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Chapter 3
Convergent Systems: Nonlinear Simplicity

Alexey Pavlov and Nathan van de Wouw

Abstract Convergent systems are systems that have a uniquely defined globally
asymptotically stable steady-state solution. Asymptotically stable linear systems
excited by a bounded time varying signal are convergent. Together with the superpo-
sition principle, the convergence property forms a foundation for a large number of
analysis and (control) design tools for linear systems. Nonlinear convergent systems
are in many ways similar to linear systems and are, therefore, in a certain sense sim-
ple, although the superposition principle does not hold. This simplicity allows one to
solve a number of analysis and design problems for nonlinear systems and makes the
convergence property highly instrumental for practical applications. In this chapter,
we review the notion of convergent systems and its applications to various analyses
and design problems within the field of systems and control.

3.1 Introduction

In many controller design problems, a controller is designed to ensure that some
desired solution of the closed-loop system is asymptotically stable with a desired
region of attraction. Traditionally, this is considered as a stabilization problem for
the desired solution. However, if we take a step back and look at this design problem
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from a distance, we can see that the controller actually provides the closed-loop
system with a system property: the closed-loop system has an asymptotically stable
steady-state solution with the given region of attraction (e.g., local, global, or some
given set of initial conditions). In addition to that, this steady-state solution has
desired properties, e.g., desired output value.

This system point of view on the controller design problem allows one to define
an important system property, which is common for linear asymptotically stable
systems, but which is far from being straightforward for nonlinear systems: the con-
vergence property. A system is called convergent if it has a unique, in a certain sense,
globally asymptotically stable solution, called the steady-state solution. Originally,
the term “convergence” was coined in the Russian literature in the 1950s. In [41], the
notion was defined for nonstationary systems that are periodic in time. In that refer-
ence, such a system is called convergent if it has a unique globally asymptotically
stable periodic solution. Later, in [10] (see also [34]) this definition was naturally
extended to nonlinear systems with arbitrary (not necessarily periodic in time) right-
hand sides. These references, together with [56] laid a foundation of basic results for
establishing this property for nonlinear systems based on Lyapunov functions, matrix
inequalities, and frequency domain methods. Almost 50years later, notions similar
to convergence received significant attention in the literature: contraction analysis,
incremental stability and passivity, incremental input-to-state stability, etc. [1–3, 13,
15, 22, 27–29, 32, 44–46, 49, 50, 57]. A comparison establishing differences and
similarities between incremental stability on the one hand and convergence on the
other hand is provided in [46].

A brief historical overview on convergent systems and subsequent developments
of this and similar notions can be found in [34]. Since that paper many new develop-
ments on convergent systems have appeared. In particular, sufficient conditions for
convergence for different classes of systems have been pursued [8, 9, 25, 26, 35, 37,
39, 42, 43, 54]. Together with theoretical developments on convergent systems and
related notions, the benefit of such system-level stability property has been demon-
strated by its use to tackle fundamental system-theoretic problems. Further study
of convergent systems indeed demonstrated that this notion is very instrumental for
a number of design and analysis problems within nonlinear systems and control,
such as synchronization, observer design, output tracking and disturbance rejection,
the output regulation problem, model reduction, stable inversion of non-minimum
phase systems, steady-state performance optimization of control systems, variable
gain controller design and tuning and extremum seeking control. For linear systems
many of these problems are solved in a relatively simple way. It turns out that this
simplicity comes not only from the superposition principle, but also from the con-
vergence property (for linear systems it is equivalent to asymptotic stability of the
system with zero input). Unlike the superposition principle, which holds only for
linear systems, the convergence property may still hold for a nonlinear system. It
appears that convergent nonlinear systems enjoy, to a large extent, the simplicity
inherent to linear asymptotically stable systems. This allows one to solve, based on
the notion of convergence, a number of challenging nonlinear control and analysis
problems.
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In this chapter, we will revisit the notion of convergence and review its applica-
tion to various problems within systems and control. We deliberately omit technical
details and generality, keeping focus on the ideas. All technical details and gen-
eral formulations can still be found in the corresponding references. The chapter is
organized as follows. Definitions, sufficient conditions, and basic properties of con-
vergent systems are given in Sect. 3.2. Applications of this notion are reviewed in
Sects. 3.3–3.9. Conclusions are given in Sect. 3.10.

3.2 Convergent Systems

Consider the nonlinear system

ẋ = F(x, t), x ∈ R
n, t ∈ R, (3.1)

where F(x, t) is locally Lipschitz in x and piecewise continuous in t .1

Definition 3.1 ([10]) System (3.1) is called convergent if

(i) there is a unique solution x̄(t) that is defined and bounded for t ∈ R,
(ii) x̄(t) is globally asymptotically stable.

If x̄(t) is uniformly (exponentially) asymptotically stable, then system (3.1) is called
uniformly (exponentially) convergent.2

Since the time-varying component in a system is usually due to some input, we
can define convergence for systems with inputs.

Definition 3.2 System

ẋ = F(x,w(t)), w(t) ∈ R
m, t ∈ R, (3.2)

is (uniformly, exponentially) convergent for a class of inputs I if it is convergent
for every input w(t) ∈ I from that class.

To emphasize the dependence of the steady-state solution on the input w(t), it is
denoted by x̄w(t). Note that any solution of convergent system (3.2) forgets its initial
conditions and converges to the steady-state solution, which is determined by the
input w(t). Relations between input w(t) and steady-state solution x̄w(t) can be
further characterized by several additional properties.

1For simplicity, in this chapter, we consider only continuous-time systems with locally Lipschitz
right-hand sides. Definitions and basic results for discrete-time systems and for continuous-time
systems with discontinuous right-hand sides can be found in [18, 36, 38, 39, 56].
2A more general definition of convergent systems, where the steady-state solution has an arbitrary
domain of attraction (not necessarily global as in this chapter) can be found in [35].
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Definition 3.3 ([35]) The system (3.2) that is convergent for a class of piecewise
continuous bounded inputs is said to have the Uniformly Bounded Steady-State
(UBSS) property if for any r > 0 there exists R > 0 such that if a piecewise contin-
uous inputw(t) satisfies |w(t)| ≤ r for all t ∈ R, then the corresponding steady-state
solution satisfies |x̄w(t)| ≤ R for all t ∈ R.

Definition 3.4 ([35]) System (3.2) is called input-to-state convergent if it is uni-
formly convergent for the class of bounded piecewise continuous inputs and, for
every such input w(·), system (3.2) is input-to-state stable3 with respect to the
steady-state solution x̄w(t), i.e., there exist a K L -function β(r, s) and a K∞-
function γ (r) such that any solution x(t) of system (3.2) corresponding to some
input ŵ(t) := w(t) + Δw(t) satisfies

|x(t) − x̄w(t)| ≤ β(|x(t0) − x̄w(t0)|, t − t0) + γ

(
sup

t0≤τ≤t
|Δw(τ )|

)
. (3.3)

In general, the functions β(r, s) and γ (r) may depend on the particular input w(·).

3.2.1 Conditions for Convergence

Simple sufficient conditions for exponential convergence were given by B.P. Demi-
dovich in [10, 34]. Here we present a slightly modified version of that result, which
covers input-to-state convergence.

Theorem 3.1 ([10, 35]) Consider system (3.2) with the function F(x,w) being C1

with respect to x and continuous with respect to w. Suppose there exist matrices
P = PT > 0 and Q = QT > 0 such that

P
∂F

∂x
(x,w) + ∂F

∂x

T

(x,w)P ≤ −Q, ∀x ∈ R
n, w ∈ R

m . (3.4)

Then, system (3.2) is globally exponentially convergent with the UBSS property and
input-to-state convergent for the class of bounded piecewise continuous inputs.

For systems of Lur’e-type form, sufficient conditions for exponential convergence
were obtained by V.A. Yakubovich [56]. Consider the system

ẋ = Ax + Bu + Hw(t)

y = Cx + Dw(t) (3.5)

u = −ϕ(y,w(t)),

where x ∈ R
n is the state, y ∈ R is the output, w(t) ∈ R

m is a piecewise continuous
input and ϕ(y,w) is a static nonlinearity.

3See [48] for a definition of the input-to-state stability property.
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Theorem 3.2 ([35, 56]) Consider system (3.5). Suppose the matrix A is Hurwitz,
the nonlinearity ϕ(y,w) satisfies

|ϕ(y2,w) − ϕ(y1,w)| ≤ K |y2 − y1| , (3.6)

for all y1, y2 ∈ R and w ∈ R
m, and the frequency response function Gyu( jω) =

C( jωI − A)−1B from u to y satisfies

sup
ω∈R

|Gyu( jω)| =: γyu <
1

K
. (3.7)

Then, system (3.5) is exponentially convergent with the UBSS property and input-to-
state convergent for the class of piecewise continuous bounded inputs.4

Below follows an alternative result, not based on quadratic Lyapunov functions.

Theorem 3.3 ([35]) Consider system (3.2). Suppose there exist C1 functions V2(x)
and V1(x1, x2), K -functions α2(s), α3(s), α5(s), γ (s), and K∞-functions α1(s),
α4(s) satisfying the conditions

α1(|x1 − x2|) ≤ V1(x1, x2) ≤ α2(|x1 − x2|), (3.8)

∂V1

∂x1
(x1, x2)F(x1,w) + ∂V1

∂x2
(x1, x2)F(x2,w) ≤ −α3(|x1 − x2|), (3.9)

α4(|x |) ≤ V2(x) ≤ α5(|x |), (3.10)

∂V2

∂x
(x)F(x,w) ≤ 0 for |x | ≥ γ (|w|) (3.11)

for all x1, x2, x ∈ R
n and w ∈ R

m. Then, system (3.2) is globally uniformly con-
vergent and has the UBSS property for the class of bounded piecewise continuous
inputs.

One can show that conditions of Theorems 3.1–3.3 imply incremental stability [2].
In fact, the proof of convergence in these results is based on two basic components:

(1) incremental stability: it guarantees global asymptotic stability of any solution,
(2) existence of a compact positively invariant set: it guarantees existence of a solu-

tion x̄(t) that is bounded on R [10, 56]. By virtue of (1), x̄(t) is globally asymp-
totically stable, which proves convergence.

Although here incremental stability is used in the sufficient conditions for conver-
gence given above, in general these two properties are not equivalent. However, as

4This result is a particular case of a more general condition on Gyu( jω) in the form of Circle
criterion [56].
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shown in [46], uniform convergence and incremental stability are equivalent on com-
pact positively invariant sets. In the latter reference, also a necessary and sufficient
condition for uniform convergence is formulated, which reads as follows.

Theorem 3.4 ([46])Assume that system (3.1) is globally uniformly convergent, with
associated steady-state solution x̄(t). Assume that the function F is continuous in
(x, t) and C1 with respect to the x variable. Assume also that the Jacobian ∂

∂x f (x, t)
is bounded, uniformly in t . Then there exist a C1 function V : R × R

n → R+, func-
tions α1, α2 and α3 ∈ K∞, and a constant c ≥ 0 such that

α1(|x − x̄(t)|) ≤ V (t, x) ≤ α2(|x − x̄(t)|), (3.12)

∂V

∂t
+ ∂V

∂x
F(x, t) ≤ −α3(|x − x̄(t)|) (3.13)

and
V (t, 0) ≤ c, t ∈ R. (3.14)

Conversely, if a differentiable function V : R × R
n → R+ and functions α1, α2

and α3 ∈ K∞, and a constant c ≥ 0 are given such that for some trajectory x̄ :
R → R

n estimates (3.12)–(3.14) hold, then system (3.1) must be globally uniformly
convergent and the solution x̄(t) is the unique bounded solution as in Definition 3.1.

For interconnections of convergent systems, one can obtain similar results as
for interconnections of systems with a stable equilibrium. In particular, a series
connection of input-to-state convergent (ISC) systems is again an ISC system [35].
Feedback interconnection of two ISC systems is again an ISC system under a small-
gain condition on the gain functions γ (r) for each subsystem, see details in [6].
Theorems 3.1–3.3 in combination with these interconnection properties provide a
practical toolbox of sufficient conditions for the convergence property.

Sufficient conditions for convergence for other classes of systems, such as discrete-
time nonlinear systems, piecewise affine systems, linear complementarity systems,
switched systems, measure differential inclusions, delay differential equations, have
been pursued in [8, 9, 25, 26, 35, 37, 39, 43, 54].

3.2.2 Basic Properties of Convergent Systems

The convergence property is an extension of stability properties of asymptotically
stable linear systems with inputs:

ẋ = Ax + Bw, (3.15)

where A is Hurwitz. For any piecewise continuous input w(t) that is bounded on R,
this system has a unique solution x̄w(t) which is defined and bounded on R:
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x̄w(t) :=
∫ t

−∞
exp(A(t − s))Bw(s)ds. (3.16)

This solution is globally exponentially stable since A is Hurwitz. Therefore, system
(3.15) is exponentially convergent for the class of bounded piecewise continuous
inputs. This example also illustrates the selection of the steady-state solution in the
definition of convergent systems. The steady-state solution is not only a solution
that attracts all other solutions in forward time–all solutions of system (3.15) have
this property. It is key to realize that, among all these solutions, only one remains
bounded both in forward and backward time. The selection of this bounded on R

solution defines the steady state in a unique way for uniformly convergent systems
[35]. The natural choice for the definition of the steady-state solution is further
illustrated by the following property.

Property 3.1 ([10]) Suppose system (3.2) with a given input w(t) is uniformly
convergent. If the input w(t) is constant, the corresponding steady-state solution
x̄w(t) is also constant; if w(t) is periodic with period T , then the corresponding
steady-state solution x̄w(t) is also periodic with the same period T .

As it will be demonstrated in subsequent sections, the following two basic proper-
ties of convergent systems will be very instrumental in design and analysis problems
within systems and control:

(i) a convergent system defines a steady-state operator Fw(t) := x̄w(t) that maps
bounded onR inputs to bounded onR steady-state solutions and periodic inputs
to periodic steady-state solutions with the same period.

(ii) any solution of a uniformly convergent system starting in a compact positively
invariant setX is uniformly asymptotically stable inX .

Property (i) is highly instrumental in problems focused on steady-state dynamics,
while property (ii) significantly simplifies stability proofs for particular solutions.
The latter property follows from [46], where it is shown that for a compact positively
invariant set uniform convergence and incremental stability are equivalent. In sub-
sequent sections, we will demonstrate how these two basic properties can be used in
various design and analysis problems.

3.3 Controller and Observer Design

In controller and observer design problems for nonstationary systems (e.g., systems
with time-varying inputs), the common objective is to ensure, by means of controller
design, that a certain solution with desired properties is asymptotically stable with a
given domain of attraction (e.g., global). For example, in the observer design problem,
the desired solution is the solution of the observed system. In the output tracking
and disturbance rejection problem, the desired solution is the one that matches the
desired output of the system regardless of the disturbance.
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The conventional approach to prove whether a controller/observer solves these
problems consists of the following steps:

(a) find a solution of the closed-loop system/observer x̄(t) with desired properties,
(b) translate that solution to the origin through the transformation z(t) = x(t) −

x̄(t),
(c) prove asymptotic stability of z(t) ≡ 0 with a desired domain of attraction.

Although stability analysis of an equilibrium should be simpler, in many cases this
simplicity is essentially reduced by the coordinate transformation: the right-hand side
of the system in the new coordinates z typically depends on x̄(t). This makes the
analysis challenging and in some cases even prohibitively complex as, for example,
for piecewise affine systems [53]. On the other hand, the same design problems can
be approached using the property of convergence:

(1) design a feedback controller that ensures uniform convergence of the closed-
loop system: as a result, any solution starting in a compact positively invariant
set is uniformly asymptotically stable in this set.

(2) design a feedforward controller that ensures that the system with the feedback
and feedforward controllers has a solution x̄(t) with the desired properties.

Thus for any compact positively invariant set of initial conditions, the solution x̄(t)
will be uniformly asymptotically stable in this set. This approach allows one to avoid
the coordinate transformation z = x − x̄(t) and subsequent cumbersome stability
analysis of the transformed system.5

Let us illustrate the benefit of the above convergence-based approach in the scope
of the observer design problem. Consider the system

{
ẋ = F(x,w),

y = h(x,w)
(3.17)

with input w and output y. The objective is to design an observer that asymptotically
reconstructs from themeasured input and output the state x(t) starting at an unknown
initial condition x(t0) = x0. A conventional way to design an observer is to construct
it as a copy of the system dynamics with an output injection term:

{ ˙̂x = F(x̂,w) + L(y, ŷ,w),

ŷ = h(x̂,w),
(3.18)

where the injection function L(y, ŷ,w) satisfies L(y, y,w) ≡ 0. The latter condi-
tion guarantees that the observer, if initiated in the same initial condition as system
(3.17), x̂(t0) = x0, has a solution x̂(t) ≡ x(t), i.e., condition (2) above is satisfied.
If the injection term L(y, ŷ,w) is designed in such a way that the observer (3.18) is
uniformly convergent, then the desired solution x̂(t) ≡ x(t) is uniformly asymptot-
ically stable in any compact positively invariant set of initial conditions. Hence, one

5This benefit has recently also been explicitly recognized in [13].
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can think of the observer design as aiming to ensure that the observer is a convergent
system rather than aiming at rendering the observer error dynamics asymptotically
stable.

The problem of controlled synchronization (e.g., master–slave synchronization)
has a lot in common with the observer design problem (see, e.g., [31]). Therefore, it
can be treated in the same way, as the observer design problem. The same holds for
the output tracking and disturbance rejection problems.

For a class of piecewise affine (PWA) systems, this convergence-based approach
allows one to solve the output tracking, synchronization, and observer design prob-
lems in a relatively simple manner [53]. For PWA systems these nonstationary prob-
lems become very hard to solve by conventional methods if the number of cells with
affine dynamics is larger than two.

For the tracking and disturbance rejection problems, in the approach mentioned
above one needs to answer the following questions:

• How to find a feedback that makes the closed-loop system uniformly convergent?
• How to find a bounded feedforward input that shapes the output of the steady-state
solution to a desired value, and whether such a feedforward exists at all?

For an answer to the first question the reader is referred, for example, to [35],
where controller design tools based on quadratic stability, backstepping, separation
principle and passivity were developed. The second question will be addressed in
the next section.

3.4 Stable Inversion of Nonlinear Systems

The problem of finding a bounded input that ensures the existence of a bounded
solution with a desired output is called the stable inversion problem. Conventionally,
it is studied after transforming the system into a normal form:

ξ̇ = p(ξ, ȳ, u), (3.19)

y(r) = q(ȳ, ξ) + s(ȳ, ξ)u, (3.20)

where y ∈ R is the output, u ∈ R is the input; ξ ∈ R
n and ȳ := (y, ẏ, . . . , y(r−1))T

constitute the state of the system. The functions p, q and s are locally Lipschitz and
s(ȳ, ξ) is nonzero for all ȳ and ξ . For simplicity of the presentation, we assume that
the normal form (3.19), (3.20) is defined globally. The reference output trajectory
is given by yd(t), which is bounded together with its r derivatives. From (3.20), we
compute an input u corresponding to the reference output trajectory yd(t):

u = s(ȳd , ξ)−1(y(r)
d − q(ȳd , ξ)) =: U (ξ, ȳd , y

(r)
d ), (3.21)
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where ȳd := (yd , ẏd , . . . , y
(r−1)
d )T . Substituting this control into (3.19), we obtain

the tracking dynamics

ξ̇ = p(ξ, ȳd(t),U (ξ, ȳd(t), y
(r)
d (t))) =: p̄(ξ, t). (3.22)

If we can find a bounded solution ξ̄ (t) of (3.22), then the corresponding bounded
input ud(t) can be computed from (3.21) by substituting this ξ̄ (t) for ξ . The desired
bounded solution of (3.19), (3.20) equals (ξ̄ T (t), ȳTd (t))T .

For minimum phase systems, bounded ȳd(t), y
(r)
d (t) ensure boundedness of any

solution of the tracking dynamics in (3.22) in forward time. For non-minimum phase
systems, this is not the case, since the tracking dynamics are unstable. However, there
may still exist a bounded solution, as it has been shown in [11, 12] for the local case.

To extend that result to the nonlocal case, we can, first, observe that the unstable
tracking dynamics can be convergent in backward time. In this case, all solutions
except for one diverge to infinity as t → +∞. The only bounded on R solution is
the steady-state solution from the definition of convergence.

We can apply similar reasoning to the case if (3.22) can be decomposed (after,
possibly, a coordinate transformation) into a series connection of two systems:

η̇ = F(η, t), η ∈ R
ns , (3.23)

ζ̇ = G(ζ, η, t), ζ ∈ R
nu . (3.24)

If system (3.23) is convergent and (3.24) with η as input is convergent in backward
time for the class of bounded continuous inputs, one can easily verify that the bounded
on R solution of (3.23), (3.24) is unique and it equals (η̄T (t), ζ̄ T

η̄ (t))T , where η̄(t)

is the steady-state solution of (3.23) and ζ̄η̄(t) is the steady-state solution of (3.24)
corresponding to η̄(t).

If the tracking dynamics can be represented as a feedback interconnection of a
convergent system in forward time and a convergent system in backward time,

η̇ = F(η, ζ, t), η ∈ R
ns , (3.25)

ζ̇ = G(ζ, η, t), ζ ∈ R
nu , (3.26)

then one can still ensure the existence of a unique bounded on R solution if a certain
small-gain condition is satisfied, as formalized in the result below.

Theorem 3.5 Consider system (3.25). Suppose that

1. system (3.25) with ζ as input is convergent for the class of continuous bounded
inputs with the corresponding steady-state operatorF being Lipschitz continu-
ous with a Lipschitz constant γF , i.e., ‖F ζ1 − F ζ1‖∞ ≤ γF‖ζ1 − ζ2‖∞,

2. system (3.26) with η as input is convergent in backward time for the class
of continuous bounded inputs with the corresponding steady-state operator G
being Lipschitz continuous with a Lipschitz constant γG, i.e., ‖G η1 − G η1‖∞ ≤
γG‖η1 − η2‖∞.
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If the small-gain condition
γFγG < 1, (3.27)

is satisfied, then system (3.25) has a unique bounded on R solution.

Finding the Lipschitz constant for the steady-state operator as well as a numerical
method for the calculation of the bounded solution are described in [33].

The simple convergence-based considerations presented above extend the local
results from [11, 12] on stable inversion of non-minimum phase systems to the
nonlocal nonlinear case.

3.5 The Output Regulation Problem

In [35], the notion of convergent systems was successfully applied to solve the output
regulation problem for nonlinear systems in a nonlocal setting. Before that, the output
regulation problem was solved for linear systems, see, e.g., [14], resulting in the
well-known internal model principle, and for nonlinear systems in a local setting [7,
20]. The application of the convergent systems property allowed us to extend these
results to nonlocal problem settings for nonlinear systems. In particular, necessary
and sufficient conditions for the solvability of the global nonlinear output regulation
problem were found [35].6 These conditions included, as their particular case, the
solvability conditions for the linear and the local nonlinear cases.

The output regulation problem can be treated as a special case of the tracking and
disturbance rejection problem,where the reference signal for the output and/or distur-
bance are generated by an external autonomous system. Consider systems modeled
by equations of the form

ẋ = f (x, u,w), (3.28)

e = hr (x,w), (3.29)

y = hm(x,w), (3.30)

with state x ∈ R
n , input u ∈ R

k , regulated output e ∈ R
lr , and measured output y ∈

R
lm . The exogenous signalw(t) ∈ R

m , which can be viewed as a disturbance in (3.28)
or as a reference signal in (3.29), is generated by an external autonomous system

ẇ = s(w), (3.31)

starting in a compact positively invariant set of initial conditionsW+ ⊂ R
m . System

(3.31) is called an exosystem.

6These results were obtained in parallel with [21], where an alternative approach to nonlocal non-
linear output regulation problem was pursued.
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The global uniform output regulation problem is to find, if possible, a controller
of the form

ξ̇ = η(ξ, y), ξ ∈ R
q , (3.32)

u = θ(ξ, y), (3.33)

for some q ≥ 0 such that the closed-loop system

ẋ = f (x, θ(ξ, hm(x,w)),w), (3.34)

ξ̇ = η(ξ, hm(x,w)) (3.35)

satisfies three conditions:

• regularity: the right-hand side of the closed-loop system is locally Lipschitz with
respect to (x, ξ) and continuous with respect to w;

• uniform convergence: the closed-loop system is uniformly convergent with the
UBSS property for the class of bounded continuous inputs;

• asymptotic output zeroing: for all solutions of the closed-loop system and the
exo-system starting in (x(0), ξ(0)) ∈ R

n+q and w(0) ∈ W+ it holds that e(t) =
hr (x(t),w(t)) → 0 as t → +∞.7

In conventional formulations of the output regulation problem, some other sta-
bility requirement on the closed-loop system is used instead of the requirement of
uniform convergence, e.g., (global) asymptotic stability of the origin for zero input or
boundedness of solutions. For linear and local nonlinear cases, it can be shown that
these requirements are equivalent to the requirement of the uniform convergence.
For nonlocal nonlinear problem settings, boundedness of solutions of the uniformly
convergent system follows from the definition of uniform convergence and bound-
edness of w(t). Thus the choice of uniform convergence as a “stability requirement”
is natural in this problem. It leads to a necessary and sufficient solvability condition
for the output regulation problem that includes, as its particular case, the solvability
conditions for the linear and local nonlinear output regulation problems, see e.g.,
[20]. This fact indicates that the right problem formulation for the nonlocal output
regulation problem is captured in this way.

From the controller design point of view, this problem can be addressed using
the same approach as described in Sect. 3.3: design a controller such that the closed-
loop system is (a) uniformly convergent with the UBSS property and (b) has a
solution along which the asymptotic output zeroing condition holds, see Sect. 3.3.
The questions to be addressed in this approach are, first, whether the structure of the
controlled system and the exo-system allows for a solution of the problem; second,
how to design a controller that makes the closed-loop system uniformly convergent;
and, third, how to check that this controller ensures existence of a solution with the
asymptotic output zeroing property.

7Other variants of the uniform output regulation problem can be found in [35].
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While the second question is addressed in a number of papers, see, e.g., [35], the
first and the third questions are answered by the following result.

Theorem 3.6 ([35]) Consider system (3.28)–(3.30) and exo-system (3.31) with a
compact positively invariant set of initial conditions W+ ⊂ R

m.

(i) The global uniform output regulation problem is solvable only if there exist
continuous mappings π(w) and c(w) defined in some neighborhood of Ω(W+)–
the ω-limit set for solutions of exo-system (3.31) starting in W+– and satisfying
the regulator equations

d

dt
π(w(t)) = f (π(w(t)), c(w(t)),w(t)), (3.36)

0 = hr (π(w(t)),w(t)), (3.37)

for all solutions of exo-system (3.31) satisfying w(t) ∈ Ω(W+) for t ∈ R.
(ii) If controller (3.32), (3.33) makes the closed-loop system uniformly convergent

with UBSS property for the class of bounded continuous inputs, then it solves the
global uniform output regulation problem if and only if for any w(t) ∈ Ω(W+)

the controller has a bounded solution with input ȳw(t) := hm(π(w(t)),w(t))
and output ūw(t) = c(w(t)).

Notice that solvability of the regulator equations implies that for any w(t) from
the omega-limit setΩ(W+), system (3.28) has a stable inversion ūw(t) for the desired
output e(t) ≡ 0. The second condition implies that the controller, being driven by
the output ȳw(t), can generate the control signal ūw(t). Since all solutions of the
exo-system starting in W+ converge to the omega-limit set Ω(W+), it is enough to
verify conditions (i) and (ii) only on Ω(W+).

Here we see that the notion of uniform convergence allows us to extend the solv-
ability conditions and controller design methods for the output regulation problem
from the linear and local nonlinear cases to nonlocal nonlinear case.

3.6 Frequency Response Functions for Nonlinear
Convergent Systems

Frequency response functions (FRF) for linear time invariant systems form a foun-
dation for a large number of analysis and design tools. One can define FRF for linear
systems through the Laplace transform. For nonlinear systems, however, the Laplace
transform is not defined. If we notice that, for linear systems, FRF can also be viewed
as a function that fully characterizes steady-state responses to harmonic excitations,
we can extend the notion of FRF to nonlinear convergent systems of the form

ż = F(x,w), (3.38)

y = h(x) (3.39)
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with x ∈ R
n , y ∈ R and scalar input w. Recall that convergent systems have a

uniquely defined periodic response to a periodic excitation (with the same period
time). We can define the FRF as a mapping that maps input w(t) = a sinωt to the
corresponding periodic steady-state solution x̄a,ω(t). As follows from the next result,
this mapping has quite a simple structure.

Theorem 3.7 ([38]) Suppose system (3.38) is uniformly convergent with UBSS
property for the class of continuous bounded inputs w(t). Then, there exists a
continuous function α : R3 → R

n such that for any harmonic excitation of the
form w(t) = a sinωt , the corresponding (asymptotically stable) steady-state solu-
tion equals

x̄aω(t) := α(a sin(ωt), a cos(ωt), ω). (3.40)

As follows from Theorem 3.7, the function α(v1, v2, ω) contains all information on
the steady-state solutions of system (3.38) corresponding to harmonic excitations.
For this reason, we give the following definition.

Definition 3.5 The function α(v1, v2, ω) defined in Theorem 3.7 is called the state
frequency response function. The function h(α(v1, v2, ω)) is called the output fre-
quency response function.

In general, it is not easy to find such frequency response functions analytically.
In some cases they can be found based on the following lemma.

Lemma 3.1 ([38]) Under the conditions of Theorem 3.7, if there exists a continuous
function α(v1, v2, ω) differentiable in v = [v1, v2]T and satisfying

∂α

∂v
(v, ω)S(ω)v = F(α(v, ω), v1), ∀ v, ω ∈ R

2 × R, (3.41)

then this α(v1, v2, ω) is the state frequency response function. Conversely, if the state
frequency response function α(v1, v2, ω) is differentiable in v, then it is a unique
solution of (3.41).

With this definition of the frequency response function,we can further defineBode
magnitude plots for convergent systems that wouldmap frequencyω and amplitude a
of the harmonic input to a measure of the steady-state output (e.g., L2 norm) normal-
ized with the input amplitude a. This extension of the Bode plot enables graphical
representation of convergent system steady-state responses at various frequencies
and amplitudes of the excitation (due to nonlinearity it will depend on both). In this
sense, such frequency response functions are instrumental in supporting frequency
domain analysis of nonlinear convergent systems, similar to that employed for linear
systems.
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3.7 Steady-State Performance Optimization

For linear systems, Bode plots are commonly used to evaluate steady-state sensitiv-
ities of the closed-loop system to measurement noise, disturbances, and reference
signals. If the performance of the closed-loop system, evaluated through the (fre-
quency domain) sensitivity functions, is not satisfactory, controller parameters can
be tuned to achieve desired or optimal steady-state performance. For nonlinear sys-
tems, such performance-based controller tuning is much more challenging. Even in
the simple case of a convergent closed-loop system with a linear plant being con-
trolled by a linear controller with a variable gain element [19, 55], this problem is far
from straightforward. First, one needs to evaluate/calculate steady-state responses to
the noise, disturbance and/or reference signals. In practice, this may be challenging
already for excitations with only one harmonic (see previous section). In reality, the
excitations will consist of multiple harmonics, and calculation of the steady-state
solution to these excitations can be a challenge in itself. Second, after the steady-
state solution is evaluated, one needs to find how to tune controller parameters to
improve/optimize certain performance characteristics of the steady state responses.

For a subclass of nonlinear convergent systems, both of these problems can be
solved numerically in a computationally efficient way. Let us consider Lur’e-type
systems of the form

ẋ = Ax + Bu + Hw(t) (3.42)

y = Cx + Dw(t) (3.43)

u = −ϕ(y,w(t), θ) (3.44)

e = Cex + Dew(t), (3.45)

where x ∈ R
n is the state, y ∈ R is the output, w(t) ∈ R

m is a piecewise continuous
input, and e ∈ R is a performance output. We assume that the nonlinearity ϕ : R ×
R

m × Θ → R is memoryless and may depend on nθ parameters collected in the
vector θ = [θ1, . . . , θnθ

]T ∈ Θ ⊂ R
nθ .We also assume that ϕ(0,w, θ) = 0 ∀w ∈ R

m

and θ ∈ Θ . For simplicity, we only consider the case in which the parameters θ

appear in the nonlinearity ϕ and none of the system matrices. An extension to the
latter situation is relatively straightforward. The functions Gyu(s),Gyw(s),Geu(s)
and Gew(s) are the corresponding transfer functions from inputs u and w to outputs
y and e of the linear part of system (3.42)–(3.45).

In this section, we consider the case of periodic disturbances w(t). Recall that if
system (3.42)–(3.45) satisfies the conditions of Theorem 3.2 for all θ ∈ Θ , then it
is exponentially convergent and thus for each periodic w(t) it has a unique periodic
steady-state solution x̄w(t, θ).

Once the steady-state solution is uniquely defined, we can define a performance
measure to quantify the steady-state performance of the system for a particular
T -periodic input w(t) and particular parameter θ . For example, it can be defined as
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J (θ) = 1

T

∫ T

0
ēw(t, θ)2dt, (3.46)

where ēw(t, θ) is the performance output response corresponding to the steady-state
solution. If we are interested in quantifying simultaneously the steady-state per-
formance corresponding to a family of disturbances, w1(t),w2(t), . . . ,wN (t), with
periods T1, . . . , TN , we, e.g., can choose a weighted sum of the functionals of the
form (3.46). The choice of the performance objective strongly depends on the needs
of the particular application.

System (3.42)–(3.45) may represent a closed-loop nonlinear control system with
θ being a vector of controller parameters. Ultimately, we aim to optimize the steady-
state performance of this system by tuning θ ∈ Θ . To this end, we propose to use
gradient-like optimization algorithms, which provide a direction for decrease of
J (θ) based on the gradient of ∂ J/∂θ(θ). This approach requires computation of the
gradient of J (θ). For the performance objective as in (3.46), the gradient equals

∂ J

∂θ
(θ) = 2

T

∫ T

0
ēw(t, θ)

∂ ēw
∂θ

(t, θ)dt, (3.47)

under the condition that ēw(t, θ) is C1 with respect to θ . Here we see that in order
to compute the gradient of J (θ) we need to know both ēw(t, θ) and ∂ ēw/∂θ(t, θ).
The following theorem provides, firstly, conditions under which x̄w(t, θ) (and there-
fore ēw(t, θ)) is C1 with respect to θ , and, secondly, gives us an equation for the
computation of ∂ ēw/∂θ(t, θ).

Theorem 3.8 ([40]) If system (3.42)–(3.45) satisfies the conditions of Theorem 3.2
for all θ ∈ Θ , and the nonlinearity ϕ(y,w, θ) is C1 for all y ∈ R, w ∈ R

m and θ in
the interior ofΘ , then the steady-state solution x̄w(t, θ) is C1 in θ . The corresponding
partial derivatives ∂ x̄w/∂θi (t, θ) and ∂ ēw/∂θi (t, θ) are, respectively, the unique T -
periodic solution Ψ̄ (t) and the corresponding periodic output μ̄(t) of the system

Ψ̇ = AΨ + BU + BWi (t) (3.48)

λ = CΨ (3.49)

U = −∂ϕ

∂y
(ȳ(t, θ),w(t), θ)λ (3.50)

μ = CeΨ, (3.51)

where Wi (t) = −∂ϕ/∂θi (ȳw(t, θ),w(t), θ).

To calculate the steady-state output ē(t, θ), notice that it is a solution of the
following equation:

ȳ = Gyu ◦ F ȳ + Gyww, (3.52)

ē = Geu ◦ F ȳ + Geww, (3.53)
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Fig. 3.1 Mixed-Time-
Frequency algorithm to
compute the steady-state
solutions Yk+1[m] = Gyu(imω)Uk+1[m]

U [m]
Y [m]

W [m]

u = −ϕ(y, w(t), θ)

Nonlinearity

Linear Dynamics

FFT IFFT
y(t)

u(t)

Frequency domain

Time domain

+Gyw(imω)W [m]

w(t)

where Gyu , Gyw, Geu and Gew are the linear operators mapping periodic inputs u(t)
and w(t) to periodic steady-state outputs y(t) and e(t) of the linear part of sys-
tem (3.42)–(3.45); and F is the operator defined by F y(t) := −ϕ(y(t),w(t), θ).
The conditions of Theorem 3.2 imply that the superposition operator Gyu ◦ F is a
contraction operator acting from L2(T ) to L2(T ). Therefore, ȳ (and then ē) can be
calculated from the iterative process

uk+1 = F yk (3.54)

yk+1 = Gyuuk+1 + Gyww, (3.55)

starting from an arbitrary initial guess y0. To speed up the calculation, this iterative
process can be implemented both in frequency domain (to compute Gyuuk+1 and
Gyww) and in time domain (to compute the output of the nonlinearity F yk). This
is schematically shown in Fig. 3.1, where Y , W and U denote the vectors of the
Fourier coefficients (indexed by m) of the signals y(t), w(t) and u(t), respectively.
and (I)FFT denotes the (inverse) Fast Fourier Transform.

If at every iteration we truncate the Fourier coefficients for uk(t) and w(t) to keep
only the N first harmonics (which is inevitable in any numerical implementation of
the algorithm), the algorithm will still converge from an arbitrary initial guess y0(t)
to a unique solution ȳN . The error caused by the truncation can be estimated by [40]:

‖ȳ − ȳN‖L2 ≤
{
sup|m|>N |Gyu(imω)|γyw

K‖w‖L2
1−γyu K

+ γyw‖w − wN‖L2

}
1

1−γyu K
, (3.56)

where γyw := supm∈Z |Gyw(imω)| and ‖w − wN‖L2 is the error of truncation of har-
monics in w(t) higher than N . From this estimate, we can conclude that by choosing
N high enough, one can reach any desired accuracy of approximation ȳ(t) by the
solution ȳN of the algorithm with the truncation. Notice that this algorithm with
truncation can be considered as a multiharmonic variant of the describing function
method, described in [30] for autonomous systems.
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After computing ȳw and ēw, one can then compute in the same way the partial
derivatives ∂ ēw/∂θ(t, θ), since system (3.48)–(3.51) satisfies the same conditions as
the original system (3.42)–(3.45) in Theorem 3.2. Then one can compute ∂ J/∂θ and
proceed to gradient-like optimization of θ .

Details on implementation of these numerical algorithms can be found in [40],
where they, in combination with a gradient optimization method, were applied for
tuning parameters of a variable gain controller for wafer stage control. The results
presented in [40] demonstratedvery fast convergenceof the algorithms for calculation
of the steady-state solution and its gradients, as well as efficient performance of the
gradient based tuning algorithm. This turns the algorithm into a powerful numerical
method for optimizing steady-state performance of nonlinear closed-loop systems
of Lur’e-type form.

In this section, we have shown how the convergence property can be instrumen-
tal in supporting the model-based performance optimization of nonlinear control
systems. In the next section, we also consider the problem of performance optimiza-
tion of nonlinear systems, where again performance is characterized by periodically
time-varying steady-state solutions. However, now it is assumed that nomodel or dis-
turbance information is available to support performance optimization and therefore
a model-free optimization approach called extremum seeking is adopted.

3.8 Extremum Seeking Control

Extremum seeking control is a model-free, online approach for performance opti-
mization for dynamical systems.The largemajority of theworks in extremumseeking
is considering the case in which the performance of the system is quantified in terms
of a (unknown) performance objective function depending on the equilibrium state
of the system [23, 51, 52]. However, in many cases the performance of a system is
characterized by time-varying behaviors; as an example, one can think of tracking
control problems for high-tech positioning systems, such as industrial robots, wafer
scanners or pick-and-place machines in which the machine’s functioning relies on
the accurate realization of time-varying (or periodic for repetitive tasks) reference
trajectories.

In this section, we will show how the concept of convergence can be a key under-
lying property of the dynamical system subjected to an extremum seeker when the
performance objective depends on periodic steady-state trajectories of the plant. For
more details on extremum seeking for nonlinear plants with periodic steady-state
solutions, we refer to [17].

Let us consider a nonlinear dynamical system of the form

ẋ = f (x, u, θ,w(t)), (3.57)

y = h(x,w(t)), (3.58)
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where x ∈ R
n , u ∈ R

m are the state and the input, w ∈ R
l is an input disturbance and

θ ∈ R is a system parameter. The disturbances w(t) are generated by an exo-system
of the following form:

ẇ = ϕ(w). (3.59)

We assume that for any initial condition w(0) ∈ R
l , the solution of the exo-system

(3.59) is uniformly bounded (in backward and forward time) and periodic with a
known constant period Tw > 0.

Consider a state-feedback controller of the following form8

u = α(x, θ). (3.60)

Now we assume that the closed-loop plant (3.57), (3.60) is uniformly convergent
for any fixed θ ∈ R. The convergence property implies that for any fixed θ ∈ R,
there exists a unique, bounded for all t ∈ R, uniformly globally asymptotically stable
steady-state solution x̄θ,w(t) of the closed-loop plant (3.57), (3.60).9 As explained in
Sect. 3.2, the convergence property implies that the steady-state response x̄θ,w(t) is
periodic with period Tw, given the nature of the exo-system, which produces periodic
disturbance inputs with period Tw.

We aim to find the fixed value of θ ∈ R that optimizes the steady-state perfor-
mance of the closed-loop plant (3.57), (3.60). To this end, we design a cost function
that defines performance in terms of the system output y. As a stepping stone, we
introduce various signal-norm-based performance measures of the following form:

L p(yd(t)) :=
(

1

Tw

∫ t

t−Tw

|y(τ )|pdτ

) 1
p

, (3.61)

L∞(yd(t)) := max
τ∈[t−Tw,t] |y(τ )| (3.62)

with p ∈ [1,∞). The argument yd(t) of the performance measures in (3.61), (3.62)
represents a (past) function segment of the output, characterizing the performance,
and is defined by yd(t) := y(t + τ) for all τ ∈ [−td , 0], for some td > Tw, see [17]
for details. We use one of the performance measures in (3.61), (3.62) in the design
of the cost function, which is given by

q = Qi (yd(t)) := g ◦ Li (yd(t)), i ∈ [1,∞], (3.63)

where the function g(·) further characterizes the performance cost.
Note that, by the grace of convergence, the cost function Qi is constant in steady

state. Finally, it is assumed that the steady-state performance map, i.e., the map from
constant θ to q in steady state, exhibits a uniquemaximum. It is thismaximum thatwe

8Sufficient smoothness of the functions f , h and α is assumed.
9In fact, a particular Lyapunov-based stability certificate is required for the solution x̄θ,w(t) in the
scope of this section, see [17].
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aim to find using an extremum seeking controller, without employing knowledge on
the plant dynamics, the performancemapor the amplitude or phase of the disturbance.

Next, we introduce the extremum seeker that will optimize (maximize) the steady-
state performance output q. The total extremum seeking scheme is depicted schemat-
ically in Fig. 3.2 and consists of a gradient estimator (estimating the gradient of the
cost function with respect to θ ) and an optimizer (devised to steer the parameter θ to
the optimum). The optimizer is given by

˙̂
θ = Ke, (3.64)

where K is the optimizer gain and e is the gradient estimate provided by the gradient
estimator. The gradient estimator employed here is based on a moving average filter
called the mean-over-perturbation-period (MOPP) filter:

e = ω

aπ

∫ t

t− 2π
ω

q(τ ) sin(ω(t − φ))dτ, (3.65)

whereω and a are the frequency and amplitude of the dither signal used to perturb the
parameter input to the plant (therewith facilitating gradient estimation), see Fig. 3.2,
and φ is a nonnegative constant. We note that both the performance measure in
(3.61)–(3.63) and the MOPP estimation filter in (3.65) introduce delay in the closed-
loop dynamics therewith challenging the analysis of stability properties of the result-
ing closed-loop system.

Still, it can be shown [17] that, under the assumptions posed above (in partic-
ular the convergence property), the total closed-loop system (3.57), (3.60), (3.63)
including extremum seeking controller (3.64), (3.65) is semi-globally practically
asymptotically stable in the sense that the parameter θ converges arbitrarily closely
to its optimal value and the state solution of the plant converges arbitrarily closely to
the optimal steady-state plant behavior, for arbitrarily large sets of initial conditions.

+ x

θ

θ̂

w(t)
y q

a sin(ωt) sin(ω(t − φ))

e

Convergent
system
(3.57), (3.60)

(3.63)

(3.64) (3.65)

Cost Qi

Optimizer Gradient
estimator

Fig. 3.2 Schematic representation of the extremum seeking scheme
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The latter can be achieved by making the parameters a, ω, and K of the extremum
seeker small enough.

Summarizing, the convergence property is instrumental in guaranteeing a unique
and asymptotically stable periodic output response, which allows for a unique steady-
state performance definition and, in turn, facilitates employing an extremum seeker
to optimize the performance characterized by periodic steady-state solutions.

3.9 Model Reduction

In this section, we show how the convergence property can be instrumental in the
scope of model reduction for a class of nonlinear systems.10 The class of systems
under consideration involves a feedback interconnection Σ = (Σlin,Σnl) between
a linear system

Σlin :

⎧⎪⎨
⎪⎩
ẋ = Ax + Buu + Bvv

y = Cyx

w = Cwx,

(3.66)

where x ∈ R
n , y ∈ R

p, v ∈ R
s and w ∈ R

q , and a nonlinear system

Σnl :
{
ż = g(z,w)

v = h(z),
(3.67)

where, z ∈ R
r , see the left part of Fig. 3.3.

As will be made more precise below, we assume that the plant Σ is (input-to-
state) convergent and we will preserve such property after the model reduction.
At a conceptual level, the system being convergent (before and after reduction)
helps to reason about the quality of a reduced-order model. To understand this,
suppose that the plant and its reduction are not convergent. Then, these systems may
have complex nonlinear dynamics characterized by multiple (stable and/or unstable)

uu

ww

yy

v v̂ ŵΣlin Σ̂lin

ΣnlΣnl

Model

reduction

x x̂

zz

Fig. 3.3 Feedback interconnection plant dynamics and model reduction strategy

10The model reduction approach described here is based on [6].
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attractors, such as e.g., equilibria and limit cycles, each associated with a potentially
complex region of attraction. When reasoning about the quality of the reduction,
one typically desires to compare solutions of the reduced-order and original system,
especially when aiming to quantify a reduction error. It is hard to envision how
such a comparison could be made if both systems have multiple attractors, even
with regions of attraction defined on state spaces of different dimension (due to the
reduction). The assumption of convergence facilitates the unique comparison of the
output solutions of the reduced-order and original system, for a given identical input,
as both systems now have a unique attractor (characterized by the unique steady-state
solution); hence, the convergenceproperty significantly simplifies establishing a clear
definition of reduction error, as will be further explained below.

Figure3.3 also expresses the fact that we pursue model reduction of the total
system Σ by reducing the linear part Σlin of the dynamics and reconnecting the
reduced-order linear dynamics Σ̂lin to the nonlinear dynamics Σnl . This approach
is inspired by practical applications in which, firstly, the high-dimensional nature of
the dynamics is due to the linear dynamics and, second, the nonlinearities only act
locally. Examples of such systems, e.g., can be found inmechanical systems in which
the structural dynamics leads to high-dimensional models and local nonlinearities
relate to friction, hysteresis, or nonlinear actuator dynamics. Applications in which
such models arise can, e.g., be found in high-speed milling or drilling applications.
A benefit of such an approach in which model reduction is applied to the linear
subsystem only is the fact that a wide range of computationally efficient model
reduction methods for linear systems exist.

Assumption 3.1 Now, we adopt the following assumptions on the system Σ :

• Σlin is asymptotically stable (i.e., A isHurwitz), implying thatΣlin is input-to-state
convergent,

• Σnl is input-to-state convergent.

By the grace of the first bullet in Assumption 3.1, we have that there exist steady-state
operators defined asF (u, v) := x̄u,v, with x̄u,v being the steady-state solutions of the
convergent system Σlin , and Fi (u, v) = Ci x̄u,v, i ∈ {y,w}, where the latter define
the steady-state output operators of Σlin for outputs y and w. These steady-state
output operators are (by linearity) incrementally bounded as

‖Fi (u2, v2) − Fi (u1, v1)‖∞ ≤ χi x (γxu‖u2 − u1‖∞ + γxv‖v2 − v1‖∞), (3.68)

for i ∈ {y,w}. In (3.68), γxu , γxv denote the gain functions of the steady-state operator
F (u, v), whereas χi x represent incremental bounds on the output equations of Σlin .
The assumption in the second bullet of Assumption 3.1 implies that there exists a
steady-state operator Gw := z̄w, which satisfies ‖Gw2 − Gw1‖ ≤ γzw‖w2 − w1‖∞.
If additionally, there exists an incremental bound for the output function h of Σnl

such that ‖h(z2) − h(z1)‖∞ ≤ χvz‖z2 − z1‖∞, then we have that the steady-state
output operator Gvw := h(z̄w) of Σnl satisfies
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‖Gv(w2) − Gv(w1)‖∞ ≤ χvz ◦ γzw‖w2 − w1‖∞. (3.69)

All the gain functions above are class K∞ functions.
Next, the total nonlinear system Σ is assumed to satisfy the following small-gain

condition.

Assumption 3.2 There exist classK∞ functions ρ1 and ρ2 such that Σ satisfies the
small-gain condition

(id + ρ1) ◦ γxv ◦ χvz ◦ (id + ρ2) ◦ γzw ◦ χwx(s) ≤ s, (3.70)

for all s ≥ 0.

Assumption 3.2 implies, see [4, 6], that the feedback interconnection Σ is input-to-
state convergent.

As a next step, we assume that the reduced-order linear system Σ̂lin , see Fig. 3.3,
given by

Σ̂lin :

⎧⎪⎨
⎪⎩

˙̂x = Âx̂ + B̂uu + B̂vv̂

ŷ = Ĉy x̂

ŵ = Ĉwx̂,

(3.71)

where x̂ ∈ R
k , with k < n establishing the order reduction, ŷ ∈ R

p, v̂ ∈ R
s and

ŵ ∈ R
q , is asymptotically stable. This implies that there exist steady-state output

operators for Σ̂lin: F̂i (u, v̂), i ∈ {y,w}, that are incrementally bounded, i.e.,

‖F̂i (u2, v̂2) − F̂i (u1, v̂1)‖∞ ≤ χ̂i x ◦ γ̂xv‖v̂2 − v̂1‖∞, (3.72)

for i ∈ {y,w}. Moreover, we assume that there exists an error bound for the reduction
of the linear part of the system according to

‖Ei (u2, v2) − Ei (u1, v1)‖∞ ≤ εiu‖u2 − u1‖∞ + εiv‖v2 − v1‖∞, (3.73)

where Ei (u, v) := Fi (u, v) − F̂i (u, v), for i ∈ {y,w}, and εi j , for i ∈ {y,w} and
j ∈ {u, v}, are positive constants.

In fact, the above assumption on the stability of the reduced-order system and the
availability of an error bound for the linear reduced-order system can be directly sat-
isfied since reduction techniques exist that guarantee the satisfaction of both assump-
tions. In fact, an a priori error bound exists when the reduced-order system Σ̂lin is
obtained by balanced truncation. Namely, an error bound on the norm on the impulse
response as in [16, 24] provides a bound on theL∞-induced system norm. Alterna-
tively, an error bound can be computed a posteriori using results from [47], typically
leading to a tighter bound.

Now, the following result can be formulated, which guarantees input-to-state
convergence of the nonlinear reduced-order system Σ̂ = (Σ̂lin,Σnl) and provides
and error bound for Σ̂ .
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Theorem 3.9 Let Σ = (Σlin,Σnl) satisfy Assumptions 3.1 and 3.2. Furthermore,
let Σ̂ = (Σ̂lin,Σnl) be a reduced-order approximation, where Σ̂lin is asymptotically
stable and let there exist an error bound as in (3.73) on the linear subsystem. Then,
the reduced-order nonlinear system Σ̂ is input-to-state convergent if there exist class
K∞ functions ρ̂1 and ρ̂2 such that the following small-gain condition is satisfied:

(id + ρ̂1) ◦ χvz ◦ (id + ρ̂2) ◦ (εwv + χwx ◦ γxv)(s) ≤ s, (3.74)

for all s ≥ 0.
When (3.74) holds, then the steady-state error ‖ȳu − ¯̂yu‖∞ is bounded as ‖ȳu −¯̂yu‖∞ ≤ ε‖u‖∞, where ε(r) is an error bound function.

For the proof and a detailed expression for the error bound function ε(r) we refer to
[6]. This error bound function ε(r) depends on the properties (gain functions) of the
original system Σ and the error bounds for the linear reduction (3.73). As the latter
error bound canbeobtained a priori (i.e., before the actual reduction is performed), the
error bound in Theorem 3.9 also represents an a priori error bound. Note, moreover,
that if the small-gain condition on the original system in Assumption 3.2 is satisfied
with some margin, the small-gain condition in (3.74) can be satisfied by making the
reduction of Σlin accurate enough, i.e., making εwv small enough.

Finally, we note that with this convergence-based approach tomodel reduction we
obtain an error bound on theL∞-norm of the reduction error. Alternative approaches
exist, see [4, 5], exploiting incrementalL2-gain or incremental passivity properties,
instead of convergence properties, to obtain reduced-order systems (for a class of
nonlinear systems of the same form as considered here) preserving such incremental
system properties and complying with an L2 error bound.

3.10 Conclusions

In this chapter, we have reviewed the notion of convergent systems and its applica-
tions to a wide range of design and analysis problems for nonlinear (control) systems.
It appears that nonlinear convergent systems inherit certain simplicity from asymp-
totically stable linear systems. This simplicity is not common to generic nonlinear
systems. It allows one to solve a number of analysis and design problems for non-
linear systems in a nonlocal setting and extend previously known local results to
nonlocal cases. For Lur’e-type systems it provides a powerful tool for optimization
of steady-state performance. Open problems for further work relate to convergence
properties for hybrid systems, to investigating how convergence and the existence
of FRFs can be used to support system identification for certain classes of nonlinear
convergent systems, and to applications of convergent systems to filtering.
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