅ 10 Ω m
Thermal conductivity 𝜅 7.2 W m K 116 W m K
Lin. coeff. of thermal expansion 𝛼 8.9 ⋅ 10 K 2.2 ⋅ 10 K

design and machining also results in lower thermal sensitivity and reduced directional cross-talk due
to misalignments between mechanical components typical in composite structures [45].

Mechanical design and material characteristics of the titanium and aluminum accelerometer are
listed in Table 3.1. The effective proof mass used for calculations on both accelerometers is approached
as 𝑀 = 𝑀proof +𝑚added +𝑚 /2, and the effective pendulum leg lenght as 𝑙 = 𝑙 + 𝑙 /2.

3.2. Thermal noise and the quality factor
3.2.1. The quality factor
An important property of a pendulum is its quality factor 𝑄. This property is associated with energy
dissipation mechanisms that damp the pendulum. 𝑄 is defined as the ratio between the energy stored
in the resonator and the energy lost during one full oscillation. This means that a high 𝑄 oscillator loses
a small amount of energy per cycle, and consequently dies out with a long decay time. The relationship
between 𝑄 and the decay time 𝜏 is given as [18]:

𝑄 = 𝜔
2 𝜏 (3.10)

The total quality factor is related to viscous and structural 𝑄 as:

1
𝑄 = 1

𝑄 + 1
𝑄 (3.11)

where 𝑄 is related to the viscous damping coefficient in Equation (3.5) by [18]:

𝑄 = 𝑀𝜔
𝑐 (3.12)

Damping forces that result in the viscous quality factor are drag, squeezed film damping, eddy current
damping and electromagnetic induction damping. Drag is the resistance from air due to gas molecules
colliding with the moving object. Squeezed film damping is caused by energy dissipating air flows cre-
ated when the gap between two parallel plates is reduced, and the gas inside the film is squeezed
[51]. Eddy currents are local current loops, induced in a conductive material when a magnet is moving
nearby. Kinetic energy is used for this and consequently damping occurs. Electromagnetic induction
damping arises inside a voice coil, where the moving magnet induces currents that acquire energy to
push through the resistance of the coil windings, dissipating kinetic energy of the pendulum.

In Section 3.1.1 it is described that there are two restoring forces acting on a swinging pendulum:
the gravitational force and the elastic force. Energy dissipation from these forces solely results from
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the departure of the spring material from elastic stretching: anelasticity. Gravity, on the other hand,
is lossless. The ratio between elastic energy, being partially dissipated, and the total energy in the
system, is the dilution factor [52]:

𝛾 = 𝐸
𝐸 + 𝐸 (3.13)

which can be equivalently expressed in spring constants 𝑘, to which energy relates linearly. The quality
factor of a structurally damped pendulum is the inverse of the structural loss angle 𝜙 times the dilution
factor [52]:

𝑄 = 1
𝜙
𝑘 + 𝑘

𝑘 (3.14)

and the total spring constant is 𝑘 + 𝑘 = 𝑀𝜔 , so:

𝑄 = 1
𝜙
𝑀𝜔
𝑘 (3.15)

Straightforwardly, the dilution factor is thus expressed as:

𝛾 = 𝑘
𝑀𝜔 (3.16)

The elastic stiffness 𝑘 of the FP is the sum of the rotational stiffness of all 8 flexures of length 𝑙 ,
divided by the squared effective pendulum leg length 𝑙:

𝑘 = 8𝐸𝐼𝑙
1
𝑙 (3.17)

where 𝐸 is Youngs modulus and 𝐼 the cross-sectional moment of inertia of the flexure:

𝐼 = 𝑤𝑡
12 (3.18)

with 𝑤 and 𝑡 the width and thickness of the flexure. Plugging this into Equation (3.17) provides the total
elastic stiffness of the FP:

𝑘 = 2𝐸𝑤𝑡
3𝑙

1
𝑙 (3.19)

The elastic spring constant thus scales with flexure thickness to the third power. And the smaller the
elastic damping constant becomes, the higher Q will be (see Equation (3.15)), providing the reason to
aim for thinnest flexures possible. The thickness 𝑡 of the flexure is limited by two factors: the machining
capabilities and the material strength. The two ’newest’ FP accelerometers used in this research are
limited by machining capabilities.

Thermo-elastic damping Among the causes of internal friction damping, most of which are con-
nected to the dynamics of the dislocations in the crystalline structure at microscopic level [53], only one
is determined by material properties: thermal-elastic damping. Thermo-elastic (TE) damping occurs in
flexures when they are bend, compressing the side of the flexure to witch the bending is directed, and
stretching the other side. A flow of heat is generated as the compressed side heats and the stretched
side cools, in order to restore equilibrium in the flexure. This reduces the elastic restoring force as this
force relaxes to a smaller equilibrium value [54]. The Standard anelastic solid model of Zener describes
a relaxation process that predicts a frequency dependent loss angle 𝜙 as [53]:

𝜙 = Δ 𝜔𝜏
1 + 𝜔 𝜏 (3.20)

Δ the relaxation strength and 𝜏 the relaxation time of the flexure. The latter is defined as:
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Table 3.2: Modelled dilution factors and thermo-elastic damping parameters for the FP accelerometers.

Parameter Symbol Titanium Aluminum

Dilution factor 𝛾 1.3 1.7
TE loss angle 𝜙 1.2 ⋅ 10 4.6 ⋅ 10
TE quality factor 𝑄 6.7 ⋅ 10 1.3 ⋅ 10

𝜏 = 1
2𝜋𝑓 (3.21)

where 𝑓 is the characteristic frequency of a flexure, for a ribbon geometry given by [54]:

𝑓 = 𝜋
2
𝐷
𝑡 (3.22)

with 𝑡 flexure thickness and 𝐷 the diffusion constant, 𝐷 = 𝜅/𝑐 , the ratio between thermal conductivity
and specific heat (per unit volume). The relaxation strength of TE damping is given as [53]:

Δ = 𝐸𝛼 𝑇
𝑐 (3.23)

where 𝛼 is the linear coefficient of thermal expansion and 𝑇 the (room) temperature in K. With all
parameters as listed in Table 3.1 the loss angle from TE damping is determined for the flexures in the
titanium and aluminum FP accelerometers. The 𝑄 from TE damping is calculated by plugging Equation
(3.23) and Equation (3.21) into Equation (3.20), at 𝜔 = 𝜔 . The dilution factors are also calculated by
inserting Equation (3.19) into Equation (3.16). The results are listed in Table 3.2. Despite having larger
proof mass, the titanium dilution factor is smaller because its flexures are both thinner and smaller.

The modelled TE quality factors are part of the total structural damping picture, to which many other
factors contribute:

1
𝑄 = 1

𝑄 + 1
𝑄 (3.24)

Therefore, having calculated 𝑄 , only the upper limit of the total quality factor is determined.

3.2.2. Thermal noise
In a viscously damped pendulum system, the random Brownian motion of the thermal bath of molecules
around the test mass create a fundamental limit to which the suspended mass can remain at rest. This
noise limit is called thermal noise. The particles exert a macroscopic force on the test mass given as
[54]:

𝐹 = √4𝑘 𝑇𝑐 (3.25)

with 𝑘 the Boltzmann constant. Adding this force to the viscous equation of motion (Equation (3.7)),
and solving in Fourier space, yields a power spectrum of the noise as [2, 54]:

𝑥 (𝜔) = 𝑘 𝑇𝑐
𝑀 (𝜔 − 𝜔 ) + 𝜔 𝑐 (3.26)

However, according to the fluctutation-dissipation theorem, any dissipation in a system always result
to Brownian like fluctuations [54, 55]. Therefore, the structural thermal noise force can be described
as:

𝐹 = √4𝑘 𝑇𝑘𝜙𝜔 (3.27)

Adding this force to the structural equation of motion, Equation (3.9) with 𝑐 = , the power spectral
density of structural thermal noise is obtained, again by solving in Fourier space [54]:
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Figure 3.3: Experimental setup to measure decay times of the accelerometer, as viewed from above. On the left side the proof
mass is actuated by a parallel plate capacitor, resulting in an oscillating flag on the right side, blocking light to each element of
the PD in turns.

𝑥 (𝜔) = 4𝑘 𝑇𝜔 𝜙
𝑀𝜔((𝜔 − 𝜔 ) + 𝜔 𝜙 ) (3.28)

3.2.3. Q of an aluminum and titanium accelerometer at varying pressure
In order to characterize the mechanics of the titanium and aluminum accelerometers, the quality factor
of both is measured when in naked configuration. ”Naked” means that there is nothing attached to
the proof mass that might introduce additional losses. The accelerometers’ natural frequencies are
tuned upwards in order to move away from the micro-seismic peak at about 𝑓 = 0.2 Hz. The titanium
accelerometer’s natural frequency is tuned up to 𝑓 = 0.86Hz, and the aluminum is tuned up to 𝑓 = 0.72
Hz.
Proof mass actuation is depicted schematically on the left hand side of Figure 3.3. The proof mass was
actuated by means of a parallel plate capacitor driven by a high voltage amplifier. The HV amplifier
output was the sum of a DC bias 𝑉 = 200 V and of a sinewave signal �̃� = 𝑉 sin(2𝜋𝑓 𝑡), with frequency
𝑓 close to the resonance of the accelerometer. In this way the force from the actuator included a term
𝐹 linear with respect to 𝑉 according to:

𝐹 ∼ 𝜖𝑆𝑉𝑑 𝑉 sin(2𝜋𝑓 𝑡) (3.29)

where 𝜖 is the electrical permittivity, 𝑆 the plates’ surface and and 𝑑 the distance between the plates.
An AC signal from a function generator was delivered to the HV amplifier at frequencies around 𝑓 .

It varied in strength, because at around 𝑃 = 1 mbar the circumstances are convenient for electrons
to discharge through the air. In this region the breakdown voltage for charge to cross the capacitor
becomes lower [56]. Thus to evade breakdown, lower voltages needed to be applied.

A flag wasmounted to the proof mass of the accelerometer and its position was read out bymeans of
a shadow sensor consisting of a laser and a two-elements photodiode (PD). Each element was loaded
with a 5 kΩ resistor to convert the photocurrent to voltage. In a signal pre-amplifier (SR560), the two
signals from the two-elements PD were band-passed at 𝑓 = 0.3 - 3 Hz and subtracted by means of a
differential pre-amplifier (SR560), providing the signal used for decay time measurements.
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Figure 3.4: A noisy decay time measurement.
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The measurements were performed in different pressure regions to verify different damping contri-
butions. The low pressure region (𝑃 < 10 mbar) is most relevant since the accelerometer is meant to
be used in high vacuum. To measure Q at different pressures, the accelerometer is placed in a vacuum
chamber in which the pressure can be changed from 1 atm to 10 mbar.

The first decay time measurements in high vacuum were noisy, see Figure 3.4. The accelerometers
have high 𝑄, meaning that seismic vibrations are easily transferred to proof mass motion in the vicinity
of the natural frequency. The proof mass was thus getting small kicks from the environment, extending
the decay time.

To better reject environmental disturbances at the accelerometer resonance, a different readout
scheme was used, where a Lock-In Amplifier (SR830) synchronized the function generator signal (driv-
ing the actuator) with the output signal, as retrieved from the PDs via the signal amplifier. The amplitude
of the output signal at the phase of the function generator (𝑓 ) is tracked, thereby curtailing the effect of
seismic noise at frequencies away from 𝑓 . The driving frequency is different from the natural frequency
of the signal 𝑓 , and so the Lock-In provides an oscillating signal at a frequency of 𝑓 minus 𝑓 . The
decay of the peaks is the decay of the accelerometer signal amplitude.

Data from the Lock-In Amplifier is taken for up to 1 hour at low pressure regions. In regions above
10 mbar, the decay time is so small that it is not worthwhile to track amplitudes with the Lock-In.
Here, the signal used for the 𝜏-measurement came directly from the signal amplifier. Both approaches
display harmonic decaying sine-waves (note, though, that the frequency of the data from the Lock-In
is not the natural frequency of the accelerometer), from which the decay time 𝜏 is evaluated by fitting
both an amplitude envelope and a harmonic sine to the data. The mean of these two fits is taken as
the result for 𝜏. The 𝜎’s of both fitting methods are typically less than 0.5%. Two examples of such
measurements are depicted in figure 3.5.

Having measured 𝜏, 𝑄 can be calculated from Equation (3.10). Although the errors of the fits of a
measurements might be small, the results of quality factor measurements can vary largely, especially
in the low pressure region (up to about 40%). This is because the measurements were performed in a
noisy environment, where the oscillating proof mass could still pick up energy from the shaking ground,
despite using the Lock-In Amplifier to reject environmental disturbances. A quieter experimental envi-
ronment would have improved the accuracy of this measurement, but was not at disposal. Therefore,
multiple 𝑄 measurements were required for one pressure point in order to obtain statistically substan-
tiated data. In the low pressure region of 𝑃 < 10 mbar, about 5 measurements per datapoint were
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Figure 3.5: Decay time measurements of titanium. (a) At . ⋅ mbar, where the Lock-In Amplifier was used and (b) at
. mbar where the signal was read out directly. Errors on both fits are less than 0.5%.
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Figure 3.6: The quality factor of both the titanium and aluminum accelerometer in naked configuration. Below mbar
is determined not to vary significantly, and is solely a result of internal friction mechanisms. In the intermediate area is

dictated by structural damping and increasingly viscous damping, at increasing . In the high pressure region the quality factor
is a consequence of drag and squeezed film damping.

Table 3.3: Quality factors and loss angles at low pressure (below mbar).

Parameter Symbol Titanium Aluminum

Quality factor 𝑄 6900(2200) 6900(1000)
Loss angle 𝜙 ∼ 1.1 ⋅ 10 ∼ 8.5 ⋅ 10
Measurements # 19 4

taken. As only acceleration could be injected into the accelerometer by the ground (no deceleration),
these 𝑄’s are regarded upper limits of the true quality factors. The results of the naked configuration
quality factor experiment are displayed in Figure 3.6.

At low pressure, air molecules creating viscous forces are absent, and only structural damping occurs.
This reference measurement estimates the ultimate limit that could be reached with the two devices.
The averaged quality factors are displayed in Table 3.3, showing large statistical spread: both lie within
each others regions of error. The loss angles 𝜙 differ for both accelerometers, due to different dilution
factors 𝛾, see Table 3.2 in Section 3.2.1.

In the intermediate region, at about 10 < 𝑃 < 1 mbar, the mean free paths of the air molecules
become increasingly smaller than the gap between the pendulum leg and frame, allowing more air to
enter this gap. As the velocity of the molecules (which cause viscous damping) increases quadratically
with the pressure, the quality factor falls of with a straight line in the logarithmic scale of Figure 3.6.

From about 𝑃 = 10 mbar the quality factor hardly reduces from higher pressures. Besides, in
the viscously damped regimes, at intermediate and high pressure, the aluminum accelerometer shows
lower 𝑄’s than titanium. This is explained by the fact that the IP design of the aluminum accelerom-
eter has more surface that moves to and from the frame and proof mass, resulting in more drag and
squeezed film damping. Possibly, also the lower natural frequency of the aluminum accelerometer is
partly responsible for this difference.

3.2.4. Tests with the old design feedback actuator
In naked configuration the quality factor of both accelerometers was estimated at 𝑄 ≈ 6900, see Table
3.3. Subsequently, the feedback actuator that actuates the proof mass in closed loop was mounted to
the accelerometer, in order to investigate to what extent this would lower the quality factor.
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(a) The old feedback actuator design, with the coil mounted to the
proof mass. The dark blue shape surrounding the coil displays the
ferromagnetic case.

Frame

Proof mass

Mag
net

AC

Mag
net

Coil

N N SS

(b) The new feedback actuator design, with the coil mounted to
the frame. The magnets lay in a case, inserted from from outside
and kept in place with a screw cap.

Figure 3.7: Two designs for the feedback actuator actuator.

The feedback actuator at disposal was the same as the feedback actuator used in previous re-
search [2]. This feedback actuator consisted of a magne, mounted to the frame of the accelerometer,
and a coil surrounding the magnet, mounted to the moving proof mass, see Figure 3.7a. Next to that,
a ferromagnetic iron yoke surrounded the magnet and coil, guiding the magnetic field flux in such a
way that the field was perpendicular to the coil in the gap between the magnet and yoke, making the
actuator very linear over a large position range. The yoke had the secondary effect of containing the
magnetic flux, reducing the effect of eddy current damping. The coil was made from a 50 𝜇m diameter
wire, with the goal of reducing the stiffness of the connection between frame and the proof mass.

Previous research, using this feedback actuator configuration with a similar accelerometer, measured
a quality factor as low as 𝑄 = 40 in high vacuum [2]. Two factors were suspected that could have been
responsible for this low 𝑄: eddy current damping and rubbing of coil lead wire against surfaces within
the coil case.

For the titanium accelerometer, the extent of eddy current damping is inspected by measuring 𝑄 with
the feedback actuator mounted, but without the coil attached (and thus no lead wire rubbing). For this
measurement the titanium accelerometer was used at low pressure. The quality factor measured was
about 𝑄 = 1.09(4)⋅10 , which is comparable with the naked configuration quality factor measurements.
Thus, the titanium accelerometer did not show eddy current damping as expected.

Subsequently, the effect of lead wire rubbing was researched by simply mounting the complete
feedback actuator to the titanium accelerometer. The measurement showed that with the full feedback
actuator mounted, the quality factor of the titanium accelerometer again was as low as 𝑄 = 58. That is
a reduction of about 115 times compared with average 𝑄 values measured in naked configuration. As
eddy currents had an insignificant damping effect for the titanium accelerometer, this damping could
only arise from lead wire rubbing. To conclude, the lead wires rubbing on the feedback actuator case
were responsible for the vastly reduced 𝑄.

3.3. Design of a new voice coil to increase Q
In order to evade lead wire rubbing from the voice coil, a new feedback actuator was designed at Nikhef,
which does not have the coil attached to themoving proof mass, but to the frame. This design is pictured
in Figure 3.7b. A second permanent magnet with opposite polarity was placed at the opposite coil edge
(see Figure 3.8). The advantages of this configuration are twofold:

• Looking at this configuration from a nearby perspective, the second magnet of equal strength
approximately doubles the coil’s force.

• Moreover, looking from faraway, the two oppositely oriented magnets cancel each other out. They
form a magnetic dipole-dipole couple that can be considered analogous to the Helmholtz Anti-
Coil, which are two equal rings on a shared axis with current flowing in opposite directions [57].
This moment translates into magnetic field terms that depend on 𝑑 and 𝑟 as BBB ∝ 𝑑 𝑟 , whereas
that of a magnetic dipole asBBB ∝ 𝑟 [58]. Thus, the relatively small distance between themagnets
(𝑑 ≪ 𝑟) leads to a substantial reduction of the magnetic field as compared with the field coming
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Figure 3.8: Sketch of the coil and two oppositely aligned magnets. The radial magnetic field of the coil couples on the magnet
edge ( ) where hypothetical current flows, to generate a Lorentz force . The distance between magnet and coil is denoted
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from a one-magnet dipole. Nonetheless, the fields do not cancel out each other entirely, so
magnetic coupling with environmental stray fields, however small, might still be possible. The
extent of this effect is not researched and is recommended to be studied in future experiments.

These advantages led to the effort to model and design a new feedback actuator. In the following
section the force of the feedback actuator is calculated and the optimal distance between the coil and
the magnets is determined. Subsequently, the physical properties of the new feedback actuator are
mapped in Section 3.3.2, and the force requirement of the feedback actuator is described in 3.3.3. A
disadvantage of the reversed construction is that the magnets are not surrounded by a ferromagnetic
case that absorbs the 𝐵 field, and diminishes eddy current effects. Therefore, the extent of damping
from eddy currents is investigated experimentally, see Section 3.3.4, and it was determined that it does
not significantly deteriorate 𝑄 for both the titanium and aluminum accelerometer. Finally, in 3.3.5 the
mechanical improvement of this design as compared with the old feedback actuator is specified, and
the implications of this improvement for the thermal noise of the accelerometer are interpreted.

3.3.1. A model to calculate the force of the feedback actuator
In the situation depicted in Figure 3.8, the two magnets have equal dimensions and are placed at equal
distance from the coil center, making the system symmetric around the center of the coil. In this ap-
proach, both the coil and magnet are represented as a collection of current loops. This unconventional
approach takes advantage of the fact that the magnet can be represented as a collection of magnetic
dipole moments, generating a net hypothetical current loop around the magnet. Here, the radial com-
ponent of the magnetic field from the coil, 𝐵 (𝑧, 𝑟), is regarded as the magnetic field generator. In
this situation, 𝐵(𝑧 , 𝑅 ) is to be calculated because the radial field acts on the edge of the magnet
(𝑟 = 𝑅 ), and the magnet is located at 𝑧 = 𝑧 . The current loop of the magnet with current 𝐼 on which
𝐵 (𝑧 , 𝑅 ) acts is considered the field receptor. The Lorentz force from the coil acting on the magnet
is:

𝐹 (𝑧 ) = 𝐵 (𝑧 , 𝑅 ) ⋅ 𝐼 ⋅ (2𝜋𝑅 ) (3.30)

This equation denotes an axial force that is variable with the distance between the coil and the magnet
(and, of course, the physical parameters of the coil and magnets). In order to calculate 𝐹 (𝑧 ), first,
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the radial magnetic field of the coil 𝐵 (𝑧, 𝑟) is resolved, and secondly, the current 𝐼 around a magnet
is calculated.

To calculate 𝐵 (𝑧, 𝑟), the off-axis radial field of a single loop is first defined. Then, this field is integrated
over the length 𝐿 and thickness Δ𝑅 of the coil, resulting in the total field from a solenoid.

The radial magnetic field in any point P generated by a loop of radius 𝑅 is calculated by the use of
the Biot-Savart law:

BBB(rrr) = ∮ 𝜇 𝐼
4𝜋|rrr−RRR| 𝑑𝑙𝑙𝑙 × (rrr−RRR) (3.31)

Here, the loop is centered at the 𝑧 plane, and a line element 𝑑𝑙𝑙𝑙 on the ring is connected to P by the
vector rrr −RRR. The magnetic field on the 𝑧 axis is straightforward to derive due to symmetry concerns,
but also the fields in off-axis points P are determinable, and these are desired for this problem. To
determine off-axis values of BBB(rrr), first note that the radial component of the vector 𝑑𝑙𝑙𝑙 × (rrr−RRR) is given
by:

𝑑𝑙𝑙𝑙 × (rrr−RRR)| = (𝑧 − 𝑧 )𝑅 cos𝜑𝑑𝜑 (3.32)

where 𝜑 is the azimuthal difference between RRR and rrr. Moreover, 𝑅 is the radial component of RRR - the
radius of the coil - and 𝑅𝑑𝜑 = 𝑑𝑙. Furthermore, the norm of the vector rrr−RRR is given by:

|rrr−RRR| = 𝑅 + 𝑟 + (𝑧 − 𝑧 ) − 2𝑟𝑅 cos𝜑 (3.33)

And like 𝑅, 𝑟 is the radial component of rrr. Filling Equations (3.32) and (3.33) in the Biot-Savart integral
(Equation (3.31)), the following is obtained:

𝐵 (𝑧, 𝑟) = 𝜇 𝐼(𝑧 − 𝑧 )𝑅
4𝜋 ∫ cos𝜑

[𝑅 + 𝑟 + (𝑧 − 𝑧 ) − 2𝑟𝑅 cos𝜑]
𝑑𝜑 (3.34)

This integral can be expressed as a combination of complete elliptic integrals of the first and second
kind, 𝐾(𝑥) and 𝐸(𝑥) respectively.1 This provides the final expression for the off-axis radial magnetic
field from a current loop:

𝐵 (𝑧, 𝑟) = −𝜇 𝐼(𝑧 − 𝑧 )
2𝜋√𝐶

[𝐾(𝜋𝑟𝑅𝐶 ) − 𝐵𝐴𝐸(
𝜋𝑟𝑅
𝐶 )] (3.35)

Where

• 𝐴 = (𝑅 − 𝑟) + (𝑧 − 𝑧 )

• 𝐵 = 𝑅 + 𝑟 + (𝑧 − 𝑧 )

• 𝐶 = (𝑅 + 𝑟) + (𝑧 − 𝑧 )

The derivation of Equation (3.35) from (3.34) is portrayed by Babic and Akyel [59]. Equation (3.35)
describes the off-axis radial 𝐵 field generated by a single current ring. To find the total field from a
complete coil with N windings, length 𝐿 and thickness Δ𝑅 = 𝑅 − 𝑅 , consider an infinitesimal
current element 𝑑𝐼 going through a surface element 𝑑𝑧 𝑑𝑟 in the coil:

𝑑𝐼 = 𝑁𝐼 𝑑𝑧𝐿
𝑑𝑟
Δ𝑅 (3.36)

Where 𝑑𝑧 and 𝑑𝑅 are integration variables corresponding respectively to variables 𝑧 and 𝑅 from
Equation (3.35). The current element generates an infinitesimal radial field 𝑑𝐵 (𝑧, 𝑟). Integrating this
over the coil dimensions gives:

𝐵 (𝑧, 𝑟) = 𝑁𝐼
𝐿 Δ𝑅 ∫ ∫ 𝐵 (𝑧, 𝑟)𝑑𝑅 𝑑𝑧 (3.37)

1 ( ) ∫
√ sin

and ( ) ∫ √ sin
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Figure 3.9: Radial field from the coil as a func-
tion of axial distance and radial distance . The
black rectangle represents the coil (intersected).
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After substituting all parameters and variables and setting correct boundaries, the final expression
becomes rather large and complex:

𝐵 (𝑧, 𝑟) = 𝜇 𝑁𝐼
2𝜋𝑟𝐿 Δ𝑅 ∫ ∫ (𝑧 − 𝑧 )

√𝐶
[𝐾(𝜋𝑟𝑅𝐶 ) − 𝐵𝐴𝐸(

𝜋𝑟𝑅
𝐶 )]𝑑𝑅 𝑑𝑧 (3.38)

which is best solved using numerical methods. This is done in Python by the use of the ellipE and ellipK
packages from scipy.special, and the multiple quad packages from scipy.integrate. The dimensions of
the new feedback actuator are displayed in table 3.4a. The result of the modelled radial magnetic field
is displayed in a colour scale plot of 𝐵 (𝑧, 𝑟) in Figure 3.9. 𝐵 (𝑧, 𝑟) can now be substituted into Equation
(3.30), with 𝑟 = 𝑅 and 𝑧 = 𝑧 .

Finally, 𝐼 - representing the theoretical current of the magnet - needs to be determined for solving
Equation (3.30). This is done by acknowledging the equivalence of a permanent magnet with magnetic
dipole moment mmm = BBB VVV and a current loop with dipole moment mmm = 𝐼AAA [57]. Equating the two
and solving for 𝐼 yields a hypothetical magnetic current of:

𝐼 = 𝐵 𝐿
𝜇 (3.39)

With 𝐵 the magnetic remanence of the magnet, 𝜇 the magnetic permeability in vacuum and 𝐿 the
magnet length. This, however, only represents a current around a magnet at one location 𝑧. To find
the total force acting on the magnet it is necessary to integrate 𝐹 (𝑧 ) along its length 𝐿 . Accordingly,
consider an infinitesimal part of the current along the length of a magnet:

𝑑𝐼 = 𝐵
𝜇 𝑑𝑙 (3.40)

If the magnet is centered at 𝑧 = 𝑧 , Equation (3.40) results in an infinitesimal force element 𝑑𝐹 (𝑧 ).
Then, plugging this into Equation (3.30) and integrating over the length of the magnet yields the final
formula for the force:

𝐹 (𝑧 ) = 𝐵
𝜇 (2𝜋𝑅 )∫ 𝐵 (𝑧 , 𝑅 )𝑑𝑧 (3.41)

which is actually a triple integral as 𝐵 (𝑧 , 𝑅 ) is a double integral itself (see Equation (3.38)). From
Equations (3.38) and (3.41) it is seen that 𝐹 changes linearly with varying 𝐼 . For a coil and magnet with
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Table 3.4: Parameters used for modelling the axial force from a coil on a magnet.

(a) Coil parameters

Parameter Symbol Value

Length 𝐿 6 mm
Inner radius 𝑅 4.6 mm
Outer radius 𝑅 9.6 mm
Windings 𝑁 506
Current 𝐼 1 mA

(b) Magnet parameters

Parameter Symbol Value

Length 𝐿 5 mm
Radius 𝑅 2.5 mm
Inter-magnet distance 2𝑧 8 mm
Magnetic remancence 𝐵 1.32-1.37 Ta

aMagnet made of NdFeB, Article ID: S-05-05-N
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Figure 3.10: Lorentz force from the coil centered
at mm on a single magnet at varying posi-
tions .

parameters listed in Table 3.4, this equation gives a concluding value for a Lorentz force at a specified
coil-magnet distance 𝑧 .

Now that the force acting on the magnet is modelled, the optimal distance between the coil and one
magnet can be specified. This is done by calculating 𝐹 (𝑧 ) for an array of 𝑧 values. The result of
this calculation is depicted in Figure 3.10.

Figure 3.10 displays a clear optimum. The maximal force is 4.98 mN at a optimal magnet distance
of 𝑧 = 4.32 mm. In the maximum region, force scales approximately linear with distance 𝑧 , which
is a requirement for a linearly actuating voice coil. Therefore, it is important that the magnet is located
near this maximum. In the design of the new feedback actuator magnets are placed in a hollow tube,
and they can be separated from each other with cylindrical fillings with the same radius 𝑅 . In this
way, by customizing filling sizes, the magnets can be placed at desired locations. In the first such
arrangement 𝑧 = 4 mm, and the force on one magnet is calculated to be 𝐹 (𝑧 = 4) = 4.97 mN. This
is 0.2% away from the maximum. However, the linearity of the total system with two magnets should
be regarded. There, magnet 2 displays a similar force profile as magnet 1 (presented in Figure 3.10),
but then inverted due to its opposite orientation. The total force is calculated by translating this plot to
the location of magnet 1 (thus 2𝑧 = 8mm to the right) and summing it with the force of magnet 1. The
total feedback actuator force profile around 𝑧 = 4 mm is depicted in Figure 3.11. It has a maximum
of 𝐹 = 9.94 mN from a current of 𝐼 = 10 mA, thus the systems modelled force response is 0.994 N/A.

The accelerometer design allows the magnets to displace maximally with a distance of 0.5 mm in
either direction. With such a displacement, the force changes maximally with 1.6%, see Figure 3.11.
However, when the feedback actuator is operated in a closed loop, this order of deviation would never
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Figure 3.11: Force linearity of the two-magnet
feedback actuator when the magnets are 8 mm
apart. is the distance variable along which the
center point of the two magnets moves with re-
spect to the coil center. cannot be more than
0.5 mm away from the calibration point, due to
the mechanical design of the accelerometer.
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occur - then displacement is in the order nanometers, see Section 3.5.1, resulting in insignificant force
deviations. To conclude, the novel feedback actuator is modelled to generate a force of 9.94 mN. And,
more importantly, it is modelled to behave as a linear actuator in magnet movement along 𝑧.

In this model, the optimal distance between the coil and magnet is calculated. To maximize the new
feedback actuator’s performance it is recommended that this model is extended with an optimization
procedure that incorporates also other physical parameters of the coil and the magnet. A new design
of the feedback actuator, based on the calculated optimal parameters can be created. Moreover, it is
recommended that the effect of stray magnetic fields on the new feedback actuator are investigated.
As the magnets are oppositely aligned this effect is expected to be insignificant, but the extent to which
the accelerometer couples with stray magnetic fields should nonetheless be mapped in order to prove
the effect indeed is negligible.

3.3.2. Physical properties of the feedback actuator
Pictures of the novel feedback actuator are displayed in Figure 3.12. The feedback actuator is mod-
elled to generate a force of 𝐹/𝐼 = 0.994 N/A. In order to verify this model with experiment, the force
output of the feedback actuator was mounted to a scale with double sided scotch and the tube with
magnets was placed inside it, being kept in place with a tripod. The tube was placed at such a height
that the magnets were at same distance from the coil center as when the feedback actuator is mounted
horizontally to an accelerometer, namely 4 mm. Then, the coil was driven at increasing current, ranging
from 0 to 10 mA, pushing the coil downwards, away from the immovable tube with magnets. The scale
depicted increasing weights as output, which were multiplied with 𝑔 to find the force. Then, at 𝐼 = 10
mA the scale was gauged at 0. Now current input was decreased from 𝐼 = 10 to 0 mA, and the scale
displayed increasingly negative weights. The results of this measurement are shown in Figure 3.3.2.
Looking at Figure 3.3.2 it is immediately seen that the 𝐹/𝐼 slope modelled in Section 3.3.1 intersects
the errorbars of the measurements, proving the correctness of the model.

What is more, other physical parameters of the feedback actuator can be measured and calculated.
Start with the feedback actuator’s resistance. The wire of the coil is made from copper, with 𝜌 =
1.7 ⋅ 10 Ωm. Its radius is 𝑟 = 0.1 mm and its length is approximately 2𝜋𝑁 times the mean radius
of the coil 𝑅 + Δ𝑅 /2. Filling in gives 𝑙 = 22.6 m. Now the total resistance can be calculated:

𝑅 =
𝜌 𝑙
𝜋𝑅 (3.42)
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(a) The magnet holder is outside the coil (b) The magnet holder is inside the coil

Figure 3.12: Pictures of the new feedback actuator. Here, the feedback actuator is displayed laying horizontally, but it is mounted
to the accelerometer vertically.
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Figure 3.13: Measured force generated by the
feedback actuator driven at varying current .
The measurements’ error bars fall within the
modelled / slope, calculated in Section 3.3.1.
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Table 3.5: Measured and calculated properties of the coil in the feedback actuator

Parameter Symbol Measured Calculated

Resistance 𝑅 11.7 Ω 12.2 Ω
Inductance 𝐿 2.8 mH 3.6 mH
Impedance |𝑍(𝜔 = 628)| 11.9 Ω 12.4 Ω

which yields a resistance of 𝑅 = 12.2 Ω. Next, the inductance of the coil is of importance. This can be
calculated by using

𝐿 = 𝑁Φ
𝐼 (3.43)

and plugging in

Φ = 𝐵𝐴 𝐵 = (𝜇 𝑁𝐼
𝐿 ) (3.44)

where 𝐴 = 𝜋𝑅 is the surface of a slice inside the coil. The 𝐵 field is calculated from Ampere’s Law.
Plugging Equation (3.44) in (3.43) results finally in:

𝐿 = 𝜇 𝑁
𝑙 (𝜋𝑅 ) (3.45)

Inserting all values yields an inductance of 𝐿 = 3.6 mH. Now, with the resistance and inductance
calculated, the impedance of the system is also known through:

𝑍(𝜔) = 𝑅 + 𝑖𝜔𝐿 (3.46)

being a complex function of 𝜔, the angular AC frequency through the coil. The real part of 𝑍(𝜔) is the
resistance 𝑅 and the imaginary part, 𝜔𝐿, is called the reactance. The absolute value of 𝑍(𝜔) at for
instance 𝜔 = 628 Hz (𝑓 = 100 Hz) is |𝑍(628)| = 12.4 Ω. Measured and calculated values of 𝑅, 𝐿 and
𝑍 are displayed in Table 3.4b.

The magnitude of the impedance, |𝑍(𝜔)|, is the ratio of the voltage amplitude to the current ampli-
tude. Therefore, a requirement for a feedback actuator to actuate equally at varying frequency is that
this value should remain constant. From Equation (3.46) it can be seen that for small 𝜔 this is indeed
the case, here |𝑍(𝜔)| ≃ 𝑅. However, for larger 𝜔’s, |𝑍(𝜔)| becomes increasingly large, meaning that
the current through the coil is in effect decreasing, resulting in a less forceful actuator than at low fre-
quencies. To only consider a region where the actuator is somewhat independent of 𝜔, a threshold
frequency is chosen above which the generated force is not more than 10% less than at 𝜔 = 0. This
condition is expressed as or 𝑅 > 0.9|𝑍(𝜔)| and the threshold frequency is calculated to be 𝜔 = 2044
rad/s, or 𝑓 = 325 Hz. Values above a few hundred Hz are not of interest anyway, as the accelerometer
will be used for LF measurements.

3.3.3. Force requirement of the feedback actuator
The new feedback actuator is required to be capable of providing a certain amount of force: it needs
to balance the accelerometer as well as provide feedback signals in the order of magnitude of environ-
mental rms vibrations.

Manual centering of the proof mass has a (pessimistically estimated) tilt error of about ±150 𝜇rad,
resulting in a total possible angle error of 𝜃𝜃𝜃 ≈ 300 𝜇rad. To counteract this manual balancing error, a
DC force is required to keep the mass centered. This force is proportional to the error angle as:

𝐹 = 𝑚𝑔𝜃𝜃𝜃 (3.47)

which yields about 2 mN for the titanium accelerometer. Then, on top of this DC force, another force is
needed that can account for seismic rms accelerations that the device is subject to. The environmental
rms acceleration is given by:
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* Figure 3.14: Circuit driving the coil with varying
series resistance . The measured value of

is displayed in Table 3.5

𝑎 = �̃�√Δ𝑓 (3.48)

�̃� maximally has a value in the order of magnitude 10 ms /√Hz. Δ𝑓 is the bandwidth of the control
loop. This is the frequency range in which the feedback loop operates safely, a property resulting from
the design of the PID controller. In Section 3.5.1 the bandwidth was measured to be Δ𝑓 = 150 Hz.

These values result in a maximal rms acceleration of 𝑎 ≈ 10 ms . From Newton’s second
law this acceleration demands a maximal force of 𝐹 ≈ 0.7 mN (for the titanium device). However,
this is only the rms force. To cover the full rms noise range, the real force needed is a peak-to-peak
force, which is about 3 times the rms value: 𝐹 ≈ 2 mN.

All in all, the maximal force that the feedback actuator should be capable of delivering is 𝐹 = 𝐹 +
𝐹 ≈ 4 mN. Especially at low frequencies, where seismic vibrations have the largest amplitude, the
required force might approach this upper limit. Comparing the force that the feedback actuator should
be capable of delivering, 𝐹 ≈ 4 mN, with the measured force presented in Figure 3.3.2, it can be
concluded that a current of 5 mA would be enough to drive the accelerometer.

3.3.4. 𝑄 and eddy current damping
After the new feedback actuator wasmodelled and its properties characterized, the quality factor perfor-
mance of the accelerometer actuated with the new feedback actuator was mapped. Themajor damping
source comes from current induction by the moving magnets in the coil windings. This current dissi-
pates energy through the output resistance of the driving circuit, thereby eating into the kinetic energy
of the moving mass. As the dissipation is proportional to the relative velocity between proof mass (with
magnets) and frame (with the coil), this is a viscous damping process. In Figure 3.14, a schematic of
the driving circuit of the coil is drawn. For such a circuit, the relation between the quality factor and the
resistance is approached by Boulaenko [60] as:

𝑄 = 𝑀𝜔 𝑅 + 𝑅
𝐺 (3.49)

where G is the response of the voice coil in [N/A] - it is 1 in the case of this feedback actuator (see
Figure 3.3.2). From Equation (3.49) it is clear that the larger the series resistance, the higher the quality
factor becomes. Infinite resistance in the circuit gives an infinite 𝑄 , so zero damping - this situation is
analogous to the coil being in an open circuit. Otherwise, with no resistance in series, 𝑄 is smallest
and thus damping is largest. The quality factor from induction in the coil adds to the total quality factor
likewise as Equation (3.11):

1
𝑄 = 1

𝑄 + 1
𝑄 + 1

𝑄 (3.50)

where it should be noted that 𝑄 is actually also a viscous term. Besides, the experiment is performed
only at very low pressure, so 𝑄 comprises virtually no air related damping, but only local eddy
current damping, which has been found to be insignificant for titanium (Section 3.2.4). 𝑄 can be
expressed as:
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Figure 3.15: The quality factor of both accelerometers with different resistances in series with the coil. The measurements
were performed at . ( ) ⋅ mbar. The two points at the far right were taken with k in series. Results of
measurements taken at open circuit ( ) are not included in the Figure, but listed in Table 3.6.

Table 3.6: Measured quality factors at open coil circuit

Material Quality factor

Titanium 6300(500)
Aluminum 6300(600)

1
𝑄 = 𝐴 + 𝐵𝑅 (3.51)

Or,

𝑄 = 𝑅
𝐴𝑅 + 𝐵 (3.52)

where 𝐴 and 𝐵 are constants, and 𝑅 is the total resistance in the circuit: 𝑅 + 𝑅 .
To investigate the influence of the resistance in series with the coil, the novel feedback actuator was

mounted to both accelerometers and quality factors weremeasured for different series resistances. The
setup of this experiment was similar to setup described in Section 3.2.3, but here the feedback actuator
was used to swing the proof mass instead of the parallel plate capacitor. Moreover, the measurements
were only performed in the low pressure region, at 𝑃 = 2.0(3) ⋅ 10 mbar. The results are depicted in
Figure 3.15. In this figure, Equation (3.52) is fitted through the data points, providing fit parameters 𝐴
and 𝐵. Measurements at open circuit (𝑅 = ∞) are not displayed in the figure as plotting infinity would
not make sense, but they are nonetheless taken into account for calculation of the fit. Their values are
depicted in table 3.6.

From Figure 3.15, it can be concluded that at resistances below 𝑅 ≈ 4000 Ω, the titanium accelerom-
eter outperforms the aluminum one in terms of 𝑄. This can be explained by the larger proof mass of
the titanium accelerometer (𝑚 = 0.76 kg and 𝑚 = 0.49 kg), which results in a higher
𝑄 through (3.49).

Eddy current damping At high resistance the induction damping from the coil is negligible. The data
points in this region (at 𝑅 = 8160 Ω and 𝑅 = ∞ - see Figure 3.15 and Table 3.6) show comparable
results as for the naked configuration quality factors (determined in Section 3.2.3), for both the titanium
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Table 3.7: Quality factors at low pressure (below ). For the feedback actuator configurations, only datapoints from
k and open circuit were considered, as to not include induction damping effects. )

Material Configuration 𝑄 # Measurements

Titanium Naked 6900(2200) 19
Voice Coil 6500(900) 5

Aluminum Naked 6900(1000) 4
Voice Coil 6500(700) 5
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Figure 3.16: Modelled thermal noise of a vis-
cously damped accelerometer, with the old feed-
back actuator configuration in cyan and the new
feedback actuator in red. The natural frequency
and the effective proof mass are . Hz and

. kg, for both cases.

and aluminum accelerometer. The measurements from this experiment are within the error bars of the
measurements from the naked configurations experiment, see Table 3.7.

It is obvious that eddy currents could only be produced in the new feedback actuator 𝑄-factor ex-
periment, as here there are magnets moving near the conducting frame, whereas in the naked con-
figuration experiments no magnets were present. The fact that these results are comparable for both
experiments, means that the precision of the measurements is too low to determine with significance
the size of 𝑄 from eddy current damping. Quality factor measurements at low pressure are a delicate
and challenging task, as is described in Section 3.2.3. Therefore, to find a more precise experimental
value of 𝑄 and 𝑄 it is desired to redo the quality factor measurements in a far quieter area.

3.3.5. Thermal noise reduction from a higher Q
When the accelerometer is used for displacement sensing, the feedback actuator will be operated as
actuator in closed loop. The coil is connected to the PID via a resistance of 𝑅 = 950Ω is series, see
Section 3.5.1. The quality factor at this resistance will be around 2715 for the titanium accelerometer.

To conclude, using a titanium accelerometer driven with the novel feedback actuator, the quality
factor improved from 𝑄 = 58 to 𝑄 ≃ 2715, a factor ∼ 47. In terms of suspension thermal noise
this means a factor of √47 ∼ 6.8 reduction, see Figure 3.16. As suspension thermal noise is limiting
the overall sensitivity of the sensor at low frequency (See Figure 3.20 in Section 3.4.2), actuating the
accelerometer with the new feedback actuator would translate into a direct sensitivity improvement of
more than a factor 7 in that region.
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3.4. The double interferometer readout sensor
The movement of the accelerometer’s proof mass must be read out with an extremely sensitive sensor
in order to sense movement in the femtometer region. Therefore, Heijningen [2] designed an optical
readout scheme based on the double arm interferometer proposed by Gray et al. [61]. The main
improvement of this design is the possibility to cancel out intensity fluctuations in the laser power,
called relative intensity noise (RIN). The signals from both photodiodes (PDs) are matched in size and
subtracted to diminish this noise. In this way, the readout board should be able to sense at its shot
noise limit.

3.4.1. The interferometer and its readout electronics
The double PD setup, designed by Heijningen [2] and based on Gray’s principle, is displayed in Figure
3.17. Before entering the interferometer, the 𝜆 = 1550 nm laser source, The RockTM from NP Photon-
ics, is aligned in polarization orientation by beam rotators, and subsequently attenuated. Entering the
interferometer, the laser is focused by a collimator lens and inside the interferometer it is split twice by
beamsplitters (Thorlabs BS004), see Figure 3.17. One corner reflector mirror is attached to the frame,
and for calibration efforts it is mounted on a piezo actuator (HPCh 150/12-6/2 by Piezomechanik). The
other corner reflector mirror is attached to the moving proof mass. If this mirror moves, the outgoing
light will show interference fringes. These fringes are measured by photodiodes (Thorlabs FGA21). In
this configuration of the light falls on PD1 and of the light falls on PD2 (the rest is reflected to a
non reflective spot or back to the laser). Signals of both photodiodes are equalized in magnitude and
subtracted in order to cancel out the common mode RIN of the laser.

In order to characterize the PDs, DC signals and noise levels, one of the two mirrors was darkened to
remove interference. For a given laser input power 𝑃in, the expected DC voltages are:

𝑉 = 𝑅A𝜂
𝑃in
16 𝑉 = 𝑅A𝜂

𝑃in
8 (3.53)

Where 𝑅A = (20 kΩ) are the transimpedance amplifiers that, in combination with a OPA827 op-amp,
convert photocurrent to a voltage for each photodiode. The efficiency of the photodiodes, 𝜂, is consid-
ered 1. Measuring the PD1 and PD2 output voltages gave 𝑉 = 2.1(1) V and 𝑉 = 4.2(1) V. Both yield
a similar laser input power of about 𝑃in = 1.7 ⋅ 10 W.

The signals of the photodiodes are lead to a balanced differential amplifier, using a AD8597 op-
amp. In 3.18a the electric circuit of this differential amplifier is shown, with a simplified version depicted
in 3.18b. As can be seen in 3.18b, the signal 𝑉 going to the balanced amplifier can be trimmed with
a potentiometer resistance. As RIN is common in both PDs, the differential DC output 𝑉diff should be
trimmed to zero to cancel it. Trimming of 𝑉diff is done with one of the interferometer arms darkened.
When 𝑉diff drifts away from zero, intensity noise will be imparted in the signal. These effects are inves-
tigated in Section 3.4.3.

When the board is operating in the regular intereferometer setup, the power levels on both PDs are:

𝑃 = 𝑃in
8 (1 + cos(4𝜋Δ𝐿𝜆 )) 𝑃 = 𝑃in

4 (1 − cos(4𝜋Δ𝐿𝜆 )) (3.54)

with Δ𝐿 the proof mass mirror’s positional deviation from a central position corresponding to mid-fringe.
From this it can be inferred that the differential voltage output is:

𝑉diff = 𝑅A𝜂
𝑃in
4 cos(4𝜋Δ𝐿𝜆 ) (3.55)

With the null condition being Δ𝐿 = (𝑛+ ) . Around one of these values, thus at the center of a fringe,
the system is locked in the feedback loop by the voice coil. This is advantageous for two reasons: the
voltage response to a proof mass displacement is both maximal and approximately linear at this spot.
At the lock point, the interferometer voltage response to proof mass displacement Γ is (in [V/m]):
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Figure 3.17: The double PD interferometer
scheme. With beam splitter (BS) convention
where halve the beam is reflected rightward when
hitting a BS, this configuration yields, / in
and / in. The remaining light is reflected
back to the laser (1/8) or to a dark surface (1/2).
From: [2].

(a) Electric circuit
(b) Schematic

Figure 3.18: Electric circuit (a) and its schematic (b) of the photodiode board. The PDs are loaded with TIA resistors. is
attenuated with the potentiometer resistance to match the signal amplitude of , as only then full suppression of laser power
fluctuations is enabled.
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Δ𝑉diff
Δ𝑥 = Γ = 𝑅A𝜂𝜋

𝑃in
𝜆 (3.56)

In this setup, the interferometer response is modelled to be: Γ = 69 V/𝜇m.

3.4.2. Noise contributions
Ideally, the accelerometer self noise is governed by thermal noise from viscous damping in the coil until
∼ 10 Hz, above which the photon shot noise on the photodiodes becomes the limiting factor. However,
the shot noise displacement sensitivities are extremely low and other sources could easily prevent
the accelerometer from reaching this fundamental noise limit. Two such sources are non perfect RIN
cancellation and frequency noise.

Thermal noise For frequencies below 10 Hz, thermal noise from a viscously damped resonator is the
most relevant noise source. The power spectrum of this noise on the proof mass is given by Equation
(3.26) in Section 3.2.2. In Section 3.3.5 the thermal noise spectrum of the accelerometer using the new
voice coil is calculated for 𝑄 = 2715. To obtain the sensor’s thermal noise displacement sensitivity, the
frame acceleration is simply equated to the thermal force, and integrated twice (i.e. multiplied with 𝜔
in Fourier space):

�̃�TN = 𝜔 √4𝑘 𝑇𝜔𝑀𝑄 = 1.6 ⋅ 10 𝑓 (3.57)

Thermal noise of the accelerometer is typically not visible when it is operated at the seismically isolated
bench at Nikhef, as it is lower than the noise of the test-bench at LF.

Photon shot noise on the photodiodes is determined from 𝑃in. The current shot noises from the PDs
are given by:

𝑖 = √2𝑒𝜂𝑃 𝑖 = √2𝑒𝜂𝑃 (3.58)

where 𝑃 = in and 𝑃 = in at the working point of the interferometer. Then, to obtain voltage noises,
the currents are multiplied with the transimpedance amplifiers 𝑅A. As the power is not evenly distributed
among and incoherent between the two diodes, the voltage noises are summed in quadrature, with the
signal of PD2 halved:

�̃�sn = 𝑅A√
3𝑒𝜂
8 𝑃in (3.59)

This is the total voltage shot noise in [V/√Hz]. To obtain the interferometer displacement noise, this
value is multiplied with Γ and a mechanical response term:

�̃�SN =
�̃�sn
Γ
1
𝑓
√(𝑓 − 𝑓 ) + (𝑓 𝑓𝑄 ) (3.60)

Non optimal RIN cancellation Fluctuations in the laser output power are called relative intensity
noise (RIN). This noise source will limit the interferometer noise above a fewHzwhen it is not completely
subtracted in Gray’s double arm scheme, i.e. when 𝑉 is not perfectly attenuated to match 𝑉 . To have
a reference signal containing RIN, a fiberoptic splitter was installed that picked off 1% of the laser light
before entering the vacuum vessel. This tabbed signal, coined 𝑉tab, was measured with the same
PD (Thorlabs FGA21) as in the interferometer. From the pick-off, RIN of the laser was quantified by
measuring the noise spectrum �̃�n of 𝑉tab, with DC level 𝑉DC:

RIN = �̃�n
𝑉DC

(3.61)
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Figure 3.19: RIN measurement. RIN = ñ/ DC,
with ñ the measured spectrum.

which is in units of [1/√Hz]. The RIN spectrum is displayed in Figure 3.19. The residual voltage RIN
due to a factor 𝛼 mismatch in the power on the interferometer PDs is:

�̃�RIN =
𝛼𝜂𝑅A𝑃in
16 RIN (3.62)

Dividing this voltage spectrum with the interferometer displacement response Γ gives the modelled RIN
displacement noise:

�̃�RIN =
𝛼𝜆
8𝜋RIN (3.63)

Different values of the subtraction parameter 𝛼 show what RIN noise levels they correspond to. For
instance, with 𝛼 = 0.1, 90% cancellation takes place and with 𝛼 = 0.01, 99% is cancelled. It was
calculated that with about 98% cancellation, residual RIN should have about the same noise level as
shot noise. RIN is found to be partly limiting the accelerometer to reach its shot noise performance,
and this noise source is treated extensively in Section 3.4.3.

Laser frequency noise A third relevant noise source is the frequency noise from the laser, that
creates a phase noise on the PDs when the beams in both interferometer arms do not travel exactly
the same distance. The arm length mismatch Δ𝐿 introduces a frequency dependent noise. For the
interferometer used in this research, Δ𝐿 was determined to be as large as about 3 mm. This is due to
a redesign of the mechanics with respect to the previous experiment of Heijningen [2].

FromBennetts et al. [62], whomeasured the frequency noise of the PNPhotonics The RockTM laser,
a power slope of −2/3 and a multiplication factor of 5000 was crudely estimated for the frequencies up
till 𝑓 = 200 Hz. The frequency noise is then: 5000𝑓 / Hz / √Hz. It is converted to displacement
through:

�̃� = 𝜈
𝜈 Δ𝐿 (3.64)

which is then multiplied with the same mechanical response term as in Equation (3.60). Here, 𝜈 is
the laser frequency noise and 𝜈 = is the central laser frequency. However, the circumstances in
which this laser was operated might be different from the measurement done by Bennetts et al. [62],
and therefore this model is a crude estimation reality. From this model it was calculated that Δ𝐿 = 3
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Figure 3.20: Noise budget of the accelerometer. From the measured spectrum of the laser, two cases of RIN suppression are
displayed, for 90% and 99% cancellation.

mm results in maximal displacement sensitivities of around 10 m/√Hz above 30 Hz, obstructing the
acceleromer to reach the shot noise limit. The static arm length difference should be less than 0.5 mm
for frequency noise to fall below SN.

The discrepancy of the previous experiment of Heijningen [2], where a noise floor of 8 fm/√Hz was
measured instead of the modelled 3 fm/√Hz, might be explained by a too optimistic model for the laser
frequency noise (500𝑓 Hz √Hz).

Electronic noise The total electronic noise, both from the electric circuits of the accelerometer and
from the readout, was measured by taking a spectrum of 𝑉diff while the setup was placed in a dark
environment and the laser light switched off. What is more, the combined noise from the ADC and pre-
amplifier was measured by terminating the input with a 50Ω resistor. The readout noise was determined
to be insignificant with respect to the electronic noise from the PID and PD boards.

Signal contrast Contrast of the signal is the ratio of a measured amplitude of the PD fringes, and
their maximum possible amplitudes: (𝑉max − 𝑉min)/(𝑉max) - meaning there is maximal contrast when
𝑉min = 0. Contrast should be maximal because low contrast implies low SNR, which results in a lower
sensitivity curve of the accelerometer. Typically, contrasts of 70% - 90% were measured for both PDs.

From the noise contributions discussed in this Section, a noise budget is modelled for the accelerometer
with a quality factor of 𝑄 = 2715 and natural frequency 𝑓 = 0.86 Hz, see Figure 3.20. In this Figure,
it is seen that laser frequency, as estimated, limits the accelerometer to reach SN. What is more, also
RIN is a limiting factor when it is not fully suppressed.

3.4.3. RIN suppression
The splitting ratio of the two beam splitters depends on the polarization of the input light. Only if polar-
ization of the incoming light is perfectly aligned with that of the BS, the 50%-50% reflection-transmission
will occur. With non-optimal alignment between the input beam and BS, other non-equal splitting ratios
arise. This results in an offset in the balanced signals, and the subtracted DC signal 𝑉diff will not yield
zero anymore. The larger the misalignment between laser beam and BSs, the farther away 𝑉diff DC will
be from zero, and the more RIN it will contain (thus the larger 𝛼 in Equation (3.63)). Misalignment be-
tween laser beam and BS is caused by polarization drifts, due to thermal variations in the environment.
Thermal variations cause the laser fibers to slightly bend, causing a rotation of the polarization of the
input beam. The fiber link from the laser to the sensor was about 10 m long and made from PM-fiber,
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Table 3.8: Optomechanical and readout electronics parameters of the non-PM and PM fiber setup.

Parameter Symbol non-PM fiber PM fiber

Proof mass M 0.76 kg
Natural frequency 𝑓 0.86 Hz
Quality factor Q 2715
Thermal noise �̃�TN 1.6 ⋅ 10 𝑓 m Hz /√Hz
Laser wavelength 𝜆 1550 nm

Transimpedance amplifier 𝑅A 20 kΩ 2.2 kΩ
Input power 𝑃in 1.7 mW 7 mW
Interferometer response Γ 6.9 ⋅ 10 V/m 3.1 ⋅ 10 V/m
Shot noise �̃�SN 202 nV/√Hz 32 nV/√Hz

�̃�SN 2.9 fm/√Hz 1.4 fm/√Hz

which limits polarization drifts to a certain extent, but is extra exposed to thermal effects due to its long
length.

Drifting also affects contrast, as contrast is also dependent on the amount of light transmitted
throught the BSs. Contrasts were observed to vary with ∼5% for both PDs.

In the first experiment, the final parts of the optical setup - the attenuator, the beam rotator, the collima-
tor and connecting fibers - were made from non-PM material, making this setup is highly susceptible
to thermally induced polarization angle drifting. What is more, the laser link to the setup totallled about
10 m. The drifting behaviour of 𝑉diff DC was indeed visible, resulting in fruitless calibration efforts; after
having trimmed the potentiometer resistance to get 𝑉diff to zero, it would rapidly obtain offsets of> 10%,
whereas it should remain close to 1% for this source to remain below shot noise.

Therefore, to gain control over the polarization angle drifting, the non-PM parts in the setup were re-
placed with a PM fiber. As the beam rotators were non-PM, polarization alignment of the laser with the
beam splitters was now performed by directly rotating the collimator until optimal alignment is reached.
Next to the beam rotators, the attenuator was also bypassed, increasing the incoming laser power
significantly. In fact, the 𝑃in became so large that the PD signals were clipping (i.e. output signals
trespassed maximum output voltages of the PDs). To cope with this effect, the transimpedance am-
plifiers were changed from 𝑅A = 20 kΩ to 𝑅A = 2.2 kΩ, changing the output signals 𝑉 and 𝑉 due to
different input power and 𝑅A resistances (see Equation (3.53)). The readout circuit characteristics and
optomechanical parameters of both the non-PM and PM fiber setup are listed in Table 3.8. Importantly,
the modelled shot noise was lowered by increasing 𝑃in.

The PM fiber replacement setup improved the stability of static polarization angle drifting, but the
effect was still not fully diminished. This is explained by the fact that the setup was not placed in a
temperature controlled laboratory, but in an environment where temperature varies with several degrees
during the day. What is more, as the laser fiber was over 10 m long, it was heavily exposed to thermally
induced polarization angle drifting. By contrast, the measured 8 fm/√Hz noise floor from 30 Hz onwards
of previous research by Heijningen [2], was obtained in a thermally stable environment and with only a
∼ 1.5 m long laser fiber.

To gain the possibility to measure coherence between 𝑉diff and the laser beam, 1% of the laser beam
signal was tabbed, 𝑉tab, before entering the vacuum vessel. When the coherence between 𝑉diff and 𝑉tab
is high, RIN is still present in the system. For a time period of about 5 hours, the DC value of 𝑉diff was
measured in order to observe its time-varying behaviour. In order to only observe intensity fluctuations,
the mechanics were blocked and one mirror was darkened, so there was no interference. The level of
RIN suppression is given in dB with 𝑉diff/(𝑉 + ) as logarthmic argument. In parallel, the coherence
between 𝑉diff and 𝑉tab was measured each ten seconds in the 5 hours time period. Investigating this
data, observing a time period where RIN suppression is high, the coherence should be low. Contrarily,
when 𝑉diff drifts away, the coherence should increase. The results are displayed in Figure 3.21.

The RIN suppression and time-coherence plots of Figure 3.21 satisfy expectations: low coherence
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Figure 3.21: RIN suppression of diff DC and a 2D time-coherence plot. Due to beam polarization angle drifting, diff drifts away
from zero, resulting in non-suppressed RIN and thus high coherence levels with tab.

is recorded at time ranges when RIN suppression is high (i.e. below -40 dB: within 1% cancellation).
However, the DC level of 𝑉diff cannot be measured when the accelerometer is in closed loop, and
therefore this is an important result. Now, the coherence data can be used as a proxy to see at which
time periods high levels of RIN cancellation are achieved. Over that timespan one should expect the
accelerometer to reach the best performance.

3.5. Performance measurements
3.5.1. Feedback loop characterization
The accelerometer will eventually operate as vibration sensor. It will operate in closed loop, keeping
the proof mass locked at the middle of a fringe, allowing for maximal and linear displacement-to-voltage
response. What is more, using this feedback system increases the dynamic range of the accelerometer
significantly. In open loop the dynamic range is about 𝜆/4. Only at the micro-seismic peak, seismic
noise is larger than 𝜆/4; the ground excitation is amplified significantly at the natural frequency of the
accelerometer due to the large quality factor. This makes it impossible to stay within a single fringe,
resulting in the need for operating the accelerometer in a feedback loop. In this feedback system, the
accelerometer’s proof mass is the system to be controlled, or the plant, the double interferometer read-
out is the sensor, the feedback actuator acts as actuator and there is a PID controller, the servo, whose
filter creates the error signal to the feedback actuator. This signal is used as the accelerometer output.

In Figure 3.22 a scheme of the control loop is displayed, with also the measured reference points 𝑉 (the
error signal) and 𝑉 (the interferometer signal) and the controllable input noise 𝑉 . The latter is build to
introduce noise that is common in 𝑉 and 𝑉 , allowing the transfer of this noise 𝑉 /𝑉 to be determinable.
From the block scheme in Figure 3.22 the values of the two reference voltages can be calculated - going
anti-clockwise, the block contributions are multiplied. The acceleration of the ground, displayed as �̃� ,
introduces extra signal to the circuit and should be added. The same holds for the introduced noise
𝑉 . The force response is always negative compared with �̃� and should be subtracted. Following
these rules 𝑉 , is expressed as:

𝑉 = 𝑉 + 𝐹𝛼𝐻(�̃� − 𝛽
𝑀𝑉 ) (3.65)

Where 𝐹 and 𝐻 are frequency dependent responses of the filter and the mechanics respectively. The



3.5. Performance measurements 71

F(s)
+

-

+

+

Mechanics Interferometer FilterV2 V1Noise VeAcceleration ãf

VCForce

𝑉

𝑚
𝑁

𝑉

Figure 3.22: Block scheme of the accelerometer feedback loop.

filter response function 𝐹 is modelled based on the electric circuit design characteristics of each stage
in the PID. The mechanical response 𝐻 of a suspended system to a force, is treated in the Introduction
Chapter (see Equation (1.15) in Section 1.3. Recall that 𝐻 is:

𝐻 = 1
𝑀((𝜔 − 𝜔 ) + 𝑖 )

(3.66)

𝛼 in Equation (3.65) is the response from the interferometer readout and is the force response from
the feedback actuator on the proof mass. They are flat responses (not depending on frequency 𝜔).

As �̃� is unknown, characterizing the circuit requires the introduction of a noise 𝑉 to to be thus large
that �̃� becomes negligible. Solving for 𝑉 this equation then yields:

𝑉 = 𝑉
1 + 𝐻𝐹

(3.67)

And by the same method 𝑉 is obtained:

𝑉 =
− 𝑉
1 + 𝐻𝐹

(3.68)

Here, 𝐻𝐹 is recognized as the open loop response (OL). This function is determined by measuring
the response of 𝑉 /𝑉 , which is mathematically represented as:

𝑉
𝑉 = −𝛼 𝛽𝑀𝐻 (3.69)

And OL is obtained by multiplying this with the modelled filter function 𝐹. The magnitude and phase of
the response 𝑉 /𝑉 are measured with a spectrum analyzer (Keysight 3567-A). Besides, the coherence
of their signals are measured to check the cleanness of the measurement. If coherence is low it means
that 𝑉 cannot overrule noise from the environment (�̃� is not negligible anymore). The results of this
experiment are displayed in Figure 3.23.

Looking at the coherence in Figure 3.23, it is clear that at some frequencies the measurement was
indeed disturbed by ground vibrations, but overall the experiment is deemed clean. The response line
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Figure 3.23: Measured mechanical response ( ). The wiggles around Hz are a result of pendulum leg modes.
The structures above - Hz were not identified.



3.5. Performance measurements 73

150

100

50

0

50

100

Re
sp

on
se

 [d
B]

Mechanical response
Controller
Open loop response
Closed loop response
Calibration line

10 1 100 101 102 103

Frequency [Hz]

180

90

0

90

180

Ph
as

e 
[d

eg
]

Figure 3.24: The feedback loop responses. The dashed lines are responses calculated from the modelled mechanical response.
The response was measured with the old experimental setup, so the solid light green line was matched to the model in
order to obtain for higher frequencies. The solid black curve is a low-pass filter fit to the accelerometer response (see Equation
(3.72)), required for correction of measured data.

exhibits the expected 1/𝑓 decay. Due to internal pendulum modes of the accelerometer suspension
legs, wiggles are shown at 𝑓 = 200 Hz. In this respect the accelerometer mechanics have improved
compared with previous experiments, where the heavier pendulum legs produced frequency distur-
bances already at 𝑓 = 100 Hz [2].

Having measured the mechanical response, the open loop response of the system is derived as:

OL = 𝛼 𝛽𝑀𝐻𝐹 (3.70)

And the closed loop response is given as:

CL = OL
1 +OL (3.71)

The feedback system is now completely characterized. The results of the measurement of the me-
chanical response, the modelled controller, and the OL and CL responses are depicted in Figure 3.24.
The estimated parameters of the circuit are displayed in Table 3.9.

Calibration To obtain displacement noise from accelerometer voltage output, its [V/√Hz] signals were
calibrated through division with the frequency dependent function 𝐶(𝑓):

𝐶(𝑓) = 𝑀
𝛽

𝑓
√𝑓 + 𝑓

(3.72)
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Table 3.9: Estimated properties of the feedback loop.

Parameter Symbol Value

Interferometer response Γ 3.1 ⋅ 10 V/m
feedback actuator response 𝛽 1.0 ⋅ 10 N/V
Effective proof mass M 0.76 kg
Unity gain frequency UGF 110 Hz
Phase margin 𝜙 37∘
Bandwidth Δ𝑓 150 Hz

Figure 3.25: Theoretical perforamance improve-
ment of the accelerometer due to the novel feed-
back actuator (thermal noise, below 10 Hz) and
new PM fiber setup (shot noise, above 10 Hz).
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where the low-pass term is obtained from the fit to CL in Figure 3.24, with parameter 𝑓 = 70. The
calibration factor is 760 V/(ms ). The function 𝐶(𝑓) is in [V/m].

3.5.2. Sensitivity curves
The monolithic FP accelerometer saw two improvements during this research, due to which the noise
limits of thermal noise and shot noise were lowered. The theoretical improvements due to the new
feedback actuator and new PM fiber setup are depicted in Figure 3.25.

At the low-noise optical bench at Nikhef, noise measurements were done for different coherence
levels between accelerometer signal and the input laser signal (see Figure 3.21). For this, the time-
coherence data was recorded for a few days and subsequently scanned for periods of high and low
coherence (ares of red and blue in Figure 3.21). As the low coherence period lasted for only a few
minutes, this noise spectrum was taken from shorter time samples, reducing resolution at low fre-
quencies. A coinciding measurement of the adjacent, calibrated geophone is plotted as well for ref-
erence. Observing 𝑓 = 1.6 Hz resonance peak heigths, as measured by the accelerometer and the
pre-calibrated geophone that was situated close to and parallel with the accelerometer, the modelled
voltage-to-displacement calibration factor was determined to be correct. Results of the final sensitivity
measurements are displayed in Figure 3.26. A picture of the accelerometer in feedback setup is dis-
played in Figure 3.27.

Firstly, it is obvious that the thermal noise limit was not reached by far. The not fully-filtered low fre-
quency seismic noise of the bench suspension is too high for the thermal noise to reveal itself. Detecting
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Figure 3.26: Noise measurement at the low-noise test bench, for two levels of RIN suppression.
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Figure 3.27: Sideview on the titanium accelerom-
eter operated in feedback loop at the ultra-low
noise test bench. The novel feedback actuator
is mounted on the left side of the accelerome-
ter, force-balancing the proof mass. Right, the in-
terferometeric readout is attached, with the laser
fiber entering from above. The PID board, with
the interferometer signal as input and the feed-
back actuator signal as output, is situated next
to the interferometer. On the left, behind the ac-
celerometer, one sees the aligned geophone for
reference measurements.

thermal noise for the monolithic FP accelerometer would require an ultra-low noise test bench at low
frequencies, which presumably does not exist.

Secondly, it is seen that the shot noise floor of a few fm/√Hz was not reached, as expected. How-
ever, the modelled laser frequency noise floor of around 10 m/√Hz was also not measured. The
low RIN suppresion measurement, presented in red, reached a noise floor of 90 fm/√Hz and increas-
ing from 20 Hz, and the high RIN suppresion measurement reached displacement noise of 50 fm/√Hz.
This difference between the displacement noise measurements indicates that RIN is limiting the perfor-
mance of the accelerometer at this level of sensitivity. The level or RIN suppression cannot be retrieved
exactly from the displacement noise measurements and it might be that, although coherence was low,
the accelerometer’s sensitivity was still partly limited by RIN in the interferometer. The two modelled
total noise scenarios plotted in black, for 90% and 99% RIN suppression, were expected to be of simi-
lar levels as the measured noises. Therefore, it seems that an unknown effect remains present in this
setup, and this requires further investigation. The measured displacement sensitivity of 50 fm/√Hz is
an approximately flat line above 𝑓 = 20 Hz, indicating the remaining noise originates from the laser
interferometer.

The 50 fm/√Hz measured noise floor is a factor 6 higher than the 8 fm/√Hz obtained in previous
research with the same instrument [2]. This discrepancy could be explained by the fact that the static
arm length difference of this interferometer was larger than 3 mm, about a factor 3 more than in the
previous experiment, introducing a significant amount of laser frequency nosie. What is more, the 8
fm/√Hz noise floor was obtained with a laser fiber length of about 2 m inside a temperature controlled
environment, whereas this setup, with a > 10 m laser link, was heavily exposed to beam polarization
angle drifting as a result of thermal variations in the lab. Replacing the non-PM laser fibers with PM
fibers was not sufficient to gain control of the polarization drifts.

3.6. Conclusions
A sizeable part of this research consisted of mapping the mechanics of the monolithic FP accelerometer
with quality factor measurements, and improving 𝑄 bymodelling and creating a novel feedback actuator
design, after having established that 𝑄 was being deteriorated by the old feedback actuator. Then, the
accelerometer’s performance in closed loop was mapped. After a noise budget was assembled, and it
was concluded that non-cancelled RIN was limiting, non-PM fibers in the setup were replaced with PM
fibers. Lastly, the open and closed loop performance as a result of the PID were charachterizedl.

Thermal noise was improved from Q = 58 to Q = 2715 due to a novel feedback actuator design
that discarded lead wires to the proof mass. The force per magnet-coil distance was modelled and
optimized for this new feedback actuator, and it was measured that the model was in correspondance
with experiment. Thermal displacement noise could not be measured, as it was well below the non-
filtered seismic noise at LF of the optical test bench.

The shot noise floor of 1.4 fm/√Hz could not be reached. An optimal level of 50 fm/√Hzwas reached,
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via a detour of scanning datasets of a few days long for time periods of low coherence between the
accelerometer signal and the input laser. From this, it was concluded that thermally induced polarization
angle drifting of the input beam was a limiting factor. Moreover, laser frequency noise due to a too
large static arm length difference of Δ𝐿 = 3 mm was a main limiting factor. In fact, the difference
between model and measurement of the previous experiment by Heijningen [2], which was a central
question when starting this research, could be well explained by the laser frequency noise modelled
too optimistically. Finally, the mismatch between measured noise levels and modelled RIN spectra is
is unclear, and this should be investigated further.

The monolithic FP accelerometer with a double-arm interferometer as readout has the potential to
be thermal noise limited below 10 Hz (with 1.6 ⋅10 𝑓 m Hz /√Hz) and shot noise limited above 10
Hz (with 1.4 fm/√Hz). It might be that an accelerometer with low Δ𝐿 would function properly on LIGO
and Virgo test mass suspensions, as they are in temperature controlled environments, but R&D on the
prototype is not possible there. In fact, globally, the only ultra-low noise optical bench research facility
is the one at Nikhef used for this research. Therefore, it is adviced to

1. Create a more robust mechanical design of the interferometer with a arm lenth difference of
Δ𝐿 < 0.5mm. The redesigned mechanics should also allow for more effortless mirror alignment.

2. Use a laser directly placed on top of the interferometer, without optical fibers. In this way, thermally
induced polarization angle drifting cannot occur. The quality of the laser will not be as high though
as the one used in this research, presumably resulting in a higher frequency noise.





4
Conclusions and recommendations

Rasnik as displacement sensor The Rasnik system is measured to have a resolution of about 270
pm/√Hz above 1 Hz with nm scale deviations from linearity. With more advanced CCD pixel image
sensors, resolutions of below 100 pm/√Hz are not an unrealistic prospect. The posibility to further
improve the resolution with high-magnification microscopic objectives indicate a pm/√Hz noise floor
should be achievable. Already with the highly linear and 270 pm/√Hz resolution Rasnik is more precise
than currently employed displacement sensors in GW experiments.

With a sub nm resolution, Rasnik is comparable in performance to the OSEM, but it has the high
dynamic range as advantage. With respect to the Optical Levers, the current 270 pm/√Hz resolution
Rasnik would be an improvement of more than an order of magnitude, and adding it’s large dynamic
range makes it specifically highly attractive. Then, Rasnik with pm/√Hz resolution is deemed very
suitable for the readout of a seismic tiltmeter, being much less complex than the interferometer readouts
suggested in other research [44].

Therefore, it is recommended that a Rasnik with high-performance CCD cam will be developed,
and enhanced with the replacement of a strong microscopic objective for the lens. When resolution
is improved drastically, promising applications for displacement sensors should be developed, which
will be highly competitive in cost and performance with respect to current relative position sensors for
alignment and control in GW experiments.

The monolithic FP accelerometer as inertial sensor Due to improvements made in this research,
themonolithic FP accelerometer saw its theoretical performance increase to a 1.6⋅10 𝑓 mHz /√Hz
thermal noise limit below 10 Hz, and to a 1.4 ⋅10 m/√Hz shot noise limit above 10 Hz. However, the-
oretical noise performances were not revealed in this research. Thermal noise is below the LF noise of
the ultra-low vibration isolation platform at Nikhef. Shot noise was not reached due to laser frequency
noise from a too large static arm length difference of the interferometer, and due to non-optimal RIN
cancellation, and possibly due to other noise sources. A noise floor of 50 fm/√Hz was measured, a
factor 30 above the modelled shot noise.

As the monolithic FP accelerometer has the potential to be orders of magnitude more sensitive than
the best performing geophones, it is suggested to continue research, but with a more stable setup.
Therefore, it is suggested to replace the laser fiber setup to the interferometer with a laser placed
directly on the interferometer, bypassing all fibers in which thermal polarity angle drifting could occur.
The mechanics facilitating Gray’s double-arm interferometer should be redesigned to a more robust
system with arm length difference Δ𝐿 < 0.5 mm that also allows for effortless alignment. The setback
of such a setup would be a reduced laser quality.
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A
Pixel intensity, pixel noise and the

Cramér-Rao Lower Bound analysis

import imageio
import glob
import numpy as np
import ma t p l o t l i b . pyp lo t as p l t

def load_images ( path ) :
’ ’ ’ Load a l i s t o f images from a spec i f i e d d i r e c t o r y ( path ) . ’ ’ ’

’ ’ ’ I npu t : the d i r e c t o r y path i n which the images are loca ted . ’ ’ ’
’ ’ ’ Output : an ar ray o f the sequence of images . ’ ’ ’

image_ l i s t = [ ]
for im_path in glob . glob ( path ) :

im = imageio . imread ( im_path )
image_ l i s t . append ( im )

image_array = np . asarray ( image_ l i s t )

return image_array

def plot_image ( image , p ixe l1 , p i xe l 2 ) :
’ ’ ’ P l o t an image wi th two annotated p i xe l s . ’ ’ ’

’ ’ ’ I npu t : an image and two p i x e l l o ca t i ons [ x , y ] . ’ ’ ’
’ ’ ’ Output : p l o t t ed RasNik image . ’ ’ ’

f i g = p l t . f i g u r e ( f i g s i z e = (4 ,4 ) )
ax = f i g . add_axes ( [ 0 , 0 , 1 , 1 ] )
cmap = p l t .cm. gray
norm = p l t . Normalize ( vmin=image .min ( ) , vmax=image .max ( ) )
image_norm = cmap( norm ( image ) )
ax . imshow ( image_norm )
ax . p l o t ( p i xe l 1 [ 0 ] , p i xe l 1 [ 1 ] , marker= ’ o ’ , markersize =5 , co lo r= ’ r ’ )
ax . p l o t ( p i xe l 2 [ 0 ] , p i xe l 2 [ 1 ] , marker= ’ o ’ , markersize =5 , co lo r= ’ r ’ )
ax . annotate ( ’ P ixe l1 ’ , ( p i xe l 1 [ 0 ] , p i xe l 1 [ 1 ] ) , ( p i xe l 1 [0]−40 , p i xe l 1 [1 ] −20) , \

f o n t s i z e= labe l4x4 +3 , weight= ’ bold ’ , co l o r = ’ r ’ )
ax . annotate ( ’ P ixe l2 ’ , ( p i xe l 2 [ 0 ] , p i xe l 2 [ 1 ] ) , ( p i xe l 2 [0]−40 , p i xe l 2 [1 ] −20) , \

f o n t s i z e= labe l4x4 +3 , weight= ’ bold ’ , co l o r = ’ r ’ )
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ax . se t_x labe l ( ” x�p i x e l ” , f o n t s i z e= labe l4x4 )
ax . se t_y labe l ( ” y�p i x e l ” , f o n t s i z e= labe l4x4 )
ax . t ick_params ( l a be l s i z e= t i ck4x4 )
pr in t ( ’ P ixe l1�value�=� ’ , image [ p i xe l 1 [ 0 ] , p i xe l 1 [ 1 ] ] )
pr in t ( ’ P ixe l2�value�=� ’ , image [ p i xe l 2 [ 0 ] , p i xe l 2 [ 1 ] ] )
p l t . show ( )

return

def p ixe l_no i se ( image_ l i s t , p i x e l ) :
’ ’ ’ Ca lcu la te p i x e l i n t e n s i t y and noise a t a spec i f i ed p i x e l l o ca t i o n . ’ ’ ’

’ ’ ’ I npu t : a sequence of images , and the p i x e l l o ca t i o n i n [ x , y ] . ’ ’ ’
’ ’ ’ Output : the p i x e l i n t e n s i t y and p i x e l noise a t the p i x e l [ x , y ] . ’ ’ ’

y_pix = p i x e l [ 1 ]
x_pix = p i x e l [ 0 ]
I _ p i x e l _ l i s t = [ ]
for i in range ( len ( image_ l i s t ) ) :

im = image_ l i s t [ i ]
I _ p i x e l _ l i s t . append ( im [ y_pix , x_pix ] )

sigma = np . s td ( I _ p i x e l _ l i s t )
mu = np . average ( I _ p i x e l _ l i s t )

return mu, sigma

def CRLB( image_array , d_pix= 9.6 * 10** ( −6)) :
’ ’ ’ Ca lcu la te the Cramer−Rao lower bound f o r a sequence of RasNik images . The
mean i n t e n s i t y value o f each image i s taken to ca l cu l a t e the o ve r a l l p i x e l
noise from . ’ ’ ’

’ ’ ’ I npu t : a sequence of RasNik images . P i xe l s i ze de f au l t i s 9.6 mum. ’ ’ ’
’ ’ ’ Output : CRLB in x and y i n [m] . ’ ’ ’

mean_pixel_value_array = np .mean( image_array , ax is = (1 ,2 ) )
sigma_mean = np . s td ( mean_pixel_value_array )
mean_image_array = np .mean( image_array , ax is =0)
image = mean_image_array

I1 = np . g rad ien t ( image , d_pix )
I1_x = I1 [ 1 ]
I1_y = I1 [ 0 ]

Sum_Ix_sq = ( I1_x * *2 ) .sum ( )
Sum_Iy_sq = ( I1_y * *2 ) .sum ( )

p lot_image (mean_image_array , p ixe l1 , p ixe l2 , save_f ig=False )
Cross_term = ( I1_x * I1_y ) .sum( ) * *2
det_T = ( Sum_Ix_sq*Sum_Iy_sq − Cross_term )

var_vx = ( sigma_mean**2*Sum_Iy_sq ) / det_T
var_vy = ( sigma_mean**2*Sum_Ix_sq ) / det_T

sigma_CRLB_x = np . sq r t ( var_vx )
sigma_CRLB_y = np . sq r t ( var_vy )
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return sigma_CRLB_x , sigma_CRLB_y

’ ’ ’ P i xe l s used f o r c a l c u l a t i o n s ’ ’ ’
x1 = 432−10
y1 = 276 +35
x2 = 170 −10
y2 = 276 +35
p i xe l 1= [ x1 , y1 ] # Binning = 1
p i xe l 2= [ x2 , y2 ]
p i xe l 1 = [ i n t ( x1 / 2 ) , i n t ( y1 / 2 ) ] # Binning = 2
p i xe l 2 = [ i n t ( x2 / 2 ) , i n t ( y2 / 2 ) ]

’ ’ ’ F igure f on t s i zes and co lo rs ’ ’ ’
l abe l4x4 = 10
legend4x4 = 8
t i ck4x4 = 8
co lo rs = { ” Black ” : ” #000000 ” , ”Red” : ” #E21A1A” , ”Cyan ” : ” #00A6D6” , ” Br ightGreen ” : ” #A5CA1A” , \

” Purple ” : ” #1D1C73” , ” Yel low ” : ” #E1C400” , ” SkyBlue ” : ” #6EBBD5” , \
”WarmPurple ” : ” #6D177F” , ” Orange ” : ” #E64616 ” , ” Green ” : ” #008891 ” , \
” GreyGreen ” : ” #6B8689 ” }





B
RasNik data acquisition and analysis

import sc ipy as sp
import numpy as np
import pandas as pd
from sc ipy import s i gna l
from numpy import l o a d t x t
from datet ime import datet ime

def ReadDataEf f i c ien t ( d a t a f i l e ) :
’ ’ ’ Load RasNik measurement data i n a memory e f f i c i e n t way . Without the t ime data
o f the f i r s t column . ’ ’ ’

’ ’ ’ I npu t : the d i r e c t o r y path o f the d a t a f i l e . ’ ’ ’
’ ’ ’ Output : RasNik response ar ray (4 ,N) , and the leng th o f the ar ray N. ’ ’ ’

data = l o ad t x t ( d a t a f i l e , usecols = (2 ,3 ,4 ,5 ) , d e l im i t e r = ” ; ” , unpack=False )
s ize = i n t ( data [ : , 0 ] . s i ze )

return data , s i ze

def ReadDataWithTime ( d a t a f i l e ) :
’ ’ ’ Load a RasNik measurement i n a memory i n e f f i c i e n t way , but w i th t ime data
inc luded and converted to a datet ime l i s t . ’ ’ ’

’ ’ ’ I npu t : the d i r e c t o r y path o f the d a t a f i l e . ’ ’ ’
’ ’ ’ Output : RasNik datet ime l i s t , RasNik responses ar ray (4 ,N) , the leng th
o f measurement po in t s N. ’ ’ ’

data impor t = pd . read_csv ( d a t a f i l e , header=None )
data impor t . columns = [ ’A ’ ]
data impor t = data impor t [~ data impor t [ ’A ’ ] . astype ( st r ) . st r . s t a r t sw i t h ( ’ / ’ ) ]
da ta impor t = data impor t [~ data impor t [ ’A ’ ] . astype ( st r ) . st r . s t a r t sw i t h ( ’C ’ ) ]
data impor t = np . ar ray ( data impor t )

N = data impor t . s i ze
y = np . zeros (6 )
d a t e l i s t = [None ] * N
t i m e l i s t = [None ] * N
date_and_time = [None ] * N
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for i in range (N ) :
x = data impor t [ i , 0 ] . s p l i t ( ’ ; ’ )
x = np . asarray ( x )
y = np . vstack ( ( y , x ) )
d a t e l i s t [ i ] = datet ime . s t r p t ime ( x [ 0 ] , ’%d/%m/%Y ’ )
t i m e l i s t [ i ] = datet ime . s t r p t ime ( x [ 1 ] , ’%H:%M:%S.% f ’ )
t i m e l i s t [ i ] = t i m e l i s t [ i ] . t ime ( )
date_and_time [ i ] = datet ime . combine ( d a t e l i s t [ i ] , t i m e l i s t [ i ] )

da ta impor t = np . de le te ( y , 0 , 0 )
data = data impor t [ : , 2 : 5 ] . astype ( f l oa t )

return date_and_time , data , N

def Four ierTransform ( sample_data , fs , Npersegments , i _ n o i s e f l o o r ) :
’ ’ ’ Ca lcu la te the FFT from a RasNik measurement using Welch ’ s method . ’ ’ ’

’ ’ ’ I npu t : RasNik data ar ray (1D) , sampling frequency f s [Hz ] , leng th o f the
segments over which i s averaged , c u t o f f index from which to ca l cu l a t e
the noise f l o o r An ’ ’ ’
’ ’ ’ Output : an ar ray o f ( Detrended RasNik data , f requencies ,
ca l cu la ted An per f ) . The noise f l o o r A_n as ca l cu la ted from values above
index i _ n o i s e f l o o r . The RMS as in t eg ra t ed ASD over a l l f requencies , which
should be the same as the stdev from the t ime data sample . ’ ’ ’

Noverlap = Npersegments /2
detrend_data = s i gna l . detrend ( sample_data )
f , PSD = sp . s i gna l . welch ( detrend_data , fs , nperseg=Npersegments , nover lap=Noverlap )
ASD = np . sq r t (PSD)
RMS = np . sq r t ( np . t rapz (abs (ASD)**2 , x= f ) )
i _ n o i s e f l o o r =50
An = np .mean(ASD[ i _ n o i s e f l o o r : −1] )

return np . asarray ( ( detrend_data , f ,ASD) ) , An ,RMS



C
Accelerometer Q-factor data acquisition

and analysis

import numpy as np
import ma t p l o t l i b . pyp lo t as p l t
import sc ipy
from sc ipy import f f t p a c k
import pandas as pd

def data_impor t ( data ) :
’ ’ ’ Load Q− f a c t o r data from DataDisplay . ’ ’ ’

’ ’ ’ I npu t : the d i r e c t o r y path o f the d a t a f i l e . ’ ’ ’
’ ’ ’ Output : t ime data x i n [ s ] , measurement data y i n [V ] ,
the name a l l oca ted to the measurement − data . ’ ’ ’
measurement = pd . read_csv ( data , sep = ’� ’ , header = None )
measurement = np . asarray (measurement )
y = measurement [ : , 2 ]
y = np . t r im_zeros ( y )
x = np . l i nspace (0 , y . s i ze /100 , y . s i ze )
return x , y , data

def ampli tude_exponent ( t ime , A, tau ) :
’ ’ ’ The f i t f unc t i on f o r the exponent ia l decay o f the s i gna l ampl i tude ’ ’ ’
return A * np . exp(− t ime / tau )

def damped_sine ( time , A, tau , omega_0 , ph i ) :
’ ’ ’ The f i t f unc t i on f o r the damped sine wave s i gna l ’ ’ ’
return A * np . exp(− t ime / tau ) * np . s in (omega_0 * t ime + phi )

def s e l e c t _ f i t _ p l o t ( y , name, A_guess , tau_guess , phi_guess , begin =0 , end=−1, f_s =100 ,\
f_0_acc =0 .86 ) :

’ ’ ’Q i s ca l cu la ted wi th t h i s func t i on , by f i r s t se l e c t i ng manually a range of
da tapo in ts and second to perform f i t s from two func t i ons over t h i s data ’ ’ ’

’ ’ ’ I npu t : y data i n [V ] , guess ampl i tude A_guess i n [V ] , guess decay t ime
tau_guess i n [ s ] , guess phase i n [ rad ] , manually set begin datapo in t ,
manually set eind datapo in t , sampling ra te f_s i n [Hz ] , na t u ra l f requency o f the
accelerometer f_0_acc i n [Hz ] ’ ’ ’
’ ’ ’ Output : Q1 and Q2 as [ Value , E r ro r ] ’ ’ ’
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88 C. Accelerometer Q-factor data acquisition and analysis

’ ’ ’ Ca lcu la te the na tu ra l f requency o f the i npu t s i gna l ’ ’ ’
X = f f t p a c k . f f t ( y )
X = np . de le te (X, 0 )
f reqs = f f t p a c k . f f t f r e q ( len ( y ) ) * f_s
f_0 = f reqs [ abs (X ) . argmax ( ) ]
omega_0 = 2*np . p i * f_0

’ ’ ’ Center the data around zero ’ ’ ’
y = y [ begin : end ]
mean_y = np .mean( y )
y = y − mean_y
x = np . l i nspace (0 , y . s i ze / f_s , y . s i ze )

’ ’ ’ ’ F i t exponent ia l decay f unc t i on to ampl i tude envelope of the data .
Ca lcu la te Q and f i t e r r o r ’ ’ ’
ana l y t i c _ s i g na l = sc ipy . s i gna l . h i l b e r t ( y )
ampl i tude_envelope = np . abs ( a na l y t i c _ s i g na l )
popt1 , pcov1 = sc ipy . op t im ize . c u r v e _ f i t ( ampli tude_exponent , x , ampl i tude_envelope )
tau1 = popt1 [ 1 ]
stdev_tau1 = np . sq r t ( np . diag ( pcov1 ) ) [ 1 ]
Q1 = np . zeros (2 )
Q1[ 0 ] = np . p i * f_0_acc * tau1
Q1[ 1 ] = Q1[ 0 ] * stdev_tau1 / tau1

’ ’ ’ F i t a damped sine to the data . Ca lcu la te Q and f i t e r r o r ’ ’ ’
guess = np . ar ray ( [ A_guess , tau_guess , omega_0 , phi_guess ] )
popt2 , pcov2 = sc ipy . op t im ize . c u r v e _ f i t ( damped_sine , x , y , guess )
tau2 = popt2 [ 1 ]
stdev_tau2 = np . sq r t ( np . diag ( pcov2 ) ) [ 1 ]
Q2 = np . zeros (2 )
Q2[ 0 ] = np . p i * f_0_acc * tau2
Q2[ 1 ] = Q1[ 0 ] * stdev_tau2 / tau2

’ ’ ’ P l o t measurement data and two f i t l i n e s ’ ’ ’
f i g , ax = p l t . subp lo ts ( )
ax . p l o t ( x , y , l a be l = ’Measurement ’ , co l o r =co lo rs [ ” Yel low ” ] )
ax . p l o t ( x , ampli tude_exponent ( x , *popt1 ) , \

l a be l = ’ Envelope�f i t ,�$tau�=�%.0 f$�s ’%(tau1 ) , co l o r =co lo rs [ ”Red” ] )
ax . p l o t ( x , damped_sine ( x , * popt2 ) , \

l a be l = ’ Sine�f i t ,�$tau�=�%.0 f$�s ’%(tau2 ) , co l o r =co lo rs [ ” Purple ” ] )
ax . se t_x labe l ( ’ Time�[ s ] ’ , f o n t s i z e= l abe l s )
ax . se t_y labe l ( ’ S igna l�[V ] ’ , f o n t s i z e= l abe l s )
ax . se t_x l im ( x .min ( ) , x .max ( ) )
ax . g r i d ( b=True , which= ’ both ’ , ax is= ’ both ’ , alpha =0.7)
ax . t ick_params ( d i r e c t i o n = ’ i n ’ , which= ’ both ’ , pad=10 , l a be l s i z e= t i c k s )
ax . legend ( f on t s i z e=legend , fancybox=True , framealpha =1)
f i g = p l t . gc f ( )
f i g . se t_s ize_ inches (16 , 8)
f i g . t i g h t _ l a y ou t ( )
p l t . save f ig ( r ’C : \ MasterThesis \ Report \ f i g \ Accelerometer \ Q_measurement { } . pdf ’ \

. format (name) , dp i =1000)
p l t . show ( )

return Q1, Q2



D
A model to calculate 𝐵(𝑧, 𝑟) from a coil

and find the optimal magnet-to-coil
distance

import numpy as np
import ma t p l o t l i b . pyp lo t as p l t
from ma t p l o t l i b .cm import coolwarm
from ma t p l o t l i b . patches import Rectangle
from sc ipy . spec ia l import e l l i p e , e l l i p k
from sc ipy . i n t eg r a t e import dblquad , tp lquad

’ ’ ’ I npu t parameters ’ ’ ’
mu_0 = 4*np . p i *10**(−7) # T m/A
r e s i s t i v i t y _ c o ppe r = 1.7 * 10**(−8) # Ohm m

N_co i l = 506 # windings
R i_co i l = 0.0046 # m
Co i l_ th i cknes = 0.005 # m
Ro_coi l = R i _ co i l + Co i l _ th i cknes # m
R_co i l = R i _ co i l + Co i l _ th i cknes /2 # m
dR = Co i l _ th i cknes /2

L_co i l = 0.006 # m
Z_co i l = 0.0 # m
I _ c o i l = −0.01 # A
t _w i re = 0.0002 # m
R_wire = t_w i re /2 # m

R_magnet = 0.0025 # m
L_magnet = 0.005 # m
B_rem_magnet = 1.345 # T
I_magnet = (B_rem_magnet /mu_0) * L_magnet # A − hypo the t i ca l cu r ren t around magnet

’ ’ ’ ( z , r ) a r rays ’ ’ ’
N = 200
z_min = −0.02
z_max = 0.02
r_min = 0.0001
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r_max = 0.02
z _ l i s t = np . l i nspace ( z_min , z_max ,N)
r _ l i s t = np . l i nspace ( r_min , r_max ,N)
r _ l i s t = np . reshape ( r _ l i s t , ( ( −1 , 1 ) ) )

def B_ring ( z_c , R_c , z_m, R_m, I_c ) :
’ ’ ’ Ca lcu la te the magnetic f i e l d from a cu r ren t r i ng ’ ’ ’

’ ’ ’ I npu t : r i ng center z_c i n [m] , r i n g rad ius R_c i n [m] , c y l l i n d r i c a l l o ca t i o n
o f ca l cu la ted B (z_m,R_m) i n [m] , cu r ren t through c o i l I_c i n [A ] ’ ’ ’
’ ’ ’ Output : B f i e l d a t (z_m,R_m) ’ ’ ’

A = (R_c−R_m)**2 + (z_m−z_c )**2
B = R_c**2 + R_m**2 + (z_m−z_c )**2
C = (R_c+R_m)**2 + (z_m−z_c )**2

e l l i p t i c _ t e rm = (4*R_m*R_c ) / C

e l l i p sK = e l l i p k ( e l l i p t i c _ t e rm )
e l l i p sE = e l l i p e ( e l l i p t i c _ t e rm )

Term = mu_0 * I_c / (2*np . p i *R_m*A*np . sq r t (C) )
B = Term * (z_m−z_c ) * (A* e l l i p sK − B* e l l i p sE )

return B

def F_z ( z_c , R_c , z_m, R_m, L_c , L_m, I_c , I_m , N_c , dR ) :
’ ’ ’ Ca lcu la te the i n t eg ra t ed fo rce from a c o i l on a magnet
a t l o ca t i o n (z_m,R_m) ’ ’ ’

’ ’ ’ I npu t : same inpu t as f unc t i on B_ f i e l d ’ ’ ’
’ ’ ’ Output : the fo rce experienced by a magnet a t (z_m,R_m) ’ ’ ’

R_in = R_c − dR
R_out = R_c + dR
L_m_wire = 2*np . p i *R_m

T r i p l e I n t e g r a l = tp lquad ( B_ring , z_m−L_m/2 , z_m+L_m/2 , lambda z_m: R_in , \
lambda z_m: R_out , lambda z_m, R_c:−L_c / 2 , \
lambda z_m, R_c : L_c /2 , args = (R_m, I_c ) )

B_T r i p l e I n t eg r a l = T r i p l e I n t e g r a l [ 0 ] * N_c / ( L_c * ( R_out−R_in ) )
F3 = B_T r i p l e I n t eg r a l * ( B_rem_magnet /mu_0) * L_m_wire

return F3

def f o r c e _ l i s t ( co i l_ to_magnet_d is tance ) :
’ ’ ’ Create ar rays o f fo rces from the c o i l on both magnets , and create
the combined fo rce ar ray . ’ ’ ’

’ ’ ’ I npu t : the co i l −to−magnet d is tance . ’ ’ ’
’ ’ ’ Output : Fmagnet1 gives an ar ray o f fo rces from the c o i l on one magnet ,
a t vary ing pos i t i o ns z_m. Fmagnet2 gives the fo rce on the other magnet
( the d is tance between them i s co i l_ to_magnet_d is tance *2 ) .
F t o t a l i s the combined fo rce on the two magnets . A l l fo rces are i n [N] ’ ’ ’
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Fmagnet1 = np . empty ( (N) )
Fmagnet2 = np . empty ( (N) )

for i in range (N ) :
F_1 = F_z (0 , R_coi l , z _ l i s t [ i ] , R_magnet , L_co i l , L_magnet , I _ c o i l , I_magnet , \

N_coi l , dR)
F_2 = F_z (0 , R_coi l , z _ l i s t [ i ] + co i l_ to_magnet_d is tance *2 , R_magnet , L_co i l , \

L_magnet , \
I _ c o i l , I_magnet , N_coi l , dR)

Fmagnet1 [ i ] = F_1
Fmagnet2 [ (N−1)− i ] = F_2
F t o t a l = Fmagnet1 + Fmagnet2

return Fmagnet1 , Fmagnet2 , F t o t a l

def f i n d_ f o r ce ( z , z _ l i s t , F to t ) :
’ ’ ’ Find the fo rce a t a ce r t a i n l o ca t i o n z . ’ ’ ’

’ ’ ’ I npu t : the l o ca t i o n o f i n t e r e s t z i n [m] , the l i s t o f poss ib le magnet d is tances
z _ l i s t i n [m] , and the t o t a l fo rce l i s t F to t i n [N ] . ’ ’ ’
’ ’ ’ Output : The fo rce F in [N] a t the spec i f i ed l o ca t i o n z i n [m] . ’ ’ ’

z _ l i s t = np . asarray ( z _ l i s t )
index = ( np . abs ( z _ l i s t − z ) ) . argmin ( )
F = F to t [ index ]

return F

def B_ f i e l d ( z_c , R_c , z_m, R_m, L_c , L_m, I_c , I_m , N_c , dR ) :
’ ’ ’ Ca lcu la te the i n t eg ra t ed r a d i a l magnetic f i e l d from a c o i l a t the
l o ca t i o n (z_m, R_m) ’ ’ ’

’ ’ ’ I npu t : c o i l center z_c i n [m] , c o i l rad ius R_c in [m] , c y l l i n d r i c a l l o ca t i o n
o f ca l cu la ted B (z_m,R_m) i n [m] , c o i l and magnet leng th L_c and L_m in [m] ,
c o i l and magnet cu r ren t I_c and I_m in [A ] , # c o i l windings N_c and c o i l
wid th dR from center R_c i n [m] ’ ’ ’
’ ’ ’ Output : B f i e l d a t (z_m,R_m) ’ ’ ’

R_in = R_c − dR
R_out = R_c + dR

Doub le In teg ra l = dblquad ( B_ring , R_in , R_out , lambda z_c:−L_c /2 , lambda z_c : L_c / 2 , \
args = (z_m,R_m, I_c ) )

B_DoubleIntegra l = Doub le In tegra l [ 0 ] * N_c / ( L_c * ( R_out−R_in ) )

return B_DoubleIntegra l

def ca l cu l a t e_and_p lo t_ radB f i e l d_ f r omco i l ( r a d i a l B f i e l d ) :
’ ’ ’ P l o t the r a d i a l B f i e l d from the c o i l i n 2D. ’ ’ ’

’ ’ ’ I npu t : The func t i on to ca l cu l a t e the r a d i a l B f i e l d : B_ f i e l d i n [ T ] . ’ ’ ’
’ ’ ’ Output : A 2D p l o t and a 2D ar ray o f r a d i a l magnetic f i e l d s t rengths , B2 i n [ T ] . ’ ’ ’

B_double = np . empty ( (N,N) )
for i in range (N ) :

for j in range (N ) :
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B2 = r a d i a l B f i e l d (0 , R_coi l , z _ l i s t [ j ] , r _ l i s t [ i ] , L_co i l , L_magnet , \
I _ c o i l , I_magnet , N_coi l , dR)

B_double [ i , j ] = B2
pr in t ( i , j )

zz , r r = np . meshgrid ( z _ l i s t *1000 , r _ l i s t *1000)
f i g , ax = p l t . subp lo ts ( )
s = ax . pco lo r ( zz , r r , B_double , cmap = coolwarm )
cbar = p l t . co lo rba r ( s )
cbar . se t_ l abe l ( ’ $B_r$�[T ] ’ , f o n t s i z e= labe ls4x4 )
cbar . ax . t ick_params ( l a be l s i z e= t i ck4x4 )
ax . se t_x labe l ( ’ $z$�[mm] ’ , f o n t s i z e= labe ls4x4 )
ax . se t_y labe l ( ’ $r$�[mm] ’ , f o n t s i z e= labe ls4x4 )
AX = 15
ax . se t_x l im (−AX,AX)
ax . se t_y l im (0 ,2*AX)
ax . t ick_params ( d i r e c t i o n = ’ i n ’ , which= ’ both ’ , l a be l s i z e= t i ck4x4 )
cu r ren tAx i s = p l t . gca ( )
cu r ren tAx i s . add_patch ( Rectangle ((− L_co i l *1000/2 , R i _ co i l *1000) , \

L_co i l *1000 , Co i l _ th i cknes *1000 , \
alpha =0.4 , l i n ew i d t h =2 , co l o r= ” k ” ) )

f i g . se t_s ize_ inches (4 ,4 )
p l t . show ( )

return B2
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