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Abstract

In this research a study of the response of a simply supported microbeam subject to an electric
actuation is presented. A perturbation method called the method of multiple scales is explained
and used to solve our problem. A model concerning the mid-plane stretching and an electric force
with a direct and alternating current component is formulated. The method of multiple scales is
used to construct a solution that is valid for a long time after the initial conditions. The effect
of the frequency of the alternating current was studied by performing a stability analysis. The
results show that for frequencies close to the eigenfrequency of the homogeneous problem, there is
no stable equilibrium and resonance occurs. Furthermore, a start was made to study the effect of
the damping coefficient. The results show that a smaller damping will always lead to resonance on
a very small time scale. The results also indicate larger oscillations and an small increase of the
importance of the non-linear terms for smaller damping. All results are validated by comparing
them with a numeric solution and show excellent agreement.
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1 Introduction

In the current society, technology becomes smaller and smaller every day. This leads to the need
for devices that can serve as sensors or switches at a very small scale: the order of micrometers or
nanometers. An example of such a device is a microbeam. One specific type of microbeams is a
microbeam which is actuated by electricity. These microbeams are called micro- or nanoelectrome-
chanical systems (MEMS/NEMS). MEMS can convert electrical current in mechanical motion and
the other way around due to the fact that MEMS are very sensitive to the external forces we apply.
Small changes in the surroundings can be detected and converted to a digital signal, making MEMS
very good sensors. MEMS can for instance be used as accellerometers and are used in car airbags,
the autopilot of an airplane and the Nintendo Wii [I], [2]. Among the many other applications
are pressure sensors, injekt printers and microphones in portable devices [3]. Due to a damping,
the oscillations of a microbeam fade out. If this happens, the microbeam will lose its applicabil-
ity. However, its sensitivity to external forces can for certain frequencies of the current result in
resonance, which prevents the fading out of the oscillations. When the electric actuation leads to
oscillations larger than the restoring mechanical forces can handle, the microbeam might collapse.
This is obviously undesirable. In order to be able to use MEMS, it is therefore important to have
an understanding of how they move.

The behaviour of MEMS is often described by fourth-order non-linear partial differential equa-
tions. It is therefore usually not possible to solve the equation governing the microbeam exactly.
Many research has been done on electrically actuated microbeams. Younis and Nayfeh studied
the effect of certain parameters on the nonlinearity of the problem with the use of the method of
multiple scales and for instance found that decreasing the damping coefficient increases the effect
of th non-linear terms [4]. More recently Younis studied the behaviour of a microbeam subject
to a direct voltage and two alternating voltages instead of only one [5]. This research may in the
future lead to the application of MEMS as communication devices. Sapmaz e.a. have researched
the application of carbon nantobues as nanoelctromechanical systems compared to silicon, which is
mostly used as a material for microbeams [6]. As microbeams are just very small beams, a lot of
the research by Boertjens and Van Horssen [7], [8], [9] on the resonance of weakly nonlinear beam
equations with the method of multiple scales can be applied. Moreover, we can use their work on
the validity of a solution constructed with perturbation methods.

In most of the previously mentioned works, a microbeam which was clamped at both sides was
considered. In this research we will investigate the motion of a microbeam that is simply supported
at both sides. Using supported boundary equations will simplify the solutions and we expect that
it will have little effect on the accuracy compared to realistic microbeams. Moreover, in realistic
MEMS, there is always a little flexibility so a clamped boundary condition is not perfect either
[4]. Additionally, many of these previous works used a mode analysis to describe the frequency
response. As this often neglects the internal resonance, we will not use this. Similar to Younis and
Nayfeh [4], we will use the method of multiple scales to solve our equations. We will investigate for
which frequencies of the electric actuation resonance will occur and how the microbeam behaves
close to these frequencies. We will also discuss the role of the damping coefficient as this parameter
is often unknown and can greatly influence the behaviour of the microbeam. The results will be
verified with the help of numerical solutions.



This research will begin with explaining the method of multiple scales on the basis of the text-
book of Holmes [I0]. Some information about the method is given and an example is calculated to
illustrate the method. Next in section [2.2] the Duffing equation will be treated. This is a single-
degree-of-freedom system with a cubic nonlinearity. Investigating this equation will greatly help
us to better understand the equation of our microbeam as they are quite similar. After that we
will derive the equation of motion of our microbeam in section First we make some assump-
tions about the beam to make the equation more pleasant in section |3.1} Then we will build up
our equation of motion considering mid-plane stretching and a electric actuation by both a direct
current and an alternating current in sections [3:2f3:6] Then we will simplify the equation before
we solve it, for instance by making it dimensionless in section Next, we will solve our equation
of motion using the method of multiple scales. We will hereby consider three cases, namely: a
forcing frequency away from all resonance frequency in section a forcing frequency equal to
the resonance frequency in section and a forcing frequency close to the resonance frequency in
section [£.3] We will compare the behaviour of the microbeam for each case. Lastly, in section [4.4]
we will make a start with the case that the damping coefficient is one order smaller and see if in
this case there are different frequencies which may lead to resonance.



2 Method of multiple scales

Most differential equations concerning real-life problems cannot be solved exactly. To construct
a solution, it is possible to use a computer to (very accurately) approximate the problem numer-
ically. However, the disadvantage of this is that this does not give much insight in the physical
meaning of the solution. This insight can be achieved by approximating the solution analytically.
Moreover, having both an analytical and a numerical solution helps checking the correctness of
the solution. One way to do this is using so called perturbation methods. The crucial step for
perturbation methods is to find a parameter in your problem which is very small compared to
the other parameters. Perturbation methods can be applied to many physical problems since they
are capable of handling non-linear, inhomogeneous and multidimensional problems. Besides giving
more physical insight into the solution, perturbation methods can be used to find more efficient
numerical algorithms as well. There are different perturbation methods with different applications,
which can be found in the textbook of Holmes [10]. For the analysis of our problem, we will make
use of a perturbation method called the method of multiple scales. The essence of this method is to
introduce different time scales, which are assumed independent of each other. This may lead to the
fact that what started as an ordinary differential equation, is transformed into a partial differential
equation. However, this will sometimes help solving the equation. In this chapter we will first
solve a textbook example with the method of multiple scales. Afterwards, we will investigate a
more complicated equation, namely the Duffing-equation, a much studied single-degree-of-freedom
system with a cubic nonlinearity, with the help of the method of multiple scales.

2.1 Example

Suppose we have the following problem for the function ¢(t), which appears in the study of Joseph-
son junctions [I0]:

¢" + € (1 + ycos(¢)) ¢ + sin(¢) = ae,
¢(0) =0, (1)
¢'(0) =0,
where v is a positive constant and € is considered to be a very small dimensionless parameter.
We will make an approximation of the solution of this problem valid up to a timescale of % using

the method of multiple scales. Firstly, we expand ¢(t) = €¢p1(t) + €2¢2(t) + .... Then cos(¢) =
1—1e2¢? + ... and sin(@) = ¢y + €2¢o + ... and equation (I)) becomes

edf +Edat (L (L= 5ha+ ) (0 + E6) + ) + edr + o = ca,
60(0) + €61(0) + .. = 0, o)
¢(0) + €, (0) + ... = 0.

This type of expansion was already widely used before the method of multiple scales appeared.
However, in the nineteenth century, Poincaré found that solving the equations of motion of planets
with a regular expansion lead to large errors after a few rotations already [I0]. To improve this
method, we introduce two time-scales t; = ¢ and to = et. Assuming that ¢(t) = edq(t1,t2) +
€2¢o(t1,t2) + ..., equation (2]) becomes:



1
(07 + 260,01, + €203)) (ed] + Eda+...) + € <1 +7 (1 — §€2¢2 + )) (O, +
€0,) (eqbl +2p + ) = eq, (3)
6(,251(0,0) + €2¢2(0, 0) +...=0,
(atl + e@tQ) (6¢1 + €2¢2 + ) ‘(070) =0,
where 0, = 8%. Since € is very small, the different timescales do not influence each other for a
long time. It is therefore a good approximation to assume that the two timescales are independent.
Equation therefore can be split into multiple equations. We would like to construct a solution
which holds up to time-scale of O(%) by solving ¢,. We will equate terms with the same power of
epsilon. The equation of order € is:.
O 1+ d1 =«
¢1 (Oa 0) = 07 (4)
0, 91(0,0) = 0.

This has as a solution:

¢1 = ax (tg) sin(tl) + bl(tg) COS(tl) + a, (5)
with

The equation of O(e?) is:

07 d2 + 204, 0,01 + (14 7) 0,01 + d2 = 0,
¢2(03 O) = 07 (7)
Or,#1(0,0) + 0, ¢2(0,0) = 0,

Substituting equation in eqatuion @ gives:

8,521 ¢2 + 2 = —2af cos(t1) + 20 sin(t1) — (1 4 ) (a1 cos(t1) — by sin(t1)) ,
¢2(07 O) = Oa (8)
Or, $2(0,0) = —b7(0).

The solution to equation is

b2 = as(tz) sin(ty) + ba(t2) cos(ty) — % (v +1)by +20))t1 — (v + 1) a1 — 2a7) cos(t)—

1
3 ((y+ 1) a1 + 2a}) tysin(ty).



We can sce that after a long time the terms ((y + 1)by 4 2b))t1 cos(t1) and 3((y + a1 +
2a} )ty sin(t1) become very large. These terms are called secular terms [I0]. When et & 1, e¢; and
€2, are about as large. This means that our assumption that the timescales are independent is not
accurate anymore. We can prevent these secular terms because we can still choose our a;(t1) and
b1(t1). This is the big advantage of this method over doing a regular expansion ¢ = ¢y + €2¢y + ...
without defining ¢; and t9, where we would not have this freedom. So we have

/o
{O+7wy+%1—a 10)
(1+7v)ar +2a; =0,

where our initial conditions are the initial conditions of the O(e)-equation (€. The solution to
this is

_ Gty
bl(t2) = —ae 2 ) (11)
ai (t2> =0.
So our first-term approximation is
b~ e (1 e cos(t)) . (12)

In figure 1| we plot equation and a numerical solution of by using Euler forward [I1].
We can see that the solutions are completely overlapping until one hundred seconds for € = 0.01.
So our solution constructed with the method of multiple scales is indeed a good one for ¢ < % This
fact can be proven [9].
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Figure 1: Solution of ¢ for e = 0.01 and o = v = 1. The orange dashed line is the solution obtained
with the method of multiple scales. The blue solid line is the solution obtained with Euler forward
with At = 0.01s.



In our example we used two timescales t; = t and to = et. It is also possible to use more
than two timescales such as t; = é ty =t, t3 = et and t4 = €2t to improve the solution. Another
possibility to improve the solution is by making a second-term approximation instead of a first-term
and solving ¢9 and adding it to the solution. This makes the solution more accurate for ¢ < % [10].
However, these methods do not make sure the solution is more accurate on a longer timescale. In
some problems it is useful to define ¢; = t and t = €*t [4]. With the use of matrix and vector
notation, the method of multiple scales can be extended to more dimensions [10].

2.2 Duffing oscillator

Another well-known and much studied example in which the method of multiple scales can be
applied is the Duffing oscillator. In this subsection we will first derive a general O(1)-solution
with the method of multiple scales. Then we will consider how this solutions looks for different
forcing frequencies. First, a forcing frequency away from the resonance frequency. Then, a forcing
frequency equal and close to the resonance frequency. The Duffing oscillator is the most trivial
non-linear generalization of the harmonic oscillator used to model damped and driven oscillators.
Its general equation is [12]:

x4+ 62’ + B + ax® = v cos(wt), (13)

with z(t) the displacement, § > 0 the damping coefficient, v a forcing parameter and restoring
force —Bx — aa3. Tt considers the the next term in the expansion of the potential compared to a
simple harmonic oscillator (« = 0). For 8 > 0, the Duffing oscillator is a forced oscillator on a
spring. When « > 0 this is called a hardening spring and when o < 0 this is called a softening
spring. When 5 < 0 the Duffing oscillator is a point mass in a double well potential. Without
the forcing term, the oscillations would slowly fade out due to the damping. Including the forcing
term will maintain the oscillations and the system will converge to an equilibrium oscillation that
depends strongly on the forcing frequency as we will show in this subsection. Let us consider a
weakly forced oscillator. We apply a perturbation method and we take all terms that are not in
the undamped and undriven simple harmonic oscillator small. We set a — e, v — €y and § — €0,
with € a small parameter and 3 = wg, with wy the natural frequency of the undamped and undriven
simple harmonic oscillator. Then equation becomes:

2" +wir = e (—02" — az® + v cos(wt)) . (14)

We let © = zg + ex1 + .... Equation then becomes

x4 ex + ..+ wj (vo + €x1 +...) = € (=0 (zf) + x| + ...) — azo + exy +..)> + ycos(wt)) . (15)

We introduce the timescales t; = t and ty = et. Equation then becomes:

(331 + 2€0, 01, + 62(9?2) (xo +€xy +...) + wg(zo +exy +...) =€(—0(0y, + €01,)(x0+

exy 4 ...) — a(zo + exy +...)3 + ycos(wty)). (16)

We then split the equation in a part of order 1 and a part of order e. The O(1)-problem is:

97 xo +wjzo = 0. (17)



This is the differential equation for a undamped and undriven simple harmonic oscillator. The
solution of equation is:

Trog = ao(tg) COS(thl) + bo(tg) Sin(thl). (18)
The O(e)-problem is:

204, 01,0 + 0F, 1 + wiz1 = —60y, 1o — axf — 7 cos(wty). (19)
Substituting equation in equation gives:

07 21 + wiz1 = —2 (—ajwo sin(wot1) + bhwo cos(wot1)) — §(—aowo sin(wot1 )+
bowo cos(wot1)) — a (af cos® (wot1) + 3ag cos®(wot1)bo sin(wot1) + 3ag cos(wot1 )b sin®(wot1)+  (20)
by sin® (wot1)) — 7 cos(wty).
1

Using the trigonometric identities cos®(z) = 2 cos(z) + § cos(3z), cos?(z)sin(z) = +sin(z) +

1 sin(3z), cos(z)sin®(z) = 1cos(z) — 1 cos(3z) and sin®(z) = 2sin(z) — 1 sin(3z), equation

can be rewritten as

3 3
8?1.%‘1 +wir) = (2a6w0 + dapwo — Zaagbo — a4bg) sin(wot1) + (—2bywo — dbowo—

3 3 1 3 1
Zabgao — a4ag> cos(wot1) + <—4aaf’) + 4aa0bg) cos(3wot1) + <4abg— (21)

iabw%) sin(3woty) — 7y cos(wty).

If in the non-homogeneous term on the right, the homogeneous solution sin(wgt) or cos(wty)
occurs, we will obtain secular terms. In order to prevent this, we need that the coefficients before
cos(wpty) and sin(wgty) are 0. We will research the role of the forcing term by considering different
frequencies w and investigate the behaviour of the solution. First, we will consider w not close to
the eigenfrequency of the homogeneous solution wy. Then we will consider w close or equal to wy.
In the last case we expect the oscillator to resonate due to the forcing.

To begin with, let w # wp, this means that the forcing frequency is not close the eigenfrequency of
the system. We therefore do not expect resonance. The prevention of secular terms implies:

{2a6w0 + dagwo — 3aadby — a3b3 =0, (22)

—2bjwy — dbpwy — %abgao - a%ag =0.
To solve this system of equations, we switch to polar coordinates:
ao(t2) = r(t2) cos(4(t2)), (23)

bo(t2) = r(t2) sin(e(t2)),

with 7(t2) a real positive function representing the amplitude and ¢(¢2) a real function repre-
senting the phase. Substituting these formulas in equation results in:



{2 (r' cos(¢) — rsin(¢)¢) wo + Or cos(¢)wy — Sard cos?(¢) sin(¢) — adr® sin®(¢) = 0, (24)

—2(r' sin(¢) + 7 cos(¢)¢') wo — 67 sin(¢)wy — Lar® sin®(¢) cos(¢) — adr® cos®(¢) = 0.

Multiplying the first equation with cos(¢) and subtracting the second equation multiplied with
sin(¢) and using trigonometric identities, results in:

2wor’ + drwg = 0. (25)
The general solution to equation is:

T‘(tg) = Cle_th. (26)

Multiplying the first equation of with sin(¢) and adding the second equation multiplied
with cos(¢), results in:

3
— 2wore’ — azr?’ =0. (27)
Which has as a general solution:
_ - —0ta
o(ta) = 8w06016 + co. (28)

Thus the solution to the Duffing-equation for w # wy is:

s 3a s 3a
zo = cre” 2% cos e% 4 ¢y ) cos(wot) + cre” 2% sin e % 4 ¢y ) sin(wot), (29
0=c1 <8w061 2 | cos(wot) + 1 AL 2 | sin(wot), (29)

where ¢; and ¢y depend on the initial conditions of the Duffing-oscillator. We can see that there
are no terms that are multiplied with ¢ so we can indeed conclude that the solution does not become
large and that no resonance will occur. The damping is even making the solution converging to
zero as can be seen by negative exponent with dt, where 6 > 0. This agrees with what we expected.

Next we consider a frequency w close to wg. We would like to investigate for which frequen-
cies the solution becomes very large. We use the following expansion: w = wgy + €2, where
Q is a detuning parameter which tells us how close to the resonance frequency we are. Then
cos(wty) = cos(woty) cos(Qt2) — sin(woty) sin(2) Then in order to prevent secular terms in (21)),
we need:
2agwo + dagwy — 4aa0b0 - a3b3 + ysin(Qty) = (30)
—2bjwy — Sbowo — 2abfag — adad — 'ycos(QtQ)

We will consider two cases. First we will look at pure resonance, so 2 = 0. Then we will consider
Q # 0 and see if we can find values of 2 for which the behaviour of the oscillator changes. For now

we set ) = 0, since this means pure resonance we expect our solution to become very large. For
Q = 0, equation becomes:



3 3 (31)

2afwo + dagwy — 3aadby — a3by =0,
—2bgwo — dbowo — 7ab0a0 —ajag—v=0.

since this equation cannot be solved exactly with the same method as above, we will look when
the system is at equilibrium and investigate what the solution looks like in a neighbourhood of the
equilibrium. We can then also check if the system has any stable equilibria. To find the equilibrium
points, we say aj, = 0 and b, = 0. Then we have:

3.2
0ag,eqwWo — F0ag5 obo.eq — g bO eq =0, (32)
—0bg eqwo — Sab2 . a —a3a3 =0
0,eq%0 4 0,eq 0,eq 4*0,eq -7 .
The only real solution of this is:
_ 3avR
A0,eq = _4(524,«.12-‘4-&&2]?2)’
© 16 (33)
b — Yéwo
0,eq — 62w2+ia2R2’

64~2 40965%0 6492 40965%0 ..
with R = \/9a2 S1a® T To683a0 W 577 T Toggage- Lo study the stability of
ap,eq and b 4, we use a local linearization around the equilibrium [I3]. We set u = ag — agq and
v = bo — b07eq. Then,

{u’:a() Qw [—8wo(u + ao,eq) + 3t + ag,q)? (v + bo,cq) + 20(v + bo,eg)?] | (34)

v = by = g [0wo (v + boeq) + F(0 4 o,eq)? (U + an,eq) + Fa(u+ ageq)® +9] -

Using equation and neglecting terms of order 2 and higher, equation in matrix notation
becomes:

|:U:|/ _ L |: 5‘*}0 + aaO eqb(] eq Zaao eq + Olbo .eq :| |:’LL:| (35)
v 2wo 4ab0 eq Zaa(Q) eq —0wp — gaao,eqb(),eq v|’
The eigenvalues of this matrix are
L ;3lal
A= R. 36
8&10 \[ ( )

since d > 0, the real part of the eigenvalues is negative, the equilibrium is therefore stable for all
values of the parameters [I3]. We apply Euler forward [IT] to equation (31)) to obtain a numerical
solution. This is plotted in figure [2|for &« = v = § = wg = 1. Equation ives for these values of
the parameters ag = —0.429 and by = —0.756, which agree with the values to which the numerical
solution converges. From the phase plot it also becomes clear that the equilibrium is indeed stable.
We can see that the amplitude, the absolute value of ag and by, initially grows, but that after a while
it decreases again. We can interpret this as first having a rapidly growing solution due to resonance
but after a while the damping coefficient will make sure that the deviation does not become too
large. The oscillations do not fade out completely as was the case for a forcing frequency not close
to the resonance frequency. This all nicely agrees with what we would expect.
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Figure 2: ag and by for pure resonance with @« = v = § = wg = 1 obtained by using Euler forward
with Ats = 0.0025s. On the left ag is plotted as a solid blue line and by as a dashed orange line
against time with initial conditions ag(0) = 0 and by(0) = 0. On the right is a phase plot of ag and
bo for different initial conditions.

When Q # 0, we will again perform a stability analysis. We will investigate if we can find
any equilibria and for which € these equilibria are stable. We use polar coordinates in ,
multiply the first equation with cos(¢) and subtracting the second equation multiplied with sin(¢)
and multiply the first equation with sin(¢) and adding the second equation multiplied with cos(¢)
to obtain:

2wor’ 4 drwo + 7 sin(Qta) cos(¢p) + v cos(z) sin(¢) = 0, (37)
—2worg’ — 2ar® + ysin(Qts) sin(¢) — v cos(Q2) cos(¢) = 0.
This is the same as:
2wor’ 4 drwo + ysin(Qts + @) =0, (38)
—2word’ — 2ar® — ycos(Qty + ¢) = 0.
We set 1) = ¢ + Qto, then equation becomes:
2wor’ + drwo + vsin(y) = 0, (39)
2wor (Y — Q) + 2ar® + v cos(¥) = 0.
To find the equilibria, set ' =1’ = 0. Then:
0T eqwo + vsin(theq) = 0, (40)
—2WoTeqSY + %argq + v cos(¢heq) = 0.

We bring the sine and cosine to the other side, square the equation and add them to obtain a
equation for req:
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Figure 3: @ against € for « =y = = wg = 1 and the line Q = 0. On the left for Q from -2 to 2
and on the right the part closest to zero enlarged.

9
Ea%g‘q = BawoQry, + wp (6% +4Q%) r2, —* = 0. (41)

If Q = 4( 196:23 (62-302%))3 +27(2;16:§ Q02 +3502%) - 1960722 )2 > 0, there is one real positive solution
for r¢q, namely:

160.)()9
e = S 77 42
r q + 9a ( )
with § = {/52 — 258052 4 502) 4 VT + {525 — 28052 + 302) - VT and T = 25 —
2w3 wG wG .
208 L0 ()62 4 $02) + W 252 4 402)2 4 900 (52— 402)3. Q s plotted for @ =y = § =

wo = 1 against Q in figure 8] We can see that for our values of the parameters we always have
one real solution. For a different choice of parameters, ) could be smaller than zero. Then our
equation has three real solutions for r., which can be positive.

The possible values of 1., are

Yeq,1 = arcsin (—%req) + 2k, k € Z,
wE’q,Q =T = ¢eq’2 + 2k7r, ke Z7

2 eq$) 3041‘2
eg,3 = arccos (% - 47(,) + 2km, k € Z,

weq,ﬁl = _weq,?) + 2km, k € Z.

For 1)¢q to be an equilibrium of ([40)), it needs to satisfy one of ¢¢q,1 and theq 2 and one of theq 3 and
eq,4. The four values are plotted against €2 in figure E| for the example values or our parameters.
Here we can see that 1).q4 is always and equilibrium. 4,1 is an equilibrium for {2 > 0.375 and
eq,2 is an equilibrium for 0 < 0.375. The fact that 1)cq,4 is always an equilibrium can be proven
and is similar to the proof in the appendix for the case in section [4.3

(43)




12

5 PR
4 o
2 -
3 .
—— \
2 - 1 ]
= B
Ay o
1 . D
— —— _
0
-1
_]_ -'
-2
; _...-"'
_3 ................... e _3
-20 -15 -10 -05 00 05 10 15 20 -20 -15 -10 -05 00 05 10 15 20
i Q

(a) (b)

Figure 4: The 1, against 2 for a =1, vy =1, § = 1 and wg = 1. The solid blue line is 94,1, the
dashed orange line is 14 2 on the left and 27 — 1).4 2 on the right, the dash-dot green line is t¢q 3
and the dotted red line is ¥eq,4.

As above we linearize around the equilibria to determine the stability. Set u = r — r¢y and
v =1 — 1)eq, Write in matrix notation, use and neglect terms of higher order to obtain:

N R

' | T 2w, JarZ, — 2wl —ysin(veq)| |v

The eigenvalues of this matrix are:

) 1
A= —5(1 +req) £ %\/5%18(1 —Teq)? + (9var2, — 2wo) cos(eq)- (45)

If the term under the square root is negative, the solution is stable since § > 0 and req > 0. The
only case when we have a A > 0 and the solution is unstable, is when:

(970%rZ, — 2wof2) cos(teq) > 4wi6 req. (46)

As an example, we set ¥ = wy = a = § = 1, and solve the eigenvalues numerically. In figure [f]
the largest eigenvalue of the matrix is plotted for different 2. We see that we always have a stable
equilibrium for our choice of parameters.

In figure[6] r and 1 are plotted against time for two different Q by using the fourth order Runge-
Kutta method (RK4 method) [I1] on equation (39). For € = 2, the solution should converges to
Teqg = 0.245 and teq = —0.248 + k27, for k € Z. This agrees with figure |§| for k =1. For Q = —1,
the solution should converge to 7., = 0.424 and ., = 3.58 4 k27 This agrees with with figure |§|
for k = —1.
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Figure 5: The largest eigenvalue plotted against 2 for « = v = § = wg = 1 with a horizontal line
at A = 0. If Q becomes small or large, the solution becomes complex.
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Figure 6: r and ¢ against t5 fora =y =8 =wp = 1, 7(0) = 1 and 4(0) = 0 obtained by using RK4
method with At = 0.0025s. The solid blue line is 2 = —1 and the dashed orange line is Q = 2.

In figure [7] r is plotted against ¢. We can see that depending on the initial condition, the
solution converges to the stable equilibria. Based on the figure we would expect extra unstable
equilibria, for instance between the blue and purple line in the right figure.

If we go back to our original coordinates r and ¢, we obtain figure [§] Here we can see that
we have no equilibrium point. ag and by do not become large since r does converge, but they do
keep oscillating since ¢ does not converge. As with the case 2 = 0, we can interpret this as first
having a rapidly growing oscillations which is then stopped by the damping but does not fade out
completely. We can see that r., for {2 = 0 is larger than r., for 2 = —1, which again larger that
Teq for £ = 2. So we can conclude that the closer we are to the resonance frequency the larger the
oscillations remain, which is what we would expect.
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Figure 7: r against ¢ for different initial conditions. « =y = = wy = 1. On the left 2 = —1, on
the right Q = 2.
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Figure 8: r against ¢ for different initial conditions, with o = v = § = wy = 1. For the top row
Q0 = —1 and for the bottom row Q = 2.
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3 Problem formulation

In this section we will derive the equation of motion of the deflection of a simply supported mi-
crobeam as sketched in figure [0} First we will make some assumptions about the beam in section
B3] Then in sections [3.2}3.6] we will formulate the equation of motion by starting with the equation
of motion of a string and then step by step adding dimensions, internal forces and external forces.
In section we will simplify the obtained equation so that we can solve it in the next chapter.

3.1 Assumptions

Consider a microbeam with a length [ in the x-direction, width b in the y-direction and thickness
h in the z-direction. It is simply supported at * = 0 and x = [. A stationary electrode, com-
pletely overlapping the area of the microbeam is placed at a distance d in the z-direction. This
electrode actuates the beam with a direct current (DC)-component V,, and an alternating current
(AC)-component v(t). The beam is subject to a viscous damping per unit length ¢. Due to this
actuation the beam will deflect. We let w(x,t) denote the transverse deflection of the plate in the
negative z-direction. We introduce the following symbols: p the density of the beam, F the beams
Young’s modulus, I its moment of inertia, v the Poisson ratio, T' the tension in the beam and e,
the relative dielectric constant of the medium between the beam and the electrode. For certain
frequencies of the AC-component, the beam may resonate. In order to use the microbeam we need
to know how it moves.

e I
| =
¢ h
Ve VAR i
f
I
wr) s

Stationary Electrode

Figure 9: A schematic drawing of a simply supported microbeam [4].

We make a few assumptions about our microbeam. First, we assume that it is uniform along
the width. Second, we assume that its length is much bigger than its width. These two assumptions
results in the assumption that the deflection of the beam is uniform in the y-direction. Additionally,
we assume the width is much bigger than the height, so that we can assume our beam is thin.
Furthermore, we assume the height is much bigger than the deflection. This makes sure that the
field lines of the electric field are perpendicular to the microbeam. This is a valid assumption since
the beam collapses if the deflection becomes as large as the height. Since the microbeam is small,
we assume its weight is small, this makes sure that we can neglect gravity. We also neglect the
influence of transverse shear deformation and rotary inertia, this is called Euler-Bernoulli theory
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[14]. Because the beam is thin, we can neglect the stress in the z-direction. Moreover, we can
assume that the middle plane of the plate does not undergo in-plane deformation. We therefore
say that we can approximate the movement of the three dimensional plate as a two dimensional
plate by looking at the middle of the plate. This extension of Euler-Bernoulli theory, is called the
Kirchoff approximation [15]. With these approximations we can assume that the deflection in the
x-direction and y-direction is small.

3.2 One-dimensional string

In the following sections we will derive the equation of motion by building it up step by step. We
would like to obtain the same equation as Younis and Nayfeh started with for their microbeam
[4]. First, we will consider the beam as a one-dimensional string stretched in the x-direction in
this section. Second, we will add the y dimension and consider a plate in section [3.3] Third, in
section [3.4] we will consider a thin beam and apply Euler-Bernoulli theory. After that we will add
the external forces in section and lastly in section we add the horizontal displacement with
the help of the Kirchoff approximation. We begin with considering an infinitesimally thin segment
of the string between z and x + Az as in figure [I0]

T(z + Az,t)
6(z + Az, t)

T(z,t)

T T+ Az

Figure 10: A schematic drawing of the stretching of a small segment of a string [16].

We assume the string has density p and denote the cross-section by A = bh. We use Newton’s
second law:
~ 0%z
F=m 92
We assume that the string is flexible and offers no resistance to bending. This means that we can
say that the only force is the tension at the endpoints in the direction tangent to the string denoted
by T. To obtain the different components of the tension, we have to know the angle 6 between
the x-axis and the string. Letting w denote the vertical displacement, the vertical component of
Newton’s law becomes:

(47)
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9w

ot?
where we let f(x,t) denote external force per unit length. since we assumed the deflection is

small, the angle is small as well. So we can neglect the horizontal component of Newton’s law.
Dividing both sides of equation by Az and letting Az — 0, we get:

pAAzL = Tsin(f(x + Az, t)) — Tsin(0(x,t)) + Az f(z,t), (48)

0w o .
For small angles
Jw
in(0) ~ tan(0) = —
sin(f) =~ tan(0) e (50)
so equation (49) becomes:
0%w 0%w

3.3 Plate

Now we have our equation of motion for a one-dimensional string. In this section we will extend
the problem to two dimensions. We add the y-direction and we obtain a plate. Newton’s second
law still holds, but now becomes:

0w

ow ow ow ow
T [Ayax(x + Az, y) — Ay%(ﬂa y) + Afcafy(fm y+Ay) — Mafy(x, y)| + (52)

AxAyf(z,y,t),

where f now denotes the force per unit area. Dividing both sides by AxzAy, and letting Az — 0
and Ay — 0, we get:

phazw_ (82111 9w

= +
ot? 0x2  0Oy?
This is our equation of motion for a plate. We see that this is very similar to our one dimensional
equation.

) =TV?*w+ f(z,y,1). (53)

3.4 Thin beam

In this section we add a third dimension: the thickness. We will now have to include the internal
forces we earlier neglected. We consider a plate as in figure |'1;f| with stress components 0y, 0gy =
Oyzs Ozz, Oy, and oyy. The stress in the direct z-direction o, is assumed 0 because the plate was
assumed thin.
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| dr |

Figure 11: A schematic drawing of a plate with its internal forces [14].

We can define force and moment components per unit length:

h
M, = [2, 0zp2dz,
2

h
M, = ffi, oyy2dz,
My = ff@ Ogy2dz = My, (54)

2

h
Qz = f_zh szdz7

02
Qy = ffg Tyzdz.

We note that if M, acts on one side of the plate, M, + AM, = M, + 8(,]9‘;[”” Az acts on the other
side. Newton’s law in the z-direction then becomes:

2
phAxAy%T;U = (Qm + %Aw) Ay + (Qy + aé%’Ay) Az — Q Ay — QyAz + fAzAy, (55)

where f is the intensity of the external distributed load. Again dividing by AxzAy and letting
Ax — 0 and Ay — 0, we get:

Pw  0Q, 0Q,
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Figure 12: A schematic drawing of the displacement of a small segment of the plate [14].

For the equilibrium around the x-axis, we have:

0Qy

<Qy + 8yAy> AxAy = (My + oM,

dy

OMy,
or

Ay) Ax + (sz + Am) Ay — MyAz—
(57)
Ax
My Ay — foAy7.
We divide by AzAy and let Az — 0 and Ay — 0. We can therefore neglect the terms involving
a product of Az and Ay and obtain:

_OM, = OMy,

Similarly:
_ OM,  OM,,
Q.= T + e, (59)

Let us consider a small element of our plate such as in figure[I2] and look at the point K. Because
transverse shear deformation is neglected, we can assume that the lines P’R’, A’B’ and Q’S’ and
the lines C’E’; A’K’ and D’F’ remain straight.

If the displacement of K parallel to the x-axis is given by u and parallel to the y-axis by v, then:

ow
u=-—2z5-,
{ _ = (60)
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The linear strain-displacements are:

d 9?2
€xy = 871; = _Zamg);
_ Ov __ 9w
oy =0y = “FoEe (61)
_ Ou ov _ 0w
€ry = 5y T ox = 2Z8x[‘)y'

Assuming the plate is in a state of plane stress, its relation with strain is:

E vE
Ozz = 7_,2€zx + T2 €yy>»
_ _FE vE
ayy - 1—p2 6yy + 1—v2 69:1;3 (62)

Oy = Gegy,

With E Young’s Modulus, G the shear Modulus and v the Poisson ratio. If we substitute
in and then in , we get:

_ ER® 92w 92w
M, = — 12(1—v?) \ 0z2 +v oy2 )
_ Eh3 9w %w
My = — a0y (57 T V2 (63)

2 )

ER® _ 9%w
May = Myz = —(1 = V) 550157 5705
Substituting this in and results in:
Qp = — ER® 8 [d*w [
T 12(1—v2) 9z \ 0z2 oy2 ) (64)
Q, = — ER® 8 (0*w fokd
Y T 12(1—v?) 9y \ 922 Oy>
Substituting these equation in , gives:
Eh3 *w 0w 0*w 0*w
2 — h— = , Y, 1). 65
12(1—7) (ax4 o0 T ay4> + g = f@ ) (65)
Multiplying both sides with b gives:
ET 0*w 0w 0w 0%w
1—12 (8334 * Ox20y2 * 8y4) + o2 bf(@,y,1), (66)

where I = %bh?’ is the moment of inertia. Because we assumed that the deflection in the
y-direction is small, we can ignore the derivatives to y to obtain:

EI 0*w n A82w
1—12 9zt P ot2?

=bf(z,t). (67)

3.5 External forces

Now that we have our equation of motion for a thin beam with Euler-Bernoulli theory, we will
add the external forces. Because we assumed the mass of the microbeam is small, we can neglect
gravity. If we would like to take into account gravity, this can be done by incorporating it in our
oscillation w(z, t) by using a substitution [9]. For now the only relevant external force is the electric
actuation. To calculate the contribution of the force due to the electrode, we use the energy of a
capacitor [17]:
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1

W = 5cv2, (68)
where C' is the capacitance given by [17]:
AE()
C=—, 69
: (69)

where ¢g is the dielectric constant in vacuum and d is the distance between the plates. In our
case the voltage is composed of both a static component V, and a dynamic component v(t). So the
energy of the capacitor is in our case:
Aeg

W= ﬁ(v b +o(t)?. (70)

So the force due to the electrode is:
- Aeg
F:—VW-*(V +o(t)*2 (71)
2(d —w)?
where an extra minus sign occurs because the direction of w and of z are opposite. If we are
not in vacuum but in a medium with relative dielectric constant €,, this force becomes:

s coer , (Vp+o()?
F= A— 72
2 T d—w? © (72)
Adding this to gives:
EI 0*w 0w eoer (Vp +v(t))?
=b—r2 73
171/28x4+p ot? 2 (d—w)? (73)
Adding a damping with damping coefficient per length ¢ gives:
EI d*w 0w ow eoer (V, +0(t))?
b =b—t P 74
1—v2 0zt te ot? Jr6815 2 (d—w)? (74)

3.6 Horizontal displacement

Equation is our equation of motion for our thin beam with its relevant external forces. Finally

we add the horizontal displacement of the beam. We will do this by largely following the method

described in the book of Kauderer [I5]. We look at the (x,z)-plane of our beam. Let P be a point

in space with coordinates (z,z) and @ be the point at (z + Az, z + Az). Suppose P moves to P’

with u(z,t) the x-component and w(z,t) the z-component of the displacement vector. Then using

a Taylor expansion of the displacement vector from Q to @Q’, we get:
uQ :UP'F(%)PA.%-F (du) Az + h.o.t., (75)
wg = wp + (‘3—”) Ax + ( )pAz—i—h.o.t.

Then the distance between P’ and Q' is:
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Al = [(z + Az 4 uQ) — (z +up)® + [(2 + Az + wq) — (2 + wp)]* =

5 9 (76)
(T4 Apz) Az + (1 4+ A2) Az +2X,,AzAx + h.o.t.,
where:
Moo =258+ (52)° + (29)°,
w U 2 w
s =252+ (32) +(32)% (77)
u ou du ow dw
New = o+ FE+ FEGE + G2 G
If @ has coordinates (z + Az, z) then
Al/Z
We denote the strain in the x-direction as
Al du 1 (dw\”
€x0 = hmoﬁ_l_ 1+/\wx—1~8x+2(ax> 5 (79)
where we used a first order Taylor-expansion. The total strain now is:
_ Ou ow 0w
z - 80
“= bz *3 (3x ) — 0x? (80)

Using Hooke’s law:

2
2
Upot = E//edydz— “EA g (?U)] + El(g 2) , (81)

where [ A 22dydz = ﬁ = [ and the cross term is zero because we integrate over a symmetrical
object, so [, zdydz = 0. The total strain work in the beam is then:

1 Hou ow 1 L 92w\ 2
U= 584 [agﬁ ((%) d:z:+§EI/0 (w) da. (82)

The kinetic energy of the beam without inertia is:

By = ;pA/Ol [(Z‘)Q + (%;”)2] da. (83)

Using equation and the Hamiltonian becomes:

/t1 /EA (Zw> 2+EI(?;2> —pA (?Z):(%Z’) ]dxdt. (84)

Using the Hamiltonian principle that the variation of H is 0, we obtain:
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pALy — MMI[@Jr (22)?] =0,

ox ox

a [ow |ou w2
pAGHE + EIG — EAI[(T o + 3 (37) HZO

X

(85)

Using the Kirchhoff approximation, we can say that the X—component of the Velomty is small
and therefore the acceleration as well, from the first equation of (| we obtain:

& |ou 1 (0w’

—~ =2 Z= =0. 86

8xl8x+2<6x>] (86)

Looking at equation it follows that €;¢ cannot be a function of x anymore, but only of .
Thus integrating e, o from 0 to [ with respect to z gives:

ex,o(t)%/ol [g;% (g:) ]dw-}[u(l,t) w(0,1) + /(g‘;’) dm]. (87)

Substituting this in the second equation of gives:

u(lyt) — u(0,8) + = /(g;v)zdx] ‘227‘2”. (88)

The term ETA [u(l,t) —u(0,t)] is equal to the tension T' we had in equation for a string. The

total equation of motion now is:
EA L ow
_ — | dze+T
21— 172 /U <8x> *

This is is the same equation as in the paper of Younis and Nayfeh [4]. What is different, however,
are the boundary conditions. Younis and Nayfeh considerd a clamped beam, but we will consider a
simply supported beam. These boundary conditions will make the calculations in the next chapter
easier while it will not have much effect on the outcome. Furthermore, having completely clamped
boundary conditions is not perfectly realistic either, since the boundary can often move a little bit
[4]. We therefore have the following boundary conditions:

O%w o*w FA
PAGE TG =

0w +1 e b(Ver”U(t))Z

922 d—w)?

EI 84w+ A62w+A87w7
1202 P T T

(89)

(Ot)—O
(

t) =
40,
“u(,

O
=0.

P#
~

~
=

3.7 Simplification

In this subsection we will simplify the equation derived in the previous sections by reducing the
amount of parameters, making them dimensionless and see which of them are small. This will make
it easier to solve our problem in the next section. To start, we make the parameters dimensionless.

We let w* = %, 2* = Z and t* = £, with 7 = 4/ W. Equation then becomes:
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tw* 0*w* ow* O?w* (V, +v(t))?
= MNw*,w*)+ N 4 91
gt T ppr T~ (T F N G e e o1
et (1—0? —? €0€Er v
ith o = B0 0, (0 N = P o, Saso) (s g) = 1 2L e

These parameters are dimensionless except for aq. Thls is because o is multlphed with the voltage,
which will be a important control parameter and is therefore mentioned explicitly. Equation is
a nondimensional partial differential equation with both linear and non-linear terms and external
excitation terms. The boundary conditions in the dimensionless parameters are:

w*(0,t) =0

w*(1.t) =
3211)* (0 t ) 07

Ox*2

Ow (1,t*) = 0.

(92)

Typical sizes of our parameters are [4],[5],[6],[17]: p = 10°kg/m3, b = 107™°m, h = 10~ m,
Il =107*m, v> ~ 0, E = 10"?Pa, d = 10-°m, T = 102N, ¢y = 10711C?/Nm?, ¢, ~ 1 and
V, = 10°V. ¢ is often unknown, we hope that it is small, so that our beam does not stop oscillating
too fast. In section we will investigate the role of the size of ¢, for now we take ¢ = 10~*kg/ms.
Then I = 1072*m? and 7 = 107 %. So ¢ = 1072, @; = 10*, N = 10% and as = 1072V 2. since w
is small compared to d, we can say that w* ~ 0.01. This is the same order as agv;? and c. We let
w* = ewq + 2ws + ... and set ongp2 = €V02 and ¢ = ec*, with V5 and ¢* in the order of 10°. v(t) is
small compared to V,,. We can therefore say v(t) = eAsin(2t*), where A and  are the amplitude
and frequency of the applied voltage. We make a Taylor-expansion of ﬁ around w = 0:

1

_ 2 3
Then we can reformulate (91)) as:
84101 +e (9 Wo + te (927.1)1 + 2327112 T + 2 *811)1 n 3 *8102 n
€ € ..+ e€c €’c .=
Ox*4 ox* ot*2 ot*2 ot* ot*
0?2 8? 0?
a1 (GQF(wl, wl) + 253F(w1, ’LU2) + ) (6 a;f; + €2 81-1522 + ) + 6N8T1521+ (94)

3w2

2N
<N o

5 o+ (Vo + eAsin(t” N? (14 2ewr + 26%ws + 3€%wi +...)

To have a well-formulated problem we need initial conditions. As investigating the influence of
the initial conditions is not part of this research, we consider a beam that is initially at rest. So:

(95)

{ew1 (*,0) + wa(z*,0) + ... = 0,

e%’tﬂj (2*,0) + €2 63:’3 (z*, O) =0.



25

4 Solution to the problem

In this section we will solve the problem formulated in the previous section with the method of
multiple scales. We would like to investigate which values of the frequency of the voltage Q) will lead
to resonance. We will therefore consider different cases for different values of Q. First we will derive
a general expression for the O(¢)- and O(e?)-problem and the energy of the beam. We will formulate
a solvability condition which we will then solve for different values of € in the next sections. In
section we consider 2 not close to the resonance frequency, in section we consider 2 equal
to the resonance frequency and in section [£.3] we consider 2 close to the resonance frequency. After
this we will make a beginning with the consideration of ¢ one order smaller in [£.4] and see how the
solutions changes and if we can find a different resonance frequency compared to the larger c. We
start with equations , and . For convenience, we drop the stars and obtain:

8411)1 28411}2 32101 28211)2 2 8w1 3 8’[1}2 2
“out T€ 5 Tz T€ a2 +e CW+€ wr + ... = ay (€T (wy,wr)+
0? 0? 0w 0w
2¢°T (wy, w2) + ...) (e 8;1;1 e 8;]22 + .. >+ eN o 21 N 92 AR
e(Vo + eAsin())? (1 + 2wy + 2% ws + 3€%wi + ...)
ewl(l, )Jre wQ(O t) =0,
41(0,t) +e2f’3;1;2 (O,t) + .. =0,
eaa;‘gl( t)+ 28“’2(1,15)+...:0,
ew (x,0) + 2wy (x,0) + ... = 0,
666“21 (7,0) + €2 8“’2 (2,0) +...=0.

‘We introduce the two timescales ty = t and t; = €t, to obtain:

684w1+ 8w2+ -+ ﬁ-ﬁ- - +ea—2 (ew + w ) +ec 6
Dt D+ a2 " oteot; | o2 ! 2 ot
Gi (ew + Ewy + ) =« (EQF(w w )—|—263F(w wa) + ) 6@4-
at, 1 2+ .. 1 1, W1 1, W2) + ... Ee)
2 2
62 88;'022 + ...) € aa::} 68 (‘/0 + EA Sln(Qto))Z (1 4 26101 + 2€2w2+

362’(1)% + ) s (97)
ews (0,t0,t1) + w2 (0, tg,t1) + ... = 0,
61111(1 to,t1)+€2w2(1,t1,t0>+ .=0,
ef’a;’l (0,t0,t1) + € 3;;;2 (0,0, t1) + ..
2L (1, tg, t) + 2292 (1, to,t1)+
ews (,0,0) + 2w (z,0,0) + ... = 0,

(6%0 + eg) (ew1 + 2wy + ) |(z,0,0) = 0.

We note that we do not have an O(1) problem and that the O(e) problem does not depend on
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t1. The electric actuation appears from O(e?). We will assume that terms with different powers of
€ are independent and first consider the O(e)-problem:
8411)1 + 8;;%1 — Nag;lél + ‘/02’
2
’LU1(0 to,tl) :w1(1 toﬂfl) = 8%2 (O to,tl) zu;l (].,t(),tl) :0, (98)
w(z,0,0) = 52 (x,0,0) = 0.

We use separation of variables on the homogeneous problem to obtain:

{d4¢($) _ Nd2¢(35) _ )\qj)( ),

dx*

$(0) = 6(1) = £2(0) = £2(0) = 0. (99)

The solution to this is:

T, a

To solve the time-dependent part of w; in , we use the method of eigenfunction expansion
[16] and assume that the solution is of the form:

:c to,tl Zan to,tl gf)n ) (101)

Filling in our initial conditions, multiplying both sides with ¢,, and integrating over x from 0
to 1, we obtain:

A (102)
D42 (0,0) = 0.

We substitute in (101]) in and use to obtain:

o0

62
> [A an + }%( )=V (103)
n=1

Again multiplying both sides with ¢,, and integrating over z from 0 to 1, results in the following
differential equation for a,,(tg,t1):

d%an fol Vi onda 4:7?2, n is odd,
AnGp, + 2 = 1o = . (104)
0 Jo d2da 0, n is even.
The solution to this is:
7
an(to, t1) = ano(t1) sin(v/Anto) + bno(t1) cos(v/ Anto) + ]]-{n is odd}- (105)

Initial conditions (102)) give:
{a”’O(O) =0 (106)

2
bn,O(O) = _% {n is odd}-
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The O(e?)-problem is:

Fuwa 9 0wy | Oup 4 (Qun . NOup 4 920, 4 2V Asin(Qo),

Ox? OtoOty ot2 Aty 02
w2(0 to,t1) = ’LUQ(l to,tl) 8 wQ (0 tl,tQ) 8 w2 (1 to,tl) = 0 (107)
wa(x,0,0) =0,

822(0,0) + 524(0,0) = 0.

We can see that the homogeneous problem for ws is the same as for wi. Therefore we use a
similar expansion as before and assume ws is of the form:

o0

(z,t0,t1) Z (to,t1) sin(nmx). (108)

Filling in equation (101)) and (105) in (107]), the inhomogeneous term is:

0w, aw1
2509t Tto + 2VZw + 2Vp Asin(Qty) = Z {—2\/ ntn o €08(v/ Anto)+
24/ Anb), o sin( (Vo) — ey/A anocos VAnto) + v/ Anbnosin(v/ Anto)+
(109)
2% Gn,0 SlIl \/ to + 2VO n,0 COS \/ to ]]-{n is 0dd}:| ¢n( ) + 2%14 Sin(QtO) =
Z By (to, t1)n(2) + 2Vo Asin(Qty).
Similar to equation (104) we obtain a differential equation for b, (t1,t2):
0%b,, 8Vo Asin(Qo)
Anbp + S = B (to, 8) + S 02SMBRO g 110
+ (’%3 ( 0 1)+ ni {n is odd} ( )

The homogeneous solution to this differential equation is:

by (to, t1) = @1 (t1) sin(y/Anto) + bn.1(t1) cos(v/Anto). (111)

For a good first term approximation, we do not need to solve b, (to,t1). Rather, we need the
condition that it does not lead to secular terms. In order to prevent these secular terms, we need
that the inhomogeneous term does not contain the homogeneous solution. In the next subsections
we will see what this condition implies for different 2. To see if resonance occurs, it is interesting
to look at the energy of the microbeam as well. If there is no resonance, we expect the energy to
stay finite. For resonance we expect that the energy of the microbeam will continue growing. To

calculate the energy, we multiply equation with %’2’ and rewrite it, to obtain:
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g 1 aﬂ 2+1 82711) 2+1N aﬂ ’ + 8710 2+
ot at 2 \ 922 2" \ oz “\ ot
ow o (1 (ow\? o (Owdw  Pw Pw
“1/0 (ax) da a<2 (am) >+8x<8t8x36t8x8x2) (112)
Lrow\? o (0w dw ,0 1
<a1/0 ((%> dr+ V) o (atax>—a2(Vp+v(t)) =0

To obtain a ordinary derivative with respect to ¢, we integrate this equation from 0 to 1 over x
and use our boundary conditions to obtain:

2
d Y /ow\? 1 [/02w\® 1 ow\ > 042Vp2 a1 L ow\
it /02<8t> +2(ax2> +2N<ax> Tioe® Ty /0 (agc) do ) )+

Lrow\? ! N0 1
C/O (6‘15) dw—ag/o (2va(t)+v(t))§17wdx—0.

(113)

Then our energy is:

ov

1 t 2 v
B =C+ [ —aa @)+ o0?) 2o+ [ ¢(Gr) + 20000+ o) {2 dar. (119

since our beam is initially at rest we let C' = 0. Moreover, because w is small, we can approximate
ﬁ by 1+ w. Using this and equation (101)), equation (114]) becomes:

n odd

E(t) = —as (2V,u(t) + <1+ 3 2““)

2 (115)
da" v 2a.,
n odd
where
d;ltn = eal, o(t1) sin(v/ Anto) + eby,. o(t1) cos(v/ Anto) + v/ Anan o(t1) cos(v/Anto)— 116)

\/Ebn,o(tl) Sin(\/xto).

4.1 Not resonance frequency

As with the Duffing equation we separate three cases of our forcing frequency. In this section we
consider the the case that 2 is not close to any of the eigenfrequencies of the first order solution.
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In section we consider 2 equal to the eigenfrequency and in section we consider 2 close to
the eigenfrequency. So we begin with €2 not close to any of the eigenfrequencies of the first order
solution. For this case we do not expect any resonance. Due to the static component of the current,
we do not expect that the solution fades out completely but converges to an equilibrium deflection.
Furthermore we expect the energy of the microbeam to stay small. In this case we can only have
secular terms due to B, (to,?1) and in order to prevent these, we need:

=2v/Anay 0 = eV Anano + 2Vibn,o = 0, (117)
2\/ )\nb%’o + Cbny()\/ >\n + 2‘/02071,0 = 0,
with initial conditions (L06]). In matrix notation this is:
al _c VO2
{b;w] = 2 {‘;"0] : (118)
n,0 ——x —£ 1,0
’ Van 2
The eigenvalues of this matrix are:
Vi Vi
€40 c ;0 (119)

= —— 4 i—, - __ _
H1 5 Zm H2 D) Z\/E

vt = m vy = m . (120)

and the eigenvectors are

So the solution to (117)) is

an.o c Vi g 1 S T
n, = e_itl cie Van .| 4+ coe VAn .
bn70 7 1

Taking the real part of (121]) and using initial conditions (106|) we obtain:

—~

121)

(t1) = — 2% e~ 54 sin (t, ) Ly
Gp,0\l1) = AR € s A {n is odd}»
5 2 (122)
bno(t) = — Yo =51 cos |ty ) Tyn;
n,0\l1 A, Vot {n is odd}-

In figure[I3] we plot the solution of w;. We limit ourselves to the first 10 components of wy. Since
all terms are divided by A, and A, grows with n to the fourth power, this is a valid approximation.
For large timescales, a0 and b, o become close to zero because the oscillations fade away due to
the damping in the problem. The solution then converges to the static solution. This agrees with
our expectation.

We fill in in to obtain the energy of the microbeam for this case. We use Euler
forward [I1] to obtain figure We can see that the growth of the energy indeed stops. The energy
does not become zero as the bending due to the static current remain. This is again in agreement
with what we would expect.
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Figure 13: The sum of the first ten components of w; against 7 at t = Os, TS S and orik

forc=1, N =100, V, =1V, e =0.01 and A = 1. € is not close to v/\, for any n.
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Figure 14: Energy against time if  is not close to any of the /A, for ¢ =1, N = 100, V; = 1V,
e = 0.01 and A = 1 obtained by using Euler forward with At = 0.06s
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4.2 Exactly resonance frequency

In this subsection we will consider 2 equal to one of the eigenfrequencies of the homogeneous
solution: we take 2 = /Ay, for N fixed, then the frequency of the alternating current is equal
to a eigenfrequency of the solution. Since the even components of the solution are zero, if N is
even, nothing changes compared to the solution in the previous subsection. If N is odd, we expect
resonance to occur and predict that our oscillations and our energy become very large. We choose
N = 1. Then in order to prevent secular terms we need to solve the following system for n = 1:

—2v/A1d] g — ev/Arai0 + 2Vih1o = 0,
2\/A10 o + chi oV + 2Var o + $A% = 0.

For n # 1, we have the same solution as (122)). The solution for n = 11is a1,0(t1) = a1,0,5(t1) +
a1,0,p(t1) and b1 o(t1) = b1,0,n(t1) + b1,0,p(t1). Where a19,(t1) and by o,5(t1) are given by a, o and
bno in (122)). Using the method of variation of parameters [13], a10,,(t1) and b1,0,(¢1) are found
to be:

(123)

4AVy
_ A [2 -t % 4y A/ 173
a,0,p(t1) = T ) T aEas T et Teos( i)
< 124
1AV3 ( )
VSR N S\ /R VO () 7y 71 2,— St Vit
biop(t1) = Y R N wid sin (= ) + Ze cos (957 ) | -
ceA1

In both a1,0, and by, there is a term without a negative exponent with the damping coef-
ficient. So both terms will not vanish at large times. In figure [15] we plot the solution of w; for
this case. We can see that the solution indeed becomes much larger compared to figure [I3] which
is what we would expect from resonance.

If we substitute these an o and by o in (115) and use Euler forward to compute the energy, we
obtain figure Here we can see that the energy indeed continues growing with time as we would
expect from resonance. If the energy of the beam becomes more than it can handle, the beam will
collapse.
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Figure 16: Energy against time if Q = /A1, c=1, N =100, V) =1V, ¢ = 0.01 and A = 1 obtained
by using Euler forward with At = 0.012s.
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4.3 Close to resonance frequency

Lastly we consider the case that the excitation frequency €1 is close to the resonance frequency
of the microbeam. We let Q = /Ay + ew, with N fixed, where w is a tuning parameter. The
smaller w is, the closer we are to the resonance frequency. We will not just calculate the solution
of the movement of the mircobeam, but rather we will study the behaviour of the beam by looking
at equilibira and their stability. We will investigate what happens for different values of w and
if there are w for which the stability of the equilibria changes. We expect that for smaller w the
oscillations of the beam become larger. For N # n we have the same equations as section [£:1]
If N is odd, nothing changes compared to section Using trigonometric identities, sin(Qty) =
sin(v/Anto) cos(wty) + cos(v/Anto) sin(wty) we need the following equation to prevent secular terms
forn = N:

(125)

=2V Andly o — eV Anan o + 2Vibn o + BRA (N is oday sin(wty) =0,
2V AND;, o+ cbnoVAN + 2Vian o + SxoﬂA LN is odd} cos(wty) = 0.

We introduce polar coordinates an o(t1) = rn(t1) cos(¢n (t1)) and by o(t1) = ra(t1) sin(on (1)),
with rx(t1) a real-valued positive function representing the amplitude and ¢,,(¢1) a real-valued
function representing the phase. Then (125 transforms into:

—24/ AN (7y cos(dn) — TN sin(dn )Py ) — e/ AnTN cos(dn) + 2VErn sin(py )+

8VpA .
NOF 14N is odd} Sin(wt1) = 0, (126)
2/ AN (T sin(@n) + 7y cos(dn )y ) + e/ AnTy sin(én ) + 2VEry cos(dn )+
8od ; cos(wty) =0
N N is odd} 1) =0.
Initial conditions (106) give
0 0)=0
N ( )c?s(ng( )) =0, s (127)
7N (0)sin(on(0)) = — NTAN ]I{N is odd} -

If N is even, ry(t1) = 0 is a solution. So ano(t1) = 0 and b, o(f1) = 0 and we have as
a solution, just as we expected. If N is odd, the first equation gives rx(0) = 0V cos(¢n(0)) = 0,
but the former would make the first equation 0 as well. So cos(¢n(0)) = 0. This means ¢ (0) =
5 + kn,k € Z. This means sin(¢n(0)) = 1V sin(¢n(0)) = —1, but the former would mean that
rn(0) is negative which is impossible. From now on, we assume N is odd. The initial conditions
are:

{’"N(O) = Nrix (128)
on(0) = —3.

To obtain a differential equation for ry and ¢ we use similar calculations as in chapter @
Multiplying the first equation of with sin(¢n) and adding the second equation multiplied
with cos(¢n) and using trigonometric identities gives a differential equation for ¢x. Multiplying
the first equation with — cos(¢n) and adding the second equation multiplied with sin(¢y) and
using trigonometric identities gives a differential equation for ry.
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2V ANy + 2VETN + B4 cos(py — wty) =0, (129)
2/ ANT + eV ANTN + SV“A sin(¢n — wtp) = 0.

We introduce ¥y = ¢ — wtq, then (129)) transforms into:
2V ANTN (W +w) + 2VErN + SVOA cos(¢n) =0, (130)
2/ ANTN + eV ANTN + 8V° Sln(wN) =0.

In equilibrium the derivatives with respect to time are zero and eqaution (130]) results in:
2/ ANTN. eqw + 2VErNeq + SVO cos(Pn eq) =0,

VOA (131)

VANTN,eq + sin(¢, eq) =0.

Bringing the sine and cosine to the other side, squaring the equations and adding them gives:

AAyw? + 8VZV/A AV + AN ) 1 o = 64V’ A” (132
Nw* + 8V Nw+4Vy + AN TN,eq_W' )
This has a solution if:
AAnw? + 8VZVAnw + 4V + P An > 0. (133)
This holds for all w € R. The solution of (132) is:
8o A
I'Neq = 0 : (134)
Ny [AAnw? + 8V Ayw + 4Vi + Ay
The possible values for ¢y ¢, are
YN eq,1 = arcsin (7761\7”@”‘") +2km, k€ Z,
¢N,eq,2 =T — wN,eq,l + 2kﬂ', ke Z7 (135)
YN eq,3 = Arccos (_VUAXVTW _ \/ﬁc‘j;\lf:req) + 2km, k € Z,
¢Neq, ¢Neq3+2k77kez

For 9 ¢q to be an equilibrium of , it needs to satisfy one of ¥y cq,1 and ¥y eq,2 and one
of YN ,eq,3 and PN eqa. The four values are plotted against w in figure [17] for our example values.
Here we can see that 1)1 ¢q,4 is always an equilibrium. ¥y 4,1 is an equilibrium for w < —0.07 and
YN ,eq,2 1s an equilibrium for w > —0.07. The fact that ¥ cq,4 is always an equilibrium is proven in
the appendix.

To determine the stability we will linearize locally around the equilibrium [I3]. We introduce
UN = TN — TN,eq ad Un = YN — YN eq, Write (130)) in matrix notation and use (131) similarly to
section [2] to obtain:

Uy —3 - Nirv\o/f\lN co8(VN,eq) | [uy
= ) . + hodt. (136)
TNV Cw— Y 4VoA v
NUN w = Nehe SIn(Yn eq) N
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Figure 17: The 1 ¢4 against w for N = 100, A = 1, ¢ = 1 and V = 1V. The solid blue line is
Y1,eq,1, the dashed orange line is 11 ¢q,2 on the left and 2m — 1)y 4,2 on the right, the dash-dot green
line is 91 ¢q,3 and the dotted red line is 11 ¢q,4-

N w1 wo

1 -0.585 | 0.524

3 | -0.566 | 0.550

) -0.562 | 0.555
> 71 -0.560 | 0.557

Table 1: The bifurcation points of the two eigenvalues for different N.

The eigenvalues of this matrix are:

WoAd ¢ 1 [fc  4VA o [16wVpA  16VEA
=v- = 1 3\ s =" e eq). (137
I Navay A 2\/<2 Ny q)) T\ Nrviw T Naay ) S(nea)- (137)

Considering the sizes of the parameters, the term Ni% — 5 is smaller than 0. So when the

eigenvalue is complex, the equilibrium is stable. We solve this numerically to determine for which
w the solution changes. In figure [18|the eigenvalues are plotted against w. The solution is unstable
for w; < w < wq, where wy and ws are given by table wy and wq are called bifurcation points
[13]. In figure [19 we plot how the position and stability of the equilibrium changes with w.



36

0.05 + ﬂ 0.04
0.00 — ~
— ~— 0.02
-0.05 _— ~—~——
— T~ 0.00
= =
< 0104 =
-0.02 A
—0.15
—0.04
—0.20 1
T T T T T T T T T T T T T T T T T T
100 -75 -50 -25 00 25 50 75 100 -100 -075 —050 -025 000 025 050 075 100
w W
(a) (b)

Figure 18: The first 5 odd largest eigenvalues of the matrix for N =100, A =1,c¢=1and V5 = 1V.
In subfigure (a) for w from -10 to 10 and in subfigure (b) for w from -1 to 1.
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Figure 19: 71 ¢4 against 91 ¢ for N =100, A=1, c =1 and Vj = 1V for w from -10 to 10. The
dashed red line means the equilibrium is unstable, the solid green line means the equilibrium is
stable.
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Figure 20: The first 5 odd r, and %,, against time for N = 100, A =1, ¢ =1 and Vj = 1V. Left
for w = —10, in the middle for w = 0 and right for w = 10. The values are determined using the
RK4 method with At = 0.012s.

We will compare our obtained results to numeric results. We can obtain the solutions for ry
and ¥ by applying the fourth order method of Runge-Kutta (RK4-method) [11] to equation .
We then obtain figure We compare them to the equilibria from and . For w = —10
and N = 1, the equilibrium should be equal to (0.0039, —0.050 + k27, k € Z). This is in excellent
agreement with the left plot of figure 20| for k¥ = 0. For w = 10 and N = 1, the equilibrium should
be equal to (0.0039,3.19 + k27, k € Z)). This is in excellent agreement with the right plot of figure
for K = —1. For w = 0 the equilibrium should be unstable. In figure 21| we plot the phase plots
of r and ¢ and the phase plots of our original coordinates r and ¢. We can see that the oscillations
converge to an oscillation with constant amplitude due to a balance between the electric actuation
and the damping. In figure 22 we plot how our solution w; looks like for N = 1. We can see that
if w = 0, we have the same solution as in subsection [£:2] which is what we would expect. We can
also observe that if w is smaller and we are closer to the resonance frequency, that then w; becomes
larger. This is in agreement with what we expected.



Figure 21: The first 5 odd r,, against v,, and r,, against ¢,, for N =100, A=1,c¢=1and V5 = 1V.
Left for w = —10, in the middle for w = 0 and right for w = 10. The values are determined using
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4.4 Smaller damping

In this section we will make a first step towards researching the effect of the damping coefficient by
studying the same problem formulated in section by equation , but now with the damping an
order smaller. Since the damping is unknown, but we hope that it is small so that our oscillations
do not fade away too fast, it is interesting to consider this case. To study the effect of the damping
we will have to consider the O(e®)-problem as well. We assume that © is not close to any v/A,, and
see if we can find a different resonance. In contrast to sections we will not separate three
types of frequency but only a frequency close to our new resonance frequency. Our new equation
of motion is:

aleSF(wl,wl)% + Nﬁau;l + 2Naa 22 +e3N8;;1;3 + o+
(Vo + eAsin(Qt))? (14 2ew; + 26wy + 36*wT + ...)
w1(0,t) + 2w2(0,t) + w3(0,¢) + ... = 0, (138)
ew1(1 t) + 2w2(0,t) + 3w3(0,t) + ... = 0,
w1 (0, 1) + €22752(0,1) + 3243(0, 1) +
eaa;”l( £) + 22 (1,1) + ST 8 (1,1)
ewy (z,0) + wo(x,0) + Sws(z,0) + ... = 0,
668“21 (2,0) + €2 8“’2 (z,0) + € 6“’3 (z, 0) = 0.

As before, we will use the method of mulitple scales. Introducing tq =t and t; = €t, gives:

684101 +6284w2 +€384w3 iy R Lo 621111 e 3 w1 iy 5 02 wg+
Ot Ozt ozt ot? 8t08t1 at2 at2
2 2 2
Ow (Vo + eAsin(Qg))? (1 + 2ewr + 22wy + 3€%wi + ...)
ew: (0, to,tl) +e w2(0 to,tl) + Sws(0,t0,t1) + ... = 0, (139)
ew1(1 to,t1) + €2wo (0, to, t1) + 3ws (0, tg, t1) + ... = 0,
2w axz 1(0,t0,t1) +6288;;2 (0,t0,t1) +e538;'§3 (0, to, )
€L (1,40, t1) + 2512 (1,40, 1) + L8 (1, 80, 1) +
ew; (z,0,0) + e2wa(x,0,0) + ws(x,0,0) + ... = 0,
€98 (2,0,0) + €2521(x,0,0) + €2 G42 (2,0 0) +e3dw2 (x,0,0) + €3 %23 (2,0,0) + ... = 0.

Our O(e)-problem is the same as before in equation (98). For O(e?) the only difference compared
to equation (107)) is that ¢ = 0. We substitute this in (122)) and obtain:

4vg \7 1
Gn,0 (tl) oW sin \/Tntl {n is odd}»

(140)

4vZ2 V2
bno(t1) = — 55 cos 7t1) Linis oddy -
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We would like to solve ws as well, so we have to compute the initial conditions:

we(x,0,0) =0,
&2 (2,0,0) = — G (x,0,0) = 0.

To construct our differential equation for by, (o, t1), we use (109) and (117) to obtain:

Anbn +

0%, < 8V 8VhAsin(Qty)

- 1 n is odd}-
12 ) { }

nwA, nmw

Which has as a solution:

bn(to, tl) = an,l(tl) Sil’l(\/ )\ntO) -+ bn,l(tl) COS(\/ )\ntO)_
8V0(A/\$L Sin(Qto) — VOS (QQ — /\n))
]]-{n is odd}-
A2 (Q2 — \,)

The initial conditions give:
an71(0) = 0,
4
bn,l(o) = _71.8,:;\)% 15 is odd-
O(e?)-problem is:
841113 821111 821112 32w3 8w1 82101 82103

4T ——— 4+ N— 422
gt T o P lanan T ar o - lene) e H N+ Vet

3VEw} + 4Vy Aw, sin(Qto) + A% sin®(Qty).

(141)

(142)

(143)

(144)

(145)

The homogeneous equation is the same as before. Using equations (108]) and (143)), the inho-

mogeneous part of equation ((145)) is:

_82w1 B 0%ws —c%—&—a Ty, w )82101
o2 Totgot, oty VN T a2

A%sin®(Qtg) = Z [—a’ylo sin(v/Anto) — b, o cos(v/ Anto) — 2a;, 1/ An cos(v/Anto)

n=1

20, 1V An sin(yv/ Anto) — v/ Anan o cos(v/ Anto) + ¢/ Anbn o sin(y/ Anto)—

a7 T (wy, wy)an, + 2V02an)1 sin(v/Anto) + 2VEbn.1 cos(v/ Anto)—

16V (AN2 sin(Qtg) — VE(Q2 — A\, . .
o Wn)\(Q ((‘;2 — )\0)( ) 1{nisoda} + 4VoAsin(Qtg)an o sin(v/Anto)+
16AV

4Vy Asin(Qg)by, o cos(v/ Anto) + "y
TAn

A? sin?(Qtg) = Z Cy(to, t1) sin(nmz) + 3Viw? + A% sin®(Qty).

n=1

+ 2V wsy + 3VEw? + 4Vh Aw, sin(Qtg)+

sin(Qto) 1 {nisodd} | sin(nmz) + 3VEw?+

(146)
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Because we have the same homogeneous equation, we let ws = Y| ¢, (to, t1) sin(nmwz). Then
we have the following differential equation for ¢, (t1,t2):

¢, 4A? sin?(Qty)
S = Calto.ty) + 2 )
24V kmn

nt —2n2(m? + k2) + (m? — k)2

AnCn + ]]-{n odd} —

(147)

ai(to, t1)am(to, t1)-
n+k+m odd

If N =100 it is proven in the appendix that Vk,m,n € N:
VAL VA #F VA (148)

This means that a sine or cosine with a frequency equal to the sum of eigenfrequencies will not
lead to secular terms. If for instance N = 272 72 & 96, then /A4 + VA1 = v/ Xg. In this case there
will be a lot more secular terms we will not conslder now. At the moment, we assume N = 100 and
therefore:

kmn

nt —2n2(m? + k2) + (m? — k?)?2

ar(to, t1)am(to, t1) =
n+k+m odd

n? 4V2
2 Z " (@n,0sin(v/ Anto) + by o cos(v/ Anto)) + N.S.T.,

4mn? mm )\,
m odd

(149)

where N.S.T. stands for terms that do not produce secular terms. The function I' may give rise
to secular terms as well. Filling in w;, we obtain:

L(wy, w) Za,ﬁ 2 (150)

SO:

1 32V
F(whwl)an: (2 [ bn0+4 n0+73\2 {nisodd}:| Zm m |:am0+

1 16Vt .
ib%%o + ﬁﬂ{m s Odd}]> (b0 cos(v/ Anto) + anosin(+/Apto)) + N.S.T.

(151)

Now to see if there are any {2 besides the y/\,, which may lead to resonance, we rewrite the

terms in (146 which contain €.

AV Asin(Qto)an,0 sin(vAnto) = 2V Aan o(cos((Q — vAn)to) — cos((2+ vAn)to)), (152)
AV Asin(Qt )by o cos(v/ Apto) = 2VoAby, o(sin((Q — v/ A )to) + sin((Q + vAn)to)).
4A%sin" Q) _ 247 | cos(202to))- o

nm nm



42

Equation gives extra secular terms when Q = 0, a direct current instead of an alter-
nating current, or if Q = 2v/A,, a superharmonic resonance frequency. Equation gives
extra secular terms when ) = %m, a subharmonic resonance frequency. We choose 2 =
2/ ANy + ew for N fixed, with w a detuning parameter to describe the behaviour near 2v/Ay.
Then cos((2 — VAn)to) = cos(v/Anto) cos(wtr) — sin(v/Anto) sin(wty) and sin((Q — VAn)to) =
sin(v/Anto) cos(wty) + cos(v/Anto) sin(wty). To prevent secular terms from occurring in the inho-
mogeneous term of we need:

20V + 2V & S1 = S5 con (R +ot) Luowy =0,

(154)
_2%’1\/74_ 2V b + 82 = TG sin (% + wtl) Lin—ny =0,
with
4V6 V2t1 4cV2 V2 t V6 V2t1
S=—mmrn (Y ; ’ 7201 -1 i (20
1 nﬂ)\% Sin <\/E> ”77\/7 F + (651 )\% sin \/E +
v o’ 16 - (Vih
T f dd
™n mgc:)dd < A * mm2 A\, (m3 — 4mn?2) St ) or n odd,
S o cos (‘/02751) + AV si <V02t1) L7 Vinm cos <V02t1> N (155)
T in o ‘
2 nwA2 Vn nmvAn Vo 1 X v
48nVP g2 16 v
f dd
mn mggdd ( A - ma2 )\, (m3 — dmn?2) Cos ) or n o

and initial conditions (|144)). This equation can be solved. To see for which w the solution is
unstable, we consider n = N and investigate the numerators in the solution that depend on w.
When these become 0, the solution will become large. The numerators depending on w are

VEAY i (VAnw +2V3) (205 VE + \w)

2V2 4 Anw, (156)
2

vemn (40 FV2w AV + Me?),

2
or constant multiples of this. These are zero when w = % . The homogeneous solutions

f db SVo_sin(Y2) and — 2o cos(YLl). Wi that S; and Sy al

of ap,; and b, ; are —MAQ sm(m) an MAQ cos(\//\f). e can see that S; and Sy always
contain these secular terms and the solution i 15 therefore always unstable. This does not have to
be a problem since this solution holds on a ; timescale for which a;,; and b; ; are still small. If

Vet
w = \/)\J then COS(\/— + wty) and sin(-2 \/7 + wty) are a multiple of the homogeneous solution as

well. The solution of a ;1 and by, is plotted in figure We can see that for w = — \2/‘)% @1,1 grows

faster than for w = 1, which is what we would expect.
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Figure 23: a;; and by 1 against ¢; for N =100, A =1, c =1 and V) = 1V obtained using the RK4

method for At; = 0.00012s. Left for w = — \/V% and right for w = 1.

In figure [24] the amplitude of the oscillation r is plotted against Q for ¢ of O(e) as in sections
and for ¢ of O(€?) as in this section. We can see that for smaller ¢ the amplitude of the
oscillation becomes larger than for larger ¢ as we would expect because the damping limits the
oscillations. We can furthermore observe that the peak in the amplitude is much narrower for
smaller ¢. This is because the effect of the damping grows with the velocity of the oscillation and
therefore especially limits the fast oscillations near resonance. According to Younis and Nayfeh [4],
the nonlinear terms should become more important when the damping decreases. We can indeed
see that there is an small increase in the effect of the nonlinear terms for the smaller c.

25 50 275 300 325 350 375 400 425
0

Figure 24: r against Q for a = 200, N = 100, VZ = 45 and A = € = 1. The red solid line and the
left axis correspond to ¢ = O(¢). The blue dashed line and the right axis correspond to ¢ = O(e?).
The solution for O(€?) is obtained with the RK4-method with At = 0.012s.
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5 Conclusions

In this research we considered the response of a simply supported microbeam subject to an applied
axial load, accounting for mid-plane stretching, actuated by an electric actuation. We neglected
shear deformation and rotary inertia. In order to solve our equation of motion we used the method
of multiple scales. We have studied this method extensively. With this method we have constructed
a solution to motion of the microbeam which is valid up to times O(%), where € is a small dimen-
sionless parameter.

During the research we have looked at the behavior of the microbeam for different frequencies of the
alternating current of the electric actuation: not close to the eigenfrequencies of the system, exactly
the same as one of the eigenfrequencies of the system and close to one of the eigenfrequencies of the
system. We determined the eigenfrequencies of the system up to order € as v/A,, = vV Nn2n2 + nird,
where N is a parameter depending on the bending stiffness, length, Poisson ratio and tension of
the beam.

First we looked at a damping of O(e). For the frequency of the alternating current Q far away
from the v/, we found that due to the damping our solution remained small. We considered the
energy of the system as well and have seen that the energy converged to a maximum value which
was due to the static current. For Q equal to one of the v/),, we have seen that resonance phenom-
ena occur. We have found that the solution becomes very large and that the energy of the system
continues growing with time. For ) close to the eigenfrequencies of the system, we performed a
stability analysis on the equilibrium points. We found that for our example values of the parameters
for © € [v/A, —0.00585, v/\,, +0.00560] there is no stable equilibrium of our problem. This interval
can be calculated for all values of the parameters. Physically this means that the damping will not
extinguish the oscillations completely and the microbeam will not lose its applicability. We have
solved our problem numerically and have seen excellent agreement with our conclusions using the
method of multiple scales.

Next we made a start to the study of a damping of O(e?). Here we found that on a 1 timescale
resonance phenomena always occur and that resonance due to the electric actuation can occur for
subharmonic, Q = 1/X,,, and superharmonic, Q = 2\/A,,, frequencies. Furthermore, we found that
for a smaller damping the amplitude of the oscillations is larger and that the effect of the nonlinear
terms is slightly more important. This agrees with what Younis and Nayfeh found for clamped

boundary conditions [4].

For the derivation of our equation of motion we made some assumptions which lead to very good ap-
proximations of the solution in the cases we considered. In contrast to most of the previous research
[4], [5] we did not apply mode analysis, as this often neglects internal resonance. Furthermore, we
considered simply supported boundary conditions instead of clamped boundary conditions. As
there is some flexibility at the boundaries, neither of them is a perfect model. Using simply sup-
ported boundary conditions leads to nicer calculations to handle and the results differ very little.
This research can be used as a first step towards cases in which our approximations might not be
valid. For some MEMS, for instance, the length is about as large as the width. This would mean
that we cannot assume that the deflection is uniform in the y-direction. This would give an extra
dimension to the problem and result in an equation for a membrane. As can be seen from equation
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7 the solution of a membrane would be very similar to the solution of a string such as the one
presented in this research. Additionally, even more physical quantities such as shear deformation
and rotary inertia could be taken into account. However, this will have very little effect on the
qualitative behaviour of the frequency response of the microbeam and is therefore not the aim of
this research.

For further research it might be interesting to use [£.4] as a starting point to study more exten-
sively the case if the damping is O(e?). In this research we only considered resonance phenomena
for the superharmonic case that € is close to 2/A,,. The subharmonic case that €2 is close to 3v/A,
has not yet been studied. Furthermore, we have proven that for N = 100 v/ Ax + vVAm # Vs
Vk,m,n € N. We have also shown that for different N this is not the case and even more resonance
frequencies might be found. Additionally, the effect of the nonlinear terms for smaller damping can
be investigated more elaborately.
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Appendix

Vo N A/ ANWNTTe . .
Theorem 1. —arccos ( o — VOO q) is always a solution of (131]).

VA

Proof. The equation trivially satisfies the first equation of ([131)). For the second equation, consider

—VoN7r, V/ANWNTT,
sin (—arccos( 0¥ Meq N ﬂrq>>:

1A 4V, A
— sin arc cos _VON,]TTeq — ANWNTFTeq =
4A AV A

4A 4VHA

2
1 (—VoNﬂ'req \/)\NwNﬂ'req> B

16VZA2 — Vi N272r2, — 2VEN272r2 wy/ Ay — Ayw?N2712r2,
B 16V A2

-1

Using ((134)), we obtain

Nnr, 1 NTrege/ AN
MV Ave? + 2V A+ Vit + Ay — Vit = V3w Ay — Ayw? = — =T
which satisfies the second equation. O

Theorem 2. Assume X is as in eqaution (100) and N = 100. VA, £ VA + VAx VE,m,n € N
Proof. Suppose VA, = vV Am + V. If we square both sides, we obtain:

An = A+ 2 Am VA + A

Moving the term with the roots to one side and the other terms to the other and squaring them
again gives

Amdn = A2 = 20,0 — 20, 6 + A2+ 20,0, + AL
Filling in (100) gives

10000n*7* + 200n°78 — 20000n2k%7* — 200n2k* 78 — 20000n2m27* — 20002 mAnC® + n®7®
—200n* k275 — 2ntE*7® — 200m3nt70 — 2ntmA7® + 100000k 7* + 200k57° + 20000k%m?7?
+200k>m* 7% + k878 + 200k*m? 78 4 2k*m*7® 4+ 10000mAn* + 200mS76 + mix® =
40000k%m2 7 + 400k>m*7® + 400k*m? 78 + 4k*m*=8.
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Since k, m,n are all natural numbers, for the terms before the same power of 7 the equality has
to hold. For 7® this means:

4k*m?* = n® — 2kt — 2ntmt + K2+ 2k 't + m8 = (n4 — k- m4)2
= nt* —k* —m* = £22m?
= nt=k'+22m%2+m*= (k2 + m2)2

= n? ::I:(kQ:I:mQ).
Since n > m > 0 and n > k > 0 this has to mean
n? = k% 4+ m2.
For n* we have

4k°m? = n* — 2n2k% — 2n°m? + k* + 2K2m2 + mt = (n2 Sy - m2)2

= +2%km=n>—-k-m?=0

— k=0Vm=0,

which is impossible. O
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