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Abstract

The water balance model has long been an indispensable tool for quantifying water supply and
demand and regulating water resources. By convention, hydrologists use in-situ measurements
of river discharge for model calibration. Whereas hardly is it possible for areas suffering
from data storage. Researchers have been working on methods dealing with this problem
for many years. Satellite datasets are potential substitutes for the in-situ observation of
hydrological variables. This research proposes a monthly strategy using satellite time series
as model inputs and aims to apply this strategy in the absence of gauged data for discharge
simulations and predictions. Instead of streamflow, the strategy uses variables like actual
evapotranspiration (ETa) and/or terrestrial water storage anomalies (TWSA) for calibration.
The research challenges lie in the situation that there can be significant errors in data derived
from satellite products. Also, hydrological models designed for discharge simulation cannot
necessarily function well when calibrated on other terms. This boils down to the research
questions as follow:

1. How large are water balance data errors and to what extent can they be reduced?

2. How large are water balance model errors and to what extent can they be reduced?

3. To what extent does quantifying and reducing data and model errors eliminate trade-
offs in fitting multiple datasets?

The strategy is constructed based on an error estimation and water balance data fusion
method and the original and the advanced version of the Water Partition and Balance model
(Wapaba), then tested in the Smoky Hill River catchment. When using unprocessed data, the
water balance is not closed for the basin. The discharge simulation has the fitting precision
index the Box-Cox transformed root mean squared error (TRMSE) in the range of 0.70 - 1.43
for different datasets and in calibration and validation period. Indexes of discharge fitting σ
exceed 1.66. After closing the water balance with the mean value time series of all fluxes,
TRMSE decreases to 0.55. Considering data uncertainties, TRMSE is further declined to
0.29 and σ drops to 0.46. After that, the model structure is also improved. When using the
modified model to calibrate on only ETa and TWSA for calibration (TRMSE for discharge =
0.87), the performance is similar to that of using the original Wapaba on all fluxes (TRMSE
for discharge = 0.86). The fitting precision index σ for TWSA also decreases.
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The research demonstrates the effectiveness of the data fusion method in correcting
satellite time series and sheds light on the potential of application of this strategy in the
ungauged area through the comparison of different calibration cases. After modification, the
strategy is able to reproduce the flow regime, without using in-situ data, to the same degree
as all three hydrological components (discharge, actual evapotranspiration and water storage)
are used for calibration.
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Abbreviation Full form

CHIRPS Climate Hazards Group InfraRed Precipitation with Station data
CSR Center for Space Research
DE Differential Evolution
EC Eddy Covariance
Ei Interception loss
Ep Potential evapotranspiration
ET Evapotranspiration
ETa Actual evapotranspiration
GLEAM Global Land Evaporation Amsterdam Model
GLUE The generalized likelihood uncertainty estimation
GRACE Gravity Recovery and Climate Experiment
JPL Jet Propulsion Laboratory
MC Monte Carlo
MCS Monte Carlo Simulation
MODIS Remotely sensed Moderate Resolution Imaging Spectroradiometer
P Precipitation
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RMSE root mean square error
SEBAL Surface Energy Balance Algorithm
SSEBop the Operational Simplified Surface Energy Balance
SWAT Soil and Water Assessment Tool
TRMSE The Box-Cox transformed root mean squared error
TWS Terrestrial Water Storage
TWSA Terrestrial Water Storage Anomalies
Wapaba The Water Partition and Balance
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Chapter 1

Introduction

1-1 Background and problem description

Water balance models are essential tools for quantifying water supply and demand and solv-
ing practical water resource problems. They are designed to give a clearer comprehension
of crucial processes that affect the hydrological cycle. Monthly models have been widely ap-
plied for the estimation of monthly stream flows, medium and long-term forecasting of water
resources, and water resources management (C. Y. Xu & Singh, 1998).

The most commonly used assessments of discharge are based on simulations of discharge
together with gauge-based observations (Famiglietti & Rodell, 2013). In practice, one oft-
mentioned problem is that water balance models based on physical mechanisms need the
support of a large number of spatiotemporal distribution data, but manual observation is
always time-consuming and laborious. Modeling suffers from short ground observations and
their limited spatial and temporal representatives. The missing, long-overdue or inaccurate
information on runoff complicates the prediction of monthly water resources.

In recent years, the development of remote sensing products has led to increased availabil-
ity of satellite datasets on various hydrological variables, which proves the possibility of their
utilization in hydrological modeling, makes up for the insufficiency of conventional station
observations and brings unprecedented opportunities for model evaluation and improvement
(Lu et al., 2015). The current thesis proposes research to build an improved monthly water
balance strategy that allows using satellite time series for calibration and to evaluate the
applicability of the strategy as a valuable tool for streamflow simulations and predictions
in poorly gauged river basins. The research starts with a literature review on approaches
to correct errors in satellite remote sensing data, commonly used hydrological model cali-
bration methods, together with existing methodologies to use satellite data of hydrological
components for model calibration and evaluation.
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1-2 Methods for parameter calibration

In conceptual models, parameters cannot be directly measured and thus require optimization
through calibration, so that satisfactory agreement can be obtained between observed and sim-
ulated counterparts of some components related to the water balance (Rientjes, Muthuwatta,
Bos, Booij, & Bhatti, 2013). Water balance models are usually calibrated by using streamflow
time series observed at one or a few locations in the river basin (Muthuwatta et al., 2009),
since calibration on streamflow, which is an integrated response of a watershed, controls
many model processes. Moreover, the in-situ measurement of streamflow is relatively easy
(compared with the ground observation of terrestrial water storage) and the extent of uncer-
tainty in measured streamflow can often be estimated (Yassin et al., 2017). There are various
methods for hydrological model calibration and evaluation using streamflow data alone.

The traditional methods generally used for hydrological model calibration are single-
criterion optimization and multi-criteria optimization. The former is a straightforward and
scrutable approach but suffers from some restrictions when dealing with complicated models
with a great number of parameters. The latter enables the full use of field measurements and
is useful for reducing parameter uncertainty (Cao, Bowden, Davie, & Fenemor, 2006). For
example, Cao et al. (2006) adopt a multi-variable and multi-site approach for SWAT model
calibration and evaluation by using extensive field measurements; while Hallema and Moussa
(2009) use multi-objective functions related to volume, peak flow, and the Nash-Sutcliffe
coefficient in addition to extensive data collection.

Another widely used method is to assess the fidelity of the hydrological model based on
Bayesian statistical inference (Yassin et al., 2017), which is highly effective in providing a
general and natural probabilistic strategy that explains the hydrological model and its pa-
rameter uncertainty at the same time (e.g., Y. M. Xu, Lin, and Li, 2015). The uncertainty
analysis method based on Bayesian theory assumes that the model parameters obey a ran-
dom vector of a joint distribution, and uses the Bayesian method to calculate the posterior
probability distribution of the parameters and calculate the uncertainty confidence interval
of the predictor (Wei, 2017). Yang (2007) uses Bayesian inference to tackle the problem of
non-identifiability of distributed parameters. In the research of Jeremiah, Sisson, Marshall,
Mehrotra, and Sharma (2011), they implement a sequential Monte Carlo approach so as to
obtain posterior parameter estimates in eastern Australia, and this approach results in great
efficiency in parameter space exploration. The generalized likelihood uncertainty estima-
tion (GLUE) strategy represents prediction uncertainty within the context of Monte Carlo
(MC) analysis coupled with Bayesian estimation and propagation of uncertainty. The GLUE
method is flexible and easy to apply (Blasone et al., 2008). For example, Ma and Chen (2014)
propose the parameter uncertainty analysis of the Xinanjiang model in the Dongyang River
Basin based on the GLUE method. The range of uncertainty contains most of the measured
discharge, which demonstrates that using the GLUE method to quantify uncertainty of the
Xinanjiang model in the study area is feasible. However, the measured discharge cannot
be included in the upper and lower bounds of the simulated discharge, indicating that the
parameter ranges cannot cover all values.

Another different method is sensitivity analysis, which is popular and efficient for model
parameterization, especially in model reduction or for reducing of the number of parameters
needing calibration. Through the identification, the noninfluential factors and insensitive
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components of the model structure can be constrained or removed (Razavi & Gupta, 2015).
The sensitivity analysis procedure helps to significantly simplify the model or analysis and to
reduce the workload of manual calibration. A sensitivity analysis that accommodates a large
number of parameters while considers several output variables can be applied for a water
quality model (van Griensven et al., 2006) as well as quantity mathematical models (da Silva
et al., 2015), and obtain successful results. Bock, Hay, McCabe, Markstrom, and Atkinson
(2016) implement the Fourier Amplitude Sensitivity Test (FAST) global-sensitivity algorithm
on a monthly water balance model to generate parameter sensitivities. In the study of da Silva
et al. (2015), the parameters that influenced the surface runoff and baseflow were optimized
manually, and the resulting parameter set was used for simulation and evaluation.

1-3 Satellite data used in model calibration

As the growing complexity of hydrological models brings more degrees of freedom, using
streamflow alone in traditional calibration methods is not sufficient to adequately capture
some components (e.g., water storage) in the basin and subsequently to close the water
balance (Yassin et al., 2017). To constrain the model performance, many studies evaluated
the potential of satellite remote sensing-based hydrological components data.

One common approach is calibrating hydrological models using observed streamflow data
and satellite time series of another hydrological component (Muthuwatta et al., 2009). Com-
parisons of model performances reveal that simulations incorporating water balance variables
other than discharge reduce optimal combinations of multiple parameters (i.e., equifinal-
ity, which corresponds to more than one parameter combination leading to similar results
(Immerzeel & Droogers, 2008)). Besides, the comparisons increase the probability of finding
a parameter set that represents the actual hydrological simulations of the basin (Muthuwatta
et al., 2009).

Some studies of Gravity Recovery and Climate Experiment (GRACE) outline its poten-
tial to detect and improve the understanding of water storage and its change within the basin
(Sun, Green, Swenson, & Rodell, 2012; V. Ferreira, Gong, He, Zhang, & AndamAkorful,
2013), since it has a solid hydrological signal over the selected study area (Deus, Gloaguen,
Krause, 2013). Incorporating GRACE-derived terrestrial water storage changes (TWSC) data
during model parameterizations can improve hydrological model performances since GRACE
data can be used to constrain the ratio between ET and TWSC and to improve the estimates
of hydrological variables (Lo, Famiglietti, Yeh, & Syed, 2010; Yassin et al., 2017; Bai, Liu, &
Liu, 2018). For example, Tangdamrongsub et al. (2017) argue in their study that GRACE
Data Assimilation greatly improves the accuracy of groundwater storage estimates by 25%,
although they slightly lower the accuracy of discharge simulation. The research of Yassin et
al. (2017) validates that adding an objective function of comparing TWS anomaly against
GRACE data reduces errors in the simulation of the total volume of streamflow.

Unlike these previous studies, Rientjes et al. (2013) argue that it remains unclear to
what extent the model can reproduce the water balance of the basin by including a state
variable such as TWSC in the traditional calibration approach since a state variable can only
indirectly influence closure of the water balance of the hydrological model. The ETa time
series estimates based on remote sensing are often used in calibrating and evaluating surface,
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sub-surface, and river routing parameters, since they can indirectly incorporate the effects of
water diversions, and reflect part of the effects of human activities (Muthuwatta et al., 2009;
Rajib, Evenson, Golden, & Lane, 2018). The authors use a preference-based multi-variable
objective function weighted for streamflow and SEBS-ETa for parameter estimation with
Monte Carlo Simulation (MCS). Their results are satisfactory for both terms (better than
those on single-variable calibration). Similarly, Muthuwatta et al. (2009) present in their
study a stable calibration approach using observed streamflow data and remotely sensed ETa
time series estimates from Moderate Resolution Imaging Spectroradiometer (MODIS) carried
out with MCS.

In addition to the above two water budget components, precipitation is also essential,
since it is a vital input for hydrological models. Many surveys state the deficient ability of
remote sensing rainfall estimates, compared to rain gauge measurements, since uncertainties
associated with them lead to severe non-linear propagation of errors affecting discharge sim-
ulation (Falck, Maggioni, Tomasella, Vila, & Diniz, 2015). Thus, errors in satellite remote
sensing precipitation need to be quantified and, if possible, removed ahead of time. The
use of remotely sensed streamflow estimates in hydrological modeling directly seems to be
plausible (e.g., Hiep et al., 2018), but the information contained in them may not properly
bring the evolution of vertical fluxes at various temporal and spatial scales within the basins
to researchers (Rajib et al., 2018).

Theoretically, some calibration approaches using data from satellite products can be
applied and investigated with or without limited in-situ ground hydro-meteorological data
(ungauged areas), to estimate streamflow and to improve the understanding of the hydro-
logical processes (López, Sutanudjaja, Schellekens, Sterk, & Bierkens, 2017). Some of the
previous studies arrive at positive conclusions regarding the effects on streamflow simulations
from incorporating satellite remote sensing data for model calibration. For example, in the
study of Zaitchik, Rodell, and Olivera (2008) and Forman, Reichle, and Rodell (2012), as-
similation of GRACE-derived TWS anomalies by using an ensemble Kalman smoother leads
to a slight improvement in runoff simulation, and a significant improvement in groundwater
simulation. Immerzeel and Droogers (2008) validate the method of using satellite-derived
ETa, based on the Surface Energy Balance Algorithm (SEBAL), as a data source for calibrat-
ing the process-based hydrological model Soil and Water Assessment Tool (SWAT). However,
there are also negative results reported. As is mentioned in the research of Bai et al. (2018),
the calibration of hydrological models using GRACE data alone cannot improve the runoff
simulations compared with the simple parameter estimates. The primary reason could be
that model calibration using GRACE-derived TWS data, which is a state variable, alone
improves the parameterization associated with state variables, but cannot improve the pa-
rameterization associated with runoff generation and/or routing. In the study of Rientjes et
al. (2013), simulation of discharge by using the HBV model calibrated on only remote-sensed
ETa results in low performances, because a small error in ETa can cause a relatively large
error in discharge, due to the large difference in their volumes.

As stated above, calibration using time series of only one variable can result in incorrect
parameterization (i.e., successful reproduction of discharge, but a mismatch of ET and water
storage), yet model calibration and evaluation by remote sensing data of multiple variables
can also be an option. For instance, López et al. (2017) represent a multi-objective calibration
approach that uses a step-wise calibration scheme that attempts to combine the advantages
of calibration respectively using satellite time series of actual evaporation and surface soil
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moisture. They first adjust all the model parameters on satellite actual evapotranspiration
(ETa) and hold constant those that can be clearly identified. The remaining parameters are
then calibrated using surface soil moisture. A model calibrated on the two variables achieves
a better streamflow simulation performance than using a single one of them. Tian et al.
(2017) jointly assimilate GRACE-derived TWS and soil moisture satellite retrievals. The
joint assimilation results in better estimates of water storage, groundwater, and surface soil
moisture.

Apart from these studies, parameters of hydrological models for basins with spatially
sparse and limited ground observation are usually estimated by using regional information.
Since the most commonly used hydrological models are conceptual or partly conceptual mod-
els, with a clear physical basis, one can assume basins with similar characteristics have similar
hydrological behavior and thus can be modeled with similar parameters (Bardossy, 2007).
Therefore, hydrological regionalization can be used to transfer model parameter information
from gauged (donor) to ungauged basins. For example, Bock et al. (2016) achieve satisfying
simulation results in low and median flows across the conterminous United States.

In a nutshell, conventional approaches have a great dependence on the in-situ measure-
ment of streamflow, so its application and effects in poorly gauged areas are severely restricted.
Incorporating satellite remote sensing time series of hydrological components together with
the runoff observations in the calibration of the water balance model reveals the potential of
remote sensing data to improve the understanding of water cycle processes within the basin.
Hence, using remote sensing time series of variables like TWSC for model parametrization
seems to be a useful alternative in ungauged basins, but the simulation effects of other vari-
ables (e.g., streamflow, groundwater) can be either positive or negative.

1-4 Methods for data and model error correction

Despite some success in improving the model performance, the uncertainties in remote sensing
data are a limiting factor in their utility for parameter estimation (Yassin et al., 2017). To
make use of remote sensing data, unknown errors and bias in data of all balance components
precipitation, evapotranspiration, river discharge, and water storage change - need to be
quantified and, if possible, removed. One popular error estimation technique is to consider in-
situ measurements as relatively accurate and use them as a reference (ground-truth). Sheffield,
Ferguson, Troy, Wood, and McCabe (2009) evaluate each of the remotely sensed datasets
against observations and off-line data, and atmospheric reanalysis data. Moreira et al. (2019)
evaluate uncertainties in precipitation and evapotranspiration with in situ measurements of
rain-gauge stations and eddy covariance (EC) sites, respectively. Instead of using a single
measurement dataset, it is also feasible to merge multiple non-satellite products for each
water budget component, and the non-satellite merged products are assumed to represent the
best estimates of each budget term (Sahoo et al., 2011). For example, Sahoo et al. (2011)
merge multiple non-satellite products for P and ET by taking their mean. Then they merge
all the satellite data to produce a single satellite-only data product for P and ET respectively.
The merged products are generated for P and ET by combining the four P and four ET
products using weighted values based on their errors with respect to the non-satellite merged
products. Another approach is to create a reference dataset using the water budget equation.
Moreira et al. (2019) use remote sensing data to calculate the TWSC as a residual of the
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simplified water balance equation. They also investigate the difference between the TWSC
from the GRACE and the remote sensing water balance.

Without requiring a reference as the true value, an alternative idea to estimate the total
water budget from satellite data is to build an ensemble of datasets for the same component.
To estimate ET uncertainties, Long, Longuevergne, and Scanlon (2014) use the three-cornered
hat method, which does not need a priori knowledge of the true ET value. Y. Zhang et al.
(2018) use a constrained Kalman filter data assimilation method under the assumption that
they can utilize the deviation from the ensemble means of all data sources for the same water
balance flux as a proxy of the uncertainty in individual water balance fluxes.

Another point worth noting is what hydrological variables are considered in studies. Some
previous studies only work on the estimation of bias and random errors of one component (e.g.,
Wei (2017) only considers uncertainty in precipitation data aiming at finding out the influence
of uncertainty on model performance.). Many other studies investigate three components
of the water balance equation (e.g., Sheffield et al., 2009; Azarderakhsh, Rossow, Papa,
Norouzi, and Khanbilvardi, 2011). This helps to account for the interactions between errors
in individual water balance components.

Moreover, the estimation of water resource availability at the basin scale requires mod-
eling of all variables of the hydrological system (Abera, Formetta, Borga, & Rigon, 2017).
The imperfect model structure can lead to uncertainties as well. First, the conceptual model
is just a simňpliňfied rep-reňsenňtaňtion of the natural complex water cycle processes with a
limited number of parameters and equations, which cannot completely reflect the temporal
and spatial complexity of a river basin. For example, there may be empirical model param-
eters that are not able to depict the truth comprehensively. The hydrological scale and the
time-invariant nature of model parameters also directly affect the uncertainty of the model
structure. The former problem can happen if applying the equations and laws of the water
cycle obtained from small-scale experimental research to the spatial and temporal scale of an
actual watershed. The latter problem is even apparent in catchments where the condition of
the substrate changes significantly due to the change of vegetation, the behaviors of animals
and human beings, etc. For example, traditional models with time-invariant parameters can
consider the direct influence of vegetation on hydrological processes; but it is hard for them
to take into account the indirect dynamic effects caused by the change of vegetation (Yu,
2015). Such model simplifications may further limit its ability to accurately represent actual
hydrological mechanisms and processes (Wei, 2017).

1-5 Research questions

The long-term goal of the research is to fully benefit from satellite products of the terrestrial
water cycle and to conduct good water balance simulations in ungauged watersheds. The
hypothesis here is that such ungauged prediction requires both accurate satellite data and a
reliable model structure.

The current study aims to answer the following research questions:

1. How large are water balance data errors and to what extent can they be reduced?

2. How large are water balance model errors and to what extent can they be reduced?
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3. To what extent does quantifying and reducing data and model errors eliminate trade-
offs in fitting multiple datasets?

1-6 Thesis structure

The remainder of the thesis will be set out as follows. Chapter 2 introduces the river basin
and data used in the study, as well as the monthly Wapaba rainfall-runoff model. Chapter
3 describes the methodology used for answering the research questions. The results are
presented and evaluated in Chapter 4, followed by a discussion in Chapter 5 that uses the
results from Chapter 4 to answer the research questions. Finally, conclusions and prospects
for further study are presented in Chapter 6.
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Chapter 2

Case study

This chapter introduces the study area and datasets of all variables used for modelling. Then,
the principle of the chosen model is illustrated.

2-1 Study Area

The scale of data used, as well as the avoidance of inference with hydrological conditions,
should be taken into account in study basin selection. The proposed method is tested using
a single basin, Smoky Hill River, Kansas, United States.

Figure 2-1 presents the location of the basin. The western half of Kansas has exposures
of Cretaceous through sediments, indicating a medium or low permeability of the stratum.
This is consistent with the geologic map in Figure 2-2, which makes it manifest that there
is a considerable amount of silt, siltstone and claystone in the stratum. The basin area is
about 49592.23 km2. It has the Solomon River and the Saline River as its major tributaries
(see Figure 2-3). The latitude and longitude of the gauge station are respectively 38◦54′23”
and 97◦07′03”. According to USGS (“USGS 06877600 SMOKY HILL R AT ENTERPRISE,
KS. USGS Water Resources”, n.d.), the mean flow of Smoky Hill River at Enterprise is about
1449 cubic feet per second.

On the authority of the Kansas Department of Health Environment (“SMOKY-SALINE
RIVER BASIN TOTAL MAXIMUM DAILY LOAD”, n.d.), the flow condition of the study
area has such seasonal features that the lowest flows appear in winter (December to January),
while spring and summer (generally April to August) see its highest flows. The peak stream-
flow appearance time is not fixed, generally between March and September (see Figure A-1
in Appendix A). Precipitation and runoff events make high flow events influential to flows
in the spring and summer to fall time.

Depending on the satellite products, the annual mean precipitation and potential evapo-
transpiration are 640 mm and 550 mm. Using the standard provided by CPGPRC (“Climate”,
2013), this area is semi-humid. Dominated by a typical Midwest climate, it is very hot in
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Figure 2-1: The location of the catchment Smoky Hill River at Enterprise. Note. The Contour
of conterminous United States is derived from “US Census Bureau.” (2021, October 8).

summer and cold in the wintertime. In the western part of Smoky hill river basin, the annual
average snowfall period is shorter than 20 days, and the annual snowfall is less than 90cm.
In the eastern part, the annual snowfall is about 40cm and lasts about 10 days (“NOAAs
19812010 Climate Normals. (n.d.)”, n.d.). Although there are minor or moderate spring
floods (Hadachek, 2019), snowmelt is not an essential source of streamflow.

This basin lies in the Central Great Plains ecoregion. Compared with other ecoregions,
this ecoregion is less impacted by human alteration on hydrologic conditions (Falcone, 2011).
The area is distinguished from the adjacent ones by its climate and vegetation. The relatively
warmer temperature gives vegetations in Central Great Plains, which are usually grasses, a
longer growing period. Shrubs or trees are rare in this area. The most productive crops in this
area are winter wheat, sorghum and corn. The primary live stocks are cattle, cow and hog
(“USDAs National Agricultural Statistics Service Kansas Field Office (Part of the Northern
Plains Regional Field Office)”, 2021, September 15). Drought, grazing by animals, and fire
are local main disturbance regimes (Chaplin, Cook, Dinerstein, Simms, & Carney, n.d.).
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Figure 2-2: The geologic map of the study catchment. Note. The geologic map is adapted
from Geological map of Kansas (Ross, 1992) and Colorado (Green, 1992). The vertical line in
the graph is the dividing line between the two states (left Colorado and right Kansas)

Figure 2-3: The topographic map of the basin with the location of rivers and of the gauge
station. Note. The shapefile of North American rivers is provided by the Natural Earth, Hillshade
elevation is provided by “U.S. Geological Survey” (20180618) and the states shapefile (7/21/2015)
is derived from ArcGIS Hub.
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Table 2-1: Monthly water balance data

Variable Symbol Data
source

Resolution Reference

Precipitation Pobs1 CHIRPS v2.0 0.05◦ Funk et al. (2015)
Pobs2 PRISM 4 km “PRISM Climate Group” (2021)

Evaporation
Eobs1 SSEBop v5 1km Senay and Kagone (2019)
Eobs2 GLEAM v3.5b 0.25◦ Miralles et al. (2011)
Ep

Water
storage

Sobs GRACE 3◦ Watkins, Wiese, Yuan, Boen-
ing, and Landerer (2015); Wiese,
Landerer, and Watkins (2016);
Wiese, Yuan, Boening, Lan-
derer, and Watkins (2018); and
Landerer et al. (2020)

River
discharge

Q Stream
gauges

Basin “USGS 06877600 SMOKY HILL
R AT ENTERPRISE, KS. USGS
Water Resources” (2021)

2-2 Monthly water balance data

This section first introduces data sources and the version used in the study. Further informa-
tion on missing data and data pre-processing is included.

2-2-1 Overview

For the research, two categories of data need to be collected: data utilized as model inputs,
and data utilized for the evaluation of model simulation effects. The monthly water balance
data collected are summarized in Table 2.1 according to different water balance components.
All data are monthly spatially average values over the study basin. Their sources and other
information are stated in sections 2.2.2 to 2.2.5. This research has been based on monthly
data over the period of January 2003 to July 2020.

2-2-2 Precipitation time series

Two monthly precipitation products are employed. The Pobs1 and associated standard errors
are provided by CHIRPS, which is a 35 more-year quasi-global rainfall dataset (Funk et al.,
2015). The unit for CHIRPS is mm per month in this case.

For the remediation of errors and bias in CHIRPS, another precipitation dataset, denoted
as Pobs2, is included. The Pobs2 in Table 2-1 is PRISM Spatial Climate Dataset (in mm),
contributing monthly precipitation values for the data fusion. The PRISM climate data are
observed from a wide variety of monitoring networks by “PRISM Climate Group” (2021),
Oregon State University, http://prism.oregonstate.edu, created 12 June 2021. The resulting
datasets incorporate an extensive range of modeling techniques and are available based on
monthly modeling.
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Figure 2-4: Monthly precipitation data for Smoky Hill River at Enterprise during Jan 2003-
July 2020. Note. The longitudinal coordinate precipitation represents the monthly water flux
of precipitation and is expressed in depth of water (in this study, mm). The CHIRPS data
incorporates standard deviation and a 90% uncertainty band is shown.

The two datasets are shown in Figure 2-4. They both tend to give higher precipitation
in summer to autumn and lower precipitation in winter times.

2-2-3 Evaporation time series

For the determination of errors in evapotranspiration, GLEAM and SSEBop remote sensing
products are incorporated. Both datasets are provided in millimeters.

Evapotranspiration is under most conditions considered as the combination of vegetation
transpiration, soil surface evaporation and canopy interception loss. The first remote sensing
evapotranspiration time series used in the study Eobs1 is calculated utilizing the Operational
Simplified Surface Energy Balance (SSEBop) model. The Simplified Surface Energy Balance
technique, which has specific parameterization for operational applications, is used to build
SSEBop. With a thermal index method, it combines ET fractions generated from remotely
sensed MODIS thermal imagery with reference ET (Senay & Kagone, 2019). As is shown in
Table 2-1, version 5 of the dataset is used and the unit is millimeter.

The Global Land Evaporation Amsterdam Model (GLEAM) is a collection of algorithms
that estimate the various components of evapotranspiration independently (Martens et al.,
2017; Miralles et al., 2011). The actual evaporation used for the study is denoted as Eobs2.
The potential ET (including interception loss Ei) provided by GLEAM is denoted as Ep, and
is used in the water balance model as an input. Both actual and potential evaporation are
in the unit of millimeter per month. For further calculation, units of their fluxes are changed
into millimeter.
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2-2-4 Terrestrial water storage

GRACE Tellus Monthly Mass Grids provides monthly gravitational anomalies and its symbol
is Sobs. The dataset is available at: https://podaac-tools.jpl.nasa.gov/drive/files/allData/
tellus/L3/gracefo/land_mass/RL06/. The benchmark for the anomaly of terrestrial water
storage change is the mean value of January 2004 to December 2010. The anomalies of
GRACE-derived TWS data are produced by the Center for Space Research (CSR) at the
University of Texas at Austin, as are scaled by the NASA Jet Propulsion Laboratory (JPL).

The data contained in this dataset are units of "Equivalent Water Thickness", which
represent mass deviations with regard to the vertical extent of water (in cm and is converted
to mm). The Sobs contains soil water store and remaining water in groundwater storage.
During the simulation period, many data are missing, and the record index indicating data
conditions are presented in Appendix A.

2-2-5 Discharge time series

The monthly streamflow time series for the study catchments from January 2003 to July
2020 used in the study are the USGS Water Data for the Nation, and the River basin Water
Resource Maps and GIS Data is vector digital data GAGES-II: Geospatial Attributes of Gages
for Evaluating Streamflow. They are provided by James Falcone, U.S. Geological Survey,
Reston, Virginia. The original unit of data provided in cubic feet per second. The chosen
time series contains a very dry year (2012) and a very wet year (2019). The original unit of the
provided discharge time series is cubic feet per second. For the simulation and comparison,
the discharge is expressed in water depth and the unit is converted into millimeter.

2-3 Monthly water balance model

In this section, a five-parameter lumped model is chosen. By using a lumped model, water
resources can be estimated without using spatially distributed information. The Water Par-
tition and Balance (Wapaba) monthly hydrological model evolved from the Budyko strategy
(L. Zhang, Potter, Hickel, Zhang, & Shao, 2008). The Wapaba model has been validated in
many river basins in Australia, Colombia and East-African (Muvundja et al., 2014; Wang et
al., 2011). It is suitable for a variety of climatical and hydrological conditions, e.g., tropi-
cal, arid, and temperate (John, Fowler, Nathan, Horne, & Stewardson, 2021). According to
the research of Bennett and Wang (2017), conceptual models of similar complexity to the
Wapaba model perform correctly in the ungauged areas. Thus, under the rational assump-
tion, the Wapaba model can produce analogously acceptable results in catchments without
observation.

The model takes in five parameters and two conceptual storages and requires monthly
rainfall and potential evapotranspiration as inputs (Li, Wang, & Bennett, 2013). The struc-
ture of the Wapaba model is provided in Figure 2-5. The core of the Wapaba model is the
use of the consumption curve, as it controls the partitioning among water supply, demand
and consumption. Table 2-2 gives the prior bounds of parameters.
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The first parameter α1 depicts the catchment consumption curve. The higher α1 the
less direct runoff there is in the catchment. Moreover, with a higher α1, the flow will be
smoothed and delayed. The evaporative efficiency can be raised with a high value of α2,
which describes the shape of the evapotranspiration curve. The proportion of catchment
yield as groundwater is denoted as β. Given a higher value, the recharge rate is faster,
suggesting the greater importance of baseflow. Parameter K is a constant of groundwater
store time. It is pretty influential to groundwater discharge rate. Flow can be smoothed and
delayed if K is very small. The maximum water holding capacity of soil store is denoted as
Smax. With a high Smax value, the hydrograph has longer memory and larger soil moisture
(Pagano, Hapuarachchi, & Wang, 2009). Besides, as mentioned by LIU and ZHANG (2006),
initial water content has a significant effect on the accuracy of flood simulation. Hence, the
initial soil water store So and the initial groundwater store Go are both taken as initial state
parameters.

Figure 2-5: Water partitions in the Wapaba model. Note. From Monthly versus daily water
balance models in simulating monthly runoff, by Wang et al., 2011, p. 167, Figure 1. Copyright
2010 Elsevier.

The collection of the model parameters can be represented as θw = {α1, α2, β, K, Smax}.
The model takes into account the actual evapotranspiration, soil water storage, base-

flow, and surface flow fluxes. Consistent with section 2.2, the study converts precipitation,
evapotranspiration and river discharge over a month into monthly water fluxes. Therefore,
all water fluxes, as well as water storage volumes within a month, are expressed in vertical
extent of water. The unit is thus millimeter. Model calculation stages are as follows:

1. The consumption curves are adopted in the model to partition water into various
components using the pre-requisite that water supply and demand are accessible. Wapaba
model first partitions the total rainfall P(t) (mm month-1) into catchment water consumption
X(t) (mm month-1) and catchment water yield Y(t) (mm month-1). This process examines
the temporal and spatial heterogeneity of the catchment process (Pokhrel, Robertson, &
Wang, 2013).
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Table 2-2: Wapaba model parameters

Parameter [Unit] Lower Bound Upper Bound
α1[-] 1 10
α2[-] 1 10
β[-] 0 1
K[days] 1 3650
Smax[mm] 5 1000
S0[mm] 0 Smax

G0[mm] 0 -
Note. Adapted from Accounting for seasonal dependence in hydrological model errors and

prediction uncertainty, by Li et al., 2013, p. 5916, Table 1. Copyright 2013, AGU.

The rainfall which replenishes the soil water store and returns to the atmosphere through
evapotranspiration forms the catchment water consumption, while the water yield Y(t) is the
remaining rainfall after the catchment water consumption in the catchment.

Catchment water consumption is given by

X (t) = X0 (t) F

(
P (t)
x0 (t)

, α1

)
(2-1)

in which parameter α1 is the catchment consumption curve parameter, F(x) represents the
consumption curves as follow:(

Consumption

Demand

)
= F

(
Supply

Demand
, α

)
= 1 + Supply

Demand
−

[
1 +

(
Supply

Demand

)a]1/α

(2-2)

The catchment water consumption potential X0(t) is calculated as

X0 (t) = Smax− S (t − 1) + ET0 (t) (2-3)

in which Smax (mm) is the maximum soil water holding capacity in the catchment, taken
as a parameter; S (t − 1) represents water remaining in the soil water store at the beginning
of period t and ET0 (t) (mm month-1) is the potential evapotranspiration.

The other partitioned component, catchment water yield, is given by

Y (t) = P (t) − X (t) (2-4)

2. Total water available for evapotranspiration W(t) (mm month-1) comprises actual
evapotranspiration ET(t) (mm month-1).

W (t) = S (t − 1) + X (t) (2-5)

The actual evapotranspiration is given by

ET (t) = ET0 (t) F

(
w (t)

ET0 (t)
, α2

)
(2-6)
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in which parameter α2 is the evapotranspiration curve coefficient.

Water storage in the soil water at the end of t is given by

S (t) = W (t) − ET (t) (2-7)

3. The catchment water yield is partitioned into water that replenishes the groundwater
store R(t) (mm month-1) and surface runoff Qs(t) (mm month-1).

R (t) = β Y (t) (2-8)

QS (t) = Y (t) − R (t) (2-9)

in which β is the proportion of the catchment water yield as groundwater.

4. The groundwater store is drained to produce base flow Qb (t) (mm month-1), which
is given by

Qb (t) = G (t − 1)
(
1 − e−T K

)
+ R (t)

(
1 −

(
K

T

) (
1 − e−T k

))
(2-10)

in which T is the length of time step t (in the same time unit as the groundwater store
time constant K, days in this study). Since there is not enough data-based evidence for the
store time, K is calibrated as a model parameter. The base flow refers to the amount of
infiltrated groundwater that returns to the surface (Muvundja et al., 2014).

Therefore, the remaining water storage in the groundwater G (t) (mm) is

G (t) = G (t − 1) + R (t) Qbt (2-11)

Next, water storage in the soil water and the groundwater should be added to derive the
total terrestrial water storage:

TWS (t) = S (t) + G (t) (2-12)

5. The total monthly flow Q(t) is obtained by adding surface runoff and base flow

Q (t) = QS (t) + Qb (t) (2-13)
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Chapter 3

Methodology

This section provides details on the three main steps of the methodology (see Figure 3-1).
Different types of errors in the conceptual monthly water balance model are analyzed and
reduced.

Corresponding to the three goals outlined above, the methodology, as shown in Figure
3.1, is divided into three parts. The first part investigates the effectiveness of quantifying and
reducing errors in satellite data. Then, the model error impact and its solution are analyzed
in the second part. In the final part, the improved strategy is tested.

In the phase of evaluation of the strategy, the original model and unprocessed satellite
data are used for the simulation of the discharge first (Scenario 1 in Figure 3-2). In Scenario
2, the study calibrates the original model with the cleaned remote sensing data (data with
known uncertainty) from step 1. We compare their performances on predicting monthly runoff
to test the hypothesis that the error-corrected satellite remote sensing data can make up for
the deficient ground observations over the basin (Hiep et al., 2018). By correct, it means to
close the water balance through a single iterative approach for the estimation of a consistent
set of data errors and hydrological variables. Then, Scenario 3 simulates the discharge using
corrected inputs together with the model from step 2 to see if it can prove the benefit of the
structurally enhanced model. By comparing the results of doing this with or without the
correction for data errors and flawed model structure, their effectiveness and practicability in
variable simulation and discharge prediction in catchments with limited ground observations
can be confirmed. Therefore, the results of the study are expected to be a contribution to
predictions in areas with insufficient discharge measurement.

3-1 Quantifying and reducing data errors using data fusion

In the first stage, the study focuses on errors in remote sensing data and in-situ observation
of discharge. To study the uncertainty of all hydrological variables comprehensively, we work
on the water balance closure, which is feasible due to the increasing availability of remote
sensing products for components of the terrestrial water cycle (Sheffield et al., 2009). Recent
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Figure 3-1: Logic flowchart of the study
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Figure 3-2: Comparing different scenarios to assess the effects of data and model errors

error estimation and data fusion methodology proposed by Schoups and Nasseri (2020) will
be used for automatically cleaning water balance datasets. Monthly water balance variables
for every month are taken as inputs, they were spatially averaged so as to derive basin-scale
data values. Barely can true values that can be employed as a reference for bias and random
data errors estimation be discovered, because no dataset or estimate is excused of errors. For
this cause, the water balance fusion and error estimation method does not assume a reference
dataset. Instead, it assumes every water balance variable as subject to unrevealed bias and
errors. Subsequently, an internally consistent set of data errors and values of variables that
can close water balance needs finding. This goal is achieved through a single iterative scheme
(Schoups & Nasseri, 2020).

This scheme combines the error estimation and water balance fusion processes into an
integrated methodology: it first uses a single iterative method which forms data error models
for every water balance component with a probabilistic model that can be used for the amal-
gamation of water balance constraints. Next, the results from the former step are processed
with Markov Chain Monte Carlo sampling and an iterative form of Kalman smoothing. In so
doing, all accessible information can be fused together in order to produce optimized estimates
with uncertainty for all hydrological components as well as error parameters. The output of
the methodology is a distribution that gives the mean value and the standard deviation of
every water balance variable (Schoups & Nasseri, 2020). Hence, it provides an estimated
value and the uncertainty of each variable for each month.
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After this, data used in the model (i.e., precipitation as input, river discharge, evap-
otranspiration, and water storage for calibration) are anticipated to be error-filtered and
bias-corrected and they lead to a satisfactory water balance closure.

3-2 Quantifying and reducing model errors using model calibration
and evaluation

This section argues the method used to examine errors brought by model structure. It first
provides the method to demonstrate the effectiveness of data fusion in hydrological modelling.
Next, after eliminating the interference of data error, the error still displayed in the simulation
results is the model structure error. This error, then, is quantified and reduced. This section
also elaborates on objective functions used for each step.

3-2-1 Calibration scheme

To conduct the parameter calibration and to display the outcomes, several additional param-
eters are incorporated (see Table 3-1). The first research question focuses on data errors, in
which model input error is of vital significance (see Figure 3-3). To take into account errors
in model inputs, the model treats precipitation in each month individually as a parameter.
The bound of each Pt is (µ − 3SD, µ + 3SD), in which µ and SD are the mean value and
standard deviation of P given by data fusion. This range can include 99.73% of the possible
actual P and is considered enough for this study.

Besides, it is assumed that the model error for each variable is independent and identically
distributed according to a normal distribution with an estimated variance σ2. The model
error indicators for the simulation forced by the raw data from the two satellite products on
discharge (Scenario 1) are denoted as σprism and σchirps. When using error-corrected data,
model errors for discharge, ETa and TWSA are σQ, σE and σS .

In addition, when comparing modeled TWS with GRACE data or calibrating on water
storage, the transform parameter M needs to be introduced. Since GRACE data are a series
of deviations of observations from a reference period (anomalies), the modeled water storage
cannot be compared with it directly. Instead, M is subtracted for each simulated value over
the entire time series to convert it into anomalies. For the former case, M is set in such a way
that the modeled TWS in the first month is equal to the GRACE mean value. For the latter
case, parameter M is calibrated to make its objective function reach the optimal value. In this
case, parameter M also makes the simulated value not much different from the observed value
in the first month (due to a relatively low σS brought by the optimal objective function).
These additional parameters are found through the same joint calibration approach as other
parameters.

According to scenarios in Figure 3.2, the research set up the following steps.

Step a. To force the Wapaba model with data from the two satellite products, respec-
tively. The reproductions of TWSA and ETa are also given.

Step b. To use the error-corrected precipitation time series and GLEAM potential evap-
otranspiration to force the Wapaba model. This step can be divided into two sub-steps.
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Figure 3-3: Analysis scenarios for the assessment of input uncertainties. Note. Adapted from
Investigating the impact of remotely sensed precipitation and hydrological model uncertainties on
the ensemble streamflow forecasting, by Moradkhani et al. (2006), p. 3, Figure 1. Copyright
2006 by the American Geophysical Union. 0094-8276/06/2006GL026855.Analysis scenario: (i)
Calibrated true, (ii) forcing data uncertainty.

The first is to use the mean values derived from data fusion without considering precipi-
tation uncertainty. The second is to take into account precipitation uncertainty by adding
logLikelihood P in its objective function.

Then, to calibrate the parameters on solely discharge (by using logLikelihood Q as the
objective function). The simulations of ETa and TWS are also required.

Step c. The study uses error-corrected data to force the chosen model and calibrate
the parameters on all three fluxes to test whether the model has the ability to describe the
physical process of each flux accurately.

Step d. To calibrate on actual evapotranspiration or terrestrial water storage anomalies.
The obtained parameter set is denoted as θET a or θT W S . Parameter sets θET a or θT W S will
be tested through the reproducing of other components. Next, this study calibrates model
parameters on both actual evapotranspiration and terrestrial water storage anomalies. Then,
it tests the parameter set using discharge simulation.

Step e and Step f. These two steps are the counterparts of Step c and Step d. The
difference is that they will use improved models for simulation.

All objective functions used in the above steps are exhibited in Table 3.2. Through the



24 Methodology

Table 3-1: Parameters for the whole calibration scheme and their bounds

Type Parameter Lower bound Upper
bound

Model parameter Wapaba
model
parameters

See section 2.3

Forcing data Pt max(µ − 3SD, 0) µ + 3SD

Model prediction error parameter

σprism

0 +∞σchirps

σQ

σE

σS

Transform parameter M 0 1000

comparison of results from Step a and Step b, the influence of forcing data errors on streamflow
prediction and the effectiveness of bias correction and error correction can be verified.

The second research question aims at adjustments in their structure that will be made
to create an improved monthly water balance strategy. We investigate if there is the prob-
lem that the model produces unrealistic representations of hydrological processes over the
catchment due to the limitation of parameters and equations. This can be examined first in
Step b. If the model does produce unrealistic representations of hydrologic process across the
watershed, a simulation of discharge does not guarantee the reliable reproduction of other
hydrological components (ETa and water storage), which reveals the problem of the defective
model structure (Bai et al., 2018; Muthuwatta et al., 2009; Rajib et al., 2018). This will
also be studied, in Step c, by calibrating the model on all three output fluxes. The results
can give a general impression of the model’s ability to simulate all fluxes. The results of
the simulation can yield insights about model deficiencies that are otherwise not available by
using conventional methods and only in situ data (Sun et al., 2012).

One approach of the improvement is to replace the empirical model parameters, equa-
tions, or configurations of the model with physically robust ones (e.g., Qing-fang, WANGYin-
tang, Ke-lin, and Zong-zhi, 2007) (Y. Q. Zhang, Chiew, Zhang, Leuning, & Cleugh, 2008;
Jiang & Wang, 2019). Another way is to include hydrological processes ignored in the exist-
ing model (e.g., Anyan, Shenglian, Lihua, and Jing, 2008), since the systematic errors can be
decreased as more hydrological processes are added to the model, which leads to an increase
in its complexity (L. Zhang, Walker, & Dawes, 2002; Bai et al., 2018). After the modifications
in model structure, in Step e and Step f, it is expected to produce more reliable discharge sim-
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Table 3-2: Calibration scheme

Flux(es) used for calibra-
tion

Objective function

Step a/Step
b

Observed Q (without precipita-
tion error or discharge measure-
ment error)

logL (see Eq (3-4))

Step b Q Sub-step 1: logL (see (Eq (3-4))

Sub-step 2: logLikelihood P + log-
Likelihood Q (see Eq (3.5) and (3.6))

Step c/Step e ETa, TWSA and Q logLikelihood P + logLikelihood E +
logLikelihood S + logLikelihood Q

Step d ETa logLikelihood P + logLikelihood E

TWSA logLikelihood P + logLikelihood S

Step d/Step f ETa and TWSA logLikelihood P + logLikelihood E+
logLikelihood S

Note. Smybols Q, ETa and TWSA represent fluxes of discharge, actual evapotranspiration
and terrestrial water storage anomalies. In step d, using only ETa or TWSA for calibration

are not focal points and results are put in Appendix C.

ulation results without severe deteriorations in the accuracy of TWSA and ETa simulations
compared with the original model and vice versa.

3-2-2 Objective function

Likelihood, a relative quantitative measure of model fit, is used as the objective function for
parameter calibration. Higher likelihoods present higher probabilities of the model produc-
ing the observed time series. When carrying out different calibrations, different likelihood
functions are employed.

1. Using unprocessed satellite data to force the model

As illustrated by Schoups (December, 2018), the main idea is to generate data to fit the
measurement through a conceptual process by using a statistical model and to reason back-
ward from the measurement to determine the parameter set that produces the generated data.
More specifically, the procedures of building likelihood function for parameter calibration on
discharge can be:

(1) Run the rainfall-runoff model with its parameters θ to obtain simulated runoff Qsim:
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Qsim = MODEL (P, EP , θ) (3-1)

in which P is the precipitation of the study area, EP is the potential evapotranspiration.

(2) The generative model defines observed discharge values Qobs,t as a series of random
draws from normal distribution depending on the modeled values Qsim, t and errors. When
using raw data as model inputs, no data errors are considered. Hence, Qobs,t is drawing from
a normal distribution with a mean value of Qsim,t and a standard deviation of σ indicating
the hydrological model structure error:

Qobs,t = Qsim,t + σzt (3-2)

where zt is a normal distributed random variable and zt N (0, 1).

(3) The distribution of observed discharge at time t Qobs,t is N
(
Qobs,t| Qsim,t, σ2)

. The
probability L can be calculated through the product of every such distribution of every mea-
surement:

L =
∏

t

N
(

Qobs,t| Qsim,t, σ2
)

(3-3)

(4) Take the logarithm of both sides of the equation to obtain:

logL =
∑

t

log
(
N

(
Qobs,t| Qsim,t, σ2

))
(3-4)

in which σ is to be estimated from the data using calibration.

2. Using corrected precipitation to force the model

To further improve the model performance, the effect of uncertain forcing data should
be reduced. For this purpose, a more effective series of precipitation is calibrated using an
objective function incorporating log-likelihood (see Equation (3-5)) of precipitation.

logLikelihood P =
∑

t

log (N (Pobs,t| Psim,t, varianceP,t)) (3-5)

where Psim,t for each month is calibrated as a parameter, Pobs,t and varianceP,t are the
mean value and uncertainty of precipitation for the t − th month produced by the data fusion
method. 3. Using observations with errors for model calibration Similar to the first case,
model prediction error of river discharge is denoted as σQ. Moreover, measurement errors
need to be included in the likelihood function of discharge.

logLikelihood Q =
∑

t

log
(
N

(
Qobs,t| Qsim,t, σQ

2 + varianceQ,t

))
(3-6)

where Qsim,t for each month is the simulation of discharge produced by the Wapaba
model, Qobs,t and varianceQ,t are the mean value and uncertainty of river discharge for the
t − th month produced by the data fusion method.
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Likewise, this function can be modified for calibration on actual evapotranspiration and
terrestrial water storage anomalies. The model simulation of actual evapotranspiration and
terrestrial water storage anomaly are denoted as Esim,t and Ssim,t for each month. Symbols
σE and σS are their model structure errors. Their mean values and uncertainties for the
t − th month given by the data fusion method are denoted as Eobs,t, Sobs,t, varianceE,t and
varianceS,t.

As stated in the calibration scheme, from Step b to Step f combined objective functions,
which are additions of log-likelihood functions of required terms, are used. When calibration
on different datasets, in order to combine those single functions, weights of different terms
are usually used. In this method, rather than weight, the variances in the likelihood terms
are used. As mentioned before, the data variances are given by the data fusion method, and
the model error variances are estimated through calibration.

The differential evolution (DE) algorithms (Storn & Price, 1997) is used to determine
the optimal values for model parameters. DE is a metaheuristic search algorithm based on
population that enhances a problem by iteratively developing a potential solution based on
an evolutionary process (Georgioudakis & Plevris, 2020).

For the monthly water resources simulation, it is the low flow that researchers pay more
attention to. Another index, the Box-Cox transformed root mean squared error (TRMSE)
(equation (3-7)), can be put into service since it emphasizes model fitting during low-flow
periods. As stated by P. M. d. L. Ferreira, Paz, and Bravo (2020), TRMSE can reduce the
influence of heteroscedasticity in RMSE (root mean squared error) calculation. In general, a
lower TRMSE is better than a higher one.

TRMSE =

√√√√ 1
n

n∑
t=1

(
Q̂sim, t − Q̂obs, t

)2
(3-7)

Q̂ = (1 + Q)λ − 1
λ

(3-8)

where n is the time step, Q̂sim, t refers to the transformed simulated discharge, Q̂obs, t is
the transformed observed discharge. Following a previous study, the Box-Cox transformation
coefficient λ is set at a value of 0.3, which gives a similar impact as the log transformation
(Wagener, van Werkhoven, Reed, & Tang, 2009).

When considering errors in observation, the simulated discharge will be compared as the
discharge mean value of each month on the basis that the uncertainty given by data fusion is
small. Even so, TRMSEs disadvantage of disability in taking data uncertainty into account
is still noticeable. Therefore, when simulating ETa and TWSA, who have remarkably larger
uncertainty, this index is not a good reference. However, when no measurement uncertainty
is considered, namely in Case a and Case b sub-step 1, TRMSE for ETa and TWSA can also
be used. The calculation equation is similar to that of runoff in Eq (3-7) and (3-8).
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Chapter 4

Results

This chapter illustrates and tests the outlined methodology with the study area. The data
fusion is done before modeling and its effectiveness is illustrated in 4.1 and 4.2. In the following
section 4.3, the results of structure modification are presented.

4-1 Data fusion

This section first presents the water balance error without correction. Then, results of data
fusion are exhibited. Through comparison, part of the efficiency of the data fusion method
can be illustrated before bringing in hydrological models.

4-1-1 Data fusion results

Before using datasets of hydrological variables, the water balance needs checking using Equa-
tion (4-1). Equation (4-2) is obtained by moving all terms to the left side. To allow for some
computer setting and rounding errors, if the absolute value of the left side is smaller than
10−5, it is believed that the water balance is closed.

St = St−1 + Pt − Et − Qt (4-1)

St − St−1 − Pt + Et + Qt = 0 (4-2)

in which St−1 and St refer to total terrestrial water storage in the study area at the start
and end of the t−th month, Pt and Et are basin-averaged precipitation and evapotranspiration
in the t − th month, and Qt represents the river runoff at the basin outlet.

Figure 4-1 exhibits the results of water balance checking on original satellite data. First of
all, in both graphs, there are missing points caused by missing values of one or more variables
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(in this case, TWSA). This phenomenon reduces datasets’ feasibility, although most of the
other time series is long enough and of better quality. Secondly, errors in the two graphs
are apparently beyond the acceptable threshold. In Graph (a), the maximal and the minimal
errors are 47.40 and -110.20. In Graph (b), the maximal and the minimal errors are 95.83 and
-67.89, far beyond the threshold. Therefore, original datasets do not close the water balance
in the study area in both cases.

(a)

(b)

Figure 4-1: Water balance checking using original datasets. Note. Graph (a) uses time series
from PRISM and GLEAM for precipitation and ETa, while in Graph (b), Chirps and SSEBop
v5 are used as precipitation and ETa. In both graphs, river discharge and TWSA use in-situ
measurement and GRACE-JPL data.
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Water balance posteriors are shown in Figure 4-2. The four graphs from top to bottom
represent ensemble P, ETa, TWSA and Q, respectively. Uncertainty bands of 90% are also
presented in the figure to prevent the results from being overconfident. In the first graph, the
corrected mean value is closer to the simulation using CHIRPS data (with TRSME = 0.7493)
than PRISM data (with TRSME = 1.058), especially in the summer and autumn when the
monthly rainfall is higher. In these periods, the PRISM dataset always overrates the P values,
while in the low-value months, PRISM tends to underestimate P compared with CHIRPS.
According to Schoups and Nasseri (2020), this suggests that a more prominent weight is given
to the CHIRPS dataset.

(a)

(b)

Figure 4-2: Monthly water balance estimates from January 2003 to July 2020 by data fusion.
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(c)

(d)

Figure 4-2: Monthly water balance estimates from January 2003 to July 2020 by data fusion.
Note. Graph (a) to (d) represents estimates for precipitation, evapotranspiration, terrestrial
water storage anomalies and discharge. The subfigures show a 90% posterior uncertainty band.
In Graph (b), the potential evapotranspiration from GLEAM is taken as the basin potential
evapotranspiration.

It can be seen from the second graph that there is a large difference between the GLEAM
and the SSEBop datasets. The corrected result for ETa tends to much more nearly follow the
value of GLEAM than that of SSEBop. The latter one is likely to fall out of the uncertainty
band at peak value or valley value. Both P and ETa graphs demonstrate a more significant
uncertainty at a higher value, indicating that the corrected values for these two variables are
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more accurate at the lower level. This phenomenon results from discrepancies between two
datasets often more prominent at peak values than at low values.

Inferred TWSA is presented in Graph (c). It basically follows the GRACE data, other
than there is an abnormal period in 2017 and 2018, the uncertainty band is significantly
wider than any other time. The rational explanation for this is that there are many missing
records (see Appendix A) between July 2017 to May 2018, also in August and September
2018 (13 consecutive months in total, excluding June and July 2018). Although there are
also a few sporadic data missed before, they do not lead to abnormity like that. To conclude,
the occasional missing GRACE record does not remarkably differ its inferred posteriors from
those with observation value. This is, as designed by Schoups and Nasseri (2020), due to the
principle of data fusion that error parameters are obtained from months using data from the
entire time series, and smoothing infers posteriors using data from all months. However, the
significant disturbance in the posteriors elucidates that the data fusion method is less precise
dealing with a long-range deficiency in observations.

Besides, the TWS anomalies in 2012 decrease significantly. The great diminish in the
water store can be explained by the lower amount of precipitation, which results in a declined
actual evapotranspiration (the potential ET remains stable). The low P also leads to less
runoff in 2012 - likewise, the high P in 2019 accounts for the increase in TWS and river
discharge.

The posterior uncertainty firmly follows its prior uncertainty, as revealed in the last graph
of Figure 4-2. Like P and ET, data fusion generally gives higher uncertainty to peak flow and
lower uncertainty to low flow. This characteristic can make it more accurate when simulating
low flow, which is the primary focus of the monthly water balance model.

4-2 Efficiency analysis

This section provides results of, firstly, traditional model simulation (Scenario 1) in Case a.
In the second place, it gives the performance from Scenario 2 in Case b. This case contains
two sub-steps. Sub-step 1 only uses corrected data as model input and performance controls,
without considering input or measurement uncertainty. Sub-step 2 combines the impact of
forcing data error, measurement error and model error.

4-2-1 Case a: using raw data for calibration

When the likelihood reaches its maximum, the optimal parameter set is found (See Table
4-1). Using PRISM or CHIRPS to force model, both α1 are around 3. PRIMS results in
larger α2, β and K than CHIRPS, but its Smax around 200 is much lower than Smax derived
by CHIRPS exceeding 500. The initial states soil water storage by PRISM is approximately
one-ninth as large as CHIRPS. The values of groundwater storage in both cases are close to
zero.

Besides, Table 4-1 also lists both fitting results. The simulated discharge, together with
the observation, is plotted in Figure 4.3 below. The two σ values are similar and larger
than 1.6, and TRMSE values both exceeds 0.7 in the calibration period, consistent with the
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Table 4-1: Calibrated parameters and precision indexes of simulations with Wapaba model forced
by original inputs (Case a)

Input Parameter
α1 [-] α2 [-] β [-] K [days] Smax [mm] So [mm] Go [mm]

PRISM 3.546 2.753 0.7212 81.80 204.4 38.14 1.470
CHIRPS 2.855 1.621 0.5660 12.68 504.4 342.8 0.0004

Input σ
Calibration Validation
Likelihood TRMSE TRMSE

PRISM 1.659 0.1458 0.8119 1.433
CHIRPS 1.699 0.1424 0.7047 1.264

Table 4-2: Parameters calibrated on discharge using Wapaba model and fitting precision indexes
(Case b)

Sub-step α1 [-] α2 [-] β [-] K [days] Smax [mm]

1: No P/Q uncertainty 3.762 2.379 0.5610 183.3 112.9
2: With P and Q uncertainty 3.658 2.358 0.4376 849.2 131.9

Sub-step So [mm] Go [mm] M σQ TRMSEQ

1: No P/Q uncertainty 22.95 3.423 (18.30) 1.654 0.5473
2: With P and Q uncertainty 35.12 13.47 (26.20) 0.4554 0.2864

phenomenon that the discharge in Graph (a) Figure 4-3 fitting is almost as bad as that in
Graph (b) in general. The modeled discharge in Graph (a) fits the observation relatively
worse at low flow. Besides, in the validation period, simulated discharge in Graph (b) in
Figure 4.3 is better than that in Graph (a). Also, the TRMSE of discharge simulation forced
by PRISM is larger than CHIRPS by about 0.17.

Figure 4-4 present the reproduction of ETa and TWS. In Graph (a), the two ETa sim-
ulations forced by PRISM and CHIRPS are broadly close to each other, especially at low
values. At high values, PRISM-forcing ETa values are usually larger than CHIRPS-forcing
ones, except for those in the dry years 2006 and 2012. TRMSE of ETa and TWSA can be
computed in a similar way of that of discharge. The simulated ETa values are quite differ-
ent from those of Ssebop5 (TRMSE for ETa simulation using PRISM and CHIRPS data are
1.696 and 1.771). Although the simulations, particularly the PRISM-forcing ones, are closer
to GLEAM data (TRMSE for ETa simulation using PRISM and CHIRPS data are 0.4640
and 0.4526), no information of measurement uncertainty is provided. Moreover, Graph (b)
shows that CHIRPS-forcing TWSA fluctuates more and better fits GRACE JPL data from
2005 to 2015 than the PRISM-forcing one. After 2016, both simulations are apparently larger
than the observation. The value of TRMSE for water storage anomalies is larger than 4.
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(a)

(b)

Figure 4-3: Discharge simulations with Wapaba model forced by raw satellite data (Case a)

4-2-2 Case b: Using clean data and calibration on Q

As the effects of inaccurate input are demonstrated, the next step is to examine the efficiency
of the data fusion method. First of all, if considering no precipitation uncertainty, only one
determined time series, in this sub-step the time series of mean values, is used as inputs. The
optimal parameter sets are given in Table 4-2 and Figure 4-5 exhibits the simulated results.
In this sub-step, the fitting precision index of discharge simulation σQ is 1.654, and TRMSE
is 0.5473. The simulation of discharge fits the observation accurately in low flow but the
simulation of recession limbs is not precise. For example, the simulated recession limbs in
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(a)

(b)

Figure 4-4: Actual evapotranspiration and water storage anomalies simulations with raw satellite
data (Case a)

2004, 2005 and 2017 are higher than the observation, while that in 2011 is much lower. Even if
we know that there are errors between the measured and the observed values, the magnitude
of errors is still unavailable, due to unqualified uncertainty of the measurement. Graph (b)
exhibits the observed and simulated ETa with TRMSE equal to 0.5109. The simulated TWSA
is flat and quite different from the observation with TRMSE equal to 4.207.

While in the second sub-step, the uncertainty in precipitation is also incorporated. As
stated above, precipitation values here are treated as parameters and given a much wider
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(a)

(b)

Figure 4-5: Simulation results without considering precipitation uncertainty (Case b sub-step 1)

range than the uncertainty band. However, due to the constraint of likelihood, the majority
of the precipitation values used as inputs fall in the band (see Figure 4-6). The value of σQ

(0.4554) and TRMSE (0.2864) are both remarkably lower than that in the previous sub-step.
All simulated discharge can be explained by its measurement with 99.74% uncertainty, and
even that with 90% uncertainty can account for the majority of the simulation (92.89%) (see
Figure 4-7).

In Figure 4-8 Graph (a), 64.93% simulation of ETa can be accounted for by measure-
ment with 90% uncertainty, and measurement with 99.74% uncertainty can explain 89.10%
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(c)

Figure 4-5: Simulation results without considering precipitation uncertainty (Case b sub-step 1)

simulated ETa values. Graph (b) presents a large difference between the simulated TWSA
and the measurement, which cannot be explained fully by errors in model forcing data and
observation. Thus, this reveals the defective model structure.

Figure 4-6: The calibrated precipitation (Case b sub-step 2)
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Figure 4-7: Discharge simulation process using parameters calibrated on discharge (uncertainty
known, Case b sub-step 2)

4-3 Model structure analysis

This section presents outputs of Step c to Step f. The first two cases c and d use the original
monthly Wapaba model, while the last two cases improve it and make use of the advanced
model.

4-3-1 Case c: calibration on ETa, TWSA and discharge

This case calibrates model parameters on all three fluxes (using the objective function from
Table 3-2). The simulated results using parameters calibrated are exhibited in Figure 4-9.

The optimal parameter set is in Table 4-3. With the better simulation of TWSA than
exhibited in Figure 4-8, the accuracy of discharge simulation decreases. TRMSE increases to
0.8532, and the value of σQ rises to 2.174.

4-3-2 Case d: calibration on ETa and TWSA

Bai et al. (2018) argue that model calibration using GRACE-derived TWSA data alone cannot
efficiently decides parameters associated with runoff generation and/or routing, because water
storage is a state variable. Therefore, ETa is also incorporated for calibration in this case.
The results are exhibited in Figure 4-10. All optimal parameters derived in Case c and Case
d are presented in Table 4-3.

The performances of actual evapotranspiration simulation in Case c and Case d are
similarly. Relatively, the simulated ETa in Case c fits the observation better, given a smaller
fitting precision index (σE = 4.013) than that in Case d (σE = 4.755). Even though the result
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(a)

(b)

Figure 4-8: Simulation of ET (a) and TWS (b) using Wapaba parameters calibrated on discharge
(Case b sub-step 2). Note. In the simulation of TWSA, parameter M is set to be 26.1960.

that the σS value in Case d is much lower than that in Case c seems to be an improvement,
the simulation of runoff gets significantly worse. The index TRMSEQ increases from 0.8532
to 1.441. In graph (b) of Figure 4-10, the modeled discharge consists only of baseflow, which
is inconsistent with the actual situation. It is found by analyzing the parameters of the case
that the severe smooth and delay of flow results from the situation that sensitive parameters
and K in Case d are much lower than those in Case c. Parameter β, indicating the proportion
of the catchment yield as groundwater, is larger than 0.50 in Case c, but decreased to 0.1559
in Case d. Moreover, the groundwater store time K exceeds 2000 in the previous case, but is
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(a)

(b)

Figure 4-9: Simulation using all three fluxes for calibration (Wapaba model, Case c)

less than 1500 in Case d.

Therefore, more processes should be added in the model principle to constrain these
parameters to more realistic values. A high β value shows high recharge to groundwater.
Thus, it leads to the results that the proportion of river discharge as baseflow is high, but as
surface runoff is low.

Besides, in both Case c and Case d, the amount of baseflow is too large. For example, in
the beginning of 2003 in both cases, the actual amount of baseflow should be close to zero.
However, both simulated values are around 4 millimeters, suggesting in the simulated results
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(c)

(d)

Figure 4-9: Simulation using all three fluxes for calibration (Wapaba model, Case c)

too much water are regarded as baseflow (of discharge) among all water balance fluxes. This
inaccuracy can thus influence the amount of other fluxes.

4-3-3 Case e: model structure modification and calibration on ETa, TWSA and
discharge

According to equation (2-9), to increase (the proportion of) surface runoff Qs, the recharge
to groundwater store R for each time step needs to be reduced. The recharge R can be
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(a)

(b)

Figure 4-10: Simulation using ETa and TWSA for calibration (Wapaba model, Case d)

constrained.

This case assumes that the factors influencing groundwater recharge are similar to those
influencing infiltration. That is, to ignore the influence brought by recharge from precipi-
tation, i.e., precipitation duration, seasonal factors, topography and vegetation. The main
factors affecting recharge are (a) the intensity of water supply, (b) the size of soil voids, (c) the
amount of time given and (d) the amount of groundwater that can be held in store (related
to water table, space in the ground and rate of groundwater discharge).

Consequently, according to the Wapaba models equation (2-8), the water supply (factor
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(c)

(d)

Figure 4-10: Simulation using ETa and TWSA for calibration (Wapaba model, Case d)

(a)) in month t is the product of β and catchment water yield Y (t). A constant that works as
the upper limit of infiltration rate fmax [mm/day] is introduced for factor (b). It reflects the
permeability of rock and soil mass. For catchments without underlying surface information,
fmax can be determined by trial and error. Factor (c) talks about the fact that recharge
from catchment water yield is also related to time (usually the precipitation retention time
on the ground) T . Since Y is catchment water yield, instead of precipitation, the T (t) can be
the number of days of the t − th month. The factor (d) is neglected in this study since the
groundwater store is considered to be infinitely large.
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Table 4-3: Calibrated parameters and precision indexes for Cases c and Case e

Calibration on α1 [-] α2 [-] β [-] K [days]

ETa, TWSA and discharge (Case c) 4.055 1.988 0.5334 2173
ETa and TWSA (Case d) 3.830 2.007 0.1559 1332

Calibration on Smax [mm] So [mm] Go [mm] M [mm]

ETa, TWSA and discharge (Case c) 177.2 41.85 232.2 244.3
ETa and TWSA (Case d) 2049 42.56 148.0 158.0

Calibration on σQ σE σS TRMSEQ

ETa, TWSA and discharge (Case c) 2.174 4.013 8.019 0.8532
ETa and TWSA (Case d) - 4.755 6.252 1.441

Table 4-4: Calibrated parameters and precision indexes in Case c and Case e

Case α1 [-] α2 [mm] β [mm] K [days] Smax [mm]

c (Wapaba) 4.055 1.988 0.5334 2173 177.3
e (modified Wapaba) 4.028 1.875 0.3911 2816 195.9

Case So [mm] Go [mm] M [mm] fmax [mm/d]

c (Wapaba) 41.85 232.2 244.3 -
e (modified Wapaba) 77.54 193.0 247.7 0.5

Case σQ σE σS TRMSEQ

c (Wapaba) 2.174 4.013 8.019 0.8532
e (modified Wapaba) 1.654 3.997 9.946 0.7069

Hence, a modified equation for the calculation of R(t) adapted from the work of Bennett,
Wang, Schepen, Robertson, and Li (2015) can be:

R (t) = min (βY (t) , fmax T (t)) (4-3)

In this case, we calibrate parameters on all three output fluxes (see Figure 4-11) and
compare the performances with those in Case c.

The value of the constant fmax is experimented with between 0 and 3 and determined
by making the best model performances. For the study area, the most appropriate value for
fmax is 0.5.

4-3-4 Case f: model structure modification and calibration on ETa and TWSA

Similar to what is done in Case d, the simulations of discharge, as well as other fluxes, use
the parameter set calibrated on ETa and TWSA (see Table 4-5). The performances are
exhibited in Figure 4-12. Graph (a) is the calibrated precipitation, while Graph (b) to Graph
(d) represents the simulated results using the improved Wapaba model of discharge, actual



46 Results

(a)

(b)

Figure 4-11: Simulations using parameters calibrated on ETa, TWSA and discharge (modified
Wapaba model, Case e)

evapotranspiration and water storage anomalies. Similar to the previous case, the value of
fmax is set as 0.5.
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(c)

(d)

Figure 4-11: Simulations using parameters calibrated on ETa, TWSA and discharge (modified
Wapaba model, Case e)
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(a)

(b)

Figure 4-12: Simulations using parameters calibrated on ETa and TWSA (modified Wapaba
model, Case f)
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(c)

(d)

Figure 4-12: Simulations using parameters calibrated on ETa and TWSA (modified Wapaba
model, Case f)
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Table 4-5: Calibrated parameters and precision indexes in Case d and Case f

Case α1 [-] α2 [mm] β [mm] K [days] Smax [mm]

d (Wapaba) 3.830 2.007 0.1559 1332 2049
f (modified Wapaba) 3.834 1.864 0.3842 2080 190.4

Case So [mm] Go [mm] M [mm] fmax [mm/d]

d (Wapaba) 42.56 148.0 157.9 -
f (modified Wapaba) 77.27 178.0 226.5 0.5

Case σQ σE σS TRMSEQ

d (Wapaba) - 4.755 6.252 1.441
f (modified Wapaba) - 4.526 6.705 0.8790



Chapter 5

Discussion

This chapter discusses those results derived from last chapter and answers research questions
accordingly. The importance of data and model errors and their reduction are explained in
detail. Finally, this chapter elaborates on the effects of the strategy.

5-1 The significance of water balance data errors and their reduc-
tion

Firstly, the original datasets fail in closing the water balance in the catchment, which does
not correspond to the actual situation in the study catchment. The maximum water balance
error is about four times the maximum runoff depth. Thus, the original datasets cannot be
put into use directly. After introducing the data fusion method, the water balance is closed
due to its internal principle. By doing so, the time series of all fluxes can be utilized for
modeling. One set of those time series combinations is the mean value time series of all fluxes
which is used in Case b sub-step 1. Judging from results in Table 4-1 and Table 4-2 sub-
step 1, the values of parameter β and Smax drops; while values of K and Go increase a lot.
After data fusion, σQ decreases slightly and TRMSEQ drops greatly, indicating data fusion
method successes in improving the performance of discharge simulation, particularly at low
flows. More specifically, it increases the reliability of the input. It is concluded that the data
fusion method can give the precipitation input more reasonable (with smaller errors) values
by fusing them in the system.

Secondly, even though checking the inaccuracy of unprocessed data can reveal part of
the inaccuracy of those datasets, the uncertainty is still not clear and cannot be quantified.
With the help of the data fusion method, the normal distributions of each term each month
are given, so uncertainty is shown in bands. For instruction, Table 4-2 shows both input and
measurements with uncertainties of 90%. The mean value for each term is the most likely
value for the actual data. Within the band, the closer a point is to the mean, the more likely
it is to be the true value. In this way, data errors can be quantified with variances provided
by data fusion and their negative influences on simulations can be reduced significantly.
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Thirdly, apart from errors in forcing data, data fusion also provides normal distributions
for output fluxes. The uncertainty band for discharge is very narrow because, instead of
satellite products, the discharge data used in this study comes from in-situ observation, which
is more reliable. Also, the magnitude of discharge in the study area is much smaller than ETa
and TWSA. With larger values, ETa and TWSA have relatively larger standard deviation
in their normal distribution as well as wider uncertainty bands. By using these, a lot of
simulation errors of ETa and TWSA can be explained. Thus, data errors can be excluded
from the synthesized errors and make it easier to analyze the model error.

Furthermore, the method can also make up for missing data. The missing data can be
filled in by smoothing since error parameters are shared throughout the entire time series.
For instance, from July 2017 to September 2018, many GRACE-JPL data are missing in this
case. After processing, it can be seen from the third graph of Figure 4-2 that there is no
missing data point in the new time series. As a result, the practicability of the method is
improved. These two aspects together illustrate part of the advantages of the data fusion
method.

5-2 The significance of errors in water balance models, and model
error reduction

As stated in the last section, the total simulated errors apart from data errors are considered
as model errors in this study. The goodness of fitting is also quantified with the estimated
index σ. The Wapaba model used in this study has a very large model error. This is proved,
firstly, by results from Case b and Case d. In these cases, when using one or more fluxes
for calibration, the reproduction of other parameters is far from the (corrected) observations.
Moreover, through the comparison of Case b and Case c, it is clear that by incorporating
more fluxes for calibration, the reproduction capability of discharge is reduced. Compared
to Figure 4-7, the simulated discharge in Figure 4-9 performs worse in both peak flow and
baseflow, indicating by much higher σ of discharge.

Therefore, the model requires modification. Nevertheless, the hydrological process within
a watershed is considered as a whole. Changes in one component must lead to changes in
another one. Thus, it is challenging to improve the model in such a way that three outputs
can be simulated perfectly at the same time. In this research, the improved model structure
is made to the degree that, first of all, the principle of the model structure is more suitable
for the realistic catchment conditions. In section 4.3.3 Case e, we constrain the infiltration
of catchment water yield. This assumption is perfectly in line with the natural condition
here that the Smoky Hill area is famous for the stratum with noticeable amount of silt (and
siltstone) and a resultant low permeability. Secondly, the model error indicator σ for some
fluxes is reduced without greatly increasing σ for other fluxes.

5-3 The effectiveness of quantifying and reducing data and model
errors

This section has three parts. Each part elaborates on one change made in the study. Together,
this section systematically analyzes how quantifying and reducing data and model errors can
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eliminate the trade-off in fitting multiple datasets. This section illustrates the strategy’s
effectiveness in improving the use of the monthly Wapaba model in poorly gauged areas.

5-3-1 Effects of reducing water balance data errors

The study investigates data fusion efficiency by comparing not only water balance checking
but also the comparison of results from Case a and Case b. Scenario 1 in Figure 3-2 uses
the traditional model simulation in Case a. Scenario 2 includes data fusion in decreasing
data uncertainty, with results presented in Case b. In Case b, Sub-step 1 only uses one set
of the corrected data (the mean value time series of precipitation) as the model input and
performance controls. Sub-step 2 combines the impact of forcing data error, measurement
error and model error.

In line with the assumption, there are noticeable biases and errors in satellite data. It
is evident that discharge performance in Figure 4-5 fits better than that in both graphs in
Figure 4-3 to the observation. The two indexes σ and TRMSE in sub-step 1 are lower than
their counterparts in Case a. Although it seems possible that if we choose another data to
force the Wapaba model in the study area and use another data as the reference of ETa, we
get a similar discharge simulation result as the sub-step 1. However, with the help of the data
fusion method, no such prior knowledge is required, leading to higher feasibility and efficiency
of data utilization. Also, the data fusion method brings more than input uncertainty. The
provided discharge uncertainty of 90% accounts for 24.64% simulated points, while 37.91%
of them can be explained by 99.74% uncertainty. Similarly, for ETa or TWSA simulation, in
Case a, the goodness of fitting is the only standard for performances. While in sub-step 1 of
Case b, the given errors of measurement can help in the interpretation of results. Although
the performance of TWSA is bad (the simulations cannot reproduce the observed values),
67.30% of the ETa simulation results can be explained by the 90% data errors, and 99.74%
uncertainty can account for 90.52% of results.

5-3-2 Effects of accounting for precipitation uncertainty

The second benefit can be concluded by comparing the two sub-steps in Case b. The difference
of the two sub-steps is whether they calibrate the input precipitation as a series of parameters,
that is whether they consider input uncertainty. By comparing the modeled runoff in Figure
4-5 and Figure 4-7, the effect of the change is further improving the accuracy of runoff
simulation is significant. First, in Figure 4-7, the simulations fit the observations better. The
index TRMSE is decreased from more than 0.5 to 0.2864, indicating the simulation at low
flow is much closer to the observed values than previously. Another index σ also drops to
0.4554 (see Table 4-2) from 1.654, implying a smaller model error. Also, the observation
with 90% uncertainty can shed light on 31.28% of values in the simulation. The observation
with 99.74% uncertainty can explain 52.61% of values in the simulation. Thus, incorporating
forcing data uncertainty is necessary.

The reason for this great change in σ is that in Case a σ includes errors in measurement,
model input as well as model structure. After data fusion processing, the model input error
is removed from the synthesis error.
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5-3-3 Effects of model structure modification

Compared to results from Case c, after the modification the fitting of discharge in Case e
(Figure 4-11) is improved. The model error σQ drops (see Table 4-4) from 2.174 to 1.654
(about 23.93%, although still larger than 1) and the index TRMSE decreases from 0.8532
to 0.7069 (about 17.15%). A similar reduction is also identified in the model error for ETa
σE , from 4.013 to 3.997 (about 0.40%), but it is not that significant. The improvement of
discharge and ETa simulations are at the expense of lowering the fitting accuracy from the
σS equal to 8.019 to the σS equal to 9.946 (about 24.03%). Since in this study we focus
mostly on discharge reproduction, and 24.03% is no larger than the sum of the percentage of
decrease in discharge and ETa, the results are acceptable.

Case d and Case f offer results of the application of the original and the advanced model
in ungauged area and the calibrated parameters as well as indexes are presented in Table
4-5. By comparing results in Case d and Case f, it can be seen that after modification, the
simulation of discharge is improved significantly, indicated by a much lower TRMSE from
1.441 to 0.8790 (approximately 39.02%). This is done on the basis of an also improved
actual evapotranspiration simulation (σE from 4.755 to 4.526, around 4.82%) and no severe
deterioration on the simulation of TWSA (σS increases from 6.252 to 6.704, by 7.24%).

The comparison of results in Case f to those in Case c and Case e shows that, even
without using discharge time series for simulation, Case f still succeeds in producing simulated
discharge whose TRMSE (0.8790) is not much larger than that in Case e (0.7069). Despite
the fact that the improved model (Case f) cannot achieve the same efficiency as using only
the discharge (Figure 4-7) for its simulation results, the simulation results obtained by the
improved model are close to the simulation results of considering all fluxes (Case c (TRMSE
= 0.8532)). Although the simulation of TWSA becomes slightly worse, the simulation effects
of both ETa and runoff are improved (smaller σE and σS). This shows the potential of the
method in areas with deficient discharge observation.

Apart from numerical results, seen from Figure 4-12 Graph (b), the discharge result in
Case e is more theoretically reasonable than that in Case d. In Case d, the only component in
discharge is baseflow, so there is no response to precipitation input nor any peak corresponding
to the measurement. However, by comparing the two sets of parameters, it can be seen that
the improved model has a reduced value for the sensitive parameter β and an increased value
for the sensitive parameter K. Hence, the proportion of surface flow in the runoff from the
basin outlet has increased. Also, the simulated flow in Figure 4-12 is less smoothed. After
modification the new model enables the simulation to capture much more peaks, for example
the ones in 2007 and in 2019, although it is still not perfect.

Therefore, it can be concluded that the strategy is able to reproduce the flow regime,
without using in-situ data, and results in a similar result as that achieved by using all three
hydrological components for calibration. Through the modified Wapaba model, it is more
feasible to simulate river discharge without in-situ measurement to get a largely satisfactory
result.

One problem presented in Case c to Case f is that when calibrating on ETa and TWSA,
the initial condition cannot be constrained effectively. In poorly gauged areas, the initial soil
water storage and the initial groundwater can be assigned to inappropriate values. In these
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cases, the too-large values of initial states lead to overestimation of discharge at the beginning
of the study period.



56 Discussion



Chapter 6

Conclusions and prospects

6-1 Research conclusions

The in-situ discharge time series has been used as the only measurement for hydrological
model calibration in traditional methods for decades. An improved monthly water balance
strategy that allows the absence of in-situ measurement and the usage of satellite data is a
valuable tool for streamflow simulations and predictions in poorly gauged river basins. This
study first demonstrates the effectiveness of the data fusion method in correcting data bias
and errors as well as describing data uncertainty. Then, it tests the improvement in model
performances brought by model structure modification and thus, confirms its ability to use
fluxes other than river runoff for calibration.

This study takes the Smoky hill river basin as the study area. It incorporates the data
fusion method so as to correct bias and errors in satellite data. When no uncertainty is used
in modeling, the mean value time series of precipitation given by data fusion succeeds in
improving discharge simulation, especially at low flow (TRMSE decreases from greater than
0.70 to 0.55). The error for each month in forcing data or measurements of discharge, actual
evapotranspiration (ETa) and terrestrial water storage anomalies (TWSA) is described with
a normal distribution. These distributions of precipitation values work as their ranges. The
best input time series can be decided as a set of parameters when the loglikelihood of P reaches
its maximum. Discharge simulation is further improved (TRMSE = 0.29). Estimates of the
three fluxes with uncertainty can explain more than 31.28% simulated points in discharge and
more than 64.93% simulated points in ETa.

The study also enables the model to use satellite data for modeling and produce sat-
isfactory results indicating its potential in being applied in ungauged areas. The imperfect
model structure is improved by adding a constraint to the recharge to groundwater. The
idea comes from the comparison of sensitive parameters as well as the proportion of different
water sources in total runoff. The modification effects are that the discharge (TRMSEQ

drops from 1.44 to 0.88) and ETa (σE decreases from 4.76 to 4.53) simulation results are
improved without severely deteriorating the performance of TWSA simulation (σS slightly
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increase from 6.2517 to 6.7045). The study uses the original Wapaba model to simulate the
three fluxes using parameters calibrated on all fluxes. The improved model is employed to
simulate the discharge using parameters derived from calibration on ETa and TWSA. The
effect of the improvement is that the latter experiment (TRMSEQ = 0.88) achieves similar
results as the former one (TRMSEQ = 0.85) does.

6-2 Prospects for further study

The long-term goal is to fully benefit from the data fusion method and the relative strategy.
The improved model in this paper inherits Wapaba models advantage of being straightfor-
ward, parsimonious and fast. The value of the added infiltration constant fmax can be easily
determined through trial and error for different catchments. Being simple and highly compre-
hensible, technicians can quickly learn how to use it, so it is possible to apply and popularize
this methodology widely. Besides, due to the exploitable structure, incorporating some extra
modules and applying this methodology in catchments under other climate types is within
the bounds of possibility. For instance, if adding a snowmelt water module and including
more parameters like ground surface temperature (also accessible through satellite products),
the methodology may be applicable in basins dominated by snow and snowmelt water.

The large drainage area of the study catchment may be one reason for the imperfect
performances of lumped models. In this study, the methodology can only be applied in basins
with large drainage areas since GRACE data requires basin area to be larger than 10000
km2 . The inhomogeneity of precipitation distribution, underlying surface characteristics and
river network characteristics in such a large catchment still affect the simulation accuracy
significantly. Although the diversity of the catchment process in temporal and spatial scales
can be expressed with the consumption curve to some extent. It is still difficult for a lumped
conceptual model to represent hydrological processes in such a large basin. For instruction,
precipitation with spatially distributed characteristics is regarded as a lumped input, which
is clearly inconsistent with the actual situation that the rainfall-runoff system takes dispersed
inputs and gives lumped runoff output. Fortunately, this disadvantage can be mitigated by
downscaling GRACE data.

Additionally, the problem of inaccurate estimation of initial storage can be solved with
the help of prior knowledge of the study area. Discharge is not sensitive to initial soil water
storage and initial groundwater. Therefore, their values can be appropriated from adjacent
similar watersheds with data. Another method is to assign initial state values to basins
accordingly to climate types of study areas. For example, if the study pried starts in the dry
season, the initial storage of an arid basin can be assigned as 0.

Lastly, the method does not take into account hydrological processes under changing
conditions. Human activities/climate changing/influences of vegetation (growth period). To
deal with problems like this, more efforts should be taken in future works for model structure
improvement. One feasible method is to investigate parameters that change with climate
or land cover change. Also, for areas affected greatly by human activities (i.e., reservoirs,
cisterns, water diversions, rooftop water storage works and underground water cellar works),
some virtual free water reservoirs (either for surface water or groundwater) can be added in
the model to delineate the abrupt variations in fluxes.



Appendix A

Dataset information

This appendix exhibits first the annual peak flow for SMOKY HILL R AT ENTERPRISE
(06877600) (“USGS 06877600 SMOKY HILL R AT ENTERPRISE, KS. USGS Water Re-
sources”, n.d.). Next, the record index of GRACE/GRACE-FO during the study period is
provided.

Figure A-1: Annual peak flow for 06877600 SMOKY HILL R AT ENTERPRISE, KS (Jan 1st
2003 to July 30th 2020)
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Table A-1: Record index (RI) of GRACE/GRACE-FO during Jan 2003-July 2020

Year Month RI Year Month RI Year Month RI
2003 JAN 8 2008 DEC 78 2014 NOV 140
2003 FEB 9 2009 JAN 79 2014 DEC NA
2003 MAR 10 2009 FEB 80 2015 JAN 141
2003 APR 11 2009 MAR 81 2015 FEB 142
2003 MAY 12 2009 APR 82 2015 MAR 143
2003 JUN NA 2009 MAY 83 2015 APR 144
2003 JUL 13 2009 JUN 84 2015 MAY 145
2003 AUG 14 2009 JUL 85 2015 JUN NA
2003 SEP 15 2009 AUG 86 2015 JUL 146
2003 OCT 16 2009 SEP 87 2015 AUG 147
2003 NOV 17 2009 OCT 88 2015 SEP 148
2003 DEC 18 2009 NOV 89 2015 OCT NA
2004 JAN 19 2009 DEC 90 2015 NOV NA
2004 FEB 20 2010 JAN 91 2015 DEC 149
2004 MAR 21 2010 FEB 92 2016 JAN 150
2004 APR 22 2010 MAR 93 2016 FEB 151
2004 MAY 23 2010 APR 94 2016 MAR 152
2004 JUN 24 2010 MAY 95 2016 APR NA
2004 JUL 25 2010 JUN 96 2016 MAY 153
2004 AUG 26 2010 JUL 97 2016 JUN 154
2004 SEP 27 2010 AUG 98 2016 JUL 155
2004 OCT 28 2010 SEP 99 2016 AUG 156
2004 NOV 29 2010 OCT 100 2016 SEP NA
2004 DEC 30 2010 NOV 101 2016 OCT NA
2005 JAN 31 2010 DEC 102 2016 NOV 157
2005 FEB 32 2011 JAN NA 2016 DEC 158
2005 MAR 33 2011 FEB 103 2017 JAN 159
2005 APR 34 2011 MAR 104 2017 FEB NA
2005 MAY 35 2011 APR 105 2017 MAR 160
2005 JUN 36 2011 MAY 106 2017 APR 161
2005 JUL 37 2011 JUN NA 2017 MAY 162
2005 AUG 38 2011 JUL 107 2017 JUN 163
2005 SEP 39 2011 AUG 108 2017 JUL NA
2005 OCT 40 2011 SEP 109 2017 AUG NA
2005 NOV 41 2011 OCT 110 2017 SEP NA
2005 DEC 42 2011 NOV 111 2017 OCT NA
2006 JAN 43 2011 DEC 112 2017 NOV NA
2006 FEB 44 2012 JAN 113 2017 DEC NA
2006 MAR 45 2012 FEB 114 2017 JAN NA
2006 APR 46 2012 MAR 115 2017 FEB NA
2006 MAY 47 2012 APR 116 2017 MAR NA
2006 JUN 48 2012 MAY NA 2017 APR NA

Continued on next page
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Table A-1 – Continued from previous page
Year Month RI Year Month RI Year Month RI
2006 JUL 49 2012 JUN 117 2017 MAY NA
2006 AUG 50 2012 JUL 118 2018 JUN 164
2006 SEP 51 2012 AUG 119 2018 JUL 165
2006 OCT 52 2012 SEP 120 2018 AUG NA
2006 NOV 53 2012 OCT NA 2018 SEP NA
2006 DEC 54 2012 NOV 121 2018 OCT 166
2007 JAN 55 2012 DEC 122 2018 NOV 167
2007 FEB 56 2013 JAN 123 2018 DEC 168
2007 MAR 57 2013 FEB 124 2019 JAN 169
2007 APR 58 2013 MAR NA 2019 FEB 170
2007 MAY 59 2013 APR 125 2019 MAR 171
2007 JUN 60 2013 MAY 126 2019 APR 172
2007 JUL 61 2013 JUN 127 2019 MAY 173
2007 AUG 62 2013 JUL 128 2019 JUN 174
2007 SEP 63 2013 AUG NA 2019 JUL 175
2007 OCT 64 2013 SEP NA 2019 AUG 176
2007 NOV 65 2013 OCT 129 2019 SEP 177
2007 DEC 66 2013 NOV 130 2019 OCT 178
2008 JAN 67 2013 DEC 131 2019 NOV 179
2008 FEB 68 2014 JAN 132 2019 DEC 180
2008 MAR 69 2014 FEB NA 2020 JAN 181
2008 APR 70 2014 MAR 133 2020 FEB 182
2008 MAY 71 2014 APR 134 2020 MAR 183
2008 JUN 72 2014 MAY 135 2020 APR 184
2008 JUL 73 2014 JUN 136 2020 MAY 185
2008 AUG 74 2014 JUL NA 2020 JUN 186
2008 SEP 75 2014 AUG 137 2020 JUL 187
2008 OCT 76 2014 SEP 138
2008 NOV 77 2014 OCT 139
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Appendix B

Water balance check

To check the water balance within the Wapaba model, the water balance equation is used.
The figures below are the results of the water balance equation. When the result is equal to
zero (<10−5), the water balance in the model is considered to be met.
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Figure B-1: Water balance check for simulation in Case a
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Figure B-2: Water balance check for simulation in Case b

Figure B-3: Water balance check for simulation (Case c: parameters calibrated on ETa and
TWSA)
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Figure B-4: Water balance check for simulation (Case d: parameters calibrated on ETa and
TWSA)

Figure B-5: Water balance check for simulation (Case f: parameters calibrated on ETa and
TWSA using the improved model)



Appendix C

Other simulation results

Case d uses fluxes other than discharge for parameter calibration. Apart from results provided
in Chapter 4, simulated results using parameter calibrated with only ETa and only TWSA
are exhibited as follows.

Figure C-1: The optimal precipitation input when using parameters calibrated with ETa
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Figure C-2: Discharge simulation results using parameters calibrated with ETa

Figure C-3: ETa simulation results using parameters calibrated with ETa
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Figure C-4: TWSA simulation results using parameters calibrated with ETa

Figure C-5: The optimal precipitation input when using TWSA for calibration
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Figure C-6: Discharge simulation using TWSA for calibration

Figure C-7: ETa simulation using TWSA for calibration
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Figure C-8: TWSA simulation using TWSA for calibration
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