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Simulation of shotnoise induced side-wall roughness
in electron lithography

T. Verduin∗, S. R. Lokhorst, C. W. Hagen, and P. Kruit

Delft University of Technology
Faculty of Applied Sciences

Department of Imaging Physics
Lorentzweg 1, 2628 CJ Delft, The Netherlands

ABSTRACT

We have developed a fast three dimensional Monte-Carlo framework for the investigation of shot-
noise induced side-wall roughness (SWR) formation. The calculation outline is demonstrated by an
exposure of a 100 nm thick layer of chemically amplified resist (CAR) on top of an infinitely thick
silicon substrate. We use our home built Monte-Carlo electron-matter interaction simulator for the
purpose of lithography. A pattern of an isolated line is written into the resist layer by scanning a
beam with 20 keV electrons over an area of 32 nm×1µm (width and length). During the exposure,
we use a spot size of 20 nm, beam step size of 4 nm and a Poisson distributed exposure dose of
80 µC/cm2, 60 µC/cm2 and 40µC/cm2. During the exposure of the sample, we record the locations
of the inelastic events within the resist layer. The distribution of released acids is determined under
the simplified assumption that every inelastic event corresponds to a release. We now construct a
three dimensional image of the (in)solubility of the resist layer within a cuboid of 128 nm(256px)
wide, 800 nm(1024px) in length and 100 nm(128px) in height. The (in)solubility is obtained by
summing the contribution of all acids to every voxel in the three dimensional image, where we
have used a three dimensional Gaussian with σx,y,z = rd =5 nm for the diffusion of the acid. The
boundary between exposed and unexposed resist is determined by a threshold. The resulting image
of the (in)solubility is analyzed in different ways by considering slices and three dimensional views
of the boundary. The average line edge roughness (LER) is obtained by calculating the standard
deviation of the left and right boundary from yz-slices. By considering all slices, ranging from the
top of the resist layer to the bottom of the substrate, the average LER as a function of the depth
from the top surface of the resist layer is obtained. Shotnoise effects are observed as we decrease
the exposure dose. An increased effect of shotnoise is observed near the vacuum and substrate
interface. One contribution relates to the actual number of acids, which due to the scattering is
less near the interface than away from the interface. Another contribution stems from the fact
that no acids are found on the vacuum side nor on the substrate side.
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1. INTRODUCTION

The throughput of a lithographic system is an important parameter in a typical production line.
This parameter can be increased in several ways. In optical lithography, for example, a more
powerful source is one solution. In electron-beam lithography, an increase of the number of parallel
beams is another solution. In either case, the use of a more sensitive chemically amplified resist
would result in a reduction of the required exposure dose, and hence a reduction of the exposure
time. In order to maximize throughput, it is tempting to choose the most sensitive CAR with
the lowest possible illumination dose. In that limit, however, an increase of LER, and hence an
insufficient control of critical dimension (CD) is observed.1 This increase of LER is primarily
caused by fundamental quantum noise (shotnoise) effects and becomes the dominant mechanism
in the formation of LER.2–8 Our attempt, in this theoretical study, is to develop an extended
Monte-Carlo framework for the investigation of shotnoise induced SWR formation in CARs. We
extend the existing studies in two different ways: (1) by including the interaction of the electron
beam with a CAR through an advanced Monte-Carlo electron-matter interaction simulator and (2)
by considering a full three dimensional model which, in contrast to Refs. 4–6, includes near-surface
effects of acid diffusion. We expect that this extended model provides more insight in the effects
on SWR of changing parameters such as resist thickness, acid diffusion and dose distribution. We
will explain the method of SWR formation within this framework and give a striking example with
analysis to demonstrate its use.

2. METHOD OF SWR FORMATION

At first, a (thin) layer of CAR is defined on top of an infinitely thick substrate. We now use the
simulator of Ref. 9 for lithography: the electron beam is scanned over the sample such that a
particular pattern is written. During the exposure, we record where the inelastic events take place
within the resist layer. Next, we determine the distribution of released acids from the inelastic
events under the following three assumptions. We assume that the initial distribution of photo
acid generators (PAGs) in the resist layer is homogeneous and isotropic. Furthermore, we assume
that every inelastic event in the simulation is associated with the release of an acid from a PAG.
We emphasize that, for realistic studies, the probability for the release of an acid as a function
of the kinetic energy of the electron must be included. In addition, we assume that a secondary
electron is created in the inelastic event. The distribution of acids is then used to determine the
breaking/making of bonds in the resist by considering a diffusion like process in the post exposure
baking (PEB) phase. The (in)solubility at position (x, y, z) in the resist layer is determined by
substituting each acid with a three dimensional Gaussian distribution,

S(x, y, z) ∼
nacid−1∑

i=0

exp
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where nacid is the number of released acids in the resist layer, µx,y,z the position of the acid and rd
the diffusion radius. We strive to replace this model by a more sophisticated model in the future.
The determination of the (in)solubility close to the substrate and vacuum interface deserves special
attention. The problem is that an acid cannot diffuse beyond the interface. Instead, we assume
that an acid is reflected. The contribution of an acid to the (in)solubility is determined by using
mirror symmetry at the vacuum and substrate interface. It is achieved by substituting the following
expression,
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where zs defines the position of the substrate interface and zv defines the position of the vacuum
interface. The determination of the (in)solubility at a particular position in the resist layer is
shown in Fig. 1 schematically. A three dimensional image of the (in)solubility of the exposed resist

vacuum

substrate

resist

layer

Figure 1: Schematic of the determination of the (in)solubility of a CAR at a particular location.
The black sphere is the position of an acid in the resist layer, which is obtained with a Monte-Carlo
electron-matter interaction simulator. Two mirrored acids (gray spheres) are virtually located in
the substrate layer and in the vacuum. The mirrored acids are used for calculating the reflection
of the acid diffusion with respect to the vacuum and substrate interface. The (in)solubility at the
square marker is determined by evaluating a Gaussian kernel for the diffusion of the acid. The net
(in)solubility at the square marker is obtained by accumulating the contributions of all released acids
in the resist layer.

layer is then constructed by evaluating the expression S(x, y, z) for each voxel. The computational
complexity of the latter scales with the product of the dimensions of the three dimensional image
and the number of acids in the resist layer. Typically, the computational complexity is > 1012 and
the computation time for the three dimensional image is reduced dramatically by using a graphics
processing unit (GPU).

We now proceed similarly to the work of Refs. 4–6, where a threshold determines the boundary
between exposed and unexposed resist. For a positive tone resist (PTR), intensities higher than
the threshold in the three dimensional image are dissolvable in a developer. Analogously for a
negative tone resist (NTR), intensities lower than the threshold are dissolvable. In reality, there is
also a development phase, which we so far have ignored in this study. We acknowledge that this is
a simplified view of post lithographic processing.

It is necessary, for realistic cases, that the elastic and inelastic scattering cross-sections of a CAR
are available. The inelastic scattering cross-sections, for example, can be determined from optical
loss functions, which can be obtained from optical experiments and from electron energy loss
spectroscopy (EELS) measurements.† Unfortunately, we do not have the optical loss function of
any particular CAR at our disposal. Therefore, we can only demonstrate the framework for the
investigation of shotnoise induced SWR formation by using artificial scattering cross-sections. In
our simulation tool, for example, we do have the scattering cross-sections for the organic resist
PMMA. For the sake of demonstration, we will assume in the upcoming example that PMMA
behaves as a CAR. We acknowledge that this is not a realistic approximation.

†More details on the sources for the scattering cross-sections, which are used in our Monte-Carlo electron-matter
interaction simulator, can be found in Ref. 9.
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3. EXAMPLE WITH ANALYSIS

Let us now give an example of the SWR formation. We define a 100 nm thick layer of PMMA on top
of an infinitely thick silicon substrate and use the simulator of Ref. 9 for the purpose of lithography.
We assume that the resist behaves as a NTR and write the pattern of an isolated line into the
resist layer by scanning a beam with 20 keV electrons over an area of 32 nm×1 µm (width and
length). During the exposure, we use a Gaussian spot size with FWHM=FW50%=20 nm, beam
step size of 4 nm and a Poisson distributed exposure dose of 80µC/cm2, 60 µC/cm2 and 40µC/cm2.
During the exposure of the sample, we determine the distribution of released acids by recording the
locations of the inelastic events within the resist layer. We now construct a three dimensional image
of the (in)solubility of the resist layer within a cuboid of 128 nm(256px) wide, 800 nm(1024px) in
length and 100 nm(128px) in height. The latter is obtained by evaluating expression S(x, y, z)
for each voxel in the three dimensional image, where we have used a three dimensional Gaussian
with σx,y,z = rd =5 nm for the diffusion of the acid. Furthermore, we have normalized the three
dimensional image such that the minimum value for the (in)solubility is zero and the maximum
value is one. We are now ready to analyze the resulting image of the (in)solubility in different ways.
Let us first look at the average (in)solubility in a xz-slice of the three dimensional image. The result
of that is shown in Fig. 2, where we have marked the boundary between exposed and unexposed
resist by contour lines for different values of the threshold. Notice the result of the scattering,
which causes the distribution of the acids to broaden at increasing depth. In the remainder of
the article, we arbitrarily choose a threshold of 0.5 with respect to the normalized (in)solubility
to mark the boundary between exposed and unexposed resist. A yz-slice of the three dimensional

position w.r.t. center of line [nm]

-60 -40 -20 0 20 40 60

d
e

p
th

 i
n

 r
e

s
is

t 
[n

m
]

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

0
.
8

0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

0
.
8

Figure 2: The average (in)solubility in a xz-slice of the three dimensional image. The sample
consists of a 100 nm thick layer of CAR on top of an infinitely thick silicon substrate. A pattern
of an isolated line is written into the resist layer by scanning a beam with 20 keV electrons over an
area of 32 nm×1 µm (width and length) by using a Monte-Carlo electron-matter interaction simulator.
The (in)solubility is obtained by accumulating the contributions of all acids in the resist layer, where
we have used a three dimensional Gaussian with σx,y,z = rd =5 nm for the diffusion of the acid.
The (in)solubility is normalized such that the minimum value for the (in)solubility is zero and the
maximum value is one. The boundary between exposed and unexposed resist is shown by contour
lines for different values of the threshold.
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image, taken at a depth of 50 nm from the top surface of the resist layer, is shown in Fig. 3 for
three different exposure doses. Notice that the boundary appears to have increasing roughness for
decreasing dose (from left to right). We will discuss this effect in detail later on. Instead of a slice
at a particular depth, we also construct a three dimensional view of the boundary between exposed
and unexposed resist. The result for the left side of the boundary is shown in Fig. 4 for the three
different exposure doses. Next, we determine the average LER as a function of the depth in the
resist layer from the yz-slices by calculating the standard deviation (one-sigma) of the left and right
boundary. If we repeat that procedure for all slices, ranging from the top of the resist layer to the
bottom of the substrate, we obtain the result of Fig. 5: the average LER as a function of the depth
in the resist layer. The observed increase in roughness for decreasing dose in Fig. 3 is confirmed
by this calculation. This was also concluded in the work of Refs. 4–6 for two dimensional cases.
In the current study, we observe the very same effect in a more sophisticated three dimensional
model. In addition, we observe an interesting effect close to the vacuum and substrate interface:
the roughness is increasing as we approach the interface.

Let us discuss the observed trends for shotnoise effects in SWR formation. Shotnoise effects arise
due to the nature of Poisson statistics: the number of acids varies with the square root of the
number of acids, i.e. nacid ±

√
nacid. The ratio between the fluctuations and the number of acids

is given by
√
nacid/nacid = 1/

√
nacid. What this really means is that if we decrease the dose, and

hence reduce the number of released acids, we get worse statistics. The result of that, as shown in
Fig. 5, is an increase in roughness for decreasing dose. There are two contributions for the increase
of roughness near the vacuum and substrate interface. One contribution relates to the actual
number of acids, which is less near the interface than away from the interface. The explanation
for this effect is as follows. Secondary electrons at the top of the resist layer escape into vacuum,
and hence cannot contribute any further to acid release within the resist layer. At the bottom we
have a similar effect: secondary electrons scatter into the silicon substrate. The difference is (with
respect to the vacuum side) that secondary electrons are created in the silicon substrate. There
are, however, fewer secondary electrons scattering from the silicon substrate back into the resist
layer. Another contribution stems from the fact that no acids are found on the vacuum side nor
on the substrate side. We will demonstrate the consequence on the statistics by example. Suppose
that the distribution of acids in the resist layer is homogeneous and isotropic, i.e. the probability
to find an acid anywhere in the resist layer is independent of position. The (in)solubility in the
center of the resist layer is primarily determined by the contribution of n±

√
n acids surrounding

that position. There are no acids found beyond the interface and so near the interface we only

have 1
2n±

√
1
2n acids in the resist layer to account for the (in)solubility. Remember that the acids

in the resist layer are reflected by using mirror symmetry and hence we effectively have n±
√

2
√
n

(mirrored) acids contributing to the (in)solubility. We conclude that the statistics near an interface
are worse because (1) the number of acids near the interface is less than away from the interface
and (2) because there are no acids found beyond the interface.
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Figure 3: A yz-slice of the simulated three dimensional (in)solubility of an exposed resist layer.
The slice is taken at a depth of 50 nm from the top surface of a 100 nm thick layer of CAR, which
is located on a infinitely thick silicon substrate. The white wavy lines mark the boundary between
exposed and unexposed resist for a threshold of 0.5. The three subfigures (a)-(c) correspond to a
Poisson distributed exposure dose of respectively 80 µC/cm2, 60µC/cm2 and 40µC/cm2.
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Figure 4: A three dimensional view of the boundary between exposed and unexposed resist. The
surfaces are obtained from a simulated exposure of a 100 nm thick layer of CAR, which is located on
a infinitely thick silicon substrate. Similar to Fig. 3, the boundary between exposed and unexposed
resist is determined with threshold of 0.5. The three subfigures (a)-(c) correspond to a Poisson
distributed exposure dose of respectively 80 µC/cm2, 60µC/cm2 and 40 µC/cm2.

Proc. of SPIE Vol. 9778  97781Z-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/13/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



average line edge roughness [nm]

0 1 2 3 4 5 6

d
e

p
th

 i
n

 r
e

s
is

t 
[n

m
]

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

80 µC/cm
2

60 µC/cm
2

40 µC/cm
2

Figure 5: The average LER as a function of the depth. The figure is derived from yz-slices of the
three dimensional image of the (in)solubility. The boundary between exposed and unexposed resist
is determined with a threshold of 0.5. The average LER is obtained by calculating the standard
deviation (one-sigma) of the left and right boundary. By considering all slices, ranging from the top
of the resist layer to the bottom of the substrate, the average LER as a function of the depth from
the top surface of the resist layer is obtained.
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4. CONCLUSION

We have succeeded in creating a fast three dimensional Monte-Carlo framework for the investigation
of shotnoise induced SWR formation. In comparison with existing studies, we simulate the electron-
resist interaction by using an advanced Monte-Carlo program. We have considered a simplified
model for the release of an acid from a PAG and used three dimensional Gaussian diffusion for the
acids. The latter includes reflection of acids at the vacuum and substrate interface by using mirror
symmetry. We can already see interesting effects such as: surface effects, broadening of the acid
distribution in the resist layer due to the scattering and roughness as a function of the penetration
depth.

This work is supported by NanoNextNL, a micro and nanotechnology program of the Dutch Gov-
ernment and 130 partners.
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