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Abstract

In this research a study of the response of a simply supported microbeam subject to an electric
actuation is presented. A perturbation method called the method of multiple scales is explained
and used to solve our problem. A model concerning the mid-plane stretching and an electric force
with a direct and alternating current component is formulated. The method of multiple scales is
used to construct a solution that is valid for a long time after the initial conditions. The effect
of the frequency of the alternating current was studied by performing a stability analysis. The
results show that for frequencies close to the eigenfrequency of the homogeneous problem, there is
no stable equilibrium and resonance occurs. Furthermore, a start was made to study the effect of
the damping coefficient. The results show that a smaller damping will always lead to resonance on
a very small time scale. The results also indicate larger oscillations and an small increase of the
importance of the non-linear terms for smaller damping. All results are validated by comparing
them with a numeric solution and show excellent agreement.
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1 Introduction

In the current society, technology becomes smaller and smaller every day. This leads to the need
for devices that can serve as sensors or switches at a very small scale: the order of micrometers or
nanometers. An example of such a device is a microbeam. One specific type of microbeams is a
microbeam which is actuated by electricity. These microbeams are called micro- or nanoelectrome-
chanical systems (MEMS/NEMS). MEMS can convert electrical current in mechanical motion and
the other way around due to the fact that MEMS are very sensitive to the external forces we apply.
Small changes in the surroundings can be detected and converted to a digital signal, making MEMS
very good sensors. MEMS can for instance be used as accellerometers and are used in car airbags,
the autopilot of an airplane and the Nintendo Wii [1], [2]. Among the many other applications
are pressure sensors, injekt printers and microphones in portable devices [3]. Due to a damping,
the oscillations of a microbeam fade out. If this happens, the microbeam will lose its applicabil-
ity. However, its sensitivity to external forces can for certain frequencies of the current result in
resonance, which prevents the fading out of the oscillations. When the electric actuation leads to
oscillations larger than the restoring mechanical forces can handle, the microbeam might collapse.
This is obviously undesirable. In order to be able to use MEMS, it is therefore important to have
an understanding of how they move.

The behaviour of MEMS is often described by fourth-order non-linear partial differential equa-
tions. It is therefore usually not possible to solve the equation governing the microbeam exactly.
Many research has been done on electrically actuated microbeams. Younis and Nayfeh studied
the effect of certain parameters on the nonlinearity of the problem with the use of the method of
multiple scales and for instance found that decreasing the damping coefficient increases the effect
of th non-linear terms [4]. More recently Younis studied the behaviour of a microbeam subject
to a direct voltage and two alternating voltages instead of only one [5]. This research may in the
future lead to the application of MEMS as communication devices. Sapmaz e.a. have researched
the application of carbon nantobues as nanoelctromechanical systems compared to silicon, which is
mostly used as a material for microbeams [6]. As microbeams are just very small beams, a lot of
the research by Boertjens and Van Horssen [7], [8], [9] on the resonance of weakly nonlinear beam
equations with the method of multiple scales can be applied. Moreover, we can use their work on
the validity of a solution constructed with perturbation methods.

In most of the previously mentioned works, a microbeam which was clamped at both sides was
considered. In this research we will investigate the motion of a microbeam that is simply supported
at both sides. Using supported boundary equations will simplify the solutions and we expect that
it will have little effect on the accuracy compared to realistic microbeams. Moreover, in realistic
MEMS, there is always a little flexibility so a clamped boundary condition is not perfect either
[4]. Additionally, many of these previous works used a mode analysis to describe the frequency
response. As this often neglects the internal resonance, we will not use this. Similar to Younis and
Nayfeh [4], we will use the method of multiple scales to solve our equations. We will investigate for
which frequencies of the electric actuation resonance will occur and how the microbeam behaves
close to these frequencies. We will also discuss the role of the damping coefficient as this parameter
is often unknown and can greatly influence the behaviour of the microbeam. The results will be
verified with the help of numerical solutions.
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This research will begin with explaining the method of multiple scales on the basis of the text-
book of Holmes [10]. Some information about the method is given and an example is calculated to
illustrate the method. Next in section 2.2 the Duffing equation will be treated. This is a single-
degree-of-freedom system with a cubic nonlinearity. Investigating this equation will greatly help
us to better understand the equation of our microbeam as they are quite similar. After that we
will derive the equation of motion of our microbeam in section 3. First we make some assump-
tions about the beam to make the equation more pleasant in section 3.1. Then we will build up
our equation of motion considering mid-plane stretching and a electric actuation by both a direct
current and an alternating current in sections 3.2-3.6. Then we will simplify the equation before
we solve it, for instance by making it dimensionless in section 3.7. Next, we will solve our equation
of motion using the method of multiple scales. We will hereby consider three cases, namely: a
forcing frequency away from all resonance frequency in section 4.1, a forcing frequency equal to
the resonance frequency in section 4.2 and a forcing frequency close to the resonance frequency in
section 4.3. We will compare the behaviour of the microbeam for each case. Lastly, in section 4.4
we will make a start with the case that the damping coefficient is one order smaller and see if in
this case there are different frequencies which may lead to resonance.
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2 Method of multiple scales

Most differential equations concerning real-life problems cannot be solved exactly. To construct
a solution, it is possible to use a computer to (very accurately) approximate the problem numer-
ically. However, the disadvantage of this is that this does not give much insight in the physical
meaning of the solution. This insight can be achieved by approximating the solution analytically.
Moreover, having both an analytical and a numerical solution helps checking the correctness of
the solution. One way to do this is using so called perturbation methods. The crucial step for
perturbation methods is to find a parameter in your problem which is very small compared to
the other parameters. Perturbation methods can be applied to many physical problems since they
are capable of handling non-linear, inhomogeneous and multidimensional problems. Besides giving
more physical insight into the solution, perturbation methods can be used to find more efficient
numerical algorithms as well. There are different perturbation methods with different applications,
which can be found in the textbook of Holmes [10]. For the analysis of our problem, we will make
use of a perturbation method called the method of multiple scales. The essence of this method is to
introduce different time scales, which are assumed independent of each other. This may lead to the
fact that what started as an ordinary differential equation, is transformed into a partial differential
equation. However, this will sometimes help solving the equation. In this chapter we will first
solve a textbook example with the method of multiple scales. Afterwards, we will investigate a
more complicated equation, namely the Duffing-equation, a much studied single-degree-of-freedom
system with a cubic nonlinearity, with the help of the method of multiple scales.

2.1 Example

Suppose we have the following problem for the function φ(t), which appears in the study of Joseph-
son junctions [10]: 

φ′′ + ε (1 + γ cos(φ))φ′ + sin(φ) = αε,

φ(0) = 0,

φ′(0) = 0,

(1)

where γ is a positive constant and ε is considered to be a very small dimensionless parameter.
We will make an approximation of the solution of this problem valid up to a timescale of 1

ε using
the method of multiple scales. Firstly, we expand φ(t) = εφ1(t) + ε2φ2(t) + .... Then cos(φ) =
1− 1

2ε
2φ2

1 + ... and sin(φ) = εφ1 + ε2φ2 + ... and equation (1) becomes


εφ′′1 + ε2φ2 + ...+ ε

(
1 + γ

(
1− 1

2ε
2φ2 + ...

)) (
εφ′1 + ε2φ′2 + ...

)
+ εφ1 + ε2φ2 = εα,

φ0(0) + εφ1(0) + ... = 0,

φ′0(0) + εφ′1(0) + ... = 0.

(2)

This type of expansion was already widely used before the method of multiple scales appeared.
However, in the nineteenth century, Poincaré found that solving the equations of motion of planets
with a regular expansion lead to large errors after a few rotations already [10]. To improve this
method, we introduce two time-scales t1 = t and t2 = εt. Assuming that φ(t) = εφ1(t1, t2) +
ε2φ2(t1, t2) + ..., equation (2) becomes:
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

(
∂2
t1 + 2ε∂t1∂t2 + ε2∂2

t2

) (
εφ′′1 + ε2φ2 + ...

)
+ ε

(
1 + γ

(
1− 1

2
ε2φ2 + ...

))
(∂t1+

ε∂t2)
(
εφ1 + ε2φ2 + ...

)
= εα,

εφ1(0, 0) + ε2φ2(0, 0) + ... = 0,

(∂t1 + ε∂t2)
(
εφ1 + ε2φ2 + ...

)
|(0,0) = 0,

(3)

where ∂ti = ∂
∂ti

. Since ε is very small, the different timescales do not influence each other for a
long time. It is therefore a good approximation to assume that the two timescales are independent.
Equation (3) therefore can be split into multiple equations. We would like to construct a solution
which holds up to time-scale of O( 1

ε ) by solving φ1. We will equate terms with the same power of
epsilon. The equation of order ε is:. 

∂2
t1φ1 + φ1 = α,

φ1(0, 0) = 0,

∂t1φ1(0, 0) = 0.

(4)

This has as a solution:

φ1 = a1(t2) sin(t1) + b1(t2) cos(t1) + α, (5)

with {
a1(0) = 0

b1(0) = −α.
(6)

The equation of O(ε2) is:
∂2
t1φ2 + 2∂t1∂t2φ1 + (1 + γ) ∂t1φ1 + φ2 = 0,

φ2(0, 0) = 0,

∂t2φ1(0, 0) + ∂t1φ2(0, 0) = 0,

(7)

Substituting equation (5) in eqatuion (7) gives:
∂2
t1φ2 + φ2 = −2a′1 cos(t1) + 2b′1 sin(t1)− (1 + γ) (a1 cos(t1)− b1 sin(t1)) ,

φ2(0, 0) = 0,

∂t1φ2(0, 0) = −b′1(0).

(8)

The solution to equation (8) is

φ2 = a2(t2) sin(t1) + b2(t2) cos(t1)− 1

2
(((γ + 1) b1 + 2b′1) t1 − (γ + 1) a1 − 2a′1) cos(t1)−

1

2
((γ + 1) a1 + 2a′1) t1 sin(t1).

(9)
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We can see that after a long time the terms ((γ + 1)b1 + 2b′1)t1 cos(t1) and 1
2 ((γ + 1)a1 +

2a′1)t1 sin(t1) become very large. These terms are called secular terms [10]. When εt ≈ 1, εφ1 and
ε2φ2 are about as large. This means that our assumption that the timescales are independent is not
accurate anymore. We can prevent these secular terms because we can still choose our a1(t1) and
b1(t1). This is the big advantage of this method over doing a regular expansion φ = εφ1 + ε2φ1 + ...
without defining t1 and t2, where we would not have this freedom. So we have{

(1 + γ)b1 + 2b′1 = 0,

(1 + γ)a1 + 2a′1 = 0,
(10)

where our initial conditions are the initial conditions of the O(ε)-equation (6). The solution to
this is {

b1(t2) = −αe−
(1+γ)t2

2 ,

a1(t2) = 0.
(11)

So our first-term approximation is

φ ≈ αε
(

1− e−
1+γ
2 εt cos(t)

)
. (12)

In figure 1 we plot equation (12) and a numerical solution of (1) by using Euler forward [11].
We can see that the solutions are completely overlapping until one hundred seconds for ε = 0.01.
So our solution constructed with the method of multiple scales is indeed a good one for t < 1

ε . This
fact can be proven [9].

Figure 1: Solution of φ for ε = 0.01 and α = γ = 1. The orange dashed line is the solution obtained
with the method of multiple scales. The blue solid line is the solution obtained with Euler forward
with ∆t = 0.01s.
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In our example we used two timescales t1 = t and t2 = εt. It is also possible to use more
than two timescales such as t1 = t

ε t2 = t, t3 = εt and t4 = ε2t to improve the solution. Another
possibility to improve the solution is by making a second-term approximation instead of a first-term
and solving φ2 and adding it to the solution. This makes the solution more accurate for t < 1

ε [10].
However, these methods do not make sure the solution is more accurate on a longer timescale. In
some problems it is useful to define t1 = t and t2 = ε2t [4]. With the use of matrix and vector
notation, the method of multiple scales can be extended to more dimensions [10].

2.2 Duffing oscillator

Another well-known and much studied example in which the method of multiple scales can be
applied is the Duffing oscillator. In this subsection we will first derive a general O(1)-solution
with the method of multiple scales. Then we will consider how this solutions looks for different
forcing frequencies. First, a forcing frequency away from the resonance frequency. Then, a forcing
frequency equal and close to the resonance frequency. The Duffing oscillator is the most trivial
non-linear generalization of the harmonic oscillator used to model damped and driven oscillators.
Its general equation is [12]:

x′′ + δx′ + βx+ αx3 = γ cos(ωt), (13)

with x(t) the displacement, δ > 0 the damping coefficient, γ a forcing parameter and restoring
force −βx − αx3. It considers the the next term in the expansion of the potential compared to a
simple harmonic oscillator (α = 0). For β > 0, the Duffing oscillator is a forced oscillator on a
spring. When α > 0 this is called a hardening spring and when α < 0 this is called a softening
spring. When β < 0 the Duffing oscillator is a point mass in a double well potential. Without
the forcing term, the oscillations would slowly fade out due to the damping. Including the forcing
term will maintain the oscillations and the system will converge to an equilibrium oscillation that
depends strongly on the forcing frequency as we will show in this subsection. Let us consider a
weakly forced oscillator. We apply a perturbation method and we take all terms that are not in
the undamped and undriven simple harmonic oscillator small. We set α→ εα, γ → εγ and δ → εδ,
with ε a small parameter and β = ω2

0 , with ω0 the natural frequency of the undamped and undriven
simple harmonic oscillator. Then equation (13) becomes:

x′′ + ω2
0x = ε

(
−δx′ − αx3 + γ cos(ωt)

)
. (14)

We let x = x0 + εx1 + .... Equation (14) then becomes

x′′0 + εx′′1 + ..+ ω2
0 (x0 + εx1 + ...) = ε

(
−δ (x′0 + εx′1 + ...)− α(x0 + εx1 + ..)3 + γ cos(ωt)

)
. (15)

We introduce the timescales t1 = t and t2 = εt. Equation (15) then becomes:

(
∂2
t1 + 2ε∂t1∂t2 + ε2∂2

t2

)
(x0 + εx1 + ...) + ω2

0(x0 + εx1 + ...) = ε(−δ(∂t1 + ε∂t2)(x0+

εx1 + ...)− α((x0 + εx1 + ...)3 + γ cos(ωt1)).
(16)

We then split the equation in a part of order 1 and a part of order ε. The O(1)-problem is:

∂2
t1x0 + ω2

0x0 = 0. (17)
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This is the differential equation for a undamped and undriven simple harmonic oscillator. The
solution of equation (17) is:

x0 = a0(t2) cos(ω0t1) + b0(t2) sin(ω0t1). (18)

The O(ε)-problem is:

2∂t1∂t2x0 + ∂2
t1x1 + ω2

0x1 = −δ∂t1x0 − αx3
0 − γ cos(ωt1). (19)

Substituting equation (18) in equation (19) gives:

∂2
t1x1 + ω2

0x1 = −2 (−a′0ω0 sin(ω0t1) + b′0ω0 cos(ω0t1))− δ(−a0ω0 sin(ω0t1)+

b0ω0 cos(ω0t1))− α
(
a3

0 cos3(ω0t1) + 3a2
0 cos2(ω0t1)b0 sin(ω0t1) + 3a0 cos(ω0t1)b20 sin2(ω0t1)+

b30 sin3(ω0t1)
)
− γ cos(ωt1).

(20)

Using the trigonometric identities cos3(x) = 3
4 cos(x) + 1

4 cos(3x), cos2(x) sin(x) = 1
4 sin(x) +

1
4 sin(3x), cos(x) sin2(x) = 1

4 cos(x) − 1
4 cos(3x) and sin3(x) = 3

4 sin(x) − 1
4 sin(3x), equation (20)

can be rewritten as

∂2
t1x1 + ω2

0x1 =

(
2a′0ω0 + δa0ω0 −

3

4
αa2

0b0 − α
3

4
b30

)
sin(ω0t1) + (−2b′0ω0 − δb0ω0−

3

4
αb20a0 − α

3

4
a3

0

)
cos(ω0t1) +

(
−1

4
αa3

0 +
3

4
αa0b

2
0

)
cos(3ω0t1) +

(
1

4
αb30−

3

4
αb0a

2
0

)
sin(3ω0t1)− γ cos(ωt1).

(21)

If in the non-homogeneous term on the right, the homogeneous solution sin(ω0t) or cos(ωt1)
occurs, we will obtain secular terms. In order to prevent this, we need that the coefficients before
cos(ω0t1) and sin(ω0t1) are 0. We will research the role of the forcing term by considering different
frequencies ω and investigate the behaviour of the solution. First, we will consider ω not close to
the eigenfrequency of the homogeneous solution ω0. Then we will consider ω close or equal to ω0.
In the last case we expect the oscillator to resonate due to the forcing.

To begin with, let ω 6= ω0, this means that the forcing frequency is not close the eigenfrequency of
the system. We therefore do not expect resonance. The prevention of secular terms implies:{

2a′0ω0 + δa0ω0 − 3
4αa

2
0b0 − α 3

4b
3
0 = 0,

−2b′0ω0 − δb0ω0 − 3
4αb

2
0a0 − α 3

4a
3
0 = 0.

(22)

To solve this system of equations, we switch to polar coordinates:{
a0(t2) = r(t2) cos(φ(t2)),

b0(t2) = r(t2) sin(φ(t2)),
(23)

with r(t2) a real positive function representing the amplitude and φ(t2) a real function repre-
senting the phase. Substituting these formulas in equation (22) results in:
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{
2 (r′ cos(φ)− r sin(φ)φ′)ω0 + δr cos(φ)ω0 − 3

4αr
3 cos2(φ) sin(φ)− α 3

4r
3 sin3(φ) = 0,

−2 (r′ sin(φ) + r cos(φ)φ′)ω0 − δr sin(φ)ω0 − 3
4αr

3 sin2(φ) cos(φ)− α 3
4r

3 cos3(φ) = 0.
(24)

Multiplying the first equation with cos(φ) and subtracting the second equation multiplied with
sin(φ) and using trigonometric identities, results in:

2ω0r
′ + δrω0 = 0. (25)

The general solution to equation (25) is:

r(t2) = c1e
− δ2 t2 . (26)

Multiplying the first equation of (24) with sin(φ) and adding the second equation multiplied
with cos(φ), results in:

− 2ω0rφ
′ − α3

4
r3 = 0. (27)

Which has as a general solution:

φ(t2) =
3α

8ω0δ
c21e
−δt2 + c2. (28)

Thus the solution to the Duffing-equation for ω 6= ω0 is:

x0 = c1e
− δ2 εt cos

(
3α

8ω0δ
c21e
−δεt + c2

)
cos(ω0t) + c1e

− δ2 εt sin

(
3α

8ω0δ
c21e
−δεt + c2

)
sin(ω0t), (29)

where c1 and c2 depend on the initial conditions of the Duffing-oscillator. We can see that there
are no terms that are multiplied with t so we can indeed conclude that the solution does not become
large and that no resonance will occur. The damping is even making the solution converging to
zero as can be seen by negative exponent with δt, where δ > 0. This agrees with what we expected.

Next we consider a frequency ω close to ω0. We would like to investigate for which frequen-
cies the solution becomes very large. We use the following expansion: ω = ω0 + εΩ, where
Ω is a detuning parameter which tells us how close to the resonance frequency we are. Then
cos(ωt1) = cos(ω0t1) cos(Ωt2) − sin(ω0t1) sin(Ωt2) Then in order to prevent secular terms in (21),
we need: {

2a′0ω0 + δa0ω0 − 3
4αa

2
0b0 − α 3

4b
3
0 + γ sin(Ωt2) = 0,

−2b′0ω0 − δb0ω0 − 3
4αb

2
0a0 − α 3

4a
3
0 − γ cos(Ωt2) = 0.

(30)

We will consider two cases. First we will look at pure resonance, so Ω = 0. Then we will consider
Ω 6= 0 and see if we can find values of Ω for which the behaviour of the oscillator changes. For now
we set Ω = 0, since this means pure resonance we expect our solution to become very large. For
Ω = 0, equation (30) becomes:
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{
2a′0ω0 + δa0ω0 − 3

4αa
2
0b0 − α 3

4b
3
0 = 0,

−2b′0ω0 − δb0ω0 − 3
4αb

2
0a0 − α 3

4a
3
0 − γ = 0.

(31)

since this equation cannot be solved exactly with the same method as above, we will look when
the system is at equilibrium and investigate what the solution looks like in a neighbourhood of the
equilibrium. We can then also check if the system has any stable equilibria. To find the equilibrium
points, we say a′0 = 0 and b′0 = 0. Then we have:{

δa0,eqω0 − 3
4αa

2
0,eqb0,eq − α 3

4b
3
0,eq = 0,

−δb0,eqω0 − 3
4αb

2
0,eqa0,eq − α 3

4a
3
0,eq − γ = 0.

(32)

The only real solution of this is:{
a0,eq = − 3αγR

4(δ2ω2+ 9
16α

2R2)
,

b0,eq = −γδω0

δ2ω2+ 9
16α

2R2 ,
(33)

with R =
3

√
8γ
9α2 +

√
64γ2

81α4 +
4096δ6ω6

0

19683α6 +
3

√
8γ
9α2 −

√
64γ2

81α4 +
4096δ6ω6

0

19683α6 . To study the stability of

a0,eq and b0,eq, we use a local linearization around the equilibrium [13]. We set u = a0 − a0,eq and
v = b0 − b0,eq. Then,

{
u′ = a′0 = 1

2ω0

[
−δω0(u+ a0,eq) + 3

4α(u+ a0,eq)
2(v + b0,eq) + 3

4α(v + b0,eq)
3
]
,

v′ = b′0 = −1
2ω0

[
δω0(v + b0,eq) + 3

4α(v + b0,eq)
2(u+ a0,eq) + 3

4α(u+ a0,eq)
3 + γ

]
.

(34)

Using equation (32) and neglecting terms of order 2 and higher, equation (34) in matrix notation
becomes: [

u
v

]′
=

1

2ω0

[
−δω0 + 3

2αa0,eqb0,eq
3
4αa

2
0,eq + 9

4αb
2
0,eq

− 3
4αb

2
0,eq − 9

4αa
2
0,eq −δω0 − 3

2αa0,eqb0,eq

] [
u
v

]
. (35)

The eigenvalues of this matrix are

λ = −δ
2
± i3|α|

8ω0

√
3R. (36)

since δ > 0, the real part of the eigenvalues is negative, the equilibrium is therefore stable for all
values of the parameters [13]. We apply Euler forward [11] to equation (31) to obtain a numerical
solution. This is plotted in figure 2 for α = γ = δ = ω0 = 1. Equation (33) gives for these values of
the parameters a0 = −0.429 and b0 = −0.756, which agree with the values to which the numerical
solution converges. From the phase plot it also becomes clear that the equilibrium is indeed stable.
We can see that the amplitude, the absolute value of a0 and b0, initially grows, but that after a while
it decreases again. We can interpret this as first having a rapidly growing solution due to resonance
but after a while the damping coefficient will make sure that the deviation does not become too
large. The oscillations do not fade out completely as was the case for a forcing frequency not close
to the resonance frequency. This all nicely agrees with what we would expect.
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Figure 2: a0 and b0 for pure resonance with α = γ = δ = ω0 = 1 obtained by using Euler forward
with ∆t2 = 0.0025s. On the left a0 is plotted as a solid blue line and b0 as a dashed orange line
against time with initial conditions a0(0) = 0 and b0(0) = 0. On the right is a phase plot of a0 and
b0 for different initial conditions.

When Ω 6= 0, we will again perform a stability analysis. We will investigate if we can find
any equilibria and for which Ω these equilibria are stable. We use polar coordinates (23) in (30),
multiply the first equation with cos(φ) and subtracting the second equation multiplied with sin(φ)
and multiply the first equation with sin(φ) and adding the second equation multiplied with cos(φ)
to obtain: {

2ω0r
′ + δrω0 + γ sin(Ωt2) cos(φ) + γ cos(Ωt2) sin(φ) = 0,

−2ω0rφ
′ − 3

4αr
3 + γ sin(Ωt2) sin(φ)− γ cos(Ωt2) cos(φ) = 0.

(37)

This is the same as: {
2ω0r

′ + δrω0 + γ sin(Ωt2 + φ) = 0,

−2ω0rφ
′ − 3

4αr
3 − γ cos(Ωt2 + φ) = 0.

(38)

We set ψ = φ+ Ωt2, then equation (38) becomes:{
2ω0r

′ + δrω0 + γ sin(ψ) = 0,

2ω0r(ψ
′ − Ω) + 3

4αr
3 + γ cos(ψ) = 0.

(39)

To find the equilibria, set r′ = ψ′ = 0. Then:{
δreqω0 + γ sin(ψeq) = 0,

−2ω0reqΩ + 3
4αr

3
eq + γ cos(ψeq) = 0.

(40)

We bring the sine and cosine to the other side, square the equation and add them to obtain a
equation for req:
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Figure 3: Q against Ω for α = γ = δ = ω0 = 1 and the line Q = 0. On the left for Ω from -2 to 2
and on the right the part closest to zero enlarged.

9

16
α2r6

eq − 3αω0Ωr4
eq + ω2

0

(
δ2 + 4Ω2

)
r2
eq − γ2 = 0. (41)

If Q = 4(
16ω2

0

9α2 (δ2− 3
4Ω2))3 +27(

256ω3
0

81α3 Ω(δ2 + 4
9Ω2)− 16γ2

9α2 )2 > 0, there is one real positive solution
for req, namely:

req =

√
S +

16ω0Ω

9α
, (42)

with S =
3

√
8γ2

9α2 − 128ω3
0

81α3 Ω(δ2 + 4
9Ω2) +

√
T +

3

√
8γ2

9α2 − 128ω3
0

81α3 Ω(δ2 + 4
9Ω2)−

√
T and T = 64γ4

81α4 −
2048γ2ω3

0

729α5 Ω(δ2 + 4
9Ω2) +

16384ω6
0

6561α6 Ω2(δ2 + 4
9Ω2)2 +

4096ω6
0

19683α6 (δ2 − 4
3Ω2)3. Q is plotted for α = γ = δ =

ω0 = 1 against Ω in figure 3. We can see that for our values of the parameters we always have
one real solution. For a different choice of parameters, Q could be smaller than zero. Then our
equation has three real solutions for req which can be positive.

The possible values of ψeq are
ψeq,1 = arcsin

(
− δω0

γ req

)
+ 2kπ, k ∈ Z,

ψeq,2 = π − ψeq,2 + 2kπ, k ∈ Z,
ψeq,3 = arccos

(
2ω0reqΩ

γ − 3αr3eq
4γ

)
+ 2kπ, k ∈ Z,

ψeq,4 = −ψeq,3 + 2kπ, k ∈ Z.

(43)

For ψeq to be an equilibrium of (40), it needs to satisfy one of ψeq,1 and ψeq,2 and one of ψeq,3 and
ψeq,4. The four values are plotted against Ω in figure 4 for the example values or our parameters.
Here we can see that ψeq,4 is always and equilibrium. ψeq,1 is an equilibrium for Ω ≥ 0.375 and
ψeq,2 is an equilibrium for Ω < 0.375. The fact that ψeq,4 is always an equilibrium can be proven
and is similar to the proof in the appendix for the case in section 4.3.



12

(a) (b)

Figure 4: The ψeq against Ω for α = 1, γ = 1, δ = 1 and ω0 = 1. The solid blue line is ψeq,1, the
dashed orange line is ψeq,2 on the left and 2π − ψeq,2 on the right, the dash-dot green line is ψeq,3
and the dotted red line is ψeq,4.

As above we linearize around the equilibria to determine the stability. Set u = r − req and
v = ψ − ψeq, write (39) in matrix notation, use (40) and neglect terms of higher order to obtain:[

u′

rv′

]
=
−1

2ω0

[
δω0 γ cos(ψeq)

9
4αr

2
eq − 2ω0Ω −γ sin(ψeq)

] [
u
v

]
. (44)

The eigenvalues of this matrix are:

λ = −δ
2

(1 + req)±
1

2ω0

√
δ2ω2

0(1− req)2 + (9γαr2
eq − 2ω0Ω) cos(ψeq). (45)

If the term under the square root is negative, the solution is stable since δ > 0 and req > 0. The
only case when we have a λ > 0 and the solution is unstable, is when:(

9γα2r2
eq − 2ω0Ω

)
cos(ψeq) > 4ω2

0δ
2req. (46)

As an example, we set γ = ω0 = α = δ = 1, and solve the eigenvalues numerically. In figure 5
the largest eigenvalue of the matrix is plotted for different Ω. We see that we always have a stable
equilibrium for our choice of parameters.

In figure 6 r and ψ are plotted against time for two different Ω by using the fourth order Runge-
Kutta method (RK4 method) [11] on equation (39). For Ω = 2, the solution should converges to
req = 0.245 and ψeq = −0.248 + k2π, for k ∈ Z. This agrees with figure 6 for k = 1. For Ω = −1,
the solution should converge to req = 0.424 and ψeq = 3.58 + k2π This agrees with with figure 6
for k = −1.
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Figure 5: The largest eigenvalue plotted against Ω for α = γ = δ = ω0 = 1 with a horizontal line
at λ = 0. If Ω becomes small or large, the solution becomes complex.

Figure 6: r and ψ against t2 for α = γ = δ = ω0 = 1, r(0) = 1 and ψ(0) = 0 obtained by using RK4
method with ∆t2 = 0.0025s. The solid blue line is Ω = −1 and the dashed orange line is Ω = 2.

In figure 7 r is plotted against ψ. We can see that depending on the initial condition, the
solution converges to the stable equilibria. Based on the figure we would expect extra unstable
equilibria, for instance between the blue and purple line in the right figure.

If we go back to our original coordinates r and φ, we obtain figure 8. Here we can see that
we have no equilibrium point. a0 and b0 do not become large since r does converge, but they do
keep oscillating since φ does not converge. As with the case Ω = 0, we can interpret this as first
having a rapidly growing oscillations which is then stopped by the damping but does not fade out
completely. We can see that req for Ω = 0 is larger than req for Ω = −1, which again larger that
req for Ω = 2. So we can conclude that the closer we are to the resonance frequency the larger the
oscillations remain, which is what we would expect.
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Figure 7: r against ψ for different initial conditions. α = γ = δ = ω0 = 1. On the left Ω = −1, on
the right Ω = 2.

Figure 8: r against φ for different initial conditions, with α = γ = δ = ω0 = 1. For the top row
Ω = −1 and for the bottom row Ω = 2.
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3 Problem formulation

In this section we will derive the equation of motion of the deflection of a simply supported mi-
crobeam as sketched in figure 9. First we will make some assumptions about the beam in section
3.1. Then in sections 3.2-3.6 we will formulate the equation of motion by starting with the equation
of motion of a string and then step by step adding dimensions, internal forces and external forces.
In section 3.7 we will simplify the obtained equation so that we can solve it in the next chapter.

3.1 Assumptions

Consider a microbeam with a length l in the x-direction, width b in the y-direction and thickness
h in the z-direction. It is simply supported at x = 0 and x = l. A stationary electrode, com-
pletely overlapping the area of the microbeam is placed at a distance d in the z-direction. This
electrode actuates the beam with a direct current (DC)-component Vp and an alternating current
(AC)-component v(t). The beam is subject to a viscous damping per unit length ĉ. Due to this
actuation the beam will deflect. We let w(x, t) denote the transverse deflection of the plate in the
negative z-direction. We introduce the following symbols: ρ the density of the beam, E the beams
Young’s modulus, I its moment of inertia, ν the Poisson ratio, T the tension in the beam and εr
the relative dielectric constant of the medium between the beam and the electrode. For certain
frequencies of the AC-component, the beam may resonate. In order to use the microbeam we need
to know how it moves.

Figure 9: A schematic drawing of a simply supported microbeam [4].

We make a few assumptions about our microbeam. First, we assume that it is uniform along
the width. Second, we assume that its length is much bigger than its width. These two assumptions
results in the assumption that the deflection of the beam is uniform in the y-direction. Additionally,
we assume the width is much bigger than the height, so that we can assume our beam is thin.
Furthermore, we assume the height is much bigger than the deflection. This makes sure that the
field lines of the electric field are perpendicular to the microbeam. This is a valid assumption since
the beam collapses if the deflection becomes as large as the height. Since the microbeam is small,
we assume its weight is small, this makes sure that we can neglect gravity. We also neglect the
influence of transverse shear deformation and rotary inertia, this is called Euler-Bernoulli theory
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[14]. Because the beam is thin, we can neglect the stress in the z-direction. Moreover, we can
assume that the middle plane of the plate does not undergo in-plane deformation. We therefore
say that we can approximate the movement of the three dimensional plate as a two dimensional
plate by looking at the middle of the plate. This extension of Euler-Bernoulli theory, is called the
Kirchoff approximation [15]. With these approximations we can assume that the deflection in the
x-direction and y-direction is small.

3.2 One-dimensional string

In the following sections we will derive the equation of motion by building it up step by step. We
would like to obtain the same equation as Younis and Nayfeh started with for their microbeam
[4]. First, we will consider the beam as a one-dimensional string stretched in the x-direction in
this section. Second, we will add the y dimension and consider a plate in section 3.3. Third, in
section 3.4 we will consider a thin beam and apply Euler-Bernoulli theory. After that we will add
the external forces in section 3.5 and lastly in section 3.6 we add the horizontal displacement with
the help of the Kirchoff approximation. We begin with considering an infinitesimally thin segment
of the string between x and x+ ∆x as in figure 10.

Figure 10: A schematic drawing of the stretching of a small segment of a string [16].

We assume the string has density ρ and denote the cross-section by A = bh. We use Newton’s
second law:

~F = m
∂2~x

∂t2
. (47)

We assume that the string is flexible and offers no resistance to bending. This means that we can
say that the only force is the tension at the endpoints in the direction tangent to the string denoted
by T . To obtain the different components of the tension, we have to know the angle θ between
the x-axis and the string. Letting w denote the vertical displacement, the vertical component of
Newton’s law becomes:
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ρA∆x
∂2w

∂t2
= T sin(θ(x+ ∆x, t))− T sin(θ(x, t)) + ∆xf(x, t), (48)

where we let f(x, t) denote external force per unit length. since we assumed the deflection is
small, the angle is small as well. So we can neglect the horizontal component of Newton’s law.
Dividing both sides of equation (48) by ∆x and letting ∆x→ 0, we get:

ρA
∂2w

∂t2
= T

∂

∂x
sin(θ(x, t)) + f(x, t). (49)

For small angles

sin(θ) ≈ tan(θ) =
∂w

∂x
, (50)

so equation (49) becomes:

ρA
∂2w

∂t2
= T

∂2w

∂x2
+ f(x, t). (51)

3.3 Plate

Now we have our equation of motion for a one-dimensional string. In this section we will extend
the problem to two dimensions. We add the y-direction and we obtain a plate. Newton’s second
law still holds, but now becomes:

ρh∆x∆y
∂2w

∂t2
= T

[
∆y

∂w

∂x
(x+ ∆x, y)−∆y

∂w

∂x
(x, y) + ∆x

∂w

∂y
(x, y + ∆y)−∆x

∂w

∂y
(x, y)

]
+

∆x∆yf(x, y, t),

(52)

where f now denotes the force per unit area. Dividing both sides by ∆x∆y, and letting ∆x→ 0
and ∆y → 0, we get:

ρh
∂2w

∂t2
= T

(
∂2w

∂x2
+
∂2w

∂y2

)
= T∇2w + f(x, y, t). (53)

This is our equation of motion for a plate. We see that this is very similar to our one dimensional
equation.

3.4 Thin beam

In this section we add a third dimension: the thickness. We will now have to include the internal
forces we earlier neglected. We consider a plate as in figure 11 with stress components σxx, σxy =
σyx, σxz, σyz and σyy. The stress in the direct z-direction σzz is assumed 0 because the plate was
assumed thin.
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Figure 11: A schematic drawing of a plate with its internal forces [14].

We can define force and moment components per unit length:

Mx =
∫ h

2

−h2
σxxzdz,

My =
∫ h

2

−h2
σyyzdz,

Mxy =
∫ h

2

−h2
σxyzdz = Myx,

Qx =
∫ h

2

−h2
σxzdz,

Qy =
∫ h

2

−h2
σyzdz.

(54)

We note that if Mx acts on one side of the plate, Mx + ∆Mx = Mx + ∂Mx

∂x ∆x acts on the other
side. Newton’s law in the z-direction then becomes:

ρh∆x∆y
∂2w

∂t2
=

(
Qx +

∂Qx
∂x

∆x

)
∆y +

(
Qy +

∂Qy
∂y

∆y

)
∆x−Qx∆y −Qy∆x+ f∆x∆y, (55)

where f is the intensity of the external distributed load. Again dividing by ∆x∆y and letting
∆x→ 0 and ∆y → 0, we get:

ρh
∂2w

∂t2
=
∂Qx
∂x

+
∂Qy
∂y

+ f(x, y, t). (56)
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Figure 12: A schematic drawing of the displacement of a small segment of the plate [14].

For the equilibrium around the x-axis, we have:

(
Qy +

∂Qy
∂y

∆y

)
∆x∆y =

(
My +

∂My

∂y
∆y

)
∆x+

(
Mxy +

∂Mxy

∂x
∆x

)
∆y −My∆x−

Mxy∆y − f∆x∆y
∆x

2
.

(57)

We divide by ∆x∆y and let ∆x→ 0 and ∆y → 0. We can therefore neglect the terms involving
a product of ∆x and ∆y and obtain:

Qy =
∂My

∂y
+
∂Mxy

∂x
. (58)

Similarly:

Qx =
∂Mx

∂x
+
∂Myx

∂y
. (59)

Let us consider a small element of our plate such as in figure 12 and look at the point K. Because
transverse shear deformation is neglected, we can assume that the lines P’R’, A’B’ and Q’S’ and
the lines C’E’, A’K’ and D’F’ remain straight.

If the displacement of K parallel to the x-axis is given by u and parallel to the y-axis by v, then:{
u = −z ∂w∂x ,
v = −z ∂w∂y .

(60)
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The linear strain-displacements are:
εxx = ∂u

∂x = −z ∂
2w
∂x2 ,

εyy = ∂v
∂y = −z ∂

2w
∂y2 ,

εxy = ∂u
∂y + ∂v

∂x = −2z ∂
2w

∂x∂y .

(61)

Assuming the plate is in a state of plane stress, its relation with strain is:
σxx = E

1−ν2 εxx + νE
1−ν2 εyy,

σyy = E
1−ν2 εyy + νE

1−ν2 εxx,

σxy = Gεxy,

(62)

With E Young’s Modulus, G the shear Modulus and ν the Poisson ratio. If we substitute (61)
in (62) and then (62) in (54), we get:

Mx = − Eh3

12(1−ν2)

(
∂2w
∂x2 + ν ∂

2w
∂y2

)
,

My = − Eh3

12(1−ν2)

(
∂2w
∂y2 + ν ∂

2w
∂x2

)
,

Mxy = Myx = −(1− ν) Eh3

12(1−ν2)
∂2w
∂x∂y .

(63)

Substituting this in (58) and (59) results in:Qx = − Eh3

12(1−ν2)
∂
∂x

(
∂2w
∂x2 + ∂w

∂y2

)
,

Qy = − Eh3

12(1−ν2)
∂
∂y

(
∂2w
∂x2 + ∂w

∂y2

)
.

(64)

Substituting these equation in (56), gives:

Eh3

12(1− ν2)

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
+ ρh

∂2w

∂t2
= f(x, y, t). (65)

Multiplying both sides with b gives:

EI

1− ν2

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
+ ρA

∂2w

∂t2
= bf(x, y, t), (66)

where I = 1
12bh

3 is the moment of inertia. Because we assumed that the deflection in the
y-direction is small, we can ignore the derivatives to y to obtain:

EI

1− ν2

∂4w

∂x4
+ ρA

∂2w

∂t2
= bf(x, t). (67)

3.5 External forces

Now that we have our equation of motion for a thin beam with Euler-Bernoulli theory, we will
add the external forces. Because we assumed the mass of the microbeam is small, we can neglect
gravity. If we would like to take into account gravity, this can be done by incorporating it in our
oscillation w(x, t) by using a substitution [9]. For now the only relevant external force is the electric
actuation. To calculate the contribution of the force due to the electrode, we use the energy of a
capacitor [17]:
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W =
1

2
CV 2, (68)

where C is the capacitance given by [17]:

C =
Aε0
d
, (69)

where ε0 is the dielectric constant in vacuum and d is the distance between the plates. In our
case the voltage is composed of both a static component Vp and a dynamic component v(t). So the
energy of the capacitor is in our case:

W =
Aε0

2(d− w)
(Vp + v(t))2. (70)

So the force due to the electrode is:

~F = −∇W =
Aε0

2(d− w)2
(Vp + v(t))2ẑ, (71)

where an extra minus sign occurs because the direction of w and of z are opposite. If we are
not in vacuum but in a medium with relative dielectric constant εr, this force becomes:

~F =
ε0εr

2
A

(Vp + v(t))2

(d− w)2
ẑ. (72)

Adding this to (67) gives:

EI

1− ν2

∂4w

∂x4
+ ρA

∂2w

∂t2
= b

ε0εr
2

(Vp + v(t))2

(d− w)2
. (73)

Adding a damping with damping coefficient per length ĉ gives:

EI

1− ν2

∂4w

∂x4
+ ρA

∂2w

∂t2
+ ĉ

∂w

∂t
= b

ε0εr
2

(Vp + v(t))2

(d− w)2
. (74)

3.6 Horizontal displacement

Equation (74) is our equation of motion for our thin beam with its relevant external forces. Finally
we add the horizontal displacement of the beam. We will do this by largely following the method
described in the book of Kauderer [15]. We look at the (x,z)-plane of our beam. Let P be a point
in space with coordinates (x, z) and Q be the point at (x + ∆x, z + ∆z). Suppose P moves to P ′

with u(x, t) the x-component and w(x, t) the z-component of the displacement vector. Then using
a Taylor expansion of the displacement vector from Q to Q′, we get:{

uQ = uP + (∂u∂x )P∆x+
(
∂u
∂z

)
P

∆z + h.o.t.,

wQ = wP +
(
∂w
∂x

)
P

∆x+ (∂w∂z )P∆z + h.o.t.
(75)

Then the distance between P ′ and Q′ is:
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∆l′2 = [(x+ ∆x+ uQ)− (x+ uP )]2 + [(z + ∆z + wQ)− (z + wP )]2 =

(1 + λxx)∆x2 + (1 + λzz)∆z
2 + 2λzx∆z∆x+ h.o.t.,

(76)

where: 
λxx = 2∂u∂x +

(
∂u
∂x

)2
+
(
∂w
∂x

)2
,

λzz = 2∂w∂z +
(
∂u
∂z

)2
+ (∂w∂z )2,

λzx = ∂w
∂x + ∂u

∂z + ∂u
∂z

∂u
∂x + ∂w

∂z
∂w
∂x .

(77)

If Q has coordinates (x+ ∆x, z) then

∆l′2

∆l2
= 1 + λxx + f(∆x). (78)

We denote the strain in the x-direction as

εx0 = lim
∆x→0

∆l′

∆l
− 1 =

√
1 + λxx − 1 ≈ ∂u

∂x
+

1

2

(
∂w

∂x

)2

, (79)

where we used a first order Taylor-expansion. The total strain now is:

εx =
∂u

∂x
+

1

2

(
∂w

∂x

)2

− z ∂
2w

∂x2
. (80)

Using Hooke’s law:

Upot =
1

2
E

∫∫
A

ε2xdydz =
1

2
EA

[
∂u

∂x
+

1

2

(
∂w

∂x

)2
]2

+
1

2
EI

(
∂2u

∂x2

)2

, (81)

where
∫∫
A
z2dydz = bh3

12 = I and the cross term is zero because we integrate over a symmetrical
object, so

∫∫
A
zdydz = 0. The total strain work in the beam is then:

U =
1

2
EA

∫ l

0

[
∂u

∂x
+

1

2

(
∂w

∂x

)2
]2

dx+
1

2
EI

∫ l

0

(
∂2w

∂x2

)2

dx. (82)

The kinetic energy of the beam without inertia is:

Ek =
1

2
ρA

∫ l

0

[(
∂u

∂t

)2

+

(
∂w

∂t

)2
]
dx. (83)

Using equation (82) and (83) the Hamiltonian becomes:

H =
1

2

∫ t2

t1

∫ l

0

EA

[
∂u

∂x
+

1

2

(
∂w

∂x

)2
]2

+ EI

(
∂2w

∂x2

)2

− ρA

[(
∂u

∂t

)2

+

(
∂w

∂t

)2
]
dxdt. (84)

Using the Hamiltonian principle that the variation of H is 0, we obtain:
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ρA
∂2u
∂t2 − EA

∂
∂x

[
∂u
∂x + 1

2

(
∂w
∂x

)2]
= 0,

ρA∂2w
∂t2 + EI ∂

4u
∂x4 − EA ∂

∂x

[
∂w
∂x

[
∂u
∂x + 1

2

(
∂w
∂x

)2]]
= 0.

(85)

Using the Kirchhoff approximation, we can say that the x-component of the velocity ∂u
∂t is small

and therefore the acceleration as well, from the first equation of (85) we obtain:

∂

∂x

[
∂u

∂x
+

1

2

(
∂w

∂x

)2
]

= 0. (86)

Looking at equation (79) it follows that εx0 cannot be a function of x anymore, but only of t.
Thus integrating εx,0 from 0 to l with respect to x gives:

εx,0(t) =
1

l

∫ l

0

[
∂u

∂x
+

1

2

(
∂w

∂x

)2
]
dx =

1

l

[
u(l, t)− u(0, t) +

1

2

∫ l

0

(
∂w

∂x

)2

dx

]
. (87)

Substituting this in the second equation of (85) gives:

ρA
∂2w

∂t2
+ EI

∂4w

∂x4
=
EA

l

[
u(l, t)− u(0, t) +

1

2

∫ l

0

(
∂w

∂x

)2

dx

]
∂2w

∂x2
. (88)

The term EA
l [u(l, t)−u(0, t)] is equal to the tension T we had in equation (51) for a string. The

total equation of motion now is:

EI

1− ν2

∂4w

∂x4
+ ρA

∂2w

∂t2
+ ĉ

∂w

∂t
=

[
EA

2l(1− ν2)

∫ l

0

(
∂w

∂x

)2

dx+ T

]
∂2w

∂x2
+

1

2
ε0εrb

(Vp + v(t))2

(d− w)2
. (89)

This is is the same equation as in the paper of Younis and Nayfeh [4]. What is different, however,
are the boundary conditions. Younis and Nayfeh considerd a clamped beam, but we will consider a
simply supported beam. These boundary conditions will make the calculations in the next chapter
easier while it will not have much effect on the outcome. Furthermore, having completely clamped
boundary conditions is not perfectly realistic either, since the boundary can often move a little bit
[4]. We therefore have the following boundary conditions:

w(0, t) = 0,

w(l.t) = 0,
∂2w
∂x2 (0, t) = 0,
∂2w
∂x2 (l, t) = 0.

(90)

3.7 Simplification

In this subsection we will simplify the equation derived in the previous sections by reducing the
amount of parameters, making them dimensionless and see which of them are small. This will make
it easier to solve our problem in the next section. To start, we make the parameters dimensionless.

We let w∗ = w
d , x∗ = x

l and t∗ = t
τ , with τ =

√
ρbhl4(1−ν2)

EI . Equation (89) then becomes:
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∂4w∗

∂x∗4
+
∂2w∗

∂t∗2
+ c

∂w∗

∂t∗
= (α1Γ(w∗, w∗) +N)

∂2w∗

∂x∗2
+ α2

(Vp + v(t∗))2

(1− w∗)2
, (91)

with c = ĉl4(1−ν2)
EIτ , α1 = 6( dh )2, N = Tl2(1−ν2)

EI , α2 = 6ε0εrl
4(1−ν2)

Eh3d3 and Γ(f, g) =
∫ 1

0
∂f
∂x∗

∂g
∂x∗ dx

∗.
These parameters are dimensionless except for α1. This is because α1 is multiplied with the voltage,
which will be a important control parameter and is therefore mentioned explicitly. Equation (91) is
a nondimensional partial differential equation with both linear and non-linear terms and external
excitation terms. The boundary conditions in the dimensionless parameters are:

w∗(0, t) = 0,

w∗(1.t) = 0,
∂2w∗

∂x∗2 (0, t∗) = 0,
∂2w∗

∂x∗2 (1, t∗) = 0.

(92)

Typical sizes of our parameters are [4],[5],[6],[17]: ρ = 103kg/m3, b = 10−5m, h = 10−6m,
l = 10−4m, ν2 ≈ 0, E = 1012Pa, d = 10−6m, T = 10−2N, ε0 = 10−11C2/Nm2, εr ≈ 1 and
Vp = 100V. ĉ is often unknown, we hope that it is small, so that our beam does not stop oscillating
too fast. In section 4.4 we will investigate the role of the size of ĉ, for now we take ĉ = 10−4kg/ms.
Then I = 10−24m4 and τ = 10−6s. So c = 10−2, α1 = 101, N = 102 and α2 = 10−2V−2. since w
is small compared to d, we can say that w∗ ≈ 0.01. This is the same order as α2V

2
p and c. We let

w∗ = εw1 + ε2w2 + ... and set α2V
2
p = εV 2

0 and c = εc∗, with V0 and c∗ in the order of 100. v(t) is
small compared to Vp. We can therefore say v(t) = εA sin(Ωt∗), where A and Ω are the amplitude
and frequency of the applied voltage. We make a Taylor-expansion of 1

(1−w)2 around w = 0:

1

(1− w)2
= 1 + 2w + 3w2 + 4w3 + ... (93)

Then we can reformulate (91) as:

ε
∂4w1

∂x∗4
+ ε2

∂4w2

∂x∗4
+ ...+ ε

∂2w1

∂t∗2
+ ε2

∂2w2

∂t∗2
+ ...+ ε2c∗

∂w1

∂t∗
+ ε3c∗

∂w2

∂t∗
+ ... =

α1

(
ε2Γ(w1, w1) + 2ε3Γ(w1, w2) + ...

)(
ε
∂2w1

∂x∗2
+ ε2

∂2w2

∂x∗2
+ ...

)
+ εN

∂2w1

∂x∗2
+

ε2N
∂2w2

∂x∗2
+ ...+ ε(V0 + εA sin(Ωt∗))2

(
1 + 2εw1 + 2ε2w2 + 3ε2w2

1 + ...
)

(94)

To have a well-formulated problem we need initial conditions. As investigating the influence of
the initial conditions is not part of this research, we consider a beam that is initially at rest. So:{

εw1(x∗, 0) + ε2w2(x∗, 0) + ... = 0,

ε∂w1

∂t∗ (x∗, 0) + ε2 ∂w2

∂t∗ (x∗, 0) + ... = 0.
(95)
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4 Solution to the problem

In this section we will solve the problem formulated in the previous section with the method of
multiple scales. We would like to investigate which values of the frequency of the voltage Ω will lead
to resonance. We will therefore consider different cases for different values of Ω. First we will derive
a general expression for the O(ε)- and O(ε2)-problem and the energy of the beam. We will formulate
a solvability condition which we will then solve for different values of Ω in the next sections. In
section 4.1 we consider Ω not close to the resonance frequency, in section 4.2 we consider Ω equal
to the resonance frequency and in section 4.3 we consider Ω close to the resonance frequency. After
this we will make a beginning with the consideration of c one order smaller in 4.4 and see how the
solutions changes and if we can find a different resonance frequency compared to the larger c. We
start with equations (92), (94) and (95). For convenience, we drop the stars and obtain:



ε
∂4w1

∂x4
+ ε2

∂4w2

∂x4
+ ε

∂2w1

∂t2
+ ε2

∂2w2

∂t2
+ ε2c

∂w1

∂t
+ ε3c

∂w2

∂t
+ ... = α1

(
ε2Γ(w1, w1)+

2ε3Γ(w1, w2) + ...
)(

ε
∂2w1

∂x2
+ ε2

∂2w2

∂x2
+ ...

)
+ εN

∂2w1

∂x2
+ ε2N

∂2w2

∂x2
+ ...+

ε(V0 + εA sin(Ωt))2
(
1 + 2εw1 + 2ε2w2 + 3ε2w2

1 + ...
)
,

εw1(0, t) + ε2w2(0, t) + ... = 0,

εw1(1, t) + ε2w2(0, t) + ... = 0,

ε∂
2w1

∂x2 (0, t) + ε2 ∂
2w2

∂x2 (0, t) + ... = 0,

ε∂
2w1

∂x2 (1, t) + ε2 ∂
2w2

∂x2 (1, t) + ... = 0,

εw1(x, 0) + ε2w2(x, 0) + ... = 0,

ε∂w1

∂t (x, 0) + ε2 ∂w2

∂t (x, 0) + ... = 0.

(96)

We introduce the two timescales t0 = t and t1 = εt, to obtain:



ε
∂4w1

∂x4
+ ε2

∂4w2

∂x∗4
+ ...+

(
∂2

∂t20
+ 2ε

∂2

∂t0∂t1
+ ε2

∂2

∂t21

)(
εw1 + ε2w2...

)
+ εc

(
∂

∂t0
+

ε
∂

∂t1

)(
εw1 + ε2w2 + ...

)
= α1

(
ε2Γ(w1, w1) + 2ε3Γ(w1, w2) + ...

)(
ε
∂2w1

∂x2
+

ε2
∂2w2

∂x2
+ ...

)
+ εN

∂2w1

∂x2
+ ε2N

∂2w2

∂x2
+ ...+ ε(V0 + εA sin(Ωt0))2

(
1 + 2εw1 + 2ε2w2+

3ε2w2
1 + ...

)
,

εw1(0, t0, t1) + ε2w2(0, t0, t1) + ... = 0,

εw1(1, t0, t1) + ε2w2(1, t1, t0) + ... = 0,

ε∂
2w1

∂x2 (0, t0, t1) + ε2 ∂
2w2

∂x2 (0, t0, t1) + ... = 0,

ε∂
2w1

∂x2 (1, t0, t1) + ε2 ∂
2w2

∂x2 (1, t0, t1) + ... = 0,

εw1(x, 0, 0) + ε2w2(x, 0, 0) + ... = 0,(
∂
∂t0

+ ε ∂t1

) (
εw1 + ε2w2 + ...

)
|(x,0,0) = 0.

(97)

We note that we do not have an O(1) problem and that the O(ε) problem does not depend on
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t1. The electric actuation appears from O(ε2). We will assume that terms with different powers of
ε are independent and first consider the O(ε)-problem:

∂4w1

∂x4 + ∂2w1

∂t20
= N ∂2w1

∂x2 + V 2
0 ,

w1(0, t0, t1) = w1(1, t0, t1) = ∂2w1

∂x2 (0, t0, t1) = ∂2w1

∂x2 (1, t0, t1) = 0,

w(x, 0, 0) = ∂w1

∂t0
(x, 0, 0) = 0.

(98)

We use separation of variables on the homogeneous problem to obtain:{
d4φ(x)
dx4 −N d2φ(x)

dx2 = λφ(x),

φ(0) = φ(1) = d2φ
dx2 (0) = d2φ

dx2 (0) = 0.
(99)

The solution to this is: {
φn(x) = sin(nπx),

λn = Nn2π2 + n4π4.
(100)

To solve the time-dependent part of w1 in (98), we use the method of eigenfunction expansion
[16] and assume that the solution is of the form:

w1(x, t0, t1) =

∞∑
n=1

an(t0, t1)φn(x). (101)

Filling in our initial conditions, multiplying both sides with φm and integrating over x from 0
to 1, we obtain: {

an(0, 0) = 0,
∂an
∂t0

(0, 0) = 0.
(102)

We substitute in (101) in (98) and use (99) to obtain:

∞∑
n=1

[
λnan +

∂2an
∂t20

]
φn(x) = V 2

0 . (103)

Again multiplying both sides with φm and integrating over x from 0 to 1, results in the following
differential equation for an(t0, t1):

λnan +
∂2an
∂t20

=

∫ 1

0
V 2

0 φndx∫ 1

0
φ2
ndx

=

{
4V 2

0

nπ , n is odd,

0, n is even.
(104)

The solution to this is:

an(t0, t1) = an,0(t1) sin(
√
λnt0) + bn,0(t1) cos(

√
λnt0) +

4V 2
0

nπλn
1{n is odd}. (105)

Initial conditions (102) give: {
an,0(0) = 0,

bn,0(0) = − 4V 2
0

nπλn
1{n is odd}.

(106)
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The O(ε2)-problem is:
∂4w2

∂x4 + 2 ∂2w1

∂t0∂t1
+ ∂w2

∂t20
+ c∂w1

∂t0
= N ∂w2

∂x2 + 2V 2
0 w1 + 2V0A sin(Ωt0),

w2(0, t0, t1) = w2(1, t0, t1) = ∂2w2

∂x2 (0, t1, t2) = ∂2w2

∂x2 (1, t0, t1) = 0,

w2(x, 0, 0) = 0,
∂w2

∂t0
(0, 0) + ∂w1

∂t1
(0, 0) = 0.

(107)

We can see that the homogeneous problem for w2 is the same as for w1. Therefore we use a
similar expansion as before and assume w2 is of the form:

w2(x, t0, t1) =

∞∑
n=1

bn(t0, t1) sin(nπx). (108)

Filling in equation (101) and (105) in (107), the inhomogeneous term is:

−2
∂2w1

∂t0∂t1
− c∂w1

∂t0
+ 2V 2

0 w1 + 2V0A sin(Ωt0) =

∞∑
n=1

[
−2
√
λna

′
n,0 cos(

√
λnt0)+

2
√
λnb
′
n,0 sin(

√
λt0)− c

√
λnan,0 cos(

√
λnt0) + c

√
λnbn,0 sin(

√
λnt0)+

2V 2
0 an,0 sin(

√
λnt0) + 2V 2

0 bn,0 cos(
√
λnt0) +

8V 4
0

nπλn
1{n is odd}

]
φn(x) + 2V0A sin(Ωt0) =

∞∑
n=1

Bn(t0, t1)φn(x) + 2V0A sin(Ωt0).

(109)

Similar to equation (104) we obtain a differential equation for bn(t1, t2):

λnbn +
∂2bn
∂t20

= Bn(t0, t1) +
8V0A sin(Ωt0)

nπ
1{n is odd}. (110)

The homogeneous solution to this differential equation is:

bn(t0, t1) = an,1(t1) sin(
√
λnt0) + bn,1(t1) cos(

√
λnt0). (111)

For a good first term approximation, we do not need to solve bn(t0, t1). Rather, we need the
condition that it does not lead to secular terms. In order to prevent these secular terms, we need
that the inhomogeneous term does not contain the homogeneous solution. In the next subsections
we will see what this condition implies for different Ω. To see if resonance occurs, it is interesting
to look at the energy of the microbeam as well. If there is no resonance, we expect the energy to
stay finite. For resonance we expect that the energy of the microbeam will continue growing. To
calculate the energy, we multiply equation (91) with ∂w

∂t and rewrite it, to obtain:
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∂

∂t

(
1

2

(
∂w

∂t

)2

+
1

2

(
∂2w

∂x2

)2

+
1

2
N

(
∂w

∂x

)2
)

+ c

(
∂w

∂t

)2

+

α1

∫ 1

0

(
∂w

∂x

)2

dx
∂

∂t

(
1

2

(
∂w

∂x

)2
)

+
∂

∂x

(
∂w

∂t

∂3w

∂x3
− ∂2w

∂t∂x

∂2w

∂x2

)
−(

α1

∫ 1

0

(
∂w

∂x

)2

dx+N

)
∂

∂x

(
∂w

∂t

∂w

∂x

)
− α2(Vp + v(t))2 ∂

∂t

1

1− w
= 0.

(112)

To obtain a ordinary derivative with respect to t, we integrate this equation from 0 to 1 over x
and use our boundary conditions to obtain:

d

dt

∫ 1

0

1

2

(
∂w

∂t

)2

+
1

2

(
∂2w

∂x2

)2

+
1

2
N

(
∂w

∂x

)2

−
α2V

2
p

1− w
dx+

α1

2

(∫ 1

0

(
∂w

∂x

)2

dx

)2
+

c

∫ 1

0

(
∂w

∂t

)2

dx− α2

∫ 1

0

(
2Vpv(t) + v(t)2

) ∂
∂t

1

1− w
dx = 0.

(113)

Then our energy is:

E(t) = C +

∫ 1

0

−α2

(
2Vpv(t) + v(t)2

) 1

1− w
+

∫ t

0

c

(
∂w

∂t

)2

+ 2α2(Vp + v(t))
∂v
∂t

1− w
dtdx. (114)

since our beam is initially at rest we let C = 0. Moreover, because w is small, we can approximate
1

1−w by 1 + w. Using this and equation (101), equation (114) becomes:

E(t) = −α2

(
2Vpv(t) + v(t)2

)(
1 +

∑
n odd

2an
nπ

)

+

∫ t

0

c

2

∞∑
n=1

(
dan
dt

)2

+ 2α2(Vp + v(t))
∂v

∂t

(
1 +

∑
n odd

2an
nπ

)
dt,

(115)

where

dan
dt

= εa′n,0(t1) sin(
√
λnt0) + εb′n,0(t1) cos(

√
λnt0) +

√
λnan,0(t1) cos(

√
λnt0)−√

λnbn,0(t1) sin(
√
λnt0).

(116)

4.1 Not resonance frequency

As with the Duffing equation we separate three cases of our forcing frequency. In this section we
consider the the case that Ω is not close to any of the eigenfrequencies of the first order solution.
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In section 4.2 we consider Ω equal to the eigenfrequency and in section 4.3 we consider Ω close to
the eigenfrequency. So we begin with Ω not close to any of the eigenfrequencies of the first order
solution. For this case we do not expect any resonance. Due to the static component of the current,
we do not expect that the solution fades out completely but converges to an equilibrium deflection.
Furthermore we expect the energy of the microbeam to stay small. In this case we can only have
secular terms due to Bn(t0, t1) and in order to prevent these, we need:{

−2
√
λna

′
n,0 − c

√
λnan,0 + 2V 2

0 bn,0 = 0,

2
√
λnb
′
n,0 + cbn,0

√
λn + 2V 2

0 an,0 = 0,
(117)

with initial conditions (106). In matrix notation this is:

[
a′n,0
b′n,0

]
=

 − c
2

V 2
0√
λn

− V 2
0√
λn

− c
2

[an,0
bn,0

]
. (118)

The eigenvalues of this matrix are:

µ1 = − c
2

+ i
V 2

0√
λn
, µ2 = − c

2
− i V

2
0√
λn

(119)

and the eigenvectors are

v1 =

[
1
i

]
, v2 =

[
i
1

]
. (120)

So the solution to (117) is[
an,0
bn,0

]
= e−

c
2 t1

(
c1e

i
V 2
0√
λn
t1
[
1
i

]
+ c2e

−i V 2
0√
λn
t1
[
i
1

])
. (121)

Taking the real part of (121) and using initial conditions (106) we obtain:an,0(t1) = − 4V 2
0

nπλn
e−

c
2 t1 sin

(
V 2
0√
λn
t1

)
1{n is odd},

bn,0(t1) = − 4V 2
0

nπλn
e−

c
2 t1 cos

(
V 2
0√
λn
t1

)
1{n is odd}.

(122)

In figure 13 we plot the solution of w1. We limit ourselves to the first 10 components of w1. Since
all terms are divided by λn and λn grows with n to the fourth power, this is a valid approximation.
For large timescales, an,0 and bn,0 become close to zero because the oscillations fade away due to
the damping in the problem. The solution then converges to the static solution. This agrees with
our expectation.

We fill in (122) in (115) to obtain the energy of the microbeam for this case. We use Euler
forward [11] to obtain figure 14. We can see that the growth of the energy indeed stops. The energy
does not become zero as the bending due to the static current remain. This is again in agreement
with what we would expect.
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Figure 13: The sum of the first ten components of w1 against x
l at t = 0s, 250.5π√

λ1
s, 501π√

λ1
s and 751.5π√

λ1
s

for c = 1, N = 100, V0 = 1V, ε = 0.01 and A = 1. Ω is not close to
√
λn for any n.

Figure 14: Energy against time if Ω is not close to any of the
√
λn for c = 1, N = 100, V0 = 1V,

ε = 0.01 and A = 1 obtained by using Euler forward with ∆t = 0.06s
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4.2 Exactly resonance frequency

In this subsection we will consider Ω equal to one of the eigenfrequencies of the homogeneous
solution: we take Ω =

√
λN , for N fixed, then the frequency of the alternating current is equal

to a eigenfrequency of the solution. Since the even components of the solution are zero, if N is
even, nothing changes compared to the solution in the previous subsection. If N is odd, we expect
resonance to occur and predict that our oscillations and our energy become very large. We choose
N = 1. Then in order to prevent secular terms we need to solve the following system for n = 1:{

−2
√
λ1a
′
1,0 − c

√
λ1a1,0 + 2V 2

0 b1,0 = 0,

2
√
λ1b
′
1,0 + cb1,0

√
λ1 + 2V 2

0 a1,0 + 8AV0

π = 0.
(123)

For n 6= 1, we have the same solution as (122). The solution for n = 1 is a1,0(t1) = a1,0,h(t1) +
a1,0,p(t1) and b1,0(t1) = b1,0,h(t1) + b1,0,p(t1). Where a1,0,h(t1) and b1,0,h(t1) are given by an,0 and
bn,0 in (122). Using the method of variation of parameters [13], a1,0,p(t1) and b1,0,p(t1) are found
to be:


a1,0,p(t1) =

4AV0
π
√
λ1

1+
4V 4

0
c2λ1

[
2
c e
− c2 t1 sin

(
V 2
0√
λ1
t1

)
− 4V 2

0

c2
√
λ1

+
4V 2

0

c2
√
λ1
e−

c
2 t1 cos

(
V 2
0√
λ1
t1

)]
,

b1,0,p(t1) =

4AV 2
0

π
√
λ1

1+
4V 4

0
c2λ1

[
− 2
c −

4V 2
0

c2
√
λ1
e−

c
2 t1 sin

(
V 2
0 t1√
λ1

)
+ 2

c e
− c2 t1 cos

(
V 2
0 t1√
λ1

)]
.

(124)

In both a1,0,p and bn,0,p, there is a term without a negative exponent with the damping coef-
ficient. So both terms will not vanish at large times. In figure 15 we plot the solution of w1 for
this case. We can see that the solution indeed becomes much larger compared to figure 13, which
is what we would expect from resonance.

If we substitute these an,0 and bn,0 in (115) and use Euler forward to compute the energy, we
obtain figure 16. Here we can see that the energy indeed continues growing with time as we would
expect from resonance. If the energy of the beam becomes more than it can handle, the beam will
collapse.
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Figure 15: The sum of the first ten components of w1 against x
l at t = 0s, 250.5π√

λ1
s, 501π√

λ1
and 751.5π√

λ1
s

for c = 1, N = 100, V0 = 1V, ε = 0.01, A=1 and Ω =
√
λ1.

Figure 16: Energy against time if Ω =
√
λ1, c = 1, N = 100, V0 = 1V, ε = 0.01 and A = 1 obtained

by using Euler forward with ∆t = 0.012s.
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4.3 Close to resonance frequency

Lastly we consider the case that the excitation frequency Ω is close to the resonance frequency
of the microbeam. We let Ω =

√
λN + εω, with N fixed, where ω is a tuning parameter. The

smaller ω is, the closer we are to the resonance frequency. We will not just calculate the solution
of the movement of the mircobeam, but rather we will study the behaviour of the beam by looking
at equilibira and their stability. We will investigate what happens for different values of ω and
if there are ω for which the stability of the equilibria changes. We expect that for smaller ω the
oscillations of the beam become larger. For N 6= n we have the same equations as section 4.1.
If N is odd, nothing changes compared to section 4.1. Using trigonometric identities, sin(Ωt0) =
sin(
√
λN t0) cos(ωt1) + cos(

√
λN t0) sin(ωt1) we need the following equation to prevent secular terms

for n = N : {
−2
√
λNa

′
N,0 − c

√
λNaN,0 + 2V 2

0 bN,0 + 8V0A
Nπ 1{N is odd} sin(ωt1) = 0,

2
√
λNb

′
n,0 + cbn,0

√
λN + 2V 2

0 aN,0 + 8V0A
Nπ 1{N is odd} cos(ωt1) = 0.

(125)

We introduce polar coordinates aN,0(t1) = rN (t1) cos(φN (t1)) and bN,0(t1) = rN (t1) sin(φN (t1)),
with rN (t1) a real-valued positive function representing the amplitude and φn(t1) a real-valued
function representing the phase. Then (125) transforms into:



−2
√
λN (r′N cos(φN )− rN sin(φN )φ′N )− c

√
λNrN cos(φN ) + 2V 2

0 rN sin(φN )+

8V0A

Nπ
1{N is odd} sin(ωt1) = 0,

2
√
λN (r′N sin(φN ) + rN cos(φN )φ′N ) + c

√
λNrN sin(φN ) + 2V 2

0 rN cos(φN )+

8V0A

Nπ
1{N is odd} cos(ωt1) = 0.

(126)

Initial conditions (106) give{
rN (0) cos(φN (0)) = 0,

rN (0) sin(φN (0)) = − 4V 02

NπλN
1{N is odd}.

(127)

If N is even, rN (t1) = 0 is a solution. So an,0(t1) = 0 and bn,0(t1) = 0 and we have (122) as
a solution, just as we expected. If N is odd, the first equation gives rN (0) = 0 ∨ cos(φN (0)) = 0,
but the former would make the first equation 0 as well. So cos(φN (0)) = 0. This means φN (0) =
π
2 + kπ, k ∈ Z. This means sin(φN (0)) = 1 ∨ sin(φN (0)) = −1, but the former would mean that
rN (0) is negative which is impossible. From now on, we assume N is odd. The initial conditions
are: {

rN (0) =
4V 2

0

NπλN
,

φN (0) = −π2 .
(128)

To obtain a differential equation for rN and φN we use similar calculations as in chapter 2.
Multiplying the first equation of (126) with sin(φN ) and adding the second equation multiplied
with cos(φN ) and using trigonometric identities gives a differential equation for φN . Multiplying
the first equation with − cos(φN ) and adding the second equation multiplied with sin(φN ) and
using trigonometric identities gives a differential equation for rN .
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{
2
√
λnrNφ

′
N + 2V 2

0 rN + 8V0A
Nπ cos(φN − ωt1) = 0,

2
√
λNr

′
N + c

√
λNrN + 8V0A

Nπ sin(φN − ωt1) = 0.
(129)

We introduce ψN = φN − ωt1, then (129) transforms into:{
2
√
λNrN (ψ′N + ω) + 2V 2

0 rN + 8V0A
Nπ cos(ψN ) = 0,

2
√
λNr

′
N + c

√
λNrN + 8V0A

Nπ sin(ψN ) = 0.
(130)

In equilibrium the derivatives with respect to time are zero and eqaution (130) results in:{
2
√
λNrN,eqω + 2V 2

0 rN,eq + 8V0A
Nπ cos(ψN,eq) = 0,

c
√
λNrN,eq + 8V0A

Nπ sin(ψN,eq) = 0.
(131)

Bringing the sine and cosine to the other side, squaring the equations and adding them gives:(
4λNω

2 + 8V 2
0

√
λNω + 4V 4

0 + c2λN

)
r2
N,eq =

64V 2
0 A

2

N2π2
. (132)

This has a solution if:

4λNω
2 + 8V 2

0

√
λNω + 4V 4

0 + c2λN > 0. (133)

This holds for all ω ∈ R. The solution of (132) is:

rN,eq =
8V0A

Nπ
√

4λNω2 + 8V 2
0

√
λNω + 4V 4

0 + c2λN

. (134)

The possible values for ψN,eq are
ψN,eq,1 = arcsin

(
− cNπ

√
λNrN,eq

8V0A

)
+ 2kπ, k ∈ Z,

ψN,eq,2 = π − ψN,eq,1 + 2kπ, k ∈ Z,
ψN,eq,3 = arccos

(
−V0Nπreq

4A −
√
λNωNπreq

4V0A

)
+ 2kπ, k ∈ Z,

ψN,eq,4 = −ψN,eq,3 + 2kπ, k ∈ Z.

(135)

For ψN,eq to be an equilibrium of (131), it needs to satisfy one of ψN,eq,1 and ψN,eq,2 and one
of ψN,eq,3 and ψN,eq,4. The four values are plotted against ω in figure 17 for our example values.
Here we can see that ψ1,eq,4 is always an equilibrium. ψN,eq,1 is an equilibrium for ω ≤ −0.07 and
ψN,eq,2 is an equilibrium for ω > −0.07. The fact that ψN,eq,4 is always an equilibrium is proven in
the appendix.

To determine the stability we will linearize locally around the equilibrium [13]. We introduce
uN = rN − rN,eq and vN = ψN − ψN,eq, write (130) in matrix notation and use (131) similarly to
section 2, to obtain:[

u′N
rNv

′
N

]
=

[
− c

2 − 4V0A
Nπ
√
λN

cos(ψN,eq)

−ω − V 2
0√
λN

4V0A
Nπ
√
λN

sin(ψN,eq)

] [
uN
vN

]
+ h.o.t. (136)
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(a) (b)

Figure 17: The ψ1,eq against ω for N = 100, A = 1, c = 1 and V0 = 1V. The solid blue line is
ψ1,eq,1, the dashed orange line is ψ1,eq,2 on the left and 2π−ψ1,eq,2 on the right, the dash-dot green
line is ψ1,eq,3 and the dotted red line is ψ1,eq,4.

N ω1 ω2

1 -0.585 0.524
3 -0.566 0.550
5 -0.562 0.555
≥ 7 -0.560 0.557

Table 1: The bifurcation points of the two eigenvalues for different N.

The eigenvalues of this matrix are:

µN =
2V0A

Nπ
√
λN
− c

4
± 1

2

√(
c

2
− 4V0A

Nπ
√
λN

sin(ψN,eq)

)2

+

(
16ωV0A

Nπ
√
λN

+
16V 3

0 A

NπλN

)
cos(ψN,eq). (137)

Considering the sizes of the parameters, the term 4V0A
Nπ
√
λN
− c

2 is smaller than 0. So when the

eigenvalue is complex, the equilibrium is stable. We solve this numerically to determine for which
ω the solution changes. In figure 18 the eigenvalues are plotted against ω. The solution is unstable
for ω1 ≤ ω ≤ ω2, where ω1 and ω2 are given by table 1. ω1 and ω2 are called bifurcation points
[13]. In figure 19 we plot how the position and stability of the equilibrium changes with ω.
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(a) (b)

Figure 18: The first 5 odd largest eigenvalues of the matrix for N = 100, A = 1, c = 1 and V0 = 1V.
In subfigure (a) for ω from -10 to 10 and in subfigure (b) for ω from -1 to 1.

Figure 19: r1,eq against ψ1,eq for N = 100, A = 1, c = 1 and V0 = 1V for ω from -10 to 10. The
dashed red line means the equilibrium is unstable, the solid green line means the equilibrium is
stable.
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Figure 20: The first 5 odd rn and ψn against time for N = 100, A = 1, c = 1 and V0 = 1V. Left
for ω = −10, in the middle for ω = 0 and right for ω = 10. The values are determined using the
RK4 method with ∆t = 0.012s.

We will compare our obtained results to numeric results. We can obtain the solutions for rN
and ψN by applying the fourth order method of Runge-Kutta (RK4-method) [11] to equation (130).
We then obtain figure 20. We compare them to the equilibria from (134) and (135). For ω = −10
and N = 1, the equilibrium should be equal to (0.0039,−0.050 + k2π, k ∈ Z). This is in excellent
agreement with the left plot of figure 20 for k = 0. For ω = 10 and N = 1, the equilibrium should
be equal to (0.0039, 3.19 + k2π, k ∈ Z)). This is in excellent agreement with the right plot of figure
20 for k = −1. For ω = 0 the equilibrium should be unstable. In figure 21 we plot the phase plots
of r and ψ and the phase plots of our original coordinates r and φ. We can see that the oscillations
converge to an oscillation with constant amplitude due to a balance between the electric actuation
and the damping. In figure 22 we plot how our solution w1 looks like for N = 1. We can see that
if ω = 0, we have the same solution as in subsection 4.2, which is what we would expect. We can
also observe that if ω is smaller and we are closer to the resonance frequency, that then w1 becomes
larger. This is in agreement with what we expected.
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Figure 21: The first 5 odd rn against ψn and rn against φn for N = 100, A = 1, c = 1 and V0 = 1V.
Left for ω = −10, in the middle for ω = 0 and right for ω = 10. The values are determined using
the RK4-method with ∆t = 0.012s.

Figure 22: The first ten components of w1 against x
l for N = 100, A = 1, c = 1 and V0 = 1V

at t = 0s, , 250.5π√
λ1

s, 501π√
λ1

s and 751.5π√
λ1

s. Above for ω = −10, in the middle for ω = 0 and below for

ω = 10. The values are determined using the RK4-method with ∆t = 0.012s.
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4.4 Smaller damping

In this section we will make a first step towards researching the effect of the damping coefficient by
studying the same problem formulated in section 3 by equation (91), but now with the damping an
order smaller. Since the damping is unknown, but we hope that it is small so that our oscillations
do not fade away too fast, it is interesting to consider this case. To study the effect of the damping
we will have to consider the O(ε3)-problem as well. We assume that Ω is not close to any

√
λn and

see if we can find a different resonance. In contrast to sections 4.1-4.3, we will not separate three
types of frequency but only a frequency close to our new resonance frequency. Our new equation
of motion is:



ε
∂4w1

∂x4
+ ε2

∂4w2

∂x4
+ ε3

∂4w3

∂x4
+ ε

∂2w1

∂t2
+ ε2

∂2w2

∂t2
+ ε3

∂2w3

∂t2
+ ε3c

∂w1

∂t
+ ... =

α1ε
3Γ(w1, w1)

∂2w1

∂x2
+ εN

∂2w1

∂x2
+ ε2N

∂2w2

∂x2
+ ε3N

∂2w3

∂x2
+ ...+

ε(V0 + εA sin(Ωt))2
(
1 + 2εw1 + 2ε2w2 + 3ε2w2

1 + ...
)
,

εw1(0, t) + ε2w2(0, t) + ε3w3(0, t) + ... = 0,

εw1(1, t) + ε2w2(0, t) + ε3w3(0, t) + ... = 0,

ε∂
2w1

∂x2 (0, t) + ε2 ∂
2w2

∂x2 (0, t) + ε3 ∂
2w3

∂x2 (0, t) + ... = 0,

ε∂
2w1

∂x2 (1, t) + ε2 ∂
2w2

∂x2 (1, t) + ε3 ∂
2w3

∂x2 (1, t) + ... = 0,

εw1(x, 0) + ε2w2(x, 0) + ε3w3(x, 0) + ... = 0,

ε∂w1

∂t (x, 0) + ε2 ∂w2

∂t (x, 0) + ε3 ∂w3

∂t (x, 0) + ... = 0.

(138)

As before, we will use the method of mulitple scales. Introducing t0 = t and t1 = εt, gives:



ε
∂4w1

∂x4
+ ε2

∂4w2

∂x4
+ ε3

∂4w3

∂x4
+ ε

∂2w1

∂t20
+ 2ε2

∂2w1

∂t0∂t1
+ ε3

∂2w1

∂t21
+ ε2

∂2w2

∂t20
+

2ε3
∂2w2

∂t0∂t1
+ ε3

∂2w3

∂t20
+ ε3c

∂w1

∂t0
+ ... = α1ε

3Γ(w1, w1)
∂2w1

∂x2
+ εN

∂2w1

∂x2
+ ε2N

∂2w2

∂x2

+ε3N
∂2w3

∂x2
+ ...+ ε(V0 + εA sin(Ωt0))2

(
1 + 2εw1 + 2ε2w2 + 3ε2w2

1 + ...
)
,

εw1(0, t0, t1) + ε2w2(0, t0, t1) + ε3w3(0, t0, t1) + ... = 0,

εw1(1, t0, t1) + ε2w2(0, t0, t1) + ε3w3(0, t0, t1) + ... = 0,

ε∂
2w1

∂x2 (0, t0, t1) + ε2 ∂
2w2

∂x2 (0, t0, t1) + ε3 ∂
2w3

∂x2 (0, t0, t1) + ... = 0,

ε∂
2w1

∂x2 (1, t0, t1) + ε2 ∂
2w2

∂x2 (1, t0, t1) + ε3 ∂
2w3

∂x2 (1, t0, t1) + ... = 0,

εw1(x, 0, 0) + ε2w2(x, 0, 0) + ε3w3(x, 0, 0) + ... = 0,

ε∂w1

∂t0
(x, 0, 0) + ε2 ∂w1

∂t1
(x, 0, 0) + ε2 ∂w2

∂t0
(x, 0, 0) + ε3 ∂w2

∂t1
(x, 0, 0) + ε3 ∂w3

∂t0
(x, 0, 0) + ... = 0.

(139)

Our O(ε)-problem is the same as before in equation (98). For O(ε2) the only difference compared
to equation (107) is that c = 0. We substitute this in (122) and obtain:an,0(t1) = − 4V 2

0

nπλn
sin
(
V 2
0√
λn
t1

)
1{n is odd},

bn,0(t1) = − 4V 2
0

nπλn
cos
(
V 2
0√
λn
t1

)
1{n is odd}.

(140)
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We would like to solve w2 as well, so we have to compute the initial conditions:{
w2(x, 0, 0) = 0,
∂w2

∂t0
(x, 0, 0) = −∂w1

∂t1
(x, 0, 0) = 0.

(141)

To construct our differential equation for bn(t0, t1), we use (109) and (117) to obtain:

λnbn +
∂2bn
∂t20

=

(
8V 4

0

nπλn
+

8V0A sin(Ωt0)

nπ

)
1{n is odd}. (142)

Which has as a solution:

bn(t0, t1) = an,1(t1) sin(
√
λnt0) + bn,1(t1) cos(

√
λnt0)−

8V0(Aλ2
n sin(Ωt0)− V 3

0 (Ω2 − λn))

πnλ2
n(Ω2 − λn)

1{n is odd}.
(143)

The initial conditions give: {
an,1(0) = 0,

bn,1(0) = − 8V 4
0

πnλ2
n
1n is odd.

(144)

O(ε3)-problem is:

∂4w3

∂x4
+
∂2w1

∂t21
+ 2

∂2w2

∂t0∂t1
+
∂2w3

∂t20
+ c

∂w1

∂t0
= α1Γ(w1, w1)

∂2w1

∂x2
+N

∂2w3

∂x2
+ 2V 2

0 w2+

3V 2
0 w

2
1 + 4V0Aw1 sin(Ωt0) +A2 sin2(Ωt0).

(145)

The homogeneous equation is the same as before. Using equations (108) and (143), the inho-
mogeneous part of equation (145) is:

−∂
2w1

∂t21
− 2

∂2w2

∂t0∂t1
− c∂w1

∂t0
+ α1Γ(w1, w1)

∂2w1

∂x2
+ 2V 2

0 w2 + 3V 2
0 w

2
1 + 4V0Aw1 sin(Ωt0)+

A2 sin2(Ωt0) =

∞∑
n=1

[
−a′′n,0 sin(

√
λnt0)− b′′n,0 cos(

√
λnt0)− 2a′n,1

√
λn cos(

√
λnt0)

+2b′n,1
√
λn sin(

√
λnt0)− c

√
λnan,0 cos(

√
λnt0) + c

√
λnbn,0 sin(

√
λnt0)−

α1n
2π2Γ(w1, w1)an + 2V 2

0 an,1 sin(
√
λnt0) + 2V 2

0 bn.1 cos(
√
λnt0)−

16V 3
0 (Aλ2

n sin(Ωt0)− V 3
0 (Ω2 − λn))

πnλ2
n(Ω2 − λn)

1{nisodd} + 4V0A sin(Ωt0)an,0 sin(
√
λnt0)+

4V0A sin(Ωt0)bn,0 cos(
√
λnt0) +

16AV 3
0

nπλn
sin(Ωt0)1{nisodd}

]
sin(nπx) + 3V 2

0 w
2
1+

A2 sin2(Ωt0) =

∞∑
n=1

Cn(t0, t1) sin(nπx) + 3V 2
0 w

2
1 +A2 sin2(Ωt0).

(146)
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Because we have the same homogeneous equation, we let w3 =
∑∞
n=1 cn(t0, t1) sin(nπx). Then

we have the following differential equation for cn(t1, t2):

λncn +
∂2cn
∂t20

= Cn(t0, t1) +
4A2 sin2(Ωt0)

nπ
1{n odd}−

24V 2
0

π

∑
n+k+m odd

kmn

n4 − 2n2(m2 + k2) + (m2 − k2)2
ak(t0, t1)am(t0, t1).

(147)

If N = 100 it is proven in the appendix that ∀k,m, n ∈ N:√
λk +

√
λm 6=

√
λn. (148)

.
This means that a sine or cosine with a frequency equal to the sum of eigenfrequencies will not

lead to secular terms. If for instance N = 272
28 π

2 ≈ 96, then
√
λ4 +

√
λ4 =

√
λ6. In this case there

will be a lot more secular terms we will not consider now. At the moment, we assume N = 100 and
therefore:

∑
n+k+m odd

kmn

n4 − 2n2(m2 + k2) + (m2 − k2)2
ak(t0, t1)am(t0, t1) =

2
∑

m odd

n2

m3 − 4mn2

4V 2
0

mπλm
(an,0 sin(

√
λnt0) + bn,0 cos(

√
λnt0)) +N.S.T.,

(149)

where N.S.T. stands for terms that do not produce secular terms. The function Γ may give rise
to secular terms as well. Filling in w1, we obtain:

Γ(w1, w1) =
1

2

∞∑
k=1

a2
kk

2π2, (150)

so:

Γ(w1, w1)an =

(
1

2
n2π2

[
1

4
b2n,0 +

1

4
a2
n,0 +

32V 4
0

n2π2λ2
n

1{n is odd}

]
+

1

2

∞∑
m=1

m2π2

[
1

2
a2
m,0+

1

2
b2m,0 +

16V 4
0

m2π2λ2
m

1{m is odd}

])
(bn,0 cos(

√
λnt0) + an,0 sin(

√
λnt0)) +N.S.T.

(151)

Now to see if there are any Ω besides the
√
λn which may lead to resonance, we rewrite the

terms in (146) which contain Ω.

{
4V0A sin(Ωt0)an,0 sin(

√
λnt0) = 2V0Aan,0(cos((Ω−

√
λn)t0)− cos((Ω +

√
λn)t0)),

4V0A sin(Ωt0)bn,0 cos(
√
λnt0) = 2V0Abn,0(sin((Ω−

√
λn)t0) + sin((Ω +

√
λn)t0)).

(152)

4A2 sin2(Ωt0)

nπ
=

2A2

nπ
(1− cos(2Ωt0)). (153)
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Equation (152) gives extra secular terms when Ω = 0, a direct current instead of an alter-
nating current, or if Ω = 2

√
λn, a superharmonic resonance frequency. Equation (153) gives

extra secular terms when Ω = 1
2

√
λn, a subharmonic resonance frequency. We choose Ω =

2
√
λN + εω for N fixed, with ω a detuning parameter to describe the behaviour near 2

√
λN .

Then cos((Ω −
√
λN )t0) = cos(

√
λN t0) cos(ωt1) − sin(

√
λnt0) sin(ωt1) and sin((Ω −

√
λN )t0) =

sin(
√
λN t0) cos(ωt1) + cos(

√
λN t0) sin(ωt1). To prevent secular terms from occurring in the inho-

mogeneous term of (147) we need:2b′n,1
√
λn + 2V 2

0 an,1 + S1 − 8V 3
0 A

nπλn
cos
(
V 2
0 t1√
λN

+ ωt1

)
1{n=N} = 0,

−2a′n,1
√
λn + 2V 2

0 bn,1 + S2 − 8V 3
0 A

nπλN
sin
(
V 2
0 t1√
λN

+ ωt1

)
1{n=N} = 0,

(154)

with



S1 = − 4V 6
0

nπλ2
n

sin

(
V 2

0 t1√
λn

)
− 4cV 2

0

nπ
√
λn

cos

(
V 2

0 t1√
λn

)
+ 72α1

V 6
0 nπ

λ3
n

sin

(
V 2

0 t1√
λn

)
+

48nV 6
0

πλn

∑
m is odd

(
α1π

2

λ2
m

+
16

mπ2λm(m3 − 4mn2)

)
sin

(
V 2

0 t1√
λn

)
, for n odd,

S2 = − 4V 6
0

nπλ2
n

cos

(
V 2

0 t1√
λn

)
+

4cV 2
0

nπ
√
λn

sin

(
V 2

0 t1√
λn

)
+ 72α1

V 6
0 nπ

λ3
n

cos

(
V 2

0 t1√
λn

)
+

48nV 6
0

πλn

∑
m is odd

(
α1π

2

λ2
m

+
16

mπ2λm(m3 − 4mn2)

)
cos

(
V 2

0 t1√
λn

)
, for n odd

(155)

and initial conditions (144). This equation can be solved. To see for which ω the solution is
unstable, we consider n = N and investigate the numerators in the solution that depend on ω.
When these become 0, the solution will become large. The numerators depending on ω are

V 2
0 λ

13
2

N nπ
(√
λNω + 2V 2

0

) (
2λ

13
2

N V 2
0 + λ7

Nω
)
,

2V 2
0 +
√
λNω,

V 2
0 πn

(
4λ

27
2

N V 2
0 ω + 4V 4

0 λ
13
N + λ14

N ω
2
)
,

(156)

or constant multiples of this. These are zero when ω =
−2V 2

0√
λn

. The homogeneous solutions

of an,1 and bn,1 are − 8V 4
0

πnλ2
n

sin(
V 2
0 t1√
λn

) and − 8V 4
0

πnλ2
n

cos(
V 2
0 t1√
λn

). We can see that S1 and S2 always

contain these secular terms and the solution is therefore always unstable. This does not have to
be a problem since this solution holds on a 1

ε timescale for which a1,1 and b1,1 are still small. If

ω =
−2V 2

0√
λN

then cos(
V 2
0 t1√
λN

+ ωt1) and sin(
V 2
0 t1√
λN

+ ωt1) are a multiple of the homogeneous solution as

well. The solution of a,1 and b1,1 is plotted in figure 23. We can see that for ω = − 2V 2
0√
λN

a1,1 grows

faster than for ω = 1, which is what we would expect.
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(a) (b)

Figure 23: a1,1 and b1,1 against t1 for N = 100, A = 1, c = 1 and V0 = 1V obtained using the RK4

method for ∆t1 = 0.00012s. Left for ω = − V 2
0√
λN

and right for ω = 1.

In figure 24 the amplitude of the oscillation r is plotted against Ω for c of O(ε) as in sections
4.1-4.3 and for c of O(ε2) as in this section. We can see that for smaller c the amplitude of the
oscillation becomes larger than for larger c as we would expect because the damping limits the
oscillations. We can furthermore observe that the peak in the amplitude is much narrower for
smaller c. This is because the effect of the damping grows with the velocity of the oscillation and
therefore especially limits the fast oscillations near resonance. According to Younis and Nayfeh [4],
the nonlinear terms should become more important when the damping decreases. We can indeed
see that there is an small increase in the effect of the nonlinear terms for the smaller c.

Figure 24: r against Ω for α = 200, N = 100, V 2
0 = 45 and A = ε = 1. The red solid line and the

left axis correspond to c = O(ε). The blue dashed line and the right axis correspond to c = O(ε2).
The solution for O(ε2) is obtained with the RK4-method with ∆t = 0.012s.
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5 Conclusions

In this research we considered the response of a simply supported microbeam subject to an applied
axial load, accounting for mid-plane stretching, actuated by an electric actuation. We neglected
shear deformation and rotary inertia. In order to solve our equation of motion we used the method
of multiple scales. We have studied this method extensively. With this method we have constructed
a solution to motion of the microbeam which is valid up to times O( 1

ε ), where ε is a small dimen-
sionless parameter.

During the research we have looked at the behavior of the microbeam for different frequencies of the
alternating current of the electric actuation: not close to the eigenfrequencies of the system, exactly
the same as one of the eigenfrequencies of the system and close to one of the eigenfrequencies of the
system. We determined the eigenfrequencies of the system up to order ε as

√
λn =

√
Nn2π2 + n4π4,

where N is a parameter depending on the bending stiffness, length, Poisson ratio and tension of
the beam.

First we looked at a damping of O(ε). For the frequency of the alternating current Ω far away
from the

√
λn we found that due to the damping our solution remained small. We considered the

energy of the system as well and have seen that the energy converged to a maximum value which
was due to the static current. For Ω equal to one of the

√
λn we have seen that resonance phenom-

ena occur. We have found that the solution becomes very large and that the energy of the system
continues growing with time. For Ω close to the eigenfrequencies of the system, we performed a
stability analysis on the equilibrium points. We found that for our example values of the parameters
for Ω ∈ [

√
λn− 0.00585,

√
λn+ 0.00560] there is no stable equilibrium of our problem. This interval

can be calculated for all values of the parameters. Physically this means that the damping will not
extinguish the oscillations completely and the microbeam will not lose its applicability. We have
solved our problem numerically and have seen excellent agreement with our conclusions using the
method of multiple scales.

Next we made a start to the study of a damping of O(ε2). Here we found that on a 1
ε timescale

resonance phenomena always occur and that resonance due to the electric actuation can occur for
subharmonic, Ω = 1

2

√
λn, and superharmonic, Ω = 2

√
λn, frequencies. Furthermore, we found that

for a smaller damping the amplitude of the oscillations is larger and that the effect of the nonlinear
terms is slightly more important. This agrees with what Younis and Nayfeh found for clamped
boundary conditions [4].

For the derivation of our equation of motion we made some assumptions which lead to very good ap-
proximations of the solution in the cases we considered. In contrast to most of the previous research
[4], [5] we did not apply mode analysis, as this often neglects internal resonance. Furthermore, we
considered simply supported boundary conditions instead of clamped boundary conditions. As
there is some flexibility at the boundaries, neither of them is a perfect model. Using simply sup-
ported boundary conditions leads to nicer calculations to handle and the results differ very little.
This research can be used as a first step towards cases in which our approximations might not be
valid. For some MEMS, for instance, the length is about as large as the width. This would mean
that we cannot assume that the deflection is uniform in the y-direction. This would give an extra
dimension to the problem and result in an equation for a membrane. As can be seen from equation
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(53), the solution of a membrane would be very similar to the solution of a string such as the one
presented in this research. Additionally, even more physical quantities such as shear deformation
and rotary inertia could be taken into account. However, this will have very little effect on the
qualitative behaviour of the frequency response of the microbeam and is therefore not the aim of
this research.

For further research it might be interesting to use 4.4 as a starting point to study more exten-
sively the case if the damping is O(ε2). In this research we only considered resonance phenomena
for the superharmonic case that Ω is close to 2

√
λn. The subharmonic case that Ω is close to 1

2

√
λn

has not yet been studied. Furthermore, we have proven that for N = 100
√
λk +

√
λm 6=

√
λn

∀k,m, n ∈ N. We have also shown that for different N this is not the case and even more resonance
frequencies might be found. Additionally, the effect of the nonlinear terms for smaller damping can
be investigated more elaborately.
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Appendix

Theorem 1. −arc cos

(
−V0Nπreq

4A −
√
λNωNπreq

4V0A

)
is always a solution of (131).

Proof. The equation trivially satisfies the first equation of (131). For the second equation, consider

sin

(
−arc cos

(
−V0Nπreq

4A
−
√
λNωNπreq

4V0A

))
=

− sin

(
arc cos

(
−V0Nπreq

4A
−
√
λNωNπreq

4V0A

))
=

−

√√√√1−

(
−V0Nπreq

4A
−
√
λNωNπreq

4V0A

)2

=

−

√
16V 2

0 A
2 − V 4

0 N
2π2r2

eq − 2V 2
0 N

2π2r2
eqω
√
λN − λNω2N2π2r2

eq

16V 2
0 A

2
=

−1

4V0A

√
16V 2

0 A
2 −

(
V 4

0 + 2V 2
0 ω
√
λN + λnω2

)
N2π2r2

eq.

Using (134), we obtain

−Nπreq
4V0A

√
λNω2 + 2V0

√
λNω + V 4

0 +
1

4
c2λN − V 4

0 − 2V 2
0 ω
√
λN − λNω2 = −Nπreqc

√
λN

8V0A
,

which satisfies the second equation.

Theorem 2. Assume λ is as in eqaution (100) and N = 100.
√
λn 6=

√
λm +

√
λk ∀k,m, n ∈ N

Proof. Suppose
√
λn =

√
λm +

√
λk. If we square both sides, we obtain:

λn = λm + 2
√
λm
√
λk + λm.

Moving the term with the roots to one side and the other terms to the other and squaring them
again gives

4λmλn = λ2
n − 2λnλm − 2λnλk + λ2

m + 2λmλk + λ2
k.

Filling in (100) gives

10000n4π4 + 200n6π6 − 20000n2k2π4 − 200n2k4π6 − 20000n2m2π4 − 200n2m4π6 + n8π8

−200n4k2π6 − 2n4k4π8 − 200m2n4π6 − 2n4m4π8 + 100000k4π4 + 200k6π6 + 20000k2m2π4

+200k2m4π6 + k8π8 + 200k4m2π6 + 2k4m4π8 + 10000m4π4 + 200m6π6 +m8π8 =

40000k2m2π4 + 400k2m4π6 + 400k4m2π6 + 4k4m4π8.
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Since k,m, n are all natural numbers, for the terms before the same power of π the equality has
to hold. For π8 this means:

4k4m4 = n8 − 2n4k4 − 2n4m4 + k8 + 2k4m4 +m8 =
(
n4 − k4 −m4

)2
=⇒ n4 − k4 −m4 = ±2k2m2

=⇒ n4 = k4 ± 2k2m2 +m4 =
(
k2 ±m2

)2
=⇒ n2 = ±

(
k2 ±m2

)
.

Since n ≥ m > 0 and n ≥ k > 0 this has to mean

n2 = k2 +m2.

For π4 we have

4k2m2 = n4 − 2n2k2 − 2n2m2 + k4 + 2k2m2 +m4 =
(
n2 − k2 −m2

)2
=⇒ ±2km = n2 − k2 −m2 = 0

=⇒ k = 0 ∨m = 0,

which is impossible.
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