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A new fixed-time fuzzy adaptive fault-tolerant control methodology is proposed for the longitudinal dynamics of hypersonic flight
vehicles (HFVs) in the presence of actuator faults, uncertain dynamics, and external disturbances. In contrast with the
conventional fixed-time control schemes that typically contain the fractional powers of errors in their designs, this work
develops a low-complexity control structure in the sense of removing the dependence on the need of abovementioned
fractional power terms by means of prescribed performance control (PPC) method. Different from the most existing PPC
approaches where the initial conditions of tracking errors are required to be known, the newly proposed prescribed
performance function (PPF) can relax such restrictions through choosing properly small initial values of PPF. Fuzzy logic
systems (FLSs) are employed to handle unknown dynamics, and minimal learning parameter (MLP) technique is incorporated
into the design for the purpose of alleviating computation burden. Closed-loop stability is rigorously proved via Lyapunov
stability theory, and simulation results are eventually given to validate the effectiveness of the proposed control strategy.

1. Introduction

Hypersonic flight vehicles have already attracted consider-
able attention due to their advantages of high flight speed,
remarkable penetration ability, and cost-effectiveness [1–4].
Nevertheless, the controller design for HFVs remains an
intractable issue due to their peculiar features. For example,
the engine-airframe structure results in strong couplings
between propulsive and aerodynamic forces, and there exist
intricate flexible deformation due to the slender geometry of
vehicle structure, which influences the aerodynamic charac-
teristics prominently [5]. In addition, the fast time-varying
flight environment and the unknown external disturbances
lead to frequent parameter variations and model uncer-
tainties, dramatically increasing the difficulty of controller
design. To address these problems, many effective methods
have been presented, including robust control [5–7], neu-
ral/fuzzy control [8–10], prescribed performance control

[11, 12], and disturbance observer-based control [13].
Although these efforts solve the above-mentioned issues to
some extent, these results rarely focus on the rate of
convergence.

To be specific, only the exponential convergence of
tracking error is guaranteed in the aforementioned work,
which reveals the convergence time tends to be infinite.
From a practical perspective, the rate of convergence is of
great significance to the transient tracking performance
[14]. Recently, the finite-time tracking control for HFVs is
investigated in [14–17], which can make the tracking error
converge into the predefined compact set within a finite
time. Nevertheless, the convergence time, which is com-
monly achieved in [14–17], depends on the initial states of
the system. It inevitably brings up a problem, that is, the
convergence time cannot be accurately settled when the ini-
tial states of the system are unknown. To solve such prob-
lem, the fixed-time control [18–21] is proposed skillfully,
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by which the tracking error can converge into a predefined
impact set within a fixed time and the connection between
the convergence time and initial states is eliminated.

However, there still exist some shortcomings with the con-
ventional fixed-time tracking control scheme [18–21], where
the inequation _VðxÞ ≤ −τVpðxÞ − ςVqðxÞ + κ holds. On the
one hand, the derivative of virtual and actual control laws will
tend to infinite when the tracking error approaches to zero,
giving rise to singularity issues in the control design [21]. On
the other hand, when the system encounters the unknown
external disturbances [22–26], the dynamic uncertainties
[27–32], the system faults [33–36], or input nonlinearities
[37], it is complicated to both ensure the fixed-time stability
of the system and predetermine the convergence accuracy by
selecting the design parameters. As is known to us, the actua-
tor faults not only affect handling performance for HVFs, but
even cause closed-loop instability [33–36]. The fault-tolerant
control is an inevitable issue for HFVs, due to complex and
variable flight environment that may lead to actuator faults,
such as control effectiveness decline and drifting. Further-
more, it is well known that the transient and steady-state per-
formances are important to the controller design for HFVs
[38]. Nonetheless, the existing PPC for HFVs commonly fails
to explicitly contain a convergence time T in the performance
function. Thus, it is urgent to develop a new low-complexity
fixed-time fault-tolerant control (FTFTC) strategy for HFVs
with the prescribed performance.

Motivated by these observations, we present a fixed-time
adaptive fuzzy fault-tolerant control scheme for HFVs by
utilizing a new prescribed performance function. The contri-
butions mainly contain the follows:

(1) This paper presents a structurally inexpensive
FTFTC framework for HFVs in the sense that no
fractional powers are involved in the design. There
is no fractional power of tracking error in the con-
troller, and thus the singularity problem caused by
the derivative of fraction term is removed

(2) By constructing the intermediate control laws and
adaptive laws, the adverse impact of actuator faults
of HFVs (e.g., loss of effectiveness and drift) is com-
pensated effectively

The remainder of the work is organized as follows. The
HFV dynamics and preliminaries are introduced in Section
2. In Section 3, the FLSs-approximator-based FTFTC is
designed and the closed-loop stability is verified in Section
4. Section 5 provides simulations to demonstrate the effec-
tiveness of the proposed methods and the work is concluded
in Section 6.

A preprint has previously been published by Zehong
Dong et al. [39].

2. Problem Formulation and Preliminaries

2.1. Hypersonic Flight Vehicle Dynamics. The longitudinal
control-oriental model is originally developed by Parker
et al. [40, 41], which can be formulated as

_V =
T cos θ − γð Þ −D

m
− g sin γ, _h =V sin γ, ð1Þ

_γ =
T sin θ − γð Þ + L

mV
−
g cos γ

V
, _θ =Q, ð2Þ

_Q =
M + ~ψ1€η1 + ~ψ2€η2

Iyy
, ð3Þ

k1€η1 = −2ζ1ω1 _η1 − ω2
1η1 +N1 −

~ψ1M
Iyy

−
~ψ1~ψ2€η2
Iyy

, ð4Þ

k2€η2 = −2ζ2ω2 _η2 − ω2
2η2 +N2 −

~ψ2M
Iyy

−
~ψ1~ψ2€η1
Iyy

, ð5Þ

where T , D, L, M, N1, and N2 are expressed as

L = �qSCL α, δ, ηð Þ,D = �qSCD α, δ, ηð Þ,
M = zTT + �qS�cCM α, δ, ηð Þ,

T = �qS CT ,Φ αð Þv Φð Þ + CT αð Þ +Cη
Tη

� �
,

Ni = �qS Nα2

i α2 +Nα
i α +Nδ

i δ +N0
i +Nη

i η
h i

, i = 1, 2,

ð6Þ

where α = θ − γ. �q, S, zT , and �c denote dynamic press, refer-
ence area, thrust moment arm, and reference length. η =
½η1, _η1, η2, _η2�T denotes the flexible modes. δ = ½vðδeÞ, δc�T,
where the deflection of canard δc is set to be ganged with v

ðδeÞ and δc = kecvðδeÞ; kec = −Cδe
L /C

δc
L . This approach was

originally proposed in [41] as a way to remove some non-
minimum phase characteristics of the dynamics. Consider-
ing the actuator fault, the actual output signals of the fuel
equivalence ratio and the elevator angular deflection are
denoted as vðΦÞ and vðδeÞ, respectively. The aerodynamic
model is obtained by curve fitting and can be expressed as

CD ·ð Þ = Cα2

D α2 + Cα
Dα + Cδ2e

D v
2 δeð Þ + Cδe

D v δeð Þ + Cδc
Dδc

+ Cδ2c
D δ

2
c + C0

D +Cη
Dη,

ð7Þ

CM ·ð Þ = Cα2

Mα
2 + Cα

Mα + Cδe
Mv δeð Þ + Cδc

Mδc + C0
M +Cη

Mη, ð8Þ

CL ·ð Þ = Cα
Lα + Cδe

L v δeð Þ + Cδc
L δc + C0

L +Cη
Lη, ð9Þ

CT ,Φ ·ð Þ = Cα3

T ,Φα
3 + Cα2

T ,Φα
2 + Cα

T ,Φα + C0
T ,Φ, ð10Þ

CT ·ð Þ = Cα3

T α
3 + Cα2

T α2 + Cα
Tα + C0

T , ð11Þ

Cη
j = Cη1

j , 0, C
η2
j , 0

h i
, j = T ,M, L,D, ð12Þ

Nη
i = Nη1

i , 0,N
η2
i , 0

� �
, i = 1, 2, ð13Þ

and more detailed definitions can be found in [40–41].
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2.2. The Actuator-Fault Model. The actuator-fault model is
developed by the following formula [34]:

v Φð Þ = ωΦΦ + εΦ,

v δeð Þ = ωδe
δe + εδe ,

(
ð14Þ

where vðΦÞ and vðδeÞ denote the actual output signals of the
fuel equivalence ratio and the elevator angular deflection,
respectively. ω• and ε• represent the actual control effective-
ness and drift distance, respectively.

Assumption 1. There exists an unknown positive constant �ε•
such that jε•j ≤ �ε•, 0 < ω• ≤ 1.

Remark 2. Assumption 1 is commonly applied in FTC
research to ensure the controllability of system when the
actuator faults occur [34]. During flight, actuator fault inev-
itably occurs due to multiple factors such as aging and dam-
age of components or screw shedding, which deteriorates the
flight performance and even causes the serious flight acci-
dent in severe circumstance. Therefore, it is of great signifi-
cance to consider the possible actuator faults when
designing the control strategy. With different values of ω•
and ε•, (14) can be divided into the following four cases:

(1) ω• = 1 and ε• = 0, representing the fault-free case

(2) 0 < ω• ≤ ω• ≤ �ω• < 1 and ε• = 0, where ω• and �ω• are
unknown positive constants, denoting partial loss of
effectiveness

(3) ω• = 1 and ε• ≠ 0, indicating the bias fault

(4) 0 < ω• ≤ ω• ≤ �ω• < 1 and ε• ≠ 0, where ω• and �ω• are
unknown positive constants, signifying that partial
loss of effectiveness and bias fault occur at the same
time

2.3. Model Transformation and Decomposition. According to
(1) and (7), V and h are mainly regulated by Φ and δe,
respectively. To facilitate the controller design, the HFVs
dynamics are decomposed into velocity subsystem and alti-
tude subsystem.

Considering the actuator-fault model (14) and inspired
by [42, 43], the velocity subsystem is written as

_V = f V + gVv Φð Þ + dV , ð15Þ

where f V = −�qS/mðCα2
D α2 + Cα

Dα + Cδ2e
D δ

2
e + Cδe

D δe + Cδc
D δc+C

δ2c
D

δ2c + C0
D +Cη

DηÞ − g sin γ + ð�qS/mÞ cos αðCα3
T α

3 + Cα2
T α2+Cα

T

α + C0
T +Cη

TηÞ, gV = ð�qS/mÞ cos αðCα3
T ,Φα

3 + Cα2
T ,Φα

2 + Cα
T ,Φα

+ C0
T ,ΦÞ. f V and gV stand for unknown functions due to the

time-varying aerodynamic parameters, and dV represents the
external disturbance on velocity.

Considering the actuator-fault model (14) and taking the
assumption sin ðγÞ ≈ γ, cos ðγÞ ≈ 1, then the altitude subsys-
tem can be considered as

_h =Vγ + dh,

_γ = f γ + gγθ + dγ,

_θ =Q,
_Q = f Q + gQυ δeð Þ + dQ,

8>>>>>><>>>>>>:
ð16Þ

Similar to velocity subsystem, the functions f γ, gγ, f Q,
and gQ are unknown functions; dh, dγ, and dQ are the exter-
nal disturbances of altitude subsystem. Along the standard
ideas as [10–11], we assume there exist unknown positive
functions gVm, gγm, and gQm such that 0 < gVm ≤ gV , 0 <
gγm ≤ gγ, and 0 < gQm ≤ gQ.

Remark 3. In practice, it is rather difficult to know the values
of functions f •, g•, ∈fV , γ,Qg accurately. There are mainly
the following reasons: On the one hand, the aerodynamic
parameters are constantly changing with the flight environ-
ment (i.e., velocity, altitude, and attack of angle), where there
inevitably exist measuring errors in the sensors of flight con-
trol system [2]. On the other hand, it is impossible to take all
flight environment of HFVs into account in a wind tunnel so
that we have to rely on curve fitting technology to build the
aerodynamic model [7]. Consequently, an exact model for
HFVs is difficult to be obtained and in order to facilitate
the design of flight control system; we regard f •, ∈fV , γ,Q
g as unknown function and regard g• as unknown positive
function.

Assumption 4. See [44]. The reference trajectory yref ðtÞ,
together with its i-order derivative yðiÞref ðtÞ, is continuous
and bounded (i = 1, 2⋯ n).

2.4. A New Fixed-Time Performance Function

Definition 5. See [44]. A smooth function ρðtÞ is called fixed-
time performance function (FTPF), if the following condi-
tions are satisfied:

(1) ρðtÞ > 0, i.e., ρðtÞ is ensured to be a positive function

(2) _ρ ≤ 0, that is, ρðtÞ is monotonically decreasing

(3) lim
t⟶T

ρðtÞ = ρðTÞ and ρðtÞ = ρðTÞ for any t > T ,

where ρðTÞ and T denote an arbitrarily small posi-
tive constant and settling time, respectively

According to Definition 5, we construct an FTPF in the
form of

ρ tð Þ =
coth ϑ

t
T − t

+ r
� �

− 1 + ρ Tð Þ, 0 ≤ t < T

ρ Tð Þ, t ≥ T:

8><>: ð17Þ
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Proof. In view of (17), it can be derived that

ρ T−ð Þ = lim
t⟶T−

coth ϑ
t

T − t
+ r

� �
− 1 + ρ Tð Þ

� �
= lim

t⟶T−

eϑ t/ T−tð Þð Þ+r + e−ϑ t/ T−tð Þð Þ−r

eϑ t/ T−tð Þð Þ+r − e−ϑ t/ T−tð Þð Þ−r − 1 + ρ Tð Þ
= ρ Tð Þ = ρ T+ð Þ,

ð18Þ

that is, ρðtÞ is a continuous function. Furthermore, we can
deduce that

_ρ tð Þ = −
ϑ

T
T

T − t

� �2
csc h2 ϑ

t
T − t

+ r
� �

= −
ϑ

T
T

T − t

� �2 2
eϑ t/ T−tð Þð Þ+r − e−ϑ t/ T−tð Þð Þ−r

� �2
,

ð19Þ

when t < T , and _ρðtÞ = 0 when t ≥ T . For the sake of simpli-
fication, we denote x = t/T − t and the fact lim

t⟶T−
x = +∞

holds. Then, we can obtain

lim
t⟶T−

_ρ tð Þ = lim
x⟶+∞

−
4ϑ
T

1 + x
eϑx+r − e−ϑx−r

� �2
: ð20Þ

With the help of L’Hospital’s rule, we get that

lim
t⟶T−

_ρ tð Þ = lim
x⟶+∞

−
4
Tϑ

1
eϑx+r − e−ϑx−r

� �2
= _ρ T+ð Þ: ð21Þ

Next, dρ2ðtÞ/dt2 can be derived as

dρ2 tð Þ
dt2

= −
8ϑ2 1 + xð Þ2 eϑx+r + e−ϑx−r

� 	
T eϑx+r − e−ϑx−r
� 	3 −

8ϑ 1 + xð Þ
T eϑx+r − e−ϑx−r
� 	2

=
T
4
_ρ tð Þ 1 +

2e−ϑx−r

eϑx+r − e−ϑx−r

� �
+

ffiffiffiffiffiffiffiffiffiffiffi
_ρ tð Þj j

p 4
ffiffiffiffiffiffiffiffi
ϑ/T

p

eϑx+r − e−ϑx−r
:

ð22Þ

Then, we have lim
t⟶T−

ðdρ2ðtÞ/dt2Þ = ðdρ2ðT+Þ/dt2Þ = 0.

Similarly, it leads to that lim
t⟶T−

ðdρiðtÞ/dtiÞ = ðdρiðT+Þ/dtiÞ
= 0, i = 3,⋯, n. That is to say, ρðtÞ is a smooth function.
Furthermore, we can also see that _ρðtÞ ≤ 0 and the function
ρðtÞ is continuous at T . Thus, we can conclude that the func-
tion ρðtÞ is a FTPF. This completes the proof. +:

Remark 6. We can easily obtain sufficiently large ρð0Þ by
selecting a sufficiently small r, that is to say, the initial error
need not to be known accurately. Consequently, the FTPF
without initial error constraint is achieved. Furthermore,
we can also conclude that the convergence rate of the error
depends on ϑ, which can be seen in Figure 1(a). By setting
the steady-state error boundary as ρðTÞ = 1 and choosing
different values of ϑ, we can obtain that a larger ϑ means a
faster convergence rate of the error.

Consider the following transformation:

q tð Þ = e tð Þ
ρ tð Þ , ð23Þ

where eðtÞ represents an error function; the error transfor-
mation function is chosen as

z qð Þ = q
1 − q2

, ð24Þ

and we abbreviate q = qðtÞ there-in-after.

Remark 7. From (24), it can be observed that the inequation
−1 < q < 1 holds if zðqÞ is bounded. In view of (23), we con-
clude that jeðtÞj < jρðtÞj holds as long as jeð0Þj < jρð0Þj.
Choosing ϑ = 0:5, r = 0:1, T = 6, and ρðTÞ = 1, the conver-
gence performance of the proposed FTPF is shown in
Figure 1(b). In contrast to traditional PPC [11], where the
prescribed performance function is in the form of ρðtÞ =
coth ðϑt + rÞ − 1 + ρ∞, the proposed control scheme explic-
itly contains a convergence time T in the FTPF. By this
means, we can easily preset the convergence time as needed.

2.5. Fuzzy Logic System. In the process of designing the flight
controller, the fuzzy logic system is used to estimate the
dynamics uncertainties of HFVs. Define a set of fuzzy IF-
THEN rules, where the lth IF-THEN rule is written as fol-
lows [22, 23, 45, 46]:

Rl : If x1 is Fl
1, and⋯ and xn is Fl

n, then y isB
l: ð25Þ

where x = ½x1,⋯, xn�T ∈ℝn, and y ∈ℝ are the input and
output of the FLSs, respectively, and Fl

1,⋯, Fl
n and Bl are

fuzzy sets in ℝ. Let FðxÞ be a continuous function defined
on a compact set Ωx . Then, for a given desired level of accu-
racy ε > 0, there exists a FLS WTSðxÞ such that sup

x∈Ωx

jFðxÞ −

WTSðxÞj ≤ ε, where W = ½w1,⋯,wp�T is the adaptive fuzzy
parameter vector in a compact set ΩW, p is the number of
the fuzzy rules, and SðxÞ = ½S1ðxÞ,⋯, SpðxÞ�T is the fuzzy

basis function vector with SlðxÞ =
Qm

j=1μFl
j
ðxjÞ/∑p

l=1ð
Qm

j=1

μFlj
ðxjÞÞ where μFl

j
ðxjÞ is a fuzzy membership function of

the variable xj in IF-THEN rule. Let W∗ be the optimal
parameter vector, which is defined as

W∗ = arg min
W∈ΩW

sup
x∈Ωx

F xð Þ −WTS xð Þ�� ��( )
: ð26Þ

Then, we can further obtain

F xð Þ =W∗TS xð Þ + ϕ, ð27Þ

where ϕ is the minimum fuzzy approximation error.
In order to reduce the computational burden, the func-

tions ℓV = ðkWVk2/~gVmÞ, ℓh = ðkWhk2/~VmÞ, ℓγ = ðkWγk2/
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gγmÞ, ℓγ = ðkWγk2/gγmÞ, ℓQ = ðkWQk2/gQmÞ rather than the
ideal weight vectors’ elements are estimated in the controller
design and stability analysis.

Lemma 8. See [47]. The hyperbolic tangent function tanh ð•Þ
is continuous and differentiable; for ∀ς ∈ R and ∀μ > 0, it has

0 ≤ ςj j − ς tanh
ς

μ

� �
≤ 0:2785μ: ð28Þ

Lemma 9. See [48]. For any positive constants ω and δ, the
following inequation holds

0 ≤ ωj j − ω2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 + δ2

p ≤ δ: ð29Þ

The control objective of this article is to design an fuzzy
adaptive tracking controller such that

(1) The velocity and altitude tracking errors are guaran-
teed to obey the prescribed performance boundaries
at all times and finally converge into the predefined
residual sets within preassigned time T even in the
presentence of actuator faults

(2) All signals of the closed-loop system remain bounded

3. The FTFTC Design

Corresponding to the decomposition in Section 2.3, the con-
trol design is also decomposed into a velocity control design
and an altitude control design.

3.1. Velocity Controller Design. We first define the velocity
tracking error as

eV =V − Vref , ð30Þ

where Vref is the velocity reference trajectory. In view of
(15), (23), and (24), the time derivative of eV is

_eV = f V + gVv Φð Þ + dV − _Vref = _ρ tð Þq + _zVρ tð Þ ∂q∂z : ð31Þ

Then, _zV can be rewritten as

_zV =
f V + gVv Φð Þ + dV − _Vref − _ρ tð Þq

ρ tð Þ ∂q/∂zð Þ
= YV + EV f V + gVv Φð Þ + dV − _Vref

� 	
,

ð32Þ

with YV = − _ρðtÞqEV , EV = ð1/ρðtÞð∂q/∂zÞÞ.
It can be deduced from (24) that ∂q/∂z = ððð1 − q2Þ2Þ/ð

1 + q2ÞÞ ≤ 1 when −1 < q < 1, and noticing the fact gV ≥
gVm > 0 leads to

EVgV =
gV

ρ tð Þ ∂q/∂zð Þ ≥
gVm

ρ 0ð Þ > 0: ð33Þ

Choose the following quadratic function:

LV =
1
2
z2V +

1
2μV

~gVm
~ℓ
2
V , ð34Þ

where ~gVm = ðgVm/ρð0ÞÞ, ~ℓV = ℓV − bℓV , bℓV denotes the esti-
mation of adaptive parameter ℓV and μV is the positive
user-defined parameter.

Utilizing (14) and (31), the time derivative of LV is

_LV = zV YV + EV f V + EVgVωΦΦ + EVgVεΦ + EVdV − EV
_Vref

� 	
−

1
μV

~gVm
~ℓVbℓV :

ð35Þ

0
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Figure 1: The convergence performance of the proposed FTPF.
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Define the nonlinear function

FV = YV + EV f V + EVdV − EV
_Vref +

1
2
zV , ð36Þ

where f V and dV are unknown due to the existence of
unknown external disturbances and fast time-varying flight
environment. An FLSs-approximator is constructed to esti-
mate FV as

FV =WT
VSV xVð Þ + ϕV , ð37Þ

where xV = ½V , Vref , _Vref �T. Substituting (36) and (37) into
(35), we have

_LV = zV WT
VSV + ϕV + EVgVωΦΦ + EVgVεΦ

� 	
−

1
μV

~gVm~ℓVbℓV −
1
2
z2V :

ð38Þ

According to Young’s inequation, we can further have

zVW
T
VSV ≤

z2V WVk k2STVSV
4τV

+ τV ,

zVϕV ≤
1
2
z2V +

1
2
ϕ2V ,

ð39Þ

where τV is a positive constant; then, we can rewrite (38) as

_LV ≤ zV EVgVωΦΦ + EVgVεΦð Þ + z2V WVk k2STVSV
4τV

+ τV

+
1
2
ϕ2V −

1
μV

~gVm
~ℓVbℓV :

ð40Þ

According to Assumption 1, ωΦ and εΦ are unknown.
Therefore, we define the upper and lower bounds of fault
parameters to achieve robustness, which are expressed as

ωΦ = inf EVgVωΦð Þ, ϑV =
1
ωΦ

,

ξV = sup EVgVεΦð Þ:
ð41Þ

Consider the Lyapunov function candidate

L�V = LV +
1
2lV

ωΦ
~ϑ
2
V +

1
2rV

~ξ
2
V , ð42Þ

where lV > 0 and rV > 0 are the parameters to be designed

and ~ϑV = ϑV − bϑV and ~ξV = ξV − bξV represent estimation

errors with bϑV and bξV being the estimations of ϑV as ξV ,
respectively.

The time derivative of L�V gives

_L�V = _LV −
1
lV
ωΦ

~ϑVbϑV −
1
rV

~ξV
bξV : ð43Þ

Define ℓV = kWVk2/~gVm and choose the intermediate
control law as

�Φ = kVzV +
zVbℓVSTVSV

4τV
+ bξV tanh

zV
aV

� �
: ð44Þ

It can be induced that

_L�V ≤ zVEVgVωΦΦ +
z2VℓV~gVmSTVSV

4τV
+ τV +

1
2
ϕ2V −

ωΦ

lV
~ϑV

bϑV
+ zV �Φ − kVz

2
V −

z2VbℓV~gVmSTVSV
4τV

+ ξV zVj j − zV tanh
zV
aV

� �� �
−
~gVm

μV
~ℓVbℓV

+
1
rV

~ξV rVzV tanh
zV
aV

� �
− bξV� �

:

ð45Þ

Choose the adaptive laws as follows:

bℓV =
μVz

2
VS

T
VSV

4τV
− ΓV

bℓV , ð46Þ

bξV = rVzV tanh
zV
aV

� �
− bVbξV , ð47Þ

bϑV = lVzV �Φ − cVbϑV , ð48Þ

where aV > 0, bV > 0, and cV > 0 are the parameters to be
designed.

Substituting (46)–(48) into (45) yields

_L�V ≤ zVEVgVωΦΦ + τV +
1
2
ϕ2V +

ΓV~gVm

μV
~ℓVbℓV

− ωΦ
~ϑVzV �Φ +

ωΦcV
lV

~ϑV
bϑV + zV �Φ − kVz

2
V

+ ξV zVj j − zV tanh
zV
aV

� �� �
+
bV
rV

~ξV
bξV :

ð49Þ

Now, we design the actual control law as

Φ = −
zVbϑ2V �Φ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2Vbϑ2V �Φ2 + σ2
V

q , ð50Þ

where σV > 0 is a predefined constant, which is designed to
avoid the singularity issue. According to Young’s inequation,
one has

~ℓVbℓV = ℓV − ~ℓV
� 

~ℓV ≤ −
1
2
~ℓ
2
V +

1
2
ℓ2V , ð51Þ

~ϑV
bϑV = ϑV − ~ϑV

� 
~ϑV ≤ −

1
2
~ϑ
2
V +

1
2
ϑ2V , ð52Þ
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~ξV
bξV = ξV − ~ξV

� 
~ξV ≤ −

1
2
~ξ
2
V +

1
2
ξ2V : ð53Þ

Substituting (50)-(53) into (49) and applying Lemma 8
and Lemma 9, we can rewrite (49) as

_L�V ≤ −kVz
2
V −

1
2μV

ΓV~gVm
~ℓ
2
V −

1
2lV

ωΦcV~ϑ
2
V −

1
2rV

bV~ξ
2
V

+
1

2μV
ΓV~gVmℓ

2
V +

1
2lV

ωΦcVϑ
2
V +

1
2rV

bVξ
2
V + τV +

1
2
ϕ2V

+ ωΦσV + 0:2785aVξV :
ð54Þ

3.2. Altitude Controller Design. In the process of altitude
controller design, the backstepping methodology is adopted
to deal with complex dynamics. The virtual controllers will
be designed at first, and then the intermediate control law
the actual control law will be constructed to counteract the
impact of actuator fault. To initiate the design process, we
first define the following tracking errors:

eh = h − href , zγ = γ − χγ,

zθ = θ − χθ, zQ =Q − χQ,

(
ð55Þ

with χγ, χθ, and χQ representing the virtual control laws.

Step 10. Similarly to velocity controller design, one reaches

_eh = Vγ + dh − _href = _ρ tð Þq + _zhρ tð Þ ∂q
∂z

: ð56Þ

Then, we have

_zh =
Vγ + dh − _href − _ρ tð Þq

ρ tð Þ ∂q/∂zð Þ = Yh + Eh Vγ + dh − _href
� 

,

ð57Þ

with

Yh = − _ρ tð ÞqEh, Eh =
1

ρ tð Þ ∂q/∂zð Þ : ð58Þ

Noting that ð∂q/∂zÞ = ððð1 − q2Þ2Þ/ð1 + q2ÞÞ ≤ 1 when −
1 < q < 1 and the fact that V ≥Vm > 0 where Vm is mini-
mum permissible flight velocity yields

EhV =
V

ρ tð Þ ∂q/∂zð Þ ≥
Vm

ρ 0ð Þ = ~Vm > 0: ð59Þ

Consider the following Lyapunov function candidate:

Lh =
1
2
z2h +

1
2μh

~Vm
~ℓ
2
h, ð60Þ

with ~ℓh = ℓh − bℓh, in which bℓh denotes the estimation of
adaptive parameter ℓh and μh is the positive design parameter.

The time derivative of Lh gives

_Lh = zh WT
hSh + ϕh + EhVγ

� 	
−

1
μh

~Vm
~ℓhbℓh − 1

2
z2h, ð61Þ

with Fh = Yh + Ehdh − Eh
_href + ð1/2Þzh being approximated

by FLS WT
hShðxhÞ + ϕh, where xh = ½h, href , _href �

T
.

Applying Young’s inequation, it gives

zhW
T
hSh ≤

z2h Whk k2SThSh
4τh

+ τh,

zhϕh ≤
1
2
z2h +

1
2
ϕ2h,

ð62Þ

where τh is a positive constant; noting that γ = zγ + χγ we
can further rewrite (61) as

_Lh ≤ EhVzhzγ + zhEhVχγ +
z2hℓh ~VmS

T
hSh

4τh
+ τh +

1
2
ϕ2h −

1
μh

~Vm
~ℓhbℓh,
ð63Þ

with the definition of ℓh = ðkWhk2/~VmÞ. Choose the virtual
control law and updating law as follows:

χγ = −khzh −
zhbℓhSThSh

4τh
, ð64Þ

bℓh = μhz
2
hS

T
hSh

4τh
− Γh

bℓh: ð65Þ

Substituting (64)–(65) into (63) yields

_Lh ≤ −khz
2
h +

1
μh

Γh
~Vm

~ℓhbℓh + EhVzhzγ +
1
2
ϕ2h + τh: ð66Þ

Step 11. Take the Lyapunov function candidate as

Lγ = Lh +
1
2
z2γ +

1
2μγ

gγm~ℓ
2
γ: ð67Þ

Similar to step 10, by defining ℓγ = ðkWhk2/gγmÞ, the
time derivative of Lγ can be formulated as

_Lγ = _Lh + zγ WT
γSγ + ϕγ + gγθ

� 
−

1
μγ

gγm
~ℓγbℓγ − EhVzhzγ −

1
2
z2γ,

ð68Þ

with Fγ = f γ + EhVzh + dγ − _χγ + ð1/2Þzγ being approxi-

mated by FLS WT
γSγðxγÞ + ϕγ, where _χγ = ð∂χγ/∂hÞ _h + ð∂χγ

/∂bℓhÞbℓh + ð∂χγ/∂href Þ _href and xγ = ½h, γ, href , _href , hð2Þref , bℓh�T.
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Design the virtual control law and adaptive law as

χθ = −kγzγ −
zγbℓγSTγSγ

4τγ
, ð69Þ

bℓγ = μγz
2
γSTγSγ
4τγ

− Γγ
bℓγ: ð70Þ

Based on (66)–(70), we obtain

_Lγ ≤ −khz
2
h − kγz

2
γ +

1
μh

Γh
~Vm

~ℓhbℓh + 1
μγ

Γγgγm~ℓγbℓγ + gγzγzθ

+
1
2
ϕ2h +

1
2
ϕ2γ + τh + τγ:

ð71Þ
Step 12. Consider the following Lyapunov function candi-
date:

Lθ = Lγ +
1
2
z2θ +

1
2μθ

~ℓ
2
θ: ð72Þ

Defining ℓθ = kWθk2, the time derivative of Lθ gives

_Lθ = _Lγ + zθ WT
θSθ + ϕθ +Q

� 	
−

1
μθ

~ℓθbℓθ − gγzγzθ −
1
2
z2θ,

ð73Þ
with Fθ = gγzγ − _χθ + ð1/2Þzθ being approximated by FLS

WT
θSθðxθÞ + ϕθ, where _χθ =∑x=h,γð∂χθ/∂xÞ _x +∑x=h,γð∂χθ/∂bℓxÞbℓx +∑2

i=0ð∂χθ/∂h
ðiÞ
ref Þhði+1Þref and xθ = ½h, γ, θ, href , _href ,

hð2Þref , h
ð3Þ
ref , bℓh, bℓγ�T.

Construct the virtual control law and adaptive law

χQ = −kθzθ −
zθbℓθSTθSθ

4τθ
, ð74Þ

bℓθ = μθz
2
θS

T
θSθ

4τθ
− Γθ

bℓθ: ð75Þ

From (72)–(75), one has

_Lθ ≤ −khz
2
h − kγz

2
γ − kθz

2
θ +

Γh
~Vm

μh
~ℓhbℓh + Γγgγm

μγ
~ℓγbℓγ + zθzQ

+
Γθ

μθ
~ℓθbℓθ + 1

2
ϕ2h +

1
2
ϕ2γ +

1
2
ϕ2θ + τh + τγ + τθ:

ð76Þ
Step 13. Choose the following Lyapunov function candidate:

LQ = Lθ +
1
2
z2Q +

1
2μQ

gQm
~ℓ
2
Q: ð77Þ

Constructing ℓQ = ðkWQk2/gQmÞ and taking the deriva-
tive of LQ yield

_LQ = _Lθ + zQ WT
QSQ + ϕQ + gQωδe

δe + gQεδe
� 	

−
1
μQ

gQm~ℓQbℓQ − zθzQ −
1
2
z2Q,

ð78Þ

with FQ = f Q + zθ + dQ − _χθ + ð1/2ÞzQ being approximated

by FLS WT
QSQðxQÞ + ϕQ, where _χQ =∑x=h,γ,θð∂χQ/∂xÞ _x +

∑x=h,γ,θð∂χQ/∂bℓxÞbℓx +∑3
i=0ð∂χQ/∂h

ðiÞ
ref Þhði+1Þref and xQ = ½h, γ,

θ,Q, href , _href , h
ð2Þ
ref , h

ð3Þ
ref , h

ð4Þ
ref , bℓh, bℓγ, bℓθ�T.

The upper and lower bounds of fault parameters are
defined as

ωδe
= inf gQωδe

� 	
, ϑQ =

1
ωδe

,

ξQ = sup gQεδe
� 	

:

ð79Þ

Construct the Lyapunov function:

L�Q = LQ +
1
2lQ

ωδe
~ϑ
2
Q +

1
2rQ

~ξ
2
Q, ð80Þ

where lQ > 0 and rQ > 0 are designed parameters and ~ϑQ =
ϑQ − bϑQ and ~ξQ = ξQ − bξQ represent estimation errors withbϑQ and bξQ being the estimations of ϑQ and ξQ, respectively.
Choose the intermediate control law and adaptive laws as
follows:

�δe = kQzQ +
zQbℓQSTQSQ

4τQ
+ bξQ tanh

zQ
aQ

� �
, ð81Þ

bℓQ =
μQz

2
QS

T
QSQ

4τQ
− ΓQ

bℓQ, ð82Þ

bξQ = rQzQ tanh
zQ
aQ

� �
− bQbξQ, ð83Þ

bϑQ = lQzQ�δe − cQbϑQ, ð84Þ

where kQ, τQ, aQ, bQ, and cQ are designed positive
parameters.

Finally, we choose the actual control law as

δe = −
zQbϑ2Q�δe2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2Qbϑ2Q�δe2 + σ2
Q

q , ð85Þ

where σQ > 0 is a predefined constant. Following similar
analysis to velocity subsystem, we can further deduce that
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_L�Q ≤ −khz
2
h − kγz

2
γ − kθz

2
θ − kQz

2
Q −

Γh
~Vm

μh
~ℓ
2
h −

Γγgγm
μγ

~ℓ
2
γ

−
Γθ

μθ
~ℓ
2
θ −

ΓQ~gQm

2μQ
~ℓ
2
Q −

ωδe
cQ

2lQ
~ϑ
2
Q −

bQ
2rQ

~ξ
2
Q +

Γh
~Vm

μh
ℓ2h

+
Γγgγm
μγ

ℓ2γ +
Γθ

μθ
ℓ2θ +

ΓQ~gQm
2μQ

ℓ2Q +
ωδe

cQ
2lQ

ϑ2Q +
bQ
2rQ

ξ2Q

+
1
2
ϕ2h +

1
2
ϕ2γ +

1
2
ϕ2θ +

1
2
ϕ2Q + τh + τγ + τθ + τQ + ωδe

σQ

+ 0:2785aQξQ:
ð86Þ

The whole FTFTC design for HFVs is shown in Figure 2.

4. Closed-Loop Stability Analysis

Theorem 14. Despite the occurrence of unknown actuator
fault (14), consider the closed-loop system composed by (15)
and (16); the virtual control laws (64), (69), and (74); the
intermediate control laws (44) and (81); the actual control
laws (50) and (85); and the parameter adaptation laws
(46)-(48), (65), (70), (75), and (82)–(84). Let Assumptions
1–4 hold. By designing the parameters properly, it therefore
holds the following.

The tracking errors eV and eh can converge into a prede-
fined residual set within an user-defined time T .

(1) The overshoot and convergence rate are guaranteed
by FTPF, and all signals of the closed-loop system
are SGPFS

Proof. Take the Lyapunov function candidate as

L = L�V + L�Q: ð87Þ

Applying (54) and (86), the derivative of L gives

_L ≤ −kVz
2
V − khz

2
h − kγz

2
γ − kθz

2
θ − kQz

2
Q −

ΓV~gVm

2μV
~ℓ
2
V

−
Γh

~Vm

μh
~ℓ
2
h −

Γγgγm

μγ
~ℓ
2
γ −

Γθ

μθ
~ℓ
2
θ −

ΓQ~gQm
2μQ

~ℓ
2
Q −

ωΦcV
2lV

~ϑ
2
V

−
ωδe

cQ
2lQ

~ϑ
2
Q −

bV
2rV

~ξ
2
V −

bQ
2rQ

~ξ
2
Q +

Γh
~Vm

μh
ℓ2h +

Γγgγm

μγ
ℓ2γ

+
Γθ

μθ
ℓ2θ +

ΓV~gVm

2μV
ℓ2V +

ΓQ~gQm
2μQ

ℓ2Q +
ωΦcV
2lV

ϑ2V +
ωδe

cQ
2lQ

ϑ2Q

+
bV
2rV

ξ2V +
bQ
2rQ

ξ2Q +
1
2
ϕ2V +

1
2
ϕ2h +

1
2
ϕ2γ +

1
2
ϕ2θ +

1
2
ϕ2Q

+ τV + τh + τγ + τθ + τQ + ωΦσV + ωδe
σQ + 0:2785aVξV

+ 0:2785aQξQ:
ð88Þ

Recalling the definitions of L�V and L�Q, the following ine-
quation holds

_L ≤ −kL + C, ð89Þ

where k =min f2kV , 2kh, 2kγ, 2kθ, 2kQ, ΓV , Γh, Γγ, Γθ, ΓQ,
bV , bQ, cV , cQg, C = ðΓh

~Vm/μhÞℓ2h + ðΓγgγm/μγÞℓ2γ + ðΓθ/μθÞ
ℓ2θ + ðΓV~gVm/2μVÞℓ2V + ðΓQ~gQm/2μQÞℓ2Q + ðωΦcV /2lVÞϑ2V + ð
ωδe

cQ/2lQÞϑ2Q + ðbV /2rVÞξ2V + ðbQ/2rQÞξ2Q + ð1/2Þϕ2V + ð1/2Þ
ϕ2h + ð1/2Þϕ2γ + ð1/2Þϕ2θ + ð1/2Þϕ2Q + τV + τh + τγ + τθ + τQ +
ωΦσV + ωδe

σQ + 0:2785aVξV + 0:2785aQξQ.
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Figure 2: Overall fixed-time tolerant-control scheme for HFVs.

Table 1: The initial states.

States Value Units

V 7700 ft/s

h 85000 ft

γ 0 deg

θ 1.6325 deg

Q 0 deg/s

η1 0.97 ft slugs 0:5/ft

_η1 0 ft/s slugs 0:5/ft

η2 0.7967 ft slugs 0:5/ft

_η2 0 ft/s slugs 0:5/ft
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Integrating both sides of (89) yields

L ≤ L 0ð Þ + C
k
: ð90Þ

In accordance with (34) and (60), we have

zV ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L 0ð Þ + C

k

r
, zh ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L 0ð Þ + C

k

r
, ð91Þ
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Figure 3: The velocity and altitude tracking performance under different initial states.
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Figure 4: The attitude angles and adaptive parameters under different initial states.
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In view of (42), (60), (67), (72), (77), (80), (87), and (90),
the estimation errors of the adaptive parameters will con-
verge to the following compact sets:

~ℓV ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μV L 0ð Þ + C

k

� �s

~ℓh ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μh L 0ð Þ + C

k

� �s

~ℓγ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μγ L 0ð Þ + C

k

� �s

~ℓθ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μθ L 0ð Þ + C

k

� �s

~ℓQ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μQ L 0ð Þ + C

k

� �s

,

~ϑV ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lV
ωΦ

L 0ð Þ + C
k

� �s

~ϑQ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lQ
ωδe

L 0ð Þ + C
k

� �s

~ξV ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rV L 0ð Þ + C

k

� �s

~ξQ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rQ L 0ð Þ + C

k

� �s
:

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>:
ð92Þ

Therefore, the transformational errors zV and zh are
bounded. By reviewing (17)–(24), we can conclude that
the velocity and altitude tracking errors converge to a
residual set within a fixed time T and the prescribed per-
formances are guaranteed. Besides, all signals of closed-
loop system are SGPFS. According to the design of veloc-
ity controller (44), altitude controller (64), and the FTPF

(17), the overshoots of velocity and altitude do not exceed
their preset threshold. This completes the proof. +

Remark 15. The existing fixed-time control strategies for
HFVs [18–20] fail to take system transient and steady-
state performances into account, and it is fairly compli-
cated to make tracking error convergence into a preas-
signed compact set within the fixed time by selecting
design parameters. It is worth noting that the fixed-time
tracking control is achieved as long as the bounded condi-
tion is satisfied in the proposed design. Consequently, the
complexity of the control structure is reduced and the ini-
tial states need not to be known accurately via the pro-
posed control approach.

Remark 16. It is worth mentioning that the control perfor-
mance is depended closely on the designed parameters of pre-
scribed function. In (17), large initial errors are allowed by
choosing a small enough r; larger ϑ and smaller T will increase
the convergence rate. However, too large ϑ or too small T will
give rise to actuator input saturations. In (44), (64), (69), (74),
and (81), designed parameters kV , τV , aV , kh, τh, kγ, τγ, kθ, τθ,
kQ, τQ, and aQ determine the convergence rate and conver-
gence accuracy. In (46)-(48), (65), (70), (75), and (82)–(84),
designed parameters μV , ΓV , rV , bV , lV , cV , μh, Γh, μγ, Γγ, μθ
, Γθ, μQ, ΓQ, rQ, bQ, lQ, and cQ effect convergence rate of the
adaptive parameters. In the controller design, we need to
design the parameters properly to improve the tracking per-
formance and avoid the saturation phenomenon.

Remark 17. When the actuator failure occurs, the upper
and lower bounds of fault parameters are estimated by
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the adaptive laws (47), (48), (83), and (84), then the inter-
mediate control laws (44) and (81) and the actual control
laws (50) and (85) are executed. By this way, the flight
control system is robust to actuator failure. Compared
with the state-of-the-art FTC methods [30–33], the fixed-
time stability is guaranteed, and the prescribed perfor-
mance is ensured.

5. Simulations

In this section, simulation results are used to demonstrate
the effectiveness and superiority of the proposed method-
ology. The model parameters of HFVs can be consulted
from [40]. HFVs are expected to climb a maneuver from
the initial trim conditions, depicted in Table 1, to the final
values V = 8700ft/s and h = 88000ft. The external distur-
bances in velocity subsystem and altitude subsystem are
set as dV = sin ð0:1πtÞft/s, dγ = 0:001 sin ð0:01πtÞ deg, dQ
= 0:01 sin ð0:01πtÞ deg/s. The reference trajectories of
velocity and altitude are generated via the following filters
[11]:

Vref sð Þ
Vc sð Þ

=
0:032

s2 + 2 × 0:95 × 0:03 × s + 0:032
,

href sð Þ
hc sð Þ

=
0:032

s2 + 2 × 0:95 × 0:03 × s + 0:032
,

ð93Þ

where Vref ðsÞ and href ðsÞ represent the inputs of filters
and VcðsÞ and hcðsÞ represent the outputs of filters, respec-
tively. It is assumed that HFVs actuators failed at 100 s
and the details of failure are formulated in the form of

v Φð Þ = 0:8Φ − 0:1,

v δeð Þ = 0:8δe + 0:0349:
ð94Þ
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The FTPFs are selected as

ρV tð Þ = coth
t

50 − t
+ 0:4

� �
− 0:9, 0 ≤ t < 50

0:1, t ≥ 50,

8><>:
ρh tð Þ = coth

t
50 − t

+ 0:4
� �

− 0:5, 0 ≤ t < 50

0:5, t ≥ 50:

8><>:
ð95Þ

The fuzzy rules in W∗T
V SV are listed as

Rl: If V is Fi
V , then y is Bl, where i = 1, 2, 3 and l = 1, 2, 3.

The fuzzy rules in W∗T
γ Sγ are listed as

Rl: If h is Fi
h, and γ is Fj

γ, then y is Bl, where i = 1, 2, 3;
j = 1, 2, 3; and l = 1, 2,⋯, 9.

Then, the fuzzy rules in W∗T
θ Sθ are listed as

Rl: If h is Fi
h, and γ is Fj

γ, and θ is Fk
θ, then y is Bl, where

i = 1, 2, 3; j = 1, 2, 3; k = 1, 2, 3; and l = 1, 2,⋯, 27.
The fuzzy rules in W∗T

Q SQ are listed as
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Table 2: The performance index of control inputs.

Control
method

Performance index of
Φ

Performance index of
δe

FTFTC 99.4683 15.2615

CFTC 99.4574 15.2620
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Rl: If h is Fi
h, and γ is F

j
γ, and θ is F

k
θ, and Q is Fp

Q, then y

is Bl, where i = 1, 2, 3; j = 1, 2, 3; k = 1, 2, 3; p = 1, 2, 3; and l
= 1, 2,⋯, 81.

The fuzzy membership function is given as follows:

1μF1V
= exp − V − 7500ð Þ2/300� �

,

μF2
V
= exp − V − 8100ð Þ2/300� �

,

μF3
V
= exp − V − 8700ð Þ2/300� �

,

μF1
h
= exp − h − 85000ð Þ2/1000� �

,

μF2
h
= exp − h − 87000ð Þ2/1000� �

,

μF3
h
= exp − h − 89000ð Þ2/1000� �

,

μF1γ
= exp − γ − 0ð Þ2/0:0005� �

,

μF2γ
= exp − γ − 0:005ð Þ2/0:0005� �

,

μF3
γ
= exp − γ − 0:01ð Þ2/0:0005� �

,

1μF1θ
= exp − θ − 0ð Þ2/0:002� �

,

μF2θ
= exp − θ − 0:02ð Þ2/0:002� �

,

μF3θ
= exp − θ − 0:04ð Þ2/0:002� �

,

μF1Q
= exp − Q + 0:03ð Þ2/0:002� �

,

μF2
Q
= exp − Q − 0ð Þ2/0:002� �

,

μF3
Q
= exp − Q − 0:03ð Þ2/0:002� �

:

ð96Þ

The controller parameters are selected as kV = μV = rV
= lV = μh = μγ = μθ = μQ = rQ = lQ = 1, ~gVm = 0:00001, ~gQm
= 1, τV = ΓV = cV = bV = τh = Γh = τγ = Γγ = τθ = Γθ = τQ =
ΓQ = cQ = bQ = 0:1, aV = 0:2, aQ = 0:25, σV = σQ = ð1/ðt2 +
0:01ÞÞ, kh = 10, kγ = 2, kθ = 10, and kQ = 50. Taking the engi-
neering practice into account, the limitations of the actua-
tors are set as Φ ∈ ½0, 1�, δe ∈ ½−20 deg, 20 deg� [40]. To
prove that the proposed FTFTC is realizable and indepen-
dent of the initial states, the first example is taken, while
the superiority of the proposed FTFTC over the conven-
tional fixed-time control (CFTC) in [49] is explained in the
second example.

Example 18. In this example, two different initial states cases,
i.e., case 1 (eVð0Þ = ehð0Þ = 0) and case 2 (eVð0Þ = ehð0Þ = 1),
are considered, respectively.

The obtained simulation results, depicted in Figures 3–5,
reveal that the proposed FTFTC has full capabilities to deal
with the condition that aerodynamic parameters are per-
turbed and initial states are uncertain. It can be observed
from Figures 3(a)–3(b) that the velocity and altitude track-
ing errors are guaranteed not to exceed the prescribed
bounds. Furthermore, the velocity and altitude can rapidly
track their reference trajectories even if the actuator fails.

Figures 4(a) and 5(a) depict that there is no high-
frequency chattering in the attitude angles as well as the flex-
ible states, and they can converge to their steady values rap-
idly. Figure 5(b) shows that the control inputs are smooth
and within realistic limits. The estimated values of adaptive
parameters are bounded, which is presented in Figure 4(b).

Example 19. In this example, simulations via the CFTC [49]
and the proposed FTFTC are demonstrated, where the initial
states are set as eVð0Þ = ehð0Þ = 1. In order to expound the
advantages of tracking performances of the proposed
FTFTC, the performance index of tracking error Ee =

Ð t
0e

2d
t is introduced where e denotes the tracking error. In order
to compare the energy consumption between the FTFTC
and CFTC, the performance index of control input Eu =

Ð t
0

u2dt is defined where u denotes the control input.
Simulation results are depicted in Figures 6–9.

Figures 6(a)–6(b) shows the velocity and altitude tracking
performance, in which the velocity and altitude tracking
errors are limited in the preset bounds by the proposed
FTFTC and the proposed FTFTC can provide higher rate
of convergence compared with the CFTC. Besides, the atti-
tude angles and flexible states are shown in Figures 7 and
8(a), indicating that smaller oscillation amplitudes of atti-
tude angles and flexible states are achieved in the presence
of actuator failures by means of the proposed FTFTC.
Figure 8(b) shows that the control inputs are smooth and
within realistic limits by means of the proposed method. In
addition, Figure 9 gives that less error energy is produced
via the proposed FTFTC in contrast with the CFTC.
Table 2 shows that the energy consumption of actuator with
FTFTC is almost equal to that with CFTC. That is to say, the
proposed FTFTC can achieve more accurate tracking.

6. Conclusions

A novel fixed-time fuzzy adaptive fault-tolerant control
methodology based on performance function is developed
for hypersonic flight vehicles in this work. In contrast with
the conventional fixed-time control, the proposed approach
not only guarantees that the velocity and altitude tracking
errors converge into a preassigned compact set, but also sat-
isfies both the prescribed transient and steady performance.
In addition, the proposed scheme can avoid the singularity
problem caused by the differential of fractional order track-
ing error and remain valid in spite of actuator faults. Com-
parative simulation results confirm the validity and
superiority of the presented control strategy. Note that the
distributed adaptive containment fault-tolerant control of
multi-HFVs formation is an important research region for
the future [50–53]; thus, the extension of our control scheme
to the case of multi-HFVs formation will be an interesting
topic for further investigation.

Abbreviations

V : Velocity
θ: Pitch angle
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α: Angle of attack
T : Thrust
L: Lift
Iyy : Moment of inertia
Φ: Fuel equivalence ratio
zT : Thrust moment arm
N0

i : Constant term in Ni

C0
L: Constant term in L

Cδe
L : Coefficient of δe in L

h: Altitude
γ: Flight path angle
Q: Pitch rate
D: Drag
M: Pitching moment
m: Vehicle mass
δe: Elevator angular deflection
Ni: i-th generalized force

Nδe
i : Contribution of δe to Ni

C0
M,α: Constant term in M

Cα
L: Coefficient of α in L

�c: Mean aerodynamic chord
ηi: i-th generalized flexible coordinate
S: Reference area
�q: Dynamic pressure
ζi: Damping ratio for flexible mode ηi
Cδie
D :

i-th order coefficient of δe in D

Cαi
D : i-th order coefficient of α in D

C0
D: Constant term in D

Nα j

i : j-th order contribution of α to Ni

Cαi
M,α: i-th order coefficient of α in M

ωi: Natural frequency for ηi.
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