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Abstract

Layman’s Abstract

This paper studies apparent patterns in mathematics that break at a certain point and aims to provide a

mathematical explanation for these breaks. We focus on two patterns. The first pattern, discovered by D.

and J. Borwein, is as follows: π, π, π, . . . , π, π − 0.000000000462.... These numbers are the outcomes of

integrals called the Borwein integrals. At first glance, it is not obvious why this pattern breaks. However,

after performing a specific analysis called Fourier analysis, we will find the reason behind the apparent

breakdown of the pattern.

Next, we study another very similar pattern: π, π, π, . . . , π, π − 0.000000003589792 . . .. These numbers

are the outcomes of different integrals, which we call the Nahin integrals. Once again, with the help of

Fourier analysis we will find a reasonable explanation for why the pattern breaks and what the value of the

following numbers will be.

In conclusion, this paper serves as a warning to those who assume a pattern exists based on a first glance.

Furthermore, when an apparent pattern does not exist, this paper applies a methodology that can be more

broadly used to determine the actual predictable behaviour.

Peer Abstract

This paper primarily studies the Borwein integrals Bn:

bn(x) =

n∏
k=0

sin
(

x
2k+1

)
x

2k+1

Bn =

∫ ∞

−∞
bn dx, n = 0, 1, 2, . . .

These integrals are of interest because of their peculiar results, namely B0 up to B6 are all equal to π.

However, B7 is almost, but not quite, equal to π, equalling approximately π − 0.000000000462.

First, to try and observe a reason for the breaking of this apparent pattern, we will perform a graphical

analysis on the integrands bn. This will prove to be not very insightful, so another approach using Fourier

analysis will be applied. To perform such an analysis, the Fourier transform of functions in L2 must first be

defined. We do this on the basis of functions in L1 ∩ L2. Then, the Fourier transform of
sin( x

k )
x
k

, k = 1, is

calculated and generalized to an arbitrary k ∈ R. After this, the Fourier transform of the Borwein integrands

is calculated, and their graphs are analyzed.

Interestingly, the Fourier transform of the first Borwein integrand is a Heaviside step function with a

’plateau’ of width 1
π , where the function is equal to π centered around 0. Each Fourier transform after this is

a moving average of the one before, where the moving average window of the nth transform is determined by
1

π(2n+1) . This means there is a very simple explanation for where the apparent pattern will break. Namely,

if the difference between 1
π and 1

π (
1
3 +

1
5 + · · ·+ 1

2n+1 ) becomes negative, then the plateau will vanish as the

window becomes larger than the plateau, and even at the center point zero, the function value will become

slightly less than π.

While the value of each Borwein integral decreases, there does exist a limit equal to approximately

π − 0.0000704. Thus, while the pattern does ’break’, it never breaks very badly and always remains quite

close to π.

After studying the Borwein integrals and their behaviour at infinity, we will study another sequence of



functions. We call these functions the Nahin functions, defined as follows:

hn(x) =
sin(4x)

x

n∏
k=0

cos

(
x

k + 1

)
Hn =

∫ ∞

−∞
hn dx, n = 0, 1, 2, . . .

Note that hn(0) = Hn. Using the same methodology as for the Borwein integrals, we will calculate

the Fourier transform of the Nahin integrands and find a direct link between the Nahin integrands and the

Borwein integrals. Namely, the Fourier transform of the Nahin integrands can be written as a factor times

the sum of the dilated Fourier transform of B0. The analysis will further result in an explanation for why

the Nahin integrals’ ’pattern’ breaks at n = 30. When 1+ 1
2 +

1
3 + · · ·+ 1

n+1 is greater than four, the Nahin

integrals will no longer be equal to but will be less than π. Finally, a closed expression will be found for

the value of the Nahin integrals, and further research will be suggested to discover the value of this closed

expression as n approaches infinity.
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Preface

The bachelor’s degree in Applied Mathematics at TU Delft concludes with a thesis on a mathematical topic,

marking the end of four years of study for me. During the bachelor’s program, I found myself interested

in various fields of mathematics, including Discrete Mathematics, Statistics, and Analysis. As such, when

faced with the choice of bachelor projects, these were the three fields in which I was most interested. After

choosing a number of projects, I was allocated my top choice: The Fourier analysis behind Borwein integrals.

This topic interested me because of the reversal of expectations and the mathematics behind the phenomena.

The first part of this report follows the layout of a YouTube video by G. Sanderson [1], which in turn

was based on the results of a paper written by the father and son duo David and Jonathan Borwein [2].

David Borwein (1924-2021) had three children, one of whom was Jonathan (1951-2016), and all three became

modern-day mathematicians. Many theorems and mathematical concepts that I was taught throughout the

bachelor’s program were developed by mathematicians who lived hundreds of years ago, with the exception

of the elective Graph Theory. With this in mind, I found it interesting to be working on mathematics that

had not been fully researched until recently.

I would like to thank my supervisor Emiel Lorist for his help and feedback over the past few months,

as well as Cornelis Kraaikamp, who, after being my mentor at the start of the bachelor’s program, agreed

to be part of my thesis committee, marking the end of my bachelor’s studies. Lastly, I would like to thank

my family and friends for the support they have given me, not only during this project but throughout the

entire process of studying mathematics.
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Introduction

For k = 0, 1, 2, . . ., the Borwein integrals are defined as follows:

Bn =

∫ ∞

−∞

n∏
k=0

sin
(

x
2k+1

)
x

2k+1

dx, n = 0, 1, 2, . . .

Interestingly, B0, B1, . . . , B6 = π, but B7 ≈ π − 0.000000000462. At first glance, one might assume that B7

was calculated incorrectly, perhaps due to a rounding error by a computer. However, this is not the case. In

fact, as n increases, Bn continues to deviate further from π. In Chapter 1.1, we perform a graphical analysis

of the Borwein integrands to try and explain this behaviour. This proves largely unsuccessful, and thus in

Chapter 1.2, we first define the Fourier transform of functions in L2. Next, we calculate the Fourier transform

of B0 by hand in Section 1.3. In Section 1.4, we calculate the Fourier transform of the Borwein integrands,

and in Section 1.5, we perform a graphical analysis on the Fourier transformations of the Borwein integrands.

By doing so, we are able to explain the phenomena. Chapter 1 concludes with Section 1.6 where a closed

form expression for the Borwein integrals is found, as well as their behaviour as n approaches infinity.

Next, Chapter 2 is centered around the analysis of another set of integrals, namely what we call the

Nahin integrals, which take the following form:

Hn =

∫ ∞

−∞

sin(4x)

x

n∏
k=0

cos

(
x

k + 1

)
dx, n = 0, 1, 2, . . .

• Chapter 2 starts with the introduction of what we call the Nahin integrals and discusses the behaviour

of their values.

• In Section 2.1, we discuss the graphical behaviour of the Nahin integrands.

• In Section 2.2, we calculate the explicit Fourier transform of the first few Nahin integrands, which we

use in the next section.

• In Section 2.3, we graph the first six Nahin integrands and discuss their graphical behaviour.

• In Section 2.4, we perform a further analysis on the Nahin integrands, rewriting them in such a way

that their Fourier transforms are linked to the Fourier transforms of the Borwein integrands. Using

this information, we find a closed form for the value of the Nahin integrals and are able to explain the

phenomena that arise with the Nahin integrals.

Finally, we conclude by giving a short summary of the conclusions made in the paper and a few suggestions

for further study.
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1 The Borwein Integrals

The Borwein integrals are a collection of integrals which David and Jonathan Borwein used as an example

in their paper ”Some Remarkable Properties of Sinc and Related Integrals” [2]. The Borwein integrals are

defined as follows:

Bn =

∫ ∞

−∞

n∏
k=0

sin
(

x
2k+1

)
x

2k+1

dx, n ∈ N

Originally, D. and J. Borwein only integrated from 0 to ∞; however, to avoid unnecessary fractions, we

will integrate over the entire real number line. The outcomes of the first few Borwein integrals are as follows:

B0 =

∫ ∞

−∞

sin(x)

x
dx = π

B1 =

∫ ∞

−∞

sin(x)

x

sin
(
x
3

)
x
3

dx = π

B2 =

∫ ∞

−∞

sin(x)

x

sin
(
x
3

)
x
3

sin
(
x
5

)
x
5

dx = π

...

B6 =

∫ ∞

−∞

sin(x)

x

sin
(
x
3

)
x
3

sin
(
x
5

)
x
5

· · ·
sin
(

x
13

)
x
13

dx = π

B7 ≈
∫ ∞

−∞

sin(x)

x

sin
(
x
3

)
x
3

sin
(
x
5

)
x
5

· · ·
sin
(

x
15

)
x
15

dx = π − 0.0000000000462

...

Noticeably, there is an apparent pattern of each integral having the value of π until we reach B7. Here,

the pattern breaks by the smallest of margins. In fact, the value of B7 is so close to π that it initially seems

to be a mistake. However, it isn’t a mistake, and the value of each Bn after B7 consistently decreases.

To understand this phenomenon, we will first evaluate the graphical nature of the integrands of the

Borwein integrals.

Remark. The integrands of the Borwein integrals are defined at x = 0 by the limit of the function at that

point, which exists. Similarly, throughout this paper, we will implicitly define functions at x = 0 by their

limits at that point. In all cases used in this paper, these limits exist.
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1.1 A Graphical Analysis of the Borwein Integrands

Figure 1: The graph of sin(x)
x

Figure 1 shows the graph of sin(x)
x . We know that the integral of this function is equal to π, and as such,

this is our baseline for comparison with the following figures. The code for these figures can be found in

Appendix 4.1.
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Figure 2: The graph of sin(x)
x

sin( x
3 )

x
3

In Figure 2, we have the graph of sin(x)
x

sin( x
3 )

x
3

. In the vicinity of 0, this graph is very similar to Figure

1, but as it leaves the direct vicinity of 0, the function becomes a damped version of Figure 1 in the sense

that local maxima and minima are closer to the x-axis the further you get away from zero. Nevertheless, we

know that the integral of this function is also π.

Figure 3: The graph of sin(x)
x

sin( x
3 )

x
3

sin( x
5 )

x
5

· · · sin( x
13 )

x
13
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Next, we skip a few steps and regard the integrand of B6. Figure 3 shows the graph of sin(x)
x

sin( x
3 )

x
3

sin( x
5 )

x
5

·

· · sin( x
13 )

x
13

. Notably, this function is considerably more damped, with significant values occurring only within

the range [−2π, 2π]. Nevertheless, we know that the integral is still equal to π.

Figure 4: The graph of sin(x)
x

sin( x
3 )

x
3

sin( x
5 )

x
5

· · · sin( x
15 )

x
15

Lastly, in Figure 4, we know that the integral is just barely less than π. However, we notice no remarkable

change in the function in comparison to Figure 3, and therefore, we have no clear-cut reason for why the

pattern breaks. Since we cannot come to a definite conclusion based upon the current form of our Borwein

integrals, in the next section, we will attempt another method. Namely, by introducing and then calculating

the Fourier transform of the integrands.

1.2 The Fourier Transform L2(R) Functions

We saw at the start of the Chapter that the Borwein integrals seem to exhibit a pattern that ”breaks” at

B7, as each integral thereafter distances itself further from π. After failing to explain this behaviour through

the graphs of the integrands, we will now try another method using Fourier analysis. The Fourier transform

of an arbitrary function f ∈ L1(R) is defined in [3] as follows:

pf(ξ) =

∫ ∞

−∞
f(x)e−2πixξ dx, x ∈ R (1)

This is a useful formulation since pf(0) =
∫∞
−∞ f(x) dx is equal to B0, and we can find a similar formulation for

the following Borwein integrals. However, this definition of the Fourier transform assumes that f ∈ L1(R).
Our function f : R → R, f(x) = sin(x)

x is an element of L2(R) but not L1(R); however, we would like to have

a similar definition. Therefore, we will first define the Fourier transform for L2 functions, then calculate the

Fourier transform of f , and then a dilated f , ending the chapter by calculating and analyzing the Fourier

transforms of the Borwein integrals.
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The Fourier transform for functions on L1(R) is already neatly defined in Grafakos [3], and we will now

define it as follows:

Definition 1.1 (The Fourier Transform in L1(R)). Given f ∈ L1(R), we define the Fourier transform pf(ξ)

by

pf(ξ) =

∫
R
f(x)e−2πix·ξ dx, ξ ∈ R.

Here, pf denotes the Fourier transform of f .

Remark. While our definitions, theorems, and propositions are formulated within R, it’s important to note

that extensions to Rn exist. However, for clarity, we restrict our focus in this paper exclusively to functions

defined within R.

The Borwein integrands are functions in L2(R), and thus, this section will provide a proper definition of

the Fourier transform for an arbitrary function g ∈ L2(R). To do this, we first require the following theorem

[4] and proposition:

Theorem 1.2 (Plancherel). Let f be a function such that the Fourier transform of f is defined. Then

|| pf ||22 = ||f ||22.

Proposition 1.3. Given f, g ∈ L1(R) ∪ L2(R), b ∈ C, and a > 0, and (δaf)(x) = f(ax), we have

zf + g = pf + pg,

xbf = b pf,

yδaf = a−nδa
−1

pf = ( pf)a, where a > 0.

For functions in L1(R) a similar proposition can be found in [3]. We will prove the first of the three

statements for functions in L2(R) after Proposition 1.7, but the proofs of the other two are omitted to avoid

unnecessary repetition as they use the same technique. To prove this first statement, we need the following

theorems and proposition from [5]:

Proposition 1.4 (Hölder’s inequality). Let S ⊆ R, p, q ∈ (1,∞) satisfy 1
p + 1

q = 1. If f ∈ Lp(S) and

g ∈ Lq(S), then fg ∈ L1(S) and

||fg||1 ≤ ||f ||p||g||q.

Theorem 1.5 (Dominated Convergence theorem). Let fn : R → R be measurable functions for n ≥ 1 such

that fn → f pointwise. If there exists an integrable function g : R → [0,∞) such that fn ≤ g for all n ≥ 1,

then fn and f are integrable and

lim
n→∞

∫
R
fndx =

∫
R
fdx

Theorem 1.6 (Density of L1(R)∩L2(R) in L2(R)). L1(R)∩L2(R) is dense in L2(R), i.e., given g ∈ L2(R),
there exists (gn)n≥1 ∈ L1(R) ∩ L2(R) such that gn → g in L2(R).

Proof. Let g ∈ L2(R), and define gn = g · 1[−n,n].

We first prove that gn ∈ L1(R) ∩ L2(R). For gn ∈ L1(R) we use Hölder’s inequality (1.4) to find the

following: ∫
R
|gn| dx =

∫
R
|g|1[−n,n] dx ≤ ||g||2 · ||1[−n,n]||2

Since g ∈ L2(R), ||g||2 < ∞. Furthermore, ||1[−n,n]||2 =
(∫

R 1[−n,n] dx
) 1

2 = (2n)
1
2 < ∞. Thus,

∫
R |gn| dx ≤

||g||2 · ||1[−n,n]||2 < ∞, so gn ∈ L1(R).
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Next, we show that gn ∈ L2(R):

|gn| ≤ |g| =⇒
(∫

R
|gn|2 dx

) 1
2

≤
(∫

R
|g|2 dx

) 1
2

< ∞

This holds since g ∈ L2(R). Thus, gn ∈ L1(R) ∩ L2(R).
Now, we show that gn → g in L2(R). Trivially, gn → g pointwise. Furthermore, |gn−g|2 ≤ (2|g|)2 = 4|g|2,

which is integrable since g ∈ L2(R). Therefore, by Theorem 1.5, gn → g in L2(R). Thus, L1(R) ∩ L2(R) is
dense in L2(R).

Now we can define the Fourier transform for functions in L2 as follows:

Proposition 1.7. Given g ∈ L2(R), then pg = limn→∞ xgn, is the well-defined Fourier transform of g, where

(gn)n≥1 ∈ L1(R) ∩ L2(R) and gn → g in L2(R) norm.

Proof. We will prove this claim in three steps.

(i) L1(R) ∩ L2(R) is dense in L2(R), i.e., for all g ∈ L2(R), there exists (gn)n≥1 ∈ L1(R) ∩ L2(R) such

that gn → g in L2(R).
(ii) Given g and (gn)n≥1, then xgn → h in L2(R) norm for some h ∈ L2(R).
(iii) h is unique.

(i) Note that this is proven in Theorem 1.6.

(ii) If g ∈ L2(R), then by (i) there exists (gn)n≥1 in L1(R) ∩ L2(R) such that gn → g in L2(R) norm.

Therefore ||g − gn||2 → 0. Note that (gn)n≥1 must be Cauchy since (gn)n≥1 is convergent. We will prove

that (xgn)n≥1 is also Cauchy. Namely, since (gn)n≥1 is Cauchy, the following holds: ∀ϵ > 0,∃N ≥ 1 such

that ∀n,m ≥ N ; ||gn − gm||2 < ϵ. Therefore by Theorem 1.2, ||xgn − xgm||2 = ||gn − gm||2 < ϵ. This implies

that (xgn)n≥1 is Cauchy in L2(R). By the completeness of L2, a Cauchy sequence in L2 is also convergent.

Therefore (xgn)n≥1 is convergent in L2(R) with limit h ∈ L2(R).
(iii) Take (gn)n≥1 and (Gn)n≥1 such that gn → g in L2(R) and Gn → g in L2(R). Let h = limn→∞ xgn,

H = limn→∞ xGn, with h,H ∈ L2(R). We must prove that h = H almost everywhere (a.e.) ⇐⇒ h−H =

0 a.e.. We know by the properties of norms that h−H = 0 a.e. ⇐⇒ ||h−H||2 = 0. Therefore we use this

to find the following:

||h−H||2 = || lim
n→∞

xgn − lim
n→∞

xGn||2 = lim
n→∞

||xgn − xGn||2

which using Proposition 1.3:

lim
n→∞

||xgn − xGn||2 = lim
n→∞

|| {gn −Gn||2

which by Theorem 1.2:

lim
n→∞

|| {gn −Gn||2 = lim
n→∞

||gn −Gn||2 = lim
n→∞

||gn − g + g −Gn||2 ≤ lim
n→∞

||gn − g||2 + lim
n→∞

||g −Gn||2

using the triangle inequality for norms. Furthermore,

lim
n→∞

||gn − g||2 + lim
n→∞

||g −Gn||2 = 0

since gn → g in L2(R) and Gn → g in L2(R). Therefore ||h − H||2 = 0, and thus h = H in L2(R) as

desired. With these three elements we have a well-defined Fourier transform for functions in L2(R), namely

for g ∈ L2(R), pg = limn→∞ xgn.

Now we have the correct tools, we finish with the proof of the first statement of Proposition 1.3:

Proof. Let f, g ∈ L2(R). By Theorem 1.6, there exist sequences (fn)n≥1 and (gn)n≥1 in L1(R) such that

12



fn → f and gn → g in L2(R). Therefore, we have:

zf + g = {lim
n→∞

fn + lim
n→∞

gn = lim
n→∞

{fn + gn.

Since the statement holds for functions in L1(R), we get:

lim
n→∞

{fn + gn = lim
n→∞

(xfn + xgn) = {lim
n→∞

fn + {lim
n→∞

gn = pf + pg.

Hence, we conclude that:
zf + g = pf + pg.

1.3 Calculating the Fourier Transform of the First Borwein Integrand

The objective of this section is to compute the Fourier transform of b0(x) =
sin(x)

x . We will accomplish this

using techniques from complex analysis. From the preceding section, it is known that the Fourier transform

of sin(x)
x is defined in L2(R); specifically, for g ∈ L2(R),

pg = lim
n→∞

xgn.

Given bR(x) =
sin(x)

x e−2πiξx1[−R,R] ∈ L1, we ascertain that limR→∞ bR(x) =
sin(x)

x . Consequently, the

Fourier transform of sin(x)
x is expressed as follows:

lim
R→∞

∫
R

sin(x)

x
e−2πiξx1[−R,R] dx = lim

R→∞

∫ R

−R

sin(x)

x
e−2πiξx dx.

Therefore, we proceed by analyzing the function
∫
Ci

sin(z)
z e−2πiξz dz along contours C1 and C2 to evaluate

the original integral. Initially, we rewrite it as:∫
Ci

sin(z)

z
e−2πiξz dz =

∫
Ci

1

2iz
(eiz − e−iz)e−2πiξz dz =

∫
Ci

1

2iz
eize−2πiξz dz −

∫
Ci

1

2iz
e−ize−2πiξz dz

= (i)− (ii).

We first analyze (i): ∫
Ci

1

2iz
eiz(1−2πξ) dz

If 1− 2πξ > 0, we use the following contour C1 = I1 + I2 + I3 + I ′4:

13



Remark. The code for contours C1 and C2 can be found in Appendix 4.2.

I1, I2, I3, I4, and I ′4 are then parameterized as follows:

I1 is parameterized by γ1 : [−R,−r] → C, γ1(z) = z

I2 is parameterized by γ2 : [r,R] → C, γ2(z) = z

I3 is parameterized by the positively orientated circular arc σR at angle π consisting of all z = Reit, t ∈ [0, π]

I4 is parameterized by the positively orientated circular arc σr at angle π consisting of all z = reit, t ∈ [0, π]

I ′4 is parameterized by the negatively orientated circular arc σ′
r at angle π consisting of all z = reit, t ∈ [0, π]

We introduce the following necessary theorems from [6]:

Theorem 1.8 (Cauchy’s theorem for Simply Connected Regions). Let f be an analytic function on a simply

connected region Ω. If γ is a closed path in Ω, then∫
γ

f(z) dz = 0

Theorem 1.9 (Shrinking Path Lemma). Suppose that f is a continuous complex-valued function on a closed

disk Br0(z0) with centre at z0 and radius r0. For 0 < r ≤ r0, let σr denote the positively oriented circular

arc at angle α consisting of all z = z0 + reiθ, where θ0 ≤ θ ≤ θ0 + α, θ0 and α are fixed, and α ̸= 0.

Then

lim
r→0+

1

iα

∫
σr

f(z)

z − z0
dz = f(z0).

Theorem 1.10 (Jordan’s Generalized Lemma). Let R0 > 0 and 0 ≤ θ1 < θ2 ≤ π. For R ≥ R0, let σR be

the circular arc of all z = Reiθ with 0 ≤ θ1 ≤ θ ≤ θ2 ≤ π. Let f be a continuous complex-valued function

defined on all arcs σR and let M(R) denote the maximum value of |f | on σR. If limR→∞ M(R) = 0, then

for all s > 0,

lim
R→∞

∫
σR

eiszf(z) dz = 0.

Since we integrate over a simply connected region we can use Theorem 1.8 giving us the following:∮
C1

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz +

∫
σR

f(z) dz +

∫
σ′
r

f(z) dz = 0.

Note that

lim
r→0+,R→∞

(∫
γ1

f(z) dz +

∫
γ2

f(z) dz

)
= lim

r→0+,R→∞

(∫ −r

−R

1

2iz
eize−2πiξz dz +

∫ R

r

1

2iz
eize−2πiξz dz

)

=

∫
R

1

2iz
eize−2πiξz dz.

Therefore, we only need to calculate limR→∞
∫
σR

f(z) dz and limr→0+
∫
σ′
r
f(z) dz to find the value of (i).

We start by calculating the integral over I3:∫
σR

1

2iz
eize−2πiξz dz.

Call h(z) = 1
2iz . Then

max
z∈σR

∣∣∣∣ 1

2iz

∣∣∣∣ = 1

2R
.
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Since limR→∞
1
2R = 0, we find by Jordan’s General Lemma 1.10 that

lim
R→∞

∫
σR

1

2iz
eiz(1−2πξ) dz = 0.

Next, we calculate the integral over I ′4. Since σ
′
r has negative orientation we first rewrite it to an integral

over σr which runs over I4: ∫
σ′
r

1

2iz
eiz(1−2πξ) dz = − 1

iπ

∫
σr

π

2

eiz(1−2πξ)

z
dz.

which, by the Shrinking Path Lemma 1.9 when taking the limit as r → 0+, is equal to −π
2 .

Therefore ∫
R

1

2iz
eize−2πiξz dz = lim

r→0+,R→∞

(
−
∫
σR

f(z) dz −
∫
σ′
r

f(z) dz

)
=

π

2

If 1− 2πξ ≤ 0, we use the following contour C2:

I1, I2, I
′
3, and I4 are then reparametrized as follows:

I1 is parameterized by γ1 : [−R,−r] → C, γ1(z) = z

I2 is parameterized by γ2 : [r,R] → C, γ2(z) = z

I ′3 is parameterized by the negatively orientated circular arc σ′
R at angle π consisting of all z = Reit, t ∈ [0, π]

I4 is parameterized by the positively orientated circular arc σr at angle π consisting of all z = reit, t ∈ [0, π]

Once again we can use Cauchy’s Theorem (1.8) to find that:∮
C2

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz +

∫
σ′
R

f(z) dz +

∫
σr

f(z) dz = 0.

So just as before we will calculate limR→∞
∫
σ′
R
f(z) dz and limr→0+

∫
σr

f(z) dz. First, we calculate the

integral over I ′3: ∫
σ′
R

1

2iz
eize−2πiξz dz.

Call h(z) = 1
2iz , then

max
z∈σR

∣∣∣∣ 1

2iz

∣∣∣∣ = 1

2R
.
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Since limR→∞
1
2R = 0, we find by substituting θ → −θ in Jordan’s General Lemma (1.10) that

lim
R→∞

∫
σ′
R

1

2iz
eiz(1−2πξ) dz = 0.

Next, we calculate the integral over I4:∫
σr

1

2iz
eiz(1−2πξ) dz =

1

iπ

∫
σr

π
2 e

iz(1−2πξ)

z
dz,

which by the Shrinking Path Lemma (1.9) when taking the limit of r → 0+ is equal to π
2 . Therefore

lim
r→0+,R→∞

(
−
∫
σ′
R

f(z) dz −
∫
σr

f(z) dz

)
= −π

2

Therefore

(i) =

{
π
2 if 1− 2πξ ≥ 0

−π
2 if 1− 2πξ < 0

Similarly, we find the value of (ii):,

(ii) =

∫
Ci

1

2iz
eiz(−1−2πξ) dz =

{
π
2 if − 1− 2πξ > 0

−π
2 if − 1− 2πξ ≤ 0

Therefore,

lim
R→∞

∫
R

sin(x)

x
e−2πiξx dx = (i)− (ii) =

{
π if |2πξ| ≤ 1

0 if |2πξ| > 1

1.4 Calculating the Fourier Transform of the Borwein Integrands Using Con-

volution

In the previous Section 1.3, we determined that the Fourier transform of sin(x)
x evaluated at zero is equal to

B0. To compute the Fourier transform of the other Borwein integrands, we require two components. First,

we need the Fourier transform of
sin( x

m )
x
m

, where m ∈ R. Second, we need to employ a technique known as

”Convolution”.

First, let’s discuss the Fourier transform of
sin( x

m )
x
m

for m ∈ R. A concise explanation of the Fourier

transform of this function is that it is similar to the Fourier transform of sin(x)
x , but dilated by a factor of

1
m . Therefore, the Fourier transform is given by the following expression:

z

δ
1
m f(ξ) =

{
mπ if |2πξ| ≤ 1

m ,

0 if |2πξ| > 1
m .

(2)

Using Proposition 1.3, we can confirm (2) finding that the Fourier transform of
z

δ
1
m f is as follows:

z

δ
1
m f = (

1

m
)−1δm pf = mδm pf

Since pf =

{
π if |2πξ| ≤ 1

0 if |2πξ| > 1
, it follows that mδm pf =

{
mπ if |2πξ| ≤ 1

m ,

0 if |2πξ| > 1
m .

as expected.

Next, we introduce the concept of convolution:
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Definition 1.11. Given f, g ∈ L1(R), the convolution f ∗ g is defined as:

f ∗ g(x) =
∫ ∞

−∞
f(x− y)g(y) dy, x ∈ R (3)

One might question whether (1.11) is well-defined. In fact, it is well-defined almost everywhere, and this

can be established using the following theorem from [5]:

Theorem 1.12 (Fubini’s theorem). If f : R× R → R is integrable, then∫
R×R

f d(x× y) =

∫
R

∫
R
f dx dy =

∫
R

∫
R
f dy dx.

The reasoning is then as follows: If f, g ∈ L1(R), then∫ ∞

−∞
(f ∗ g)(x) dx =

∫ ∞

−∞

∫ ∞

−∞
f(x− y)g(y) dy dx.

By Theorem 1.12, this can be rewritten as:∫ ∞

−∞

∫ ∞

−∞
f(x− y)g(y) dy dx =

∫ ∞

−∞

∫ ∞

−∞
f(x− y) dx g(y) dy.

Utilizing the translation invariance of the L1(R) norm, we can further rewrite this as:∫ ∞

−∞

∫ ∞

−∞
f(x− y) dx g(y) dy ≤

∫ ∞

−∞

∫ ∞

−∞
|f(x− y)| dx |g(y)| dy =

∫ ∞

−∞
∥f∥1|g(y)| dy.

Since ∥f∥1 is a constant, this simplifies to:

∥f∥1
∫ ∞

−∞
|g(y)| dy = ∥f∥1∥g∥1 < ∞.

Therefore, since we considered the integral of f ∗ g, we know that Definition 1.11 is well-defined almost

everywhere.

Definition 1.13. Given f, g ∈ L2(R), the convolution f ∗ g is defined as:

f ∗ g(x) =
∫ ∞

−∞
f(x− y)g(y) dy. (4)

Remark. Definition 1.13 is well-defined for the following reason: Given f, g ∈ L2(R), we know by using

translation invariance and Hölder’s Inequality 1.4 that ∥fg∥1 ≤ ∥f∥2∥g∥2 < ∞. Therefore, the product fg

is in L1(R), and thus the convolution is well-defined.

To calculate the Fourier transform of the Borwein integrands, we will need a number of theorems, defi-

nitions, and propositions, all of which are derived from [3]. We will prove one of these, namely Proposition

1.15 These are as follows:

Definition 1.14. Given a function f , the inverse Fourier transform qf is defined as:

qf(x) = pf(−x), x ∈ R

Proposition 1.15. Given f, g in L1(R) we have

zf ∗ g = pfpg
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Proof. Let f, g ∈ L1(R). By the definition of the convolution, we have

(f ∗ g)(x) =
∫ ∞

−∞
f(x− y)g(y) dy.

We seek the Fourier transform of (f ∗ g)(x):

zf ∗ g(ξ) =
∫ ∞

−∞
(f ∗ g)(x)e−2πixξ dx.

Substituting the definition of the convolution into this integral, we get:

zf ∗ g(ξ) =
∫ ∞

−∞

(∫ ∞

−∞
f(x− y)g(y) dy

)
e−2πixξ dx.

Interchanging the order of integration, which is justified by Fubini’s Theorem 1.12, we obtain:

zf ∗ g(ξ) =
∫ ∞

−∞
g(y)

(∫ ∞

−∞
f(x− y)e−2πixξ dx

)
dy.

Now, we multiply the inner integral by 1 = e−2πiyξ+2πiyξ to obtain the following:∫ ∞

−∞
f(x− y)e−2πixξ du = e−2πiyξ

∫ ∞

−∞
f(x− y)e−2πi(x−y)ξ dx.

So

zf ∗ g(ξ) =
∫ ∞

−∞
g(y)e−2πiyξ

∫ ∞

−∞
f(x− y)e−2πi(x−y)ξ dxdy.

Using translation invariance, we recognize that the inner integral is the Fourier transform of f , and thus the

expression simplifies to:

zf ∗ g(ξ) =
∫ ∞

−∞
g(y)e−2πiyξ

pf(ξ) dy.

Since pf(ξ) is independent of y, we can factor it out of the integral:

zf ∗ g(ξ) = pf(ξ)

∫ ∞

−∞
g(y)e−2πiyξ dy.

The remaining integral is the Fourier transform of g:∫ ∞

−∞
g(y)e−2πiyξ dy = pg(ξ).

Combining these results, we obtain:
zf ∗ g(ξ) = pf(ξ) · pg(ξ).

Thus, we have proven that the Fourier transform of the convolution of f and g is equal to the product of

their Fourier transforms.

Theorem 1.16. Given f, f̂ ∈ L1(R)
q

pf = f =
p

qf

Proposition 1.17. Let f and g be functions in L2(R). Then the Fourier transform of the convolution (f ∗g)
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is equal to the product of the Fourier transforms of f and g. In other words,

zf ∗ g(ξ) = pf(ξ) · pg(ξ),

where (f ∗ g)(x) =
∫∞
−∞ f(x− y)g(y) dy.

Theorem 1.18. Given f ∈ L2(R)
q

pf = f =
p

qf

Now that we understand convolution and have a number of theorems and definitions at our disposal, we

can link convolution to the Fourier transform.

First, let’s fix f, g ∈ L2(R). According to Proposition 1.17, we have:

zf ∗ g = pfpg.

Taking the inverse Fourier transform on both sides, we find:

f ∗ g =
|

pfpg.

Since Proposition 1.17 holds for all f and g, it also holds for qf and qg. Putting all these pieces together, we

find the following:

qf ∗ qg(x) =
|

p

qfp

qg(x) = |fg(x)

⇐⇒
∫ ∞

−∞
qf(x− y)qg(y) dy = |fg(x)

⇐⇒
∫ ∞

−∞
pf(−x+ y)pg(−y) dy = {(δ−1f)(δ−1g)(x).

Therefore, if we wish to know {(δ−1f)(δ−1g), all we need is (δ−1f) ∗ (δ−1g). So, if we know the Fourier

transforms of separate functions, we also know the Fourier transform of the product of the functions. Lastly,

we remark that this holds for the product of any number of functions. Given f0, f1, . . . , fk, we can say that

{(δ−1f0)(δ−1f1) · · · (δ−1fk) = {(δ−1f0) ∗ {(δ−1f1) ∗ · · · ∗ {(δ−1fk)

by using f = f0 and g = f1 · · · fk and repeating the process k times.

Now we will specifically consider the Borwein integrands and their Fourier transforms. To do this, we

first define our functions as follows for k = 0, 1, 2, . . .:

fk(x) =
sin
(

x
2k+1

)
x

2k+1

(5)

bk =

k∏
i=0

fi (6)

Bk =

∫ ∞

−∞
bk dx (7)

Remark. fk is even for all k ∈ N, and the product of even functions is again even. Therefore, bk is even too.

As a result, we know that

{(δ−1f0)(δ−1f1) · · · (δ−1fk) = {(δ−1f0) ∗ {(δ−1f1) ∗ · · · ∗ {(δ−1fk)
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is the same as
{f0f1 · · · fk = pf0 ∗ pf1 ∗ · · · ∗ pfk.

Using what we have learned so far, the value of Bk can be found by using the following:

Bk = pbk(0) = ( pf0 ∗ pf1 ∗ · · · ∗ pfk)(0).

Call Gk(x) = pbk(x) = ( pf0 ∗ pf1 ∗ · · · ∗ pfk)(x). Then Gk(0) = Bk, so we can analyze the behaviour of Bk by

examining Gk(0). Using Definition 2 and WolframAlpha to compute G1, we find the closed form of the first

two functions:

G0(ξ) = pb0(ξ) = pf0(ξ) =

{
π if |2πξ| ≤ 1

0 if |2πξ| > 1

G1(ξ) = pf0 ∗ pf1(ξ) =

∫ ∞

−∞
pf(ξ − y)pg(y) dy

= −π

2

(
(1− 3πξ)sgn

(
2

3
− 2πξ

)
+ (3πξ − 2)sgn

(
4

3
− 2πξ

)
+ 3πξsgn

(
2πξ +

2

3

)
+ sgn

(
2πξ +

2

3

)
− 3πξsgn

(
2πξ +

4

3

)
− 2sgn

(
2πξ +

4

3

))
After G1 the closed form becomes too convoluted to be of use. In the next section we will analyze the

graphical nature of the functions G0 through G7.

1.5 A Graphical Analysis of the Fourier Transformations of the Borwein Inte-

grands

In the previous section, we derived analytical expressions for the Fourier transforms of the first two Borwein

integrands. However, in their analytical form, it is not immediately clear what the functions look like.

Therefore, in this section, we will perform a graphical analysis of them. The code for generating these

figures can be found in Appendix 4.1.

Figure 5: G0;G0(0) = π

The graph of G0 is plotted in Figure 5. Notably, it takes values of either 0 or π. An important feature of

this graph is the ”plateau” of length 1
π centered around zero, where the function has a value exactly equal

20



to π. This feature will be important later and will reoccur as a significant characteristic in the upcoming

graphs.

Figure 6: G1;G1(0) = π

Figure 6 shows the plot of G1. Recall that G1 is formed using convolution, which in a sense takes the

moving average of G0 using a window of width 1
3π . The important effect of this is that G1 still has a plateau

centered around x = 0 where the function is equal to π, but this plateau has shrunk in length by 1
3π . Now

the plateau has a length of 1
π (1−

1
3 ).

Hereafter, each Gi is formed by taking the moving average of Gi−1 using a window of width 1
2i+1 . The

result of this process can be seen in Figure 7a through Figure 9b, where the plateau of Gi has a length of
1
π (1−

1
3 − · · · − 1

2i+1 ). While this plateau exists and is always centered around zero, we know that the value

of Bi = π. However, once 1 − 1
3 − · · · − 1

2i+1 becomes less than zero, the plateau vanishes and the value

of Bi will be less than π. Notably, this happens for the first time when i = 7, which breaks the ”pattern”.

Namely, 1− 1
3 − · · · − 1

15 ≈ −0.02180 and B7 = G7(0) ≈ π − 0.0000000000462 instead of π.

(a) G2(0) = π (b) G3(0) = π

Figure 7: G2 and G3
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(a) G4(0) = π (b) G5(0) = π

Figure 8: G4 and G5

(a) G6(0) = π (b) G7(0) = π − 0.0000000000462

Figure 9: G6 and G7

1.6 The Closed Form of The Borwein Integrals

In the previous section, we explored why the apparent pattern of the Borwein integrals ”broke”. What then,

is the pattern? Or rather, is it possible to find a closed form for Bk for any k ∈ N? This section discusses

this question and investigates the behaviour of Bk as k → ∞. D. and J. Borwein, in Theorem 2 of their

paper [2], found the closed form of a generalized version of the Borwein integrals. The result is as follows:

Let a0, a1, . . . , an be complex numbers with n ≥ 1. For each of the 2n ordered n-tuples γ := (γ1, γ2, . . . , γn) ∈
{−1, 1}n, define:

bγ := a0 +

n∑
k=1

γkak, ϵγ :=

n∏
k=1

γk.

(i) If a0, a1, . . . , an are real, then:∫ ∞

0

n∏
k=0

sin(akx)

x
dx =

π

2

1

2nn!

∑
γ∈{−1,1}n

ϵγb
n
γ sign(bγ).
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where the sign function is defined as:

sign(x) =

{
1 if x > 0,

−1 if x < 0.

Note that the Borwein integrals are almost in the form of (i). If we use ak = 1
2k+1 then we find the

following: ∫ ∞

0

n∏
k=0

sin(akx)

x
dx =

∫ ∞

0

n∏
k=0

sin
(

x
2k+1

)
x

dx

Then to find the Borwein integrals we multiply by 1 = 2k+1
2k+1 :

π

2

1

2nn!

∑
γ∈{−1,1}n

ϵγb
n
γ sign(bγ). = (

n∏
k=0

2k + 1

2k + 1
)

∫ ∞

0

n∏
k=0

sin
(

x
2k+1

)
x

dx = (
1∏n

k=0 2k + 1
)

∫ ∞

0

n∏
k=0

sin
(

x
2k+1

)
x

2k+1

dx

Therefore:

∫ ∞

0

n∏
k=0

sin
(

x
2k+1

)
x

2k+1

dx = (

n∏
k=0

2k + 1)
π

2

1

2nn!

∑
γ∈{−1,1}n

ϵγb
n
γ sign(bγ).

Lastly, since sin(akx)
x is an even function, the integral over −∞ to ∞ is equal to twice the integral over 0 to

∞. Therefore, we have the following:

Bn =

∫ ∞

−∞

n∏
k=0

sin
(

x
2k+1

)
x

2k+1

dx = (

n∏
k=0

2k + 1)
π

2nn!

∑
γ∈{−1,1}n

ϵγb
n
γ sign(bγ).

Now that we have a closed-form expression for the value of Bn, a natural next step is to ask if there is

a limit as n → ∞. The evaluation of this limit does exist and can be found with the help of computers. J.

Cook [7] found that the limit was equal to approximately π − 0.0000704.
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2 The Nahin Integrals

We know from the previous chapter that the Borwein integrals are not entirely unique; however, even the

general version restricted itself to functions composed of sine functions. In this section, we will consider

similar functions that depend on cosine, perform a similar analysis on them, and compare the results to the

Borwein integrals. These functions were found in the preface of the book ”Inside Interesting Integrals” [8]

by P. Nahin. In the preface of that book, Nahin used the following functions as an example of an apparent

pattern which breaks after a certain point:

hn : R → R, hn(x) =
sin(4x)

x

n∏
k=0

cos

(
x

k + 1

)
We will refer to these functions as the Nahin functions. While they have similarities to the Borwein

integrands, there are also several noticeable differences. We will explore these differences while analyzing

the Nahin functions. Furthermore, we will define the integral over these functions as the ”Nahin integrals”:

Definition 2.1. The Nahin integrals are a sequence of integrals of the following form:

Hn =

∫ ∞

−∞

sin(4x)

x

n∏
k=0

cos

(
x

k + 1

)
dx, n ∈ N

The values of the first 31 integrals are as follows:

H0 =

∫ ∞

−∞

sin(4x)

x
cos
(x
1

)
dx = π

H1 =

∫ ∞

−∞

sin(4x)

x
cos
(x
1

)
cos
(x
2

)
dx = π

· · · = π

H29 =

∫ ∞

−∞

sin(4x)

x
cos
(x
1

)
cos
(x
2

)
cos
(x
3

)
. . . cos

( x

30

)
dx = π

H30 =

∫ ∞

−∞

sin(4x)

x
cos
(x
1

)
cos
(x
2

)
cos
(x
3

)
. . . cos

( x

31

)
dx ≈ π − 0.000000003589792... ≈ 3.14177

This is similar to the behaviour we observed with the Borwein integrals, where the integral equals π for

the first few terms and then starts to decrease slowly. However, it is not immediately clear why this occurs

by simply examining the functions. Therefore, just as before, we will plot the functions and analyze their

graphs.

2.1 A Graphical Analysis of the Nahin Functions

In this section, we graph the first two Nahin functions, h0 and h1, as well as h29 and h30, since it is between

the last two that the ‘pattern’ breaks. By graphing these functions, we hope to identify a pattern in the

graphs that will explain the observed phenomenon. The code for these figures can be found in Appendix 4.1.
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Figure 10: h0

Figure 11: h1
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Figure 12: h29

Figure 13: h30

Noticeably, in Figure 10, similar to the Borwein integrands, there is a spike in the center of the graph

where the function approaches four. Furthermore, there are smaller oscillations around the x-axis that die

out as the function approaches ±∞. The spike in the graph is retained in each figure, but the oscillations

become more damped with each successive function. Just as with the Borwein integrals, there is no apparent

explanation for why the first thirty integrals are equal to π, but the thirty-first is not. Therefore, we will use

the same approach as before by calculating the Fourier transform of the Nahin integrands in the following

section.
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2.2 The Fourier Transform of the Nahin Integrands

Just as with the Borwein integrals, we will look at the Fourier transform of the Nahin functions in order to

make sense of the apparent phenomena. The first three Fourier transforms are as follows:

xh0(ξ) =

∫ ∞

−∞

(
sin(4x)

x

1∏
k=1

cos
(x
k

))
e−2πiξx dx

=
π

4
(sgn(3− 2πξ) + sgn(5− 2πξ) + sgn(2πξ + 3) + sgn(2πξ + 5))

xh1(ξ) =

∫ ∞

−∞

(
sin(4x)

x

2∏
k=1

cos
(x
k

))
e−2πiξx dx

=
π

8

(
sgn

(
5

2
− 2πξ

)
+ sgn

(
7

2
− 2πξ

)
+ sgn

(
9

2
− 2πξ

)
+ sgn

(
11

2
− 2πξ

)
+ sgn

(
2πξ +

5

2

)
+ sgn

(
2πξ +

7

2

)
+ sgn

(
2πξ +

9

2

)
+ sgn

(
2πξ +

11

2

))

xh2(ξ) =

∫ ∞

−∞

(
sin(4x)

x

3∏
k=1

cos
(x
k

))
e−2πiξx dx

=
π

16

(
sgn

(
13

6
− 2πξ

)
+ sgn

(
17

6
− 2πξ

)
+ sgn

(
19

6
− 2πξ

)
+ sgn

(
23

6
− 2πξ

)
+ sgn

(
25

6
− 2πξ

)
+ sgn

(
29

6
− 2πξ

)
+ sgn

(
31

6
− 2πξ

)
+ sgn

(
35

6
− 2πξ

)
+ sgn

(
2πξ +

13

6

)
+ sgn

(
2πξ +

17

6

)
+ sgn

(
2πξ +

19

6

)
+ sgn

(
2πξ +

23

6

)
+ sgn

(
2πξ +

25

6

)
+ sgn

(
2πξ +

29

6

)
+ sgn

(
2πξ +

31

6

)
+ sgn

(
2πξ +

35

6

))
As we can see, the formulae for xhn become quite convoluted quite quickly, where each terms seems to

have twice as many sign functions than the term before it. Once again we will turn to the graphs of these

functions to try and explain the behaviour:

2.3 A Graphical Explanation of the Fourier Transform of the Nahin Functions

This section contains the graphical explanation of the Fourier transform of the Nahin functions. The Fourier

transforms of the first six functions were computed using WolframAlpha and then plotted using Python, the

code for which can be found in Appendix 4.1. The Fourier transform of the i-th function requires approxi-

mately 2i+2 computations, making the calculation of the Fourier transform of the thirtieth function (where

the apparent pattern breaks) impossible using a normal laptop. However, further study could calculate this

using a supercomputer or by approximating it numerically. We did not calculate the Fourier transform

numerically because of the Gibbs phenomenon, which causes oscillations near discontinuities in the function.

Since the Fourier transforms of the Nahin functions have many discontinuities, this would result in a large

number of oscillations, making it impossible to discover the true behaviour of the function. Nevertheless, we

can draw some conclusions, knowing that the pattern breaks at i = 30 by studying the graphical behaviour

of the Fourier transforms of the first six functions.
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Figure 14: Fourier transform of xh0

Just as with the Borwein integrals, we know that the integral over the Nahin functions is equal to the

Fourier transform at the point 0. Furthermore, just as before, we find a plateau where the function is equal

to π centered around ξ = 0. Therefore, by analyzing the behaviour of the plateau in the first six functions,

we can deduce the behaviour of the subsequent functions. For xh0, which can be seen in Figure 14, the plateau

has a width p0 ≈ 0.9549.
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Figure 15: Fourier transform of xh1

Figure 15 depicts the graph of xh1, where the function is equal to π for ξ ∈ [≈ −0.3979,≈ 0.3979]. The

plateau then has a width p1 ≈ 0.7958. Therefore, the plateau has shrunk by approximately 0.1592.

Figure 16: Fourier transform of xh2
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Next, for xh2 seen in Figure 16, the function is equal to π for ξ ∈ [≈ −0.3448,≈ 0.3448]. The plateau then

has a width p2 ≈ 0.6897, which is approximately 0.1061 less than p1.

Figure 17: Fourier transform of xh3

For xh3, the function is equal to π for ξ ∈ [≈ −0.3050,≈ 0.3050] and is depicted in Figure 17. The plateau

then has a width p3 ≈ 0.6101, meaning the plateau has shrunk by approximately 0.0796.
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Figure 18: Fourier transform of xh4

Next, for xh4, the function is depicted in Figure 18 and is equal to π for ξ ∈ [≈ −0.2732,≈ 0.2732]. The

plateau then has a width p4 ≈ 0.5464, which is approximately 0.0636 less than p3.

Figure 19: Fourier transform of xh5
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Finally, for xh5 seen in Figure 19, the function is equal to π for ξ ∈ [≈ −0.2467,≈ 0.2467]. The plateau

then has a width p5 ≈ 0.4934, which is approximately 0.0530 less than p4.

We know that the plateau will eventually vanish at xh30 since xh30(0) < π = xh29. We know this because, just

like with the Borwein integrals, the plateau where each xhn is equal to π is centered around zero. Furthermore,

since each xhn is formed by taking an average of the previous one by convolution, and the function value on

the plateau is also the maximum value that the function takes, the plateau will either stay the same length

or become smaller. Since xh30(0) < π, the plateau must have vanished since the function value at zero is no

longer π. We therefore know that the plateau will vanish. However, we do not yet have a mathematical

expression for when the plateau will vanish or the length of the plateau at xhn. With the Borwein integrals,

we knew that the coefficients were the determining factor; however, in this case, we do not see a direct link

between the coefficients of the functions and the length of the plateau. In the next section, we will discover

the mathematical explanation for this phenomenon.

2.4 A Further Analysis of the Nahin Phenomena Leading to a Mathematical

Explanation

In this section, we will determine the mathematical explanation for the Nahin phenomenon. To do this, we

will first rewrite the Nahin functions in the following manner:

hn(x) =
sin(4x)

x

n∏
k=0

cos

(
x

k + 1

)
= 4

sin(4x)

4x

n∏
k=0

ei
1

k+1x + ei(−
1

k+1 )x

2
=

4

2n+1

sin(4x)

4x

n∏
k=0

(ei
1

k+1x + ei(−
1

k+1 )x)

Next, we introduce the notation γ := (γ0, γ1, γ2, . . . , γn) ∈ {−1, 1}n+1 and define c := (c0, c1, c2, . . . , cn),

where ck = 1
k+1 for k = 0, 1, 2, . . . , n. Then we can continue to rewrite the Nahin functions as follows:

4

2n+1

sin(4x)

4x

n∏
k=0

(ei
1

k+1x + ei(−
1

k+1 )x) =
4

2n+1

sin(4x)

4x

∑
γ∈{−1,1}n+1

ei(γ·c)x

Using the above formulation of the Nahin functions, we can then rewrite the Fourier transform of them

in the following manner:

xhn(ξ) =

∫ ∞

−∞

(
sin(4x)

x

n∏
k=0

cos

(
x

k + 1

))
e−2πiξx dx

=

∫ ∞

−∞

4

2n+1

sin(4x)

4x

 ∑
γ∈{−1,1}n+1

ei(γ·c)x

 e−2πiξx dx

=
4

2n+1

∑
γ∈{−1,1}n+1

∫ ∞

−∞

sin(4x)

4x
ei(γ·c)x−2πiξx dx

=
4

2n+1

∑
γ∈{−1,1}n+1

∫ ∞

−∞

sin(4x)

4x
ei(γ·c−2πξ)x dx

=
4

2n+1

∑
γ∈{−1,1}n+1

xf 1
4

(
ξ − γ · c

2π

)

Where we use a fm(x) =
sin( x

m )
x
m

,m ∈ R. With this formulation, we have now found a direct link between

the Nahin functions and the Borwein functions! Namely, the Fourier transform of the Nahin functions can

be written as the sum of dilated Fourier transforms of the integrand of B0.
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We continue our analysis by recalling from Definition 2 that the Fourier transform of δ
1
4 f : δ

1
4 f(x) =

sin(4x)
4x is given by:

xf 1
4
(ξ − γ · c

2π
) =

{
π
4 if |2πξ − γ · c| ≤ 4,

0 if |2πξ − γ · c| > 4.

So we know the following:

xhn(ξ) =
4

2n+1

∑
γ∈{−1,1}n+1

xf 1
4
(ξ − γ · c

2π
)

Notably, xhn(ξ) is only equal to π if for every γ ∈ {−1, 1}n+1, we have |2πξ − γ · c| ≤ 4. In this case,

xhn(ξ) =
4

2n+1
· 2n+1π

4
= π.

Furthermore, since the plateau is centered around zero, as soon as there is a γ · c for which |2π · 0− γ · c| > 4

holds, we know that the plateau will be gone since then xhn(0) < π. Note that |2π · 0− γ · c| > 4 is the same

as |γ · c| > 4, and that if this is not the case, then for all |γ · c|:

γ · c ∈
[
−
(
1 +

1

2
+

1

3
+ · · ·+ 1

n+ 1

)
, 1 +

1

2
+

1

3
+ · · ·+ 1

n+ 1

]
.

So, the first time that |γ · c| can be larger than four is when γ · c is largest in magnitude, which is when the

following holds:

γ · c = ±
(
1 +

1

2
+

1

3
+ · · ·+ 1

n+ 1

)
.

Putting it all together, we find that the plateau will vanish when there is a γ · c such that |γ · c| > 4. The

first γ · c for which this will happen is:

γ · c = ±
(
1 +

1

2
+

1

3
+ · · ·+ 1

n+ 1

)
.

Thus, when n is such that∣∣∣∣±(1 + 1

2
+

1

3
+ · · ·+ 1

n+ 1

)∣∣∣∣ = 1 +
1

2
+

1

3
+ · · ·+ 1

n+ 1
> 4,

the plateau will no longer exist, and the value of Hn = xhn(0) will be less than π.

At the beginning of this section, we knew that H29 was equal to π, but H30 was not, and now we know

why. Namely,

1 +
1

2
+

1

3
+ · · ·+ 1

30
≈ 3.99498 . . . < 4,

and so H29 = π. However,

1 +
1

2
+

1

3
+ · · ·+ 1

31
≈ 4.02724 . . . > 4,

and thus H30 < π.

Now we know why the ’pattern’ in the Nahin functions breaks, and we end this section by giving the

closed form value of the Nahin functions for an arbitrary n:

Hn = xhn(0) =
4

2n+1

∑
γ∈{−1,1}n+1

xf 1
4

(
−γ · c

2π

)
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where γ, c, and xfm are defined as before.
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3 Conclusion and Discussion

In conclusion, this paper has provided a comprehensive analysis of the Borwein integrands through various

methods, including analytical and graphical approaches, and Fourier analysis. While the apparent phenom-

ena remained unexplained when looking at the Borwein integrands themselves, a Fourier analysis of the

integrands offered an explanation for these phenomena and the integrals’ overall behaviour.

Another interesting aspect of the Borwein integrands is their connection to the Random Harmonic Series

and Probability Theory. For further study, see [9].

Extending the same methodology to the Nahin functions resulted in a similar explanation of their be-

haviour, as well as a closed-form expression for the value of each Nahin integral. Further research could still

be conducted to discover the behaviour of the Nahin integral as n approaches infinity, namely, whether it

approaches zero or whether it, like the Borwein integrals, approaches some number between zero and π.

Further studies could build on the results of this paper and on the work of D. and J. Borwein [2] by

finding closed-form expressions of general integrals of the form:∫ ∞

−∞

n1∏
k1=0

cos(bk1x)

n2∏
k2=0

sin(bk2x)

n3∏
k3=0

bk3
x

x
dx, n1, n2, n3, bk1 , bk2 , bk3 ∈ N

Lastly, for more instances of interesting phenomena in mathematics, see Section 1.4: ”High Precision Fraud”

of [10].
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4 Appendices

The following appendices contain codes from Python and TexWorks which were created with the help of

ChatGPT. Some codes are too long for the margin of the page, in that case the code which extends beyond

the page has been moved to the next line and ## has been inserted at the start of that line to indicate this

change. To correctly run the code, simply remove the ## and reattach the two lines. As a last remark,

ChatGPT was also used as a help in the making of part of the proof of Proposition 1.17 and used as a

language tool to correct errors and improve the flow of the paper.

4.1 Appendix A: Python Code for Plotting the Borwein and Nahin Integrands

and the Fourier Transform of the Borwein and Nahin Integrands

The following is the code which plots the Borwein integrands:

import numpy as np

import matplotlib.pyplot as plt

# Define the individual B_i functions

def B_1(x):

return np.sin(x / 1) / (x / 1)

def B_2(x):

return (np.sin(x / 1) / (x / 1)) * (np.sin(x / 3) / (x / 3))

def B_6(x):

product = 1

for k in range(7):

product *= np.sin(x / (2*k + 1)) / (x / (2*k + 1))

return product

def B_7(x):

product = 1

for k in range(8):

product *= np.sin(x / (2*k + 1)) / (x / (2*k + 1))

return product

# Define the range of x values (in terms of pi)

x = np.linspace(-9*np.pi, 9*np.pi, 1000)

# Define the functions and their corresponding labels and colors

functions = [(B_1, 'B_1', 'blue'), (B_2, 'B_2', 'green'), (B_6, 'B_6', 'red'), (B_7, 'B_7', 'purple')]

# Plot each function separately

for func, label, color in functions:

y = func(x)

plt.figure()

plt.plot(x, y, color=color, label=label)

plt.xlim([-24, 24])

plt.grid(True)

plt.xticks(np.arange(-7*np.pi, 8*np.pi, np.pi),
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[f'{k}' for k in range(-7, 8)])

plt.show()

Next is the code which plots the Fourier transforms of the first nine Borwein integrands:

import numpy as np

import matplotlib.pyplot as plt

from scipy.signal import convolve

# Define rect function with width 1

def rect(x):

return np.where(np.logical_and(x >= -0.5, x <= 0.5), np.pi, 0)

# Define f_0(x) as rect(x)

def f_0(x):

return rect(x)

# Define a function to generate a rectangular window

def rectangular_window(x, width):

return np.where(np.logical_and(x >= -width/2, x <= width/2), 1/width, 0)

# Define f_n(x) as the moving average of f_{n-1}(x) using the specified window size

def moving_average(f_prev, window_size):

f_convolved = convolve(f_prev, rectangular_window(x, window_size), mode='same')

return f_convolved * (np.pi / np.max(f_convolved))

# Define the range of x values

x = np.linspace(-1, 1, 1001)

# Initialize f_1(x) as f_0(x)

f_1_values = f_0(x)

# Define the window sizes for each function

window_sizes = [1/3, 1/5, 1/7, 1/9, 1/11, 1/13, 1/15, 1/17]

# Define more distinct colors for the plots

colors = ['darkblue', 'darkgreen', 'darkred', 'darkorange', 'darkcyan', 'darkmagenta', 'darkgoldenrod', 'darkviolet']

# Plot the rect function separately

plt.figure(figsize=(8, 6))

plt.plot(x, f_1_values, color='black', label='$G_0$')

plt.axvline(x=0, color='grey', linestyle='-', label='$x = 0$') # Add grey vertical line at x=0

plt.axhline(y=np.pi, color='purple', linestyle='--', label='$y = \pi$') # Add purple horizontal line at y=pi

plt.ylim(-0.1, 1.5 * np.pi) # Set y-axis range

plt.title('$G_0$')

plt.xlabel('x')

plt.gca().spines['top'].set_visible(False) # Hide top spine

plt.gca().spines['right'].set_visible(False) # Hide right spine

plt.grid(True) # Show grid lines

plt.legend(loc='upper right') # Move legend to upper right
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plt.show()

# Compute and plot each function on separate graphs

for i, (window_size, color) in enumerate(zip(window_sizes, colors), 1):

f_n_values = moving_average(f_1_values, window_size)

f_1_values = f_n_values

# Plot the function with default white background and different color for each plot

plt.figure(figsize=(8, 6))

plt.plot(x, f_n_values, color=color, label=f'$G_{i}$')

plt.axvline(x=0, color='grey', linestyle='-', label='$x = 0$') # Add grey vertical line at x=0

plt.ylim(-0.1, 1.5 * np.pi) # Set y-axis range

plt.axhline(y=np.pi, color='purple', linestyle='--', label='$y = \pi$') # Add purple horizontal line at y=pi

plt.title(f'$G_{i}$ ')

plt.xlabel('x')

plt.gca().spines['top'].set_visible(False) # Hide top spine

plt.gca().spines['right'].set_visible(False) # Hide right spine

plt.grid(True) # Show grid lines

plt.legend(loc='upper right')

plt.show()

Next is the code which plots the Nahin integrands:

import numpy as np

import matplotlib.pyplot as plt

def H_i(x, i):

"""Compute the integrand H_i(x) = (sin(4x)/x) * product(cos(x/(k+1)) for k=0 to i"""

if x == 0:

return 4 # Handle the singularity at x=0

product_term = np.prod([np.cos(x/(k+1)) for k in range(i+1)])

return (np.sin(4*x)/x) * product_term

# Define x range for plotting

x = np.linspace(-50, 50, 1000)

# Compute H_i(x) for i=0, 1, 29, 30

H_0 = np.array([H_i(xi, 0) for xi in x])

H_1 = np.array([H_i(xi, 1) for xi in x])

H_29 = np.array([H_i(xi, 29) for xi in x])

H_30 = np.array([H_i(xi, 30) for xi in x])

# Plot H_0(x)

plt.figure(figsize=(12, 6))

plt.plot(x, H_0, label='$h_0(x)$')

plt.axhline(0, color='black', linewidth=0.5)

plt.axvline(0, color='black', linewidth=0.5)

plt.title('$h_0(x)$')

plt.xlabel('$x$')

plt.grid(True)
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plt.legend()

plt.show()

# Plot H_1(x)

plt.figure(figsize=(12, 6))

plt.plot(x, H_1, label='$h_1(x)$', color='orange')

plt.axhline(0, color='black', linewidth=0.5)

plt.axvline(0, color='black', linewidth=0.5)

plt.title('$h_1(x)$')

plt.xlabel('$x$')

plt.grid(True)

plt.legend()

plt.show()

# Plot H_29(x)

plt.figure(figsize=(12, 6))

plt.plot(x, H_29, label='$h_{29}(x)$', color='green')

plt.axhline(0, color='black', linewidth=0.5)

plt.axvline(0, color='black', linewidth=0.5)

plt.title('$h_{29}(x)$')

plt.xlabel('$x$')

plt.grid(True)

plt.legend()

plt.show()

# Plot H_30(x)

plt.figure(figsize=(12, 6))

plt.plot(x, H_30, label='$h_{30}(x)$', color='red')

plt.axhline(0, color='black', linewidth=0.5)

plt.axvline(0, color='black', linewidth=0.5)

plt.title('$h_{30}(x)$')

plt.xlabel('$x$')

plt.grid(True)

plt.legend()

plt.show()

Lastly, the code which plots the Fourier transform of the Nahin functions:

import numpy as np

import matplotlib.pyplot as plt

import sympy as sp

# Define the functions

def H_0(w):

return np.pi/4 * (np.sign(3 - 2*np.pi*w) + np.sign(5 - 2*np.pi*w) + np.sign(2*np.pi*w + 3)

## + np.sign(2*np.pi*w + 5))

def H_1(w):

return np.pi/8 * (np.sign(5/2 - 2*np.pi*w) + np.sign(7/2 - 2*np.pi*w) + np.sign(9/2 - 2*np.pi*w)

##+ np.sign(11/2 - 2*np.pi*w) + np.sign(2*np.pi*w + 5/2) + np.sign(2*np.pi*w + 7/2) +
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## np.sign(2*np.pi*w + 9/2) + np.sign(2*np.pi*w + 11/2))

def H_2(w):

return np.pi/16 * (np.sign(13/6 - 2*np.pi*w) + np.sign(17/6 - 2*np.pi*w) + np.sign(19/6 -

##2*np.pi*w) + np.sign(23/6 - 2*np.pi*w) + np.sign(25/6 - 2*np.pi*w) + np.sign(29/6 -

##2*np.pi*w) + np.sign(31/6 - 2*np.pi*w) + np.sign(35/6 - 2*np.pi*w) + np.sign(2*np.pi*w +

##13/6) + np.sign(2*np.pi*w + 17/6) + np.sign(2*np.pi*w + 19/6) + np.sign(2*np.pi*w + 23/6)

##+ np.sign(2*np.pi*w + 25/6) + np.sign(2*np.pi*w + 29/6) + np.sign(2*np.pi*w + 31/6) +

##np.sign(2*np.pi*w + 35/6))

def H_3(w):

return np.pi/32 * (np.sign(23/12 - 2*np.pi*w) + np.sign(29/12 - 2*np.pi*w) + np.sign(31/12

##- 2*np.pi*w) + np.sign(35/12 - 2*np.pi*w) + np.sign(37/12 - 2*np.pi*w) + np.sign(41/12 -

##2*np.pi*w) + np.sign(43/12 - 2*np.pi*w) + np.sign(47/12 - 2*np.pi*w) + np.sign(49/12 -

##2*np.pi*w) + np.sign(53/12 - 2*np.pi*w) + np.sign(55/12 - 2*np.pi*w) + np.sign(59/12 -

##2*np.pi*w) + np.sign(61/12 - 2*np.pi*w) + np.sign(65/12 - 2*np.pi*w) + np.sign(67/12 -

##2*np.pi*w) + np.sign(73/12 - 2*np.pi*w) + np.sign(2*np.pi*w + 23/12) + np.sign(2*np.pi*w

##+ 29/12) + np.sign(2*np.pi*w + 31/12) + np.sign(2*np.pi*w + 35/12) + np.sign(2*np.pi*w +

##37/12) + np.sign(2*np.pi*w + 41/12) + np.sign(2*np.pi*w + 43/12) + np.sign(2*np.pi*w +

##47/12) + np.sign(2*np.pi*w + 49/12) + np.sign(2*np.pi*w + 53/12) + np.sign(2*np.pi*w +

##55/12) + np.sign(2*np.pi*w + 59/12) + np.sign(2*np.pi*w + 61/12) + np.sign(2*np.pi*w +

##65/12) + np.sign(2*np.pi*w + 67/12) + np.sign(2*np.pi*w + 73/12))

# Defining H_4

def H_4(w):

coefficients = [

103/60, 127/60, 133/60, 143/60, 157/60, 163/60, 167/60, 173/60,

187/60, 193/60, 197/60, 203/60, 217/60, 223/60, 227/60, 233/60,

247/60, 253/60, 257/60, 263/60, 277/60, 283/60, 287/60, 293/60,

307/60, 313/60, 317/60, 323/60, 337/60, 347/60, 353/60, 377/60

]

return (np.pi / 64) * sum(np.sign(c - 2 * np.pi * w) + np.sign(2 * np.pi * w + c)

## for c in coefficients)

# Define the simpler sign function

def sign_func(x):

return np.sign(x)

# Define H_5 based on the given formula

def H_5(w):

I = 1j

sqrt_pi_over_2 = np.sqrt(np.pi / 2)

def complex_sign_part(a, b):

return (-I/2 * (-I * sqrt_pi_over_2 * sign_func(a - 2 * np.pi * w) +

##I * sqrt_pi_over_2 * sign_func(b - 2 * np.pi * w)))

terms = [
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(complex_sign_part(-129/20, 31/20) + complex_sign_part(-89/20, 71/20)) / 2,

(complex_sign_part(-109/20, 51/20) + complex_sign_part(-69/20, 91/20)) / 2,

(complex_sign_part(-347/60, 133/60) + complex_sign_part(-227/60, 253/60)) / 2,

(complex_sign_part(-287/60, 193/60) + complex_sign_part(-167/60, 313/60)) / 2,

(complex_sign_part(-119/20, 41/20) + complex_sign_part(-79/20, 81/20)) / 2,

(complex_sign_part(-99/20, 61/20) + complex_sign_part(-59/20, 101/20)) / 2,

(complex_sign_part(-317/60, 163/60) + complex_sign_part(-197/60, 283/60)) / 2,

(complex_sign_part(-257/60, 223/60) + complex_sign_part(-137/60, 343/60)) / 2,

(complex_sign_part(-121/20, 39/20) + complex_sign_part(-81/20, 79/20)) / 2,

(complex_sign_part(-101/20, 59/20) + complex_sign_part(-61/20, 99/20)) / 2,

(complex_sign_part(-323/60, 157/60) + complex_sign_part(-203/60, 277/60)) / 2,

(complex_sign_part(-263/60, 217/60) + complex_sign_part(-143/60, 337/60)) / 2,

(complex_sign_part(-111/20, 49/20) + complex_sign_part(-71/20, 89/20)) / 2,

(complex_sign_part(-91/20, 69/20) + complex_sign_part(-51/20, 109/20)) / 2,

(complex_sign_part(-293/60, 187/60) + complex_sign_part(-173/60, 307/60)) / 2,

(complex_sign_part(-233/60, 247/60) + complex_sign_part(-113/60, 367/60)) / 2,

(complex_sign_part(-367/60, 113/60) + complex_sign_part(-247/60, 233/60)) / 2,

(complex_sign_part(-307/60, 173/60) + complex_sign_part(-187/60, 293/60)) / 2,

(complex_sign_part(-109/20, 51/20) + complex_sign_part(-69/20, 91/20)) / 2,

(complex_sign_part(-89/20, 71/20) + complex_sign_part(-49/20, 111/20)) / 2,

(complex_sign_part(-337/60, 143/60) + complex_sign_part(-217/60, 263/60)) / 2,

(complex_sign_part(-277/60, 203/60) + complex_sign_part(-157/60, 323/60)) / 2,

(complex_sign_part(-99/20, 61/20) + complex_sign_part(-59/20, 101/20)) / 2,

(complex_sign_part(-79/20, 81/20) + complex_sign_part(-39/20, 121/20)) / 2,

(complex_sign_part(-343/60, 137/60) + complex_sign_part(-223/60, 257/60)) / 2,

(complex_sign_part(-283/60, 197/60) + complex_sign_part(-163/60, 317/60)) / 2,

(complex_sign_part(-101/20, 59/20) + complex_sign_part(-61/20, 99/20)) / 2,

(complex_sign_part(-81/20, 79/20) + complex_sign_part(-41/20, 119/20)) / 2,

(complex_sign_part(-313/60, 167/60) + complex_sign_part(-193/60, 287/60)) / 2,

(complex_sign_part(-253/60, 227/60) + complex_sign_part(-133/60, 347/60)) / 2,

(complex_sign_part(-91/20, 69/20) + complex_sign_part(-51/20, 109/20)) / 2,

(complex_sign_part(-71/20, 89/20) + complex_sign_part(-31/20, 129/20)) / 2,

]

result = np.sqrt(np.pi / 2) * sum(terms) / 32

return result*2

# Generate xi values

xi_values = np.linspace(-2, 2, 1000000)

# Calculate y values for each function

y_values_0 = H_0(xi_values)

y_values_1 = H_1(xi_values)

y_values_2 = H_2(xi_values)

y_values_3 = H_3(xi_values)

y_values_4 = H_4(xi_values)

y_values_5 = H_5(xi_values)

# Plot the functions
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plt.figure(figsize=(10, 6))

plt.plot(xi_values, y_values_0, label='$\\widehat{h_0}$', color='blue')

plt.xlabel('$\\xi$')

plt.title('$\\widehat{h_0}$')

plt.grid(True)

plt.legend()

plt.show()

plt.figure(figsize=(10, 6))

plt.plot(xi_values, y_values_1, label='$\\widehat{h_1}$', color='green')

plt.xlabel('$\\xi$')

plt.title('$\\widehat{h_1}$')

plt.grid(True)

plt.legend()

plt.show()

plt.figure(figsize=(10, 6))

plt.plot(xi_values, y_values_2, label='$\\widehat{h_2}$', color='red')

plt.xlabel('$\\xi$')

plt.title('$\\widehat{h_2}$')

plt.grid(True)

plt.legend()

plt.show()

plt.figure(figsize=(10, 6))

plt.plot(xi_values, y_values_3, label='$\\widehat{h_3}$', color='purple')

plt.xlabel('$\\xi$')

plt.title('$\\widehat{h_3}$')

plt.grid(True)

plt.legend()

plt.show()

plt.figure(figsize=(10, 6))

plt.plot(xi_values, y_values_4, label='$\\widehat{h_4}$', color='orange')

plt.xlabel('$\\xi$')

plt.title('$\\widehat{h_4}$')

plt.grid(True)

plt.legend()

plt.show()

plt.figure(figsize=(10, 6))

plt.plot(xi_values, y_values_5, label='$\\widehat{h_5}$', color='brown')

plt.xlabel('$\\xi$')

plt.title('$\\widehat{h_5}$')

plt.grid(True)

plt.legend()

plt.show()

# Find the indices where y values are equal to pi

indices_0 = np.where(np.isclose(y_values_0, np.pi))[0]
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indices_1 = np.where(np.isclose(y_values_1, np.pi))[0]

indices_2 = np.where(np.isclose(y_values_2, np.pi))[0]

indices_3 = np.where(np.isclose(y_values_3, np.pi))[0]

indices_4 = np.where(np.isclose(y_values_4, np.pi))[0]

indices_5 = np.where(np.isclose(y_values_5, np.pi))[0]

# Print the leftmost and rightmost xi values where the function is equal to pi

if indices_0.size > 0:

print("For $\\widehat{h_0}$, xi values where the function is equal to pi are:",

##xi_values[indices_0[0]], "and",

##xi_values[indices_0[-1]], "And the plateau has width:",

##xi_values[indices_0[-1]] - xi_values[indices_0[0]])

else:

print("For $\\widehat{h_0}$, the function is never equal to pi.")

if indices_1.size > 0:

print("For $\\widehat{h_1}$, xi values where the function is equal to pi are:",

##xi_values[indices_1[0]], "and",

##xi_values[indices_1[-1]], "And the plateau has width:",

##xi_values[indices_1[-1]] - xi_values[indices_1[0]])

else:

print("For $\\widehat{h_1}$, the function is never equal to pi.")

if indices_2.size > 0:

print("For $\\widehat{h_2}$, xi values where the function is equal to pi are:",

##xi_values[indices_2[0]], "and",

##xi_values[indices_2[-1]], "And the plateau has width:",

##xi_values[indices_2[-1]] - xi_values[indices_2[0]])

else:

print("For $\\widehat{h_2}$, the function is never equal to pi.")

if indices_3.size > 0:

print("For $\\widehat{h_3}$, xi values where the function is equal to pi are:",

##xi_values[indices_3[0]], "and",

##xi_values[indices_3[-1]], "And the plateau has width:",

##xi_values[indices_3[-1]] - xi_values[indices_3[0]])

else:

print("For $\\widehat{h_3}$, the function is never equal to pi.")

if indices_4.size > 0:

print("For $\\widehat{h_4}$, xi values where the function is equal to pi are:",

##xi_values[indices_4[0]], "and",

##xi_values[indices_4[-1]], "And the plateau has width:",

##xi_values[indices_4[-1]] - xi_values[indices_4[0]])

else:

print("For $\\widehat{h_4}$, the function is never equal to pi.")

if indices_5.size > 0:

print("For $\\widehat{h_5}$, xi values where the function is equal to pi are:",

##xi_values[indices_5[0]], "and", xi_values[indices_5[-1]], "And the plateau has width:",

##xi_values[indices_5[-1]] - xi_values[indices_5[0]])

else:

print("For $\\widehat{h_5}$, the function is never equal to pi.")
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4.2 Appendix B: Code Used for Creating Contours

Firstly the contour above the x-axis:

\documentclass{article}

\usepackage{tikz}

\usetikzlibrary{arrows.meta, decorations.markings}

\begin{document}

\begin{center}

\begin{tikzpicture}[scale=0.7]

% Axes

\draw (-3.5,0) -- (3.5,0);

\draw (0,-1.5) -- (0,3.5); % Shortened negative y-axis

% Large semi circle

\begin{scope}[very thick,blue, decoration={markings, mark=at position 0.5 with

##{\arrowreversed{Stealth[length=2mm]}}}]

\draw[postaction={decorate}] (180:3cm) arc (180:0:3cm);

\end{scope}

% Small semi circle

\begin{scope}[very thick,blue, decoration={markings, mark=at position 0.5 with

##{\arrowreversed{Stealth[length=2mm]}}}]

\draw[postaction={decorate}] (0:0.5cm) arc (0:180:0.5cm);

\end{scope}

% Lines between -r and -R, and between r and R

\draw[very thick, blue, {Stealth[length=2mm]}-] (-0.6,0) -- (-3,0);

\draw[very thick, blue, -{Stealth[length=2mm]}] (0.6,0) -- (3,0);

% Markings for r, R, -r, -R

\draw (.6,-0.15) node[below] {$r$};

\draw (3,0) node[below right] {$R$};

\draw (-.6,-0.11) node[below] {$-r$};

\draw (-3,0) node[below left] {$-R$};

% Labels for I_1, I_2, I_3, I_4

\draw (-2,-0.5) node[below] {$I_1$};

\draw (2,-0.5) node[below] {$I_2$};

\draw (0,3.5) node[above] {$I_3$};

\draw (0,0.6) node[above] {$I_4'$};

\end{tikzpicture}

\end{center}

\end{document}

Next the contour below the x-axis:
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\documentclass{article}

\usepackage{tikz}

\usetikzlibrary{arrows.meta, decorations.markings}

\begin{document}

\begin{center}

\begin{tikzpicture}[scale=0.7]

% Axes

\draw (-3.5,0) -- (1.5,0);

\draw (0,-3.5) -- (0,1.5); % Further shortened negative y-axis

% Large semi circle

\begin{scope}[very thick,blue, decoration={markings, mark=at position 0.5 with

##{\arrowreversed{Stealth[length=2mm]}}}]

\draw[postaction={decorate}] (180:3cm) arc (180:360:3cm); % Changed angle to 360

\end{scope}

% Small semi circle (changed angle to 360)

\begin{scope}[very thick,blue, decoration={markings, mark=at position 0.5 with

##{\arrow{Stealth[length=2mm]}}}]

\draw[postaction={decorate}] (180:0.5cm) arc (180:360:0.5cm);

\end{scope}

% Lines between -r and -R, and between r and R

\draw[very thick, blue, {Stealth[length=2mm]}-] (-0.6,0) -- (-3,0);

\draw[very thick, blue, -{Stealth[length=2mm]}] (0.6,0) -- (3,0);

% Markings for r, R, -r, -R

\draw (0.6,0.65) node[below] {$r$};

\draw (3,0) node[below right] {$R$};

\draw (-0.6,0.71) node[below] {$-r$};

\draw (-3,0) node[below left] {$-R$};

% Labels for I_1, I_2, I_3, I_4

\draw (-2,0.35) node[above] {$I_1$};

\draw (2,0.35) node[above] {$I_2$};

\draw (0,-3.5) node[below] {$I_3'$};

\draw (0.6,-0.4) node[below] {$I_4$};

\end{tikzpicture}

\end{center}

\end{document}
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