
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2010

MSc THESIS

Performance Analysis and Cost-Performance

Tradeoffs of a High Performance Partially Buffered

Crossbar Switch

Nikolaos Skalis

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2010-10

Why is it hard to build high-speed routers? Because high-speed
routers are like marriages; they are unpredictable, provide no guar-
antees, and become vulnerable in adversity. High-speed networks
including the Internet backbone suffer from a well-known problem;
packets arrive on high-speed routers much faster than commodity
memory can support. On a 10 Gb/s link, packets can arrive ev-
ery 32 ns, while memory can only be accessed once every 50 ns.
If we are unable to bridge this performance gap, then (1) We can-
not create Internet routers that reliably support links >10 Gb/s.
(2) Routers cannot support the needs of real-time applications such
as voice, video conferencing, multimedia, gaming, etc., that require
guaranteed performance. Network operators expect certain perfor-
mance characteristics; for example, if the arrival rate is less than the
router’s advertised capacity, they can reasonably assume the router
can handle the traffic. Somewhat surprisingly, no commercial router
can do this today!
The emphasis is put on the switching architecture of a router. This
thesis lays down a theoretical foundation for the Partially Buffered
Crossbar switches and is about managing and resolving the prefer-
ences and contention for memory between packets from participating

inputs and outputs in a switch. By combining the theory of fluid models, Lyapunov functions and the
pigeonhole principle, the requirements for devising practical algorithms which can provide guarantees and
emulate the performance of the ideal Output Queued switch and approximate the optimal Maximum Weight
Matching scheduler are drawn up. The solutions described in this thesis, relax the memory access and band-
width constraint, in fact, there is no better switching architecture described till now in terms of memory
requirements and practicality regarding its achieved performance. Moreover, this thesis derives the first
study of scheduling unicast and multicast traffic simultaneously in a Partially Buffered Crossbar switch.

Performance Analysis and Cost-Performance

Tradeoffs of a High Performance Partially

Buffered Crossbar Switch

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

EMBEDDED SYSTEMS

by

Nikolaos Skalis

born in Lamia, Greece

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Performance Analysis and Cost-Performance

Tradeoffs of a High Performance Partially

Buffered Crossbar Switch

by Nikolaos Skalis

Abstract

W
hy is it hard to build high-speed routers? Because high-speed routers are like mar-

riages; they are unpredictable, provide no guarantees, and become vulnerable in ad-

versity. High-speed networks including the Internet backbone suffer from a well-known

problem; packets arrive on high-speed routers much faster than commodity memory can support.

On a 10 Gb/s link, packets can arrive every 32 ns, while memory can only be accessed once every

50 ns. If we are unable to bridge this performance gap, then (1) We cannot create Internet

routers that reliably support links >10 Gb/s. (2) Routers cannot support the needs of real-time

applications such as voice, video conferencing, multimedia, gaming, etc., that require guaranteed

performance. Network operators expect certain performance characteristics; for example, if the

arrival rate is less than the router’s advertised capacity, they can reasonably assume the router

can handle the traffic. Somewhat surprisingly, no commercial router can do this today!

The emphasis is put on the switching architecture of a router. This thesis lays down a theoretical

foundation for the Partially Buffered Crossbar switches and is about managing and resolving the

preferences and contention for memory between packets from participating inputs and outputs

in a switch. By combining the theory of fluid models, Lyapunov functions and the pigeonhole

principle, the requirements for devising practical algorithms which can provide guarantees and

emulate the performance of the ideal Output Queued switch and approximate the optimal Max-

imum Weight Matching scheduler are drawn up. The solutions described in this thesis, relax

the memory access and bandwidth constraint, in fact, there is no better switching architecture

described till now in terms of memory requirements and practicality regarding its achieved per-

formance. Moreover, this thesis derives the first study of scheduling unicast and multicast traffic

simultaneously in a Partially Buffered Crossbar switch.

i

Laboratory : Computer Engineering
Codenumber : CE-MS-2010-10

Committee Members :

Advisor: Koen Bertels, CE, TU Delft

Advisor: Lotfi Mhamdi, CE, TU Delft

Chairperson: Koen Bertels, CE, TU Delft

Member: Fernando A. Kuipers, NAS, TU Delft

Member: Stephan Wong, CE, TU Delft

Member: Zaid Al-Ars, CE, TU Delft

ii

iii

iv

Contents

List of Figures vii

Acknowledgements ix

1 Introduction 1

1.1 Routers As the Backbone of the Internet 2

1.1.1 Integration of the cell switch inside a router 3

1.2 Background . 4

1.2.1 The ideal switch . 4

1.2.2 A note about memory technology 5

1.2.3 Why is memory access time a hard problem ? 6

1.2.4 Buffering strategies to alleviate the memory access time problem . 6

1.3 Motivation . 10

1.4 Organization . 12

1.4.1 Mapping the MWM Optimal Scheduling to a PBC Switch 12

1.4.2 Performance Guarantees in a PBC Switch 12

1.4.3 A PBC Switch Supporting Integrated Unicast and Multicast Traffic 12

1.5 Summary of Results . 13

2 Mapping the MWM Optimal Scheduling to a PBC Switch 15

2.1 The Partially Buffered Crossbar (PBC) Architecture 15

2.1.1 Switch model . 15

2.1.2 Scheduling process . 16

2.2 The Maximum Weight Matching (MWM) Algorithm 17

2.3 Related Work . 18

2.4 Use Memory as a Basis for Comparison 18

2.5 Approximation Class of Algorithms to MWM: 1-APRX 19

2.6 The EX-DROP-PR scheduling algorithm 19

2.6.1 The DROP-PR scheduling algorithm 20

2.7 The Bounding Methodology . 21

2.8 Throughput Analysis of a PBC Switch . 22

2.9 Is it possible to implement a 1-APRX in a pipelined and distributed fashion ? 24

2.10 Performance Results . 26

2.11 Conclusion . 28

3 Performance Guarantees in a PBC Switch 29

3.1 Towards Buffered Crossbars . 29

3.2 Mandating Guarantees for High-Speed Switches 30

3.2.1 A note about work-conservation . 30

v

3.3 Related Work . 30
3.4 Work Conservation without Emulation . 31

3.4.1 On the speedup required for achieving 100% throughput 31
3.4.2 A work-conserving PBC switch . 32

3.5 The Adaptive Frame Prioritized DROP scheduler (AF-DROP-PR) 33
3.6 Bounded Bandwidth Allocations . 35
3.7 Implementation Complexity . 37
3.8 Conclusion . 38

4 A PBC Switch Supporting Integrated Unicast and Multicast Traffic 39
4.1 Background: Multicast Traffic . 39

4.1.1 Multicast scheduling disciplines . 41
4.2 Related Work . 42
4.3 Multicast Scheduling in PBC switches . 42

4.3.1 The mcastDROP scheduler . 42
4.3.2 The mcastWBA scheduler . 43

4.4 Integrated Scheduling in PBC switches . 43
4.4.1 The DROP_mix and DROP-WBA integrated schedulers 44

4.5 Performance Results . 44
4.5.1 mcastDROP vs. mcastWBA . 46
4.5.2 DROP_mix vs. MURS_mix and ESLIP 47
4.5.3 DROP_mix with increasing internal buffers, B 48

4.6 Conclusion . 50

5 Conclusions 51

A Definitions and Traffic Models 53
A.1 Definitions . 53

B Performance Analysis of a PBC Switch 55

Bibliography 62

vi

List of Figures

1.1 Datapath of a packet through a flow-aware router. 2
1.2 Speedup definitions for the packet switch built around a cell switch. 3
1.3 The architecture of a centralized shared memory router. 4
1.4 Output queued switch. 5
1.5 (a) Combined input output queued switch. (b) Input queued switch. . . . 7
1.6 A stable marriage. 7
1.7 Crosspoint buffered crossbar switch. 9
1.8 The Partially Buffered Crossbar (PBC) switching architecture [1]. 9
1.9 (a) The iSLIP scheduling algorithm. (b) A PBC scheduling cycle [1]. . . . 11

2.1 The dynamics of the PBC switch [1]. 16
2.2 Maximum weight match example. 17
2.3 (a) Performance under Bernoulli uniform arrivals. (b) Throughput perfor-

mance under Bernoulli unbalanced and bursty traffic. 27

4.1 A N ×N crossbar that supports multicast. 40
4.2 The PBC switching architecture with integrated scheduling. 41
4.3 Average cell delay of mcastDROP and mcastWBA with different switch

sizes, varying B and pure multicast uniform and bursty input traffic (fm =
1). 46

4.4 (a) Average cell delay of DROP_mix, MURS_mix and ESLIP under
Bernoulli uniform unicast traffic (fm = 0). (b) Average cell delay of
DROP_mix, MURS_mix and ESLIP under Bernoulli uniform unicast
traffic (fm = 0.5). 47

4.5 Throughput performance of DROP_mix_4, MURS_mix and ESLIP_4
under different switch sizes and different multicast fractions. 48

4.6 Throughput performance of DROP_mix with different switch sizes, dif-
ferent multicast fractions and varying B. 49

4.7 (a) Average cell delay of DROP_mix with different switch sizes, varying
B and mixed uniform input traffic (fm = 0.5). (b) Average cell delay of
DROP_mix with different switch sizes, varying B and mixed bursty input
traffic (fm = 0.5). 49

A.1 Network traffic models [2]. 53

vii

viii

Acknowledgements

I am indebted to many for their advice and assistance throughout my time in Delft.
I would like to thank Kees Goossens and Lotfi Mhamdi for giving me the opportunity to
study about “switches and switching”, a subject that I found very interesting from the
beginning.
I would like also to thank Sundar Iyer for his truly inspiring and seminally described
work regarding the load balancing and parallelism principles in the design of routers.
Special thanks to TU Delft, for giving me the opportunity to interact with some extraor-
dinary and talented people from all over the world and to the many picturesque towns
of the Netherlands where I traveled.
My time at Delft has been a fantastic period. I would like to thank all my friends who
have given me many wonderful, meaningful, creative and of course, hilarious moments. I
am deeply grateful to my friends for their love, support and patience.
The journey would not be possible without the efforts of my family; my father Panagiotis,
my mother Magda and my brother Giannis, for always encouraging me to make the most
out of my life and for providing their moral support to my work during these years. I
dedicate this thesis to them.

Nikolaos Skalis
Delft, The Netherlands
June 1, 2010

ix

x

Introduction 1
The Internet is widely considered the most reachable platform for the network infras-
tructure. Whereas the availability of unlimited bandwidth has triggered a plethora of
services like file sharing and streaming media, there is no getting away from the fact
that the Internet is based on statistical multiplexing which is facilitated through the
packet mode or packet oriented communication. The statistical multiplexing principle
implies the sharing of a link that is able to adapt in some way to the instantaneous
traffic demands of the nodes connected to that link. Since resources are shared, traffic
bandwidth must be able to be allocated on demand and fairly between different users of
that bandwidth. Given that service providers wish for high capacity routers that provide
guaranteed performance and that the latest backbone routers are designed to scale well
[3], researchers are continually exploring faster switching technologies.
The Internet consists of end-hosts, links, and routers. This thesis focusses on the design
and architecture of high performance Internet routers, the focus is on the switching ar-
chitecture, that make up the backbone of the Internet — in particular, how to design
them to have a guaranteed performance and yet still be implementable.
A router consists of several processing stages. At the very least, a router has two main
processing stages; address lookup and switching. In the address lookup stage, a router
must decide for each incoming packet where to send it next, that is, finding the address
of the next-hop router as well as the egress port through which the packet should be sent.
In the switching stage, a router tries to resolve the output port contention when more
than one packet is destined for the same output port at the same time.
Analysis of the traffic-performance relation, linking capacity, demand and performance,
for a range of streaming and elastic traffic types leads us to believe adequate performance
can be assured much more simply than in the classical Quality-of-Service (QoS) archi-
tectures and more reliably than in an over-provisioned best effort network. Although
flows may be clearly identifiable from a higher level system view, for instance from a
software task-graph, this information is not communicated to the lowest level hardware.
A flow-aware router [4] is distinguished from a traditional router in that it is capable of
keeping track of flows passing by and applying different classes of service to each flow.
How a packet is processed by a flow-aware router is depicted in Figure 1.1 from when
it arrives on the ingress line until it departs on the egress line. At the switching phase,
packets are segmented into cells, traverse the switch fabric as cells, and reassembled back
into packets again before they leave the router1. Switching consists of the operations
that guide an incoming packet to the output buffer, the last possible waiting room before
the packet is placed on the link towards the next hop router. The destination and the
service class of the packet are recorded in the packet header. The path from input port

1A common technique used in high-performance routers is to segment the incoming variable-length
packets into fixed-length packets (cells).

1

2 CHAPTER 1. INTRODUCTION

to output port is a well-ordered concatenation of elementary queueing operations over
several stages directed by internal routing [5].

Figure 1.1: Datapath of a packet through a flow-aware router.

Network operators need to design and plan their networks. Most service providers offer
excellent quality of service simply by keeping link utilization low (less than 50%, say).
Packet delays are then very small and loss almost negligible. No commercial router today
can guarantee that 100% of its capacity is available to the network operator, which in
turn makes it hard to plan a network.
In summary, network operators want routers which provide throughput, bandwidth, and
delay guarantees. Routers usually employ a crossbar switching fabric, as it is non-
blocking, memoryless and introduces no delay. The bottleneck that prevents routers
from providing these guarantees is scheduling in the switching stage. The throughput of
a switching architecture is mainly affected by the queueing architecture and the schedul-
ing algorithm. A crossbar-based router requires a centralized scheduler to determine
when cells are to traverse the switch fabric. The scheduling problem becomes more and
more difficult as line rates and number of ports increase.

1.1 Routers As the Backbone of the Internet

Today’s Internet is an amalgamation of thousands of commercial and service provider
networks. It is not feasible for a single service provider to connect two distant nodes
on the Internet. Therefore, service providers often rely on each other to connect the
dots. Router design is often guided by the economic requirements of service providers.
Service providers would like to reduce the infrastructure and maintenance costs while,
at the same time, increasing available bandwidth and reliability. To this end, network
backbone has a set of well-defined, narrow requirements. One strategy to deal with the
exponential growth of the traffic in Internet is to design router with higher and higher
switching capacity. Routers in the backbone should simply move traffic as fast as possible.
Backbone links rates are evolving from today’s OC-48 (2.5 Gbps) to OC-192 (10 Gbps)
and even OC-768 (40 Gbps) [6], with a rate of increase of about 30% per year [6]. This
means that, for a minimum size TCP/IP packet of 40 bytes, the number of packets to be
processed is evolving from 8 to 32 and even 125 million of packets/s. So the average time
spent to elaborate a single packet (doing at least routing and switching) is decreasing
from 125 ns to 30 ns and even 8 ns; hence, the switching process at high speed must be
implemented in hardware.

1.1. ROUTERS AS THE BACKBONE OF THE INTERNET 3

1.1.1 Integration of the cell switch inside a router

A high-performance Internet Protocol (IP) router built around an Asynchronous Transfer
Mode (ATM) cell-switch will be used as a reference model.
An IP router is designed to minimize the state information on individual packets. The IP
protocol sits on top of the data-link protocol at the input and at the output of the router,
thus an IP router does not look into the actual data contents that the packet carries.
Input IP packets are segmented into ATM cells, that will be transferred to output ports
by a high-performing ATM switching fabric. The designers of ATM utilized small data
cells to reduce jitter (delay variance, in this case) in the multiplexing of data streams.
Once cells are delivered to an output port, they are reassembled into the IP packet, which
is transmitted on the output line.

Figure 1.2: Speedup definitions for the packet switch built around a cell switch.

Figure 1.2 depicts the possible speed variations inside a router with an integrated cell-
switch.

• speed-UP-in: specifies the rate at which cells are moved from the input IP module
to the input of the cell-switch. When a packet is segmented into k cells, all these
cells are sequentially and consecutively (assuming no contention) transferred to the
cell-switch input in k time slots, we say that speed-UP-in=1.

• speedup (S): up to S cells can be read from each input and written to each output
of the switch in one time slot. is the number of cells per slot that can be read from
the inputs of the cell-switch, and it is also the number of cells per slot that can be
written onto a switch output.

• speed-UP-out: specifies the rate at which cells are moved from the output of the
cell-switch to the output IP module.

The input and output IP modules that appear in Figure 1.2 consist of a number of queues
that serve variable-length packets in store-and-forward mode. This is where the packet
segmentation and reassembly functionality is provided. The ATM modules are comprised
of input and output cell queues of the crossbar-based switch.

4 CHAPTER 1. INTRODUCTION

1.2 Background

Consider a switch with N input and N output ports. We will denote R (usually denoted
in Gb/s) to be the rate at which cells of size C arrive at every input and depart from
every output. We normalize time to the arrival time between cells (C/R) at any input,
and refer to it as a time slot.

1.2.1 The ideal switch

The ideal switch is typically modeled as a centralized shared memory switch. The memory
requirements for the switching architecture in question are:

1. Bandwidth: A total memory bandwidth of 2NR Gb/s is required, as the centralized
shared memory must be able to store all N arriving cells and transmit up to N
cells at the same time.

2. Access Time: Given that the memory bandwidth is equal to the ratio of the width
used for a memory access and the random access time (equals At = C/2NR sec-
onds), if N = 8, R = 10 Gb/s, C = 64 bytes and a 32-bit-wide memory with 50 ns
random access time is used, then the centralized shared memory must be accessed
every 3.2 ns.

3. Capacity: If we assume an Internet RTT (where RTT is the round-trip time for
flows passing through the switch) of approximately 0.25 s, N = 8 and R = 10 Gb/s
then 2.5 Gb× 8 = 20 Gb of memory are required2.

Figure 1.3: The architecture of a centralized shared memory router.

If the memory meets these three requirements [2], then the switch exhibits minimum
cell latency because the cells face no constraints on how and when they arrive and depart.

2As a rule of thumb, the buffers in a switch are sized to hold approximately RTT ×R bits of data.

1.2. BACKGROUND 5

1.2.2 A note about memory technology

Two main memory technologies are available in the market today; Static Random
Access Memory (SRAM) and Dynamic Random Access Memory (DRAM). SRAM is
more expensive, but faster and significantly less power hungry (especially idle) than
DRAM. It is therefore used where either bandwidth or low power, or both, are principal
considerations. The advantage of DRAM is its structural simplicity; only one transistor
and a capacitor are required per bit, compared to six transistors in SRAM. This allows
DRAM to reach very high density.

“With today’s CMOS technology, the largest available commodity SRAM [7]

is approximately 72 Mb, has a bandwidth of 72 Gb/s, an access time of

2 ns, and costs $70.” [2]

So, in order to meet the capacity requirement, the ideal switch would need more
than 275 SRAMs, and the memories alone would cost over $19K — greatly exceeding
the selling price of an Enterprise router today! Although possible, the cost would make
this approach impractical.

“The largest commodity DRAM [8] available today has a capacity of 1 Gb, a

bandwidth of 36 Gb/s, an access time of 50 ns, and costs $5.” [2]

We cannot use DRAMs because the access rate is an order of magnitude above
what is required. If our switch has more than N = 16 ports, the access time requirement
would make even the fastest SRAMs inapplicable.
The centralized shared memory switch is an example of an output queued (OQ) switch.
In an OQ switch, cells are immediately forwarded to the destined output ports once they
arrive at the inputs. Since in an OQ switch each output port has a memory, there is
no contention from different outputs, the OQ switch has better quality-of-service (QoS)
control ability, which comes at the cost of a memory speed constraint. Each memory
must have an access rate equal to (N + 1) times the line rate in order to cater for N
writes and one read per time slot, limiting, thus, the switch size.

Figure 1.4: Output queued switch.

6 CHAPTER 1. INTRODUCTION

While this approximately halves the access time requirement compared to the centralized
shared memory switch, this approach is still extremely impractical at high speeds.

1.2.3 Why is memory access time a hard problem ?

“In 1997, the extremely small-size data accesses, equal to the size of the

smallest-size 64-byte packet, required by networking was identified as a

fundamental upcoming problem.” [2]

The random access time of commercial DRAMs has decreased by only 1.1 times
every 18 months (slower than Moore’s Law) [9]. In contrast, as line rates increase
(usually at the rate of Moore’s Law), the time it takes these small-size packets to
arrive grows linearly smaller, and as a result the problem becomes harder and harder.
Designing high-speed and scalable switches mandates us to alleviate the memory access
rate problem.

“By 2005, routers had to be built to support the next-generation 40 Gb/s

line cards. By then, this had become a pressing problem in immediate need

of a solution.” [2]

1.2.4 Buffering strategies to alleviate the memory access time problem

Reviewing the buffering strategy in crossbar switches; cell switches based on a crossbar
architecture with virtual-output-queueing (VOQ) are attractive for use in high speed
networks, as the bandwidth of the input buffers is twice the line rate (at most one cell
can be transferred to an input and at most one buffered cell can be transferred through
the crossbar). Another popular switch architecture is the combined input-output queued
(CIOQ) switch, shown in Figure 1.5(a). A CIOQ switch buffers cells twice — once at the
input, and again at the output. This switch can behave identically to an output queued
switch if the memory on each line card runs at rate 3R, the switching interconnect runs
at rate 2NR, and it implements a complex scheduling algorithm [10].
In an input queued (IQ) switch with VOQs, the switching interconnect needs to carry
up to N cells from the inputs to the respective outputs and needs a bandwidth of 2NR.
More important, each memory only needs to run at a rate 2R (instead of 2NR), enabling
higher-capacity routers to be built. So, in IQ switches, the switching fabric and the
input line interface can operate at a rate that does not grow with the switch size. An
unbuffered IQ switch, Figure 1.5(b), requires a centralized scheduler to resolve two main
blocking problems, namely input and output contention. Input contention results from
the constraint that an input can send at most one cell every time slot. Similarly, output
contention arises from the constraint that an output can receive at most one cell every
time slot. These blockings make the task of the scheduler complex and the cells delay
unpredictable, as the scheduler implements complex stable marriage algorithms [11].

1.2. BACKGROUND 7

(a)

(b)

Figure 1.5: (a) Combined input output queued switch. (b) Input queued switch.

“Given N men and N women, where each person has ranked all members

of the opposite sex with a unique number between 1 and N in order of

preference, marry the men and women off such that there are no two people

of opposite sex who would both rather have each other than their current

partners. If there are no such people, the marriages are stable.

Figure 1.6: A stable marriage.

8 CHAPTER 1. INTRODUCTION

An easier way to understand this is captured in the following quote [12]

which presupposes a married woman who professes interest in marrying

another man. If she receives the reply, “Madam, I am flattered by your

attention, but I am married to someone I love more than you, so I am not

interested”, and this happens to any woman who wants to switch (or vice

versa) then the set of marriages is said to be stable.

The algorithm was first applied for pairing medical students to hospital

jobs. Gale and Shapely [11] proved that there is always a set of stable

marriages, irrespective of the preference lists. The latter fact is key

to analyzing crossbar routers.” [2]

Tassiulas and Ephremides [13] and McKeown et al. [14] proved that an IQ router
with VoQs can achieve 100% throughput with a maximum weight matching (MWM)
algorithm, if the input traffic is i.i.d and admissible3; the outputs are allowed to be
non-uniformly loaded. Dai and Prabhakar [15] generalized this result and showed
that MWM can achieve 100% throughput provided that the input traffic satisfies the
strong law of large numbers and is admissible. However, MWM is extremely complex to
implement and has a time complexity, O(N3logN). One would expect that the maximum
size matching (MSM) algorithm, which maximizes the instantaneous bandwidth of the
crossbar (the most efficient algorithm has a lower time complexity O(N2.5), would also
be able to achieve 100% throughput. However, contrary to intuition, MSM is known to
be unfair (if ties are broken randomly), can lead to starvation, and hence cannot achieve
100% throughput [14].
The existence of crosspoint queueing [16] relaxes the output contention constraint,
making the scheduling task much simpler. Buffered crossbars (CICQ), Figure 1.7, use
distributed and independent schedulers (one per input/output port) to switch cells from
the input to the output ports of the switch that do not have to resolve two constraints
in a time slot. A scheduling cycle consists of input scheduling, output scheduling and
flow control to prevent crosspoint buffer overflow. The scheduling simplification comes
at the expense of a costly crossbar, which is hard to scale, as the crossbar has to contain
N2 crosspoint buffers, where N is the number of input/output ports of the switch. The
number of crosspoint buffers grows quadratically with the switch size and linearly with
round trip delays [17]. This makes buffered crossbar switches highly expensive and hence
less appealing.

3Please see Appendix A for a more formal definition.

1.2. BACKGROUND 9

Figure 1.7: Crosspoint buffered crossbar switch.

The Partially Buffered Crossbar (PBC) switch [1] was designed to be the best compromise
between unbuffered crossbars and fully buffered crossbars. First, it overcomes the high
cost of fully buffered crossbars that use N2 internal buffers, by using a low number of
internal buffers (B) per output irrespective of N . Second, it overcomes the scheduling
complexity experienced by unbuffered crossbars by means of distributed and pipelined
scheduling algorithms, whereas the input scheduling phase resembles a scheduling cycle
in unbuffered crossbars, as it is based on request-grant-accept handshaking protocol. A
more detailed description of the PBC switching architecture is described in Chapter 2.

Figure 1.8: The Partially Buffered Crossbar (PBC) switching architecture [1].

10 CHAPTER 1. INTRODUCTION

1.3 Motivation

A switch designer is constrained by requirements and technological feasibility and must
also decide how to distribute functionality over chips in order to optimize the overall
system cost and power. Next, we draw attention to some issues concerning the design of
a cell switch:

• Instead of increasing the port speed, the aggregate throughput of a switch gets
larger and larger by increasing the number of ports.

• The demand of throughput/power density in terms of Gb/s per Watt per physical
volume is increasing. The throughput/power density of all the switch’s components
must be scaled up analogously to the increase in aggregate bandwidth. There is no
getting away from the fact that, the increase in density offered by CMOS technology
is invested in reducing size or power density and in increased functionality, such as
level-4 routing, firewalling, MPLS, and DiffServ, rather than increasing speed.

• Although the access time will be reduced over time, the rate of improvement is
much slower than Moore’s Law [18]. Although Moore’s law doubles performance
every 18-24 months at constant cost, this performance is mostly due to increased
density rather than increased clock speeds. From one CMOS generation to the
next, taking global wiring into account, switch-chip clock speeds can be increased
by only 5-10% [19]. To exploit Moore’s law, more parallelism is required, typically
at constant clock speeds. In turn, this results in more levels of pipelining in the
control path and a higher degree of parallelism in the datapath. Similarly, on-chip
memory speed does not increase, and memory busses become wider in each new
generation.

• The increased RTT results in more packets in flight, and, independently of the
switch architecture chosen, this needs to be accounted for with buffers in the system
to ensure that the system is both work-conserving and lossless. In general, the
amount of buffering required to ensure both losslessness and work-conservation
must be scaled proportionally to the RTT . The flow-control mechanism selected
has a large impact on buffer sizes. As a result, RTT has become a major design
parameter for switch architectures 4.

• While internal speedup is a good solution5, it does incur significant cost — the
crossbar is more expensive (S times higher throughput), the buffer memories are

4The introduction of a significant RTT has implications for the egress buffer sizing. Even if there is no
internal speedup, egress buffers usually are still necessary to accommodate packets when the downstream
links are blocked (e.g., because of congestion in the downstream node). However, if the downstream link
is 100% available, any input should be allowed to utilize this bandwidth fully, without the possibility
of packets being lost, i.e., under completely unbalanced traffic both work-conservation and losslessness
must be ensured. The egress buffer size per output must be scaled proportionally to RTT , speedup, and
number of traffic classes to satisfy these requirements.

5The crossbar port rate is higher than line rate by a factor of S, considerably greater than 1. In
this way, (1) since an average utilization of the crossbar outputs suffices for the egress lines to get fully
utilized imperfect crossbar scheduling is acceptable, (2) due to the technique of segmenting variable-size
packets into fixed-size cells, the required rate increase can be accommodated and (3) the emphasis is

1.3. MOTIVATION 11

more expensive ((1 + S)/2 times higher throughput).

• The switch performance is essentially depended on the complexity of the central-
ized scheduler in IQ switches. By introducing a small amount of buffering in the
crossbar, we can make the scheduler’s job much simpler. The intuition is that when
a cell is switched, it can wait in the buffer; it doesn’t have to wait until both the
input and output are free at the same time. But, the number of internal buffers
grows quadratically with respect to the switch size and linearly with the RTT [17].
As shown in Figure 1.9 [1], a grant arbiter can send at most one grant per input
in order to avoid input contention, similarly, an accept arbiter can accept at most
one grant in order to avoid output contention. The scheduling process in a PBC
switch allows up to B cells, destined to the same output, to be stored to the internal
buffers. In this way, the output contention is relaxed whereas the input contention
constraint is still enforced, bypassing the need of a complex centralized scheduler
(as in IQ switches) and introducing some kind of awareness between the input and
the output scheduler as opposed to the completely independent schedulers used in
CICQ switches.

(a)

(b)

Figure 1.9: (a) The iSLIP scheduling algorithm. (b) A PBC scheduling cycle [1].

shifted to the egress-line subsystem, since queues now tend to build up on the output side of the crossbar
(combined input-output queueing (CIOQ)) for providing QoS.

12 CHAPTER 1. INTRODUCTION

1.4 Organization

We saw (in section 1.2) that an ideal OQ switch requires a memory access rate that is
proportional to the product of the number of ports N and the line rate of each port R.
We will look at ways to reduce the access rate of the memory on high-speed routers.
This is done by trading off memory access time with memory bandwidth and by devis-
ing schedulers that minimize the memory requirements, while the maximization of the
switch’s performance is still the main objective. Moreover, this work conducts the first
study on integrated unicast and multicast traffic support in the PBC switching architec-
ture that has recently been proposed and shown to be a good compromise between both
the unbuffered and fully buffered crossbar switch architectures.
Additionally, in Appendix B, we present a system-level buffer planning algorithm that
can be used to customize the design of a PBC switch. Given the traffic characteristics
and the total budget of the available buffering space, our algorithm automatically assigns
the internal buffer size for each output, such that the overall performance is maximized.

1.4.1 Mapping the MWM Optimal Scheduling to a PBC Switch

In Chapter 2, we introduce the PBC switching architecture and we investigate whether
it is possible to map the bufferless MWM optimal scheduling algorithms to the PBC
architecture and implement it in a pipelined and distributed fashion. It has so far been
not possible to achieve this task for fully buffered crossbars and the reason is mainly
attributed to the physically distributed internal buffers as well as their scheduling. We
show how the PBC switch can practically run optimal scheduling and achieve almost
100% throughput under any admissible input traffic pattern without any speedup.

1.4.2 Performance Guarantees in a PBC Switch

In Chapter 3, we describe how a PBC switch with only a two-cell internal buffering per
output port coupled with an adaptive frame-based scheduler can achieve 100% through-
put, guarantees a minimum level of fairness that a flow perceives. We show the tradeoff
between the Weighted-Max-Min-Fairness (WMMF) rates and the average cell latency
compared to an OQ switch. Because we do not require a centralized scheduler and we do
not impose any memory speed constraint with respect to the switch size, the proposed
switching architecture and scheduling mechanism that allocates the available bandwidth
with fairness in mind are considered practical. No commercial backbone router today
can make hard guarantees on throughput [20].

1.4.3 A PBC Switch Supporting Integrated Unicast and Multicast
Traffic

The growing proportion of multicast traffic on the Internet is stressing the need for
efficient multicast support alongside the unicast traffic. Only little has been done on
the support of integrated unicast and multicast traffic flows. Chapter 4 conducts the
first study on integrated unicast and multicast traffic support in the PBC switching
architecture. We consider the problem of scheduling cells in a PBC switch when both

1.5. SUMMARY OF RESULTS 13

unicast and multicast traffic are present. We concurrently schedule unicast and multicast
cells and compare the performance of our schedulers with state-of-the-art algorithms used
in IQ and CICQ switches. Our performance study shows that the PBC switch with its
integrated scheduler can efficiently handle integrated unicast and multicast traffic flows,
while maintaining the advantages of both the unbuffered and the fully buffered crossbar
architectures.

1.5 Summary of Results

This thesis lays down the theoretical foundation for the PBC switches, by combining the
theory of fluid models, Lyapunov functions and the pigeonhole principle. It describes
practical algorithms which can emulate the performance of an OQ switch and approxi-
mate the optimal Maximum Weight Matching scheduler. It also helps us derive bounds on
average VOQs occupancy and provide throughput guarantees. The solutions described
in this thesis relax the memory access and bandwidth constraint, in fact, there is no
better switching architecture described till now in terms of memory requirements and
practicality regarding its achieved performance. Moreover, this thesis derives the first
study of scheduling unicast and multicast traffic simultaneously in a PBC switch.

14 CHAPTER 1. INTRODUCTION

Mapping the MWM Optimal

Scheduling to a PBC Switch 2
In this chapter, we describe in detail the PBC switching architecture and we apply a
general methodology, mainly based upon Lyapunov functions, to derive bounds on aver-
ages of queue lengths. Although the stability properties (i.e., the limit throughput) of
IQ and CIOQ cell-based switches were already studied for several classes of scheduling
algorithms, very few analytical results concerning queue lengths are available in the tech-
nical literature. We attempt to address these issues for the case of the PBC switch. We
concentrate on Maximum Weight Matching (MWM) that has been proved to maximize
throughput. The MWM algorithm is perceived to be very good scheduling algorithm in
general and simulations have suggested that it performs better than most of the known
algorithms in terms of delay. But it is very complex to implement. Hence many simple
to implement approximations to MWM have been proposed.

2.1 The Partially Buffered Crossbar (PBC) Architecture

In the following, we introduce the PBC [1] switching architecture together with its
scheduling process.

2.1.1 Switch model

Each input port contains N VOQs, one per output port. The crossbar fabric contains
a small number of internal buffers (B) organized per output. The building blocks of a
PBC switch are the input scheduler (IS), the grant scheduler (GS), the output scheduler
(OS), the credit queue (CQ) and the grant queue (GQ), as depicted in Figure 1.8. Each
input i maintains an input scheduler. ISi is responsible for transferring the cells from
the linecard to the internal buffers. Each output has a grant scheduler, GSj , that tracks
the grants an output sends and together with the ISi are responsible for the flow control
of the fabric’s internal buffers.
The communication mechanism between the ISi and the GSj is the grant queue, GQ.
GQij = 1 when GSj sends a grant to ISi and when the ISi accepts the grant then
GQij = 0. A credit queue with B entries is maintained per output, CQj , that tracks
the availability of the internal buffers of that output. CQj is decremented whenever a
grant is sent to an input, and incremented during output scheduling. Lastly, the output
scheduler OSj arbitrates the departure of cells from the internal buffers to the output j
in a First-Come-First-Serve (FCFS) manner.

15

16 CHAPTER 2. MAPPING THE MWM OPTIMAL SCHEDULING TO A PBC
SWITCH

Figure 2.1: The dynamics of the PBC switch [1].

2.1.2 Scheduling process

The scheduling process in the PBC switch combines ideas from the scheduling disciplines
used in IQ and CICQ switching architectures. More specifically, input scheduling works
like in a unbuffered crossbar adopting the classical request-grant-accept handshaking
protocol, whereas like in buffered crossbars, there are two scheduling phases; input and
output scheduling. The sequence of events is displayed in Figure 2.1 [1].
During time slot t, the input (linecard) sends a logN bit signal to ISi about a new cell
arrival. According to the internal buffers availability (CQj) and how the grant scheduler
functions, a logN bit signal is sent back to the input i indicating the selected V OQij . At
the same time, ISi selects and transfers a Head-of-Line (HoL) cell based on the decision
of the GSj , but, note that the decision in question was taken during the previous time
slot. In other words, the outcome of GSj at time t is only valid during time slot (t+ 1)
or later. This in turn allows us to pipeline the input and the grant scheduling phases, as
they are now completely decoupled in time.

2.2. THE MAXIMUM WEIGHT MATCHING (MWM) ALGORITHM 17

2.2 The Maximum Weight Matching (MWM) Algorithm

Throughput and delay are used to evaluate a switch’s performance. Throughput is de-
fined to be the average number of cells transmitted in a time slot, and delay is defined
to be the time experienced by a cell from arrival to departure. We say that a switch is

stable, when the expected queue length is bounded: E
[

∑

ij Lij

]

< ∞, ∀t. If a switch is

stable under any independent and admissible input traffic, then the switch can achieve
100% throughput.
Algorithms that obey in sophisticated scheduling disciplines are required to schedule cells
to a crossbar in each time slot. In order to fully exploit the underlying interconnection
architecture, the crossbar, the scheduling algorithm must adhere to disciplines that allow
an efficient way to schedule cells on a per time slot basis. The latter can be modeled as
a bipartite graph matching problem, according to which, there are N nodes that stand
for the N input ports and another N nodes that stand for N output ports. If there
is an input request for a particular output, this is denoted by an edge connecting the
input-output pair of nodes. A scheduler is responsible for selecting a set of the edges
from at most N2 edges, where each input is connected to at most one output and each
output is connected to at most one input. A matching (a set of edges) of input-output
can be represented as a permutation matrix M = (Mij), i, j ≤ N , where Mij = 1 if
input i is matched to output j in the matching.
In a bipartite graph, we define wij as the weight of edge eij from input i to output j.
Weight of a VOQ refers usually to the length of the VOQ (backlocked cells). The maxi-
mum weight matching (MWM) M for a bipartite graph is one that maximizes

∑

eij∈M
wij .

Figure 2.2 shows an example of a maximum weight match.

Figure 2.2: Maximum weight match example.

Theorem 2.1 A maximum weight matching algorithm achieves 100 per-
cent throughput under any admissible traffic [14][13].

“The criteria to choose a scheduling algorithm mainly are; (1) Efficiency.

The algorithm should achieve high throughput and low delay. In other

words, select a set of matches with more edges in each time slot. (2)

18 CHAPTER 2. MAPPING THE MWM OPTIMAL SCHEDULING TO A PBC
SWITCH

Fairness. The algorithm should avoid the starvation of each VOQ. (3)

Stability. The expected occupancy of each VOQ should remain finite for

any admissible traffic pattern. (4) Implementation Complexity. The

algorithm should be easy for hardware implementation. High implementing

complexity will cause long scheduling time, which further limits the line

speed of the switch.” [3]

What has to be noticed is that MWM can be solved in time O(N3logN) [21],
which is, too large for a high-speed packet switch. We can reduce the complexity of
computing maximum weight matches, by devising approximations of MWM.

2.3 Related Work

In an IQ switch, a switch scheduler is necessary. The difficulty of the switch scheduling
comes from two aspects. First, the scheduling has to be performed in a very short time.
Second, co-existence of input and output contentions make the switch scheduling more
complicated than in the case of an OQ switch. The switch scheduler must make sure
that matchings between inputs and outputs are conflict-free at any time. Theoretically,
the MWM algorithm [14] is proved to achieve 100% throughput for any admissible traf-
fic. But its complexity is O(N3logN), too complicated to be implemented in hardware.
Furthermore, multicasting [22] and QoS guarantee [23] impose additional complexity on
the switch scheduling.
Many algorithms [24][25][26][27][28] have been proposed to reduce the complexity. How-
ever, due to the time constraint, most of those proposed algorithms are still too compli-
cated to be implemented in hardware. Buffers inside the crossbar (CICQ) separate the
input contentions from the output contentions, so that each input and output scheduler
can make decisions independently. Algorithms such as OCF-OCF [16], RR-RR [29] have
been proposed. LQF-RR [30] was also proved to achieve 100% throughput when the
arrival rate of each input-output pair λ ≤ 1/N for an N ×N switch.

2.4 Use Memory as a Basis for Comparison

We believe that memory is useful as a barometer when comparing different switching
architectures [2] for the following reasons:

1. A high capacity switch can be achieved by relaxing the memory access rate and
memory bandwidth required, alleviating these two constraints is, and will continue
to be, essential.

2. The leading Internet router vendor, Cisco Systems, spends roughly $800M p.a. on
memory components. So, regarding the cost-efficiency of a switch, the memory
components play a major role, as they alone contribute approximately 20% of the
cost of materials, on average.

3. More power is consumed by a switch with higher memory bandwidth (high-speed

2.5. APPROXIMATION CLASS OF ALGORITHMS TO MWM: 1-APRX 19

memory I/O contributes to approximately 33% of the overall power on Ethernet
switches and Enterprise routers).

2.5 Approximation Class of Algorithms to MWM: 1-APRX

In the work of Shah and Kopikare [31], a class of approximations to MWM, 1-APRX,
was proposed and defined as follows. Let the weight of a schedule obtained by a
scheduling algorithm A be WA. Let the weight of the maximum weight match for the
same switch state be W ∗. A is defined to be a 1-APRX to MWM, if the following
property is always true: WA ≥ W ∗ − f(W ∗), where f(·) is a sub-linear function, that is,
limx→∞[f(x)/x] = 0 for any switch state.

Theorem 2.2 Let W ∗(t) denote the weight of maximum weight matching
scheduling at time t, with respect to switch state Q(t) (where Q(t) = [Qij(t)]
and Qij(t) denotes the number of cells in V OQij). Let A be a 1-APRX to
MWM and WA(t) denote its weight at time t. Further, A has a property that,

WA(t) ≥ W ∗(t)− f(W ∗(t)) ∀t,

where f(·) is a sub-linear function. Then the scheduling algorithm A is stable
under any admissible Bernoulli i.i.d. input traffic.

The above theorem can be used to prove the stability of some matching algorithms that
are not MWM and with lower complexity.

2.6 The EX-DROP-PR scheduling algorithm

Exhaustive service match is a class of matching algorithms inspired by exhaustive service
polling systems. In an exhaustive service matching algorithm, when an input is matched
to an output, all the cells waiting in the corresponding VOQ will be served continuously
before any other VOQ related to that input and that output can be served. The stability
of EX-DROP-PR is achieved due to two efforts — (1) Unlike most other matching algo-
rithms, which try to find efficient matches in each time slot, exhaustive service matching
achieves efficiency by minimizing the matching overhead over multiple time slots. (2)
Cells forwarded to outputs are held in reassembly buffers that can only leave the switch
when all cells belonging to the same packet are received so that the packet is reassembled.
The total delay a packet suffers, from the time it arrives at the input to the time it departs
at the output, includes the cell delay incurred traversing the switch and the time needed
for packet reassembly. In exhaustive service matching, since all the cells belonging to the
same packet are transferred to the output continuously, the packet delay is significantly
reduced.
In EX-DROP-PR, an input (output) is busy if it is matched to an output (input), other-
wise it is free. At the beginning of each time slot, each input (output), which was busy
(i.e., matched) in the previous time slot, checks its state by checking the corresponding
VOQ. If the VOQ has just been emptied, the input (output) changes its state to free and

20 CHAPTER 2. MAPPING THE MWM OPTIMAL SCHEDULING TO A PBC
SWITCH

increments its pointer to one location beyond the matched output (input). Otherwise,
the input (output) keeps its state as busy and does not update its pointer. A detailed
description of the EX-DROP-PR algorithm is as follows;

1. Request. Each free input sends a request to every output for which it has a queued
cell. Each busy input sends a request to the matched output.

2. Grant. If an output (either free or busy) receives any requests, it chooses one of
them in a fixed round-robin order starting from the current position of the pointer.
The output notifies each input whether or not its request was granted. Note that
the output pointer points to the granted input if the grant is accepted in the accept
phase.

3. Accept. If an input receives any grant, it sets its state to busy, and accepts one of
the multiple grants in a fixed round-robin order starting from the current position
of the pointer. The input pointer then points to the matched output.

The EX-DROP-PR runs on top of the DROP-PR scheduler in the sense that is responsible
for the flow control (how and when to update the grant/accept pointers) applied.

2.6.1 The DROP-PR scheduling algorithm

In DROP-PR [1], the grant pointers are initially set to different positions and are always
incremented by one, and irrespective of the accept/drop outcome. When selecting a cell
for input scheduling, DROP-PR takes into account the occupancy of the internal buffers
belonging to an output. Note that when a grant scheduler grants an input request, it
sends back the grant with an additional priority bit (P), which informs the granted input
whether or not the grant comes from an output with empty internal buffers (prioritized
output). During the input scheduling phase (second pipeline stage), priority is given to
grants where P = 1. It is this prioritization given to outputs with empty internal buffers
that ensures output j will receive a cell when an input i has a cell destined to it, and thus,
drops the assumption we made earlier. In this way, we manage to balance the internal
buffers utilization, achieving thus higher throughput, as we give priority to the outputs
that are idle at that time slot. The specification of DROP-PR is as follows;

2.7. THE BOUNDING METHODOLOGY 21

Algorithm 1 DROP-PR
Grant Phase :
All grant pointers, gj when scheduling VOQs, are initialized to different positions.

. For each output, j, do

. Set CQj equals number of non-full internal buffers of output j.

. Set the priority bit, P , to the logic OR of CQj entries.

. While there are credits in CQj do

- Starting from gj index, send a grant to the first input, i, that requested this output (set
GQij = 1 and add bit P).

- Decrement CQj by one.

. Move the pointer gj to location (gj + 1)(mod N).

Input Scheduling Phase :
All input pointers, ai, are initialized to different positions.
For each input, i, do

. Starting from ai index, select the first non empty V OQij for which GQij = 1 and bit P = 1 and
send its HoL cell to the internal buffer.

. If no HoL cell is selected, Then

- Starting from ai index, select the first non empty V OQij for which GQij = 1 and send its
HoL cell to the internal buffer.

. Drop the remaining grants (reset GQ: GQi∗ = 0).

. Move the pointer ai to location (ai + 1)(mod N).

2.7 The Bounding Methodology

Consider a system of N discrete time queues of infinite capacities, where exogenous
arrival processes at different queues can be correlated, and services at different queues
are not independent of each other. In this system of queues, customers arrive at one
queue, wait, obtain service, and then leave. Let Xn be the row vector of queue lengths
at time slot n; that is, Xn = (x1n, x

2
n, ..., x

N
n), where xin is the number of customers in

queue i at time slot n.
The queue length evolution is described by the expression xin+1 = xin + ain − din, where
ain represents the number of customers arrived at queue i in time slot n from outside,
and din represents the number of customers that depart from queue i in time slot n and
leave the system. We assume that E[(ain)

k] < ∞, ∀k > 0.
Let An = (a1n, a

2
n, ..., a

N
n) be the vector of the numbers of arrivals at the different

queues, and Dn = (d1n, d
2
n, ..., d

N
n) be the vector of the numbers of departures from

queues. With this notation, the evolution of the system of queues can be described as
Xn+1 = Xn +An −Dn.
We assume that vectors An are independent, that is, P{An+1 = Â|Ai} = P{An+1 =
Â} ∀i ≤ n.

Theorem 2.3 A system of queues is said to be weakly stable if, for every

22 CHAPTER 2. MAPPING THE MWM OPTIMAL SCHEDULING TO A PBC
SWITCH

ǫ > 0, there exists C > 0 such that

lim
n→∞

P{||Xn|| > C} < ǫ

Theorem 2.4 A system of queues is said to be strongly stable if

lim
n→∞

supE[||Xn||] < ∞

We assume that the process describing the evolution of the system of queues is an
irreducible DTMC, whose state vector at time n is Yn = (Xn,Kn), Yn ∈ N

M , Xn ∈
N
N , Kn ∈ N

N ′

and M = N +N ′. Yn is the combination of vector Xn and a vector Kn

of N ′ integer parameters.
Let H be the state space of the DTMC, obtained as a subset of the Cartesian product
of the state space HX of Xn and the state space HK of Kn.
If all states Yn are positive recurrent, the system of queues is weakly stable; however,
the converse is generally not true, since queue lengths can remain finite even if the states
of the DTMC are not positive recurrent, due to instability in the sequence of parameter
vectors {Kn}.
Note that most systems of discrete time queues of practical interest can be described
with models that fall in the DTMC class. The following general criterion for the (weak)
stability of systems falling into this class is therefore useful.

Theorem 2.5 Given a system of queues whose evaluation is described by
a DTMC with state vector Yn ∈ N

M , if a lower-bounded function V (Yn), called
Lyapunov function, V : NM → R, can be found such that

E[V (Yn+1)|Yn] < ∞

and there exist ǫ ∈ R
+ and C ∈ R

+ ∀Yn such that

E[V (Yn+1 − V (Yn))|Yn] < −ǫ ∀||Yn|| > C (2.1)

then all states of the DTMC are positive recurrent, and the system of queues
is weakly stable.

Proof. This theorem is a straightforward extension of Foster’s Criterion; please see
[32][13][33].

Note that, interpreting V (Xn) as the system potential energy, Equation 2.7, shows
that, for large values of Xn, the system potential energy on average is decreasing. Thus
a negative feedback exists which is able to keep the system stable.

2.8 Throughput Analysis of a PBC Switch

For the convenience of analysis, we assume that in each time slot, a PBC switch performs
the following steps in sequence; (1) apply EX-DROP-PR as input scheduling, (2) transfer

2.8. THROUGHPUT ANALYSIS OF A PBC SWITCH 23

cells from VOQs to Bjs, (3) apply Oldest Cell First (OCF) as output scheduling, and
(4) transfer cells from Bjs to the outputs.
To prove that the PBC switch is rate stable, it suffices to show that the corresponding
fluid model is weakly stable (see Theorem 3 in [15]), i.e., for every fluid model solution
(D,T, Z) with Z(0) = 0, Z(t) = 0 for t ≥ 0.
A switch operating under a matching algorithm is said to be rate stable
(equivalent to achieving up to 100% throughput), if, with probability one,

limn→∞
Dij(n)

n = λij i, j = 1, ..., N for any arrival process satisfying the strong

law of large numbers (SLLN): with probability one, limn→∞
Aij(n)

n = λij i, j = 1, ..., N
where, λij is the arrival rate at V OQij .

Theorem 2.6 A PBC switch with two internal buffers per output1 oper-
ating under the EX-DROP-PR algorithm with any work-conserving output
schedulers is rate stable under any admissible traffic that satisfies SLLN.

Proof. Consider the fluid model of a PBC switch operating under the EX-DROP-PR
algorithm. Let (D,T, Z) be a fluid model solution with Z(0) = 0 and Zij(t) be the total
amount of fluid queued at V OQij and Bj at time t. From Lemma 1 in [15], to show
that the fluid model is weakly stable, it suffices to show that Ż(t) ≤ 0 for any Z(t) > 0.
Intuitively, we need to show that the rate of change of queue length is negative when
there are backlogs in queues.
In each time slot n, for any Zij(n) > 0, there are 4 cases:

1. Bj(n) > 0 and outputj is matched by the scheduler.

2. Bj(n) > 0 and outputj is not matched.

3. Bj(n) = 0 and outputj is matched by the scheduler.

4. Bj(n) = 0 and outputj is not matched.

Note that the scheduler satisfies the following properties; (1) each input with an edge is
matched to an output with the smallest weight, so that the total weight (number of cells
at B∗) of a matching is minimum (2) in the case of multiple matchings having the same
weight, choose the one with the maximum number of matched outputs.

1What is the minimum buffer size required to support persistent, not-contenting connections ? In
traditional CICQ design, each of the the N2 internal buffers is dimensioned to cater for up to one round
trip time (RTT) worth of cells. Having in mind that, the RTT in a PBC switch is defined as be the
delay between the issuing of a credit by a credit scheduler, until the cell injected owning to that credit
exits the switch, and the corresponding credit returns to the same credit scheduler and is re-issued again.
The amount of buffering per output is required to be just ≥ B × RTT . The input scheduling from the
grant scheduling is decoupled and, as so, allows a two-stage pipelined arbitration. In the first pipeline
stage, each credit scheduler independently produces a grant and increases by one the corresponding
grant pipeline counter. In parallel, each grant scheduler (second pipeline stage) independently selects one
among the grants accumulated up to previous time slot inside its grant counters — not yet considering the
concurrent outcomes of the credit schedulers. To keep its corresponding link busy, each credit (output)
or grant (input) scheduler needs to serve a new request or grant, respectively per time slot. Thus, the
maximum available “thinking time" for each scheduler is one time slot, and 2 cell times is the delay of
a request going through both credit and grant scheduling. We’ll mathematically prove the sufficiency of
B = 2 in Chapter 3.

24 CHAPTER 2. MAPPING THE MWM OPTIMAL SCHEDULING TO A PBC
SWITCH

• In cases 1.2.3., let Mj(t) =
∑

k Zkjt be the total amount of fluid destined for outputj
and queued at V OQ∗j and Bj at time t. Mj(n + 1) − Mj(n) is the difference
in the number of arrivals at all inputs destined to outputj at (n + 1) and the
number of departures for outputj at time n. The number of arrivals equals to
∑

k(Akj(n+1)−Akj(n)). Because the output scheduler (OCF) is work-conserving
and either Bj(n) > 0 or outputj is matched by the scheduling algorithm, a cell
must leave the switch for outputj at the end of time slot n. So,

Mj(n+ 1)−Mj(n) ≤
∑

k

(Akj(n+ 1)−Akj(n))− 1 (2.2)

Applying the fluid limit procedure and assuming that the traffic is admissible
∑

i λij ≤ 1,
∑

j λij ≤ 1

Ṁj(n) =
∑

k

Żkj(t) ≤
∑

k

λkj − 1 ≤ 0 (2.3)

• In case 4., let Li(t) =
∑

k Zikt be the total amount of fluid queued at inputi at
time t. Li(n + 1) − Li(n) is the difference in the number of arrivals at inputi at
(n+1) and the number of departures from inputi at time n. The number of arrivals
equals to

∑

k(Aik(n+ 1)−Aik(n)). Because Zij(n) > 0, Bj(n) = 0 and outputj is
not matched, inputi must be matched to outputk such that Zik(n) > 0, j 6= k and
Bk(n) = 0. We claim that k is only matched to i, because if not, we can simply
re-match i to j to increase the number of matched outputs without increasing the
total weight, and thus contradict to the fact that the scheduling algorithm gives the
maximum number of matched outputs. Hence, a cell must leave the switch from
inputi at the end of time slot n. So

Li(n+ 1)− Li(n) ≤
∑

k

(Aik(n+ 1)−Aik(n))− 1 (2.4)

Applying the fluid limit procedure and assuming that the traffic is admissible
∑

i λij ≤ 1,
∑

j λij ≤ 1

L̇i(t) =
∑

k

Żij(t) ≤
∑

k

λik − 1 ≤ 0 (2.5)

Combined all cases, we have Żij(t) =
∑

ij Żij(t) ≤ 0 for any Z(t) > 0. Therefore, the
fluid model is weakly stable and the PBC switch using a scheduler that satisfies the
aforementioned property is rate stable.

2.9 Is it possible to implement a 1-APRX in a pipelined and
distributed fashion ?

In this section, we consider a 1-APRX of MWM algorithm, which is an implementable
version of the MWM algorithm. Every Kth time slot, a MWM schedule is computed

2.9. IS IT POSSIBLE TO IMPLEMENT A 1-APRX IN A PIPELINED AND DIS-
TRIBUTED FASHION ? 25

according to the switch state at time slot K. This schedule is used repeatedly for the
next K time slots. We will refer to this kind of scheduling as Bursty MWM (bMWM)
originally proposed in [31]. The reason why we chose this algorithm is because the
weight of the matching keeps changing (due to the partial updates of the crossbar
configuration) from being exactly equal to the weight of MWM to that of the weight
that is a constant 2KN away from the weight of MWM.

Theorem 2.7 Let Wb denote the weight of schedule obtained by bMWM,
and W ∗ denote the weight of MWM schedule for the same switch state.
Then, Wb ≥ W ∗ − 2KN .

Proof. Please see [31].

From now on, we will use the terms MWM and 1-APRX interchangeably. Let
tn ∈ N

+ be a non-defective sequence of regeneration instants (or stopping times) for the
evolution of the system of queues, i.e., for any tn, the evolution of the system following
tn is conditionally independent of the evolution of the system before tn given the state
Y (tn); moreover, zn = tn+1 − tn.
Now, we say that a PBC switch under EX-DROP-PR follows an incremental MWM
schedule [34] if at each stopping time a new matching is selected according to the outcome
of a MWM algorithm whose weights are proportional to queue lengths. Between two
consecutive stopping times tn and tn+1, partial updates of the switching configuration
are allowed. These reconfigurations are performed according to the outcome of a MWM
algorithm whose weights are proportional to queue lengths, operating on a subset of
input and output ports.

Theorem 2.8 A PBC switch with two internal buffers per output follow-
ing an incremental MWM schedule is stable under any admissible i.i.d. input
traffic pattern.

Proof. What we are going to prove is that, the input traffic is formed by variable length
frames (occupancy of VOQs) with i.i.d. random size having finite average!
The evolution of the system of discrete-time queues in the PBC switch is represented by
a DTMC whose state is defined by the vector of queue lengths Xtn , between consecutive
stopping times, the system evolution satisfies the following equation:

Xtn+1
= Xtn +

zn−1
∑

i=0

(Atn+i
−Dtn+i

) where zn = tn+1 − tn

Note that all Dtn+i
, i < zn, refer to the same matching, however, they need not be all

equal, since some queue scheduled for transmission at time tn may become empty before
the next stopping time. Remember that, whenever some queues selected for transfer
become idle (i.e., either they are or become empty) a partial update of the switching con-
figuration is allowed, according to an MWM algorithm among idle ports, whose weights
are proportional to queue lengths.

26 CHAPTER 2. MAPPING THE MWM OPTIMAL SCHEDULING TO A PBC
SWITCH

By using the Lyapunov function V (Xtn) = XtnX
T
tn :

E[V (Xtn+1
|Xtn)]− V (Xtn) =

= E

[

2

zn−1
∑

i=0

(Atn+i
−Dtn+i

)XT
tn +

zn−1
∑

i=0

(Atn+i
−Dtn+i

)

zn−1
∑

i=0

(Atn+i
−Dtn+i

)T

]

Thus, under the assumption that E[AnA
T
n] is finite (which corresponds to assuming finite

frame length variances), since also E[Dtn+i
DT

tn+i
] is finite:

lim
||Xn||→∞

E[V (Xtn+1
|Xtn)]− V (Xtn)

||Xtn ||
= lim

||Xn||→∞

2E
[

∑zn−1
i=0 (Atn+i

−Dtn+i
)XT

tn

]

||Xtn ||

Define now Dδ =
∑zn−1

i=0 Dtn+i
− znDtn as noted before, this difference is due to the fact

that some queues may become empty before changes in the switch configuration even
when a partial update of the switching configuration is allowed.

E
[

∑zn−1
i=0 (Atn+i

−Dtn+i
)XT

tn

]

||Xtn ||
=

E
[

∑zn−1
i=0 Atn+i

XT
tn − znDtnXtn −DδXtn

]

||Xtn ||

Wald’s Lemma can be applied, since tn is a sequence of stopping times, therefore obtain-
ing:

E
[

∑zn−1
i=0 Atn+i

XT
tn − znDtnXtn −DδXtn

]

||Xtn ||
=

E[zn](E[An]−Dtn)X
T
tn − E[Dδ]X

T
tn

||Xtn ||

Note that E[Dδ]X
T
tn ≥ −ME[z2n], since at most M components of Dδ can be non-null, no

component of Dδ can exceed the value of zn and, finally, a component of Dδ can be non-
null only if the corresponding queue length at time tn is smaller than zn. Moreover, for
each admissible load and non-null queue length vector (E[An]−Dtn)X

T
tn < 0 as proved

in [14].

lim
||Xn||→∞

E[V (Xtn+1
|Xtn)]− V (Xtn)

||Xtn ||
= lim

||Xn||→∞

2E[zn](E[An]−Dtn)X
T
tn − 2E[Dδ]X

T
tn

||Xtn ||
=

= 2E[zn] lim
||Xn||→∞

(E[An]−Dtn)X
T
tn

||Xtn ||
< −ǫE[zn]

2.10 Performance Results

This section presents the performance evaluations of a PBC switch, using a distinct ar-
bitration scheme; EX-DROP-PR and DROP-PR with two internal buffers per output
(B = 2), a CICQ and an IQ switch deploying the RR-OCF and LQF schedulers, respec-
tively. The LQF algorithm belongs to the MWM class of schedulers, thus it is optimal

2.10. PERFORMANCE RESULTS 27

but its complexity is O(N3logN), and was proposed in [14]. The traffic models consid-
ered have destinations with bursty and unbalanced Bernoulli distributions. We fixed the
burst size to be equal to 16 cells2. The unbalanced traffic model uses a probability, ω,
as the fraction of input load directed to a single predetermined output, while the rest of
the input load is directed to all outputs with uniform distribution. Let us consider input
port i, output port j, and the offered input load for each input port ρ. The traffic load
from input port i to output port j, ρsd is given by

ρij =

{

ρ(ω + 1−ω
N) if i = j

ρ(1−ω
N) otherwise.

The simulation does not consider the segmentation and reassembly delays.
We analyze the stability of 8 × 8 and 32 × 32 PBC switch, by varying the unbalanced
coefficient ω. Figure 2.3 shows that EX-DROP-PR provides 94% and 92.5% throughput
under the complete range of ω, when the switch size is 8 and 32 respectively. We can see
that EX-DROP-PR exhibits higher throughput than DROP-PR and is almost stable for
all the values of the unbalanced coefficient. This results in a feasible implementation of a
EX-DROP-PR with B = 2 PBC switch. The performance of EX-DROP-PR and DROP-
PR schedulers is displayed, note that under Bernoulli uniform traffic the VOQs are served
in a exhaustive manner less frequently than under any other traffic scheme. Although
the EX-DROP-PR scheduling algorithm has a higher average cell latency, and given that
all the cells belonging to the same packet are transferred to the output continuously,
the overall packet delay is expected to be significantly reduced [3]. In order to have the
optimal solution as a reference, the performance of LQF is also plotted.

0.4 0.5 0.6 0.7 0.8 0.9

10
0

10
1

10
2

10
3

Performance under Bernoulli uniform traffic

Input Load

A
ve

ra
ge

 C
el

l L
at

en
cy

EX−DROP−PR (8x8)
DROP−PR_2 (8x8)
EX−DROP−PR (32x32)
DROP−PR_2 (32x32)
RR−OCF (32x32)
LQF (32x32)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Throughput under Bernoulli unbalanced and bursty traffic

Unbalanced Coefficient, w

T
hr

ou
gh

pu
t

EX−DROP−PR (8x8)
EX−DROP−PR (8x8) (bursty)
EX−DROP−PR (32x32)
EX−DROP−PR (32x32) (bursty)
RR−OCF (32x32)
DROP−PR_2 (32x32)
LQF (32x32)

(b)

Figure 2.3: (a) Performance under Bernoulli uniform arrivals. (b) Throughput perfor-
mance under Bernoulli unbalanced and bursty traffic.

The high throughput of EX-DROP-PR is the product of increasing or decreasing service
for a VOQ in proportion to its received and missed service, respectively. EX-DROP-PR

2The choice of an expected duration of 16 cells per burst is arbitrary, but is representative. The same
qualitative results are obtained for different burst lengths.

28 CHAPTER 2. MAPPING THE MWM OPTIMAL SCHEDULING TO A PBC
SWITCH

ensures service to the queues with high loads by exhaustively servicing them, and to the
other queues by using the pointer update scheme used in both scheduling algorithms that
serves inputs in a round-robin fashion.
What has to be commented also is that, when the switch operates with a speedup of 1
and DROP-PR is deployed as a scheduling algorithm, the switch appears to be non-stable
when it is loaded by more than 77%. This is to be compared with the stability achieved
when EX-DROP-PR is used as a function of the input load. More specifically, EX-
DROP-PR increases the stability region of the switch, meaning that the switch can now be
loaded by 92.5%. LQF achieves 99% throughput under any circumstances. Moreover, the
performance results verify the important property of scalability that a PBC switch with
B = 2 and EX-DROP-PR (as a scheduler) has, given the observed performance when N =
{8, 32}. There is no getting away from the fact that the proposed switching architecture
performs better than a fully-buffered crossbar (having one-cell buffer crosspoint) and
scheduling in RR fashion at the inputs and based on the Oldest Cell First (OCF) principle
at the outputs in terms of throughput — implying that we utilize the switch fabric more
efficiently while we require (32×32)−(32×2) = 960 one-cell buffering less (when N = 32).

2.11 Conclusion

The fact that input and output scheduling in a PBC switch are performed separately
allows us to analyze the queues at the inputs of the PBC switch while considering an
output scheduler at the buffered crossbar that keeps inputs uninhibited (i.e., an input is
able to send one cell each time slot) and to analyze the buffered crossbar while assuming
that input scheduling can select any VOQ that has an internal buffer available.
We proved that a PBC switch operating under EX-DROP-PR with any work-conserving
output schedulers can achieve 100% throughput for any admissible traffic. We showed
that requiring only a two-cell amount of buffering per output, meaning that we fully de-
coupled the switch size and the amount of internal memory required to achieve maximum
throughput. The solution provided in this chapter is (N2

N×2) times more efficient in terms
of memory requirements when compared to the CICQ switching architecture with one
buffer per crosspoint [30], while both achieve to maximize throughput. Using analytical
techniques based upon Lyapunov functions, we derived original bounds for the average
of the lengths of input queues. These bounds complement the previously available the-
oretical results for IQ and CIOQ cell-based switch architectures, that mostly refer to
throughput.

Performance Guarantees in a

PBC Switch 3
Most of today’s high capacity switches and Internet routers do not provide performance
guarantees. This is attributed to their underlaying interconnection topology (i.e. the
crossbar) and/or to their impractically complex scheduling algorithms. This chapter de-
rives a study for a PBC switch to practically provide throughput and fairness guarantees.
We show how a PBC switch with a two-cell internal buffering per output and a speedup of
two can provide guaranteed performance on throughput. We propose a scheduling algo-
rithm, named AF-DROP-PR, that enables us to derive bounds on the average cell latency
and on the guaranteed fairness among the competing flows. AF-DROP-PR maximizes
the total throughput while guaranteeing service fairness among all flows. We explore how
the allocation bandwidth of individual flows is tradedoff with the overall fairness index.
We conjecture that the PBC switch, with its pipelined and distributed AF-DROP-PR
scheduling, is attractive not only for providing performance guarantees, but also for its
high capacity and low cost.

3.1 Towards Buffered Crossbars

IQ switch architectures with VOQs scale up to very high speeds and have been a subject
of intense research in the past decade. IQ switches require switch matrix scheduling
algorithms to match input ports to output ports. In Chapter 1, we introduced the CIOQ
switch. CIOQ switches are widely used, partly because they have localized buffers that
enable these routers to be easily upgraded. However they are hard to scale because
the scheduler in a crossbar-based CIOQ switch implements complex stable marriage
algorithms [11]. With the continued increase in density of VLSI, sufficient buffering
at crossbar crosspoints for one cell has become feasible to implement. The scheduler’s
job much simpler by introducing a small amount of buffering in the crossbar, because
when a cell is switched, it can wait in the buffer; it doesn’t have to wait until both
the input and output are free at the same time. Now, the scheduler doesn’t have
to resolve two constraints at the same time, reducing this way the complexity of the
scheduler from O(N2) to O(N) and removing the need for a centralized scheduler. In
a buffered crossbar, the input schedulers (independently and in parallel) pick a cell
from their inputs to be placed into an empty crosspoint. There are N input and N
output schedulers can be distributed to run on each input and output independently,
eliminating the single centralized scheduler. They can be pipelined to run at high
speeds, by decoupling the accept from the grant phase during the switch’s scheduling
cycle, making buffered crossbars appealing for high-speed routers.
Obviously, simplifying the scheduler requires a more complicated crossbar that is capable
of maintaining N2 cell buffers on-chip. Buffered crossbars are possible because of
large improvements in gate count; nowadays, crossbar capacity is limited by I/O speed

29

30 CHAPTER 3. PERFORMANCE GUARANTEES IN A PBC SWITCH

(number of pins required to get data on and off the chip), not die size [19]. This leaves
room on the die for a buffer at each crosspoint.

Improvements in process technology, and reductions in geometries, mean

that the logic required for N2 crosspoints is small compared to the chip

size required for N inputs and N outputs. The chips are pad-limited,

with an under-utilized die. A buffered crossbar can use the unused die

for buffers, and further improvements in on-chip eDRAM memory technology

[35] allow for storing a large amount of memory on-chip. With upcoming

45 nm chip technology, 1̃28Mb of eDRAM can easily fit on an average chip.

This can easily support a 256 × 256 router (with 256-byte cells), making a

buffered crossbar a practical proposition1.” [2]

3.2 Mandating Guarantees for High-Speed Switches

Our objective would be to build a high-speed switch that is capable of giving performance
guarantees. There are no switches (having bandwidth greater than 10 Gb/s) that do
provide guarantees. There are typically two types of performance guarantees; statistical
(the most common example being 100% throughput) and deterministic (the most common
examples being work-conservation and delay guarantees) [2].
If someone buys a router with less than 100% throughput, he couldn’t be in the position
of knowing what the true capacity of the switch actually is. This makes it particularly
hard for network operators to plan a network and predict its network performance.

3.2.1 A note about work-conservation

• A switch is said to be work-conserving if an output will always serve a cell when
a cell is destined for it.

If a switch is work-conserving, then it has 100% throughput, because the outputs cannot
carry a higher workload. Additionally, the expected cell latency is minimiized, since, on
average, cells leave earlier in a work-conserving switch compared to any other switch.

3.3 Related Work

Maximum size matching (MSM) finds the match containing the maximum number of
edges, thus it can maximize the instantaneous bandwidth of the switch. It has been
proved [14] that MSM can lead to instability and unfairness (if ties are broken ran-
domly). In [26], an MSM scheduling algorithm that employs a weighting scheme, called
Longest Port First (LPF), achieves 100% throughput in an IQ switch. The author in [37]
devised a scheduler that uses the concept of adaptable-frame size coupled with round-
robin arbitration for a buffered crossbar with one-cell crosspoint buffers. This scheme
does not compare any weights or priorities and is able to provide nearly 100% throughput

1Some detailed considerations regarding the implementation of buffered crossbars are described in
[36].

3.4. WORK CONSERVATION WITHOUT EMULATION 31

under the unbalanced traffic model. The characteristic of this scheduler is that it is based
upon maintaining a balance between two competing interests; trying to maximize total
throughput, while at the same time allowing all flows at least a minimal level of service.
A study of the fairness properties and the factors that affect the stabilization delay after
a change in the offered load and the weight factors in buffered crossbars is presented
in [38]. In [10] [39] rate and delay guarantees are provided using a complex and rather
impractical scheduler. Dai and Prabhakar [15] studied how guaranteed performance on
throughput can be obtained using a centralized MSM algorithm and a speedup of two.
Our work differs from previous art both at the architectural and the scheduling level. The
PBC architecture relies on separate internal buffers per output port interconnected by
parallel multiplexers, dropping this way the requirement of an expensive shared memory
(in terms of the memory access rate) per output. On the scheduling level, the synchro-
nization between the grant and the accept schedulers is avoided by means of a distributed
and pipelined scheduling algorithm.
While emulating a Push-In-First-Out (PIFO) OQ switch is usually the way to show that
a switch can provide guarantees, this is accomplished either by using a complex sched-
uler or by using an excessive memory bandwidth inside the crossbar. Our results show,
that the underlying switching architecture is capable of achieving the same average cell
latency and be completely fair, as an OQ switch but, the average cell latency must be
tradedoff with the optimal WMMF rates of the flows by regulating the amount of service
that a flow receives.

3.4 Work Conservation without Emulation

A work-conserving switch gives a deterministic performance guarantee — it always keeps
its outputs busy. For a switch to be work-conserving, we only need to ensure that its
outputs are kept busy. So, in such a switch, the order of departures of cells from outputs
is irrelevant. It is sufficient that some cell leave the output at all times.

3.4.1 On the speedup required for achieving 100% throughput

An OQ switch is able to provide QoS by scheduling the departure of cells accordingly to
latency constraints and ensuring that its outputs never idle (given that there are cells
destined to them). We will require that the solution on the speedup: (1) allows a PBC
switch to achieve approximately the same average cell latency as an OQ switch and also
to provide 100% throughput, (2) this is accomplished for any arbitrary input traffic
pattern and (3) is independent of the switch size.

Theorem 3.1 A PBC switch can achieve 100% throughput with a speedup of
two for any Bernoulli i.i.d. admissible traffic.

Proof. Similar to [20], we define a super queue, SV OQij to track the evolution of each
V OQij . Let SV OQij denote the sum of the cells waiting at input i, and the cells destined
to output j, comprised by the cells that reside in V OQij and in Bj .

SV OQij =
∑

k V OQik +
∑

k(V OQkj + CQj)

32 CHAPTER 3. PERFORMANCE GUARANTEES IN A PBC SWITCH

What has to be shown is that the expected value of every super queue is bounded. Let’s
assume, for now, that if V OQij is not empty and j is an output with empty internal
buffers (CQj = Bj), input i will send the HoL cell of V OQij to the internal buffers of
output j. We’ll drop that assumption in the next section. There are two cases :

1. 0 < CQj ≤ Bj : output j will receive a cell, so
∑

k(V OQkj +CQj) decreases by 1.

2. 0 ≤ CQj < Bj : Input i will send a cell, so
∑

k V OQik decreases by 1.

The number of cells sent to Bj during a time slot is equal to (Bj −CQj), so
∑

k V OQkj

decreases by (Bj −CQj) but CQj increases by the same quantity. Hence,
∑

k(V OQkj +
CQj) does not change after the input scheduling phase. During the output scheduling
phase, output j will receive one more cell and SV OQij will decrease by two per time
slot. It is because the expected change in SV OQij is negative over a time slot, given the
traffic is admissible and Bernoulli i.i.d., the expected value of SV OQij is bounded.

It is important to mention at this point that the round-trip delay (RTT) is defined
as the time from when a credit is generated until it is consumed by an input port and its
associated cell is transferred to the internal buffer. Note that with our PBC request-grant
protocol, only one RTT window is enough to achieve full-line rate to any requesting input.
This is because of the shared credit queue (CQ) maintained by each grant scheduler and
controlling the access from all inputs. As a result, the amount of buffering per output is
required to be just ≥ B × RTT , and each output j must have an internal buffer of size
Bj greater or equal to one RTT worth of cells. Next, we’ll show that two cell times is
the delay of a request going through both credit and grant scheduling.

3.4.2 A work-conserving PBC switch

For a switch to be work-conserving, what is necessary is to ensure that its outputs will
always serve cells as long as there are cells destined to them. Cell delay on average, is
minimized, since cells leave earlier in a work-conserving switch than in any other switch.
In the following, we’ll find the conditions under which a PBC switch is work-conserving.
In the context of switching theory, the pigeonhole principle, seminally described in [2],
will be used in order to dictate these conditions. Note that, in a work-conserving switch
the order of departure of cells is insignificant.

Theorem 3.2 A PBC switch is work-conserving with a total memory bandwidth
of 2×N ×R.

Proof. (Using constraint sets.) Let’s denote as decision slots to be the slots that comprise
a time slot (if there are N cells to be scheduled, N decisions have to be made). If we
denote the speedup with S, the total memory bandwidth is S ×N ×R, where S = 2 as
shown in the previous section. We define two constraint sets; when cells are written/read
to/from the internal buffers of an output j (Bj).

• Bj Write Set (BjWS): The internal buffers of output j are busy for ⌈Bj/S⌉ times-
lots, when a cell is written into Bj . Let BjWS be the set of internal buffers
that store a new cell. In other words, BjWS is the set of internal buffers that

3.5. THE ADAPTIVE FRAME PRIORITIZED DROP SCHEDULER (AF-DROP-PR)
33

have initiated a write operation in the previous ⌈Bj/S⌉ − 1 decision slots. Hence,
|BjWS| ≤ ⌈Bj/S⌉ − 1.

• Bj Read Set (BjRS): The internal buffers of output j are busy for ⌈Bj/S⌉ timeslots,
when a cell is read from Bj . Let BjRS be the set of internal buffers that read a new
cell. In other words, BjRS is the set of internal buffers that have initiated a read
operation in the previous ⌈Bj/S⌉ − 1 decision slots. Hence, |BjRS| ≤ ⌈Bj/S⌉ − 1.

Assuming that V OQ∗j have cells destined to output j, and the same case holds for all
outputs. To keep all outputs busy, when input scheduling, the internal buffers of the
switch must meet the following constraints;

1. The internal buffer Bj must not be busy writing a cell. So Bj /∈ BjWS.

2. The internal buffer Bj must not be busy reading another cell; i.e., Bj /∈ BjRS.

Choosing an internal buffer Bj means that the following constraints must be met;

Bj /∈ BjWS ∧Bj /∈ BjRS

A sufficient condition to satisfy this is :

Bj − |BjWS| − |BjRS| > 0 =⇒ Bj − 2(⌈Bj/S⌉ − 1) > 0

This is satisfied if Bj ≥ 2.

3.5 The Adaptive Frame Prioritized DROP scheduler (AF-
DROP-PR)

We propose a round–robin frame-based input scheduling algorithm. The output schedul-
ing used is based on FCFS policy. This arbitration scheme is round-robin based. A frame
is related to a VOQ, and it is the number of one or more cells in a VOQ that are eligible
for arbitration (as allowed by the flow-control mechanism). A new frame gets assigned
a size, in number of cells, each time the previous frame is serviced. The frame size is
determined by the cell occupancy of the VOQ at time of the frame service completion.
This is called captured-frame size. A VOQ is said to be in on-service status if the VOQ
has a frame size of two or more cells and the first cell of the frame has been transmitted.
An input is said to be on-service if there is at least one on-service VOQ. A VOQ is said
to be off-service if the last cell of the VOQ’s frame has been sent, or no cell of the frame
has been sent to the internal buffers. Note that for frame sizes of one cell, the associated
VOQ is off-service during the matching of its one-cell frame. An input is said to be
off-service if all VOQs are in off-service status. At the time tc of selecting the last cell of
a frame of V OQij , the next frame is assigned a size equal to the occupancy of V OQij .
Cells arriving at V OQij at any time td, where td > tc, are not considered for selection
until the current frame is totally served and they are included in a new captured frame.
For each VOQ, there is a captured frame-size counter, CFij

2. The value of CFij indicates

2We called captured frame size as it is the equivalent of having a snapshot of the occupancy of a VOQ
at a given time t. The occupancy is then considered for determining the frame size.

34 CHAPTER 3. PERFORMANCE GUARANTEES IN A PBC SWITCH

the frame size, that is, the maximum number of cells that a V OQij has as candidates in
the current and future time slots, one per time slot. CFij takes a new value when the
last cell of the current frame of V OQij is selected. CFij decreases its count each time a
cell is selected, other than the last.
The output scheduler is pointer persistent, meaning that if an accepted grant gj points
to input i, it keeps pointing to same input unless V OQij is set to off-service. The spec-
ification of AF-DROP-PR is described below; Although the scheme presented above is

Algorithm 2 AF-DROP-PR
Grant Phase :
All output pointers, gj , are initialized to different positions.
For each output, j, do

. Set CQj equals number of non-full internal buffers of output j.

. Set the priority bit, P, to the logic OR of CQj entries.

. While there are credits in CQj do

- If output j is paired with an input i (V OQij is in on-service status), send a grant to input
i (set GQij = 1 and add bit P).

- Else, starting from gj index, send a grant to the first input, i, that requested this output
(set GQij = 1 and add bit P).

- Decrement CQj by one.

. If V OQij is in off-service status, move the pointer gj to location (gj + 1)(mod N).

Input Scheduling Phase:
All input pointers, ai, are initialized to different positions.
For each input, i, do

. If input i is paired with an output j (V OQij is in on-service status), send its HoL cell to the
internal buffer.

. Else, starting from ai index, select the first non empty V OQij for which GQij = 1 and bit P = 1
and send its HoL cell to the internal buffer.

. If no HoL cell is selected, Then

- Starting from ai index, select the first non empty V OQij for which GQij = 1 and send its
HoL cell to the internal buffer.

. Drop the remaining grants (reset GQ: GQi∗ = 0).

. If V OQij is in off-service status, move the pointer ai to location (ai + 1)(mod N).

a mixture of the DROP-PR [1] and the RR-FO [37] scheduling algorithms, it provides
overall good performance while the amount of service a flow receives is almost propor-
tional to that a flow demands, it has two drawbacks; (1) it does not discriminate the
inputs when accepting grants and one of them is part of virtual circuit and (2) it is not
a maximum size algorithm concerning the number of virtual circuits that establishes.
Next, we’ll describe how these limitations can be overcome in order to fully exploit the
underlying switching architecture when servicing VOQs that are in on-status and ensure
that the algorithm will do its best in order for a flow to be serviced exactly as much as
it demands as soon as possible.
We say that a virtual circuit between input i and output j is established when V OQij is

3.6. BOUNDED BANDWIDTH ALLOCATIONS 35

in on-status. Given that Bj = 2 and S = 2, the first limitation is addressed by balancing
the creation of the virtual circuits so that an output j should not be able to establish
two virtual circuits in one time slot. This is accomplished simply by dropping the rest
of the inputs that received a grant. The second limitation is addressed by adopting a
prioritization mechanism similar to DROP-PR, but now considering to create up to N
virtual circuits among all inputs. In other words, as DROP-PR tries to keep busy all the
outputs of the switch using the priority bit mechanism, the same technique is applied
in order to keep busy all outputs while making certain that each output is paired to a
different input and this input-output pair is a virtual circuit.
Subsequently, we’ll explore how significant is the role of the captured-frame size both in
the bandwidth a flow allocates and the fairness index and in the average cell latency of
the traffic flowing through the PBC switch.

3.6 Bounded Bandwidth Allocations

A common approach to provide throughput guarantees is to show that a switching archi-
tecture along with its scheduling algorithm is capable of emulating a PIFO OQ switch.
It is because WRR/WFQ scheduling functions in a PIFO manner. Mimicking a PIFO
OQ switch means that a cell must be switched out to the output port earlier than the
departure time of the counterpart cell in the OQ switch. We argue that the latter can
be accomplished by, using only a two-cell amount of buffering per output port in a PBC
switch with a speedup of two and employing the AF-DROP-PR scheduling algorithm
that services the flows proportionally to their demand. The cost that we have to pay
though is the time window in which this is accomplished is larger compared to the work
in [20]. However, the time window is controlled by upper–bounding the frame size of a
VOQ, CFij . We showed that when B equals two and with a speedup two the architecture
in question achieves 100% throughput and the same average cell latency as an OQ switch.
The phenomenon according to which the fair share of a flow at the output differs from its
fair share at the input, is surpassed by establishing virtual circuits for as much time as is
required in order to service that flow having its fair share in mind. Moreover, the use of
virtual circuits alleviated the blockings between inputs contending for the same output.
In this section, we’ll study the fairness properties of the proposed switching architecture
and the delay bounds achieved based on the guaranteed rate per flow.
We’ll adopt the definitions originally presented in [40]. In a switch where flows make
unequal demands for bandwidth, fairness is measured by closeness of the allocations to
respective demands. If di is the demand of the ith user and ai is the corresponding
allocation, then, the fraction of demand of the ith flow is;

xi =

{

ai
di

if ai < di

1 Otherwise3

36 CHAPTER 3. PERFORMANCE GUARANTEES IN A PBC SWITCH

The flow perception of fairness equals

f(x) =
1

N

N
∑

i=1

xi
xf

where the fair allocation mark xf equals

xf =

∑N
i=1 x

2
i

∑N
i=1 xi

Thus, the scheduling algorithm is (xi/xf) fair concerning the ith flow. When the
enhanced AF-DROP-PR is used as a scheduling algorithm, the actual allocation of the
bandwidth refers to the captured–frame size of V OQij , CFij .
In the following, we’ll consider the allocation of the excess bandwidth [40].

Theorem 3.3 If each user is given an additional amount c of the resource, their
individual perception of fairness increases and so does the overall fairness
index.

f(x1 + c, x2 + c, ..., xn + c) ≥ f(x1, x2, ..., xn)

If a single user j is given a small allocation ∆xj without changing other allo-
cations, the new allocation is more (less) than before iff j is a discriminated
(favored) user, i.e.,

f(x1, x2, ..., xj−1, xj +∆xj , xj+1, ..., xn) > f(x1, x2, .., xj−1, xj , xj+1, ..., xn) if xj < xi

and

f(x1, x2, ..., xj−1, xj +∆xj , xj+1, ..., xn) < f(x1, x2, .., xj−1, xj , xj+1, ..., xn) if xj > xi

What the above theorem states is that, as a particular flow’s bandwidth allocation is
increased from zero, the fairness at first increases, and then, it reaches a maximum after
which additional bandwidth allocation to the same flow has as a consequence the rest of
the flows to perceive unfairness. What has been just described is the optimal WMMF
allocation metric.
A minimum level of fairness is guaranteed when we restrict the individual bandwidth
allocations [40].

Theorem 3.4 If xmin ≤ xi ≤ xmax for all i and xmin > 0, then the fairness
is guaranteed to be above a certain lower bound, and
a. The minimum fairness occurs when a fraction of γ of the users (i.e. γ n
users in all) receive xmin and the remaining receive xmax. Here

γ =
K

K + 1
, where K = xmax/xmin

3Allocating more bandwidth to a flow than what it demands is vain.

3.7. IMPLEMENTATION COMPLEXITY 37

b. Fairness

f ≥
4K

(K + 1)2
(3.1)

Let’s quantify the tradeoff that is introduced; for a 32× 32 switch if the average V OQ∗j

occupancy is around 50 cells (dij = 50) and we upper-bound the fraction of demand of the

ij-flow to N = 32 then xi and xf decrease by (50−32)
32×50 = 0.0112 as far as the time window

in question is concerned, but the flow perception of fairness stays the same. Note that
by upper-bounding the fraction of demand, we force the restriction K ∈ [0.0312, 0.0200],
and we bound the minimum fairness achieved to f = 0.9518. The stabilization delay
depends on the frame size and the frame size difference among V OQ∗j , meaning that
smaller frame sizes and larger frame size differences incur faster stabilization.

3.7 Implementation Complexity

The implementation complexity of AF-DROP-PR is low because of the following reasons;
(1) a two-cell internal buffer per output is sufficient to make the switch deliver high
performance, (2) the arbitration scheme is round-robin based. AF-DROP-PR performs
no comparisons among different queues. Arbiters do not differentiate queues as there
are no priorities or weights considered. The provision of the CF counter to a queue
is the major hardware addition in AF-DROP-PR compared to the implementation of
DROP-PR. The CF counter, as well as the arbiter pointers are updated, at most, once
in a time slot in both schemes.
The round-robin schemes presented here have lower complexity than weight-based
schemes. Weight-based schemes, such as those that consider cell age or queue occupancy
length, need to perform comparisons among all contending queues, which can be a
large number, to select the proper queue. AF-DROP-PR follows a predetermined order
(round-robin) and checks the flag (on-service flag) which is updated in previous time
slots. Hardware-wise, round-robin schemes have no magnitude comparators needed in
weight-based schemes.
Alone the PBC switching architecture has to maintain up to B separate buffers per
output, which run at the same bandwidth as the external line rate. This is done in
order to maintain the low memory bandwidth requirement and it is to be compared with
the shared internal buffers requiring a memory access rate of N × R in [20]. However,
maintaining B separate buffers per output mandates the use of up to B×(N-to-1)
parallel multiplexers per output. The demultiplexor selects an internal buffer and sends
the arriving cell to that buffer, where it is queued until it departs.

“Hardware chips today are already limited by interconnect pins. Using

current 65nm ASIC fabrication technology, any chip with over 1500

interconnect pins becomes prohibitively expensive. If each memory has

approximately 50 pins (fairly typical of most commodity memory today), it

is hard for a single ASIC to interface to (and load- balance over) >30

memories.” [2]

Given that; (1) the crossbar chip is bound by I/O count and power consumption

38 CHAPTER 3. PERFORMANCE GUARANTEES IN A PBC SWITCH

and not by the crosspoints logic, implying the underutilization of the crossbar chip
die [20][41], (2) using the crossbar chip extra (unused) logic for either N2 distributed
or B.N shared internal memories running B times the external line speed results is
excessive power consumption and can be costly and (3) on-chip wires are inexpensive
[42] and therefore meeting the bandwidth goal can be achieved by adding more wires
and multiplexers in parallel. We believe that the cost and feasibility of the PBC (with
B×N separate internal buffers and N×B×(N-to-1) parallel multiplexers), where B = 2,
is lower than that of traditional CICQ design (with N2 internal buffers and N×(N-to-1)
parallel multiplexers).

3.8 Conclusion

By introducing a small amount of buffering in the crossbar and employing a frame-
based scheduling algorithm, the resulting PBC switching architecture is simple as it uses
distributed and pipelined schedulers and is scalable as it requires much less memory
bandwidth when compared to fully buffered crossbars. Note that the memory access rate
of the internal buffers is decoupled of the switch size. AF-DROP-PR was devised to fully
exploit the underlying architecture, yielding full output utilization and providing WMMF
bandwidth allocations in a relaxed time window that depends on the frame sizes assigned
to the flows and on the frame-size differences among them. Bounds on the average cell
latency and the overall fairness index were derived, revealing this way a tradeoff between
these two metrics.
This chapter conducts the first study on how to guarantee performance in PBC switches.
Given the high potential of buffered crossbars, our work addresses the scalability issue of
crossbar based routers.

A PBC Switch Supporting

Integrated Unicast and

Multicast Traffic 4
Much of recent Internet growth is attributed to the increasing convergence of media ser-
vices (broadcasting, cable TV and on-demand multimedia) to packet-based networks with
an evolving number of online multi-party applications such as online gaming, IPTV, video
teleconferencing etc. [43]. All these applications and services carry point-to-multipoint
(multicast) traffic and have now to coexist alongside conventional point-to-point (unicast)
traffic. With this increasing shift in the Internet traffic nature, the Internet infrastruc-
ture (high speed IP routers, Gigabit Ethernet switches and Frame Relay switches) has
remained the same. Therefore, in order to keep pace with growing integrated Internet
traffic, there is an urgent need for network nodes to support simultaneous and concurrent
unicast and multicast traffic flows.
The growing proportion of multicast traffic on the Internet is stressing the need for ef-
ficient multicast support alongside the unicast traffic. Only little has been done on the
support of integrated unicast and multicast traffic flows. This chapter conducts the first
study on integrated unicast and multicast traffic support in the PBC switching archi-
tecture that has recently been proposed and shown to be a good compromise between
both the unbuffered and fully buffered crossbar switch architectures. We propose two
integrated schedulers and test their performance under a wide range of input traffic
and switch settings. Our performance study shows that the PBC switch with its in-
tegrated scheduler can efficiently handle integrated unicast and multicast traffic flows,
while maintaining the advantages of both the unbuffered and the fully buffered crossbar
architectures.

4.1 Background: Multicast Traffic

So far we have focussed on how a switching fabric can efficiently transfer unicast packets.
But it is becoming increasingly important for a switch to efficiently support multicast
traffic. In this chapter, we consider how our switching fabric can be modified to support
multicast traffic at very high performance.
A simple way to service the input queues is to replicate the input cell over multiple
cell times, generating one output cell per time slot. However, this approach has two
disadvantages; (1) Each input must be copied multiple times, increasing the required
memory bandwidth. (2) Input cells contend for access to the switch multiple times,
reducing the bandwidth available to other traffic at the same input.

“Unicast traffic has a very “nice” property; to approach saturation on all

the output ports of the switch, it is necessary to receive cells at all

the N inputs. Thus, under unicast traffic, the instantaneous aggregate

39

40 CHAPTER 4. A PBC SWITCH SUPPORTING INTEGRATED UNICAST AND
MULTICAST TRAFFIC

load of the switch is always less or equal to than the total admissible

capacity of the switch. On the contrary, with multicast traffic, cells

arriving at just one input can bring all the switch outputs close to

saturation; this implies that when all the switch inputs are active,

for some time periods the instantaneous aggregate switch load can be N
times the total admissible capacity of the switch (consider for example

the possibility of sequences of broadcast cells arriving at all inputs);

in other words, multicast traffic, even if admissible, can temporarily

“flood” the switch, and cannot be scheduled with the approach proposed in

[10].” [34]

Higher throughput can be attained if we take advantage of the natural multicast
properties of a crossbar switch. In the PBC switch (which we design to copy an input
cell to any number of idle outputs in a single cell time), we maintain two types of queues;
unicast cells are stored in VOQs, and multicast cells are stored in a separate multicast
queue (MQ). As a simple example of how a crossbar switch can support multicast,
consider the switch shown in Figure 4.11. Queue MQ1 has an input cell destined for
outputs {1, 2, 3, 4} and queue MQN has an input cell destined for outputs {3, 4, 5, 6}.
The set of outputs to which an input cell wishes to be copied is called the fanout of that
input cell. For example, in Figure 4.1, the HoL cell of the multicast queue is said to
have a fanout of 4, meaning that, the single input cell at the head of queue MQ1 will
generate 4 output cells.

Figure 4.1: A N ×N crossbar that supports multicast.

Multicast cells, arriving at input port, i, are queued in MQi. The switch model is
similar to the PBC switch architecture presented in Chapter 2, but the input integrated
scheduler (IIS) used in our current switch model resides in the input port, as opposed to
the input schedulers for the conventional PBC which are embedded inside the crossbar
fabric. The reason for this is the flow control mechanism that is now required to carry N
bit signals for the multicast cells fanout destinations (informing the otherwise embedded
input scheduler about the arrival of a new multicast cell). However, the flow control is
now carrying the grant signals sent by the grant schedulers, GSj to an input, equalling
to N bit flow control signals per input.

1Each input maintains a special FIFO queue for multicast cells.

4.1. BACKGROUND: MULTICAST TRAFFIC 41

1 N. . .

. . .

. . .

GSN

OSN

CQ

GS: Grant Scheduler

OS: Output Scheduler

CQ: Credit Queue

GS1

CQ

OS1

. . .

. . .
B

. . .
B

. . .
.

1

. . .

VOQ 1,1

VOQ 1,N

MQ 1

In
te

g
ra

te
d

S
c
h

e
d
u

le
r

. . .

VOQ N,1

VOQ N,N

MQ N

In
te

g
ra

te
d

S
c
h

e
d
u

le
r

N

Figure 4.2: The PBC switching architecture with integrated scheduling.

4.1.1 Multicast scheduling disciplines

The basic strategies normally used by a scheduling discipline are:

• No fanout splitting — This discipline may favor cells with small fanout, because
any multicast cell is transferred through the switching fabric once, only when all
fanout destinations can be reached in the same time slot. If any of the fanout
destinations cannot be reached because the multicast cell loses contention for an
output port, the cell cannot be transferred, and it will contend again in next time
slot, thus this strategy is non-work-conserving.

• Fanout splitting — Only those fanout destinations that could not be reached in
previous time slots are considered in the next time slot. Multicast cells may be
delivered to output ports over a number of time slots.

In [44] it was proved that the multicast scheduling problem is NP −hard, both with and
without fanout splitting.
Another issue to address when both unicast and multicast are present is fairness. A traffic
type must not be allowed to monopolize switch resources; however, it is also important
to guarantee that all connections of a given traffic type receive service. A multicast
scheduling policy is said to be fair if each input cell is held at the HoL for no more than
a fixed number of cell times (this number can be different for different inputs). This
fairness constraint can also be thought of as a starvation constraint. It is up to the
scheduling policy to determine for how long a multicast cell will remain as a HoL cell of
the multicast queue, the term that best describes this, is;

• Residue: The residue is the set of all output cells that lose contention for output
ports and remain at the HoL of the input queues at the end of each cell time. Given
a set of requests, every work-conserving policy will leave the same residue.

42 CHAPTER 4. A PBC SWITCH SUPPORTING INTEGRATED UNICAST AND
MULTICAST TRAFFIC

4.2 Related Work

While there has been extensive research work on either unicast traffic support or pure
multicast traffic support by backbone routers and packet switches, only little has been
done on the design of switching architectures and scheduling of integrated schedulers for
both unicast and multicast traffic flows. The few existing results are mainly conducted
on crossbar-based switches, due to their low cost, relative scalability and particularly
their intrinsic multicast capabilities. The scheduling algorithms employed were a combi-
nation of earlier algorithms, proposed for unicast and multicast, now integrated into one
algorithm. Examples include the ESLIP algorithm [45] that has been proposed for the
IQ crossbar architecture and the MURS algorithm [46] proposed for the CICQ switch-
ing architecture. The input queueing structure adopted for unicast traffic is the widely
known virtual output queueing (VOQ), since it avoids the HoL blocking problem [47].
As for the multicast proportion of traffic, either 1 or few multicast queues are used, since
avoid the HoL problem would require maintaining up to (2N −1) FIFO queues per input,
where N is the number of output ports of the switch [48].
A multicast matching consists of edges that connect a single input to one or more out-
puts. The problem has been studied from a theoretical point of view in [49], and in [44]
its computational hardness is established. In [50] the optimal scheduling discipline is
defined, but neither the discipline itself nor the assumed queuing architecture are practi-
cally implementable. Nevertheless in [51] the authors propose algorithms with reasonable
complexity and relatively good performance.

4.3 Multicast Scheduling in PBC switches

4.3.1 The mcastDROP scheduler

To support multicast, we need a new scheduling algorithm — one that can examine the
contents of the multicast queues at each input, and select which output cells will be
delivered in each time slot. For this purpose, we have ported the ESLIP algorithm [45]
to the PBC switching architecture resulting in the mcastDROP scheduler.
At the beginning of each time slot, the mcastDROP scheduler examines the contents of
the multicast queue and all inputs and outputs are initially unmatched. To keep track
of which connection to favor, all the outputs share a common pointer for multicast cells,
gM . The flow control is the same as in DROP-PR and the scheduling decisions are taken
based on the following three steps:

• Request. Each input sends a request to every output for which it has a queued
multicast cell.

• Grant. If there are multicast requests, it chooses the input that appears next in
a fixed, round-robin schedule starting from the global multicast pointer gM . The
output notifies each input whether or not its request was granted.

• Accept. Each input port services all the grants that it receives, choosing the output
that appears next in a fixed, round-robin schedule starting from the accept pointer,
ai. If this connection completes the fanout, the pointers ai and gM are updated.

4.4. INTEGRATED SCHEDULING IN PBC SWITCHES 43

4.3.2 The mcastWBA scheduler

The WBA scheduler, proposed by Prabhakar [51], is a state-of-the art algorithm for
multicast scheduling for IQ switches. In order to port the WBA algorithm to the PBC
switch, we used the same flow control as in DROP-PR. This algorithm works by assigning
weights to input cells based on their age and fanout at the beginning of every cell time.
Once the weights are assigned, each output chooses the heaviest input from among those
subscribing to it. It should be stated here that if an algorithm aims to be fair, it may
not achieve the best possible residue concentration2, and therefore sacrifices throughput.
Each scheduling cycle consists of the following steps:

• Request. The weight of the HoL multicast cell at an input port is (age−2×fanout),
where age is the number of cycles for which the multicast cell has been held at HoL.
The input sends a request to output ports in the HoL multicast cell’s destination
set along with this weight.

• Grant. Each output port looks at all the requests that have been made to it and
grants the request with the largest weight.

• Accept. Each input port services all the grants that it receives, based on the decision
of IISi.

This algorithm can be divided into two main parts; (1) every input computes a
request weight, and (2) every output chooses the input making a request with the
highest weight. Since calculating an input’s weight does not depend on the weight
of any other input, this may be performed in parallel. Similarly, each output may
choose the input with the highest weight independently, and may be performed in parallel.

“Because the single FIFO queuing architecture causes HoL blocking,

therefore the schedulers must carefully choose which inputs to serve

to mitigate its effects. For example, it is shown in [51] that

“concentrating the residue” at every time slot (which roughly means

providing full service to as many inputs as possible) greatly helps in

draining the queues fast. This is the reason why the performance of

multicast scheduling algorithms varies considerably.” [52]

4.4 Integrated Scheduling in PBC switches

We opted for an integration policy that gives equal priority to multicast and to unicast
traffic. Hence, the algorithm implemented can be formulated as follows; (1) start with
an empty matching, (2) if the time slot is even, schedule the MQs and then schedule the
VOQs, (3) if the time slot is odd, schedule the VOQs and then schedule the MQs.
As the two schedulers run in parallel and independently, the matchings they produce in
general are overlapping, meaning that they have conflicting edges. Our integration policy

2A multicast scheduling policy is said to be concentrating if, at the end of every cell time, it leaves
the residue on the smallest possible number of input ports.

44 CHAPTER 4. A PBC SWITCH SUPPORTING INTEGRATED UNICAST AND
MULTICAST TRAFFIC

decides which unicast and multicast edges will be part of the integrated matching, by
prioritizing the two schedulers (based on the parity of the time slot) in order to obtain a
consistent crossbar configuration. Our motive behind this kind of integration is to achieve
good link utilization, any remaining resources can be assigned to either unicast or multi-
cast. The integration policy preserves the matching produced initially by the prioritized
scheduler, but tries to enlarge it by adding edges using the non-prioritized scheduler for
that time slot. Prioritizing a request for an input-output pair simply translates ANDing
it with a bitmask of 1s or 0s depending on the parity of the time slot.

4.4.1 The DROP_mix and DROP-WBA integrated schedulers

Similar to previous integrated algorithms, DROP_mix and DROP-WBA are composed
of a unicast scheduler and a multicast scheduler integrated together. We used the DROP-
PR scheduler [1] for unicast scheduling and a FIFO multicast scheduling similar to [48].
We chose DROP-PR since it has good delay performance by prioritizing outputs with
empty internal buffers, resulting in more balanced internal buffers occupancies. Our
integration policy regarding to scheduling combines DROP-PR with either mcastDROP
or mcastWBA. During even time slots, unicast traffic has priority, while multicast traffic
is prioritized during odd time slots. The specification of DROP_mix along with DROP-
WBA appears below.

4.5 Performance Results

This section presents the simulation study of two PBC switching systems of 8 × 8 and
16 × 16. The experimental results are structured in three parts. First, we study the
performance of a PBC under pure multicast traffic when mcastDROP and mcastWBA
are deployed. Second, we compare the performance of DROP_mix to the existing so-
lutions for both the unbuffered IQ and fully buffered CICQ crossbars. We used ESLIP
algorithm for the IQ and the MURS_mix for the CICQ switch. The second part of
the experiments is dedicated to studying the performance of DROP_mix under different
internal settings. The performance metrics studied here are the average cell latency and
throughput. Simulations run for 1 million time slots and statistics are gathered when
fourth of the total simulation length has elapsed.
We studied the performance of our set of algorithms under the Bernoulli uniform and
bursty uniform. Arriving cells can be either unicast or multicast. Cells arrive with a
rate denoted by λ. Since the traffic is uniform, λ is the input load of the switch. The
departure rate is denoted by µ. Similarly, µ is the output load of the switch. We consider
admissible traffic, no input or output is oversubscribed. Because the traffic is a combi-
nation of unicast and multicast flows, the input load consists of a multicast fraction fm
and a unicast fraction fu, where {(fm, fu)|fm = 1− fu}. The fanout set, Φ, of multicast
cells has cardinality (fanout number) |Φ| which is uniformly distributed between 1 and
N (depending of the switch size, N can be 8 or 16) and all outputs have equal chances
to be the destination of a multicast cell. Based on the above, the relationship between
the switch input and output loads is expressed by:

µ = λ(fu + |Φ|fm)

4.5. PERFORMANCE RESULTS 45

Algorithm 3 Integrated Scheduling
Grant Phase, (DROP-PR) :
All grant pointers, gj when scheduling VOQs, are initialized to different positions.

. For each output, j, do

. Set CQj equals number of non-full internal buffers of output j.

. Set the priority bit, P , to the logic OR of CQj entries.

. While there are credits in CQj do

- Starting from gj index, send a grant to the first input, i, that requested this output (set
GQij = 1 and add bit P).

- Decrement CQj by one.

. Move the pointer gj to location (gj + 1)(mod N).

Grant Phase, (MCAST) :
All the outputs share common grant pointers for multicast.

. While there are credits in CQj do

- mcastDROP — Starting from gM index, send a grant to the input, i, that requested this
output (set GQij = 1).

- mcastWBA — Send a grant to the input, i, with the largest weight= age− 2× fanout (set
GQij = 1).

- Decrement CQj by one.

. diff = (max(selected_input+N − gM))(mod N).

. Move the pointer gM to location (gM + 1)(mod N).

Input Scheduling Phase, (DROP-PR) :
All input pointers, ai, are initialized to different positions.
For each input, i, do

. Starting from ai index, select the first non empty V OQij for which GQij = 1 and bit P = 1 and
send its HoL cell to the internal buffer.

. If no HoL cell is selected, Then

- Starting from ai index, select the first non empty V OQij for which GQij = 1 and send its
HoL cell to the internal buffer.

. Drop the remaining grants (reset GQ: GQi∗ = 0).

. Move the pointer ai to location (ai + 1)(mod N).

Input Scheduling Phase, (MCAST) :
For each input, i, do

. Starting from ai index, select the MQi for which GQi∗ = 1 and send its eligible cells belonging
to the fanout of the mcast HoL cell to the internal buffers.

. Move the pointer ai to location (ai + 1)(mod N).

In our simulation, we averaged the cells fanout set3. Following our settings and substi-
tuting fu with fm, we have µ = λ(1+7fm). For example, if we set fm to be 0, the traffic
is all unicast. When we set it to 1, the traffic becomes pure multicast. Whereas, if we

3Note that when the size of the switch is 8×8, the average fanout size becomes 4 and µ = λ(1+3fm)
to be |Φ| = 8.

46 CHAPTER 4. A PBC SWITCH SUPPORTING INTEGRATED UNICAST AND
MULTICAST TRAFFIC

fix µ to 1 for example (switch fully loaded), we can vary fm and see its effect on the
throughput. When fm = 0.5, the incoming traffic is evenly distributed between unicast
and multicast flows.

4.5.1 mcastDROP vs. mcastWBA

For comparison, we show the performance of mcastDROP vs. mcastWBA when they are
deployed in an IQ (B = 1) and a PBC switch. The fanout weight of the mcastWBA
is set equal to twice the weight for HoL cell age. Figure 4.3 shows the performance of
the two multicast schedulers with a different number of internal buffers for a 8 × 8 and
16× 16 switch.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−1

10
0

10
1

10
2

10
3

10
4

8x8 Switch under Bernoulli uniform and bursty traffic

Normalized Output Load

A
ve

ra
ge

 C
el

l D
el

ay

mcastDROP_1
mcastWBA_1
mcastDROP_4
mcastWBA_4
mcastDROP_8
mcastWBA_8
mcastDROP_4 (bursty)
mcastWBA_4 (bursty)

(a) An 8× 8switch.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−1

10
0

10
1

10
2

10
3

10
4

16x16 Switch under Bernoulli uniform and bursty traffic

Normalized Output Load

A
ve

ra
ge

 C
el

l D
el

ay

mcastDROP_1
mcastWBA_1
mcastDROP_4
mcastWBA_4
mcastDROP_8
mcastWBA_8
mcastDROP_4 (bursty)
mcastWBA_4 (bursty)

(b) An 16× 16switch.

Figure 4.3: Average cell delay of mcastDROP and mcastWBA with different switch sizes,
varying B and pure multicast uniform and bursty input traffic (fm = 1).

As expected, due to the fairness constraint, the mcastWBA exhibits better average cell
delay when compared to the multicast version of the DROP-PR algorithm in all scenarios.
This becomes obvious especially when the switch size is 8. But when the switch size gets
increased, the difference in the performance gets smaller and smaller because increasing N
also means that we increase the fanout cardinality of the multicast cells to be scheduled,
therefore, the switch is now “flooded” for smaller values of the normalized output load.
The same trend, but in a greater scale, is observed under bursty traffic4. This is because,
it is harder for a scheduling policy to concentrate the residue on the minimum number
of inputs when the arrivals of the multicast cells are correlated.
The two algorithms also differ slightly in the maximum possible throughput sustainable
by the switch. In Table 4.1, it can be seen how the number of the internal buffers
per output improves the matching efficiency of the switch when the normalized output
load is maximum (meaning that the switch is “flooded”). Under the bursty arrival input
traffic pattern, a 8×8 switch achieves 71.8% throughput, irrespectively of the scheduling
discipline and the number of Bs (for a 16× 16 the achieved throughput equals 67.6%).

4The choice of an expected duration of 16 cells per burst is arbitrary, but is representative. The same
qualitative results are obtained for different burst lengths.

4.5. PERFORMANCE RESULTS 47

8× 8 switch 16× 16 switch

B mcastDROP mcastWBA mcastDROP mcastWBA

1 0.88 0.892 0.91 0.926

2 0.902 0.908 0.921 0.932

4 0.926 0.929 0.937 0.942

8 0.95 0.951 0.953 0.956

Table 4.1: Throughput performance of a PBC switch under uniform traffic for different
switch sizes and different Bs.

4.5.2 DROP_mix vs. MURS_mix and ESLIP

Figure 4.4(a) depicts the average delay performance of DROP_mix when B = 1, 4, ES-
LIP when the number of iterations equals 1 and 4 and MURS_mix for a fully buffered
crossbar, under purely unicast traffic (fm = 0). As the Figure shows, MURS_mix has
better delay performance than the other two. This shows the superior performance of
the CICQ as compared to the IQ and PBC architecture. But, what is important to note
is the tradeoff between the computation intensive nature of the ESLIP algorithm against
the small internal buffering of the PBC switch. On the one hand, it is known that ES-
LIP converges to a MWM matching after logN iterations of the algorithm. Whereas,
DROP_mix achieves the same average cell latency using logN buffers in just one iter-
ation. Because DROP_mix works in a two-stage pipeline, it suffers some initial delay.
It is essential to point out that under heavy load DROP_mix performs better than ES-
LIP. Decoupling the input scheduling from the grant scheduling done by the two-stage
pipelined arbitration, and avoiding thus, the need for synchronized coordination between
the grant and the input (accept) schedulers on a time slot basis as does ESLIP, has a
profound impact on the average cell latency under unicast scheduling.

0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

10
2

10
3

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Output Load

16x16 Switch under Bernoulli uniform traffic

MURS_mix
DROP_mix_1
DROP_mix_4
Eslip_1
Eslip_4

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

10
2

10
3

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Output Load

16x16 Switch under Bernoulli uniform traffic

MURS_mix
DROP_mix_1
DROP_mix_4
Eslip_1
Eslip_4

(b)

Figure 4.4: (a) Average cell delay of DROP_mix, MURS_mix and ESLIP under Bernoulli
uniform unicast traffic (fm = 0). (b) Average cell delay of DROP_mix, MURS_mix and
ESLIP under Bernoulli uniform unicast traffic (fm = 0.5).

48 CHAPTER 4. A PBC SWITCH SUPPORTING INTEGRATED UNICAST AND
MULTICAST TRAFFIC

In order to better analyze the behavior of each scheduling algorithm, we tested the
algorithms under the same settings as above using a multicast fraction of 0.5. Since we
examine the case of using one multicast queue per input, pipelining the input scheduling
phase does not provide much advantages, given the i.i.d. characteristic of the input
arrival traffic pattern. That is the reason why the swap on the performance delay curve
between the ESLIP and the DROP_mix is not observed. Although, both algorithms
exhibit almost the same performance delay curve.
We wanted to compare the performance of DROP_mix to MURS_mix and ESLIP for
different mixed traffic settings. However, checking all possibilities of mixed traffic requires
tuning fm from 0 to 1 and observing the throughput. To this end, we fixed the output
load, µ, to be 100% (fully loaded system) and recorded the throughput of each algorithm
as fm varies from 0 to 1. Figure 4.5 compares the maximum achievable throughput of
DROP_mix_4, MURS_mix and ESLIP_4 under different switch sizes (8×8 and 16×
16). We can see from Figure 4.5 that the total throughput achieved by all of the scheduling
algorithms in question is always higher than 0.9. As it was expected, the throughput
progressively decreases with respect to output load, but it is noticeable increased when
multicast traffic dominates over unicast. This is not the case for the ESLIP scheduler,
as the throughput gets stabilized for high values of the multicast fraction coefficient.
DROP_mix is to be compared with the FILM scheduling algorithm, introduced in [52],
as the same trend is observed as far as the throughput is concerned.

0 0.2 0.4 0.6 0.8 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

T
hr

ou
gh

pu
t

Multicast Fraction

 Throughput under Bernoulli uniform traffic

MURS_mix (16×16)
DROP_mix_4 (16×16)
Eslip_4 (16×16)
MURS_mix (8×8)
DROP_mix_4 (8×8)
Eslip_4 (8×8)

Figure 4.5: Throughput performance of DROP_mix_4, MURS_mix and ESLIP_4
under different switch sizes and different multicast fractions.

4.5.3 DROP_mix with increasing internal buffers, B

We tested different PBC switch sizes, each with different numbers of internal buffers
and we measured the average cell delay performance of the DROP_mix algorithm with
different internal buffer settings under uniform and bursty traffic. In Figure 4.6, it can
be easily seen that the total throughput is increased as B increases, due to the relaxation
of the contention that the per output buffering offers. However, the switch size goes

4.5. PERFORMANCE RESULTS 49

against to the maximum throughput observed because a larger N implies a larger average
fanout, and thus contention gets increased. Secondly, increasing B does not boost the
performance by an order of magnitude as it is the case when scheduling unicast traffic,
but it always lowers the average cell latency, as depicted in Figure 4.7(a) and Figure
4.7(b). The same behavior is observed under bursty uniform arrivals.

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

T
hr

ou
gh

pu
t

Multicast Fraction

 Throughput under Bernoulli uniform traffic

DROP_mix_1 (16×16)
DROP_mix_4 (16×16)
DROP_mix_8 (16×16)
DROP_mix_16 (16×16)
DROP_mix_1 (8×8)
DROP_mix_8 (8×8)

Figure 4.6: Throughput performance of DROP_mix with different switch sizes, different
multicast fractions and varying B.

0.4 0.5 0.6 0.7 0.8 0.9 1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Output Load

Average Cell Delay under Bernoulli uniform traffic

DROP_mix_1 (16×16)
DROP_mix_4 (16×16)
DROP_mix_8 (16×16)
DROP_mix_16 (16×16)
DROP_mix_1 (8×8)
DROP_mix_4 (8×8)
DROP_mix_8 (8×8)

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

10
1

10
2

10
3

10
4

A
ve

ra
ge

 C
el

l D
el

ay

Normalized Output Load

Average Cell Delay under Bursty uniform traffic

DROP_mix_1 (16×16)
DROP_mix_4 (16×16)
DROP_mix_8 (16×16)
DROP_mix_16 (16×16)
DROP_mix_1 (8×8)
DROP_mix_4 (8×8)
DROP_mix_8 (8×8)

(b)

Figure 4.7: (a) Average cell delay of DROP_mix with different switch sizes, varying B
and mixed uniform input traffic (fm = 0.5). (b) Average cell delay of DROP_mix with
different switch sizes, varying B and mixed bursty input traffic (fm = 0.5).

In the PBC switching architecture, an output can send up to B grants and an input can
receive up to N grants, one from each output. When unicast scheduling, the grants an
output can send are shared among all N inputs, as an input can receive only one grant
from an output. When multicast scheduling, the grants an output can send are shared

50 CHAPTER 4. A PBC SWITCH SUPPORTING INTEGRATED UNICAST AND
MULTICAST TRAFFIC

among all the inputs N multiplied by the sum of the fanouts of HoL multicast cells. As a
result, the number of cells contending for the same output is significantly increased when
considering multicast traffic, whereas the number of cells that are actually transferred
to the internal buffers of that output stays fixed. This is why increasing B, lowers the
average cell latency but not as much as when when unicast traffic is scheduled.

4.6 Conclusion

The PBC switching architecture has been recently proposed and shown to take the best
of both the unbuffered IQ and fully buffered CICQ switching architectures. It maintains
a small number of internal buffers per fabric output, making its cost comparable to that
of unbuffered crossbars. However, these shared internal buffers bring about significant
advantages; they allow distributed and pipelined scheduling algorithm, as opposed to
the centralized scheduling in unbuffered crossbars. the PBC has much lower hardware
cost compared to a fully buffered crossbar. This chapter conducts the first study of
integrating unicast and multicast traffic scheduling in PBC switches. We proposed a
couple of scheduling algorithms, that are well tailored for the PBC switch and tested
their performance under a wide range of traffic patterns and switch size settings. We
studied different tradeoffs in terms of internal buffering and input traffic distribution and
observed the performance of the PBC. Simulation results show that the PBC exhibits
good performance and presents a practical choice over both unbuffered and fully buffered
crossbars.

Conclusions 5
High-speed routers are complex devices. They function at the heart of the tremendous
growth and complexity of the Internet. We have discussed the design of scheduling al-
gorithms for high speed switching fabrics. This thesis has studied the PBC switching
architecture, exploring ways towards scalable, low cost, and robust switching system. So
far, the scheduling algorithms known in literature have been either simple to implement
but with poor performance or too complex but with good performance.
The PBC switch exhibits better performance but still being cost-comparable to un-
buffered switches, as the performance results have shown. In this work, we eliminated the
cost-performance tradeoff regarding the fully buffered crossbars by devising schedulers
directly coupled to the underlying switch architecture. The latter resulted to a switch-
ing architecture that is strictly better than CICQ switches. We have addressed two of
the most popular issues regarding the scheduling process in high-speed switches, namely,
performance guarantees and MWM approximation. And, we have motivated the problem
of simultaneously scheduling unicast and multicast traffic.
Our first significant contribution, mainly of theoretical interest, has been the mapping
of the bufferless optimal MWM scheduling in a PBC switch. We used the fluid model
theory, together with Lyapunov functions, in order to prove and come up with a scheduler
and demonstrate how the switching architecture in question can achieve 100% through-
put without any speedup.
Our second significant contribution has been the proposal of an adaptive frame schedul-
ing algorithm that makes use of the circuit switching theory (AF-DROP-PR). The main
idea that we exploit is to regressively allocate throughput to a flow-aware switch, in this
way, we achieve the performance and fairness index of the ideal OQ switch, minimizing
the memory requirements. To our knowledge, there has not been proposed any switching
architecture that provides throughput guarantees in a more practical way. The pigeon-
hole principle was used to identify the conditions that would enable us to tell something
predictable when scheduling in PBC switches.
Our third contribution has been the proposal of an implementable algorithm that sched-
ules unicast and multicast traffic in parallel. Thanks to that, we were the first ones that
studied the performance of a PBC switch under integrated traffic. Also, we were able to
find out about an interesting tradeoff between the number of iterations a state-of-the-art
integrated scheduler needs to perform in order to achieve an efficient matching between
inputs and outputs and the number of internal buffers in a PBC needed to achieve the
same or better performance with just one iteration.
We wish to make the last point. As system requirements increase, the capabilities of
hardware may continue to lag. The underlying hardware can be slow, inefficient, unre-
liable, and perhaps even variable and probabilistic in its performance. Of course, some
of the above are already true with regard to memory. And so, it will become neces-

51

52 CHAPTER 5. CONCLUSIONS

sary to find architectural and algorithmic techniques to solve these problems. If we can
discover techniques that are sufficient to emulate the large performance requirements of
the system, then it is possible to build solutions that can use such imperfect underlying
hardware.

Definitions and Traffic Models A
A.1 Definitions

We assume that time is slotted into cell times. Let Aij(n) denote the cumulative number
of arrivals to input i of cells destined to output j at time n. Let Ai(n) denote the
cumulative number of arrivals to input i. During each cell time, at most one cell can
arrive at each input. λij is the arrival rate of Aij(n). Dij(n) is the cumulative number of
departures from output j of cells that arrived from input i, while Dj(n) is the aggregate
number of departures from output j. Similarly, during each cell time, at most one cell
can depart from each output. Xij(n) is the total number of cells from input i to output
j still in the system at time n. The evolution of cells from input i to output j can be
represented as:

Xij(n+ 1) = Xij(n) +Aij(n)−Dij(n) (A.1)

Let A(n) denote the vector of all arrivals {Aij(n)}, D(n) denote the vector of all depar-
tures {Dij(n)}, and X(n) denote the vector of the number of cells still in the system.
With this notation, the evolution of the system can be described as:

X(n+ 1) = X(n) +A(n)−D(n) (A.2)

Figure A.1: Network traffic models [2].

• Admissible: An arrival process is said to be admissible when no input or output
is oversubscribed, i.e., when

∑

i λij < 1,
∑

j λij < 1 and λij ≥ 0.

53

54 APPENDIX A. DEFINITIONS AND TRAFFIC MODELS

• i.i.d.: Traffic is called independent and identically distributed (i.i.d.) if and only
if: (1) Every arrival is independent of all other arrivals both at the same input and
at different inputs. (2) All arrivals at each input are identically distributed.

• 100% Throughput: A router is said to achieve 100% throughput if under
any admissible iid traffic, for every ǫ > 0, there exists C > 0 such that
limn→∞ Pr{

∑

ij Xij(n) > C} < ǫ.

Performance Analysis of a

PBC Switch B
In this appendix, we’ll describe an algorithm that implements a technique for detecting
the performance bottleneck among the different router line cards. More specifically, giving
the current internal buffer size configuration, the algorithm tries to identify the outputs
where adding extra buffering space leads to the maximum improvement in performance.
One way to guide this process would be to simulate the system implementing such a
configuration and then profile the simulation results. Unfortunately, despite its flexibility,
the simulation approach suffers from extremely long simulation times. Since we need to
evaluate the system for every possible buffer configuration, the evaluation based on direct
simulation is simply impossible to afford. In the following, we propose a analytical model
which can be used to quickly analyze the current internal buffer size configuration and
detect the performance bottlenecks; this is done by solving a series of nonlinear equations
derived from queuing models.
We will try to identify the output port where adding extra buffering space leads to the
maximum improvement in performance. We will do that by detecting which output has
the highest blocking probability, the output port which owns the internal buffers that
are responsible for the performance bottleneck in the current switch configuration should
increase the size of its internal buffers.
To solve this problem analytically, we resort to the theory of finite queueing networks.
The basic element in the model is a M/D/1/K finite queue, consisting of one M/M/1
queue and one M/D/1/K queue, as it will be explained later on.
The arrival rate λij destined for outputj caused by inputi can be calculated using the
following equation:

λij = (cell_injection_ratei)× (probability_of_receiving_granti)× onj

where onj equals 1 if the cell from inputi is destined to outputj , otherwise it is equal to 0.

The calculation of the service rate µj of the cells destined to outputj
is not trivial, as it depends not only on the switch’s service delay, but

also on probabilities of a cell being switched to outputj and whether or

not the internal buffers of the outputj are full.

Once the value of the service rate per output port is determined, the probability
outputj ’s internal buffers to be in “full state” can be calculated easily using the finite
M/D/1/K queueing model:

cj = 1−
bK−1

1 + ρj × bK−1
(B.1)

55

56 APPENDIX B. PERFORMANCE ANALYSIS OF A PBC SWITCH

where ρj = λj/µj and bn =
∑n

a=0
(−1)a

a! × (n− a)a × e(n−a)×ρ × ρa.
Cells destined to outputj accept grant provided that outputj has available space in its
internal buffers. Thus, we can use the reciprocal of the blocking probability to approx-
imate the service rate that can be provided upstream. More specifically, the effective
service rate as observed by λj is approximated as 1/cj . Since the total arrival rate to
outputj is λj =

∑

i λij , if we approximate the service provided downstream to outputj as
an M/M/1 queue, the expected number of cells to be delivered to the internal buffers of
outputj can then be calculated as:

E[NM/M/1;j] = Nj =
λj

1
cj

− λj

On the other hand, based on Little’s formula:

Nj = λj × wj

So, the average time spent for entering outputj ’s internal buffers can then be approxi-
mated as:

E[wM/M/1;j] = wj =
1

1
cj

− λj
(B.2)

On the other hand, wj should also be the average waiting time observed by

a cell in the λj flow if it is to be delivered to outputj

The arrival rate of a flow λij coming from inputi and destined to outputj is equal to
pij × λij . If this flow should provide the same average cell latency, then its service rate
µ̄i
j must satisfy the following equation, again based on Little’s formula:

wj =
1

µ̄i
j − pij × λkj

(B.3)

Substituting wj in Equation B.2 the RHS of Equation B.3, we can calculate the equivalent
service rate of this flow by:

µ̄i
j =

1

cj
− λj + pij × λij (B.4)

The average upstream service experienced by all input ports i from output port j can
now be calculated by the following equation:

µ̄j =
∑

i

pij × µ̄i
j (B.5)

The next step to further reduce the model is merging the two queues. Thus, the average
queue length of the λj downstream flow can be approximated by a M/D/1/K queue
(due to the work–conservation principle), so:

E[QM/D/1/K;j] = K −

∑K−1
n=0 bn

1 + ρj × bK−1

57

Then, the average queue length of λj should be equal to the sum of the queue that models
the delay an input request has to wait to receive a grant (note; when ρ → 1 this delay
tends to be equal to N/B) and the queue that models the availability of the outputj ’s
internal buffers (upstream queue model):

E[Q] =
λj

1
(N
2×B

)
− λj

+
λj

µ̄j − λj

Combining the last two equations together, we have:

µj =
λj × bK−1 × (K − E[Q])
∑K−1

n=0 bn −K + E[Q]
(B.6)

At this point, we have described the relation between the outputj
service rate µj and the outputj blocking probability cj (by combining

Equation (B.4)(B.5)(B.6)).

By performing similar derivations for all the outputs of the switch, we can finally
build a series of equations which describe the overall switch’s behavior. The initial buffer
configuration is decided based on profiling the grant probability per input. The fsolve
utility from Matlab or Octave can be used as the non-linear solver of the system
equations. The output port which has the highest blocking probability is selected as
the bottleneck output port and the size of each internal buffers is increased. The above
procedure is repeated until the desired performance is achieved.

Remarks; (1) We do assumptions about the aggregate arrival stream, more

specifically, we assume that it consists of a large number of sources

with none of them dominating the others. (2) The AMS queue allows us to

analyze the effect of the burstiness of a source by varying λ.

58 APPENDIX B. PERFORMANCE ANALYSIS OF A PBC SWITCH

Bibliography

[1] L. Mhamdi. PBC: A partially buffered crossbar packet switch. Computers, IEEE
Transactions on, 58(11):1568 –1581, nov. 2009.

[2] Sundar Iyer. Load Balancing and Parallelism for the Internet. PhD thesis, Stanford
University, 2008.

[3] Bin Liu H. Jonathan Chao. High Performance Switches and Routers. Wiley-IEEE
Press, 2007.

[4] P. Gupta. Algorithms for routing lookups and packet classification. PhD thesis,
Stanford University, 2000.

[5] Piet Van Mieghem. Data Communications Networking. Techne Press, 2006.

[6] Denzel W.E. Engbersen T. Herkersdorf A. Bux, W. and Ronald P. Luijten. Tech-
nologies and building blocks for fast packet forwarding. IEEE Communications
Magazine, pages 70–77, 2001.

[7] http://www.qdrsram.com/.

[8] http://www.micron.com/products/dram/.

[9] Robert R. Schaller. Moore’s law: past, present, and future. IEEE Spectr., 34(6):52–
59, 1997.

[10] Shang-Tse Chuang, A. Goel, N. McKeown, and B. Prabhakar. Matching output
queueing with a combined input/output-queued switch. Selected Areas in Commu-
nications, IEEE Journal on, 17(6):1030 –1039, jun 1999.

[11] D. Gale and L. S. Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962.

[12] http://www1.cs.columbia.edu/ evs/intro/stable/writeup.html.

[13] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems
and scheduling policies for maximum throughput in multihop radio networks. In
Decision and Control, 1990., Proceedings of the 29th IEEE Conference on, pages
2130 –2132 vol.4, dec 1990.

[14] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand. Achieving 100%
throughput in an input-queued switch. Communications, IEEE Transactions on,
47(8):1260 –1267, aug 1999.

[15] J.G. Dai and B. Prabhakar. The throughput of data switches with and without
speedup. volume 2, pages 556 –564 vol.2, 2000.

[16] M. Nabeshima. Performance evaluation of a combined input-and crosspoint-queued
switch. IEICE Transactions on Communications, E83-B(3):737–741, March 2000.

59

60 BIBLIOGRAPHY

[17] Francois Abel, Cyriel Minkenberg, Ronald P. Luijten, Mitchell Gusat, and Ilias
Iliadis. A four-terabit packet switch supporting long round-trip times. IEEE Micro,
23(1):10–24, 2003.

[18] Vinodh Cuppu, Bruce Jacob, Brian Davis, and Trevor Mudge. A performance com-
parison of contemporary dram architectures. In ISCA ’99: Proceedings of the 26th
annual international symposium on Computer architecture, pages 222–233, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[19] Cyriel Minkenberg, Ronald P. Luijten, François Abel, Wolfgang Denzel, and Mitchell
Gusat. Current issues in packet switch design. SIGCOMM Comput. Commun. Rev.,
33(1):119–124, 2003.

[20] S.-T. Chuang, S. Iyer, and N. McKeown. Practical algorithms for performance
guarantees in buffered crossbars. In INFOCOM 2005. 24th Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings IEEE, volume 2,
pages 981 – 991 vol. 2, march 2005.

[21] R.E. Tarjan. Data Structures and Network Algorithms. Society for Industrial Math-
ematics, 1987.

[22] B. Prabhakar, N. McKeown, and R. Ahuja. Multicast scheduling for input-queued
switches. Selected Areas in Communications, IEEE Journal on, 15(5):855 –866, jun
1997.

[23] Cheng-Shang Chang, Wen-Jyh Chen, and Hsiang-Yi Huang. On service guarantees
for input-buffered crossbar switches: a capacity decomposition approach by birkhoff
and von neumann. In Quality of Service, 1999. IWQoS ’99. 1999 Seventh Interna-
tional Workshop on, pages 79 –86, 1999.

[24] Y. Tamir and H.-C. Chi. Symmetric crossbar arbiters for vlsi communication
switches. Parallel and Distributed Systems, IEEE Transactions on, 4(1):13 –27,
jan 1993.

[25] Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and Charles P. Thacker.
High speed switch scheduling for local area networks. In ASPLOS-V: Proceedings of
the fifth international conference on Architectural support for programming languages
and operating systems, pages 98–110, New York, NY, USA, 1992. ACM.

[26] A. Mekkittikul and N. McKeown. A practical scheduling algorithm to achieve
100% throughput in input-queued switches. In INFOCOM ’98. Seventeenth Annual
Joint Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE, volume 2, pages 792 –799 vol.2, mar-2 apr 1998.

[27] P. Giaccone, D. Shah, and B. Prabhakar. An implementable parallel scheduler for
input-queued switches. Micro, IEEE, 22(1):19 –25, jan/feb 2002.

[28] N. McKeown. The islip scheduling algorithm for input-queued switches. Networking,
IEEE/ACM Transactions on, 7(2):188 –201, apr 1999.

BIBLIOGRAPHY 61

[29] R. Rojas-Cessa, E. Oki, Zhigang Jing, and H.J. Chao. Cixb-1: combined input-one-
cell-crosspoint buffered switch. In High Performance Switching and Routing, 2001
IEEE Workshop on, pages 324 –329, 2001.

[30] T. Javidi, R. Magill, and T. Hrabik. A high-throughput scheduling algorithm for a
buffered crossbar switch fabric. In Communications, 2001. ICC 2001. IEEE Inter-
national Conference on, volume 5, pages 1586 –1591 vol.5, 2001.

[31] D. Shah and M. Kopikare. Delay bounds for approximate maximum weight matching
algorithms for input queued switches. In INFOCOM 2002. Twenty-First Annual
Joint Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE, volume 2, pages 1024 – 1031 vol.2, 2002.

[32] H.J. Kushner. Stochastic Stability and Control. Academic Press, Orlando, FL, 1967.

[33] Guy Fayolle. On random walks arising in queueing systems: ergodicity and tran-
sience via quadratic forms as lyapunov functions—part i. In Proceedings of the
workshop held at the Mathematical Sciences Institute Cornell University on Mathe-
matical theory of queueing systems, pages 167–184, Red Bank, NJ, USA, 1989. J. C.
Baltzer AG, Science Publishers.

[34] Paolo Giaconne. Queueing and scheduling algorithms for high performance routers.
PhD thesis, Politechnico Di Torino, 2002.

[35] http://en.wikipedia.org/wiki/EDRAM.

[36] Shang-Tse Chuang. Providing Performance Guarantees in Crossbar-based routers.
PhD thesis, Stanford University, 2005.

[37] R. Rojas-Cessa. High-performance round-robin arbitration schemes for input-
crosspoint buffered switches. In High Performance Switching and Routing, 2004.
HPSR. 2004 Workshop on, pages 167 – 171, 2004.

[38] M. Katevenis N. Chrysos. Transient behavior of a buffered crossbar converging to
weighted max-min fairness. Technical report, Inst. of Computer Science, FORTH,
2002.

[39] Sundar Iyer, Rui Zhang, and Nick McKeown. Routers with a single stage of buffering.
SIGCOMM Comput. Commun. Rev., 32(4):251–264, 2002.

[40] R. Jain, D. Chiu, and W. Hawe. A quantitative measure of fairness and discrimina-
tion for resource allocation in shared computer systems. Technical Report TR-301,
DEC Research, September 1984.

[41] Lotfi Mhamdi, Christopher Kachris, and Stamatis Vassiliadis. A reconfigurable
hardware based embedded scheduler for buffered crossbar switches. In FPGA ’06:
Proceedings of the 2006 ACM/SIGDA 14th international symposium on Field pro-
grammable gate arrays, pages 143–149, New York, NY, USA, 2006. ACM.

62 BIBLIOGRAPHY

[42] James Balfour and William J. Dally. Design tradeoffs for tiled cmp on-chip networks.
In ICS ’06: Proceedings of the 20th annual international conference on Supercom-
puting, pages 187–198, New York, NY, USA, 2006. ACM.

[43] I.V. Senin, L. Mhamdi, and K. Goossens. Efficient multicast support in buffered
crossbars using networks on chip. In Global Telecommunications Conference, 2009.
GLOBECOM 2009. IEEE, pages 1 –7, 30 2009-dec. 4 2009.

[44] M. Andrews, S. Khanna, and K. Kumaran. Integrated scheduling of unicast and
multicast traffic in an input-queued switch. In INFOCOM ’99. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE, volume 3, pages 1144 –1151 vol.3, mar 1999.

[45] N. McKeown. A fast switched backplane for a gigabit switched router. Business
Commun. Rev., 27(12), 1997.

[46] L. Mhamdi. On the integration of unicast and multicast cell scheduling in
buffered crossbar switches. Parallel and Distributed Systems, IEEE Transactions
on, 20(6):818 –830, june 2009.

[47] N. McKeown. Scheduling Algorithms for Input-Queued Cell Switches. PhD thesis,
University of California at Berkeley, 1995.

[48] L. Mhamdi and M. Hamdi. Scheduling multicast traffic in internally buffered crossbar
switches. In Communications, 2004 IEEE International Conference on, volume 2,
pages 1103 – 1107 Vol.2, june 2004.

[49] J.Y. Hui and T. Renner. Queueing analysis for multicast packet switching. Com-
munications, IEEE Transactions on, 42(234):723 –731, feb/mar/apr 1994.

[50] M.A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri. Multicast traffic in
input-queued switches: optimal scheduling and maximum throughput. Networking,
IEEE/ACM Transactions on, 11(3):465 – 477, june 2003.

[51] B. Prabhakar, N. McKeown, and R. Ahuja. Multicast scheduling for input-queued
switches. Selected Areas in Communications, IEEE Journal on, 15(5):855 –866, jun
1997.

[52] E. Schiattarella and C. Minkenberg. Fair integrated scheduling of unicast and mul-
ticast traffic in an input-queued switch. In Communications, 2006. ICC ’06. IEEE
International Conference on, volume 1, pages 287 –292, june 2006.

Curriculum Vitae

Nikolaos Skalis is 1.88m tall, outrageously
handsome, Greek, and proud of it. In addition to
being a hero, trendsetter, and leader of fashion,
he is widely regarded as an expert in all aspects
of electronics (at least by his mother).
After receiving his Engineering Diploma in elec-
trical engineering in 2007 from Democritus Poly-
technic, Greece, Nikos continued his studies in the
Delft University of Technology in Embedded Sys-
tems. To cut a long story short, Nikos now finds
himself be undetermined about what he is going
to do next.
In his spare time (Ha!), Nikos is attending in as
many music and art events as he can. On the
off-chance that you ’re still not impressed, Nikos
was once referred to as a “networking expert” by
someone famous, who wasn’t prompted, coerced,
or remunerated in any way!

