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Effects of Preview on Human Control Behavior

in Tracking Tasks with Various Controlled Elements
Kasper van der El, Student Member, IEEE, Daan M. Pool, Member, IEEE,

Marinus (René) M. van Paassen, Senior Member, IEEE, and Max Mulder

Abstract—This paper investigates how humans use a previewed
target trajectory for control in tracking tasks with various con-
trolled element dynamics. The human’s hypothesized “near” and
“far” control mechanisms are first analyzed offline in simulations
with a quasi-linear model. Second, human control behavior is
quantified by fitting the same model to measurements from a
human-in-the-loop experiment, where subjects tracked identical
target trajectories with a pursuit and a preview display, each with
gain, single-, and double-integrator controlled element dynamics.
Results show that target-tracking performance improves with
preview, primarily due to the far-viewpoint response, which
allows humans to cancel their own and the controlled element’s
lags, without additional control activity. The near-viewpoint
response yields better target tracking at higher frequencies, but
requires substantially more control activity. The control-theoretic
approach adopted in this paper provides unique quantitative
insights into human use of preview, which can explain human
behavior observed in other preview control tasks, like driving.

Index Terms—Human control models, man-machine systems,
manual control, parameter estimation, preview control

I. INTRODUCTION

HUMANS are highly effective adaptive controllers [1].

The seminal work of McRuer and his coworkers [2]

shows that Human Controllers (HC) systematically adapt their

control response to the dynamics of the Controlled Element

(CE), the display type, and the characteristics of the target

signal to be tracked. The HC’s adaptation mechanisms are rela-

tively well-understood in simple error-compensation tasks [3];

however, few practical control tasks are purely compensatory.

Instead, preview information of the target trajectory is often

visible, commanding the HC were to steer to in the near future.

Driving a car over a road is perhaps the best known exam-

ple [4]–[6], but most vehicle control tasks involve preview, as

well as many everyday motor control tasks [7], [8].

It has been shown that preview information helps HCs to

improve task performance, compared to zero-preview (pursuit)

tasks [5], [6], [9]–[11]. In tracking tasks, the amount of

preview needed for maximum performance depends, at least,

on the CE dynamics, and increases from about 0.5 to 1 s from

position to acceleration control tasks [9]–[11]. To extrapolate

these results to yet untested preview control tasks, many

cybernetic models have been proposed (e.g., see [5], [6],

[10]–[13]). Although several models accurately replicate the

human’s control outputs, they are unsuitable to systematically

study HC adaptation, because the proposed model inputs and
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multiloop control dynamics were never shown to resemble

those of the actual HC with objective measurements.

Recently, we measured the HC’s control dynamics in pre-

view tracking tasks using a multiloop frequency-domain sys-

tem identification technique [14]. Based on this, we extended

McRuer et al.’s [2], [3] quasi-linear model for compensatory

tracking tasks with two distinct responses that are based

on a “near” and a “far” viewpoint on the previewed target

ahead. The model’s physically interpretable parameters, like

the viewpoints’ locations, can be explicitly estimated from

measurement data. Thereby, this model may finally allow

for quantifying HC control adaptation in preview tracking

tasks, similar as established previously for compensatory

tracking [1]–[3]. Unfortunately, the model’s near- and far-

viewpoint responses are still poorly understood: while HCs

always apply a far-viewpoint response, the presence of a near-

viewpoint response appears to depend strongly on the tested

subject and CE dynamics [14]. It is unclear when and why

it is beneficial to respond to either one or two points on the

previewed target ahead.

The goal of this paper is to explain how HCs use preview for

control in manual tracking tasks with various CE dynamics.

We first investigate the roles of the near- and far-viewpoint

responses through offline simulations with the new preview

model from [14], with gain, single-, and double-integrator

CE dynamics. Second, we verify these offline predictions

with measurements from a human-in-the-loop experiment, in

which subjects performed a combined target-tracking and

disturbance-rejection task with these same CEs, both in tasks

with zero preview (i.e., pursuit) and 1 full second of preview.

These experimental data were also used to derive the preview

model in [14]; however, in this paper, we present a variety

of new measures. Effects of preview are quantified with

measures for tracking performance and control activity, and

with estimates of input-to-error and open-loop dynamics. The

HC’s underlying control behavior is investigated with non-

parametric estimates of their multiloop response dynamics, and

with estimates of the new preview model’s parameters [14].

This paper is structured as follows. In Section II, we

summarize important aspects of HC behavior in preview

tracking tasks, including the HC model from [14]. Offline

model analyses are presented in Section III. The performed

experiment and data analysis procedures are presented in

Section IV, followed by the experimental results in Section V.

We discuss these results and present our conclusions in the

final two sections of this paper.
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II. BACKGROUND

A. The Control Task

The general layout of a combined target-tracking and

disturbance-rejection control task is illustrated in Fig. 1. In

these tasks, HCs are to minimize the tracking error:

e(t) = ft(t)− x(t), (1)

which is the difference between the current values of the target

signal ft(t) and the CE output x(t). HCs generate control

inputs u(t) to minimize this tracking error. At the same time,

the CE is perturbed by disturbance signal fd(t), for which the

HC must also compensate. In pursuit tasks, only the current

target at time t is presented on the display, together with the

CE output (see Fig. 2a). In preview tasks, an additional stretch

of the future target ft([t, t +τp]) is visible, up to preview time

τp s ahead (see Fig. 2b).

B. Classical Approach and Results

HCs can adopt a multi-channel control organization in

pursuit and preview tracking tasks, initiating an independent

response to the target, the CE output, and the error, and in

preview tasks also to the target ahead [2], [15]–[17]. Because

explicit identification of all individual response dynamics is

impossible [15], [17], HC behavior in these tasks has been

traditionally analyzed by identifying lumped response dynam-

ics [9], [11], [15], [17]. Ito & Ito [11], for example, measured

the closed-loop dynamics from the target to the CE output:

Hcl,t( jω) =
X( jω)

Ft( jω)
, (2)

with X and Ft the Fourier transforms of the respective signals.

Perfect target-tracking is achieved when X( jω)=Ft( jω), or

equivalently, when |Hcl,t( jω)|=1 and 6 Hcl,t( jω)=0 deg. Ito

& Ito’s results (partly reproduced in Fig. 3) reveal that preview

yields improved closed-loop characteristics, compared to the

e(t) u(t) x(t)

fd(t)

ft([t, t + τp])

x(t)
human

controller
side-stick

controlled

element

display
(pursuit/

preview)

ft

Fig. 1. The HC in a target-tracking and disturbance-rejection task.

re f erence target

ft(t)

e(t)

x(t)
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out put
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τp ft(t + τ)
τ

preview

t

(b)

Fig. 2. Layout of the pursuit (a) and preview (b) displays.
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Fig. 3. Closed-loop dynamics in a double-integrator task with and without
preview, average of two subjects (reproduced from [11]).

pursuit task, as the phase of Hcl,t( jω) is closer to zero. The

closed-loop magnitude does not show a clear improvement.

Preview thus primarily helps HCs to better synchronize the CE

output with the target. In tasks with lower-order CE dynamics

(e.g., a gain), HCs extend the region where the closed-loop

phase approximates zero to higher frequencies [11]. Unfor-

tunately, the (lumped) closed-loop dynamics obscure exactly

how HCs use the available preview information, and also how

they adapt their control response to the CE dynamics.

C. Human Controller Model for Preview Tracking

Recently, we proposed a new model for pursuit and preview

tracking tasks that separates the HC’s responses to the differ-

ent input signals [14]. Thereby, this model provides deeper

insights in the human’s underlying control mechanisms.

1) The Model for Pursuit Tracking: The HC model for

pursuit tasks (see Fig. 4a) extends McRuer et al.’s simplified

precision model for compensatory tracking [3]. The model is

also quasi-linear, which means that linear describing functions

account for the linear portion of the HC’s response. Possible

nonlinear and time-varying behavior are not explicitly mod-

eled, nor are perception and motor noise; these are injected

together as filtered white noise through the remnant n(t).
The pursuit model involves a response to an error e⋆(t), with

response dynamics Hoe⋆
( jω) that are equal as in McRuer’s

simplified precision model [3], [14]:

Hoe⋆
( jω) = Ke⋆

1+TL,e⋆ jω

1+Tl,e⋆ jω
. (3)

Ke⋆ is the error response gain and TL,e⋆ and Tl,e⋆ are the lead

and lag time constants, respectively. Similar as in compen-

satory tracking, HCs adapt to the CE dynamics by generating

lead or lag in Hoe⋆
( jω), to establish a fair stretch of integrator-

like dynamics around the open-loop crossover frequency (ωc):

|Hoe⋆
Hce|≈ωc/ jω [14], [15].

The error e⋆(t), a signal internal to the HC, is defined as the

difference between the filtered target f ⋆t and the CE output:

E⋆( jω) = F⋆
t ( jω)−X( jω) = Ho f

( jω)Ft( jω)−X( jω). (4)

In pursuit tasks, Ho f
( jω) was modeled as a simple gain,

Ho f
( jω)=K f [14]. When K f=1, (4) shows that e⋆(t)=e(t),

hence that HCs respond to the true error and that they

effectively exhibit a single-channel “compensatory” control

organization [18]. A non-unity value of K f implies a “pursuit”

control organization [18], or the presence of a feedforward
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Fig. 4. Control diagrams of the HC model for pursuit (a) and preview (b)
tracking tasks [14].

response. Higher values of K f indicate a more aggressive

response to the target, while K f=0 means that the HC com-

pletely ignores the target and focuses only on disturbance

rejection. Single-subject data showed that K f<1 for an (un-

stable) double integrator CE, K f≈1 for an integrator CE, and

K f>1 for a (stable) gain CE [14], which suggests that K f

reflects an important control-adaptation mechanism.

The model also incorporates the HC’s most dominant physi-

cal limitations. Visual response delay τv combines perceptual,

cognitive and transport delays, and Hnms( jω) represents the

combined neuromuscular system (NMS) and side-stick dy-

namics:

Hnms( jω) =
ω2

nms

( jω)2 +2ζnmsωnms jω +ω2
nms

, (5)

with ωnms and ζnms the natural frequency and damping ratio.

2) The Model for Preview Tracking: Fig. 4b shows the HC

model for preview tasks, which extends the pursuit model.

Two responses, each initiated with respect to a different view-

point, can capture the HC’s response to the entire previewed

target [14]. A far viewpoint ft, f (t) feeds the “pursuit” control-

loop, while an additive, parallel feedforward channel describes

the HC’s response to a near viewpoint ft,n(t). The near- and

far-viewpoints are located τn and τ f s ahead on the previewed

target:

ft,n(t) = ft(t + τn), ft, f (t) = ft(t + τ f ). (6)

As the HC can select which points to respond to, based on the

task specifics, both τn and τ f are free model parameters. Note

that these viewpoints do not necessarily correspond to the two

levels, or points, used in many driver models (e.g., [19], [20]).

In preview tracking tasks, HCs were found to smooth the

target in the far viewpoint, so Ho f
( jω) includes a low-pass

filter [14]:

Ho f
( jω) = K f

1

1+Tl, f jω
. (7)

The far-viewpoint response thus only describes low-frequency

target-tracking behavior, with the reciprocal of the time con-

stant Tl, f as cut-off frequency. The HC’s response to higher

frequencies in the target signal was modeled as an open-loop

response Hon( jω) with respect to the near viewpoint [14]:

Hon( jω) = Kn

jω

1+Tl,n jω
, (8)

with gain Kn and high-pass filter time-constant Tl,n. The

limited data provided in [14] suggests that not all subjects

apply a near-viewpoint response in tasks with single- and

double-integrator CE dynamics.

III. OFFLINE MODEL ANALYSIS

The exact roles of the near- and far-viewpoint responses

are not yet fully understood. To gain more insight, we math-

ematically derive the HC dynamics that result in “perfect”

target-tracking, and we investigate the contributions of both

responses with model simulations.

A. Perfect Target-Tracking

The introduced HC model (Fig. 4) can be restructured into

the mathematically equivalent two-channel model of Fig. 5

(see [14]). Here, the HC is modeled to respond to the target and

the CE output, with lumped dynamics Hot ( jω) and Hox( jω):

Hot =
[

Ho f
Hoe⋆

eτ f jω +Honeτn jω
]

Hnmse
−τv jω , (9)

Hox = Hoe⋆
Hnmse

−τv jω . (10)

In (9) and (10) the dependency on jω is left out for better

readability. Using Fig. 5, the target closed-loop can be written

as

Hcl,t( jω) =
X( jω)

Ft( jω)
=

Hot ( jω)Hce( jω)

1+Hox( jω)Hce( jω)
. (11)

Substituting X( jω)/Ft( jω)=1 (i.e., perfect target-tracking),

and solving for Hot ( jω), yields the perfect target-tracking

dynamics HP
ot
( jω):

HP
ot
( jω) = Hox( jω)+

1

Hce( jω)
. (12)

Because the form of the response function Hox( jω) is identical

in tasks with and without preview for a given CE [14],

the form of HP
ot
( jω) is also fixed. For example, Hox( jω) is

approximately a gain for integrator CE dynamics. 1/Hce( jω)
is then a pure differentiator, which has a negligible magnitude

at low frequencies, but a much higher magnitude than Hox( jω)
at high frequencies. HP

ot
( jω) is thus dictated by Hox( jω) at

low frequencies and by 1/Hce( jω) at high frequencies. The

modeled HC target response in (9) has a similar form; for

integrator CE dynamics, it is dictated by gain K f Ke⋆ at low

frequencies and by differentiator Kn jω at higher frequencies.

This suggests that HCs attempt to approach perfect target-

tracking when preview is available.

ft(t)

x(t)
Hce

fd(t)

u(t)

n(t)

+

−
+

+

+

+
Hot

Hox human

controller

Fig. 5. Two-channel control diagram of the HC.
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B. Model Simulations

Two key aspects of the model are essential for the difference

between pursuit and preview tasks: 1) the point on the target

ahead that is the input to the HC’s “pursuit” response (charac-

terized by τ f ), and 2) the presence and strength of the additive

open-loop near-viewpoint response (characterized mostly by

Kn, but to a lesser extent also by the other model parameters).

Next, we investigate these two aspects for gain, single-, and

double-integrator CE dynamics.

1) Settings: For tasks with 0 and 1 s of preview, esti-

mated model parameters (single-subject data) are reproduced

from [14] in Table I; these are used as baseline in the simula-

tions. The used target (σ ft=0.5 inch) and disturbance (σ fd=0.2

inch) signals are each the sum of 20 sines, with a square

amplitude spectrum (1.5 rad/s bandwidth), augmented with

a high-frequency shelf where the amplitudes are attenuated

(see [14] for details). No remnant is included.

2) Analysis of the Far-Viewpoint Location: We step-wise

increase the value of τ f from 0 s (i.e., pursuit tracking) to

1.5 s, while keeping all other parameters fixed at the pursuit

settings in Table I. Fig. 6a shows that the variance of the

tracking error reduces substantially when τ f increases, for all

CE dynamics. Doing so, the target response exhibits phase lead

that compensates for the CE’s inherent lag, and the HC’s NMS

lag and visual response delay. The phase becomes markedly

closer to HP
ot
( jω), especially at mid-frequencies, as shown for

integrator CE dynamics in Fig. 6e. Responding to the target

ahead requires no additional control activity (constant σ2
u in

Fig. 6a), because a pure delay like τ f only affects the phase

of the target response (all |Hot ( jω)| lines overlap in Fig. 6c).

Fig. 6a also shows that it is beneficial to respond to the target

farther ahead for higher-order CEs, to compensate for its larger

inherent lag.

3) Analysis of the Near-Viewpoint Response: We step-wise

increase the value of Kn from 0 and 0.6, keeping all other

parameters fixed at the preview settings in Table I. Fig. 6b

shows that only a small performance improvement is possible

by increasing Kn, which comes at the cost of a substantially

TABLE I
TESTED CONDITIONS AND MODEL PARAMETERS (SINGLE-SUBJECT DATA),

ADAPTED FROM [14].

Hce Kce Kce/s Kce/s2

Kce, - 0.8 1.5 5

τp, s 0 1 0 1 0 1

abbreviation GN0 GN1 SI0 SI1 DI0 DI1

Ke⋆ , - 3.85 6.62 1.43 1.11 0.14 0.14

Tl,e⋆ , s 2.06 2.39 - - - -

TL,e⋆ , s - - - - 2.54 2.22

τv, s 0.18 0.16 0.23 0.18 0.28 0.31

ωnms, rad/s 17.9 18.0 11.2 10.2 6.15 5.33

ζnms, - 0.18 0.37 0.30 0.26 0.67 0.50

Kn, - - 0.06 - 0.18 - 0.32

τn, s - 0.08 - 0.34 - 0.00

Tl,n, s - 0.06 - 0.04 - 5.89

K f , - 1.21 1.11 0.95 1.12 0.54 0.63

τ f , s - 0.55 - 0.70 - 0.99

Tl, f , s - 0.26 - 0.38 - 0.59

higher control activity. For some subjects no near-viewpoint

response was found in [14]; possibly, these subjects aimed for

lower control activity, instead of slightly better performance.

The Bode plots (Fig. 6 d and f) show that an additional

near-viewpoint response mainly affects the high frequencies of

Hot ( jω), which resembles HP
ot
( jω) better in both magnitude

and phase if Kn is non-zero. In particular, the characteristic

increasing phase lead that results from responding to a far

viewpoint (due to negative delay τ f ) disappears, even with

low values of Kn.

4) Analysis of Time-Traces: The simulated CE output is

calculated with (11) for both the pursuit and preview pa-

rameters in Table I, with the disturbance set to zero. Fig. 7

shows that the CE output follows the target signal much better

with preview, lagging less behind, which is consistent with

Fig. 6. Still, the fast oscillations, or high frequencies, are

not completely reproduced; the CE output often remains on

the inside of the target signal “corners”, reflecting corner-

cutting behavior. This corresponds well with |Hot ( jω)| at high

frequencies (Fig. 6d), which is smaller than than required

for perfect target-tracking when Kn is small. With double

integrator CE dynamics the target’s high frequencies are hardly
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Fig. 6. Simulated effects of τ f (a), (c), and (e), and Kn (b), (d), and (f); Bode
plots (c-f) show only integrator CE dynamics results.
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Fig. 7. Simulated time-traces of the CE output: the benefit of preview (a-c),
and the contributions of the near- and far-viewpoint responses (d).

tracked at all (Fig. 7c).

Fig. 7d shows the contributions of the near- and far-

viewpoint responses when tracking with preview and integrator

CE dynamics. The near-viewpoint response accounts for an

output (Xn=HonHnmse
−τv Ft,n) that is identical to the high-

frequency sinusoids in the target signal. The filtered far-

viewpoint (F⋆
t, f=Ho f

Ft, f ) lacks exactly these high frequencies;

tracking it results in an output (X f , obtained from closed-

loop simulation with Kn, τn and Tl,n all set to zero) that

approximates the target signal’s low frequencies.

IV. METHOD

Next, the model simulations are verified with experimental

data. Details of the experiment and the data analysis proce-

dures are presented in this section.

A. The Experiment

Twelve subjects performed a combined target-tracking and

disturbance-rejection tasks. Two independent variables were

varied, the display and the CE dynamics. The display (see

Fig. 2) showed either 0 (i.e., pursuit) or 1 s of preview; the

CE had gain, integrator, or double integrator dynamics. All

subjects performed the full factorial of the two independent

variables in a randomized order. The six experimental condi-

tions are summarized in Table I; full details of the experimen-

tal settings, procedure, and apparatus are given in [14].

B. Data Analysis

1) Error and Control Output Variance: The variances of

the tracking error and the control output are used as measures

for the achieved tracking performance and the applied control

activity, respectively. The individual contributions due to the

target, disturbance, and HC remnant are estimated by integrat-

ing the error and control output auto spectral-density functions

only over the respective signal’s input frequencies [21].

2) Input-to-Error Dynamics: The target-to-error and

disturbance-to-error dynamics, H ft ,e( jωt) and H fd ,e( jωd), re-

spectively, quantify the error amplification/attenuation, relative

to the respective input signal, in the frequency domain. Both

are estimated at the input signal’s frequencies, ωt or ωd , as

follows:

H ft ,e( jωt) =
E( jωt)

Ft( jωt)
, H fd ,e( jωd) =

E( jωd)

Fd( jωd)
. (13)

3) Open-Loop Dynamics: In the frequency domain, per-

formance and stability are characterized by the open-loop

crossover frequency ωc and phase margin φm, respectively.

In a combined target-tracking and disturbance-rejection task,

two open-loop dynamics can be formulated, Hol,t( jω) and

Hol,d( jω) [21]:

Hol,t( jωt) =
X( jωt)

E( jωt)

=
Hot ( jωt)Hce( jωt)

1+[Hox( jωt)−Hot ( jωt)]Hce( jωt)
, (14)

Hol,d( jωd) =−
X( jωd)−Fd( jωd)

X( jωd)

= Hce( jωd)Hox( jωd). (15)

Crossover occurs at the frequency ωc for which |Hol( jω)|=1,

the corresponding phase margin φm is 180+ 6 Hol( jωc) deg.

4) Non-Parametric Multiloop System Identification: Non-

parametric estimates of Hot ( jω) and Hox( jω) in Fig. 5

are used to objectively quantify the HC’s multiloop control

dynamics. Both responses can be estimated simultaneously

with a system identification method based on Fourier coeffi-

cients [14], [22], [23]. From Fig. 5 it follows that the modeled

control output is

U( jω) = Hot ( jω)Ft( jω)−Hox( jω)X( jω)+N( jω). (16)

Two equations, needed to solve for the two unknown dy-

namics, are obtained by evaluating (16) both at the input

frequencies ωt of target signal, and by interpolating the signals

Ft , X , and U in the frequency domain from the disturbance

frequencies ωd to these same ωt (yielding F̃t , X̃ , and Ũ).

Assuming zero remnant, it follows that
[

U( jωt)
Ũ( jωt)

]

=

[

Ft( jωt) −X( jωt)
F̃t( jωt) −X̃( jωt)

][

Hot ( jωt)
Hox( jωt)

]

. (17)

Eq. (17) can be solved for Hot ( jωt) and Hox( jωt). Similarly,

estimates can be obtained at the disturbance signal input

frequencies, by evaluating (17) at ωd , after interpolating from

ωt to ωd .

5) Model Parameter Estimation: Estimates of the model

parameters are used to explicitly quantify human control

behavior, including the characteristics of the near- and far-

viewpoint responses. The model parameters are estimated by

minimizing a least-squares cost function J, which is based

on a frequency-domain error Eu between the measured and

modeled control outputs U and Û , respectively:

Eu( jω|Θ) =U( jω)−Û( jω|Θ), (18)

J(Θ) =
Nl

∑
l=1

∣

∣

∣
Eu( jωl |Θ)

∣

∣

∣

2

. (19)
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Nl is the number of measured frequencies below a chosen

cut-off frequency, here 25 rad/s. The five-run frequency-

domain average of the measured control output signals is

used to reduce effects of the remnant on the parameter

estimates. The modeled control output is obtained from (16)

with remnant N set to zero. The parameter vector Θ is

[Ke⋆ Tl,e⋆ TL,e⋆ τv ωnms ζnms K f τ f Tl, f Kn τn]
T . Because

the break frequency of the near-viewpoint high-pass filter was

generally well above measured frequency range in [14], Tl,n

is removed from the model here, such that (8) simplifies

to a pure differentiator. NMS natural frequencies above the

highest input frequency (about 15 rad/s) cannot be estimated

accurately, for subjects where this applies we fix ωnms at 15

rad/s. A Nelder-Mead simplex algorithm is used to minimize

J, constrained only to avoid solutions that contain negative

parameters. The best solution is selected from 100 randomly

initialized optimizations.

6) Data Processing: All non-parametric measures are cal-

culated per run, and then averaged over the five measurement

runs. Crossover frequencies and phase margins are calculated

from the fitted HC model, which allows for better estimates of

crossover frequencies outside the range of input frequencies.

A repeated-measures two-way ANOVA is applied to test for

significant differences in performance and control activity,

crossover frequency, and phase margin; results are compen-

sated with a conservative Greenhouse-Geisser correction when

the assumption of sphericity is violated. Errorbars on the

results in the next section represent 95% confidence intervals,

corrected for between-subject variability.

C. Hypotheses

Preview is information about the future target signal, so

we expect that it affects only the target-tracking, and not

the disturbance-rejection part of the task. This leads to the

following hypotheses:

I: Target-tracking performance improves with preview, in

accordance with [9]–[11] and our offline model predic-

tions; this will manifest in a lower error variance at the

target frequencies and higher target crossover frequencies

and phase margins;

II: Disturbance-rejection behavior is similar in pursuit and

preview conditions, resulting in similar control output

variances and Hox( jω) dynamics, hence similar param-

eters Ke⋆ , Tl,e⋆ , TL,e⋆ , τv, ωnms, and ζnms.

Based on our offline model analyses (Section III-B) we further

hypothesize that:

III: Subjects respond to the target ahead to improve perfor-

mance (characterized by τn and τ f ); furthermore, the two

viewpoints are farther ahead in conditions with higher-

order CE dynamics, to generate more compensating phase

lead for the CE’s larger inherent phase lag;

IV: Subjects initiate a weak near-viewpoint response, re-

flected by a small but non-zero value of Kn, to better

match the phase required for perfect target-tracking, with-

out substantially increasing control activity.

V. RESULTS

A. Tracking Performance and Control Activity

Fig. 8a shows that tracking performance is substantially bet-

ter (lower σ2
e ) in conditions with preview, which corresponds

to results in [9]–[11]. Especially target-tracking performance

improves (gray part of the bars), but the slight performance

increase due to reduced HC remnant is also significant (see

Table II). Neither disturbance-rejection performance, nor con-

trol activity (Fig. 8b), are significantly different with preview.

Fig. 8 also shows that the performance improvement predicted

by the model simulations in Section III-B matches reasonably

well with the experimental results.

With higher-order CE dynamics, tracking performance is

substantially worse (Fig. 8a). However, this effect is smaller

when preview is available, especially at the target and remnant

frequencies (significant interaction effects). Increasing the

order of the CE dynamics markedly affects the control activ-

ity distribution: the target component decreases significantly,

while the remnant component increases significantly.

The estimated input-to-error dynamics are shown in

Fig. 9 for integrator CE dynamics. The characteristic error-

amplification peak, caused by the HC’s response time-

delay [3], is clearly present in disturbance rejection, both with

and without preview (indicated by |H fd ,e|>1 in Fig. 9b). In

target tracking (Fig. 9a) this peak is only visible in pursuit
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Fig. 8. Variances of the tracking error (a) and the control output (b).

TABLE II
ERROR AND CONTROL OUTPUT ANOVA RESULTS.1

error, e control output, u

df F sig. df F sig.

display (1,11) 127 ** (1,11) 1.31 -

σ2 dynamics (1.07,11.8) 213 ** (1.23,13.6) 8.4 **
disp.*dyn. (1.05,11.5) 13.5 ** (2,22) 0.91 -
display (1,11) 305 ** (1,11) 1.44 -

σ2
t dynamics (1.16,12.8) 83.3 ** (2.22) 197 **

disp.*dyn. (1.11,12.3) 14.5 ** (2.22) 0.95 -
display (1,11) 0.22 - (1,11) 0.81 -

σ2
d dynamics (1.01,11.1) 138 ** (1.08,11.9) 2.30 -

disp.*dyn. (1.03,11.3) 0.20 - (1.36,15.0) 0.79 -
display (1,11) 1.43 * (1,11) 1.34 -

σ2
r dynamics (1.03,11.3) 135 ** (1.16,12.7) 14.2 **

disp.*dyn. (1.08,11.8) 7.98 * (2,22) 1.10 -

1 Symbols **, *, and - indicate highly significant (p < .01), significant
(p < .05), and non-significant (p > .05) results, respectively.
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Fig. 9. Non-parametric estimates of the input-to-error dynamics for integrator
CE conditions, single-subject data.

tasks. With preview, |H ft ,e| is always smaller than one, so the

error is attenuated all input frequencies. This is evidence that

preview enables HCs to compensate for their own response

delays.

B. Open-Loop Dynamics

In pursuit conditions, the measured target open-loop dy-

namics (Fig. 10, gray markers/line) resemble an integrator

with a time delay around crossover, in accordance with [15],

[24]. For double integrator CE dynamics subjects managed

to generate integrator magnitude characteristics in only a

minor region around crossover, due to the difficulty of this

condition. All disturbance open-loop dynamics (not shown)

have a similar shape, both in pursuit and preview conditions.

With the introduction of preview, the magnitude of the target

open-loop dynamics increases below the crossover frequency,

and then drops off with a slope larger than that of an integrator
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Fig. 10. Target open-loop dynamics, single-subject data.

(black markers/line, Fig. 10); additionally, the characteristic

pure delay is not visible in the open-loop phase.

The target crossover frequency (Fig. 11a) and phase mar-

gin (Fig. 11c) are both higher in conditions with preview

(significant effect, Table III), pointing to improved target-

tracking performance and stability. The average target phase

margins are between the values predicted by the near- and far-

viewpoint model simulations (Section III-B), suggesting that a

combination of both responses is active (except in double inte-

grator tasks). Note that the measured crossover frequencies are

slightly lower than the idealized predictions. The disturbance

crossover frequency (Fig. 11b) and phase margin (Fig. 11d)

are similar in pursuit and preview conditions. Only for gain CE

dynamics the disturbance crossover frequency is slightly lower

with preview, yielding a significant display effect; however,

this crossover frequency was difficult to estimate, due to the

relatively low control activity at disturbance frequencies in

gain CE conditions (see Fig. 8b).

The measured crossover frequencies (except target tracking

with preview) are relatively low: they are in the region where

crossover regression occurs in compensatory tracking tasks

(0.8ωc < ωi [2], [25]), as illustrated in Fig. 11. Little is
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Fig. 11. Crossover frequencies (a,b) and phase margins (c,d).

TABLE III
CROSSOVER FREQUENCY AND PHASE MARGIN ANOVA RESULTS.1

target disturbance

df F sig. df F sig.

display (1,11) 35.7 ** (1,11) 7.80 *
ωc dynamics (1.20,13.2) 19.7 ** (1.27,14.0) 8.35 **

disp.*dyn. (1.23,13.5) 12.1 ** (2,22) 8.69 **
display (1,11) 37.7 ** (1,11) 0.41 -

φm dynamics (1.58,17.4) 19.9 ** (1.20,13.1) 316 **
disp.*dyn. (1.17,12.9) 8.32 ** (1.33,14.7) 1.40 -

1 Symbols **, *, and - indicate highly significant (p < .01), significant
(p < .05), and non-significant (p > .05) results, respectively.
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known of this phenomenon in pursuit and preview tasks. The

relative invariance of these low crossover frequencies with

CE dynamics was reported earlier in similar pursuit tracking

tasks [15], [26].

C. Human Multiloop Control Dynamics

Fig. 12 shows Bode plots of the estimated Hot ( jω) and

Hox( jω). As shown before in [14], the model fits (solid lines)

coincide well with the non-parametric identification results

(markers). Note that a similar equalization is visible as in

compensatory tracking tasks [3]; both Hot ( jω) and Hox( jω)
exhibit a -1, 0, and +1 mid-frequency magnitude slope for gain,

single-, and double-integrator CE dynamics, respectively.

The target response in pursuit conditions (as well as the

CE output response in all conditions), shows the characteristic

high-frequency phase roll-off caused by the HC’s response

delay and NMS lags. In the preview conditions such phase

lag is not present in Hot ( jω); instead, phase lead is generated,

similar as in the simulations in Section III-B. The resulting

phase characteristics resemble perfect target-tracking much

better, so subjects clearly apply control actions that cancel

most of the lag from their own response and the CE dynamics.

At higher frequencies and for higher-order CE dynamics the

perfect target-tracking phase is matched less well.

Fig. 12 also shows that the target response high-frequency

magnitude is lower than that required for perfect target-

tracking. This indicates corner-cutting behavior, and corre-

sponds to the model simulations with low values of the near-

viewpoint gain Kn (Section III-B).

D. Model Parameters

1) Internal-Error Response: In gain CE conditions, both

Ke⋆ and Tl,e⋆ increase slightly with preview (Fig. 13). As a

results, the total error-response dynamics have a higher mag-

nitude at the lowest frequencies, but remain similar over most

of the measured frequency range. Similarly, preview yields a

slightly higher Ke⋆ and TL,e⋆ in double integrator conditions,

which also points to a higher low-frequency magnitude. For

integrator CE tasks, Ke⋆ is identical with and without preview.

2) Physical Limitations: τv, ωnms, and ζnms (Fig. 13) are

not systematically adapted when preview becomes available.

Only the NMS damping ζnms appears to be slightly lower with

preview. Increasing the order of the CE dynamics yields more

pronounced effects: the visual-response delay τv increases,

while the NMS bandwidth (ωnms) decreases; such adaptations

have been measured before in [2], [15], [24], [26].

3) Far-Viewpoint Response: Fig. 14 shows the estimated

far-viewpoint parameters. τ f is larger for higher-order CE

dynamics, indicating that subjects respond to the target farther

ahead, to generate more compensating phase lead. For double

integrator CE dynamics, τ f is approximately at the limit

of the presented preview (1 s), suggesting that the tracking

performance in this condition may further improve with more

preview. The far-viewpoint filter time-constant Tl, f is also

larger for higher-order CEs, such that less of the target’s high

frequencies are tracked through the far-viewpoint response.

To compensate for the phase lag introduced by the low-pass

filter, the measured values of τ f are consistently higher than

predicted in Section III-B, where this low-pass filter was not

considered (i.e., Tl, f=0).

For gain and integrator CE dynamics, the target weighting

gain K f is similar in pursuit and preview conditions. For dou-

ble integrator CE dynamics, K f is much larger with preview,

indicating that subjects are responding more aggressive to the

target signal. The difficulty of the pursuit task with double

integrator CE dynamics likely forced subjects to prioritize

stabilizing the CE’s output, so less effort was put in target

tracking. This is consistent with the generally lower values

of K f with higher-order CEs, and also with the lower control

activity at the target frequencies (Fig. 8).

4) Near-Viewpoint Response: Fig. 15 shows the estimated

near-viewpoint parameters. Kn is small but always non-zero,

suggesting that most subjects initiated a near-viewpoint re-

sponse; however, this does not correspond to the Bode plots

in Fig. 12. For example, for double integrator CE dynamics

the increasing high-frequency phase of Hot ( jω) suggests that

no near-viewpoint response is present, while Kn is estimated at

0.05. For single integrator CE dynamics, the phase flattening

of Hot ( jω) at high frequencies does suggest that a near-

viewpoint response is initiated, while Kn is estimated at 0.08. It

is thus difficult to determine whether a subject initiated a near-

viewpoint response, or not, merely from Kn. The adaptation

of Kn to the CE dynamics is similar as predicted by the model

simulations (Section III-B), with the highest value of Kn found

in single integrator conditions. As the estimated values of Kn

are lower than predicted, it appears that subjects prioritize a

low control activity over enhanced performance.

τn is larger for higher-order CE dynamics, similar as τ f .

However, between-subject variations are large, especially for

double integrator CE dynamics. Likely, these variations (and

the outlier for Subject 5 with single integrator CE dynamics)

point to a negligible contribution of the near-viewpoint re-

sponse. Consequently, it is impossible to obtain a meaningful

estimate of τn.

VI. DISCUSSION

In this paper, we explained how HCs use preview for

control in manual tracking tasks with various CE dynamics,

using both offline model analyses and experimental data.

The hypothesized performance improvement with preview, in

accordance with [9]–[11], was confirmed, predominantly in

target tracking (H.I). Offline model simulations predicted the

attained performance improvement remarkably well, especially

considering that no remnant was included, and no param-

eter interactions were investigated. As hypothesized (H.II),

disturbance-rejection behavior and performance were similar

with and without preview.

Fitting the model to the experimental data allowed us to

peek inside the black-box of human control, decomposing their

behavior into several characteristic responses and physically

interpretable parameters. Thereby, we confirmed that subjects

respond to the target farther ahead in tasks with higher-order

CE dynamics (as suggested before in [14]), to compensate for

the CE’s larger phase lag (confirming H.III). The adopted far-

viewpoint location was anticipated quite accurately with the
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Fig. 12. Bode plots of the target and CE output dynamics: non-parametric estimates, model fits, and perfect target-tracking dynamics; single-subject data.
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offline model simulations, establishing the model’s capability

to predict HC behavior.

At the highest input frequencies, HCs cannot invert the CE

dynamics, as required to attain perfect target-tracking, with

just their far-viewpoint response. The role of the additive

near-viewpoint response is to better match the perfect target-

tracking dynamics at these high frequencies, and to further

increase the target crossover frequency. The hypothesized
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Fig. 14. Estimated far-viewpoint parameters: negative delay τ f (a), lag time-
constant Tl, f (b), and gain K f (c). Gray bars represent the individual subjects.

low but non-zero values for Kn (H.IV) were found in the

experiment for most subjects, but these were not always

supported by a clearly visible near-viewpoint response in the

corresponding non-parametric target response Hot ( jω). The

estimated value of Kn is a poor indicator for the presence

of a near-viewpoint response, hence we cannot confidently

confirm H.IV. The near-viewpoint response varies substantially

between subjects, likely because it can yield only a marginal

performance benefit, at the cost of substantially more control
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Fig. 15. Estimated near-viewpoint parameters: gain Kn (a), and negative delay
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activity. For adequate task performance, the far-viewpoint

response is much more important than the near-viewpoint

response.

To better illustrate human adaption between pursuit and

preview tracking tasks, and to the CE dynamics, we now

propose a first set of verbal adjustment rules. 1) Similar as in

compensatory tracking tasks [2], HCs equalize their internal

error response Hoe⋆
( jω) to the given CE dynamics such

that their combination exhibits integrator-like dynamics. 2) In

pursuit and preview tasks, HCs apply feedforward control by

adapting the relative target-tracking/CE-stabilization priority

through K f , with more emphasis on target tracking (higher

K f ) in tasks with lower-order CEs. 3) In preview tasks,

HCs anticipate the target signal’s changes by basing their

“pursuit” response on the far viewpoint τ f s ahead, which

is positioned farther ahead for higher-order CEs. Hereby,

the response phase (hence performance) improves at lower

frequencies but deteriorates at higher frequencies. 4) HCs filter

these high frequencies from the previewed target signal by

adapting Tl, f ; they filter away more high frequencies (higher

Tl, f ) for higher-order CEs. 5) Optionally, performance can be

enhanced slightly more by also tracking the target signal’s high

frequencies with an additive, parallel near-viewpoint response,

which ideally resembles the inverse of the CE dynamics. With

a near-viewpoint response, HCs sacrifice some phase margin

in favor of a higher crossover frequency. These proposed

adjustment rules can be refined and extended by quantifying

HC adaptation to other task variables, like the preview time

and the forcing functions’ characteristics.

VII. CONCLUSION

In this paper, we explained how humans use preview for

control in tracking tasks with various controlled element

dynamics. We presented offline analyses with a quasi-linear

model and results from a human-in-the-loop experiment, to

established the roles of the human’s near- and far-viewpoint

responses. Preview allows humans cancel their own and the

controlled element’s lags, up to relatively high frequencies, by

basing their far-viewpoint, pursuit response on the target signal

ahead; this requires no additional control activity. The optional

open-loop near-viewpoint response helps to synchronize the

output with the target signal at higher frequencies, but at

the cost of substantially more control activity. Target-tracking

performance improves primarily due to the far-viewpoint re-

sponse mechanism, while the benefit from the near-viewpoint

response is small. The adopted control-theoretic approach

provided unique quantitative insights into human control adap-

tation in preview tasks, which can explain human behavior

observed in other preview control tasks, like driving.
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