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Abstract

There is a growing demand for precision and high quality optical objectives and lenses due
to their numerous advantages and uses. The market for high precision objective lenses has
tremendous potential for development and is a sector that is expanding quickly. [1]

Measuring the aberrations of optical systems is an essential step in the fabrication of high
precision optical components. However, when working at the cutting-edge of technology, it
is increasingly difficult to provide trustworthy measurements as the used metrology instru-
ment has to be of comparable or higher precision. This poses a major problem especially
when working with high numerical aperture (NA) optics.

In this thesis, we will analyze and quantify the measurement uncertainty of a Twyman-
Green interferometer used for lens testing of high-NA microscope objectives.

To quantify the measurement uncertainty of the interferometer, various sources of uncer-
tainty that affect the accuracy and precision of the measurements are considered. These
include environmental and instrumentation factors such as incorrect phase-stepping, laser
instability, camera noise, stray light, photon shot noise, effects of mid-spatial frequencies
originating in the optical reference, as well as computational shortcomings such as: incor-
rect phase unwrapping, polynomial fit errors, incorrect pupil scaling and edge detection.

By carefully analyzing these individual sources of uncertainty and their impact, we deter-
mine the overall measurement uncertainty of the interferometer and provide an assess-
ment of its accuracy through Monte Carlo simulations, where the introduced uncertainties
are obtained from real measurement data. The uncertainty analysis procedure described
in this paper is a useful tool that can also be applied to different types of interferometers by
taking proper considerations into account.
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1 Introduction

Optical systems are an indispensable part of the modern world and find their application in
numerous aspects of our life. From cameras, contact lenses, and lighting systems, to chip man-
ufacturing, medical equipment, and gravitational wave detection. As optical systems consist
of various optical components of all shapes and sizes, such as lenses, mirrors, prisms, etc., it
is important to be able to measure whether an optical component or an optical system meets
certain design criteria in terms of its performance. For example, controlling whether an optical
flat has a sufficiently low surface error, or whether an aspherical lens has the correct aspherical
profile and correctly focuses the incoming light within tolerances.

Twyman-Green interferometers are a popular choice for lens testing. A Twyman-Green inter-
ferometric setup can be used to measure the wavefront aberrations from which one can draw
a conclusion on the quality of the imaging system in question. With the advent of digital inter-
ferometry, it was possible to increase the resolution of interferometric measurements by means
of recording a series of digital interferograms with varying spatial phase and retrieve it point-
wise. There are several different steps involved, including – phase retrieval, phase unwrapping,
and wavefront analysis. During each step, various algorithms are used depending on the situa-
tion. However, all algorithms are prone to numerical errors due to their discrete nature which
brings errors in the final results. Moreover, measurement uncertainty may be introduced by ex-
ternal sources, such as nonlinearities in the phase shift, instability of the light source, detector
nonlinearities, electronic noise, vibrations. To achieve meaningful measurement results, it is
important to quantify the measurement uncertainty of the metrology setup.

In this thesis, we first investigate the existing literature on interferometric measurements using
phase-stepping, phase unwrapping, and Zernike polynomial fitting techniques, as well as de-
scribe common errors arising from the instrumentation and environment. Then a methodology
is proposed for quantifying errors using different procedures. In the conducted experiments a
high-NA microscope objective is tested against a reference spherical mirror of slightly higher
numerical aperture. The total measurement uncertainty of the interferometer is then evaluated
using Monte Carlo simulations, where the results show a consistent measurement uncertainty
of about ±3mλ per Zernike coefficient.

2 Problem Statement

The purpose of this project is to develop and evaluate a lens-testing procedure using a Twyman-
Green Phase Stepping Interferometry (PSI) setup for the aberration metrology of diffraction-
limited high-NA infinite conjugate lenses. The procedure is able to detect and measure the
intrinsic aberrations of the test lens/objective, correct for the aberrations originating from the
repherence spherical mirror and other systematic errors, and has a set of uncertainty values per
calculated Zernike coefficient.

It is necessary to evaluate a Twyman-Green interferometric setup that can test the wavefront
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aberrations of a lens or objective, for short referred to as an “Optical Imaging System” (OIS).
The OIS is to be viewed as a black box. The information that is present is as indicated by the
supplier and is therefore limited. That includes the focal length, the numerical aperture, and
the location of the entry and exit pupil planes. Information regarding the individual lenses in
an objective or their respective coatings is a company secret and therefore not available.

The lenses under test have a specified “field size”, in the order of 50µm in diameter, meaning
that a beam that enters the lens at an angle to the optical axis (i.e. a beam with a field offset) in-
troduces aberrations that must fall within certain spec limits. The metrology procedure should
be able to measure the aberrations over the full field size.

Depending on the chosen phase retrieval technique, phase unwrapping algorithm, and poly-
nomial fitting for wavefront analysis, we can either increase or decrease both the accuracy and
precision of our measurement results for the wavefront aberrations. The goal is to obtain mean-
ingful results for the measurements, select and evaluate different algorithms in terms of their
performance, and determine an error budget for the measurements.

3 Test Setup

A Twyman-Green interferometer, together with a moving flat reference mirror is used to create
phase-shifted interferograms that are imaged on the CMOS sensor of a camera. The type of light
source is a monochromatic continuous-wavelength (CW) laser. Several different wavelengths
are used for testing as the microscope objective is designed to operate over a wide wavelength
spectrum. An overview of the used CW lasers can be found in Table 1.

Table 1: Light sources.

λ [nm] Power: [W] Class: Type: Diameter:
405 0.004 3B Single channel benchtop laser diode unit 2 inch
406 0.004 3B Multi-diode fiber coupled unit 2 inch
488 0.018 3B Multi-diode fiber coupled unit 2 inch
520 0.008 3B Multi-diode fiber coupled unit 2 inch
543 0.005 3R Green HeNe 1 inch
650 0.017 3B Multi-diode fiber coupled unit 2 inch
705 0.010 3B Multi-diode fiber coupled unit 2 inch
850 0.011 3B Multi-diode fiber coupled unit 2 inch
1064 0.025 3B Multi-diode fiber coupled unit 2 inch
1310 0.060 3B Multi-diode fiber coupled unit 2 inch
1550 0.01 3B Multi-diode fiber coupled unit 2 inch
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The source delivers light through a polarization-maintaining glass fiber, which is then verti-
cally polarized using a polarizer, and expanded to the “Diameter”, as indicated in Table 1, and
collimated. A shearing plate is used to confirm that the beam is indeed collimated and the
collimator lens is positioned accordingly. The layouts is depicted in Fig.(1).

Figure 1: Twyman-Green setup for testing an infinite conjugate lens

The laser beam is expanded and a planar mirror is used in the reference arm. We can choose
between multiple wavelengths as indicated in Table 1, however, the position of the collimator
lens needs to be readjusted in order to prevent chromatic aberrations. A retroreflector and an
additional Fizeau interferometer, not shown above, are used to assist in the alignment of the
various optical component as depicted in the setup. The incoming laser light is vertically po-
larized out of the plane of Fig.(1) in order to achieve an approximately 50/50 split ratio in the
beam splitter.

The resulting two beams are propagated through the test and reference arms and back, and a
controlled phase shift is introduced by moving the planar reference mirror using a piezo actua-
tor. The optical path distance in the test and reference arm is equal. The beams are propagated
back, and recombined, as will be explained in section 4.1, and subsequently, an imaging lens,
located in front of the camera, images the test lens’ exit pupil on the CMOS sensor of the cam-
era. The image of the exit pupil is magnified by a factor of 2.

There are two ways to propagate back the beam in the test arm – by using a spherical high-NA
mirror, as depicted in Fig.(1,2), and by using a planar mirror in the focal plane of the lens under
test.
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In section 2, it was mentioned that the aberrations over the “field size” of the lens need to be
measured, for which purpose the beam needs to enter the lens at an angle to the optical axis. A
spherical mirror with a high NA allows to back-propagate the beam. The principle is shown in
Fig.(2).

Figure 2: Spherical mirror with an on-axis and skewed incoming beam for a telecentric lens.

Both the lens under test and the mirror are positioned using their own X, Y, Z-stages with µm
precision. The stages can be controlled by either µm hand spindles or stepper motors. The
hand spindles have the advantage of faster positioning when we change between lenses, while
the stepper motors can be controlled by the computer and are used to automate measurements.
An example of the measurement arm for the setup with a spherical mirror can be seen in Fig.(3).

Figure 3: Measurement arm of the interferometer with the mounted spherical mirror
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The spherical mirror is used for both on-axis and off-axis measurements. A planar mirror, for
example, can be used for off-axis measurements as outlined on the right of Fig.(2) but the mea-
surement will only consist of even aberrations as the odd aberrations will change sign upon
reflection and cancel out on their way back throught the lens/objective. However, the spherical
mirror also introduces aberrations, which if not accounted for, will combine with the aberra-
tions present in the lens under test, that we want to measure. Therefore, it is necessary to prop-
erly quantify its full aberration profile including both the odd and even aberrations introduced
by it.

Due to the geometry and existing polishing techniques, a planar surface is easier to produce
and is of better quality than a spherical surface. This can be observed in the interferogram
shown in Fig.(4), where you can see concentric grooves. They are especially visible in the ar-
eas marked by the 3 small circles. The spherical mirror used in our project has been machined
using “Single-Point Diamond Turning”. The concentric grooves originate from the machining
process and testify that there are indeed imperfections present in the mirror.

A flat mirror, on the other hand, is produced using polishing and grinding, where two flat sur-
faces are ground against one another. This produces better results as there are factors that
can introduce defects during the turning process, such as “beating”, “chatter”, “chipping” or
“dulling” of the cutting tool. For these reasons, a spherical mirror of high quality (low surface
roughness) would be very expensive and labor involving to produce. On the other hand, a pla-
nar mirror of comparable quality would cost significantly less and can be mass-produced.

Figure 4: An interferogram of a low-NA test lens, created with the spherical mirror.

We will proceed to highlight the approach for determining the aberration profile of the spherical
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mirror. The measured aberrations are represented in terms of Zernike polynomials, therefore
individual polynomials may be angularly even or odd. This means that we can change the sign
of odd aberrations by rotating the spherical mirror by 180°. An example of the effect of rotation
on 3r d order coma along the x-axis (Z 3

-1) can be seen in Fig.(5, 6). The sum of the two functions
is 0, hence why rotation is a suitable way to find the coefficients of the odd aberrations in our
spherical mirror.

Figure 5: 100mλ of Z 3
−1 Figure 6: 100mλ of Z 3

−1, 180° rotated

The even aberrations of the spherical mirror are determined using an additional on-axis mea-
surement with a planar mirror. To determine the full aberration profile of the spherical mirror 3
measurements are required. The first one using a spherical mirror at 0°, the second one using a
spherical mirror rotated by 180°, and a third measurement using a planar mirror located at the
focal point of the lens/objective. The full procedure is explained in detail in section (6.2.1) and
the aberration profile of the spherical mirror is shown.

4 Theory: Lens Testing Interferometry

There are three main operations involved in the measurement process – phase retrieval through
phase stepping, phase unwrapping, and a polynomial fitting . It is first necessary to understand
how they are used together to conduct a measurement.

First, the two beams, in the measurement arm and reference arm are brought together in order
to interfere and create an interferogram. The interferogram is converted into an electric signal
using the CMOS sensor of the camera and sent to the computer. The sensor measures the irra-
diance over the area of each pixel and stores it as a data point in an array.

The interferogram is a measurement of the irradiance for a set of data points. From this mea-
surement, we would like to extract information regarding the phase, and therefore reconstruct
the wavefront. This is done using “Phase Shifting Interferometry” (PSI) algorithms.
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Due to the nature of the PSI algorithms, the calculated phase is between −π and +π. This comes
from the fact that the phase is calculated using an arctangent function which gives discontinu-
ities at the edges of the specified range. A wavefront, however, is a smooth geometrical surface
and the discontinuities must be removed by “unwrapping” the phase. This is a crucial step as
an incorrectly unwrapped wavefront yields incorrect aberration results.

Once the phase has been calculated it can be converted to surface errors or optical path length
differences to obtain the wavefront using Eq.(10). The wavefront can then be represented as a
weighted sum of individual polynomials that are orthogonal over the shape of the pupil. Differ-
ent sets of polynomials are orthogonal over different shapes and the correct set must be chosen
based on the pupil shape of our system. The high-NA lenses and objectives that take part in the
experimental validation of this thesis are all designed to be circularly symmetric, hence their
pupils are circular as per the nominal design. However, “as-built” lenses are no longer perfectly
symmetric which can lead to errors and must be considered. For systems with circular and ap-
proximately circular symmetry, the common set of used polynomials is “Zernike polynomials”
as they are orthogonal over the unit circle. The amount of a certain aberration that is present in
the measured wavefront, as obtained through phase-unwrapping is determined by the coeffi-
cient for each individual polynomial in the set.

This raises the question what errors can each operation introduce and how do they affect the
results altogether. In view thereof, assessment of the measurement uncertainty of an interfer-
ometer is a difficult task due to the numerous processes involved. It may be advantageous to
separate the problem into two main categories – computational and physical aspects. Com-
putational aspects refer to the many different choices for “Phase Stepping Algorithms”, “Phase
Unwrapping Algorithms” and “Wavefront Fitting Techniques” available to us, including their
corresponding strengths and weaknesses. We look into different ways to quantify their suitabil-
ity and capability to compensate for errors and undesired external influences, as well as the
numerical errors they may introduce. A flowchart showing a general overview of the process is
shown in Fig.(7).

Figure 7: The computational process of measuring the wavefront aberrations, including the
major algorithm subtypes.

Physical aspects, on the other hand, refer to effects on the measurements originating in the
test setup, such as phase-shifter errors, camera quantization, shot noise, electronic noise, and
external vibrations. Different approaches as found in the literature will be considered, in order
to limit their effect.
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4.1 Two-Beam Interference

To understand the working principle of the setup we will briefly explain what interference is
and how two-beam interferometry works. The interference phenomenon was first discovered
by Isaac Newton, where he observed localized concentric fringes, called “Newton rings” around
the point of contact of a plano-convex lens with a large radius of curvature, pressing against a
flat glass plate. Later on, Thomas Young proceeded to explain the phenomenon in terms of
wave optics. In the book “Optics” by E. Hecht the following short description is given: “Opti-
cal interference corresponds to the interaction of two or more light waves yielding a resultant
irradiance that deviates from the sum of the component irradiances...” [2]. It follows that inter-
ference cannot be explained by geometrical optics and is instead caused by the wave nature of
light. We can think of light as a wave motion possessing crests and valleys. When two correlated
and coherent waves meet, if they are in phase – that is the position of their crests overlap and
respectively the position of their valleys as well, then we can observe constructive interference
where the two waves strengthen each other. On the contrary, if the waves are out of phase – that
is the position of the crests of the first wave overlap with the position of the valleys of the second
wave, then we observe destructive interference where the waves cancel one another. This can
be seen in Fig.(9).

Figure 8: Examples of two-beam interference. [source: wikipedia]

Light is a vector phenomenon, and it obeys the principle of superposition, therefore it is pos-
sible to combine two or more waves and express the combined wave as a vector sum of its
components. We will restrict the following derivation to two waves. The interference pattern
from the interaction of two light waves shown on a screen, in the sense of the relative irradiance
of the screen, is the intensity profile of the combined wave, that results from the superposition
of the electric fields of the two individual waves. We will denote the intensity profile of the first
time-harmonic wave as UA

(
x, y, z, t

)
and of the second one as UB (x, y, z, t ).

UA(x, y, z, t ) = ~A0e i~k·~r e i (w t+φA)

UB (x, y, z, t ) = ~B0e i~k·~r e i (w t+φB )
(1)
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Where ~A0, ~B0 denote the amplitude and polarization direction of the two waves,~k denotes the

wave vector,~r = [
î , ĵ , k̂

]T
denotes the unit vector, w denotes the angular frequency of the oscil-

lations in time,φA,φB denote the phases of the two waves. We can simplify the two expressions
by considering the case where the two waves propagate in the same direction. We can therefore
omit the~k ·~r dependency and rewrite the expressions and give the resulting wave as:

UA(x, y, z, t ) = ~A0e−i (w t+φA)

UB (x, y, z, t ) = ~B0e−i (w t+φB )
(2)

UC (x, y, z, t ) =UA(x, y, z, t )+UB (x, y, z, t ) = ~A0e−i (w t+φA) + ~B0e−i (w t+φB )

U∗
C (x, y, z, t ) =U∗

A(x, y, z, t )+U∗
B (x, y, z, t ) = ~A∗

0 e+i (w t+φA) + ~B∗
0 e+i (w t+φB )

(3)

Where the * denotes complex conjugate. The irradiance that we observe on a screen is the time
average of the magnitude of the field.

I =∥U 2
C (t ) ∥T=<UCU∗

C >T (4)

Substituting Eq.(3) into Eq.(4) and assuming ~A0 and ~B0 are parallel gives the following expres-
sion:

I = A2
0 +B 2

0 +2A0B0cos(φA −φB ) (5)

Where the modulation term in Eq.(5) proves that the resultant irradiance is not the summation
of the individual irradiances of the two waves: I A = A2

0, IB = B 2
0 . In section 4.2 we will show how

the irradiance from the interference of two waves given by Eq.(5) can be used to our advantage
to extract information about the phase of the combined wave, indicated by φA −φB .

4.2 Phase Stepping Algorithms

Phase stepping algorithms (PSAs) are a type of phase-shifting interferometry algorithm where
the phase is varied in steps. In general, all phase shifting algorithms are used to acquire the
raw phase map from the recorded interferograms – irradiance measurements. The recorded
irradiance can be represented as a sum of the average irradiance and the irradiance modulation
as seen in Eq.(6).

I (x, y, t ) = I ′(x, y)+ I ′′(x, y)cos[φt (x, y)−φr (x, y)+δ(t )] (6)
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Here I (x, y, t ) is the irradiance as measured by the CMOS sensor at a certain location – pixel,
with coordinates x and y . I ′(x, y) represents the average irradiance over the set of recorded in-
terferograms at a given location, also known as the DC component, and I ′′(x, y) – the irradiance
modulation amplitude [3]. The irradiance is modulated by the cosine term, which depends on
the phase in the test arm of the interferometerφt (x, y) and the one in the reference armφr (x, y).
We introduce a phase change which is denoted by δ(t ), by varying the OPD in the reference arm
of the interferometer in a controlled fashion. This phase change may either be linear – “Inte-
grating Bucket Technique”, or in steps – “Phase Stepping”.

As the wavefronts from both arms are recombined by the beam splitter and imaged on the
camera using the imaging lens, located in front of it, it is more useful to work with the phase
difference between the two wavefronts in the test and reference arm, rather than their sepa-
rate values – φt ,φr . Therefore, we can introduce a single phase term by substituting: φ(x, y) =
φt (x, y)−φr (x, y).

I (x, y, t ) = I ′(x, y)+ I ′′(x, y)cos[φ(x, y)+δ(t )] (7)

The goal here is to calculate φ(x, y) which is the “raw phase map”. There are two main types of
PSAs depending on how the phaseφ(x, y) is detected – “synchronous” and “asynchronous”. The
most common way to obtain the raw phase, as per literature, is by recording four interferograms
where the phase step, δ(t ), varies by π

2 . This algorithm was first described by Wyant and is
known as the “4-step” or “4-sample algorithm” [4]. Algorithms where the phase step is known,
such as the “4-step” one, are of the “synchronous” type, while algorithms where we have no
information about the phase step are called “asynchronous”. A version of the same algorithm
that relies on the least amount of recorded interferograms was also developed by Wyant and
is respectively called the “3-sample algorithm” [5]. Both are very comparable in terms of their
inability to compensate for errors and simplicity of the expression, however, the 4-step one will
be shown below. First, let us look at the intensity profiles of the recorded interferograms. They
are as follows:

I0(x, y, t ) = I ′(x, y)+ I ′′(x, y)cos[φ(x, y)]

I1(x, y, t ) = I ′(x, y)+ I ′′(x, y)cos[φ(x, y)+ π

2
]

I2(x, y, t ) = I ′(x, y)+ I ′′(x, y)cos[φ(x, y)+π]

I3(x, y, t ) = I ′(x, y)+ I ′′(x, y)cos[φ(x, y)+ 3π

2
]

(8)

This is a linear system of four equations and three unknowns - I ′(x, y), I ′′(x, y),φ(x, y) which
can easily be solved. Note that it is possible to use three measurements instead of four, how-
ever, four measurements result in a simpler formula for the phase. Using simple trigonometric
identities an expression for φ(x, y) in terms of the measured intensities is obtained:
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φ(x, y) = arctan

[
I3 − I1

I0 − I2

]
(9)

The calculated phase map is linked to the wavefront in a simple fashion. A wavefront is a surface
over which all points of a wave field have the same phase. An aberrated wavefront may be
thought of as the deviation from a perfectly spherical reference wavefront. A flat wavefront can
be thought of as a spherical wavefront with radius at infinity. The deviation at a certain point
(x,y) on that reference sphere is simply a height error. The height error results in an optical path
difference (OPD) which is linked to the wavefront phase according to the following expression:

OPD(x, y) =φ(x, y)
λ

4π
(10)

While the OPD may be considered as the surface height errors, the wavefront phaseφ(x, y) may
be thought of as the wavefront error. In Eq.(10) we see the factor λ

4π , which is the scaling factor
used in double pass interferometers such as the Twyman-Green. For single pass interferometers
the scaling factor is λ

2π . Therefore the major interest falls on the correct calculation of the phase.

In the case of a perfect imaging system, a deduction from the Malus-Dupin theorem states that
“if the rays of a pencil intersect in a single point after refraction through the optical system, then
the wavefronts will be spherical” [6]. Therefore, under ideal circumstances, the wavefront in the
exit pupil will be perfectly spherical, hence, the phase will be constant over the sphere’s surface
and would not vary with (x, y). It follows that the points on the surface experience the same
optical path distance. In this case, the OPD is zero. However, in the presence of monochromatic
aberrations for example, the imperfections of the optical system would manifest as points on
the refence sphere having different phase and thus experiencing different optical path distances
in the system. The geometric surface over which all points have the same phase would no longer
be spherical. The departure, height error, at a certain location from the shape of an ideal sphere
is the OPD.

The above-mentioned algorithms are simple, yet not very robust, especially when it comes to
variations in the phase step δ(t ). This has led to other, more robust algorithms being devel-
oped, such as the Carré, Hariharan algorithm, and others. Throughout the early stages of PSI,
the major limitation was the computation power and thus the amount of steps or iterations in
the algorithm. However, modern computers have unparalleled capabilities that have made it
possible to synthesize more robust and exotic PSI algorithms, albeit at a higher computational
price. Algorithms can be designed to limit the effect of certain errors or external influences.
Because of the large variety of available algorithms, it is important to categorize them based on
their properties.
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4.2.1 Fourier Representation of Phase Stepping Algorithms

The Fourier representation of PSAs is a theory developed by several authors, which analyzes the
error-compensating abilities of phase stepping algorithms. It is important to note that the au-
thors, who developed the theory have mostly focused their research on Fizeau interferometers
(Hibino, De Groot). In a Fizeau interferometer, errors caused by harmonics are common and
can lead to additional errors caused from the coupling of the harmonics with different error
sources. This was a driving force for the design of new and better algorithms. In a Twyman-
Green interferometer, on the other hand, harmonics generally do not present a problem, espe-
cially when considering that the lenses/objectives under test usually have anti-reflective coat-
ings applied to them. Nevertheless, the theory that was developed can be particularly useful in
the selection of a phase stepping algorithm because it encompasses the other error sources as
well. Moreover, the effect of harmonics in a Twyman-Green interferometer hasn’t been studied
extensively and it is worth comparing the results for the calculated phase, obtained by different
PSAs also in terms of their harmonic attenuating abilities.

Before we can describe the technique to analyze PSAs it is first necessary to derive a more gen-
eral expression for the intensity profile. The formula of Eq.(7) is not a full representation of the
intensity profile I (x, y) but an approximation that is very often found in textbooks. The simpli-
fied expression shows the intensity distribution for the fundamental frequency of the modula-
tion and therefore the effects of harmonics cannot be taken into account when applying it. The
ability of an algorithm to compensate for the error caused by harmonics is a driving force for
the design of newer and better algorithms and for that reason it will benefit us to look at a more
general expression shown below.

Ir (x, y) = I ′(x, y)+
∞∑

n=1
I ′′n(x, y)cos[φn(x, y)+nδr ] (11)

Here Ir (x, y) represents the intensity profile for the r th interferogram, I ′(x, y) is the DC com-
ponent as shown in Eq.(6), I ′′n(x, y) is the intensity modulation amplitude for a given phase of
the nth order harmonics - φn(x, y), n is an integer indicating the harmonic’s order and δr is the
phase step (i.e. 0, π2 , π, 3π

2 ) for the r th recorded interferogram.

When comparing Eq.(7) & (11), it is evident that Eq.(7) is the expression as given in Eq.(11)
for φ1(x, y), which is the fundamental order, or the phase corresponding to the fundamental
frequency. The reason why Eq.(7) is commonly used in the literature is that φ1(x, y) describes
the wavefront shape and is therefore the object of interest, while φ2,3,4,...(x, y) are higher order
harmonics that need to be attenuated, filtered out.

In Eq.(7, 11) the phase step δr is shown to take discrete values (i.e. 0, π2 , π, 3π
2 ), however, we are

actually modulating the signal I (x, y) with a periodic in time function, with a period of Ts . As
such an even more general expression can be written as:

Ir (x, y) = I ′(x, y)+
∞∑

n=1
I ′′n(x, y)cos[φn(x, y)+nδ(t )] (12)
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The phase step δ(t ) is a periodic-in-time function that can be rewritten as δ(t ) = 2πvs t , where
vs is the fundamental frequency of the intensity modulation, equal to vs = 1

Ts
. For the following

analysis we will only consider the time dependance. The formula can now be rewritten as:

I (t ) =
∞∑

n=0
an cos[2πnvs t +φn] (13)

Where an is a weight factor identical to the intensity modulation amplitude I ′′n(x, y) for the nth

harmonic. In the paper of K. Freischlad and C. Koliopoulos [10] they propose an approach for
evaluating the phase φn that can be represented using a heterodyne process. This evaluation is
done using Fourier theory and allows for the “Fourier Representation of PSAs”.

The idea behind is that the phaseφn can be extracted from the convolutions of the time-periodic
signal I (t ) with two sampling functions f1(t ) and f2(t ). Additionally, the whole phase stepping
algorithm may be visualized in the frequency domain, which is the algorithm assessment tool
developed by Larkin and Oreb [11]. The sampling signals f1(t ) and f2(t ) may be thought of as
sampling weights for a set of samples – the measured interferograms. The two signals in time-
domain are given as:

f1(t ) =
N−1∑
n=0

αnδ(t − tn)

f2(t ) =
N−1∑
n=0

βnδ(t − tn)

(14)

Here, δ(t ) is the Dirac-delta function and αn , βn are real coefficients and tn are sample
positions. The sample positions are given as:

tn = nTs

N −1
− Ts

2
(15)

Where N is the number of steps used in the algorithm, Ts is the fundamental period as de-
scribed earlier and is usually equal to 2π, and n ∈ [0; N −1] is an integer.

If we look at the formula for the 5-step Hariharan algorithm as an example, we can see that the
expression for the phase is given as:

φ(x, y) = arctan

[
2(I1 − I3)

2I2 − I0 − I4

]
= arctan

[
I1 − I3

I2 − 1
2 I0 − 1

2 I4

]
(16)

The coefficients αn ,βn correspond to the normalized sampling weights, therefore for this par-
ticular case:
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α0 = 0 α1 = 1 α2 = 0 α3 =−1 α4 = 0
β0 =−1

2 β1 = 0 β2 = 1 β3 = 0 β4 =−1
2

Therefore, a general expression for the phase as provided by Kim [7] can be written as:

φ(x, y) = arctan

∑N−1
n=0 αn In∑N−1
n=0 βn In

= arctan

∫ ∞
−∞ F1(v)J (v)d v∫ ∞
−∞ F2(v)J (v)d v

(17)

Where F1(v), F2(v) are the Fourier transforms of f1(t ) and f2(t ), and J (v) is the Fourier transform
of I (t ) as described in Eq.(13). The Fourier transforms of f1(t ) and f2(t ) are given as:

F1(v) =
M∑

n=0
αne−iδn v =−i

M∑
n=0

αn sin(2πv tn)

F2(v) =
M∑

n=0
βne−iδn v =

M∑
n=0

βn cos(2πv tn)

(18)

The expression on the left represents the pure Fourier transform of the sampling functions,
while the expression on the right is the simplified expression. The reason for the simplification
is that the sampling function f1(t ) is real and odd, while f2(t ) is real and even. It follows from
this that F1(v) is imaginary and odd, while F2(v) is real and even. Here δn is the phase step over
the summation range M , where M is given as:

M = N −1

2
, f or N odd

M = N −2

2
, f or N even

(19)

The reason for this is that a heterodyne process requires for the time-periodic signal I (t ) to be
mixed with two sinusoidal signals that are 90° out of phase – the sampling functions. There-
fore the properties of F1(v), F2(v) stem from the properties of the sampling functions in time-
domain. For example, for the five-step algorithm described by Eq.(16), using the expressions
given by Eq.(14,15), we can write the sampling functions as:

f1(t ) = δ(t + π

2
)−δ(t − π

2
)

f2(t ) =−1

2
δ(t +π)+δ(t )− 1

2
δ(t −π)

(20)

The sampling period Ts was taken as Ts = 2π. The coefficients αn , βn can either be determined
by looking directly at the expression for the PSA (i.e. Eq.(9, 16)), or by applying a least-squares-
fit as described by Greivenkamp and Morgan [12], [13], to N samples over a period Ts = 2π
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and acquiring the expressions given in Table 2. Beware that the expressions vary depending on
whether the algorithm has an even or odd number of steps N .

Table 2: Sampling weights for N-step PSAs with phase steps over a 2π range

N is even N is odd
αn = sin( 2πn

N ), N ∈ [0; N −1] αn = sin( 2πn
N−1 ), N ∈ [0; N −1]

βn =−cos( 2πn
N ), N ∈ [0; N −1] βn =−cos( 2πn

N−1 ), N ∈ [1; N −2],β0 =βN−1 =−1
2

The sampling weights αn ,βn , number of steps N , and modulation period Ts is the required
information to construct F1(v),F2(v). By plotting the two functions versus the fundamental
frequency vs , we obtain a powerful tool for the assessment of PSAs. We can plot the frequency
spectrum of the sampling functions f1(t ) and f2(t ) for various algorithms and extract useful
information regarding the behavior of the said algorithm. Examples of the behavior of a 6-step
algorithm and a 19-step algorithm are provided in Fig.(9).

Figure 9: left – 6 step algorithm as proposed by [11], right 19-step algorithm as proposed by
[14], [15], source: [7].

The horizontal axis represents the frequency in terms of the fundamental frequency vs . Both
F1(v), F2(v) are periodic functions with a period of N−1

Ts
for N odd, and a period of 2(N−1)

Ts
for N

even.

These plots carry a lot of useful information for the error-compensation abilities of the algo-
rithm at hand. For example, for the algorithm on the left we can see that the Fourier amplitudes
at the 2nd , 3r d , and 4th harmonic are effectively 0. This means that the algorithm can filter out
these harmonics. The 19-sample algorithm on the right performs much better in that regard,
where the harmonics up-to and including the 10th harmonic are filtered. The height of the
sidelobes also plays a very important role as the gradient of the Fourier amplitude is related to
errors such as coupling. An overview of some common relationships can be found in Table 3.
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Table 3: Conditions for the suppression of certain error types (PSE = Phase Shift Error)

Conditions At v
vs

= 1 At Higher Harmonics v
vs

i F1(vs) = F2(vs) Absolute Requirement N/A
|F1(v)| = |F2(v)| N/A Linear PSEs
i F1 (nvs) = F2 (nvs) = 0, n 6= 1 N/A n-th harmonic
∂i F1(v)
∂v = ∂F2(v)

∂v Linear PSEs Coupling error
∂2i F1(v)
∂v2 = ∂2F2(v)

∂v2 Nonlinear PSEs Nonlinear PSEs
i F1 (vs ±ε) = F2 (vs ±ε) = 1 DC error N/A

Table 3, however, is not complete and consists of loose information extracted from several pa-
pers - [7], [10], [11]. More detailed relationships between the frequency spectrum and the error-
compensating ability of algorithms would be a useful addition to the analysis of PSAs.

4.2.2 Error-Compensating Capabilities of Phase Stepping Algorithms

A convenient way to categorize PSAs is by arranging them based on the errors the algorithms
can compensate for as in the paper of S. Kim et al. [7]. However, it is first necessary to explain
the different errors that are present and can affect a measurement. There are five error sources
a PSA can compensate for – harmonics, linear phase-shift error, nonlinear phase-shift error,
coupling, and DC error.

In a perfect interferometer, mirrors have perfect reflectivity and optical transmission compo-
nents also transmit light perfectly. In the real world this is often not the case and “ghost” beams
that are multiply reflected can give rise to spurious fringes like those seen in a Fizeau interfer-
ometer [8].

Nonlinear phase-shift errors, on the other hand, are usually caused by external vibrations from
the environment, while linear errors originate from miscalibrations, which is identical to very
low frequency vibration [9]. As seen in the simple 4-step algorithm, the expression for the phase
φ(x, y) relies on the fact that the introduced phase step, δ(t ), indeed varies by π

2 . External vi-
brations may change the OPD and introduce a small error in the phase step between adjacent
measurements of the intensity (recorded interferograms), meaning that the phase step between
I0 and I1, for example, may become π

2 ±ε, where ε is the error.

Harmonics and the phase-shift errors, when both present induce a new error, called “coupling”,
which can be a reason for concern. However, more robust algorithms that involve more steps
compensate good for harmonics, which prevents the occurrence of coupling.

The DC error is simple to comprehend as it relates to variations in the DC component, I ′(x, y),
in the recorded interferograms. These variations may be caused by different sources including
instability of the light source used, in our case – a diode laser. Depending on how the algorithms
compensate for these errors, 7 main categories can be distinguished, which are shown in Table
4.
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Table 4: Categorization of groups according to error compensation ability [7]

Group Compensation:
Harmonics Lin. PS Error Nonlin. PS Error Coupling Error DC Error

I A N/A N/A N/A N/A
II A A N/A N/A N/A
III A A A N/A N/A
IV A A N/A A N/A
V A A A A N/A
VI A A A N/A A
VII A A A A A
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Table 5: Categorization of phase-shifting algorithms [7]

Group PSA Design Method

I
Synchronous Detection
Wyant 4-sample
Wyant 3-sample

Fourier Description
Trigonometric Function
Trigonometric Function

II
Hariharan 5-sample
Larkin-Oreb N+1
Zhu 9-sample

Averaging Theory
Fourier Description
Linear Equation

III
Schmit and Creath 6-sample
De Groot 7-sample
Fang 11-sample

Averaging Theory
Data-Sampling Window
Linear Equation

IV

Hibino 7-sample
Surrel 2N-1
Hibino 19-sample
Hanayama 2N-1
Estrada 9-sample
Jeon 11-sample

Linear Equation
Characteristic Polynomial
Fourier Description
Characteristic Polynomial
Fourier Description
Data-Sampling Window

V

Hibino 9-sample
Zhang 8-sample
De Groot 13-sample
Wu 10-sample
Shi 13-sample
Kim 3N-2
Kumagai 13-sample
Yu 13-sample
Choque 9-sample
Padilla C(N-1)-1

Linear Equation
Averaging Theory
Data-Sampling Window
Averaging Theory
Data-Sampling Window
Characteristic Polynomial
Data-Sampling Window
Data-Sampling Window
Fourier Description
Fourier Description

VI
Kim 9-sample
Choque 8-sample

Linear Equation
Fourier Description

VII

Kim 13-sample
Bae 19-sample
Kim 15-sample
Kim 4N-1

Linear Equation
Linear Equation
Linear Equation
Characteristic Polynomial

Table 4 and Table 5 provide a detailed overview of many algorithms and their error-compensating
properties, however, it will be very useful to have a method that can be used to analyze the be-
havior of PSAs. In the literature such methods have been designed with the purpose to assist in
their design but as the purpose of this project is not the creation of a new algorithm but rather
the error analysis thereof, the methods will be used to help us select an appropriate algorithm
which compensates for errors as much as possible. One such method has been described by K.
Freischlad and C. Koliopoulos [10] and later used by K. Larkin and B. Oreb [11]. It stems from
the Fourier representation of PSAs.
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4.3 Phase Unwrapping

The goal of optical metrology is to convert the conducted measurements, in our case interfer-
ograms, into useful information – displacements, strains, refractive indices, etc., often through
the process of phase retrieval. This is an inverse problem that is ill-posed in many cases, one of
which is radar imaging. Here, the height-errors of the aberrated wavefront represent the surface
topography of the terrain and a large amount of noise, fringes and discontinuities are present
in each recorded interferogram. However, in the case of phase stepping interferometry, where
multiple interferograms with varying phase step are recorded in a controlled environment, the
problem of phase retrieval becomes well-posed for 3 recorded interferograms, and over-defined
in the case of more recorded interferograms with varying phase step.

This was discussed in 4.2, where it was shown by Eq.(7) that there are three unknowns I
′
(x, y),

I
′′
(x, y), φ(x, y) and each recorded interferogram represents a linear equation, where for a sys-

tem of linear equations the minimum number of equations required to solve for 3 unknowns
is 3 equations. Hence, more than 3 recorded interferograms have the effect of overdetermining
the phase retrieval problem. This is a good thing as ill-posed problems require elaborate phase
unwrapping algorithms and techniques to extract the phase map from the interferogram.

For that purpose, the major scientific advances in the field of phase unwrapping algorithms
have been focused on designing algorithms that for example deal with the common problems
in “Synthetic Aperture Radar” (SAR) imaging, rather than interferometry for optical testing. In
our case, the classical phase unwrapping algorithms are more than sufficient and more com-
plex ones would be unnecessary as they don’t show any advantages in terms of accuracy, speed,
or ease-of-use [20]. Nevertheless, phase unwrapping is an important step as incorrectly un-
wrapped phase map would represent an incorrect wavefront with incorrect aberrations present
in it. Therefore, we will look at the more conventional approaches for phase unwrapping, their
strengths and weaknesses.

In the previous section it was shown how the raw phase map can be calculated from multiple
interferograms. If we observe Eq.(9), there is a significant problem that immediately occurs and
is present in all PSAs regardless – the phase is calculated by an arctangent function.

φ(x, y) = ar ct an

[
I3 − I1

I0 − I2

]

The range of the principal values of the arctangent function is between [−π2 ; π2 ], which intro-
duces discontinuities in the calculated phase. We can use the properties of the tangent and
arctangent and increase the length of the range to [−π;π] using “Modulo 2π Phase Correc-
tion” [21], [22], or [0;2π] as done by other authors [3]. This comes from the fact that a tangent is
the ratio of a sine and a cosine, where the signs of the sine and cosine functions are usually un-
known. This is not true in our case, and we can use the knowledge of their signs to increase the
range of the arctangent. However, this technique can only lower the number of discontinuities,
not remove them altogether. The principle and conditions for Modulo 2π Phase Correction
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are given in Eq. (21, 22) and Table 6. The table uses the range [0;2π] as shown in the book of
Malacara.

t an[φ(x, y)] = si n[φ(x, y)]

cos[φ(x, y)]
=

∑N−1
n=0 αn In∑N−1
n=0 βn In

(21)

∴
N−1∑
n=0

αn In ∝ sin
[
φ

(
x, y

)]
and

N−1∑
n=0

βn In ∝ cos
[
φ

(
x, y

)]
(22)

Table 6: Modulo 2π Phase Correction [3]

Sine Cosine Corrected Phase φ(x, y) Phase Range
0 + 0 0
+ + φ(x, y) 0 to π

2
+ 0 π

2
π
2

+ − φ(x, y) + π π
2 to π

0 − π π

− − φ(x, y) + π π to 3π
2

− 0 3π
2

3π
2

− + φ(x, y) + 2π 3π
2 to 2π

We call the calculated phase in the [−π; π] range (or [0; 2π]) “wrapped”. There is a need for
an algorithm that can locate the discontinuities at the edges of the range and create a smooth
phase surface. For example, assume we are moving along a certain direction on the raw phase
map and the phase gradually builds up, with small increments, to the value of 2π at a certain
pixel, the phase at the next pixel will drop down to 0 which is incorrect in the physical sense that
a phase map/wavefront is a smooth continuous surface. Instead, the phase at the next pixel
should be 2π+η, where η is the small increment. To get around this problem, multiple methods
for phase unwrapping have been devised. Based on their nature, they can be grouped into three
categories – “sequential methods”, “residues methods”, and “least squares methods [23].

4.3.1 The Phase Unwrapping Problem on a Surface

In this section we will look at the mathematical definition of the phase unwrapping problem on
a 2D surface. The problem of phase unwrapping has been discussed by various authors, how-
ever, in the paper of Shuvolov [21], a very clear general definition has been presented which will
be shown here.

Letψ(x, y) ∈R be the absolute phase in radians that we would like to obtain and let it be a scalar
piecewise-continuous function of the position arguments x and y . The CMOS sensor measures
the irradiance over the exit pupil of the test lens, hence the absolute phase, corresponding to
the measured irradiance must be defined over a closed domainΩ⊆R2. The surface spanned by
ψ(x, y) is called the surface of absolute phase.
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Let W [ .] denote the modulo 2πwrapping operator, which wraps the value of the absolute phase
ψ(x, y) between [0; 2π] for every point (x, y) ∈ Ω. Where we define a relative phase ϕ(x, y), as
directly obtained by the arctangent function.

W [ψ(x, y)] =φ(x, y) f or (x, y) ∈Ω (23)

Interferograms usually consist of discrete data, where the measured irradiances per pixel are
stored in an array, therefore, it is convenient to use discrete notation for the following opera-
tions. We can rewrite ψ(x, y) and φ(x, y) as:

Ψ= {ψm,n |m=0,...,M−1;n=0,...,N−1} Φ= {φm,n |m=0,...,M−1;n=0,...,N−1} (24)

HereΨ,Φ are arrays containing the values per pixel for the absolute and relative phase. The sub-
scripts m,n correspond to the m-th horizontal and n-th vertical pixel, where the CMOS sensor
has a total of M horizontal and N vertical pixels. It follows:

W [ψm,n] =φm,n f or m = 0, ..., M −1; n = 0, ..., N −1 (25)

The absolute phaseψm,n satisfies Eq.(25) if and only if the condition for congruence is satisfied.
That is:

ψm,n =φm,n +2π km,n , km,n ∈Z (26)

If no boundary conditions are introduced, Eq.(25) has infinitely many solutions. This can be
overcome by making use of the Nyquist sampling theorem. Here, the absolute difference of the
phase between adjacent vertical or horizontal pixels must not exceed π radians.

∣∣ψm+1,n −ψm,n
∣∣<π and

∣∣ψm,n+1 −ψm,n
∣∣<π (27)

We can denote the difference in the absolute phase between adjacent horizontal or vertical pix-
els in terms of finite differences as:

∆X =ψm+1,n −ψm,n and ∆Y =ψm,n+1 −ψm,n (28)

And the finite difference in the relative phase between adjacent horizontal or vertical pixels as:

δX = W [φm+1,n −φm,n] and δY = W [φm,n+1 −φm,n] (29)

The condition imposed by the Nyquist sampling theorem can be interpreted as the lack of dis-
continuities in the interferogram, which has the following consequences for the differences in
the phase given by Eq.(28, 29):

26



∆X (m,n) = δX (m,n) and ∆Y (m,n) = δY (m,n) (30)

Another boundary condition stems from the definition of ψ(x, y). We mentioned that it is “a
scalar piecewise-continuous function” and as such the curl of its gradient must be 0. For a 2D
field this can be written as:

∇ψ=
[
∂ψ

∂x
;
∂ψ

∂y

]T

= [
ψm+1,n −ψm,n ; ψm,n+1 −ψm,n

]T (31)

cur l
(∇ψ)= ∂2ψ

∂x2
− ∂2ψ

∂y2
= 0 (32)

Equation (25) can be rewritten in a discrete manner, in terms of the values per pixel:

δX (m,n)+δY (m,n +1)−δX (m +1,n)−δY (m,n) = 0 (33)

Taking into account the various conditions mentioned thus far, the phase unwrapping problem,
as defined by Eq.(23) has one unique solution if the phase at a certain starting point (m0,n0) is
chosen as ψ0. From the starting point, the phase at any other point can be calculated in terms
of a sum of finite differences along a path P , leading to that point:

ψ (m,n) = ψ0 (m0,n0)+
∑
i∈P
∆i (34)

So far, only the ideal case has been discussed with the two boundary conditions defined by the
Nyquist sampling theorem Eq.(27) and the curl of the gradient Eq.(32). However, we must in-
vestigate the relationship between them. According to Shuvolov, satisfying Eq.(33) guarantees
uniqueness of the solution but doesn’t guarantee that Eq.(27) is also satisfied, where Eq.(27) is
a requirement for the solution to be true.

In the cases where the interferogram contains linear discontinuities, whose end points lie out-
side of the interferogram or closed-loop discontinuities inside of it, then Eq.(33) will be satisfied
everywhere, while Eq.(27) will be compromised at the points corresponding to the discontinu-
ity. In many practical cases, including lens testing interferometry, the phase discontinuities lead
to the so-called “singularity points”, which are the endpoints (pixels) of the linear discontinu-
ities where Eq.(33) is not satisfied. In these cases the phase unwrapping problem, as defined
by Eq.(23, 27) stops existing. It doesn’t present any difficulty to determine the locations of the
linear discontinuities, however, they introduce ambiguity, which is related to their position on
the interferogram.

The essence of phase unwrapping algorithms is to remove ambiguity in the phase. Ambiguity
spans a set of various possible solutions for the phase map ψ(x, y). The phase unwrapping al-
gorithm is essentially a problem for the optimization of a certain functional over the set of all
possible solutions. The optimization returns a single solution from the set.
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4.3.2 Sequential Methods

Sequential methods rely on scanning. The algorithm starts at a certain point (pixel) and un-
wraps the phase from there by integrating the wrapped phase map. Depending on how the al-
gorithm moves to the next pixels – integration path, the algorithm may be a “linear scanning”, a
“spiral scanning”, or a “multiple direction scanning” one. There are also sequential algorithms
that don’t follow a path at all and rather rely on a weighting function that gives information
about the reliability of the information for a certain pixel or region [24], [25], [26]. There are two
main approaches, including the boundary following and the region growing approach. Both
have their strengths and weaknesses.

The boundary following approach tries to find where the modulo 2π boundary is located and
adds a multiple of 2π to maintain the phase continuity. The drawback is that these algorithms
fail at regions with fast variations of the phase and where the phase information is corrupted by
noise and is unreliable [25]. Such regions cause errors that gradually build up over the path of
unwrapping.

The region growing approach relies on selected pixels, deemed “seeds”, from which the phase
map is unwrapped. Each “seed” pixel grows out a region, hence the name [27], [28]. This
method suffers from the same drawback as the boundary following approach and cannot com-
pensate for unreliable data. In addition, it is computationally heavier, although that in the case
of lens testing, presented in this report, we can tolerate heavier algorithms.

4.3.3 Residues Methods

The residues methods can be viewed as a complementary technique to the sequential meth-
ods as they are meant to correct and compensate for the noise that is present in the raw phase
map. Noise, as well as sampling errors, cause sinks and sources (“singularity points”) to form in
the map, known as “rotational residues”. In the mathematical sense these residues occur when
Eq.(32) is not satisfied, meaning that the ∇ψ(x, y) field has a non-zero rotational component.
Residue methods strive to eliminate the singularity points, so that the raw phase may be un-
wrapped using any of the previously explained sequential methods. In the paper of Flynn [24] a
useful expression for the residues map rm,n in terms of the relative phase φm,n has been given:

rm,n = 1

2π

[
W

[
ϕm+1,n −ϕm,n

]+W
[
ϕm+1,n+1 −ϕm+1,n

]]−
− 1

2π

[
W

[
ϕm,n+1 −ϕm,n

]+W
[
ϕm+1,n+1 −ϕm,n+1

]] (35)

4.3.4 Least Squares Methods

Least squares methods integrate the whole field, instead of having to follow a certain path or
use weighting function as in the sequential methods. There are two main types of least squares
unwrapping problems – weighted and unweighted, both of which amount to solving partial dif-
ferential equations in discrete form using different mathematics techniques. The idea behind is
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that the phase differences for the absolute phase ∆X ,∆Y must agree with the phase differences
for the relative phase δX ,δY as it was shown in Eq.(30). This is done using least squares, where
the parameter ε is to be minimized for a choice of ψm,n .

ε2 =
M−2∑

m

N−1∑
n

(∆X −δX )2 +
M−1∑

m

N−2∑
n

(∆Y −δY )2 (36)

Some examples include “Discrete Cosine Transform”, “Finite element”, and “Minimum L0 norm”
[29], [30], [31].

4.4 Zernike Polynomial Fitting

The OIS we are interested in, for this project, are circular symmetric, therefore only Zernike
polynomials will be considered as they are orthogonal over the unit circle. The weighting fac-
tors per polynomial are called Zernike coefficients, and can tell us what and how much of a
certain aberration is present in the wavefront. To calculate them, we must first solve an opti-
mization problem. That is – the Zernike coefficients must be chosen such that we minimize the
error (difference) between the actual wavefront, as given by the phase unwrapping algorithm,
and the wavefront we construct by choosing the weighting factors (Zernike coefficients) for the
individual polynomials and summing them up. This step is called “Zernike polynomial fitting”.
The formula for calculating the Zernike polynomials in terms of polar coordinates is given in
Eq.(37).

Zn,m
(
ρ,θ

)= Rn,m
(
ρ
)

f or m = 0

Zn,m
(
ρ,θ

)= Rn,m
(
ρ
)

sin(mθ) f or m < 0

Zn,m
(
ρ,θ

)= Rn,m
(
ρ
)

cos(mθ) f or m > 0

(37)

Where Rn,m
(
ρ
)

denotes the radial function and is given by:

Rn,m
(
ρ
)= n−m

2∑
s=0

(−1)s (n − s)!

s!
(n+m

2 − s
)
!
(n−m

2 − s
)
!
ρn−2s (38)

As with any other algorithm, there is always a small numerical error as the polynomials are not
orthogonal over a discrete set of data points, such as the values per pixel as measured by the
CMOS sensor. Another important limitation is the maximum number of polynomials that can
be fit, as it is impossible to fit an infinite number of polynomials. This is due to the measure-
ment data being discrete and aliasing becoming a problem when high order terms are fit. For
example, the wavefront deviations caused by the production process of spherical cavities us-
ing “Single Point Diamond Turning” [33], cannot be represented with a reasonable number of
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Zernike polynomials. Because of that, there are residual terms that are not present in the re-
constructed wavefront obtained from fitting a finite number of polynomials. For ease of use
we will refer to this wavefront as the “fitted wavefront” (FW). The different polynomial fitting
techniques will be presented below.

4.4.1 Least Squares Fitting

A “Least Squares Fit” (LSF), is a common approach used in commercial software as it is easy to
implement, and the calculations are executed using arrays (vectors and matrices) which is com-
putationally efficient for the computer. As previously mentioned, we determine the wavefront
aberrations by expanding the wavefront in terms of a set of polynomials, orthogonal over the
pupil. The expansion coefficients (i.e. Zernike coefficients) can be determined by a minimiza-
tion problem. That is, a finite number of Zernike polynomials are used to estimate the wave-
front and the difference between the measured wavefront and the estimation is minimized by
solving a linear system of equations. The procedure for fitting Zernike polynomials using Least
squares is explained in the book of Mahajan [33] and is easy and straightforward to implement.

The wavefront aberration function W (x, y), that is – our aberrated wavefront as obtained by the
recorded interferograms, phase unwrapping, and scaling, can be expressed as a weighted sum
of J number of Zernike polynomials.

W
(
x, y

)= J∑
j=1

a j Z j (x, y) (39)

Here, Z j (x, y) is a scalar, which represents the j th Zernike polynomial evaluated at the loca-
tion (x, y) and a j is also a scalar, which is the Zernike coefficient. The variance of the aberration
function is given as:

σ2 =
J∑

j=5
(N j a j )2 (40)

Where N j is a normalization coefficient, also called the RMS factor. It is important to note that
in Eq.(40) the first 4 Zernike terms, corresponding to piston, x-tilt, y-tilt, and defocus, can be
omitted. In an interferometer, these terms do not represent properties of the lens but instead
arise from the alignment of the interferometer. As such, they are not considered in the calcula-
tion of the variance.

In a computer, the measured values per pixel are stored as data points in an array. For a 2D
interferogram the stored array is also two-dimensional and can be converted into a column
vector, containing all data points using the “flatten” function, depending on the programming
language used. We will denote this column vector as DN x1, where N is the total number of data
points. The column vector containing the estimated Zernike coefficients is denoted by â J x1,
where J is the number of Zernike polynomials. As indicated in Eq.(39), we need to evaluate all
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Zernike polynomials at all data points, hence the need for a matrix that stores the calculated
values – AN x J . Then we can write:

DN x1 = AN x J â J x1 (41)

To find an estimation for the Zernike coefficients we can multiply both sides by the inverse of
matrix AN x J , however, the matrix is not square-invertible. This can be overcome by taking the
pseudoinverse of it to obtain an expression for â J x1.

â J x1 =
(

AN x J
T AN x J

)−1
AN x J

T DN x1 (42)

A common approach to determine the quality of the wavefront fit is to look at the root-mean
square difference between the fitted wavefront Ŵ (x, y) and the measured wavefront W (x, y).
For a perfectly estimated wavefront, the difference is zero.

Q = 1

N

{
N∑

i=1

[
Ŵ

(
xi , yi

)−W
(
xi , yi

)]2

}1/2

(43)

4.4.2 Numerical Integration

Another approach for obtaining the Zernike expansion coefficients that is commonly found in
literature is using integration [3], [33]. For a continuous set of data, the individual expansion
coefficients can be calculated by integrating the measured wavefront, multiplied by the corre-
sponding Zernike polynomial over the whole unit circle. This method is more computationally
demanding and slower, however, it has certain benefits that will later be explained. The Zernike
coefficients an,m correspond to the Zn,m Zernike polynomial and measured wavefront W at the
point

(
ρ,θ

)
.

an,m = 2(n +1)

(1+δm0)π

∫ 2π

0

∫ 1

0
W

(
ρ,θ

)
Zn,m

(
ρ,θ

)
ρ dρ dθ (44)

As the Zernike polynomials are used for circular apertures, the formulas are often given in po-
lar coordinates. The n,m notation follows from Born & Wolf [34], however, attention has to be
paid as different authors tend to use different notations for the Zernike polynomials. The δm0

function in Eq.(44) is the Kronecker delta function, which can be expressed as:

δm0 =
{

1, f or m = 0
0, f or m 6= 0

(45)
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4.4.3 Comparison between Least Squares Fitting and Numerical Integration

According to Mahajan [33], the difference between the two methods is most noticeable for a
small number of data points, and in the presence of noise. For a number of data points of up
to a few hundred, without noise, the integration method yields better results compared to LSF,
due to coupling between lower and higher-order modes in the LSF method. If, however, noise
is present in the data set, the roles reverse. The integration method results worsen as noise in-
creases, meaning that LSF performs better in that case. For a large number of data points, both
methods perform approximately the same. The numerical error introduced by polynomial fit-
ting, considering the other two previously-discussed algorithms – PSA and Phase Unwrapping,
is expected to be the smallest and least relevant.

5 Foundations for Measurement Uncertainty Analysis

In the previous chapter, we examined the fundamental theory of interferometric measurements.
This included recording interferograms and obtaining interpretable results using Zernike poly-
nomial coefficients. However, each step in the process is subject to some error, which con-
tributes to the total measurement uncertainty of the system.

This chapter discusses the various sources of error in the measurement process. These errors
can arise from the computational aspect of the process, as well as from environmental and in-
strumentation factors. We will refer to these combined factors as “physical”.

5.1 Measurement Uncertainty: Computational Aspects

There is a very strong relationship between the data acquisition and processing of the recorded
interferometric data and the environmental and instrumentation factors that influence the
measurements. In section 4.2.2 it was shown that PSAs require a certain number of recorded
interferograms and may have the capabilities to compensate errors. These errors inevitably
introduce uncertainties in the recorded data and subsequently – in the calculated Zernike co-
efficients.

5.1.1 Issues in Phase Unwrapping

In section 4.3, the general theory of phase unwrapping was presented. The seemingly trivial
problem of locating the discontinuities originating from the principal value range of the arct-
angent function is perhaps one of the faster developing fields related to interferometry.

This section provides a brief overview of common issues encountered during phase unwrap-
ping and reiterates the importance of robust phase unwrapping algorithms. It should be stated
once more that the issue of phase unwrapping is not exclusive to the method used to deter-
mine the phase, but rather it is an inherent problem in numerically determining it. We’ll begin
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by discussing the fundamental principles of a phase unwrapping algorithm and why the basic
example of 1D phase unwrapping, commonly found in textbooks, is not practical in real-world
applications.

In almost every textbook that covers interferometry, phase unwrapping is usually explained in
terms of a one dimensional graph, a cross-section of the wrapped phase, where the range of the
values is the principal value range of the arctangent [−π;+π]. The most prevalent explanation
is that the phase unwrapping algorithm identifies abrupt discontinuities in the wrapped phase
and corrects for them by aligning the smooth regions, as demonstrated in the example in Fig.(10
- 13).

Figure 10: The wrapped phase obtained from
computer-generated interferograms.

Figure 11: The unwrapped phase for the same
example.

Figure 12: Cross-section of the wrapped phase
wrapped between the principal value range of

the arctangent

Figure 13: The unwrapped phase of the same
cross-section

Here, an ideal case has been shown by analyzing computer-generated interferograms. The sim-
plest example of a phase unwrapping algorithm unwraps both row- and column-wise to correct
for the discontinuities. This algorithm, however, is extremely vulnerable to noise and errors as
it does not have any built-in defenses to counter their effects. Suppose the phase contains a
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simple noise spike. In the previously-mentioned example, the algorithm would mistakenly con-
sider this point for a phase wrap and deliver incorrect result. However, the unwrapped phase
at all consecutive points from there on is also going to be incorrect, ensuring an incorrect end
result.

Therefore, the purpose of PU algorithms is to be insensitive to such disturbances, recognize
them and correct for them. The 4 most common errors in phase unwrapping will be laid out.

1. Noise in the phase data: Even in a state-of-the-art laboratory environment, some amount
of noise in the interferograms is unavoidable. In the case of Gaussian noise, the subsequently
obtained phase data appears to have a grainy structure, where the boundaries between the
wrapped regions appear less defined. This noise causes the aforementioned noise spikes, the
effect of which can be detrimental. Therefore, a robust phase unwrapping algorithm may also
act as a low-pass filter to an extent depending on the built-in defenses against noise corrup-
tion [48].

2. Discontinuities: On instances where the field we are trying to measure contains actual dis-
continuities, the PU algorithm may fall prey to its own compensation capabilities and incor-
rectly designate them as errors. This can especially be a problem when testing optical compo-
nents that contain sharp edges in their surface profile, such as Fresnel lenses and diffraction
gratings.

3. Regions of Invalid Data: Interferograms and phase maps with holes and gaps which do not
contain any fringe information require algorithms that can adequately correct for them. Such
empty regions may be caused by dust particles for example. In chapter 6, it will be shown that
the edge detection of the pupil causes such small gaps to appear in areas where the data mod-
ulation of the pixels is below a certain threshold.

4. Undersampling: Although the Nyquist sampling condition, as stated in Eq.(27), is a funda-
mental theoretical limit, undersampling can become an issue before reaching this theoretical
Nyquist limit due to the presence of noise. Nevertheless, the high density of pixels on a CMOS
sensor should be sufficient for our application.

5.1.2 Polynomial Fit and Discretization Error

The problem of Zernike polynomial fitting over the pupil is that of a function recovery over a
circular domain of discrete data points in the form of pixels. There exists extensive literature
on the many shortcomings one may encounter in the process, however, this lies outside of the
scope of the thesis. For detailed review of the theory on image reconstruction using Zernike
polynomials and image moments, the reader is referred to M. Pawlak’s book “Image Analysis
by Moments: Reconstruction and Computational Aspects” [49]. In this section we will limit the
focus to the two predominant errors one might expect when fitting Zernike polynomials over a
phase map dataset – geometric and numerical error.
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Geometric error refers to the way square pixels are used to represent the unit circle over which
polynomials are fit. Constructing a circle out of squares leaves a small area, which either re-
mains empty or extends beyond the circle’s border. This error can be decreased by using smaller
sized pixels, or otherwise said - increasing the pixel density inside the circle to create a finer grid.
Especially in small pixel grids (i.e. 20x20px), it is the predominant error source. An example of
the geometric error can be seen in Fig.(14, 15).

Figure 14: Illustration of the Cartesian pixel
grid for calculating Zernike moments

Figure 15: The boundary region defining the
geometric error

Numerical error, on the other hand, originates from the need to accurately calculate the dou-
ble integral used to find the Zernike coefficients, shown in Eq.(44). In the case where, a least
squares fit algorithm is used, this translates to the error caused by the finite set of data samples,
otherwise known as discretization error. However, the fit error is consistent and systematic, and
can therefore be subtracted from the measurements. Nevertheless, there is some uncertainty
in the fit coefficients, which can be estimated.

5.2 Measurement Uncertainty: Physical Aspects

Depending on their magnitude it is very possible that they can “throw-off” the measurements
by a large amount or even create a situation where due to misalignment there are ghost-images
present in the interferogram. Vibrations from the external environment are also a major con-
cern as they introduce errors in the phase of the recorded interferometric images and depend-
ing on the choice of algorithms to be used, this may give far-from-realistic results for the Zernike
coefficients. In the following subchapters the effects of these individual imperfections will be
discussed.
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5.2.1 Phase Shifter Errors

In section 4.2.2 we briefly explained how the behavior of different PSAs in the presence of
phase-shift errors can be analyzed and how certain algorithms have the property of suppress-
ing these errors. However, the source of such errors is physical as they originate in the phase-
shifter. There are several errors related to the phase shifting process when conducting interfer-
ometric measurements – “phase-shifter miscalibration”, “linear phase-shift error”, “nonlinear
phase-shift error”. As the “phase-shifter miscalibration” and the “nonlinear phase-shift error”
are systematic, they require special attention when precise interferometric measurements are
required [35].

Errors arising from miscalibration, and nonlinearities can be reduced by simply purchasing a
very linear phase-shifter, however, there are different ways that require attention. For example,
it is possible to determine the voltage signal supplied to the phase-shifter, for which it provides
a linear phase shift. [36], [16]. Another practical way of reducing the errors is by picking a phase
shifting algorithm that takes multiple measurements, however, the algorithm in question needs
to have this ability.

It is also possible to suppress nonlinear phase-shift errors by adding a linear bias to the move-
ment of the phase-shifter. This can be achieved by making sure that the stepping is over a 2π
range and by adding a 2π change in consecutive phase steps [37].

While the phase-shift errors may often present a problem, it is worth nothing that the phase
errors introduced are usually very small, especially when phase shift algorithms better than the
simple 3- and 4-step are used.

5.2.2 Detector Nonlinearity

Detector nonlinearities arise because there is a nonlinear relationship between the irradiance
that is incident on the detector and the outputted voltage. In our case a CMOS detector is used.
It is possible to adjust the gain of the camera, so that it will operate in the most linear part of its
gain curve. However, it is important to look at the consequences that the nonlinearities in the
detected irradiance can have on the measured interferograms. Recall Eq.(7):

I
(
x, y, t

)= I ′(x, y)+ I ′′
(
x, y

)
cos

[
δ (t )+ ϕ

(
x, y

)]
It can be rewritten in terms of the fringe contrast γ(x, y) and the average intensity I ′(x, y).

I = I ′
[
1+γcos

[
ϕ+δ]]

(46)

The nonlinear detected irradiance up to and including the second order term can be written as:

Idet = I +ε I 2 (47)

36



Then if we substitute Eq.(46) into Eq.(47) we get an equation for the detected irradiance in terms
of the actual irradiance I and the error coefficient ε. Here, third and higher order nonlinearity
terms have been omitted to show the calculation, but they can be considered as well.

Idet = I ′
(
1+εI ′

)+ I ′
(
1+2εI ′

)
γcos

(
ϕ+δ)+ ε

2

(
I ′γ

)2 {
1+cos

[
2
(
ϕ+δ)]}

(48)

Here the cos
[
2
(
ϕ+δ)]

term follows from the formula:

cos2 (θ) = 1+cos(2θ)

2
In the paper of Creath [37], she shows the simulated phase error and the peak-to-valley (PV)
phase error caused by 10% second and third order nonlinearities in terms of the used phase
stepping algorithm.

Figure 16: Phase Error 10% 2nd order detector
nonlinearity [37]

Figure 17: Phase Error 10% 3r d order detector
nonlinearity [37]

Figure 18: P-V 2nd order nonlinear detector
error [37]

Figure 19: P-V 3r d order nonlinear detector
error [37]

From Fig.(16-19) we can see that the phase errors introduced by nonlinearities in the detec-
tor for the 3-step algorithm [4] are in the order of a few mλ. Although, a nonlinearity of 10%
is largely exagerated. Nevertheless, we can see that the phase error introduced by nonlinear-
ities drops down fast as an algorithm with more steps is chosen. The Carré [38] and 4-step
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algorithm [5] both use phase steps, however, in the algorithm of Carré it is not required for the
phase step to be constant, while for the 4-step algorithm the phase step is known and equal to
π
2 . This can explain why one outperforms the other.

5.2.3 Camera Quantisation

Camera quantization error refers to the phase error introduced from the analog-to-digital con-
version that occurs when the analog signal from the detector is converted into a digital one with
discrete intensity levels. In his paper [39], Brophy derives a simple formula for the rms phase
error caused by quantizing the irradiance for the family of phase stepping algorithms where the
step is equal to π

2 . This can be seen in Eq.(49). Furthermore, he also provides a general expres-
sion, from which Eq.(49) is derived, that can be used for analyzing the phase error caused by
intensity noise given a model and a choice for PSA.

σϕ = 1p
3γK

(49)

Here σϕ denotes the rms phase error, γ – the fringe contrast, and K is the number of quantized
irradiance/intensity levels. For example, for an 8-bit camera K = 28 = 256 discrete irradiance
levels, where the lowest recorded irradiance level in the interferogram corresponds to the inte-
ger value of 0 and the highest to 255. The fringe contrast also plays an important role, as low
fringe contrast increases the rms-phase error.

In the case of our metrology setup, the camera’s analog-to-digital converter (ADC) has 12 bits,
which, as seen from Fig.(20), exhibits small rms phase error. However, in the data file, contain-
ing the discrete irradiance measurements per pixel, the values are in the range [0;255] which
is the range for 8-bits. Additionally, it is worth investigating what the fringe contrast from the
recorded interferograms is, as the simulation in Fig.(20) uses maximum fringe contrast, there-
fore a real-world measurement is expected to have a lower value for γ and thus a higher rms
phase error. Nevertheless, it is expected that the contribution of this error source to the overall
uncertainty of the interferometric measurements should be small if not negligible.

Figure 20: RMS phase error due to intensity quantization for γ= 1 [37]
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5.2.4 Camera Noise

To acquire good optical metrology data, it is important to consider how different noise sources
affect the measurements. When considering the output signal of the CMOS sensor, the goal
is to achieve the best signal-to-noise ratio (SNR) possible. In the case of our metrology setup,
two different cameras are used – “IDS UI-3060SE-M-GL” and “SWIR1300KMA”. Their respec-
tive sensors are the Sony IMX174LQJ-C, and the Sony IMX990. The larger the output signal, the
higher the SNR, however, there are certain limitations to that. To examine the different noise
sources, we must first consider the measurement principle of the sensor.

In linear array detectors, incoming light falls on the many pixels of the sensor, called photosites.
The falling photons excite electrons on the photosite and over a short period of time current is
accumulated (integrated). This period is called the integration time. Once the integration time
has passed, the pixel is emptied of the accumulated current during its read-out. However, this
process is not ideal, and several factors have to be taken into account, such as “photosite satu-
ration”, “dark current”, “quantum efficiency”, “conversion efficiency”, etc.

Every pixel has a maximum amount of charge it can store. This is called the “full well capacity”.
An absorbed photon generates an electron on the pixel. Once the charge storage capacity of it
has been reached, the photon can no longer generate an electron. This occurs in the case of too
many photons falling on the surface. A different phenomenon happens in the instances of too
little photons – “shot noise”, where the number of photons arriving on a pixel follows a Poisson
distribution.

Not every photon manages to excite an electron. This is called “quantum efficiency” – Q, and
is usually provided in the datasheet for the sensor. For example, a quantum efficiency of 75%
means that only 75% of the fallen electrons do generate an electron. A similar parameter to
keep in mind is the conversion efficiency α. It relates to the percentage of accumulated elec-
trons that are converted to digital counts when reading-out the photosite.

An interesting phenomenon is the “dark current”. It occurs from thermally excited electrons.
Therefore, even in the absence of light current will be accumulated on the photosite. The
amount depends on the temperature. A measurement of the current in a pixel therefore con-
sists of the following components [40] as indicated by Eq.(50).

m = s +d +b + r (50)

Where m is the measured current, s is the “photocurrent”, d is the “dark current”, b is the fixed
voltage offset added to the analog-to-digital converter, and r is the readout noise. Expressions
for the photocurrent and dark field are provided by Eq.(51) and Eq.(52).

s = αQN (51)

d = αβ (T ) t (52)
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Here, N is the number of photons, β(T ) is the temperature dependent dark current coefficient,
and t is the chosen integration time. The noise in the photocurrent is the shot noise, and it was
previously mentioned that for large number of photons the shot noise follows a normal dis-
tribution. Therefore, the width of the distribution will be

√
QN . We can also assume that the

noise originating from the dark current also follows a normal distribution with width
√
β(T )t .

Therefore, the noise from the two sources can be written as:

nphot = α
√

QN nd ar k = α
√
β(T )t (53)

The formula for the total noise in the measurement in the case where it is assumed that the
noise sources are independent and normally distributed is:

ntot =
√

n2
phot +n2

d ar k +n2
r ead +n2

bi as (54)

In Eq.(54) nr ead refers to the read-out noise which is unavoidable and depends on the read-
out speed, while nbi as is the bias noise and depends on the read-out electronics. The formula
for the SNR in terms of the number of photons and different noise sources is provided in Eq.(55).

SN R = αQN√
n2

phot +2n2
d ar k +2n2

r ead +2n2
bi as

(55)

The reason for the factor “2” is because the signal “s” is defined by two separate measurements
– the first measurement being done with the laser turned ON and the second, dark measure-
ment, being done with the laser turned OFF [40]. In this way we can remove the contribution of
the dark current and baseline to the measurements.

We have shown that the measurement process is not ideal and introduces certain errors aris-
ing from its physical limitations. So far, the conducted initial measurements haven’t indicated
a possible corruption of the measurement data due to noise errors originating from the cam-
era. It is also worth investigating how much freedom the two camera models allow in terms of
adjusting their data-acquisition process and measurement settings and whether such adjust-
ments would considerably influence the result, obtained from the measured interferograms.

5.2.5 Vibrations

External vibrations and air turbulences can be a significant error source. However, the measure-
ments are conducted in a clean room environment and the setup is located on an air-damped
table. To further limit the effects of air turbulences, the setup is enclosed in a black box made
from polycarbonate, which also serves to isolate it from the lighting in the room.

Vibrations, on the other hand, are currently a problem especially when using the spherical mir-
ror, as shown in Fig.(3). The observed fringes are vibrating with a frequency that hasn’t been yet
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determined. In the paper of Ai [41], the effects of vibrations are considered. It was found that in
the case that vibrations can be approximated by a single frequency oscillation, the phase-error
introduced by said oscillation is periodic and has a frequency of twice the spatial frequency of
the interference fringes.

Different attempts can be made to limit the effect of vibrations. For example, changing the cur-
rently used 3D printed plastic support of the spherical mirror with a metal one, mounting the
OIS under test and the spherical mirror on the same X, Y, Z-stage, analyzing the oscillation fre-
quency of the fringes and compensating for it.

5.3 Measurement Uncertainty Evaluation Model

There exist two main approaches to evaluate the uncertainty of the acquired phase map – ana-
lytically, and through Monte Carlo simulations, none of which has been the object of extensive
studies [50], [51]. Both analyses consider the uncertainty of the calculated phase obtained from
the phase stepping algorithm of choice in the presence of different errors. This analysis is in-
complete as it doesn’t proceed to consider the subsequently introduced uncertainties through
the phase unwrapping and polynomial regression algorithms. Moreover, it assumes the re-
searcher has knowledge about the uncertainty originating from individual error sources, which
is often not the case. For example, the camera noise floor may be stated in the datasheet, but
other quantities such as the background irradiance drift or the mid-spatial frequencies (MSF)
present in the reference mirror may require separate measurements using additional equip-
ment. This introduces its own difficulties. Hence, an uncertainty analysis model that limits the
requirement for extra procedures is favored.

We propose two Measurement Uncertainty Evaluation Models. The first combines the already
established analytical approaches [50] to obtain the measurement uncertainty per calculated
Zernike coefficient. The second model uses Monte Carlo simulations that, as far as the author
is aware, has not been utilized before. In both models, we strive to extract as much information
as possible from actual measurements in order to limit the need for additional tests and equip-
ment. In chapter 6 the results will be presented, however, the procedure will be outlined here.

5.3.1 Analytical Uncertainty Evaluation Model

The Analytical Uncertainty Analysis of linear PSAs has been developed largely by E. Hack [50] in
accordance with the “Guide to the Expression of Uncertainty in Measurement” (GUM) [52]. His
proposed method builds up on Freischlad’s and Koliopoulos’ early attempts at evaluating the
uncertainties in the measured phase map originating from random errors by applying Gaussian
error propagation to different PSAs [10].

The analytical formulas provided by Freischlad and Koliopoulos give an insight into the vari-
ance introduced by a small number of error sources. However, the given formulas are limited
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in their applicability as they cannot directly be used to extract information from actual mea-
surements. Instead, they offer an understanding of how errors affect the phase measurement.
The subsequent expansion of the theory by E. Hack considers many more error sources, how-
ever, the downside is that the provided formulas assume the user has knowledge on the vari-
ation of important measurement parameters a priori. In some cases the information must be
taken from the datasheet of an instrument (i.e. camera gain fluctuations), where we cannot
immediately verify that the stated value is correct for our particular instrument, unless exten-
sive troubleshooting and testing of the individual instrument is employed. Nevertheless, it is a
useful tool if the obtained results are taken with a grain of salt. The following equations show
the necessary preliminaries for acquiring the combined variance of the phase measurement,
according to Hack. To obtain the measurement uncertainty in terms of the calculated Zernike
coefficients an additional technique must be used, where the phase measurement uncertainty
is translated to uncertainty of the fitted Zernike polynomials.

Let us first recall the expression for the calculated phase in terms of the arctangent function and
the sampling weights that is given by Eq.(17).

φ(x, y) = arctan

∑N−1
n=0 αn In∑N−1
n=0 βn In

= arctan
G sin(φ)

G cos(φ)
(56)

Where αn and βn are real coefficients, previously referred to as the sampling weights of the al-
gorithm, and G is a scaling factor, also referred to as "gain". We can rewrite the coefficients in
vector form and introduce two additional vectors ~A and ~B , which depend on the phase step
∆0. . . N−1.

~α=


α0

α1
...

αN−1

 ~β=


β0

β1
...

βN−1

 ~A =


sin(∆0)
sin(∆1)

...
sin(∆N−1)

 ~B =


cos(∆0)
cos(∆1)

...
cos(∆N−1)

 ~I =


I0

I1
...

IN−1

 (57)

In order to simplify the expressions for the phase measurement uncertainty, Hack rewrites the
sampling vectors~α and ~β as the complex vector~c, as well as the vectors ~A and ~B as the complex
vector ~C , where:

ck = bk + i ak = |ck |exp(iδk )

Ck = Bk + i Ak = exp(i∆k )
(58)

Here, ∆k are the phase step angles and δk are called coefficient angles, which can be calcu-
lated from Eq.(58) and obey a similar linear relation as the phase step angles. The formula for
calculating the combined variance of the phase map is shown in Eq.(59).
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u2(ϕ, Sk ) = 4

I ′′2
∣∣~c · ~C ∣∣2


N−1∑
j=0

|c j |2 sin2(ϕ−δ j )u2(S j ) +

+
N−1∑
j=0

N−1∑
k> j

|c j ||ck |si n(ϕ−δ j )si n(ϕ−δk )u(S j ,Sk )

 (59)

Here, u(S j ) is the individual signal uncertainties and u(S j ,Sk ) are covariances between the indi-
vidual signals. The formula calculates the variance of the phaseφ per pixel, hence, the values of
φ and I ′′2 are per pixel, or otherwise said - per datapoint. However, we require information on
many individual signal uncertainties, which may be a downside to this model. Hack provides a
table with formulas for quantitative evaluation that is used to find said uncertainties. The full
table can be found in Appendix A.

The expression above gives the uncertainty per data point of the phase map, originating from
various error sources. The phase map has to then be unwrapped using a phase unwrapping
algorithm. This operation introduces some error, however, its nature is that of a systematic one
that is more noticeable around edges and discontinuities, rather than a random error acting
over the whole phase map. That is not to say that it can be ignored altogether, however, ana-
lytical evaluation of the uncertainty that is introduced by the phase unwrapping algorithm is
beyond the scope of this report. To the author’s knowledge, there doesn’t exist a single unified
theory or extensive research on the uncertainty caused by phase unwrapping algorithms as they
are very diverse in their principles of operation and often times unpredictable. However, if such
a theory were to exist, it may be incorporated in the current model. We will proceed under the
assumption that no errors or uncertainties are introduced by phase unwrapping.

The following step, as outlined by section 4.4, is the fitting of Zernike polynomials. The most
popular methods are the least-squares fitting techniques as they offer high computational effi-
ciency due to their convenient matrix forms. Throughout the project, we have only employed
linear least-squares fitting to evaluate the Zernike polynomials as the number of datapoints in
the recorded interferograms are of the order of several hundred thousand and the number of
fitted polynomials ranges up to 80.

It was already mentioned that polynomial regression techniques introduce errors, hence the
fit coefficients have an uncertainty that doesn’t stem from any uncertainties in the dataset but
rather occurs from the fitting process itself. The usual way to obtain said uncertainties of the fit
coefficients is to take the diagonal elements of the covariance matrix. However, in order to ac-
quire the confidence intervals for the fitted coefficients, we must employ a different albeit simi-
lar approach called the “Maximum Likelihood Method” [53]. It has the added benefit that in the
case the datapoints in our set have a known uncertainty/variance, the least-squares fitting al-
gorithm properly accounts for it by using the same variance as a scaling factor. This means that
datapoints, for which the uncertainty is high, will be deemed “untrustworthy” by the algorithm.

Hence, in regions with noisy data, such as those where pixel values exhibit medium to high-
amplitude oscillatory behavior, the least-squares fit algorithm is likely to incorrectly attempt to
fit high-order Zernike polynomial terms over the region. The expression for the quantity to be
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minimized χ2(â) in terms of the set of N datapoints ŷ and the fitting function ŷ(x; â), where
x is an independent variable responsible for the uncertainty in the fit data and â is the vector
containing the coefficients used to minimize χ2 is given by Eq.(60).

χ2(~a) =
N∑

i=1

[yi − ŷ(xi ; â)]2

u2(φi ,Sk )
(60)

In the expression above, you can notice that we have employed the variance of the phase map,
per pixel i , that is given by Eq.(59). In section 4.4, the expression for calculating the fitted
Zernike coefficients â J for J number of Zernike polynomials was shown as:

â J x1 =
(

AN x J
T AN x J

)−1
AN x J

T DN x1

Where DN x1 is a vector containing the datapoints and AN x J is a matrix of the fitting function,
in our case - J number of Zernike polynomials evaluated at each datapoint. We can rewrite this

equation in terms of the covariance matrix C J x J , where C J x J =
(

AN x J
T AN x J

)−1
. This gives us

Eq.(61). Here, if variance of the phase map u2(φ,Sk ) is not employed, the elements along the
diagonal of C J x J give us the variance of the coefficients due to the fit error.

â J x1 = C J x J AN x J
T DN x1 (61)

In the method of maximum likelihood, proposed by Richter [53], if we scale the matrix AN x J

and the vector DN x1 element-wise by dividing a particular datapoint by the standard deviation
for said datapoint, we can obtain the uncertainty of the fitted Zernike coefficients δâ. The new
matrix A′

N x J and vector D ′
N x1 would therefore contain the following components:

A′
i j =

Ai j

u(φi j ,Sk )
D ′

i j =
Di j

u(φi j ,Sk )
(62)

The uncertainties in the calculated Zernike coefficients, originating from the fit error, as well
as the various errors present throughout the interferogram measurement process, can then be
found using Eq.(63).

δ ˆa J x1 =C ′
J x J A′T

N x J D ′
N x1 (63)

5.3.2 Monte Carlo Uncertainty Evaluation Model

Compared to the analytical one, the Monte Carlo Uncertainty Evaluation Model can be de-
scribed in terms of a set number of procedures that need to be executed in a certain order,
rather than be represented by a compact set of formulas and equations. The main principle
of this model revolves around the idea that we can make a realistic simulation of the measure-
ment process using a computer model. By coupling the results from real measurements with
results obtained from the simulation model, we can extract information on several systematic
errors, which we can correct for. The model then requires statistical information about the ran-
dom errors present in our measurements. However, unlike in the case of the analytical model,
this information need not be translated to uncertainty in the phase map. It is also not always
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necessary to quantify individual noise sources, such as the noise originating from the camera,
the backround irradiance, laser source instability, etc. As long as the combined effect of said er-
rors over the pupil can be determined, this can easily be implemented in the simulation model,
where we can run Monte Carlo simulations to obtain the variance per calculated Zernike coef-
ficient.

There are two necessary preliminaries that are part of the model – an interferogram analyzer,
and an artificial interferogram generator. Both modules will be thoroughly explained in chap-
ter 6. There are several companies that offer commercial software for interferogram analysis.
However, in this project we have designed our own using the previously outlined principles of
interferometric measurements.

The procedure is as follows:

Step 1: Record real phase-stepped interferograms using an interferometer of choice. These can
be any number recordings depending on the phase-stepping algorithm of choice.

Step 2: Use the interferogram analyzer to acquire the wavefront and fit a set number of Zernike
polynomials over it. The results produced by the analyzer are the fit coefficients for the chosen
Zernike polynomials, which are our initial result.

Step 3: Reconstruct the wavefront using the same calculated coefficients and subtract the re-
constructed wavefront from the actual wavefront, as obtained after the phase-stepping algo-
rithm, the phase unwrapping algorithm, and wavefront scaling. This gives us the mid-spatial
frequencies (MSF).

Step 4: Plug the initially calculated Zernike coefficients, the obtained MSF into the artificial in-
terferogram generator. Generate artificial interferograms.

Step 5: Analyze the generated artificial interferograms using the interferogram analyzer. The
newly calculated Zernike coefficients will differ from the initial ones by a few mλ. This is due to
the effects of the MSF and the linear fit error. However, this is a systematic error which we can
store and remove later on. We will refer to this error as the “Systematic Error”.

Step 6: Plug any available statistical information on the error sources into the artificial inter-
ferogram generator together with the initially calculated Zernike coefficients. This is the heart
of the Monte Carlo simulation. A set number of cycles N is ran, i.e 500, where we generate and
subsequently analyze synthetic interferograms with added noise, taken from their respective
distributions. Each set of calculated Zernike coefficients is stored.

Step 7: Remove the systematic “Fit Error” from the datasets. Next, analyze the data by employ-
ing techniques like computing the sample’s mean and variance, and creating histograms and
boxplots.
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Flowcharts of the full process can be seen in Fig.(21 - 23). More detailed information on the
generation and analysis of the interferograms will follow in section 6.1. This also includes the
procedures through which statistical information on the error sources was obtained, as well as
the software implementation in terms of the used modules and finally - the obtained results.

Figure 21: Step 1-3: Description of the "In-
terferogram Analyzer" module as it is used
to extract the mid-spatial frequencies. The
input interferograms in the current case
must originate from real measurements.

Figure 22: Step 4-5: Description of the
"Interferogram Generator" module as it is
used to extract systematic "Fit Error". The
parameters depend on the PSA of choice.

Figure 23: Step 6-7: Overview of the general process of obtaining statistical datasets
per Zernike coefficient using Monte Carlo simulations and available information on
the random noise sources.

In the above flowcharts, the peach-colored blocks represent inputs, the dark blue ones rep-
resent individual operations inside a module, the green blocks stand for intermediate or final
results, the gray blocks may either be full modules, i.e. “Interferogram Generator”, “Interfer-
ogram Analyzer”, or represent miscellaneous operations such as the i counter. The light blue
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background defines a full module. In the flowchart shown in Fig.(23), the acquired Zernike co-
efficients per iteration are stored in a storage as a statistical dataset. It is up to the user to choose
an appropriate statistics technique for the evaluation of said dataset (i.e. histograms, boxplots,
etc.).

6 Experiments & Results

In this chapter the results from the conducted experiments will be presented. First, the sim-
ulation model used in the uncertainty evaluation of the interferometric measurements will be
presented in detail. Next, the acquired results for the systematic errors will be shown. The sys-
tematic error in our measurements consists of the added aberrations present in the reference
spherical mirror, the fit error originating from the polynomial regression model, and the mid-
spatial frequencies (MSF). Then, the procedure for obtaining the mid-spatial frequencies will
be outlined. The final section concludes the chapter with the results of the Monte Carlo simula-
tion for various amounts of random noise in terms of the individual uncertainty per calculated
Zernike coefficient.

6.1 Interferometric Measurements: Simulation Model

Perhaps the most important module is the one used for the analysis of the interferograms. It
takes real or artificial interferograms, computes the wrapped phase map using a PSA of choice.
We have only considered two PSAs – 4-step Wyant and 5-step Schwieder-Hariharan, both of
which use interferograms that are phase-stepped at 90°. However, the program can be used with
any PSA regardless of the number of interferograms required or the phase step. The wrapped
phase is then unwrapped using a PU algorithm. Two readily-available PU algorithms were im-
ported as modules in the Python script. The first one is a region-growing algorithm that was de-
signed by M. Herraez et al. The second one uses discrete cosine transform (DCT), was designed
by D. Ghiglia and L. Romero, and requires a weighting mask for best performance. The fitting
of Zernike polynomials is done using the least squares technique outlined in section 4.4.1. An
overview of the work principle of the full module is provided in pseudocode by Alg.(1).
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Algorithm 1 Interferogram Analyzer

1: Load interferograms, Include libraries, Include PU module, Include Cartesian Zernike poly-
nomials Z[j]

2: procedure CALCULATE WRAPPED PHASE(Interferograms: i nt f1, i nt f2, . . . , i nt fn)
3: Apply a PSA: φwr apped = at an2(PS Anumer ator ,PS Adenomi nator )
4: end procedure
5: procedure PHASE UNWRAPPING(wrapped phase: φwr apped )
6: Unwrap phase: φunwr apped = PU (φwr apped )

7: Scale r ad => mλ: Wavefront WF =
φunwr apped

4π∗10−3

8: end procedure
9: procedure POLYNOMIAL FITTING(WF, Number of polynomials: J)

10: Flatten the wavefront: DN x1 = WF.flatten()
11: Create empty AN x J array and fill it
12: for x = 1,2, . . . , xsi ze of WF do
13: for y = 1,2, . . . , ysi ze of WF do
14: for j = 1,2, . . . , J do
15: A[y ∗xsi ze +x, j ] = Z [ j ](x, y);
16: end for
17: end for
18: end for
19: Calculated Zernike Coefficients: â J x1 =

(
AN x J

T AN x J

)−1
AN x J

T DN x1

20: end procedure

The second important module, the Interferogram Generator, is described by Alg.(2). It gener-
ates a wavefront from a chosen set of Zernike coefficients – for example, the ones calculated by
the Interferogram Analyzer. The same applies for the average irradiance I

′
and the fringe mod-

ulation I ". We may either select values for them or use values as extracted by the Interferogram
Analyzer.

Here it needs to be reminded once more that there are 3 unknowns per pixel/datapoint – the
phase/wavefrontφ, average intensity I ′, and fringe modulation I ". As most PSAs use more than
3 interferograms, the problem of finding the unknowns becomes overdetermined. Therefore, I ′

and I " can be found using a least squares fit. Once found, they can be input in the Interferogram
Generator.
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Algorithm 2 Interferogram Generator

1: Load Zernike Coefficients C1,C2, . . . ,Cn , Include Cartesian Zernike polynomials as functions
Z [1,2, . . . ,n](x, y)

2: Optional: Load MSF, Load I ′ and I " as arrays
3: procedure RECONSTRUCT WAVEFRONT(Zernike coefficients)
4: Choose Wavefront/Plot dimensions: W Fsi ze = MSFsi ze = (xsi ze x ysi ze ) datapoints
5: for x = 1,2, . . . , xsi ze do
6: for y = 1,2, . . . , ysi ze do
7: WF[x, y] = C1Z1[x, y] + C2Z2[x, y] + . . . + Cn Zn[x, y]
8: end for
9: end for

10: Add the MSF: W F =W F +MSF
11: end procedure
12: Scale mλ => r ad : φ=W F ∗ (4π∗10−3)
13: procedure GENERATE INTERFEROGRAMS(φ, I ′, I ", ∆1,2,...,K )
14: for k = 1,2, . . . ,K do
15: for x = 1,2, . . . , xsi ze do
16: for y = 1,2, . . . , ysi ze do
17: Ik [x, y] = I ′[x, y] + I "[x, y]∗ cos(φ[x, y]+∆k )
18: end for
19: end for
20: end for
21: end procedure

The third module described by Alg.(3) uses the two previously-described modules where ran-
dom noise is added. As it is not an analytical uncertainty model, the effects of some noise
sources may be grouped together. For example, the laser instability, camera noise and shot
noise are grouped as simply Gaussian noise over the whole interferogram. The shot noise fol-
lows a Poisson distribution, however, for a high photon count, the distribution approaches a
normal one.

In the general theory of phase stepping interferometry, it is assumed that I ′ and I “ are constant
over the recorded interferograms. In reality that might not be the case and small variations are
very likely.

Finally, the phase stepping can never be ideal. There are certain self-calibrating PSAs that do
not require a constant phase step. However, they usually lack in their error-compensation abil-
ities. Also, this is not the case for Wyant’s 4-step algorithm or Schwieder-Hariharan’s 5 step
one as they require a constant phase step of 90°. The 5-step algorithm compensates fairly well
for phase step errors, however, this inevitably adds some amount of uncertainty in the mea-
surements. The maximum amount of phase-step error can be approximated by looking at the
datasheet of the piezo transducer of the flat reference mirror. Of interest is the repeatability
along the axis of movement, as well as the possible pitch and yaw rotation about the other two
axes that may occur during phase-stepping.
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Algorithm 3 Monte Carlo Uncertainty Evaluation Module Using Schwieder-Hariharan

1: Load Interferogram Analyzer, Load Interferogram Generator
2: Load Zernike Coefficients C1,C2, . . . ,Cn , Include Cartesian Zernike polynomials as functions

Z [1,2, . . . ,n](x, y)
3: Load MSF, Load I ′ and I ", Load Correction Coefficients cc1,cc2, . . . ,ccn

4: for k = 1,2, . . . ,K do
5: Add noise: I ′+δk I ′, I " +δk I ", ∆+δk∆, Gaussian Img Noise: G
6: procedure INTERFEROGRAM GENERATOR(Z Coeff, MSF, I ′+δk I ′, I " +δk I ", ∆+δk∆, G)
7: return Artificial Interferograms: i nt fk,1, i nt fk,2, . . . , i nt fk,5

8: end procedure
9: procedure INTERFEROGRAM ANALYZER(i nt fk,1, i nt fk,2, . . . , i nt fk,5)

10: return Calculated Zernike Coefficients: C ′
1,C ′

2, . . . ,C ′
n

11: end procedure
12: procedure CORRECT FOR SYSTEMATIC ERROR(Calc Z Coeff: C ′

1,C ′
2, . . . ,C ′

n , Correction Co-
eff: cc1,cc2, . . . ,ccn)

13: return C "
k,1,C "

k,2, . . . ,C "
k,n = C ′

1 + cc1,C ′
2 + cc2, . . . ,C ′

n + ccn

14: end procedure
15: end for
16: Plot Boxplots or Histograms Per Zernike Coefficient from C "

k,1,C "
k,2, . . . ,C "

k,n

6.2 Systematic Error Analysis

This section deals with the identification and removal of systematic errors in our measure-
ments. The systematic errors consist of the additional aberrations introduced in our measure-
ments by the spherical reference mirror of NA≤ 0.985, the error originating from the polynomial
regression, and the effect of the mid-spatial frequencies (MSF) on the calculated Zernike coef-
ficients.

6.2.1 Aberration Profile of the Spherical Reference Mirror

A major downside of Twyman-Green interferometers is the need for an optical reference to test
against. In our case that is the spherical mirror of NA ≤ 0.985 and the planar mirror. The spher-
ical mirror contains optical aberrations that inevitably make part of the measurements. How-
ever, an advantage is that we can rotate it by 180°. The uneven aberration terms of the spherical
mirror would then change sign and can be subtracted from the measurement. The principle is
explained below and can be seen in Fig.(24).

The wavefront W(x,y) can be expressed in terms of a sum of weighted polynomials (i.e. Zernike
polynomials). The individual polynomials can either be angularly odd or even. This can be
expressed as:
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Figure 24: Aberrated wavefront after reflection from the spherical mirror: a) spherical mirror at
0° b) spherical mirror rotated by 180°

W (x, y) =Weven(x, y)+Wodd(x, y) =

=
∞∑

i=0
ceven,i Peven,i (x, y)+

∞∑
i=0

codd,i Podd,i (x, y)
(64)

Rotating the spherical mirror by 180° about the z-axis has the effect of reversing the positive and
negative x- and y-axes as shown in Fig.(25).

Figure 25: Axes: a) prior to rotation of the spherical mirror b) after rotation of the spherical
mirror. Odd aberrations change their signs in the measurement.

Therefore, the wavefront after rotation can be expressed in terms of the coordinates of the initial
non-rotated axial system as shown in Eq.(65).

Wrotated (x, y) =W (−x,−y) =
∞∑

i=0
ceven,i Peven,i (−x,−y)+

∞∑
i=0

codd,i Podd,i (−x,−y) =

=
∞∑

i=0
ceven,i Peven,i (x, y)−

∞∑
i=0

codd,i Podd,i (x, y)

(65)
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A measurement using the spherical mirror, Wwith�� (x, y), contains the even and odd aberrations

introduced by the microscope objective, as well as the even and odd aberrations introduced
by the spherical mirror. Therefore we can write the expression for the measured wavefront in
terms of the individual components as:

Wwith�� (x, y) =Weven
obj

(x, y)+Wodd
obj

(x, y)+Weven�� (x, y)+Wodd�� (x, y) (66)

By conducting two measurements – the first with the spherical mirror at 0 degrees and the sec-
ond with the spherical mirror rotated by 180 degrees, and subtracting the two wavefronts, then
dividing by two, we can quantify the odd aberrations of the spherical mirror.

Wodd�� (x, y) =
Wwith�� (x, y)−Wwith�� (−x,−y)

2
(67)

Then an on-axis measurement is coducted using a planar mirror, Wwith(x, y), where the mirror

is placed at the focal point of the lens/objective under test. We can assume the planar mirror
doesn’t introduce additional aberrations when the wavefront is reflected. As light falls onto a
small point – a few microns in diameter, we assume the surface at that particular location to
be ideally flat. However, a planar mirror cannot be used to measure the odd aberrations of the
microscope objective. Upon reflection, the wavefront is flipped. This means that odd aberra-
tions change sign and are cancelled after passing through the microscope objective for a second
time. The measured aberrations are the even aberrations of the microscope objective.

Wwith(x, y) =Weven
obj

(x, y) (68)

The even aberrations of the spherical mirror can be found from Eq.(69). The result consists
of the odd aberrations of the objective and the even aberrations of the spherical mirror. We
can then represent the result in terms of Zernike polynomials, where the Zernike polynomials
can be separated into even and odd polynomials in terms of their angular dependence. The
angularly odd Zernike polynomials represent the odd aberrations of the microscope objective
and the angularly even Zernike polynomials the even aberrations of the spherical mirror.

Wwith�� (x, y)−Wwith(x, y)−Wodd�� (x, y) =Wodd
obj

(x, y)+Weven�� (x, y) (69)

In this way the aberration profile of the spherical mirror can be obtained. It can then be used
to measure over the field. Such a measurement is straightforward when the lens under test is a
telecentric lens (as in most ASML lenses of interest). The telecentricity guarantees that the pupil
is completely filled with light also for off-axis field points. Moreover, when a spherical mirror is
used in off-axis measurements, the telecentricity guarantees that for all field points one always
uses the same part of the spherical mirror. This much simplifies the correction of the measure-
ments for the aberrations in the spherical mirror. In Fig.(26, 27) the wavefront corresponding
to the odd and even aberrations present in the spherical mirror is shown.
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Figure 26: Wavefront corresponding to the
odd abberations present in the spherical
mirror. Tilt is removed.

Figure 27: Wavefront corresponding to the
even abberations present in the spherical
mirror. Piston and defocus are removed.

To obtain the whole aberration profile of the spherical mirror we can sum the wavefront con-
tributions from the odd and even aberrations. This aberration profile can later be subtracted
from subsequent measurements over the field.

6.2.2 Mid-Spatial Frequencies

Mid-Spatial Frequencies can often times be detrimental to the performance of a precision op-
tical instrument. In our measurements, their presence can be recognized in the concentric
patterns of the recorded interferograms, which originate from the reference sphere. They cor-
respond to the spatial frequencies, which are higher than the first 80 Zernike polynomials but
lower than the surface roughness. Their origin lies in the production process of spherical mir-
rors and their presence is largely unavoidable. Often times their effect is neglected and trivial-
ized, however, as the demand for more precise optical instruments increases, various attempts
have been made to correctly measure them and consider their effects in optical designs.

As we are investigating various potential culprits, that can introduce measurement uncertainty
in a Twyman-Green interferometer, we cannot leave the topic of MSF untouched. During vari-
ous experiments, where data from real measurements was purposefully introduced into simu-
lation models, it was found out that introducing MSF to synthetic interferograms has a notice-
able, yet predictable effect on the calculated Zernike coefficients.

In this section, first the procedure to separate MSF from interferometric measurements (Fig.21)
will be presented in detail. Then, the effect of the MSF on the calculated Zernike coefficients
will be considered.
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Obtaining the Mid-Spatial Frequencies

The MSF have a higher spatial frequency as compared to Zernike polynomials, which can be
used to our advantage. This means that the least squares fit algorithms wouldn’t be able to rep-
resent them in terms of Zernike polynomials, unless an unreasonably-large number of polyno-
mials is fit. Not only is this unnecessary, but it also presents itself as a problem, since a recorded
interferogram is effectively a discrete data array, meaning that there is a limit to the highest
polynomial order that can be fit before overfitting begins to take place due to discretization.
Therefore, if a reasonably-large number of Zernike polynomials is fit (i.e. 80), the MSFs would
not be represented in terms of Zernike coefficients and can therefore be obtained by subtract-
ing the reconstructed wavefront from the original one.

It is worth mentioning that this procedure does not yield the exact MSF, but rather the residual
wavefront that couldn’t be represented in terms of the first 80 Zernike polynomials. This resid-
ual contains the MSF together with the high-spatial frequencies. The high-spatial frequencies
originate from the surface roughness of the optical reference, which in our case is less than 1nm
for polished surfaces. We choose to refer to the residual wavefront as MSF as they have a pre-
dominant effect due to the clearly visible concentric grooves in the recorded interferograms.
Nevertheless, we do not omit the effects of high-spatial frequencies in our analysis.

The obtained MSF can be seen in Fig.(30). The piston, tilt, and defocus terms have priorly been
removed from the original and reconstructed wavefront for better visualization.

Figure 28: Wavefront as aquired by real in-
terferograms using Schwider-Hariharan’s 5
step PSA and Herraez’ PU algorithm. On-
axis measurement.

Figure 29: The reconstructed wavefront
from the first 80 fitted Zernike coefficients.
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Figure 30: The residual wavefront as obtained from subtracting the reconstructed one
from the original. This we refer to as MSF.

The figures above show the wavefront and the MSF after fitting of the first 80 Zernike polynomi-
als for an on-axis measurement as described in Fig.(2). The results for different field coordinate
measurements show that the MSF is constant for the most part where the peak-to-peak am-
plitude is of the order of ∼ 150−200mλ. In Fig.(31) and Fig.(32) you can see a comparison of
the MSF as obtained from an on-axis measurement and a measurement at field coordinates
(−25µm,−25µm).

Figure 31: The MSF obtained from the fit-
ting of the first 80 Zernike coefficients for
an off-axis measurement with field coordi-
nates (−25µm,−25µm).

Figure 32: The MSF obtained from the fit-
ting of the first 80 Zernike coefficients for
an off-axis measurement with field coordi-
nates (−25µm,−20µm).
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Effect of the Mid-Spatial Frequencies on the Calculated Zernike Coefficients

It is difficult to estimate beforehand the effect the MSF would have on interferometric mea-
surements. The reason for that are the two main algorithms employed – the phase unwrapping
algorithm and the polynomial regression model. We can predict that the MSF would have some
effect on the unwrapping of the phase. However, to what extent depends largely on the PU al-
gorithm of choice and how well it can compensate for noise. A similar situation arises with the
polynomial regression model. We know that spatial noise, as introduced by the MSF, would have
an effect on the calculated fit coefficients, however, it depends on the individual polynomial we
are fitting over the wavefront. For example, the results show that the calculated fit coefficient
for triangular astigmatism along "Y" (Z 3

-3) is less affected by fit error and the MSF originating
from the spherical mirror, as compared to tilt or defocus. In order to test the effects of MSF,
Fit and PU error on the calculated Zernike coefficients an experiment was conducted using a
simulation model. The individual procedures have been described by Alg.(4-6).

Algorithm (4) is used to find the Fit and PU error in the absence of any MSF. First, a wave-
front is generated using a chosen set of Zernike coefficients, then the wavefront is scaled and
wrapped in the principal value range of the arctangent function [−π;+π]. This operation re-
sembles the way the wrapped phase is usually obtained using a PSA and interferograms. The
wrapped wavefront is later unwrapped using a PU algorithm of choice, which inevitably intro-
duces some additional errors. Finally, the same polynomials used for the initial generation are
fit using a least squares approach. The calculated Zernike coefficients can be subtracted from
the original ones used in the generation step to arrive at the error per coefficient that the used
operations introduce.

Algorithm 4 Evaluate Systematic Error: Fit & PU

1: procedure GENERATE WAVEFRONT(Zernike coefficients, Wavefront dimensions)
2: Choose n Zernike coefficients: C1, C2, . . . , Cn

3: Choose Wavefront/Plot dimensions: W Fsi ze = (xsi ze x ysi ze ) datapoints
4: for x = 1,2, . . . , xsi ze do
5: for y = 1,2, . . . , ysi ze do
6: WF[x, y] = C1Z1[x, y] + C2Z2[x, y] + . . . + Cn Zn[x, y]
7: end for
8: end for
9: Scale to r ad & Wrap the wavefront in the range [−π;+π]

10: Unwrap the wavefront: PU algorithm of choice (i.e. Herraez, Ghiglia)
11: Scale back to mλ

12: Fit the n Zernike polynomials: C ′
1,C ′

2, . . . ,C ′
n

13: Calculate the difference between original & calculated: C1 −C ′
1,C2 −C ′

2, . . . ,Cn −C ′
n

14: Plot the results
15: end procedure
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Algorithm (5) differs from Alg.(4) in that it adds MSF to the generated wavefront. The full pro-
cedure is otherwise identical.

Algorithm 5 Evaluate Systematic Error: Fit, PU, MSF Added

1: procedure GENERATE WAVEFRONT(Zernike coefficients, Wavefront dimensions)
2: Choose n Zernike coefficients: C1, C2, . . . , Cn

3: Choose Wavefront/Plot dimensions: W Fsi ze = (xsi ze x ysi ze ) datapoints
4: for x = 1,2, . . . , xsi ze do
5: for y = 1,2, . . . , ysi ze do
6: WF[x, y] = C1Z1[x, y] + C2Z2[x, y] + . . . + Cn Zn[x, y]
7: end for
8: end for
9: Add the previously-found MSF to the Wavefront: W FMSF =W F +MSF

10: Scale to r ad & Wrap the wavefront in the range [−π;+π]
11: Unwrap the wavefront: PU algorithm of choice (i.e. Herraez, Ghiglia)
12: Scale back to mλ

13: Fit the n Zernike polynomials: C ′
1,C ′

2, . . . ,C ′
n

14: Calculate the difference between original & calculated: C1 −C ′
1,C2 −C ′

2, . . . ,Cn −C ′
n

15: Plot the results
16: end procedure

In Alg.(6), the MSF are added to the generated wavefront, then after phase wrapping and un-
wrapping they are subtracted.

Algorithm 6 Evaluate Systematic Error: Fit, PU, MSF Added & Subtracted

1: procedure GENERATE WAVEFRONT(Zernike coefficients, Wavefront dimensions)
2: Choose n Zernike coefficients: C1, C2, . . . , Cn

3: Choose Wavefront/Plot dimensions: W Fsi ze = (xsi ze x ysi ze ) datapoints
4: for x = 1,2, . . . , xsi ze do
5: for y = 1,2, . . . , ysi ze do
6: WF[x, y] = C1Z1[x, y] + C2Z2[x, y] + . . . + Cn Zn[x, y]
7: end for
8: end for
9: Add the previously-found MSF to the Wavefront: W FMSF =W F +MSF

10: Scale to r ad & Wrap the wavefront in the range [−π;+π]
11: Unwrap the wavefront: PU algorithm of choice (i.e. Herraez, Ghiglia)
12: Scale back to mλ

13: Subtract the previously-added MSF from the Wavefront: W F ′ =W FMSF −MSF
14: Fit the n Zernike polynomials: C ′

1,C ′
2, . . . ,C ′

n
15: Calculate the difference between original & calculated: C1 −C ′

1,C2 −C ′
2, . . . ,Cn −C ′

n
16: Plot the results
17: end procedure
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Figures (33) and (34) show the results for the systematic error per Zernike coefficient for two
used PU algorithms – Herraez’ and Ghiglia’s. The MSF is obtained from real measurements,
where it was shown that it is equivalent to the wavefront residual left after the fitting of the first
80 Zernike polynomials. In the current experiment, the effects on the first 10 Zernike polyno-
mials were considered. Hence, adding a residual should in theory have no influence on the
calculated coefficients. However, the results show there is some, which most likely comes from
the PU algorithm not performing as well. Nevertheless, the exact effect per coefficient can be
found using Alg.(4-6). This systematic error can then be removed from actual measurements.

Figure 33: The systematic error in the evaluated first 10 Zernike coefficients
as outlined in Alg.(4 - 6). Used PU algorithm: Herraez

Figure 34: The systematic error in the evaluated first 10 Zernike coefficients
as outlined in Alg.(4 - 6). Used PU algorithm: Ghiglia
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It is not recommended to subtract the MSF after adding them to the generated wavefront as the
PU algorithm has built-in defenses against noise, which act as a filter. This means that some
of the noise present in the MSF will be filtered out during PU. When we later subtract the MSF
from the unwrapped phase, we are adding the same noise back with a negative sign, hence why
in Fig.(33) and Fig.(34) for some coefficients it is noticeable that addition and subtraction of
MSF performs worse than addition only. Nevertheless, some form of error-compensation must
occur as we can see that the errors behave unpredictably.

6.3 Laser Instability and Camera Noise

There are various sources of error in interferometric wavefront measurements. One point of
concern is the stability of the used light source. In the conducted measurements various monochro-
matic CW lasers were used, as already outlined by Table 1. During live-video observation of the
interferogram image on the computer screen, small image intensity fluctuations were observed.
There are possible explanations for this, such as a fault in the electronics of the laser, unstable
power supply, faulty PID controller of the temperature control for the laser diode, or thermal
noise in the cavity of the laser diode. Lasers are complicated devices and laser troubleshooting
is very well a research area on its own. Therefore the exact causes of the instability fall outside
of the scope of this research. However, as the instability of the laser source is an observable
phenomenon, we can record it, quantify it, and use the results to update the simulation model,
from which measurement uncertainties are derived.

For the purpose of analyzing the irradiance fluctuations, the camera was positioned directly af-
ter the collimator lens as shown in the (figure below) and a recording was made. The 8bi t values
from a grid of pixels were recorded over a duration of 100s with a frame rate of 75 f ps. A total of
5000 frames with a size of (96px X 96px) were recorded. The frames were then processed using
the statistical analysis proposed in this subsection.

It is worth noting that the analysis assumes Gaussian distribution of the random variables. This
assumption can be validated by taking a look at how the pixel values change over the span of the
recording. In Fig.(35) the distribution of the central pixel value over the recorded 5000 frames
has been shown. We can see that the values follow a Gaussian distribution and are centered
around a mean. Subsequently, the mean values per pixel over all 5000 frames were calculated
and the distribution over the grid has been plotted. This can be seen in Fig.(36). Again, a famil-
iar Gaussian distribution appears.
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Figure 35: Distribution of the val-
ues of the central pixel over the 5000
recorded frames.

Figure 36: Distribution of the mean
values of the pixels on the grid over
the 5000 recorded frames. (Ensemble
of the mean values as seen in Fig.(35))

6.3.1 Statistical Analysis of Recorded Irradiance

The experiment was conducted in a dark room to minimize the effects of stray light. Two types
of recordings were created – with the laser ON, and the laser OFF. We will refer to the former
as “Light Frames”, and to the later as “Dark Frames”. In the ideal scenario, the 8bi t pixel value,
representing the irradiance is constant, however, due to laser instability, dark current, camera
electronic noise, etc., the irradiance values tend to oscillate around a mean, and over the ob-
served time period of 66s even the mean is shown to drift. This can be seen in Fig.(37) and
Fig.(38). The first figure is a good indicator of the irradiance drift present in our measurements.

Figure 37: The figure shows the dif-
ference between the mean pixel value
per frame and the mean over all 5000
frames.

Figure 38: Change in the pixel value
of the central pixel on the grid over all
5000 frames.

Before the statistical analysis model is explained, it is worth noting the relationship between
the duration of the recording and the recording of interferograms while lens testing. When test-
ing a microscope objective, for example, the camera captures 5 interferograms, each 90° out of
phase compared to the previous one. The images are taken over a period of 1000ms, where the
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delay time between adjacent images is 200ms. Therefore, the observed drift in Fig.(37), over
the duration of 70 seconds is not relevant to us, unless we increase the delay time between ad-
jacent image captures. For this purpose, it is worth conducting the statistical analysis in terms
of “windows”, where each window has a length of 1000ms. Fig.(39) and Fig.(40) show how the
value of the central pixel on the grid varies inside the 1st , 5th and 10th window for the “Light
Frames” and “Dark Frames”.

Figure 39: Laser ON: Change of the
values of the central pixel with respect
to the mean, shown for the 1st , 5th ,
and 10th measurement window.

Figure 40: Laser OFF: Change of the
values of the central pixel with respect
to the mean, shown for the 1st , 5th ,
and 10th measurement window.

By knowing how the irradiance changes on average per pixel, during said timespan, we can
model this change as a Gaussian noise with a certain mean and standard deviation which will
be quantified at the end of this section. We can later implement this noise in the Monte Carlo
simulations to find the uncertainty for the calculated Zernike coefficients and hence bring our
simulation model closer to reality. A graph of the full process for the analysis of the recorded
frames is provided in Fig.(41).
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Figure 41: Overview of the procedure for conducting statistical analysis on
recordings in order to acquire information about the laser instability, camera
noise, shot noise, and irradiance drift. The figure shows an example analysis
with the Laser ON (Light Frames).

We start by grouping frames together into time intervals we already referred to as “windows”. A
total of 5000 frames were recorded, where the camera recorded 75 frames per second. We group
the frames into 66 windows and calculate the mean and standard deviation µn(i , j ),σn(i , j ) per
individual pixel on the grid for each individual window n, as shown. For a selected pixel at a
location (i , j ), we then calculate the average mean and standard deviation µAV G (i , j ),σAV G (i , j )
from the individual means and standard deviations for all 66 windows –µ(1. . . 66)(i , j ),σ(1. . . 66)(i , j )
to arrive at the four plots shown in Fig.(42-45).

Figure 42: Laser ON: Mean of the
change of the pixel values, averaged
over the windows. Due to the irradi-
ance drift, the mean is not 0.

Figure 43: Laser ON: Standard devia-
tion of the change of the pixel values,
averaged over all the windows.
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Figure 44: Laser OFF: Mean of the
change of the pixel values, averaged
over the windows. Due to the irradi-
ance drift, the mean is not 0.

Figure 45: Laser OFF: Standard devia-
tion of the change of the pixel values,
averaged over all the windows.

In the standard deviation plot we recognize a beautiful box pattern which originates from how
the pixels on the CMOS sensor are grouped together in 8x8 cells. The domino-like pattern of the
standard deviation from the “Light Frames” may come from electronic noise in the cell, caus-
ing certain pixels from the cell to be more or less sensitive to incoming photons. In the “Dark
Frames” case, the same pattern is not observed. However, a possible explanation is that for low
light levels the difference in the sensitivity for individual pixels in the cell is negligible and a
possible averaging for the whole cell takes place. Only at the edge pixels of the cell do we see
a higher standard deviation/variance as there would some amount of uncertainty whether an
incoming photon is registered in the current cell or the cell adjacent to the cell’s edge.

The fine patterns shown above are an interesting thing to observe, however, we need to trans-
late these results into useful parameters. The values for the mean and standard deviation are
given in the 8bi t value range [0;255]. Therefore we can already see that the amount of noise
corrupting our image, originating from the spontaneous change in the pixel values over time is
small.

µAV G ,pl ot =
0.01426

256
= 5∗10−5 ≈ 0

σAV G ,pl ot =
1.345

256
= 0.00525

From the two plots for the standard deviation, we can see that there are certain locations where
the values are higher than the average value for the whole plot, namely, of the order of 2. The
maximum recorded standard deviation is 2.138.

σM AX ,pl ot =
2.138

256
= 0.00835
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The difference between the average and the maximum value is therefore negligible and we
needn’t concern ourselves with implementing the domino-like pattern in the simulations. A
simple noise model, where Gaussian noise with (µ= 0,σ= 0.00835) is added to the pixels of the
computer-generated interferograms would suffice.

6.4 Error Analysis of Background Irradiance I ′ and Fringe Modulation I ′′

In the PSI theory, the background irradiance I ′ and fringe modulation I ′′ are assumed to be con-
stant. In section (4.2.2), it was discussed that many of the PSAs have built-in defenses against
incorrect phase-stepping, for example. However, errors in terms of I ′ and I ′′ are often over-
looked, where it is assumed that I ′ and I ′′ are constant over the course of the measurements. In
this section we will show that this is not case for real data.

6.4.1 Obtaining I ′ and I ′′ Using System of Equations

In section (4.2), the following system of equations was given, where we explained that a mini-
mum of 3 interferograms are required to solve for the 3 unknowns - I ′(x, y), I ′′(x, y), andφ(x, y).
An expression for φ(x, y) was provided in terms of a PSA inside an arctangent function, how-
ever, no expressions for finding I ′(x, y), I ′′(x, y) were given. Obtaining them from the system of
equations has been trivialized due to the assumption that they are constant over the recorded
interferograms: I ′1(x, y) = I ′2(x, y) = . . . = I ′n(x, y), and I ′′1 (x, y) = I ′′2 (x, y) = . . . = I ′′n(x, y), where n
is the nth recorded interferogram. Using more than 3 interferograms should have the effect of
overdetermining the system. For example, with 5 interferograms the system of equations can
be written as:

I1(x, y) = I ′(x, y)+ I ′′(x, y)cos[φ(x, y)+∆1]

I2(x, y) = I ′(x, y)+ I ′′(x, y)cos[φ(x, y)+∆2]

I3(x, y) = I ′(x, y)+ I ′′(x, y)cos[φ(x, y)+∆3]

I4(x, y) = I ′(x, y)+ I ′′(x, y)cos[φ(x, y)+∆4]

I5(x, y) = I ′(x, y)+ I ′′(x, y)cos[φ(x, y)+∆5]

(70)

Once the phase φ(x, y) has been calculated using the PSA of choice, if the assumption that I ′

and I ′′ remain constant over the recorded interferograms, then any two equations taken from
the system shown in Eq.(70) could, in theory, be used to calculate them. This is not entirely
correct for two reasons. One reason is that in the analytical expression for calculating I ′ and I ′′

division by 0 may occur in certain datapoints which causes the solution to explode. This can be
seen in the denominator in Eq.(71), where the first and second equations were used to obtain
an expression for I ′ and I ′′. Another reason is that both the background irradiance and fringe
modulation depend on external factors such as the laser stability, for example, which is not nec-
essarily constant over all measurements.
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I1(x, y) = I ′(x, y)+ I ′′(x, y)cos[φ(x, y)+∆1]

I2(x, y) = I ′(x, y)+ I ′′(x, y)cos[φ(x, y)+∆2]

I ′(x, y) = I2cos(φ+∆1)− I1cos(φ+∆2)

cos(φ+∆1)− cos(φ+∆2)
= I ′12

I ′′(x, y) = I2 − I1

cos(φ+∆2)− cos(φ+∆1)
= I ′′12

(71)

We can calculate I ′(x, y) and I ′′(x, y) from the following combinations of equations/recorded
interferograms: 1&2,2&3, . . . ,4&5. Each time we calculate I ′(x, y) and I ′′(x, y) from a set of two
equations (i.e. 1&2), we have slightly different results due to errors. This can also be used to tes-
tify the hypothesis that in real interferograms the two coefficients cannot be constant but are
rather approximately constant over the measurements. However, this leads to one major prob-
lem. Solving the system of equations given by Eq.(70) requires that we have less unknows than
we have equations. If we consider the background irradiance and fringe modulation to vary for
each recorded interferogram - I ′1. . . 5(x, y) and I ′′1. . . 5(x, y) , then we arrive at 11 unknowns and 5
equations, which is a problem.

There is a way to bypass this hindrance by first assuming I ′(x, y) and I ′′(x, y) are constant
over the recorded interferograms and using a least squares solution to find the average value
for all interferograms - I ′AV G (x, y) and I ′′AV G (x, y). Then we can calculate I ′12, 23, . . . , 45(x, y) and
I ′′12, 23, . . . , 45(x, y) from pairs of equations and observe the difference between the average and
individual value for the pair. First, the least squares solution will be explained.


I1(x, y)
I2(x, y)

...
In(x, y)

=


1 cos(φ+∆1)
1 cos(φ+∆2)
...

...
1 cos(φ+∆n)


[

I ′

I ′′
]
= A

−→
I ′,′′ (72)

The results for the calculated I ′AV G and I ′′AV G from a set of 5 recorded interferograms with a 90°
phase step between adjacent interferograms can be seen in Fig.(46, 47).
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Figure 46: The average background
iradiance I ′AV G as calculated from
Eq.(72). (H) indicates Schwieder-
Hariharan PSA.

Figure 47: The average fringe modula-
tion I ′′AV G as calculated from Eq.(72).
(H) indicates Schwieder-Hariharan
PSA.

We can see that for n > 2 the A matrix from Eq.(73) is not square invertible. Therefore, we can
use its pseudoinverse to find I ′ and I ′′. Using all 5 interferograms as indicated in Eq.(70) gives
us I ′AV G (x, y) and I ′′AV G (x, y).

−→
I ′,′′ = (AT A)−1 AT−→I (73)

If we use two equations to compute I ′ and I ′′, the matrix is square invertible and we arrive
at the formulas given by Eq.(71). One drawback to this technique is that I ′12, 23, . . . , 45(x, y) and
I ′′12, 23, . . . , 45(x, y) often contain values in plus and minus infinity. This can be noticed from the
denominator of Eq.(71). For certain combinations of φ and ∆1,∆2, the denominator can con-
verge to 0. It is not entirely clear whether this is a limitation of the proposed technique or
whether there is a deeper meaning behind. In chapter (7) the reasoning as to the physical ex-
planation of this phenomenon will be given, however, this topic is left to future research. In
the current analysis, the datapoints where the values exceed 1 or fall below 0 are set to ’NaN’
and are therefore discarded from the calculations. An example of the calculated I ′12, 45(x, y) and
I ′′12, 45(x, y) has been shown in Fig.(48-51).
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Figure 48: The average background
iradiance I ′12 as calculated from
Eq.(72). (H) indicates Schwieder-
Hariharan PSA.

Figure 49: The average fringe modula-
tion I ′′12 as calculated from Eq.(72). (H)
indicates Schwieder-Hariharan PSA.

Figure 50: The average background
iradiance I ′45 as calculated from
Eq.(72). (H) indicates Schwieder-
Hariharan PSA.

Figure 51: The fringe modulation
from I ′′45 as calculated from Eq.(72).
(H) indicates Schwieder-Hariharan
PSA.

Instead of using the least squares method to find I ′AV G (x, y) and I ′′AV G (x, y), we can also aver-
age the individual background irradiances and fringe modulations calculated from the pairs of
equations - I ′12, 23, . . . , 45(x, y) and I ′′12, 23, . . . , 45(x, y). The results are shown in Fig.(52, 53).
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Figure 52: The average background
iradiance I ′AV G (x, y).

Figure 53: The average fringe modula-
tion I ′′AV G (x, y).

Using I ′12, 23, . . . , 45(x, y) and I ′′12, 23, . . . , 45(x, y), we can compute the differences between the aver-
aged coefficients and the coefficients per equation pair as shown in Eq.(74).

I ′δ12 = I ′AV G − I ′12 I ′′δ12 = I ′′AV G − I ′′12

...

I ′δmn = I ′AV G − I ′mn I ′′δmn = I ′′AV G − I ′′mn

(74)

The individual errors/differences can then be averaged to find the average error per pixel for
the background irradiance and fringe modulation. This is given in Eq.(75).

I ′AV G Er r or (x, y) =
n−1∑
i=1

n∑
j>n

I ′δi j (x, y)

I ′′AV G Er r or (x, y) =
n−1∑
i=1

n∑
j>n

I ′′δi j (x, y)

(75)

In Fig.(54, 55) the calculated average error for the background irradiance and the fringe modu-
lation has been shown.
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Figure 54: The average background
iradiance error I ′AV G Er r or (x, y) as cal-
culated from Eq.(75). (H) indicates
Schwieder-Hariharan PSA.

Figure 55: The average fringe mod-
ulation error I ′′AV G Er r or (x, y) as cal-
culated from Eq.(75). (H) indicates
Schwieder-Hariharan PSA.

6.4.2 Obtaining I ′ and I ′′ Using Least Squares Solution

In section (6.4.1) a method was shown where equations taken from the whole system of equa-
tions were grouped into pairs in order to find average values for the background irradiance and
fringe modulation. We also considered the error arising from I ′(x, y) and I ′′(x, y) not being con-
stant over the set of recorded interferograms.

In this section we propose a different method, where we make use of the least squares solution
shown in Eq.(72). Inserting all interferograms into the equation provides the average back-
ground irradiance and fringe modulation I ′AV G (x, y) and I ′′AV G (x, y). The results thereof were
shown in Fig.(46, 47). However, the variation of I ′(x, y) and I ′′(x, y) across the interferograms is
also of interest to us and we can modify Eq.(72) to obtain it.

By omitting certain interferograms in Eq.(72) we can observe how the result for the calculated
I ′(x, y) and I ′′(x, y) changes in terms of the result for all interferograms. Equation (76) is an
example, where the third interferogram is omitted. Figures (56) and (57) show the effects of
omitting the third interferogram on the calculated background irradiance and fringe modula-
tion using least squares.


I1(x, y)
I2(x, y)
I4(x, y)

...
In(x, y)

=


1 cos(φ+∆1)
1 cos(φ+∆2)
1 cos(φ+∆4)
...

...
1 cos(φ+∆n)


[

I ′

I ′′
]
= A

−→
I ′,′′(3) (76)

69



Figure 56: The average background
iradiance with the 3r d interferogram
omitted I ′(3)(x, y) as calculated from
Eq.(76). (H) indicates Schwieder-
Hariharan PSA.

Figure 57: The average fringe mod-
ulation with the 3r d interferogram
omitted I ′′(3)(x, y) as calculated from
Eq.(76). (H) indicates Schwieder-
Hariharan PSA.

Using the same approach as indicated by Eq.(74), we can estimate the average background ir-
radiance error I ′AV G Er r or (x, y) and the average fringe modulation error I ′′AV G Er r or (x, y). The
results are plotted in Fig.(58, 59).

Figure 58: The average background
iradiance error using least squares
I ′AV G Er r or (x, y).

Figure 59: The average fringe mod-
ulation error using least squares
I ′′AV G Er r or (x, y).
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6.4.3 Interpreting the Results

In this section (6.4.1) and (6.4.2) two method were proposed. Here we will briefly compare the
results obtained from both of them. The results are integral part of the Monte Carlo simulations
used to evaluate the uncertainty.

First the average values for the background irradiance and fringe modulation can be compared
for the two methods – pairing equations and the least squares approach. Let us first consider
the I ′AV G . Despite Fig.(52) and (46) clearly appearing distinct, the mean value across the pupil
(‘NaN’ values excluded) is close to identical. The value is calculated according to Eq.(77). The
results are shown in Table (7).

I ′GRI D ME AN =

xsi ze∑
x=1

ysi ze∑
y=1

I ′AV G (x, y)

xsi ze ∗ ysi ze

I ′GRI D ME AN ERROR =

xsi ze∑
x=1

ysi ze∑
y=1

I ′AV G Er r or (x, y)

xsi ze ∗ ysi ze

(77)

Table 7: Results from the two techniques for the mean I ′, I ′′ and their error, first averaged over
the measurements and then averaged over all datapoints on the grid.

Grid Mean
I ′AV G

Grid Mean
I ′′AV G

Grid Mean
I ′AV G Er r or

Grid Mean
I ′′AV G Er r or

EQN Pairs 0.442 0.165 0.0225 0.0378
LSTSQ 0.438 0.164 0.0104 0.0135

In Table (7) one can notice that the mean values for the errors in the background irradiance and
fringe modulation, albeit small compared to I ′AV G and I ′′AV G , differ considerably between the
two methods. Especially in the case of the fringe modulation error for the Equation Pairs (EQN
Pairs) technique. It is unclear where this might come from but one hypothesis is that the Least
Squares Solution (LSTSQ) may be less susceptible to outliers in the dataset and therefore more
accurate.

However, we must also look at the distribution of the error values for I ′ and I ′′ for the two meth-
ods. This is the point at which the difference between the two becomes obvious and things
start to seem peculiar. In Fig.(60-63) histograms of the error values have been shown. The
results show that the error distribution does not follow a Gaussian distribution but rather a
Gamma distribution. For the Least Squares method the distribution is exponential for δI ′′ and
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somewhat exponential for δI ′. The exponential distribution is a special case of the Gamma dis-
tribution, however, it is unclear what causes the different distributions and we leave this topic
for future research. A discussion will follow in chapter (7).

Figure 60: Histogram of the average
absolute error values for the back-
ground irradiance δI ′ for the EQN
Pairs method.

Figure 61: Histogram of the average
absolute error values for the fringe
modulation δI ′′ for the EQN Pairs
method.

Figure 62: Histogram of the average
absolute error values for the back-
ground irradiance δI ′ for the LSTSQ
method.

Figure 63: Histogram of the av-
erage absolute error values for the
fringe modulation δI ′′ for the LSTSQ
method.

Beware that in Fig.(60-63) the shown distributions are not symmetrical, hence the calculated
mean values given in Table (7) are the expected values and the middle point of the distribu-
tions is the medial, which is different from the mean in this case. Table (8) gives the calculated
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mean and median points for the background irradiance error and the fringe modulation error.
In section (6.5.3) they will be used to approximate the original distributions in order to generate
realistic random noise.

Table 8: Calculated mean and median values for the δI ′ and δI ′′ random noise.

Mean
δI ′

Median
δI ′

Mean
δI ′′

Median
δI ′′

EQN Pairs 0.0225 0.011 0.0378 0.0342
LSTSQ 0.0104 0.00212 0.0135 0.00369

6.5 Error Analysis of Phase Stepping∆

Phase stepping, as previously explained, is the process of introducing a know phase shift to the
recorded spatial phase in terms of discrete steps - ∆1,. . . ,n . Many PSAs, such as the two used –
4-step Wyant and 5-step Schwieder-Hariharan, require a constant phase step, for example 90°.
In our Twyman-Green interferometer setup this is done by translating the flat reference mirror
along the axis of the laser beam. A translation of 1λ corresponds to a phase shift between the
beams in the reference and test arm of 4π due to our interferometer being double-pass.

The translation is done using a piezo actuator. However, no actuator can make a perfect trans-
lation each time. Therefore, in the datasheet one can find parameters, such as the actuator’s
repeatability over a given range of motion and the maximum tilt along the other two principal
axes, expressed in terms yaw and pitch angles (assuming that translation happens along the
z-axis).

In this section the phase step error due to the repeatability of the translation and the further
introduced x- and y-tilt will be evaluated. The specifications of the used actuator are as follows:
1: The actuator has a repeatability of 1nm over the full range of motion of 15µm, as per the
datasheet.
2: The maximum tilt along the x- and y-axis expressed as yaw and pitch angles is 1µr ad , as per
the datasheet.

6.5.1 Translation Error

A phase step of 90° for a wavelength of λ = 405nm corresponds to a translation of 50.625nm
along the z-axis, which is considerably less than the full range of motion. However, it is not
advised to interpolate the repeatability over the much shorter motion range as we cannot be
certain whether the positioning error is accumulated, in a linear fashion, over the distance of
the motion or whether it is largely due to nonlinear effects occurring at the start and finish of
the motion. Therefore, we will be extra strict and assume the repeatability to be equal to 1nm
per phase step. Hence, each time the flat reference mirror phase-steps, we assume that there is
a positioning error in the range [−1nm;+1nm].
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We can express the maximum translation error in terms of percentage or phase angle:

x% = 1nm ∗100

50.625nm
= 1.97%

xdeg

1nm
= 90°

50.625nm

xdeg = 1.78°

6.5.2 Tilt Error

The tilt error can be modeled by considering the flat reference mirror to be a plane with an ar-
bitrary orientation, where the maximum values for the tilt along the x- and y-axis for the pupil
can be calculated from the maximum yaw and pitch angles stated in the datasheet. From the
tilt we can find how much certain points across the pupil are displaced along the z-axis. Hence,
the datapoints are not going to experience the same phase shift as compared to the translation
error case, where the error is equal for all datapoints.

Example: Given: Pupil magnification equal to 1. Entry pupil diameter of high-NA microscope
objective as projected on the planar reference mirror is 3.5mm. Both yaw and pitch angles are
equal to α = 1µr ad . Figure (64) illustrates the example. The maximum x- and y-tilt are equal
to:

si n(α) ≈α
xt i l t = yt i l t = 1µr ad ∗ 3.5mm

2
= 1.75nm

Figure 64: Illustration of how the maximum allowable x- or y-tilt is calculated given the exam-
ple.
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Knowing the maximum allowable tilt, we can define the range of tilt values for the x- and y-axis
that our plane can assume in 3D space as [−1.75nm;+1.75nm]. Furthermore, we are interested
in the z-displacement the added tilt causes. Hence, we can use the equation of a tilted plane in
space Eq.(78):

z(x, y) = a ∗x +b ∗ y

a,b ∈ [−1.75nm ; +1.75nm]
(78)

In the Monte Carlo Simulation, a and b are random variables taken from the specified range.
To obtain the phase step error caused by the random tilt, the result simply needs to be scaled to
radians by multiplying by 4π

λ . An example of a plane with random tilt orientation using Eq.(78)
can be seen in Fig.(65).

Figure 65: An example of a plane with tilt orientation a,b = [−1,75nm ; +1.75nm] using Eq.(78).

6.5.3 Monte Carlo Uncertainty Evaluation

In section (6.1) we introduced and explained the working principle of the Monte Carlo Uncer-
tainty Evaluation Model. Throughout the previous sections, different error sources were de-
fined, introducing both systematic and random errors in the measurements. In this section we
will explain how random perturbations were introduced into the simulation and will present
the results for the calculated uncertainty per Zernike coefficient. The simulation model is quite
computationally heavy, especially for a large number of iterations/samples, hence only the un-
certainty results for the first 10 Zernike polynomials will be shown.

Table (9) contains an overview of the random errors that follow a Gaussian distribution and
their respective mean and standard deviation in the Monte Carlo (MC) simulation. All random
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errors, with the exception of the background irradiance δI ′ and the fringe modulation δI ′′, were
modeled using a Gaussian distribution, where the maximum permissible errors, as calculated
in the previous sections, were chosen as the upper limit for the 3σ interval. That is to say, the
maximum permissible tilt was calculated as +1.75nm, hence the magnitude of any random tilt
introduced in the MC simulation must fall within the [0 ; 1.75nm] interval with 99.7% confi-
dence. This means that the standard deviation for tilt would be: σ= 1.75nm

3 .

Table 9: Overview of the mean and standard deviation used to model the random noise that
follows a Gaussian distribution.

Random Errors µ σ

x-tilt 0.0 [nm] 0.587 [nm]
y-tilt 0.0 [nm] 0.587 [nm]

z-translation 0.0 [nm] 0.333 [nm]
Gaussian 0 [8bit] 2.138 [8bit]

This approach of modelling random errors doesn’t apply to δI ′ and δI ′′ as their distributions
are not Gaussian. Due to the time constraints on the project, a distribution of the exact shape
couldn’t be introduced in the model. However, we were able to approximate the shape using a
Gamma distribution with certain shape parameter k and scale parameter θ. The values of the
used distribution parameters are given in Table(10). A side-by-side comparison of the original
and the approximated Gamma distributions for δI ′ and δI ′′ can be seen in Fig.(66-69).

Table 10: Overview of the shape parameter k and scale parameter θ used to model the random
noise that follows a Gamma distribution. Two cases are shown: the random noise as calculated
from the EQN Pairs approach, and the random noise as calculated from the least squares solu-
tion.

Random Errors k θ

δI ′ EQN Pairs 1.3 0.0145
δI ′′ EQN Pairs 3 0.0133
δI ′ LSTSQ 0.5 0.05
δI ′′ LSTSQ 0.5 0.019
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Figure 66: Distribution of the aver-
age absolute error values for the back-
ground irradiance δI ′ for the EQN
Pairs method.

Figure 67: Approximated distribution
of the average absolute error values
for the background irradiance δI ′ for
the EQN Pairs method.

Figure 68: Distribution of the av-
erage absolute error values for the
fringe modulation δI ′′ for the LSTSQ
method.

Figure 69: Approximated distribution
of the average absolute error values
for the fringe modulation δI ′′ for the
LSTSQ method.

Results of the Monte Carlo Simulations

The model uses a set of Zernike polynomials, the average background irradiance I ′AV G (x, y), the
fringe modulation I ′′AV G (x, y), and the MSF to generate random test interferograms which are
then evaluated. The four parameters come from evaluated real interferograms after correcting
for the aberrations in the spherical mirror. In order to evaluate the measurement uncertainty
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per Zernike coefficient, the previously found random perturbations have been inserted into the
model described in Fig.(23).
Multiple sets of calculated Zernike coefficients are obtained from the multiple sets of test inter-
ferograms. We then form datasets per individual Zernike polynomial. For example, all calcu-
lated x-tilt coefficients are stored in a single array, all y-tilt coefficient, all defocus coefficients,
and so on.

The datasets can later be evaluated using a technique of choice. Here, we have used “box and
whiskers” plot, also known as “boxplot”, as it provides better insight than simply calculating the
standard deviation of the dataset. Boxplots use the median to split the dataset in two subsets.
The median of the complete dataset is called the second quartile Q2. The medians of the two
subsets are referred to as Q1 and Q3. The range between Q1 and Q3 is called the interquartile
range (IQR) and is used to estimate whether a point is an outlier or not. In the boxplots of the
results the outliers are marked by a dot. The criterion is as follows:

low outl i er i f < Q1–1.5∗ IQR

hi g h outl i er i f > Q3 +1.5∗ IQR

Apart from the random perturbations and systematic errors, two other problems are common
to occur. Both of them relate to the size, shape, and location of the analysis mask used to define
the pupil on the screen. We will refer to the process of obtaining the analysis mask as “edge
detection”. The principle is explained in Appendix (B) and makes use of the interferometric vis-
ibility γ(x, y). In the current project circular masks were used. The two problems at hand are
namely the possibly incorrect location of the analysis mask the possible cropping of the few
outermost pixels of the pupil.

Using the edge detection approach outlined in Appendix (B), it was observed that for a 1217px X
1936px grid, the center of the analysis mask coincides with the exact center of the pupil with an
uncertainty of ±1px in the x and y direction. The diameter of the analysis mask tends to slightly
underestimate the actual diameter of the pupil with an error of up to 4px.

The results provided by the boxplots can be grouped in 3 sets. The first set corresponds to
Fig.(70-73), where only random perturbations are present and no errors arise from the analysis
mask. The calculated uncertainties are lower than the uncertainties in sets 2 and 3.

In set 2, Fig.(74-77), we introduce the possibility for the analysis mask to be taken equal or
smaller than the diameter of the pupil. The value range is between [0;4px], which is discrete
as compared to the value range of the random perturbations which are continuous. Due to the
time constraint on the project, the exact effects of combining continuous and discrete random
variables on the MC simulation haven’t been studied in detail and are left for future research.
Nevertheless, we believe that the uncertainty range, as calculated through the boxplots is a good
approximation.
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In set 3, Fig.(78-81), an additional feature is introduced, where the analysis mask may be off-
center by ±1px with respect to the center of the pupil. This set is considered to be the most
complete one from the 3 and can be used to determine an uncertainty budget for the measured
coefficients. It can be observed that certain Zernike coefficients are more affected by the errors,
especially the ones caused by an incorrect analysis mask. This is because incorrectly truncating
a polynomial that has a high gradient towards the edge of the pupil, makes it possible for the
polynomial to be represented in terms of a combination of lower order ones. [33]

The 3 sets are shown in the indicated order as it helps to visualize the impact the correct edge
detection and centering of the analysis mask have on the final results. It is also worth noting
that various techniques for edge detection exist. Most are used for object recognition in com-
puter vision and do not have a direct connection to interferometry. The edge detection used in
this project is based on the interferometric visibility γ(x, y) and is explained in more detail in
Appendix (B).

Set 1: Realistic Perturbation From EQN Pairs

Figure 70: Boxplots showing the uncertainty per calculated Zernike coeffi-
cient for realistic perturbations. Set 1.
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Figure 71: Boxplots showing the uncertainty per calculated Zernike coeffi-
cient for realistic perturbations. Set 1. Corrected for systematic errors.

Set 1: Realistic Perturbation From LSTSQ

Figure 72: Boxplots showing the uncertainty per calculated Zernike coeffi-
cient for realistic perturbations. Set 1.
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Figure 73: Boxplots showing the uncertainty per calculated Zernike coeffi-
cient for realistic perturbations. Set 1. Corrected for systematic errors.

Set 2: Realistic Perturbation From EQN Pairs, [0;4px] Diameter Crop

Figure 74: Boxplots showing the uncertainty per calculated Zernike coeffi-
cient for realistic perturbations and [0;4px] cropped pupil mask. Set 2.
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Figure 75: Boxplots showing the uncertainty per calculated Zernike coeffi-
cient for realistic perturbations and [0;4px] cropped pupil mask. Set 2. Cor-
rected for systematic errors.

Set 2: Realistic Perturbation From LSTSQ, [0;4px] Diameter Crop

Figure 76: Boxplots showing the uncertainty per calculated Zernike coeffi-
cient for realistic perturbations and [0;4px] cropped pupil mask. Set 2.
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Figure 77: Boxplots showing the uncertainty per calculated Zernike coeffi-
cient for realistic perturbations and [0;4px] cropped pupil mask. Set 2. Cor-
rected for systematic errors.

Set 3: Realistic Perturbation From EQN Pairs, [0;4px] Diameter Crop and ±1px Mask Off-
Center

Figure 78: Boxplots showing the uncertainty per calculated Zernike coeffi-
cient for realistic perturbations. Pupil mask cropped [0;4px] and off-center
±1px. Set 3.
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Figure 79: Boxplots showing the uncertainty per calculated Zernike coeffi-
cient for realistic perturbations. Pupil mask cropped [0;4px] and off-center
±1px. Set 3. Corrected for systematic errors.

Set 3: Realistic Perturbation From LSTSQ, [0;4px] Diameter Crop and ±1px Mask Off-Center

Figure 80: Boxplots showing the uncertainty per calculated Zernike coeffi-
cient for realistic perturbations. Pupil mask cropped [0;4px] and off-center
±1px. Set 3.
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Figure 81: Boxplots showing the uncertainty per calculated Zernike coeffi-
cient for realistic perturbations. Pupil mask cropped [0;4px] and off-center
±1px. Set 3. Corrected for systematic errors.

In the boxplots one can notice that the uncertainty range varies greatly between the Zernike
polynomials. Therefore, it makes sense that the individual uncertainties of the coefficients
should be considered. Still, we can use the "worst case" (Z5 Defocus) and the "average of the un-
certainty range" of the boxplots as a rough estimate of the overall measurement uncertainty. By
taking the uncertainty range of defocus, and the average of the uncertainty ranges from Fig(78)
and Fig(81), and assuming symmetry of the dataset, we get the following approximate of the
uncertainty budget.

uworst
case

(Z ) =±9.40mλ

uav g (Z ) =±2.33mλ

7 Discussion & Recomendations

This section discusses the strengths and weaknesses of the proposed Monte Carlo Uncertainty
Evaluation Model, as well as some aspects, where the observed phenomena could not be ex-
plained. Due to multitude of factors that contribute to the uncertainty, it was necessary to have
a broad scope for the research. This meant that certain features of the uncertainty evaluation
process couldn’t be studied in detail.
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Throughout the project we considered various errors and error sources and their influence on
interferometric measurements. Different ways for their identification and compensation were
discussed, as well as their origins in the system. Finally, a model for the evaluation of the uncer-
tainty per calculated Zernike coefficient was proposed. The model requires statistical informa-
tion of the error sources which can be extracted from the interferograms themselves, be taken
from the datasheets of components used in the interferometer, or be found through additional
measurements, such as the one described in section (6.3).

First, we will address the potential limitations and suggestions for future research regarding the
three primary algorithms: the phase stepping algorithm, the phase-unwrapping algorithm, and
the least squares fit algorithm. Then, we will discuss the two proposed uncertainty evaluation
models and possible improvements that can be made. The chapter concludes with a showcase
of the observed phenomena to which a full explanaition couldn’t be provided.

Phase Step Algorithms
One aspect that requires further attention is the error compensation ability of PSAs. The exist-
ing literature on the topic is quite broad, however, much remains to be done. The compensating
abilities of PSAs are often evaluated by the algorithm designers from a purely analytical stand-
point. On other instances simulation models are used to estimate the algorithm’s performance.
However, the used models may lack realism and are often not tested against real measurement
data. Furthermore, many authors tend to overlook the importance of the physical meaning be-
hind certain errors and instead describe them in terms of a mathematical expression. This is an
area which can be expanded on and can benefit from a single unified convention.

Phase Unwrapping
Phase unwrapping algorithms, on the other hand, can be described using the theory presented
in section (4.3). However, the uncertainty they introduce to the unwrapped data remains a
largely untouched topic. Lens testing doesn’t necessarily imply strict requirements for the PU
algorithm, as compared to the requirements for InSAR measurements. Nevertheless, a case
study of prevalent PU errors in lens testing interferometry is worth considering. Throughout
this project only two PU algorithms were used, hence, no definite conclusions for their perfor-
mance can be made.

Polynomial Fitting
Another thing to consider is the polynomial fitting of high order terms. A major shortcoming of
the Monte Carlo Uncertainty Evaluation Model from Fig.(23) is that it is computationally heavy
due to the algorithm having to evaluate the Zernike polynomials pointwise. It is possible to use
a Cholesky decomposition to speed up the process by reducing the number of datapoints over
which the Zernike polynomials need to be fit. However, the effects this operation might have
on higher order polynomials, where the discrete data sampling is insufficient, requires more
attention.

Analytical Uncertainty Evaluation Model
Due to the time constraints on the project, the analytical uncertainty evaluation model defined
in section (5.3.1) couldn’t be tested. It remains a theoretical concept that requires further ex-
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perimentation to prove or disprove it. It is likely that the greatest challenge would be to acquire
trustworthy information on the uncertainty in the calculated phase map caused by individual
error sources. One such error source is the phase unwrapping.

Monte Carlo Uncertainty Evaluation Model

A major advantage of the Monte Carlo method is that it is straightforward and easy to imple-
ment. The downsides, however, are that it too requires extensive knowledge of the statistical
distribution of random errors and is also computationally heavy. The greatest challenge thus
far was to obtain information on the random errors. These include the phase shift error, the
light-source instability, the background irradiance I ′, and the fringe modulation I ′′.

Notice that the effects of electronic noise, dark current, laser instability, shot noise, etc., were
bunched together in a single noise perturbation. Unlike the analytical model, the MC one can
take their combined effect as an input. This can be considered both a strength and a weakness.
On one hand, it is not necessary to find the individual random error signals and consider their
correlation. On the other hand, we cannot know for certain which error source contributes the
most to the overall instability. This means that troubleshooting cannot happen unless we in-
vestigate the individual error sources.

The background irradiance I ′ and the fringe modulation I ′′ are also points of concern. The
PSAs assume they are constant over the recorded interferograms in order to solve a system of
equations for 3 unknowns, but in reality they don’t necessarily need to be constant which is a not
too well researched topic. The physical explanation of I ′ and I ′′ is provided in textbooks using
Eq.(5), however, the generalized example of two-beam interference may appear more complex
when investigating a real interferometer due to multiple reflections, scattering, polarization
effects, etc.
The analysis conducted on I ′ and I ′′ testifies that the textbook explanation is lacking as we
observe discontinuities, evident from Eq.(71) and Fig.(56,57). What is peculiar is that these
discontinuities bear resemblance to the interfaces separating light and dark fringes in the in-
terferograms. A possible explanation is that the visibility/data modulation at the interface be-
tween light and the dark fringes may be undefined, hence why for a small number of equa-
tions/interferograms this causes such undefined regions to appear.

87



References

[1] Global and United States Optical Lens Groover Market Report & Forecast 2022-2028, 2022

[2] E. Hecht, "Optics", Essex: Pearson, 2017

[3] D. Malacara, "Optical Shop Testing", 2nd Edition, New Jersey: John Wiley & Sons Inc, 2007

[4] J. Wyant, "Use of an ac heterodyne lateral shear interferometer with real-time wavefront
correction systems", Applied Optics, 14, 2622-2626, p. 5, 1975

[5] J. Wyant, C. L. Koliopoulos, B. Bhushan and O. E. George, "An optical profilometer for sur-
face characterization of magnetic media", ASLE transactions, vol. 27, no. 2, pp. 101-113,
1984

[6] W. T. Welford, "Aberrations of Optical Systems", Bristol: J. W. Arrowsmith, 1986

[7] S. Kim , J. Jeon, K. Yangjin, S. Naohiko, and M. Mamoru, "Design and Assessment of Phase-
Shifting Algorithms in Optical Interferometer", International Journal of Precision Engi-
neering and Manufacturing-Green Technology, p. 25, 2022

[8] A. J. Lewis, "Absolute length measurement using multiple-wavelength phase-stepping
interferometry", University of London, Imperial College of Science, Technology, and
Medicine, Department of Physics and Applied Optics Group, London, 1993

[9] L. L. Deck, "Suppressing phase errors from vibration in phase-shifting interferometry",
Applied Optics, vol. 48, no. 3948-3960, p. 13, 2009

[10] K. Freischlad and C. L. Koliopolous, "Fourier description of digital phase-measuring inter-
ferometry", Journal of the Optical Society of America A, vol. 7, no. 542-551, p. 10, 1990

[11] K. G. Larkin and B. F. Oreb, "Design and assessment of symmetrical phase-shifting algo-
rithms", Journal of the Optical Society of America A, vol. 9, no. 1740-1748, p. 9, 1992

[12] J. E. Greivenkamp, "Generalized Data Reduction For Heterodyne Interferometry", Optical
Engineering, vol. 23, no. 234350, p. 3, 1984

[13] C. J. Morgan, "Least-squares estimation in phase-measurement interferometry", Optics
Letters, vol. 7, no. 368-370, p. 3, 1982

[14] K. Hibino, B. F. Oreb and P. S. Fairman, "Wavelength-scanning interferometry of a transpar-
ent parallel plate with refractive-index dispersion", Applied Optics, vol. 42, no. 3888-3895,
p. 8, 2003

[15] K. Hibino, B. F. Oreb, P. S. Fairman, and J. Burke, "Simultaneous measurement of surface
shape and variation in optical thickness of a transparent parallel plate in wavelength-
scanning Fizeau interferometer", Applied Optics, vol. 43, no. 6, p. 9, 2004

[16] J. B. Hayes, "Linear Methods of Computer Controlled Optical Figuring", The University of
Arizona, Tucson, Arizona, USA, 1984

88



[17] K. Hibino, "Error-Compensating Phase Measuring Algorithms in a Fizeau Interferometer",
Optical Review, vol. 6, no. 6, p. 10, 1999

[18] Y. Kim, K. Hibino, N. Sugita and M. Mitsuishi, "Design of phase shifting algorithms: fringe
contrast maximum", Optics Express, vol. 22, no. 15, p. 11, 2014

[19] P. J. De Groot, "Correlated errors in phase-shifting laser Fizeau interferometry", Applied
Optics, vol. 53, no. 19, p. 9, 2014

[20] C. Zuo, J. Qian, S. Feng, W. Yin, Y. Li, P. Fan, J. Han, K. Qian, and Q. Chen, "Deep learning in
optical metrology: a review", Light: Science & Applications, vol. 11, no. 39, p. 54, 2022

[21] R. Shuvolov, "Algorithm of the Green’s Function Method for Two-Dimensional Phase Un-
wrapping", Journal of Mining Sciences and Technologies, vol.2, ID: 528.856.044.1, p. 13,
2011, (in russian)

[22] D. Ghiglia and M. Pritt, "Two-Dimensional Phase Unwrapping: Theory, Algorithms, and
Software", Michigan, USA: John Wiley & Sons Inc., 1998

[23] A. Baldi, F. Bertolino, and F. Ginesu, "Phase Unwrapping Algorithms: A Comparison", in
"Interferometry in Speckle Light: Theory and Applications", Lausanne, Switzerland, 2000

[24] T. J. Flynn, "Consistent 2-D phase unwrapping guided by a quality map", in International
Geoscience and Remote Sensing Symposium, Lincoln, USA, 1996

[25] D. Rosenfield, N. Ching and M. Braun, "Two-Dimensional Phase Unwrapping Using a Min-
imum Spanning Tree Algorithm", IEEE Transactions of Image Processing, vol. 1, no. 3, p.
11, 1992

[26] M. Takeda and T. Abe, "Phase unwrapping based on maximum cross-amplitude spanning
tree algorithm: a comparative study", in Interferometry VII: Techniques and Analysis, San
Diego, 1995

[27] J. Gierloff, "Phase Unwrapping by Regions", in "31st Annual Technical Symposium on Op-
tical and Optoelectronic Applied Sciences and Engineering", San Diego, USA, 1987

[28] K. M. Hung and T. Yamada, "Phase unwrapping by regions using least-squares approach",
Optical Engineering, vol. 37, no. 11, p. 6, 1998

[29] D. Ghiglia and L. Romero, "Robust two-dimensional weighted and unweighted phase un-
wrapping that uses fast transforms and iterative methods", Journal of the Optical Society
of America A, vol. 11, no. 1, p. 11, 1994

[30] M. Pritt, "Phase Unwrapping by Means of Multigrid Techniques for Interferometric SAR",
IEEE Transactions on Geoscience and Remote Sensing, vol. 34, no. 3, p. 11, 1996

[31] D. Ghiglia and L. Romero, "Minimum Lp -norm two-dimensional phase unwrapping",
Journal of the Optical Society of America A, vol. 13, no. 10, p. 15, 1996

89



[32] J. Wyant and K. Creath, "Basic Wavefront Aberration Theory for Optical Metrology", Ap-
plied Optics and Optical Engineering, vol. 11, p. 53, 1992

[33] V. Mahajan, "Optical imaging and aberrations: Part III: Wavefront Analysis", Bellingham,
Washington USA: SPIE Press, 2013

[34] M. Born and E. Wolf, "Principles of Optics", 6th Edition, Oxford, UK: Pergamon Press, 1980

[35] J. Schwider, R. Burow, K. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, "Digital wave-
front measuring interferometry: some systematic error sources", Applied Optics, vol. 22,
no. 21, p. 12, 1983

[36] J. Wyant and C. Ai, "Effect of Piezoelectric Transducer Nonlinearity on Phase Shift Interfer-
ometry", Applied Optics, vol. 26, no. 6, p. 5, 1987

[37] K. Creath, "Phase Measurement Interferometry: Beware These Errors", in Laser Interfer-
ometry IV: Computer-Aided Interferometry, San Diego, USA, 1992

[38] P. Carré, "Installation et utilisation du comparateur photoélectrique et interférentiel du
Bureau International des Poids et Mesures", Bureau International des Poids et Mesures,
Sèvres, 1966

[39] C. Brophy, "Effect of intensity error correlation on the computed phase of phase-shifting
interferometry", Journal of the Optical Society of America A, vol. 7, no. 4, p. 5, 1990

[40] J. Prangsma, "Noise in detectors for spectroscopy", Ibsen Photonics, 2015

[41] C. Ai, "Phase measurement accuracy limitation in phase-shifting interferometry", Univer-
sity of Arizona, Tucson, USA, 1987

[42] Y. Chen and Q. Kemao, "Phase-shifting algorithms with known and unknown phase shifts:
comparison and hybrid", Optics Express, vol. 30, no. 5, p. 28, 2022

[43] M. Takeda, T. Aoki, T. Sotomaru, T. Ozawa, T. Komiyama and Y. Miyamoto, "Two-
Dimensional Phase unwrapping by Direct Elimination of Rotational Vector Fields for Phase
Gradients Obtained by Heterodyne Techniques", Optical Review, vol. 5, no. 6, p. 6, 1998

[44] R. M. Goldstein, H. A. Zebker and C. L. Werner, "Satellite Radar Interferometry: Two-
Dimensional Phase Unwrapping", Radio Science, vol. 23, no. 4, pp. 713-720, 1988

[45] J. M. Huntley, R. Cusack, and H. T. Goldrein, "Improved noise-immune phase-
unwrapping", Applied Optics, vol. 345, no. 5, pp. 781-789, 1995

[46] J. M. Huntley, "Noise-immune phase unwrapping algorithm", Applied Optics, vol. 28, no.
15, p. 3, 1989

[47] J. M. Huntley, J. R. Buckland, and S. R. Turner, "Unwrapping noisy phase maps by use of a
minimum-cost-matching algorithm", Applied Optics, vol. 34, no. 23, p. 9, 1995

[48] P. Rastogi, E. Hack, "Phase Estimation in Optical Interferometry", CRC Press, 2015

90



[49] M. Pawlak, "Image Analysis by Moments: Reconstruction and Computational Aspects",
Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw 2006

[50] E. Hack, J. Burke, "Invited Review Article: Measurement uncertainty of linear phase-
stepping algorithms", AIP Publishing, 2011

[51] R. Cordero et al., "Uncertainty analysis of temporal phase-stepping algorithms for inter-
ferometry", Optics Communications, vol. 275, no. 1, p.144-155, 2007

[52] Joint Committee for Guides in Metrology (JCGM/WG1), “Guide to the Expression of Un-
certainty in Measurement”, 2008

[53] P. H. Richter, "Estimating Errors in Least-Squares Fitting", The Telecommunications and
Data Acquisition Progress Report, 1995

91



92



A Noise Quantities: Formulas
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Figure 82: Table containing the necessary expressions for the analytical calculation of the
uncertainties originating from individual error sources. [50]
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B Edge Detection

Visibility γ, also called “Data Modulation” [3], is a measure of the quality of the datapoints of
the phase map. It is generally defined as the ratio between I ′′ and I ′, or as an analytical expres-
sion in terms of the recorded interferograms, where 1 corresponds to the highest visibility/data
quality and 0 to the lowest one. The wrapped phase map calculated from interferograms is of-
ten “contaminated”. That is, datapoints outside of the pupil may have values different than 0.
This may be due to stray light or reflections, for example. However, the quality of the data in
these locations is usually much lower compared to the quality over the pupil, hence, the calcu-
lated visibility can be used to filter them out. This can be seen in Fig.(83-86).

Figure 83: Contaminated phase
map as calculated directly from the
Schwieder-Hariharan PSA.

Figure 84: Decontaminated phase
map using the visibility γ and >0.1 as
the threshold condition.

Figure 85: Calculated visibility
from the analytical expression for
Schwieder-Hariharan PSA [3].

Figure 86: Cross-section of the calcu-
lated visibility. The sharp drop in γ at
about x=600px corresponds to a dust
particle.

After successful filtering, a simple path-following algorithm is used to find the location and di-
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ameter of the pupil and crop the original phase map accordingly. This can be seen in Fig.(87) In
this report we have only considered circular pupils. In reality the pupil may not necessarily be
exactly circular and may have a more complex shape.

Figure 87: Example of using edge detection to crop the wrapped phase map. The phase map is
identical to the one shown in Fig.(84).
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