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1
Paper

This chapter presents the main contribution of this thesis. The paper introduces a fully compliant pendu-
lum balancer with a spherical range of motion, a novel concept not previously addressed in the available
literature. Additonally, the paper introduces the TetraFEM tool, a computationally efficient algorithm de-
velopped for calculating and optimizing deflections of a compliant spherical joint. Both the performance
of the prototype and the accuracy of the algorithm were tested, yielding satisfactory results.
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A Fully Compliant Pendulum Balancer with a
Spherical Range of Motion

Riley Barendse, Giuseppe Radaelli

Abstract—This paper introduces a fully compliant spherical
joint with an optimized stiffness profile specifically for balancing
a pendulum. The design builds on previous work that has
successfully created a fully compliant spherical joint using
tetrahedron-shaped elements connected in series. To efficiently
compute and optimize the balancing behaviour of these compliant
joints, a novel algorithm is developed and presented. Using
this algorithm, optimizations are conducted to obtain simulated
pendulum balancers under five different conditions. The per-
formances of these results are analysed to assess the potential
and limitations of the algorithm and these spherical joints.
Based on one of the optimized results, a prototype is fabricated
and expermentally validated, achieving a moment reduction of
90.5%. The deformation calculated by the TetraFEM tool closely
matches the prototype’s deformation with an accuracy of 89.6%,
demonstrating its potential for application in the development of
shoulder exoskeletons.

I. INTRODUCTION

A pendulum is a device with a mass and a pivot point
which is inherently unstable in the upright position due to
gravitational forces. A compensating mechanism is required
to prevent the mass from falling to the lower stable position.
Such gravity compensation mechanisms can be classified
based on energy utilization as active gravity compensation and
passive gravity compensation [1]. An active gravity compen-
sator requires a set of actuators and expends energy while
balancing. The shoulder muscles used to keep a human arm
in upright position exemplify an active way of compensating
the gravitational forces of a pendulum (i.e. a human arm).

Passive gravity balancers do not expend energy while bal-
ancing a pendulum and most of them traditionally use counter-
weights, like in bascule bridges or cranes. A drawback of this
method is a significant increase in the mass, inertia and volume
of the system. An alternative method to balance pendulums,
which does not suffer the aforementioned drawbacks, is the
utilization of springs [2]. Linear springs have found usage as
a passive gravity compensator for devices like desk lamps [3],
robotic arms [4, 5] and exoskeletons [6, 7]. Although both
linear springs and counterweights can effectively counteract
the gravitational forces of a pendulum, they do not address
friction forces within rigid linked systems. Overcoming this
friction is still necessary before any movement in such systems
can occur.

Compliant mechanisms on the other hand can move without
friction as their motion is gained from the deflection of elastic
members [8] rather than sliding or rolling contact. Other
advantages of compliant mechanisms include less weight,
less assembly parts and no backlash or wear [9]. Although
compliant mechanisms experience no friction, they usually

do have a non-zero stiffness which is often undesired. The
deflection of the elastic members requires energy to gain
motion and a continuous force on the compliant joint is
required to remain in a certain deflected configuration.

A pendulum has potential energy and the gravitational
forces acting on it are continuous. Some compliant joints can
be designed such that the strain energy stored in the elastic
members equals the potential energy of a pendulum, making
the combined mechanism statically balanced. This is an
elegant and energy efficient way to balance a pendulum over
its rotational (1 dimensional) or spherical (2 dimensional)
range of motion (ROM). Compliant joints with a spherical
ROM and a remote center of rotation, meaning it rotates
around a point which is not located within the physical joint,
can have several practical applications, such as in the field of
exoskeletons. Such a (passive) compliant pendulum balancer
could be used as the functional component of an external
shoulder joint, in case the wearer’s shoulder muscles lack the
strength for (active) gravity compensation.

Quite some research has already been done on pendulum
balancers using compliant joints. Several have succeeded in
developing a pendulum balancing joint which is fully compli-
ant, meaning without the use of any rigid joints. Radaelli et al.
optimized the shape of a single beam with constant thickness
and both ends clamped such that it could successfully balance
a mass over an almost circular arc [10]. Radaelli et al. also
optimized the shape of a compliant shell mechanism such that
it could balance its self-weight with an additional payload over
one degree of freedom (DOF) [11]. Rijff et al. designed and
optimized a pendulum balancing four-bar mechanism where he
replaced the rigid joints with torsional springs [12]. Rommers
et al. presented a design of a passive origami-like mechanism
which could balance a pendulum [13]. Abouheidari et al.
did research on the optimization and syntheses of a gravity-
balancing torque-angle profile using a compliant helicoidal
shell mechanism [14]. Although these mechanisms were fully
compliant and could successfully balance a pendulum, the
ROM was limited to a single rotational DOF.

Nobaveh et al. presented a passive wrist support using two
optimized compliant spatial beams which significantly reduces
the muscle force required for flexion and extension of the
wrist, while remaining reletively compliant in supination and
pronation direction [15]. This mechanism balances the weight
of the hand, is fully compliant and has 2 DOF. However, the
ROM is quite limited and is a pitch-roll motion instead of
spherical.



Few have researched the possibilities of a compliant pendu-
lum balancer with a spherical ROM. Tschiersky et al. explored
the use of mechanisms that employ a flexible element which
connects the supported arm to an attachment at the back,
such that the necessary moment to lift the arm is significantly
reduced [16]. Van der Kemp et al. designed a compact arm
support using a compliant shell mechanism to reduce fatigue
in the arms of surgeons during laparoscopic surgery [17].
Although both of these pendulum balancers have a spherical
range of motion (ROM), they still rely on a rigid revolute joint
for the medial/lateral rotation of the shoulder. Additionally, the
compact arm support requires a linear guide and only balances
a small portion of the arm’s weight. The flexible elements from
Tschiersky also protrude significantly from the body, making
it aesthetically unappealing.

In their literature study on fully compliant remote center of
motion mechanisms, Mak et al. [18] concluded that curved
leaf flexures offer the most potential for use in exoskeletons,
owing to their large range of motion and compact form
factor. Some of these addressed mechanisms offer a spherical
ROM [19–27], but none of them are optimized for balancing
a pendulum. A fully compliant pendulum balancer with a
spherical ROM is currently lacking in the literature, despite
its great potential in fields like that of exoskeletons.

This paper aims to contribute in the development of
shoulder exoskeletons by presenting the first fully compliant
pendulum balancer with a spherical ROM, as well as
explaining and validating the tool developed for predicting
and optimizing its balancing behaviour.

The paper is structured as follows: Section II explains
the design on which the novel pendulum balancer is based
and elaborates on its geometry, the simulated model in the
’TetraFEM tool’, the optimization and the experimental vali-
dation setup. Section III shows the results of the optimization
and the experimental validation. After that the results, obser-
vations, limitations and future work are discussed in section
IV and section V will summarize and conclude this paper.

II. METHOD

This section describes the methodology used to obtain the
fully compliant pendulum balancer with a spherical range
of motion. The Tetra I design from Rommers et al. [19]
(see Figure 1) lays the foundation for the novel pendulum
balancer and this section will therefore start by describing
the design principles of this fully compliant spherical joint.
Next, the geometry and parameters from which the novel
pendulum balancer is built will be defined. Following this,
the TetraFEM tool will be explained, which calculates and
visualizes deformation based on the balancer’s parameters
and a certain load. Subsequently, the optimization process is
described, which utilizes the TetraFEM tool to optimize the
geometric parameters for balancing a given pendulum. Finally,
the test setup and the measurement procedure for the produced
prototype is described, which should experimentally verify the

TetraFEM tool and the pendulum balancing properties of the
prototype.

Fig. 1: The fully compliant spherical joint ’Tetra I’, with its
center of rotation at P. Retrieved from Rommers et al. [19].

A. Tetra I design principle

The Tetra I is one of the best performing curved leaf
flexure mechanisms in the aforementioned literature study
by Mak et al. [18]. It consists of a number of tetrahedron
elements connected in series without intermediate bodies. Each
tetrahedron is formed by three connected flexures with all
inner and outer edges pointing towards its center of rotation P
(see Figure 2). The tetrahedra are compliant for two rotational
directions and stiff in the other four, creating a joint that is
compliant for all rotations around point P, but very stiff for
all translations. This design ensures a nearly constant center
of rotation of the spherical joint. Although the Tetra I is not
presented as a pendulum balancer, it contains many geometric
parameters which can be optimized to obtain a desired moment
profile. This is illustrated by Hogervorst et al. [28], who
optimized the parameters of the Tetra I to obtain an axi-
symmetrical energy field.

B. Geometry of the pendulum balancer

This subsection aims to define the generic geometry of the
novel pendulum balancing joint and its tetrahedron elements.
The novel joint consists of n tetrahedra connected in series.
The first tetrahedron, T1, is fixed on edge a to the environment
and the last tetrahedron, Tn, is attached to a pendulum at
edge c. Each tetrahedron consists of three blade flexures: AB,
AC and BC, with AB and BC being equal in length. The
independent geometric parameters which dictate the shape
and dimensions of each tetrahedron are shown in Figure 3.
The other independent geometric parameter γ determines the
angle between each tetrahedron (Ti) and is illustrated in Figure
4. In this study, the parameters α and γ can have different
corresponding values for each tetrahedron, but tmin, Rin and
Rw remain the same value for all tetrahedra in this spherical
joint.



Fig. 2: A single tetrahedron element from the Tetra I design
with its geometric parameters. It is compliant in the green
coloured orientations θw and θu, but stiff in θv direction and all
translations. The center of rotation is indicated by P. Retrieved
from Rommers et al. [19].

Fig. 3: The independent geometric parameters which form the
tetrahedra.

Angular height: The angular height β (see Figure 5) of the
tetrahedron is calculated using the aforementioned indepen-
dent geometric parameters to minimize parasitic motion. The
height of the tetrahedron as depicted in Figure 5 is determined
using a formula from Rommers et al. [19] which minimizes
parasitic motion if the shape of the tetrahedron is approximated

Fig. 4: A view perpendicular to edge a of Ti showing two
tetrahedra and the independent geometric parameter γi, which
determines the angle between the current tetrahedron (Ti) and
the previous tetrahedron (Ti−1).

as a prism:

H =
1

2

[√
4L4

a2c2 +
48L2

a2c2R
2
w m(ν + 1)

5

+ L2
a2c2 +

12R2
w m(ν + 1)

5

] 1
2

,

(1)

where ν is Poisson’s ratio ν = E/(2G)− 1. The other terms

Fig. 5: A visualisation of the parameters necessary for calcu-
lating the (angular) height of the tetrahedron. Point Pa2, Pb2

and Pc2 are the midpoints of the edges on which they are
located.

used in equation 1 are illustrated in Figure 5 as well and can
be derived from the independent parameters:



La2c2 = 2 sin
(α
2

)(
Rin +

Rw

2

)
, (2)

Rw m = Rw cos
(α
2

)
. (3)

The angular height β of the tetrahedron can be calculated using
H from equation 1 and Rin m:

Rin m = Rin cos
(α
2

)
, (4)

β = arctan
( H

Rin m +Rw m/2

)
. (5)

Cross-section parameters: Similar to the Tetra I design,
the flexures of the tetrahedra have a trapezoidal shaped cross-
section, which is illustrated in Figure 6. On the edges between
Pa3, Pb3 and Pc3 the thickness is the lowest with tmin, while
on the edges between Pa1, Pb1 and Pc1 the thickness has the
highest value with tmax. The equation for tmax is given below:

tmax =
Rin +Rw

Rin
· tmin. (6)

Mc is the centroid of the trapezoidal cross-section along edge
c, as depicted in Figure 6. The distance RMo between Mc and
the center of rotation PO can be calculated using the following
equation:

RMo = Rin +Rw −Rw
tmax + 2tmin

3(tmax + tmin)
. (7)

As edge a has the same cross-section and dimensions as edge
c, the relative location of centroid Ma on edge a is the same
as that of centroid Mc on edge c.

Fig. 6: The cross-section at edge c shown with a trapezoidal
shape due to its variable thickness.

Flexure weight: The weight of the flexures cannot always
be neglected and therefore the mass and Center of Gravity
(COG) of each flexure need to be defined as well. Looking
at Figure 7, it can be observed that flexure AC (similar to
AB and BC) has the shape of a chopped off pyramid with a
narrow rectangular base. The base has a width of tmax and a
length of La1c1, which is the distance between Pa1 and Pc1.
The chopped off part of the pyramid has a base with a width
of tmin and a length of La3c3, which is the distance between

Pa3 and Pc3. The relations between the independent geometric
parameters and La1c1 and La3c3 respectively are defined as:

La1c1 = 2 sin
(α
2

)
(Rin +Rw) (8)

La3c3 = 2 sin
(α
2

)
(Rin) (9)

The mass of the flexure can be calculated by subtracting the
volume of the small missing pyramid from the larger pyramid
and multiplying the result by the density (ρ) of the flexure
material. The equations for the volume of the small pyramid
V3, the volume of the large pyramid V1 and the mass mAC of
flexure AC are defined as:

V3 =
tminLa3c3Rin m

3
(10)

V1 =
tmaxLa1c1(Rin m +Rw m)

3
(11)

mAC = ρ(V1 − V3). (12)

The COG of a pyramid measured from the top (i.e. PO) is 3/4
of the height of the pyramid. The COG of the large and small
pyramids are required to calculate RCOG AC , which is the
distance between PO and the COG of flexure AC (see Figure
7). This relation can be written as:

RCOG 3 =
3Rin m

4
(13)

RCOG 1 =
3(Rin m +Rw m)

4
(14)

RCOG AC =
RCOG 1V1 −RCOG 3V3

V1 − V3
(15)

where RCOG 3 and RCOG 1 are the distances between PO

and the COG of the small and the large pyramid respectively.

Fig. 7: Flexure AC depicted with its center of gravity at
COGAC .



C. TetraFEM tool

Calculating the balancing behavior of a simulated compliant
joint can be quite computationally expensive. This is especially
true when the balancing behavior needs to be optimized for
a large number of independent geometric parameters, as is
the case with the pendulum balancer discussed in this paper.
The TetraFEM tool was developed as a computationally more
efficient alternative compared to the currently available Finite
Element Method (FEM) based simulation software. This FEM
algorithm is written in Python and simulates the behaviour
of a pendulum balancing spherical joint consisting of one
or more tetrahedra connected in series. Efficient use of the
chain algorithm [29] and several simplifications are applied to
minimize computation time.

The main inputs of the TetraFEM tool are the independent
geometric parameters of the joint, its relevant material
properties, the mass and length of the pendulum and the
intended range of motion. The main output of the TetraFEM
tool is the calculated locations of deflected end-effector points
corresponding to gravitational loads applied to the simulated
model. The calculations done in the TetraFEM tool to obtain
and visualize deflected end-effector points can be divided in
four parts: The Flexure Compliance Analysis, the Tetrahedron
Compliance Analysis, the Chain Algorithm and the Pendulum
Balancing Test.

1) Flexure Compliance Analysis: First, the TetraFEM tool
performs a flexure compliance analysis to obtain the compli-
ance matrix of each flexure within the tetrahedra. This FEM
analysis is heavily inspired by the work of F Pavari Rad et al.
[21], who in return used the work of Zhang et al. [30] as a
foundation to do a compliance analysis on a curved spherical
flexure. The flexures in this flexure compliance analysis are
assumed to be Timoshenko beams with one fixed end and one
free end. This part describes how to calculate the compliance
matrix of flexure AC, using this flexure compliance analysis.

Within each simulated tetrahedron, the TetraFEM tool con-
siders flexure AC to be fixed on the edge of point Ma and
subjected to an external load on its free end at point Mc. In
addition, two global frames are defined as ACa on point Ma

and ACc on point Mc (see Figure 8). A local frame ACl is
defined as well on local point Ml AC , which is the centroid
of a generic cross section of the flexure.

Stiffness matrix of dl: The generic external load acting on
the free end (Mc) is balanced by a load acting on element dl.
According to [21], dl as defined in Figure 8 has a stiffness
matrix that can be written as:

AC lK = Diag[EAx, byGAx, bzGAx, GJ,EIy, EIz], (16)

where by and bz are the shear coefficients and E and G are
the Young’s modulus and shear modulus. Ax, J , Iy and Iz are
respectively the area, the torsional constant and the principal
moments of inertia of the cross section of the flexure. As the

Fig. 8: The global and local coordinate systems used for the
flexure compliance analysis of AC.

cross section of flexure AC is a trapezoid with a variable width
(see Figure 9), these last four parameters are a function of δα:

Rw M =
Rw

cos(α2 − δα)
, (17)

Ax =
tmax + tmin

2
·Rw M , (18)

Iy =
Rw M (tmin + tmax)(t

2
min + t2max)

48
, (19)

Iz =
R3

w M (t2min + 4tmaxtmin + t2max)

36(tmax + tmin)
, (20)

J =
2

3
sin3(η)(R4

out M −R4
in M )

−16 sin4(η)(VLR
4
out M + VSR

4
in M ),

(21)

where:

VL = 0.10504− 0.2 sin(η) + 0.3392 sin2(η)

−0.53968 sin3(η) + 0.82448 sin4(η),

VS = 0.10504 + 0.2 sin(η) + 0.3392 sin2(η)

+0.53968 sin3(η) + 0.82448 sin4(η).

The other terms in equation 21 are defined as:

Rin M =
Rin

cos(α2 − δα)
, (22)

Rout M = Rin M +Rw M , (23)

η = arctan
( tmin

2Rin M

)
(24)

Equation 21 is the formula for the torsional constant to account
for the warping of annulus sector cross-sections [27]. The cross
section of an annulus sector and a trapezoid are very similar



Fig. 9: The cross-section at local point Ml AC . The dimensions
η, Rin M , Rw M , and RM AC all depend on δα.

for Rw M >> tmax and therefore this formula is used to
calculate J .

Compliance matrix of flexure: The equation relating
the stiffness matrix of element dl from equation 16 to the
compliance matrix of the entire flexure is obtained from [21]:

AC cC =

∫
l

AC lTT
AC c ·AC l K−1 · AC lTAC c · dl. (25)

Matrix AC cC is the compliance matrix of flexure AC loaded
at the free end Mc and expressed in frame ACc. AC lTAC c

in formula 25 is the adjoint transformation matrix relating
local frame ACl and global frame ACc. The definition of this
transformation matrix from [21] can be rewritten for flexure
AC:

AC lTAC c = AC lRAC c 0

AC lr̃M c/M l AC · AC lRAC c
AC lRAC c

 , (26)

where AC lRAC c denotes the rotation matrix of frame ACc

with respect to ACl. This rotation matrix can be derived
by simply multiplying rotation matrices AC lRAC a with
AC aRAC c according to [31]:

AC lRAC c =
AC lRAC a · AC aRAC c, (27)

where:

AC lRAC a =

cos(δα) − sin(δα) 0
sin(δα) cos(δα) 0

0 0 1

 , (28)

AC aRAC c =

 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

 . (29)

Going back to equation 26, the term AC lr̃M c/M l AC denotes
the skew symmetric matrix of AC lrM c/M l AC , which is
the position vector of local point Ml AC relative to Mc with
respect to local frame ACl:

AC lr̃M c/M l AC =

 0 −v[2] v[1]

v[2] 0 −v[0]

−v[1] v[0] 0

 , (30)

where v =AC l rM c/M l AC and

AC lrM c/M l AC =
RMo

(
− c(α)s(δα) + s(α)c(δα)

)
RMo

(
s(α)s(δα) + c(α)c(δα)− c(α/2)

c(δα−α/2)

)
0

 , (31)

where s(q) = sin(q) and c(q) = cos(q) for any parameter q.

Solving compliance matrix numerically: As both the
transformation matrix AC lTAC c and stiffness matrix AC lK
are a function of δα, the equation 25 should integrate over dδα
instead of dl in order to solve it. For small angles of dδα the
relation can be written as:

dl = RM AC · dδα, (32)

where the length of RM AC (see Figure 9) is also a function
of δα:

RM AC = RMo

cos(α2 )

cos(α2 − δα)
. (33)

In order to save computation time, the integration from
equation 25 is done numerically in the TetraFEM tool. The
composite trapezoidal rule [32] is applied to numerically
approximate the compliance matrix of flexure AC. If we define
function f such that

f(δα) =
AC l TT

AC c ·AC l K−1 · AC lTAC c ·RM AC

the compliance matrix of flexure AC can be numerically
computed with the following equation:

AC cC ≈ α

N

(f(0)
2

+
N−1∑
K=1

(
f
(K · α

N

)
+
f(α)

2

))
, (34)

where N is an integer determining the amount of dl elements
to consider in this finite-element based method of calculating
the compliance matrix. The flexure compliance analysis for
the other flexures (AB and BC) are done with the same
approach as the one explained for flexure AC.

2) Tetrahedron Compliance Analysis: After the compliance
matrices of all flexures are calculated using the flexure com-
pliance analysis, the compliance matrix of the tetrahedra can
be obtained using a tetrahedron compliance analysis, which is
explained in this part. This analysis is heavily inspired by the
work of (again) F Pavari Rad et al. [21], who used it to obtain
the compliance matrix of two flexures in series.

As illustrated in Figure 4, each tetrahedron is connected
to the previous tetrahedron on edge a and connected to the
next tetrahedron on edge c. As all tetrahedra are connected
in series, the spherical joint can be seen as one large spring
consisting of n smaller springs in series. Within a tetrahedron,
flexure AB and BC are two flexure springs in series and the
two combined are in parallel with flexure spring AC. In order
to get the compliance matrix of the 3 flexures combined, the
compliance matrices of the individual flexures first need to be



related to a common reference frame ACc and a common point
Mc. The compliance matrix of flexure AC is already related to
ACc and Mc after the flexure compliance analysis, but this is
not the case for the other two flexures. The compliance matrix
of flexure AB is related to point Mb and frame ABb after
the flexure compliance analysis and the compliance matrix of
flexure BC is related to Mc and BCc (see Figure 10).

Fig. 10: The global coordinate systems used for the flexure
compliance analysis of AB (left) and BC (right)

The compliance matrices of AB and BC can be related to
point Mc and ACc using transformation matrices, as explained
in [21]. The transformation matrices for flexure AB and BC
respectively are defined as:

AB bTAC c = AB bRAC c 0

AB br̃M c/M b · AB bRAC c
AB bRAC c

 (35)

BC cTAC c =

 BC cRAC c 0

0 AC cRAC c

 (36)

where AB bRAC c and BC cRAC c denote the rotation matrix
of frame ACc with respect to ABb and BCc respectively.
The position vector AB brM c/M b in equation 35 locates
point Mc from Mb with respect to frame ABb. With the
transformation matrices from 35 and 36, the numerically
calculated compliance matrices AB bC and BC cC can be
related to frame ACc and point Mc:

AC cCAB T = AB bTT
AC c ·AB b C · AB bTAC c, (37)

AC cCBC T = BC cTT
AC c ·BC c C · BC cTAC c, (38)

where AC cCAB T and AC cCBC T are the transformed com-
pliance matrices of flexures AB and BC. Flexures AB and BC
are connected in series and therefore the compliance matrix
of the flexures combined can simply be calculated as:

AC cCAB+BC =AC c CAB T +AC c CBC T . (39)

Flexure AC is connected in parallel with the combined flexures
AB and BC, hence the compliance matrices need to be first
inverted and then added to calculate the stiffness matrix of the
total tetrahedron.

AC cKtetra =AC c C−1
AB+BC +AC c C−1

AC , (40)

where AC cCAC is the numerically calculated compliance
matrix of flexure AC from equation 34. The inverse of stiff-
ness matrix AC cKtetra equals the compliance matrix of the
complete tetrahedron:

AC cCtetra =AC c K−1
tetra, (41)

3) Chain Algorithm: The chain algorithm is a computa-
tionally efficient method to calculate nonlinear deformation
in a compliant mechanism. Howell explained in [29] how
the chain algorithm can be used to calculate the deflection
of a flexible cantilever beam discretized into a number of
beam elements. Each element is analysed in succession and
subjected to an equivalent load. The elements are connected in
series and considered fixed at the end of the previous element
as shown in Figure 11. Although the deflection of each element
is considered to be linear, the compliant mechanism as a whole
may have a large nonlinear deflection as the deflections of
the elements accumulate. This large deflection may alter the
position, direction or magnitude of the load acting on the
compliant mechanism and therefore the load and resulting
deflection need to be calculated iteratively.

The chain algorithm is utilized in the TetraFEM tool as well
to calculate the (nonlinear) deflection of the spherical joint
when it is subjected to the load of a pendulum and the self-
weight of the flexures. Conveniently, the joint in this paper is
already discretized in n number of tetrahedron elements and
its compliance matrices are calculated in the aforementioned
tetrahedron compliance analysis.

Let (M c u)i in Figure 12 be the point Mc of Ti displaced
due to the deflections of (only) the previous tetrahedra. The
total equivalent load (wtotal)i acts on the free end of Ti,
which is where (M c u)i is located, and causes a deflection
(ds)i. This deflection depends on the equivalent loads and the
compliance matrix of Ti and is assumed to be linear:

(AC c u)i(ds)i =
AC c C(tetra)i ·(AC c u)i (wtotal)i. (42)

where (ACc u)i denotes the changed frame ACc of Ti, due
to the deflections of only the previous tetrahedra.

Linking deflected frames: If the equivalent loads and
compliance matrices are known for each tetrahedron, it is
possible to link all the frames within the deflected joint. The
deflection of Ti caused by (wtotal)i changes the orientation
of frame (ACc u)i to frame (ACc d)i as illustrated in the
simplified Figure 12. To obtain frame (ACc d)i from the
deflection of equation 42, three successive rotations about the
unit vectors of (ACc u)i are required [33]. Thus the rotation



Fig. 11: A typical beam element as used by the chain algo-
rithm. The position and orientation of Node i changes due
to the accumulated deflections of previous elements and the
deflection of Element i itself. Retrieved and modified from
[29].

Fig. 12: A simplified 2D illustration of the deformation of Ti

and the displacement of the subsequent tetrahedron caused by
equivalent load (wtotal)i.

matrix of frame (ACc d)i with respect to (ACc u)i can be
written as:

(AC c d)iR(AC c u)i =
c(y)c(z) s(x)s(y)c(z)− s(z)c(x) s(x)s(z) + s(y)c(x)c(z)

s(z)c(y) s(x)s(y)s(z) + c(x)c(z) −s(x)c(z) + s(y)s(z)c(x)

−s(y) s(x)c(y) c(x)c(y)

 , (43)

where s(q) = sin(q) and c(q) = cos(q) for any parameter q.
The relation between terms x, y and z in equation 43 and

(AC c u)i(ds)i is defined as:xy
z

 =(AC c u)i

dsθxdsθy
dsθz


i

.

Frame (ACa u)i+1 denotes the changed frame ACa of Ti+1,
due to deflections of previous tetrahedra (including Ti). The
rotation matrix of (ACa u)i+1 with respect to (ACc d)i is a
function of the independent geometric parameter γ of Ti+1:

(AC a u)i+1R(AC c d)i =

 cos(γi+1) 0 sin(γi+1)

0 1 0

− sin(γi+1) 0 cos(γi+1)

 (44)

The rotation matrix of frame (ACc u)i+1 with respect to
(ACa u)i+1 is a function of the independent geometric pa-
rameter α of Ti+1:

(AC c u)i+1R(AC a u)i+1 =

cos(αi+1) − sin(αi+1) 0

sin(αi+1) cos(αi+1) 0

0 0 1

. (45)

Using a successive multiplication [31] of the rotation matrices
from equations 43, 44 and 45, it is possible to determine the
orientation of all relevant reference frames of the deflected
joint within the TetraFEM simulation.

Linking deflected points: Similar to the reference frames,
the locations of the points within the deflected joint can all be
linked as well within the TetraFEM simulation. The deflection
from equation 42 can be used to describe the position vector
of point (Mc d)i relative to (Mc u)i:

(AC c u)ir(M c d)i/(M c u)i =
(AC c u)i

dsxdsy
dsz


i

, (46)

where point (Mc d)i denotes point Mc of Ti, displaced due
to the deflections of both the previous tetrahedra and Ti (see
Figure 12). The tetrahedra are connected in series with edge
c of Ti connected to edge a of Ti+1. The points (Mc d)i and
(Ma u)i+1 are therefore located in the exact same position
and the position vector relating these two point can be written
as:

(AC c u)ir(M a u)i+1/(M c d)i =

00
0

 . (47)

The position vector of point (Mc u)i+1 (see Figure 11) relative
to point (Ma u)i+1 can be calculated using the geometry of
flexure AC from Ti+1:

(AC a u)i+1r(M c u)i+1/(M a u)i+1 = RMo · sin(αi+1)

RMo · (cos(αi+1)− 1)

0

 , (48)

where RMo is implemented from equation 7 and is equal
for each tetrahedron. By summing up the relative position
vectors from equation 46, 47 and 48 it is possible to determine



the position vector of (Mc u)i+1 relative to (Mc u)i. Note
that the relative position vector of equation 48 is defined in
frame (ACc u)i+1 and therefore first needs to be rotated to
the common frame (ACc u)i:

(AC c u)ir(M c u)i+1/(M c u)i =
(AC c u)ir(M c d)i/(M c u)i +

(AC c u)iR(AC a u)i+1 ·(AC a u)i+1 r(M c u)i+1/(M a u)i+1

(49)

Fig. 13: A generic spherical joint composed of five tetrahedra
with a pendulum shown in deformed (right) and undeformed
(left) orientation. Coordinate system XTnYTnZTn is associ-
ated with frame ACc of Tn.

End effector point: Point (Mc d)n is point Mc of the last
tetrahedron, displaced due to the deflection of all n tetrahedra.
The location of this point is an indicator for the total deflection
of the spherical joint and will be further denoted as end
effector point PEE (see Figure 13). The position vector of
PEE relative to PO can be calculated using the following
equation:

JF rPEE/PO
=JF R(AC c)1 ·

 0
RMo

0


+

n−1∑
i=1

JFR(AC c)i ·(AC c)i r(M c u)i+1/(M c u)i

(50)

where joint frame JF is equal to the ACc frame of Tn in
undeformed state, rotated -90 degrees around its X-axis, as
illustrated in the figure. If the joint is undeformed, hence
(ds)i is a null vector for all i, the rod of the pendulum
coincides with the Z-axis of JF and the rotation matrix of
JF with respect to (ACc)n can be written as:

JFR(AC c)n =

1 0 0
0 0 1
0 −1 0

 . (51)

Pendulum load: The load of the pendulum to be balanced
depends on its size and weight, which are inputs for the
TetraFEM tool. As illustrated in Figure 13, the load acting
on the joint also depends on the orientation of the pendulum.
Lw is the distance between the center of rotation PO and the
COG of the weight on the pendulum with mass mw. The mass
mr of the pendulum’s rod has its COG at a distance of Lr/2
from PO. If the pendulum is in equilibrium under an angle of
ψh, the moment force Mpend at point PO can be written as:

Mpend = sin(ψh)
(
mwgLw +mrg

Lr

2

)
. (52)

where g = 9.81m/s2. The load of the pendulum wpend at
point PO and expressed in reference frame JF equals:

JFwpend =


0
0

−g(mw +mr)
− sin(ψw)Mpend

cos(ψw)Mpend

0

 . (53)

The load of the pendulum needs to be related to frame
(ACc u)i to obtain the equivalent force acting on Ti. The
calculation of the transformation matrix for this process is
very similar to that of equation 26 and 35 and can be written
as:

(AC c u)iTJF =[
(AC c u)iRJF 0

(AC c u)ir̃PO/(M c u)i · (AC c u)iRJF
(AC c u)iRJF

]
(54)

where position vector (AC c u)irPO/(M c u)i locates PO from
(Mc u)i with respect to frame (ACc u)i. With the transfor-
mation matrix from 54, the equivalent load of the pendulum
acting on Ti can be calculated:

(AC c u)iwpend =(AC c u)i TJF ·JF wpend (55)

Flexure weight load: The weights of the flexures cannot al-
ways be neglected and may need to be considered to accurately
determine the total equivalent load (wtotal)i. Taking flexure
AC as example, its gravitational load at COGAC expressed in
reference frame JF equals:

JFwAC =


0
0

−gmAC

0
0
0

 (56)

The weight of a flexure affects the deflection of Ti if the
flexure is part of a tetrahedron Tk, where i ≤ k ≤ n.
The transformation matrix relating the gravitational load of
a flexure (AC)k to its equivalent load on Ti can be written as:

(AC c u)iTJF =[
(AC c u)iRJF 0

(AC c u)ir̃Gk/(M c u)i · (AC c u)iRJF
(AC c u)iRJF

]
(57)



where Gk is an abbreviation for point (COGAC)k. It should
be noted that the transformation matrix in equation 57 is not
equal to that of equation 54. The position vector corresponding
to the transformation matrix in 57 locates the COG of flexure
(AC)k (instead of PO) from point (Mc u)i with respect to
frame (ACc u)i. This position vector can be calculated using
the following equation by relating the reference frames and
position vectors within the deflected joint:

(AC c u)ir(COG AC)k/(M c u)i =

(AC c u)iR(AC c u)k ·


sin(αk/2)RCOG AC

RMo − cos(αk/2)RCOG AC

0


+(AC c u)ir(M c u)k/(M c u)i

(58)

where RCOG AC from equation 15 is used to relate point
COGAC to (Mc u)k. The equivalent gravitational load of flex-
ure (AC)k acting on Ti can now be calculated by converting
the gravitational load to frame (ACc u)i and point (Mc u)i
with the transformation matrix of equation 57:

(AC c u)iw(AC)k =(AC c u)i TJF ·JF w(AC)k (59)

Flexures AB and BC have corresponding masses mAB and
mBC and equivalent loads (AC c u)iwAB and (AC c u)iwBC

respectively. These parameters are computed in a very similar
way as for flexure AC. The combined gravitational load
(AC c u)iwk of the three flexures of Tk is defined as:

(AC c u)iwk =(AC c u)i w(AC)k

+(AC c u)iw(AB)k +(AC c u)i w(BC)k

(60)

Total equivalent load: The total equivalent force causing
the deflection in Ti (see equation 42) can now be calculated
by combining the load of the pendulum and the weights of
Tk:

(AC c u)i(wtotal)i =

(AC c u)iwpend +

n∑
k=i

(AC c u)iwk
(61)

4) Pendulum Balancing Test: This part will explain how
the TetraFEM tool can quantify the pendulum balancing per-
formance of its simulated spherical joint. The intended ROM
of the simulated joint is defined by the range of parameters
ψw and ψh (see Figure 13) and has the shape of a spherical
segment. If the simulated joint would be a perfect spherical
joint, meaning it only allows rotational movement around a
constant center of rotation PO, then point PEE would be
able to move over this spherical segment with a constant
radius RMo (see equation 7). This ideal spherical segment
is discretized in the TetraFEM tool by m evenly distributed

points denoted as (Pgoal)j . The position vector of (Pgoal)j
relative to PO is defined as:

JF r(P goal)j/PO
=


sin

(
(ψh)j

)
cos

(
(ψw)j

)
RMo

sin
(
(ψh)j

)
sin

(
(ψw)j

)
RMo

RMo

(
1− sin

(
(ψh)j

))
 , (62)

where (ψw)j and (ψh)j are defined such that the (Pgoal)j
points are evenly distributed over the spherical segment.
A pendulum load related to (Pgoal)j can be calculated by
implementing (ψw)j and (ψh)j in equations 52 and 53. The
simulated spherical joint in the TetraFEM tool is subjected
to this pendulum load (wpend)j and the self-weight of the
flexures to test its pendulum balancing performance.

It should be noted that this applied pendulum load (wpend)j
does not depend on the deflection of the joint and therefore
does not need to be calculated iteratively, as explained in
the chain algorithm II-C3. As a result, the computation time
for deflections in the TetraFEM tool would be significantly
reduced if the self-weight loads of the flexures, which do
depend on the deflection of the joint, can be neglected.

The spherical joint is a perfect pendulum balancer if load
(wtotal)j makes point (PEE)j deflect exactly to the location
of the corresponding (Pgoal)j . The pendulum balancing per-
formance can be quantified by averaging the magnitudes of
the distances between (Pgoal)j and (PEE)j for all m points:

davg =
1

m

m∑
j=1

∣∣∣∣JF r(P goal)j/PO
−JF r(PEE)j/PO

∣∣∣∣ , (63)

where davg represents a deviation that would be 0 meters
for a perfect pendulum balancing joint. This deviation can be
compared to savg , the average distance between (Pgoal)j and
the undeformed location of PEE , allowing the deformation
resemblance ηdr between the simulated joint and the ideal
pendulum balancing joint to be calculated:

ηdr =
(
1− davg

savg

)
· 100%, (64)

where

savg =
1

m

m∑
j=1

∥∥JF r(P goal)j/EE undef

∥∥ (65)

and where EEundef is point PEE in undeformed state.

D. Optimization

This study conducted five separate optimizations on the
DelftBlue supercomputer [34] to determine the independent
geometric parameters of the best pendulum balancers for five
different scenarios. The amount of dl elements per flexure,
the Rin and Rw parameters, the material properties and the
properties of the pendulum are equal and fixed for all five
scenarios and are shown in Table I.



Fixed parameters Value Description

N 200 Amount of dl elements in a flexure

Rin 67 mm Independent geometric parameter

Rw 25 mm Independent geometric parameter

ρ 1010 kg/m3 Density of flexure material

E 1700·106 Pa Young’s modulus

ν 0.38 Poisson’s ratio

by
5
6

Shear coefficient

bz
5
6

Shear coefficient

mw 100 gram Mass of weight on pendulum

mr 23.5 gram Mass of the rod

Lw 250 mm Distance between weight and PO

Lr 320 mm Length of the rod

TABLE I: The fixed parameters used in the optimizations.

For each optimization the COBYLA [35] method is used
to minimize the objective function davg , as defined in equa-
tion 63. The boundary values imposed on the optimizations
are shown in Table II, where Niter denotes the number of
iterations.

Parameter Boundary values

αi [deg] [5, 60]

γi [deg] [-90, 35]

tmin [µm] [1000, 1800]

Niter ≤ 1000

TABLE II: The boundary values imposed on the optimizations.

Each separate optimization is repeated for 50 sets of dif-
ferent initial values for αi, γi and tmin. These initial values
are determined randomly, but within the boundary values from
Table II.

E. Experimental validation
1) Experimental setup: A prototype is 3D-printed from

PA-12 powder with Multi Jet Fusion printers to validate the
TetraFEM tool and the results of the optimizations. This
material should have the same properties as those depicted
in Table I. The prototype is placed in an experimental setup
as shown in Figure 14 and 15. The base of the prototype
is fixed to a part with a fixed reference point and the other
end of the prototype is attached to a pendulum with the same
properties as in Table I. The weights on the pendulum rod
can be shifted along the rod to increase or decrease parameter
Lw and consequently change the load of the pendulum on the
joint. The fixed reference point is placed such that its location
is exactly 5 mm under the center of rotation, indicated by the
PO-indicator, if no loads are applied to the prototype.

Two phone holders, each supporting a mobile phone with
a camera, are positioned at a 90-degree angle relative to each
other and at an equal distance from the center of rotation. In
the background of the prototype, rings are suspended freely
on threads. These threads serve as a reference for the direction
of gravity when capturing images of the prototype.

Fig. 14: A broad view of the experimental setup.

Fig. 15: A close-up view of the experimental setup.

2) Measurement procedure: With the pendulum attached
to the prototype, the orientation and position of the pendulum
rod for which the combined mechanism was in equilibrium
were captured using two cameras. As the PEE-indicator is
located at a fixed distance RMo from the PO-indicator, its
position in equilibrium can be calculated from these images.
This process was done for each stable and unstable equilibrium
found for ψh ≤ 45 degrees and was repeated for several
values of Lw, the position of the weights on the pendulum
rod, with increments of 2.5 mm until no additional equilibria
were observed.

III. RESULTS

A. Optimization results

1) Ten-tetrahedra optimization: The first optimization is
performed on a spherical joint consisting of ten tetrahedra.
The pendulum balancing area for which this joint is optimized
is defined by the range of the polar and azimuth angles:
0 ≤ ψh ≤ 30 and 0 ≤ ψw < 360. This spherical segment is
discretized in the TetraFEM tool by m = 11 evenly distributed
points, meaning the simulated pendulum balancer is tested for



TABLE III: Best optimization results

10-tetrahedra 10-tetrahedra-NSW 8-tetrahedra 12-tetrahedra 10-tetrahedra-90x90

i α (deg) γ (deg) t min (µm) α (deg) γ (deg) t min (µm) α (deg) γ (deg) t min (µm) α (deg) γ (deg) t min (µm) α (deg) γ (deg) t min (µm)

1 16.30 - 1290.61 33.84 - 1063.24 21.67 - 1173.48 48.65 - 1380.13 60.00 - 1512.45

2 27.74 -39.13 1290.61 24.30 -7.19 1063.24 35.42 -9.36 1173.48 20.23 13.39 1380.13 59.64 35 1512.45

3 56.64 7.83 1290.61 28.95 -10.39 1063.24 40.72 0.39 1173.48 17.76 -46.17 1380.13 60.00 34.32 1512.45

4 22.24 -22.22 1290.61 19.82 -46.91 1063.24 43.16 -54.16 1173.48 44.00 -10.09 1380.13 58.53 -20.51 1512.45

5 43.66 -44.36 1290.61 45.29 -29.06 1063.24 51.03 -55.14 1173.48 5.00 15.28 1380.13 37.27 -88.57 1512.45

6 43.02 -22.58 1290.61 35.44 -68.09 1063.24 24.32 -5.64 1173.48 7.57 -25.44 1380.13 31.56 35 1512.45

7 31.80 -38.04 1290.61 7.91 4.14 1063.24 27.49 -89.67 1173.48 30.88 3.39 1380.13 58.09 35 1512.45

8 15.71 -40.34 1290.61 12.62 -22.85 1063.24 41.88 -64.76 1173.48 59.91 -62.02 1380.13 46.87 27.55 1512.45

9 31.40 -83.87 1290.61 9.46 -37.30 1063.24 17.71 -1.54 1380.13 25.18 35 1512.45

10 24.23 -2.07 1290.61 37.62 -79.12 1063.24 18.20 -55.28 1380.13 47.26 -8.37 1512.45

11 20.43 -9.00 1380.13

12 55.09 -85.95 1380.13

Time 256 sec 18 sec 118 sec 464 sec 736 sec

d avg 1.31 mm 1.02 mm 1.22 mm 1.36 mm 10.77 mm

η dr 95.6% 96.6% 96.0% 95.5% 92.0%

eleven different loads in each iteration of the optimization. The
self-weight in this optimization is assumed to be significant
and is recalculated and re-applied once in the chain algorithm
due to the changed self-weight load in large deformations.

The optimization was run in parallel 50 times under these
conditions, with a computation time of approximately 256
seconds per iteration. The optimization result with the lowest
objective function davg , that does not self-intersect in unde-
formed state, is considered to be the best result. This optimized
pendulum balancer was found after 201 iterations, yielding a
davg of 1.31 mm and an ηdr of 95.6%. This result is illustrated
in Figure 16 and its independent geometric parameters are
listed in Table III under ”10-tetrahedra”.

Fig. 16: A 3D view of the best performing pendulum balancer
from the ten-tetrahedra optimization, depicted in its unde-
formed state.

As can be seen in Figure 16, the tetraFEM tool plots
the flexures as semi-transparent planes instead of solids for
simplicity. To make the tetrahedra easier to distinguish, each
is given a different color. Furthermore, edge a of T1 is depicted
with a dashed line to indicate where the simulated joint is fixed
to the environment and PEE is the end effector point on edge

c of Tn.

Fig. 17: A top-view of the best performing pendulum balancer
from the ten-tetrahedra optimization with eleven Pgoal and
PEE points.

Figure 17 depicts a top-view of the best simulated ten-
tetrahedra pendulum balancer, featuring eleven blue dots, each
partially covered by an orange dot. The blue dots represent
the m evenly distributed Pgoal points, while the orange dots
represent the corresponding PEE points. As explained in the
Pendulum Balancing Test (II-C4), the Pgoal points indicate
the ψw and ψh angles of the pendulum load acting on the
simulated joint, with the highest Mpend value at the outer ring,
where ψh = 30 degrees. This pendulum load, along with the
self-weight load, causes the PEE point to deflect to the loca-
tion indicated by an orange dot. The top-view plot provides a
convenient visualisation of the simulated pendulum balancer’s
performance, as this directly correlates to the distance between



the Pgoal and PEE points. However, it should be noted that
the distance in ZJF -direction between PEE and Pgoal, which
is not visible in Figure 17, may not always be negligible (see
Figure 18).

Fig. 18: A (Y-Z) side view of the best performing pendulum
balancer from the ten-tetrahedra optimization.

The performance of the optimized pendulum balancer was
also tested for m = 28 in the TetraFEM tool, and the resulting
top-view plot is shown in Figure 19. The ηdr in this test was
95.7%.

2) Ten-tetrahedra-NSW optimization: The second optimiza-
tion is performed under the same conditions as the ten-
tetrahedra optimization, but with the self-weight assumed to
be negligible and excluded from the calculations. The opti-
mization was run in parallel 50 times under these conditions,
with a computation time of approximately 18 seconds per
iteration. The best performing result from the ten-tetrahedra-
NSW (No Self Weight) optimization was found after 315
iterations, yielding a davg of 1.02 mm and an ηdr of 96.6%.
The top-view of the best ten-tetrahedra-NSW optimization
result is shown in Figure 20 and its independent geometric
parameters are listed in Table III under ”10-tetrahedra-NSW”.

The performance of the optimized pendulum balancer is also
tested with self-weight considered as a significant load, which
is recalculated and re-applied in the TetraFEM tool, similar
to the ten-tetrahedra optimization in III-A1. The resulting
deformation resemblance ηdr in this test is 94.0% and the
top-view plot is depicted in Figure 21.

3) Eight-tetrahedra optimization: The third optimization is
performed under the same conditions as the ten-tetrahedra
optimization, but with eight tetrahedra instead of ten. The opti-
mization was run in parallel 50 times under these conditions,
with a computation time of approximately 118 seconds per
iteration. The best performing result from the eight-tetrahedra

Fig. 19: A top-view of the best performing pendulum balancer
from the ten-tetrahedra optimization with 28 Pgoal and PEE

points.

Fig. 20: A top-view of the best performing pendulum balancer
from the ten-tetrahedra-NSW optimization with eleven Pgoal

and PEE points.

optimization was found after 261 iteration, yielding a davg of
1.22 mm and an ηdr of 96.0%. The top-view of this optimiza-
tion result is shown in Figure 22 and its independent geometric
parameters are listed in Table III under ”8-tetrahedra”.

4) Twelve-tetrahedra optimization: The fourth optimization
is performed under the same conditions as the ten-tetrahedra
optimization, but with twelve tetrahedra instead of ten. The



Fig. 21: A top-view of the best performing pendulum balancer
from the ten-tetrahedra-NSW optimization with eleven Pgoal

and PEE points.

Fig. 22: A top-view of the best performing pendulum balancer
from the eight-tetrahedra optimization with eleven Pgoal and
PEE points.

optimization was run in parallel 50 times under these condi-
tions, with a computation time of approximately 464 seconds
per iteration. The best performing result from the twelve-
tetrahedra optimization was found after 232 iterations, yielding
a davg of 1.36 mm and an ηdr of 95.5%. The top-view
of this optimization result is shown in Figure 23 and its
independent geometric parameters are listed in Table III under

”12-tetrahedra”.

Fig. 23: A top-view of the best performing pendulum balancer
from the twelve-tetrahedra optimization with eleven Pgoal and
PEE points.

5) Ten-tetrahedra-90x90 optimization.: The fifth and final
optimization is performed under the same conditions as the
ten-tetrahedra optimization, but with m = 18 evenly distributed
points and a range of 0 ≤ ψh ≤ 90 and 0 ≤ ψw ≤ 90 for the
polar and azimuth angles. The optimization was run in parallel
50 times under these conditions, with a computation time of
approximately 736 seconds per iteration. The best performing
result from this ten-tetrahedra-90x90 optimization was found
after 284 iterations, yielding a davg of 10.77 mm and an ηdr
of 92.0%. The top-view of this optimization result is shown in
Figure 24 and its independent geometric parameters are listed
in Table III under ”10-tetrahedra-90x90”. While the distances
between the PEE and Pgoal points in the ZJF direction were
relatively minor in the other optimization results, they are
considerably more pronounced in this particular optimization
result, as depicted in Figure 25.

B. Tetra I as pendulum balancer

The original Tetra I design as defined in [36] is simulated
in the TetraFEM tool as well. Its performance as a pendulum
balancer is tested for the same range, amount of points and
self-weight calculations as described in the ten-tetrahedra
optimization (III-A1). The resulting ηdr is 32.5% and the top-
view is depicted in Figure 26.

C. Prototype validation

The tetrahedra of the 3D-printed prototype described in
subsection II-E share the same geometric parameters as the
best performing pendulum balancer of the ten-tetrahedra opti-
mization. A top-view of the prototype is depicted in Figure 27.



Fig. 24: A top-view of the best performing pendulum balancer
from the ten-tetrahedra-90x90 optimization with 18 Pgoal and
PEE points.

Fig. 25: A YZ side view of the best performing pendulum
balancer from the ten-tetrahedra-90x90 optimization with 18
Pgoal and PEE points.

This view differs slightly from the top-view of the simulated
pendulum balancer in Figure 17 due to deflection under its
own weight and some creep experienced during shipment.

Figure 28 illustrates the results of the prototype’s experi-
mental validation test, using the top-view of the simulated joint
as a reference. A total of 30 stable and 31 unstable equilibria
were identified for 200 ≤ Lw ≤ 267.5 mm, with 2.5 mm

Fig. 26: A top-view of the Tetra I design, tested as a pendulum
balancer for eleven Pgoal and PEE points.

Fig. 27: top-view of the 3D-printed prototype.

increments. The location of the prototype’s PEE-indicator is
shown for each equilibrium e, represented as a square for
stable equilibria and as a diamond for unstable equilibria.
The colors of these squares and diamonds represent the value
of (Lw)e when the equilibrium was found. The disk in the
figure depicts the top-view of the spherical segment checked
for equilibria, which is defined by polar angle ψh ≤ 45
degrees and radius RMo. The purple area within this spherical
segment indicates where the prototype would self-intersect,
and therefore these regions could not be reached during the
experimental validation test.

The prototype is optimized for ψh up to 30 degrees,
which is indicated by the yellow circle in Figure 28. For
an ideal pendulum balancing spherical joint, the whole area



Fig. 28: A top-view of the PEE-indicator points for 61
identified equilibria.

encapsulated by this yellow circle would be filled with green
squares and diamonds. However, many of the squares and
diamonds depicted in the figure have a non-green color, as
their equilibrium e was found for (Lw)e ̸= 250 mm. The
balancing performance of the prototype at equilibrium e for
a pendulum with Lw = 250 can be quantified by defining its
moment error at this orientation:

(Merror)e = mwg sin
(
(ψh)e

)(
(Lw)e − Lw

)
. (66)

The balancing performance of the prototype for its intended
ROM can be approximated by taking the average of the
absolute moment errors for all e with ψh ≤ 30 degrees:

Mavg error =
1

v

v∑
u=1

|(Merror)u| (67)

where u indicates an equilibrium e with ψh ≤ 30 degrees and
v equals the total amount of u equilibria.

The prototype’s validation test yields a Mavg error of
0.00945 Nm. This value can be related to the total moment
force of the pendulum, Mpend (see equation 52), which is
depicted in the colorbar in the upper-right corner of Figure 28
for several values of ψh. For reference, this average moment
error is equal to the moment force of the pendulum (with Lw

= 250 mm) at an angle ψh = 1.9 degrees.
Finally, the average moment reduction of the prototype for a

pendulum with Lw = 250 mm can be calculated with equation:

ηred =
(
1− Mavg error

Mavg

)
· 100%, (68)

where Mavg is the average moment force of the pendulum
under angle (ψh)u:

Mavg =
1

v

v∑
u=1

sin
(
(ψh)u

)(
mwgLw +mrg

Lr

2

)
(69)

Based on the identified equilibria in the prototype’s validation
test, the moment reduction ηred equals 90.5%.

D. TetraFEM validation

The accuracy of the TetraFEM tool can be assessed by
comparing the prototype’s deformation to the simulated joint’s
deformation under equal conditions. The process and result of
this TetraFEM validation test are explained in this subsection.

During the prototype’s validation test, the PO-indicator
showed minimal shifting while identifying the equilibria and
its distance to the PEE-indicator is fixed at RMo. As a result,
the PEE-indicator points found for the prototype are located
on a nearly ideal spherical segment, where each point can
represent the polar and azimuth angles, respectively (ψh)e and
(ψw)e, of the pendulum in equilibrium e. The TetraFEM tool
can be validated using these PEE-indicator points as Pgoal

points in the simulation, similar to what is described in the
Pendulum Balancing Test in II-C4.

The simulated joint in the TetraFEM tool is subjected to
the force of a pendulum with angles (ψh)e and (ψw)e, and
with its weights at (Lw)e. The prototype is based on the
best-performing result from the ten-tetrahedra optimization
and this simulated joint therefore shares the same independent
geometric parameters (see Table III) and fixed parameters (see
Table I). The self-weight of the simulated joint is considered
to be significant and is applied in the same manner as in
the ten-tetrahedra result. For an ideal TetraFEM tool, the
simulated joint with these conditions would deflect all (PEE)e
points precisely to their corresponding (Pgoal)e points, as
the prototype is in equilibrium at each (Pgoal)e point for a
pendulum with Lw = (Lw)e.

Figure 29 depicts the deflected PEE points for 17 Pgoal

points. These Pgoal points correspond to the PEE-indicator
points identified for (Lw)e = 250+7.5n mm, where n equals
the integers from -6 to 2. The selection of Pgoal points was
made to ensure clarity in Figure 29 and avoid overlapping
points.

The error of the TetraFEM tool in calculating the proto-
type’s deformation can be quantified by determining davg , the
average distance between the (Pgoal)e and (PEE)e points, in
a similar way as described in equation 63. The deformation
resemblance ηdr between the simulated joint and the prototype
can then be calculated in a similarly to equation 64, where m
= 17 and savg represents the average deflected distance of the
(Pgoal)e points in the figure. This ηdr value reflects the overall
accuracy of the TetraFEM tool in calculating the prototype’s
nonlinear deformations in this validation test, which is 89.6%.

IV. DISCUSSION

The eight-tetrahedra optimization, despite having the fewest
variables to optimize, yielded unique independent geometric



Fig. 29: A top-view of the simulated joint with 17 Pgoal and
PEE points. Each Pgoal point matches the position of a PEE-
indicator point in equilibrium.

parameters across all 50 optimization runs. This suggest that
the lowest identified objective function is unlikely to represent
the global minimum for any of the five seperate optimiza-
tions. Consequently, additional optimization runs from random
starting points or tighter boundaries for the variables could
potentially produce better performing simulated pendulum
balancers than what identified in this research.

Nevertheless, the ten-tetrahedra optimization resulted in
the independent geometric parameters of a well-performing
simulated pendulum balancer, achieving a ηdr of 95.6% in the
TetraFEM tool. For comparison, the simulated Tetra I design
of Rommers et al. [19], which is not optimized for balancing
a pendulum, yields a significantly lower deformation resem-
blance with a ηdr 32.5%. The optimized pendulum balancer
was also tested for 28 evenly distributed Pgoal points, which
resulted in a very similar ηdr of 95.7%. This demonstrates
that testing for only eleven evenly distributed Pgoal points is
sufficient to cover the intended ROM of the simulated joint.

The TetraFEM tool has demonstrated its computational
efficiency in simulating the deformation of a compliant spher-
ical joint consisting of tetrahedra connected in series. Eleven
nonlinear deformations were calculated in each iteration of
the ten-tetrahedra optimization process, with a computation
time of approximately 256 seconds per iteration. The majority
of this time is dedicated to calculating the center of gravity
of the flexures and iteratively recalculating and reapplying
the self-weight. The results show that if the self-weight of
the joint is negligible, the computation time significantly
decreases to just 18 seconds per iteration. The ten-tetrahedra-
NSW optimization also yielded improved performance, with

a ηdr of 96.6%. However, the results underscore that with
the material properties and pendulum parameters outlined in
Table I, the self-weight of the simulated joint should not
be neglected for accurately calculating deflections. To reduce
total computation time while still accounting for self-weight,
optimization runs could be divided into two stages. The first
stage would optimize random initial variables while neglecting
self-weight, therefore achieving fast results. In the second
stage, these optimized variables would be further refined with
self-weight considerations, requiring few additional iterations
to complete the optimization.

The results show that computation time can also be reduced
by decreasing the number of tetrahedra in the simulated joint.
This reduction lowers the computation time per iteration to 118
seconds and, on average, decreases the number of iterations
required to complete the optimization run, as fewer variables
need to be optimized. The eight-tetrahedra optimization yields
a pendulum balancer which even slightly outperforms the ten-
tetrahedra counterpart with a ηdr of 96.0%. This suggests that
eight tetrahedra still provide sufficient optimizable variables to
create effective pendulum balancers under the given conditions
in the simulation. However, it is important to note that the
deformation of each individual tetrahedron is assumed to be
linear. If a simulated joint consists of few tetrahedra and is
subjected to large deformations, this assumption might lose
its validity. For relatively small deformations, such as ψh ≤
30 degrees, using more than ten tetrahedra in a spherical joint
is generally not recommended, as it does not seem to enhance
performance and significantly increases computation time.
This further supported by the twelve-tetrahedra optimization
result, which performs worse than the ten-tetrahedra version
with a ηdr of 95.5% and has a computation time of 464
seconds per iteration.

Of the five optimizations, the ten-tetrahedra-90x90 opti-
mization was the least successful with its best performing
result scoring a ηdr of 92.0%. A well performing pendulum
balancer for this range of motion should have a rotational
stiffness close to 0 Nm at ψh = 90 degrees, as Mpend is
approximately constant at that point. However as the PEE

points in Figure 24 and 25 indicate, this stiffness profile
could not be found in the ten-tetrahedra-90x90 optimization
for the given conditions and assumptions in the TetraFEM
tool. A better result for this optimization might be achieved
by exploring the possibility of optimizing tmin for individual
tetrahedra, or by investigating the effects of replacing some of
the straight flexures in the simulation with curved flexures or
flexures with a varying width along its length.

With the exception of the ten-tetrahedra-90x90 optimization,
all best performing simulated pendulum balancers exhibit
the shape of a spiral rotating counterclockwise from T1
to Tn. However, this spiral shape is neither imposed by
the boundaries in the TetraFEM simulation nor is it a
prerequisite for well-performing pendulum balancers. Taking
the ten-tetrahedra optimization as an example, the result with
the lowest objective function yields a completely different
shape, but self-intersects in undeformed state and is therefore



not considered to be the best result. The result with the
third lowest scoring objective function for this optimization
is not shaped like a spiral either and does not self-intersect
in undeformed state. However, it’s objective function davg
is higher than the simulated pendulum balancer featured
in Figure 16 and is therefore not mentioned in the Results
section III.

The identified equilibria demonstrate optimal balancing be-
haviour of the prototype at those orientations for a pendulum
with its weights at (Lw)e. The prototype’s average moment
reduction for a pendulum with Lw = 250mm is 90.5%, based
on the identified equilibria, indicating that the prototype is a
fairly effective pendulum balancer for its intended pendulum
and ROM. However, it is important to recognize that no
equilibria were identified for large portions of the intended
ROM, limiting the available data on the prototype’s balancing
performance in these areas. This limitation arises from the
experimental setup used in this study. While a different setup
involving force sensors could capture data across the entire
ROM, as demonstrated in [28], it would also constrain the
joint’s movement and require meticulous calibration for each
measurement. To avoid these complexities, a simpler, non-
invasive measurement setup was selected for this study.

Figure 28 shows that the prototype with a pendulum has
two distinct regions where the majority of equilibria were
found: One region contains only unstable equilibria where
(Lw)e ≈ 250 mm and another region with primarily stable
equilibria where 200 ≤ (Lw)e ≤ 250 mm. The difference
in the prototype’s stiffness between the stable and unstable
region can be attributed to creep, as the prototype was
somewhat compressed during shipment. This compression
has effectively reduced its rotational stiffness in orientations
where ψw ≈ 225 degrees (the stable region) and increased
the stiffness in orientations where ψw ≈ 45 degrees (the
unstable region). Considering the effects of creep, the overall
stiffness of the prototype is somewhat lower than ideal.
This could be due to the effective Young’s modulus of the
prototype’s material being slightly lower than its advertised
tensile modulus of 1700 MPa [37].

The TetraFEM tool validation III-D confirms that the deflec-
tions of the simulated joint in the TetraFEM tool correspond
pretty well to the deflections of the prototype. The ηdr of
89.6% would likely be even higher without the prototype’s
creep and presumably its lower Young’s modulus, as the
TetraFEM tool was the most accurate for equilibria where
(Lw)e ≈ 250 mm.

For future work, the TetraFEM tool could be improved by
incorparating an algorithm to detect self-intersections of the
simulated joint, enabling the application of penalties during
optimization runs. This feature should ideally identify self-
intersections in both the undeformed and deformed states
within the intended ROM, as optimizing a pendulum balancer
for a certain ROM is pointless if it cannot be reached. A
simpler method to prevent self-intersections could involve

adjusting the fixed independent parameter Rin between tetra-
hedra, either gradually or in steps, allowing them to deflect
past each other. Another potential avenue for future research
could involve simulating contact mechanics and using it as
a source of nonlinearity to improve the pendulum balancing
performance of the simulated joint.

For large deflections, the optimizations could yield better
results if tmin is allowed to be optimized for individual
flexures. However, this approach would significantly increase
the number of variables and iterations required per optimiza-
tion run. An alternative approach might involve deliberately
introducing nonlinear behaviour in some of the tetrahedra,
which presents an interesting avenue for future research. This
could result in zero rotational stiffness at ψh ≈ 90 degrees
or even negative rotational stiffness at ψh 90 by replacing
some of the straight flexures with curved or varying-width
flexures. While the TetraFEM tool could still be utilized for
this research, the flexure compliance analysis would need
substantial modifications to account for the changed flexures,
as the current TetraFEM tool assumes the flexures to behave
like Timoshenko beams and with linear deflections.

The prototype can be improved by manufacturing it from
a metal, ideally one with a high Young’s modulus-to-density
ratio. Metals are generally less susceptible to creep and stress
relaxation, which would increase the resemblance between the
prototype and the simulated pendulum balancer, potentially
improving the prototype’s performance. Additionally, if the
material has a high Young’s modulus-to-density ratio, the
self-weight of the prototype might be negligible, leading to
increased computational efficiency in the TetraFEM tool. This
efficiency gain would allow for more optimization runs or
the inclusion of additional variables, likely resulting in better
optimization outcomes and enhanced prototype performance.

Metal prototypes could be manufactured using 3D printing
with titanium alloys or, as a more cost-effective alternative, by
laser-cutting flexures that are manually assembled and fixed
to small intermediate bodies to orient the flexures. In this
latter approach, the flexures would have rectangular rather
than trapezoidal cross-sections, necessitating adjustments to
the flexure compliance analysis within the TetraFEM tool to
accommodate this design change. Addtionally, the compliant
spherical joint will likely exhibit slightly more parasitic motion
of the center of rotation with these flexures [25].

Another approach to counteract the effects of self-weight
and thus improve computational efficiency is the addition of a
second pendulum balancing spherical joint on the lower half
of the sphere. This second balancer should be attached to the
pendulum as well and be a mirrored, but otherwise identical
version of the upper balancer. This setup would cancel out the
moments due to self-weight of the combined mechanism. Self-
intersection can be avoided by selecting pendulum balancers
that only occupy the upper half of the sphere, such as the ten-
tetrahedron result shown in Figure 30. Additionally, adjusting
the parameter Rin, as previously mentioned, could further
help prevent self-intersections. The stiffness of the spherical
joint would double, allowing it to balance a pendulum twice



as heavy. Although this double pendulum balancer might
be challenging to implement in an exoskeleton due to its
dimensions, it remains a promising area for future research.

Fig. 30

V. CONCLUSION

This paper presents the first fully compliant pendulum bal-
ancer with a spherical range of motion. Its design is based on
the Tetra I joint [19], with its geometry optimized for balancing
a certain pendulum. The study includes optimizations under
five different conditions to better understand the potential and
limitations of these pendulum balancers. From one of these
optimizations, the best performing result is 3D printed. This
prototype achieved an average moment reduction of 90.5% in
the regions where equilibria were identified.

Additionally, this paper presents and validates the TetraFEM
tool, an algorithm developed as a computationally efficient
alternative to the currently available FEM-based simulation
software. The TetraFEM tool is used to simulate and optimize
the behaviour of a pendulum balancing spherical joint
consisting of tetrahedra connected in series. The simulated
joint’s deformation corresponds well to the prototype’s
deformation with an accuracy of 89.6%. In this study, the
TetraFEM tool was extensively utilized to quantify the
pendulum balancing performance during optimization runs
and demonstrates potential for similar applications, such as
calculating and optimizing the functional component of a
shoulder exoskeleton.
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A
Literature Report

This appendix presents the literature research performed before the start of the main thesis project.
The review aims to collect and categorize papers in the field of compliant passive gravity balancers.
One of the gaps found in the literature inspired the research performed in the main paper of this thesis.
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Review on Passive Gravity Balancers using
Compliant Mechanisms

Riley Barendse

Abstract—Passively compensating for the gravitational forces
of a mass in a system is traditionally achieved using counter-
weights or linear springs. Recently, some designs emerged that
utilize the strain energy of deflected compliant mechanisms for
gravity balancing. Compliant mechanisms offer several advan-
tages over their rigid linked counterparts, including lower costs,
less weight, reduced bulkiness and the absence of friction, wear
or backlash. Therefore, the utilization of compliant mechanisms
can result in superior gravity balancers, but the literature
on Compliant Passive Gravity Balancers (CPGBs) is currently
limited. This literature review aims to collect and categorize
papers concerning CPGB designs while identifying unexplored
areas within the current literature for future research. The
categorization is based on balancing type and dimensional config-
uration, which are respectively subdivided in level of compliance
and range of motion. Gaps found in the literature are in the
field of pendulum balancers with a spatial range of motion, fully
compliant pendulum balancers with a spherical range of motion
and mass balancers as a whole. Directions for future research in
the latter two gaps are proposed.

Keywords—Passive Gravity Balancing, Compliant Mecha-
nisms, Pendulum Balancers, Mass Balancers

I. INTRODUCTION

For centuries, humans have utilized passive methods to
counteract gravitational loads. One of the simplest techniques
involves using counterweights, a mechanism still widely
used in structures like bascule bridges, elevators, and cranes.
However, a drawback of this approach is the increased mass,
inertia, and volume it introduces to the system [1]. An
alternative method, which avoids the drawbacks associated
with counterweights, is the use of springs to balance weight
[2]. Linear springs have found applications in gravity
balancing for various devices such as desk lamps [3], robot
arms [4, 5] and exoskeletons [6, 7]. While linear springs
effectively compensate for gravitational forces, they fall short
in addressing friction forces within rigid linked systems. The
operating force will need to overcome this friction before
movement in these systems is possible.

Compliant mechanisms gain their motion from the deflection
of elastic members [8] rather than sliding or rolling contact
and can therefore experience zero friction or wear. Among
other advantages, compliant mechanisms can also have less
weight, less assembly parts and reduced or zero backlash [9].
However, the fact that strain energy is stored in a deflected
compliant joint is often undesired as it requires energy to get
the desired motion from the joint and a continuous force is
required to remain in a certain configuration. This phenomenon
can be negated by creating zero stiffness structures [10],

but can also be used to compensate the gravitational forces
acting on the compliant mechanism, creating a passive gravity
balancer with the aforementioned advantages of compliant
mechanisms, including being frictionless. This concept could
be used to make cost-effective passive gravity balancers with
superior performance compared to their traditional rigid-body
counterparts.

Quite some research has been done on classifying
compliant mechanisms: [11] presents a classification of
compliant mechanisms based on deformation behaviour, [12]
categorizes based on functionality, behaviour and structure,
[13] categorizes based on flexure type and [14] classifies
specifically zero stiffness compliant rotary joints based on
type of compliant rotary joint and the zero stiffness working
principle of the mechanism.

The literature on passive gravity balancing has been
reviewed as well: [1] presents a classification of passive
gravity compensators based on balancing mechanism and
[15] classifies based on both the balancing mechanism and
its application. However, utilizing compliant mechanisms
in passive gravity ballancers is not recognized in either the
literature reviews on compliant mechanisms or the reviews
on passive gravity balancers. Despite its great potential, a
literature review on the utilization of compliant mechanisms
in passive gravity balancers is currently lacking. This paper
aims to fill this gap by gathering existing CPGB (Compliant
Passive Gravity Balancer) designs, categorizing them based on
functionality, dimensional characteristics, level of compliance
and range of motion and identifying the unexplored areas in
the current literature for future research

Section II outlines the systematic approach for gathering
relevant literature and explains the criteria for selecting the
papers, followed by the categorization process. Section III will
present the corresponding results and will briefly explain the
contents of the found literature. The method and results will
be interpreted and discussed in section IV and finally section
V will conclude this review and give recommendations for
future research.

II. METHOD

A. Literature search

The literature search was conducted in January 2023 using
the Scopus, Web of Science and TU Delft repository databases.
The author, currently pursuing a Master’s degree at TU Delft,



TABLE I
SEARCH STRING USED IN SCOPUS

AND
AND W/10

OR

Compliant Passive* Gravity Balanc*
Flexure* Static* Weight Stabili*

Shell Assistive Mass Compensat*
”Torsion bar*” Pendulum Equilibrator

”Planar PRE/4 spring*” ”Constant force”
”Constant load”

Publication Year >2003

includes the TU Delft repository as he acknowledges the
relevant research conducted by former students, some of which
may not be found on Scopus or Web of Science.

A search string for the title, keywords or abstract was
developed to systematically find relevant literature concerning
CPGB designs in these three databases. Table II displays
the search string used for the Scopus database incorporating
several operators to retrieve the most relevant literature
as output. Terms with an asterisk represent any word that
contains the preceding part of the term. The ’PRE/4’ Scopus
operator in table II indicates that four words may be present
between ’planar’ and ’spring’ because planar springs are
relevant but may have words like ’compression’, ’extension’
or both separating the two terms. The ’W/10’ Scopus operator
means that only ten words are allowed between the third
and fourth column (or vice versa) to increase the relevance
of the database results. Web of Science lacks a proximity
operators similar to ’PRE/’ and therefore its search string
has both ’PRE/’ and ’W/’ substituted with the ’NEAR/’
operator, which serves the same function as the ’W/’ operator
of Scopus. The repository of TU Delft has no proximity
operators and therefor has ’PRE/4’ and ’W/10’ replaced with
the ’AND’ operator in its search string. Additionally, the
quotation marks around ”Torsion bar*” and ”Planar PRE/4
spring*” were replaced with parentheses as the TU Delft
repository does not seem to recognize the asterisk as a
wildcard when placed between quotation marks. Finally, only
literature published in the last 20 years was considered as
CPGBs are a relatively new concept, and no relevant database
results published prior to 2004 are expected.

B. Criteria

To be included in this review, a paper in the literature search
must meet four conditions. Firstly, the full paper must be
accessible for a TU Delft student, such as the author, without
requiring any additional purchases. Secondly, the system
described in the paper must have a balanced weight, resulting
in the potential energy of the system being (nearly) constant
for its intended (non-zero) range of motion. Thirdly, the
gravity compensation mechanism of the system in the paper
needs to be passive and may not require energy expenditure
for balancing. The fourth and final criterion is that a compliant

mechanism must be included in the gravity compensation
mechanism of the paper. Mechanisms utilizing rubber bands
and helical compression/tension springs can often not be made
monolithically and these components are generally attached
to the mechanism using contact based hinges. Consequently,
rubber bands or helical compression/tension springs do not
suffice as compliant mechanisms for this literature review.
In contrast, flexures, torsion bars, torsion springs, compliant
shells, and planar springs are deemed regarded as compliant
mechanisms in this review.

C. Categorization

The CPGB designs in this review will be labeled either as
a ’Pendulum balancer’ or as a ’Mass balancer’. Pendulum
balancers can primarily rotate the balanced mass over a
nearly constant radius. On the other hand, mass balancers can
translate a balanced mass along a near-straight line parallel to
the force of gravity. Both the pendulum balancers and mass
ballancers are classified as either ”Fully compliant” if all
relevant joints are compliant or ”Partially compliant” if some
traditional rigid-body joints are utilized in the mechanism as
well.

The CPGB designs will also be categorized based on
their dimensional configuration and their (range of) motion.
In this paper a design has a planar configuration if it can be
easily represented with a single two dimensional image, for
example (a planar combination of) planar lumped/distributed
flexures or coil springs. On the other hand, designs with a
spatial configurations extend into three dimensions requiring
a three-dimensional perspective of the design, for example
torsion bars, origami structures or spatial beams. CPGB
designs with a spatial configuration will be further divided
into ”Planar motion,” ”Spherical motion,” and ”Spatial
motion” based on the range of motion of the gravity balancer.

III. RESULTS

The literature search as described in subsection II-A
resulted in 19 papers which met the criteria from subsection
II-B. Four additional papers were found by checking the
references of the most relevant literature and one other paper



Fig. 1. Literature sorting table

is a master thesis received through private communication
from a fellow student who recently graduated. The designs
in the 24 papers are categorised in table 1 as described in
subsection II-C and will be outlined in this chapter.

A. Pendulum balancers - Fully compliant

1) Planar configuration - Planar motion [16, 17]:
Two fully compliant pendulum balancers with a planar
configuration and a planar range of motion were found as a
result of the literature search.

Radaelli designed a fully compliant gravity balancer consisting
of one single complex-shaped beam with constant thickness
[16]. The beam was modeled as a planar isogeometric
Bernoulli beam, had an optimized shape and was clamped
on both ends. The prototype made from a polycarbonate
sheet could successfully balance a substantial weight over an
almost circular arc, as can be seen in figure 2.

Rijff designed a single degree of freedom gravity balancer
where all of the rigid joints were replaced with compliant
joints (torsion springs) [17]. This CPGB uses a four-bar
mechanism with multiple rigid links which are connected by
four compliant torsion springs, as can be seen in figure 3. The
parameters of the links and springs are optimized such that it
maximizes the moment reduction over its range of motion.

2) Spatial configuration - Planar motion [18–20]:
Three fully compliant pendulum balancers with a spatial
configuration a and planar range of motion were found as a
result of the literature search.

Radaelli has used a shape optimization procedure to
create statically balanced mechanisms where the self-weight
of a compliant shell mechanism and an additional payload can
be balanced by the elastic forces of the deforming shell [18].
Two prototypes were made out of PETG thermoplastic sheet

Fig. 2. Polycarbonate beam balancing a weight over its range of motion while
clamped onto a support structure. Retrieved from [16].

material, which showed a good qualitative gravity balancing
match, but not quantitatively. One of these prototypes can be
seen in figure 4.

Rommers proposed a design tool in which hinge lines
with torsional stiffness are used to design passive origami-
like mechanisms [19]. Figure 5 shows the PRBM of the
mechanism which has three hinge lines with each a torsional
stiffness and a point Cm which is constrained in Y-direction.
The angular rotations of the torsional hinge lines can be
written as a function of θjoint to construct the moment curve
of the mechanism. The hinge lines are created by applying
tape between two steel plates in an alternating pattern and



Fig. 3. The four-bar mechanism with rigid links, compliant joints (A,B,C and
D), the end effector (E) and a balanced mass (m). Retrieved from [17].

Fig. 4. One of the compliant shell prototypes. (a) The base during testing.
(b) The loaded shell prototype in maximum deformation. (c) The unloaded
shell. Retrieved from [18].

torsional stiffness is added by clamping torsion bars at both
sides of the hinge lines. One of the example designs presented
in the paper is a gravity compensating joint which could
balance a mass of 0.4 kg between 40 and 120 degrees of
rotation.

Abouheidari did research on the optimization and syntheses
of a gravity-balancing torque-angle profile using a compliant
helicoidal shell mechanism [20]. The mechanisms consist of
several axisymmetric helicoidal shells with parameters such
that its torque profiles match that of a sine function. One
such mechanism is the L-shape design, see figure 6. Although
the FEM shows excellent gravity balancing properties for the
mechanisms, the experimental results illustrate a considerable
difference, perhaps due to the unpredictable behaviour of the
resin material used for production of the prototype.

3) Spatial configuration - Spherical motion: Zero fully
compliant pendulum balancers with a spatial configuration
and a spherical range of motion were found as a result of the
literature search.

Fig. 5. PRBM of the passive origami-like mechanism. Retrieved from [19].

Fig. 6. The optimized L-shape design for a 90-degree gravity balancing profile
including a tool to apply torque on the mechanism. Retrieved and modified
from [20].

4) Spatial configuration - Spatial motion [21]: One fully
compliant pendulum balancers with a spatial configuration
and a spatial range of motion was found as a result of the
literature search.

Nobaveh designed a passive wrist support using two
compliant spatial beams as gravity balancer [21]. It attaches
to the forearm, wrist and hand which are connected by the
spatial beams as can be seen in figure 7. The overall shape
and cross-section dimensions of the spatial beams are attained
using an optimization technique and significantly reduces
the muscle force needed for flexion and extension of the
wrist, while remaining relatively compliant in supination and
pronation direction as well. However, it should be noted that
the range of motion with this wrist support is quite limited
and still requires 30% of the usual muscle force for hand
movement within that restricted range.

Fig. 7. The 3D printed prototype with forearm, wrist and hand support
connected by the spatial beams. Retrieved from [21].



B. Pendulum balancers - Partially compliant

1) Planar configuration - Planar motion [22–30]:
Nine partially compliant pendulum balancers with a planar
configuration and a planar range of motion were found as
a result of the literature search. In order to keep this paper
concise, only two designs will be elaborated on.

Tschiersky designed three different planar flexure springs
which can balance the weight of a forearm in an elbow
orthosis [22]. Set A is monolithic and is optimized for a
constant thickness, Set B is monolithic and is allowed to have
a variable thickness and Set C is a concentric nested version
of Set B, see figure 8. The nested spring design (set C) can
store significantly more elastic energy, compared to Set A
and B, by utilizing the otherwise unused space within the
original spring envelop. All three designs show good gravity
balancing behaviour for 180 degrees of rotation, but are not
fully compliant as a revolute joint is required to counter
parasitic motion when used for gravity balancing.

Fig. 8. From left to right: Set A, Set B, Set C. Retrieved from [22].

Cheng developed a planar two-DOF gravity compensator
for both the upper arm and fore arm [26]. The gravity
compensating effect is provided by two torsional
compliant beams which have a torque profile optimized
for gravity balancing. The design also includes a decoupling
(parallelogram four-bar) mechanism, which can be seen
in figure 9, for isolating the torsional effect between the
linkages. The design shows good gravity balancing behaviour
for 180 degrees in both joints, but is not fully compliant as
several revolute joints are used for the decoupling mechanism
and to counter parasitic motion.

2) Spatial configuration - Planar motion [31–35]:
Five partially compliant pendulum balancers with a spatial
configuration and a planar range of motion were found as
a result of the literature search. In order to keep this paper
concise, only two designs will be elaborated on.

Geerts designed a single degree of freedom arm support
which can balance the weight of a forearm using an optimized
compliant shell mechanism [31]. Thin McKibben muscles are
used in the design additionally as artificial bicep muscles. The

Fig. 9. Experimental setup of the gravity balanced upper arm and forearm
using two torsional compliant beams and a decoupling mechanism. The motors
and sensors in this picture are required for the measurements. Retrieved from
[26].

compliant shell is placed below the elbow as can be seen in
figure 10, and its (simulated) optimized torque profile matches
the desired gravity balancing behaviour for a range of 120
degrees. This CPGB does require a revolute (elbow) joint to
function and is therefore not considered fully compliant.

Fig. 10. The design of the compliant shell mechanism build around the elbow
joint. Retrieved from [31].

Radaelli designed a statically balanced inverted pendulum
using three parallel compliant torsion bars and mechanical
stops [35]. The mechanical stops could engage and disengage
the torsion bars, see figure 11, such that minimal work is
required to rotate the pendulum in the CPGB over a range
of about 90 degrees. The gravity balancing effect works
exceptionally well, but the CPGB is not fully compliant due
to the mechanical stops and revolute joint in the system.

3) Spatial configuration - Spherical motion [36, 37]:
Two partially compliant pendulum balancers with a spatial
configuration and a spherical range of motion were found as
a result of the literature search.



Fig. 11. Picture of the prototype with three (black) torsion bars, mechanical
stops and a inverted pendulum. Retrieved from [35].

Tschiersky has done research on shoulder orthoses by
exploring the use of mechanisms that employ a flexible
element at the back that acts as energy storage, transmission
and part of the load bearing structure [36]. He found the
optimized shape and thickness contribution for the flexure in
several kinematic support conditions. The two clamp-clamp
designs, see figure 12 are the most compliant designs as they
only require one revolute joint for the medial/lateral rotation
of the shoulder.

Fig. 12. Two designs of the clamp-clamp kinematic category positioned in
five different shoulder flexion angles. Reaction moments (blue) and reaction
forces (red) are present in both ends of the flexible element as both ends are
fixed. Retrieved from [36].

Van der Kemp designed a compact arm support to reduce
fatigue in the arms of surgeons during laparoscopic surgery
[37]. This design uses a compliant shell mechanism attached
to a frame on the back and a brace on the bicep, see figure
13. This CPGB reduces the forces required by shoulder
muscles and is very compact and easy to make. However this
arm support only balances for a small portion of the arms
weight and is not fully compliant because of the linear guide
and revolute joint.

Fig. 13. Conceptual design of the arm support for surgeons during laparo-
scopic surgery. Retrieved from [37].

4) Spatial configuration - Spatial motion: Zero partially
compliant pendulum balancers with a spatial configuration and
a spatial range of motion were found as a result of the literature
search.

C. Mass balancers - Fully compliant

1) Planar configuration - Planar motion [38]: One fully
compliant mass balancer with a planar configuration and a
planar range of motion was found as a result of the literature
search.

Chen presented the concept of a weight compensator
which employs a constant-force compliant mechanism
[38]. It is proposed that the design of this CPGB can
be used to compensate the weight of a humanoid robot
when attached to its legs, see figure 14. This passive weight
compensation could greatly improve the dynamic performance
and energy efficiency of the humanoid robot. According to
the calculations in the paper, the weight can be balanced very
well for a large vertical range as long as the gravity force
vector is in line with the base of the lowest flexure.

2) Spatial configuration - Planar motion: Zero fully
compliant mass balancers with a spatial configuration and a
planar range of motion were found as a result of the literature
search.

3) Spatial configuration - Spherical motion: Zero fully
compliant mass balancers with a spatial configuration and
a spherical range of motion were found as a result of the
literature search.

4) Spatial configuration - spatial motion [39]: One fully
compliant mass balancer with a spatial configuration and a
spatial range of motion was found as a result of the literature
search.



Fig. 14. (a) Schematic diagram of a constant-force mechanism balancing a
mass, (b) the corresponding pseudo-rigid-body model (PRBM), (c) implemen-
tation example for a humanoid robot. Retrieved from [38].

Dunning designed a low stiffness six degree of freedom
compliant precision stage [39]. The spatial structure, see
figure 15, is designed such that it cancels out the stiffness of
all six degrees of freedom for a small range of motion. This
CPGB can balance a weight placed on the moving platform
by combining bi-stable buckling beams with v-shaped positive
stiffness beams, but also for a very small range of motion.

Fig. 15. The prototype of the low stiffness six degree of freedom compliant
precision stage. Retrieved from [39].

D. Mass balancers - Partially compliant

No partially compliant mass balancers were found during
this literature search.

IV. DISCUSSION

Table II shows the search string which aims to find all
relevant literature concerning Compliant Passive Gravity
Balancer (CPGB) designs. Therefore it consists of synonyms

or closely related terms for ’compliant’, ’passive’, ’gravity’
and ’balancer’. These terms are combined with operators
and resulted in 19 relevant papers. This leaves room for
improvement as four other papers regarding CPGB designs
[23, 27–29] were found by checking the references of the
most relevant literature. It may be noted that these four papers
all regard partially compliant pendulum balancers with a
planar configuration and planar motion, but this observation is
considered to be coincidental as the category in question also
simply delivered the most results. Removing the words related
to ’passive’ from the search string would prevent overlooking
three out of those four papers and was considered, but would
lead to a copious amount of search results and was therefore
discarded as an option.

From the results in the literature sorting table 1 it can
be obtained that most compliant passive pendulum balancers
have a planar range of motion. This observation is to be
expected as pendulum balancers with a planar motion have
only a single (rotational) degree of freedom over which
to optimize the joints torque profile. Compliant pendulum
balancers with a spherical or spatial range of motion, on
the other hand, demand optimization for multiple degrees
of freedom, resulting in a more intricate shape and a more
complex design process. This complexity, coupled with the
relatively recent emergence of compliant pendulum balancers
as a research field, may account for the fewer CPGB designs
observed in the literature with a spherical or spatial range of
motion.

From table 1 it can also be obtained that generally
more pendulum balancers are partially compliant than fully
compliant. This observation is to be expected as well as
rigid-link revolute joints can be a convenient way to eliminate
parasitic (translating) motion. Fully compliant CPGB designs
however require the compliant joint to have sufficient stiffness
in undesired directions while remaining compliant in the
desired directions. This increases the complexity of the
design problem and can explain why less papers were found
regarding fully compliant pendulum balancers compared to
their partially compliant counterparts.

From table 1 it is evident that very few mass balancers
were identified in this literature search. The absence of
mass balancers can be attributed partially by the criteria
in subsection II-B, as it excludes papers where compliant
constant force mechanisms are used for other means than
compensating a weight. In the majority of cases should a
compliant constant force mechanism be able to balance a
mass, given that the gravitational force acts as a constant
force. This is demonstrated in sources [38, 39], both of which
are consequently added to this literature review. However,
other fully compliant constant force mechanisms [40–45]
and partially compliant constant force mechanisms [46, 47],
designed for purposed other than gravity balancing, have been
excluded based on the specified criteria. Moreover, most of



the designs in these excluded sources only have a very small
range of motion for the constant force mechanism, making
them less interesting as potential mass balancers.

Source [48] requires an online purchase from the author for
access and is therefore excluded from the literature review
according to the criteria outlined in subsection II-B. The
abstract suggests a pendulum balancer with a planar range of
motion, but this cannot be confirmed without access to the
full paper.

Furthermore it is noticeable that a substantial amount
of pendulum balancers (10 out of 21 papers) are designed
as a functional part of an orthoses or support of (part of)
a human arm. This is motivated by people with reduced
muscle strength, like Duchenne Muscular Disease patients,
who could benefit from a weight compensating orthosis
[49]. If integrated in an orthosis, a pendulum balancer can
compensate the weight of a patients hand, lower arm or entire
arm, reducing the muscle forces required for wrist, elbow
or shoulder movements respectively. This support allows the
wearer to regain mobility in the upper extremity limbs and
improve their quality of life.

V. CONCLUSION

This literature review aimes to gather and categorize
existing CPGB designs while identifying unexplored areas
within the current literature for future research. To achieve
this goal a literature search was conducted and the resulting
relevant papers were categorized based on balancing type
and dimensional configuration and subdivided in level
of compliance and range of motion respectively. This
categorization reveals several gaps in the current literature,
offering potential directions for future research. One major
gap in the literature concerns compliant mass balancers with
only a few relevant papers falling within this whole category.
Additionally, two other gaps can be found in the field of
fully compliant pendulum balancers with a spherical range
of motion, which yields zero results, and in the field of
pendulum balancers with a spatial range of motion, which
yields a single (partially compliant) result from the literature
search.

Future research could be directed towards the development
of more mass balancers using compliant constant force
mechanisms. As gravitational force is constant, the conversion
of existing compliant constant force mechanisms into
compliant mass balancers should be relatively simple.
However, currently this principle is not well explored yet and
more research into this area could yield valuable novel designs.

Another interesting topic for future research is the design of
a fully compliant pendulum balancer with a spherical range
of motion. According to the literature search, such a device
is yet to be designed. Two partially compliant counterparts

are obtained from the literature search, both of which are
designed to be the functional part of a shoulder orhtosis.
Both spherical pendulum balancers allow a large range of
motion and possess a remote center of rotation, which are
prerequisites for inclusion in a shoulder orthosis. However,
one of these designs protrudes very far from the body [36]
and the other compensates only a fraction of the weight of
the arm [37]. Additionally, both of these two designs are
only partially compliant and still bear the disadvantages
of rigid linked mechanisms. It seems that the design of a
fully compliant pendulum balancer with a spherical range of
motion could fill a gap in the literature and additionally be
beneficial for people requiring a shoulder orthosis, assuming
it has a sufficient range of motion and a remote centre of
rotation.

A design strategy could be modifying the fully compliant
spherical flexure joint presented by Jelle Rommers [50]. His
design is formed by tetrahedron-shaped elements, each com-
posed of three blade flexures with a trapezoidal shape, that
are connected in series without intermediate bodies, see figure
16. This compliant joint has a remote center of rotation, is
relatively compact, has a large spherical range of motion and
a high translational stiffness, but is not optimized for gravity
balancing. By tweaking the dimensions and angles between the
tetrahedron-shaped elements a gravity balancing torque profile
for this joint could be achievable, but this hypothesis will need
to be validated in future research.

Fig. 16. A fully compliant spherical joint formed by tetrahedron-shaped
elements connected in series. It is subjected to a horizontal load at e, showing
that it rotates about point P with little parasitic motion. Retrieved from [50].
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B
Top 5 Optimization Results

This appendix presents the relevant data of the five optimization results with the lowest objective func-
tion davg for all five seperate optimizations. Unlike the Results section of the main paper, this appendix
includes the self-intersecting results that were previously excluded. Each section corresponds to one
of the optimization conditions and features a table displaying the data of its top 5 simulated pendulum
balancers. This data includes the independent geometric parameters, the number of iterations Niter

needed in the optimization run, the objective function davg and the deformation resemblance ηdr of the
simulated pendulum balancers. The table will also indicate whether the shape of the optimization result
is that of a counterclockwise (CCW) spiral and if it self-intersects in undeformed state.

Finally, it should be noted that equation 61 in the main paper contained a slight error back when the
optimization runs were executed. The tables in this appendix reflect the original davg and ηdr values
of the optimization results, while the values in the Results section of the main paper correspond to the
corrected recalculations. As a result, minor differences may be observed between the data presented
here and in the main paper.

B.1. Ten-tetrahedra optimization

Result #1 Result #2 Result #3 Result #4 Result #5
i α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm)

1 46.18 - 1369.84 16.30 - 1290.61 41.61 - 1428.24 17.52 - 1507.09 60.00 - 1685.07
2 59.50 -71.99 1369.84 27.74 -39.13 1290.61 59.12 18.29 1428.24 49.80 16.88 1507.09 60.00 5.78 1685.07
3 51.26 -63.26 1369.84 56.64 7.83 1290.61 54.78 35.00 1428.24 53.66 31.26 1507.09 51.83 33.46 1685.07
4 47.89 -4.19 1369.84 22.24 -22.22 1290.61 51.72 35.00 1428.24 57.56 -48.48 1507.09 59.31 -6.03 1685.07
5 41.45 -47.44 1369.84 43.66 -44.36 1290.61 33.19 -2.64 1428.24 16.87 -41.85 1507.09 29.96 -20.29 1685.07
6 17.33 29.17 1369.84 43.02 -22.58 1290.61 60.00 -75.58 1428.24 59.99 33.42 1507.09 55.94 24.27 1685.07
7 42.06 -68.77 1369.84 31.80 -38.04 1290.61 59.99 -3.66 1428.24 23.97 -42.56 1507.09 43.17 -3.36 1685.07
8 5.00 -90.00 1369.84 15.71 -40.34 1290.61 40.88 -88.63 1428.24 54.05 -23.04 1507.09 60.00 -20.87 1685.07
9 34.39 -56.54 1369.84 31.40 -83.87 1290.61 53.30 -66.26 1428.24 49.34 -90.00 1507.09 60.00 -45.82 1685.07
10 29.08 -6.16 1369.84 24.23 -2.07 1290.61 5.00 57.01 1428.24 20.70 -24.60 1507.09 60.00 -54.07 1685.07

N_iter 436 201 1000 538 420
d_avg 1.29 mm 1.31 mm 1.49 mm 1.51 mm 1.56 mm
η_dr 95.7% 95.7% 95.1% 95.0% 94.8%

CCW Spiral No Yes No Yes Yes
Intersecting Yes No No No Yes

Table B.1: Top 5 results of the ten-tetrahedra optimization
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B.2. Ten-tetrahedra-NSW optimization

Result #1 Result #2 Result #3 Result #4 Result #5
i α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm)

1 14.76 - 1116.23 59.99 - 1640.97 33.84 - 1063.24 60.00 - 1477.625 60.00 - 1650.94
2 23.83 -36.70 1116.23 37.63 -71.15 1640.97 24.30 -7.19 1063.24 41.56 -73.77 1477.625 45.96 -89.94 1650.94
3 30.01 -63.14 1116.23 37.17 34.70 1640.97 28.95 -10.39 1063.24 26.75 -16.54 1477.625 60.00 -69.99 1650.94
4 37.56 -53.14 1116.23 59.98 -27.17 1640.97 19.82 -46.91 1063.24 35.84 -16.01 1477.625 59.96 -19.87 1650.94
5 43.37 -25.45 1116.23 59.87 31.80 1640.97 45.29 -29.06 1063.24 59.71 -17.55 1477.625 59.73 32.49 1650.94
6 48.49 -68.31 1116.23 40.74 -69.91 1640.97 35.44 -68.09 1063.24 19.46 -27.66 1477.625 60.00 -54.71 1650.94
7 13.77 -0.41 1116.23 56.63 34.88 1640.97 7.91 4.14 1063.24 24.62 -37.49 1477.625 50.81 29.27 1650.94
8 35.93 -52.46 1116.23 18.85 34.87 1640.97 12.62 -22.85 1063.24 44.88 13.89 1477.625 40.34 35.00 1650.94
9 16.71 -71.77 1116.23 48.63 34.90 1640.97 9.46 -37.30 1063.24 49.90 34.28 1477.625 60.00 35.00 1650.94
10 32.33 -51.83 1116.23 46.12 14.96 1640.97 37.62 -79.12 1063.24 53.90 35.00 1477.625 11.68 -9.76 1650.94

N_iter 387 550 315 203 342
d_avg 1.01 mm 1.01 mm 1.02 mm 1.05 mm 1.07 mm
η_dr 96.7% 96.7% 96.6% 96.5% 96.5%

CCW Spiral Yes No Yes No No
Intersecting Yes Yes No No No

Table B.2: Top 5 results of the ten-tetrahedra-NSW optimization

B.3. Eight-tetrahedra optimization

Result #1 Result #2 Result #3 Result #4 Result #5
i α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm)

1 21.67 - 1173.48 34.61 - 1454.02 56.50 - 1505.91 52.86 - 1514.06 60.00 - 1616.91
2 35.42 -9.36 1173.48 33.66 -31.66 1454.02 58.90 -16.49 1505.91 59.61 -40.06 1514.06 46.53 32.97 1616.91
3 40.72 0.39 1173.48 54.38 16.57 1454.02 60.00 -59.80 1505.91 56.31 -40.47 1514.06 56.89 -66.51 1616.91
4 43.16 -54.16 1173.48 59.91 -7.84 1454.02 59.99 -27.87 1505.91 60.00 16.96 1514.06 59.63 34.96 1616.91
5 51.03 -55.14 1173.48 56.11 -35.69 1454.02 59.72 12.60 1505.91 60.00 -37.99 1514.06 60.00 -18.44 1616.91
6 24.32 -5.64 1173.48 59.38 -19.57 1454.02 60.00 -58.93 1505.91 59.98 -41.33 1514.06 60.00 -16.75 1616.91
7 27.49 -89.67 1173.48 39.17 -76.59 1454.02 49.02 -57.81 1505.91 37.53 -88.66 1514.06 60.00 -46.74 1616.91
8 41.88 -64.76 1173.48 48.47 -71.01 1454.02 51.36 -89.97 1505.91 32.85 -26.44 1514.06 60.00 -71.78 1616.91

N_iter 261 819 824 482 228
d_avg 1.24 mm 1.29 mm 1.40 mm 1.42 mm 1.50 mm
η_dr 95.9% 95.7% 95.4% 95.3% 92.0%

CCW Spiral Yes Yes Yes Yes Yes
Intersecting No No Yes No Yes

Table B.3: Top 5 results of the eight-tetrahedra optimization
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B.4. Twelve-tetrahedra optimization

Result #1 Result #2 Result #3 Result #4 Result #5
i α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm)

1 12.60 - 1104.33 48.65 - 1380.13 18.11 - 1451.10 60.00 - 1644.96 26.90 - 1057.00
2 18.17 0.06 1104.33 20.23 13.39 1380.13 14.68 -21.12 1451.10 59.80 -3.02 1644.96 8.79 -21.33 1057.00
3 15.23 -6.76 1104.33 17.76 -46.17 1380.13 49.96 -45.38 1451.10 34.75 -78.85 1644.96 33.47 -49.38 1057.00
4 30.88 -26.59 1104.33 44.00 -10.09 1380.13 56.04 -70.66 1451.10 59.59 -89.74 1644.96 23.21 -55.92 1057.00
5 53.92 -89.37 1104.33 5.00 15.28 1380.13 60.00 -80.64 1451.10 43.49 8.96 1644.96 5.06 16.76 1057.00
6 17.24 -29.94 1104.33 7.57 -25.44 1380.13 41.35 -6.15 1451.10 54.10 -48.43 1644.96 8.36 -25.11 1057.00
7 7.18 -34.97 1104.33 30.88 3.39 1380.13 58.26 -43.49 1451.10 33.62 26.08 1644.96 42.00 -40.92 1057.00
8 15.34 -11.14 1104.33 59.91 -62.02 1380.13 26.69 -31.45 1451.10 33.72 -32.78 1644.96 25.73 -25.83 1057.00
9 36.96 -1.04 1104.33 17.71 -1.54 1380.13 24.27 21.49 1451.10 47.66 -44.84 1644.96 32.06 -88.27 1057.00
10 41.61 -71.67 1104.33 18.20 -55.28 1380.13 37.82 -70.63 1451.10 22.71 12.15 1644.96 26.68 35.00 1057.00
11 17.29 -55.15 1104.33 20.43 -9.00 1380.13 17.72 -23.54 1451.10 12.59 -62.91 1644.96 7.37 -70.07 1057.00
12 35.24 -74.30 1104.33 55.09 -85.95 1380.13 52.24 -90.00 1451.10 55.61 -88.84 1644.96 39.23 -84.09 1057.00

N_iter 433 232 354 439 237
d_avg 1.26 mm 1.37 mm 1.45 mm 1.54 mm 1.61 mm
η_dr 95.8% 95.5% 95.2% 94.9% 94.7%

CCW Spiral Yes Yes No No Yes
Intersecting Yes No Yes Yes Yes

Table B.4: Top 5 results of the twelve-tetrahedra optimization

B.5. Ten-tetrahedra-90x90 optimization

Result #1 Result #2 Result #3 Result #4 Result #5
i α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm) α (deg) γ (deg) t_min (µm)

1 60.00 - 1512.45 60.00 - 1630.33 60.00 - 1634.48 60.00 - 1583.53 28.98 - 1341.03
2 59.64 35.00 1512.45 58.78 -50.69 1630.33 59.96 -7.88 1634.48 59.87 13.15 1583.53 28.47 -37.09 1341.03
3 60.00 34.32 1512.45 51.31 33.59 1630.33 52.95 -28.97 1634.48 56.06 -29.95 1583.53 41.61 -63.82 1341.03
4 58.53 -20.51 1512.45 59.88 -21.98 1630.33 59.62 27.73 1634.48 47.78 -66.04 1583.53 36.11 22.19 1341.03
5 37.27 -88.57 1512.45 59.58 -2.32 1630.33 59.91 -26.47 1634.48 60.00 25.09 1583.53 59.97 -40.39 1341.03
6 31.56 35.00 1512.45 59.51 -11.59 1630.33 59.91 35.00 1634.48 59.37 26.82 1583.53 34.77 -11.63 1341.03
7 58.09 35.00 1512.45 56.88 26.32 1630.33 59.81 -28.11 1634.48 56.93 -53.14 1583.53 52.18 -41.53 1341.03
8 46.87 27.55 1512.45 60.00 -47.11 1630.33 51.07 -19.29 1634.48 42.10 17.59 1583.53 59.79 -26.66 1341.03
9 25.18 35.00 1512.45 59.92 -17.84 1630.33 57.86 -5.92 1634.48 60.00 -49.90 1583.53 19.26 31.62 1341.03
10 47.26 -8.37 1512.45 60.00 -55.19 1630.33 60.00 -72.33 1634.48 60.00 -40.42 1583.53 48.50 31.95 1341.03

N_iter 284 347 679 569 295
d_avg 10.78 mm 10.97 mm 10.99 mm 11.01 mm 11.02 mm
η_dr 92.0% 91.8% 91.8% 91.8% 91.8%

CCW Spiral No Yes Yes Yes No
Intersecting No Yes Yes Yes Yes

Table B.5: Top 5 results of the ten-tetrahedra-90x90 optimization



C
Global minimum analysis

This appendix showcases the lack of resemblance among the 50 optimization run results of the eight-
tetrahedra optimization, suggesting that a global minimum is not likely reached. The eight-tetrahedra
optimization is chosen for this analysis due to its relatively small number of variables, maximizing the
likelihood of obtaining similar results.

Table C.1 lists the 50 optimization results. While all davg values in the table are unique, the objective
functions of number 13, 20, 40 and 47 are fairly close to 14, 21, 41 and 48 respectively. The tmin values
of these optimization results are listed in Table C.2, allowing for comparison with the results that have
similar objective functions. The table reveals that all four comparisons exhibit significant differences in
tmin values, indicating that they do not correspond to similar local minima. Consequently, it is unlikely
that Number 1 represents the global minimum.
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Number davg (mm) Number davg (mm)

1 1.24 26 3.13

2 1.29 27 3.16

3 1.40 28 3.20

4 1.42 29 3.31

5 1.50 30 3.40

6 1.55 31 3.62

7 1.56 32 3.70

8 1.61 33 3.77

9 1.66 34 3.97

10 1.67 35 4.14

11 1.77 36 4.22

12 1.83 37 4.40

13 1.94 38 4.41

14 1.95 39 4.53

15 1.97 40 4.64
16 2.00 41 4.65
17 2.10 42 4.78

18 2.37 43 4.81

19 2.49 44 5.19

20 2.60 45 5.27

21 2.61 46 5.34

22 2.76 47 5.41
23 2.91 48 5.42
24 2.94 49 5.57

25 3.10 50 6.45

Table C.1: The results of the eight-tetrahedra optimization runs.

Number tmin (µm)

13 1388.03
14 1550.49

20 1539.81
21 1392.33

40 1199.38
41 1204.19

47 1033.85
48 1173.60

Table C.2: The tmin values of the results with similar objective functions.



D
Sensitivity Analysis

This appendix presents a sensitivity analysis focused on the Young’s modulus and the torsional con-
stant of the simulated joint.
The results from the prototype’s validation test suggest that the prototype is generally too compliant,
as most equilibria were found for (Lw)e < 250 mm. A likely explanation for this discrepancy is a lower
effective Young’s modulus of the material than the advertised tensile modulus of 1700 MPa. Another
possible factor could be a difference between the simulated torsional constants and the true torsional
constants, as equation 21 in the main paper assumes the flexure’s cross-section to be a spherical
segment instead of a trapezoid. To investigate these two hypotheses, two sensitivity analyses are
performed using the conditions and Pgoal points from the TetraFEM validation test as described in sub-
section III-D.

D.1. Young's modulus

The deformation resemblance ηdr between the simulated joint and the prototype is calculated for 10
different Young’s modulus values between 0.8·E and 1.2·E. The result of this sensitivity analysis is
shown in figure D.1.

The figure shows a significant increase in deformation resemblance around E = 1.52 GPa, reinforcing
the presumption of a lower effective Young’s modulus of the prototype’s material. Figure D.2 shows
the deflected PEE points of the simulated joint used in the TetraFEM validation, similar to Figure 29
of the main paper, but with a Young’s modulus of 1520 MPa instead of 1700 MPa. The deformation
resemblance here is 92.4% (instead of 89.6%) and this improvement is visible in the figure as well.

D.2. Torsional constant

The deformation resemblance ηdr between the simulated joint and the prototype is calculated for 10
different multipliers of the torsional constant (Jmult) with values between 0.5 and 1.5. The result of this
sensitivity analysis is shown in figure D.3.

The figure shows a (almost) constant deformation resemblance, suggesting that the torsional constant
of a single flexure has negligible impact. This is a logical conclusion as the torsional stiffness of a
flexure in a tetrahedron element is mainly gained from the other two flexures.
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Figure D.1: E vs ηdr sensitivity analysis.

Figure D.2: The TetraFEM validation result for E=1.52GPa.
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Figure D.3: Jmult vs ηdr sensitivity analysis



E
Calculations Flexure AB

The calculations related to the AB and BC flexures are largely left out of the main paper to prevent
redundancy and to keep the Method section as concise as possible. Since flexures AB and AC are
identical in shape and size, differing only in orientation, this appendix focuses exclusively on flexure
AB. Here, the relevant equations for calculating the geometry, self-weight properties and compliance
matrices of flexure AB are listed and briefly explained.

E.1. Geometry of flexure AB

The geometry of the AB flexure is fairly similar to that of the AC flexure, rotated counterclockwise by
ϕ (see Figure E.1). The main differences are in the length of the flexure and AC is symmetric in two
planes, while the AB flexure is only symmetric in one plane.

Defining orientation of frame ABa:
Angle ϕ can be calculated using the formula below:

ϕ = arctan
(

tan(β)
sin (α/2)

)

Figure E.1: A view perpendicular to edge a of Ti, showing the definition of parameter ϕ.
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Figure E.2: A view perpendicular to ZAB_a, showing the geometry and relevant coordinate systems of flexure AB.

The rotation matrix defining frame ABa can be determined with angle ϕ:

AB_aRAC_a =


cos(ϕ) 0 sin(ϕ)

0 1 0

− sin(ϕ) 0 cos(ϕ)


Defining orientation of frame ABl:
ABl is the local coordinate system of flexure AB and can be related to ABa with the rotation matrix
below:

AB_lRAB_a =


cos(δθ) − sin(δθ) 0

sin(δθ) cos(δθ) 0

0 0 1

 ,
Defining orientation of frame ABb:
With frame ABa and θ (see Figure E.2), the rotation matrix defining frame ABb can be determined:

AB_bRAB_a =


cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 ,
where θ is the angle between the position vectors rPO/P_a3 and rPO/P_b3. These two position vectors
are defined in frame ACa as:

AC_arPO/P_a3 =


0

Rin

0

 ,

AC_arPO/P_b3 =


0

Rin_m cos(α)
Rin_m tan(β)

 .
With these two position vectors, θ can be calculated using the dot product formula:
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θ = arccos

(
AC_arPO/P_a3 ·AC_a rPO/P_b3

∥AC_arPO/P_a3∥∥AC_arPO/P_b3∥

)

Determine position of pointMb:
Parameter RMb needs to be calculated to determine the position ofMb (see Figure E.2):

RMb = ∥rPO/P_b1 − rP_b1/P_b3 ·
tmax + 2tmin

3(tmax + tmin)
∥,

where

AC_arPO/P_b1 =


0

(Rin_m +Rw_m) cos(α)
(Rin_m +Rw_m) tan(β)


AC_arP_b1/P_b3 =AC_a rPO/P_b3 −AC_a rPO/P_b1

Finally, the position vector ofMb from point PO is:

AB_brPO/M_b =


0

RMb

0

 .

Determine position of point Ml_AB: Parameter RM_AB needs to be calculated to determine the
position of local pointMl_AB (see Figure E.2):

RM_AB =
RM90

cos(θ3 − δθ)
,

where
RM90 = cos(θ3)RMo

θ3 =
π

2
− θ2

where θ2 (see Figure E.2) is the angle between position vectors rP_a3/PO
and rP_a3/P_b3, which can be

defined using the equations below:
rP_a3/PO

= −rPO/P_a3

rP_a3/P_b3 = rPO/P_b3 − rPO/P_a3

With these two position vectors, θ2 can be calculated using the dot product formula:

θ2 = arccos

(
AC_arP_a3/PO

·AC_a rP_a3/P_b3

∥AC_arP_a3/PO
∥∥AC_arP_a3/P_b3∥

)

Finally, the position vector ofMl_AB from point PO is:

AB_lrPO/M_l_AB =


0

RM_AB

0

 .
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Figure E.3: A view perpendicular to ZAB_a, highlighting the parameters and coordinate system related to the self-weight of
flexure AB.

E.2. Mass parameters of flexure AB

Flexure AB has the shape of a chopped-off pyramid, similar to flexure AC. The calculations for flexure
AB’s mas and center of gravity (COG) therefore show many similarities to those in subsection II-B.

Calculating mass mAB:
The volume of the large pyramid V1_AB and the small chopped-off part of the pyramid V3_AB of flexure
AB can be calculated with the equations below:

V1_AB =
tmaxLa1b1 cos(θ3)(Rin +Rw)

3

V3_AB =
tminLa3b3 cos(θ3)Rin

3

where
La3b3 = ∥rPO/P_b3 − rPO/P_a3∥

La1b1 = ∥rPO/P_b1 − rPO/P_a1∥

ABarPO/P_a1 =


0

Rin +Rw

0

 .
The mass of flexure AB can be calculated with these two volumes and the density of the material:

mAB = ρ(V1_AB − V3_AB)

Determine position of point COGAB:
The orientation of frame ABcog and parameter RAB_cog (see Figure E.3) need to be calculated to de-
termine the position of COGAB . The rotation matrix relating frame ABcog to ABa equals:

AB_cogRAB_a =


cos(θcog) − sin(θcog) 0

sin(θcog) cos(θcog) 0

0 0 1

 ,
where it is assumed that θcog ≈ θ/2. Parameter RAB_cog is calculated using the formula below:

RAB_cog =
R90_cog

cos(θcog − θ3)
,
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where R90_cog is the distance between PO and a line that intersects COGAB and is parallel to vector
rP_a3/P_b3 (see Figure E.3). R90_cog is calculated with the equation below:

R90_cog =
3(V1_AB(Rin +Rw) cos(θ3)− V3_ABRin cos(θ3))

4(V1_AB − V3_AB)

Finally, the position vector of COGAB from point PO is:

AB_cogrPO/COG_AB =


0

RAB_cog

0

 .

E.3. Flexure Compliance Analysis of flexure AB

The flexure compliance analysis for flexure AB is very similar to that of flexure AC, which is described
in section II-C1 of the main paper. The same general formulas apply, only with some different param-
eters, which are calculated in the two previous sections of this appendix. The formulas below are the
equations from section II-C1, but rewritten for flexure AB, resulting in its compliance matrix.

AB_lK = Diag[EAx, byGAx, bzGAx, GJ,EIy, EIz]

Rw_M_AB =
Rw

cos(θ3 − δθ)

Ax =
tmax + tmin

2
·Rw_M_AB

Iy =
Rw_M_AB(tmin + tmax)(t

2
min + t2max)

48

Iz =
R3

w_M_AB(t
2
min + 4tmaxtmin + t2max)

36(tmax + tmin)

J =
2

3
sin3(ηAB)(R

4
out_M_AB −R4

in_M_AB)− 16 sin4(ηAB)(VL_ABR
4
out_M_AB + VS_ABR

4
in_M_AB)

VL_AB = 0.10504− 0.2 sin(ηAB) + 0.3392 sin2(ηAB)− 0.53968 sin3(ηAB) + 0.82448 sin4(ηAB),

VS_AB = 0.10504 + 0.2 sin(ηAB) + 0.3392 sin2(ηAB) + 0.53968 sin3(ηAB) + 0.82448 sin4(ηAB).

Rin_M_AB =
Rin

cos(θ3 − δθ)

Rout_M_AB = Rin_M_AB +Rw_M_AB

ηAB = arctan
( tmin

2Rin_M_AB

)
AB_bC =

∫
l

AB_lT T
AB_b ·AB_l K−1 · AB_lTAB_b · dl.

AB_lTAB_b =

 AB_lRAB_b 0

AB_lr̃M_b/M_l_AB · AB_lRAB_b
AB_lRAB_b


AB_lRAB_b =

AB_lRAB_a · AB_aRAB_b,

AB_lRAB_a =


cos(δθ) − sin(δθ) 0

sin(δθ) cos(δθ) 0

0 0 1

 ,
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AB_aRAB_b =


cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1


AB_lr̃M_b/M_l_AB =

 0 −vAB [2] vAB [1]

vAB [2] 0 −vAB [0]

−vAB [1] vAB [0] 0


vAB =AB_l rM_b/M_l_AB

AB_lrM_b/M_l_AB =AB_l rPO/M_l_AB −AB_l rPO/M_b

dl = RM_AB · dδθ

RM_AB = RMo
cos(θ3)

cos(θ3 − δθ)

f(δθ) =
AB_l T T

AB_b ·AB_l K−1 · AB_lTAB_b ·RM_AB

AB_bC ≈ θ

N

(f(0)
2

+

N−1∑
K=1

(
f
(K · θ

N

)
+
f(θ)

2

))
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Processing Data of the Experiment

This appendix elaborates on how the positions and orientations of the pendulum in equilibria were
determined. Although it is not the focus of this appendix, it may be noted that the data on the limits
in range of motion due to self-intersection (illustrated in Figure 28 of the main paper) is captured and
processed in the same way.
As described in subsection II-E, two phones are fixed to the experimental setup to capture the position
and orientation of the pendulum rod. The phones were left recording during the experiment and an
assistant would swing her hands in front of both cameras if an equilibrium was found. As 61 equilibria
were identified and captured in about two hours, this method was quite efficient, but requires some
processing to obtain useful data. Processing the data can be divided in four steps:

• Find and screenshot equilibria
• Marking pixels
• Obtaining the translation and orientation of the pendulum rod
• Calculating the position of the PEE-indicator

F.1. Find and screenshot equilibria

The first step is achieved by playing the recorded videos on two separate screens, one for the camera
facing a steel plate in the background and one for the camera facing a transparent PMMA plate in the
background. The videos are paused just before the assistant’s hand would cover the cameras lens.
After that, a screenshot of both screens is taken, resulting in an image such as Figure F.1. This single
image shows two perpendicular angles of the position and orientation of the balanced pendulum.

F.2. Marking pixels

The second step involves importing the screenshot in paint.net and marking three pixels along the
central axis of both pendulum rods. The location of these pixels will be used in the next step to calculated
the orientation of the pendulum. The lowest of the three marked pixels should be on the PO-indicator,
such that it can be used to quantify the parasitic translation of the pendulum as well.
In the first screenshot of a video, the position of the fixed reference point and the direction of gravity
need to be calibrated. Therefore, the top and bottom of the fixed reference point are marked, as well
as three points along one of the gravity indicators (see Figure F.2). In the next screenshots these
calibration markings are not required as long as the cameras remain fixed in the setup.

47
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Figure F.1: A screenshot of both paused videos, showing two perpendicular projected views of the balanced pendulum. The
upper screen has a transparent PMMA plate in the background and the lower screen a steel plate.
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Figure F.2: A zoomed-in view of the upper (PMMA) screen showing two red marked pixels on the fixed reference point, three
on the pendulum’s central axis and one on a gravity indicator (two markings on the gravity indicator are located outside of this

view).
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F.3. Obtaining the translation and orientation of the pendulum rod

The three pixels on the gravity indicator are used to determine the direction of gravity in both projected
views captured in the screenshot. This information quantifies the tilt angle under which the cameras
recorded the video which is then factored into subsequent calculations to correct for this imperfection.
Similarly, the three pixels on the central axis of the pendulum are used to determine the pendulum’s
angle in both projected views. These captured angles are then used to calculate the ψh and ψw angles.
The parasitic motion is assessed using the marked PO-indicator and the fixed reference point. The
fixed reference point has a height of exactly 5mm and, in undeformed state, the PO-indicator should
be exactly 5mm above the top of the fixed reference point. By counting the pixels between the top and
bottom markings, the size of a pixel in millimeters can be determined, allowing the translation of the
PO-indicator to be calculated.

F.4. Calculating the position of the PEE-indicator

The PEE-indicator is not always visible in the screenshots and is positioned relatively far away from
the fixed reference point. Calculating its position directly using the known pixel-size in millimeters is
therefore either not possible or prone to large errors. However, the location of the PEE-indicator can
still be calculated with the previously obtained translation of the PO-indicator and the calculated ψh and
ψw angles of the pendulum. Since the distance between the PEE and PO indicators is fixed and known
as RMo, this information allows for an accurate calculation of the PEE indicator’s position.



G
Shell Scrips

This appendix presents one of the shell scripts used to submit a parallel job to the PME cluster of
the DelftBlue supercomputer. The script instructs the ’BBO3_tien_tetras.py’ file (the TetraFEM code
specifically for the ten_tetrahedra optimization) to run simultaneously on 25 cores of a single node, with
the results being saved to a text file named ’Results_BBO3_tien_tetras.log’. Since most nodes on the
supercomputer have fewer than 50 cores, each parallel job was submitted twice to achieve the desired
50 optimization runs.

The shell scripts for the other optimizations differ only in walltime (expected maximum computation
time), TetraFEM configuration, directory name and job name. As these differences are minor, they are
not included in this appendix.

1 #!/bin/sh
2 #
3 #PBS -N BBO3_tien_tetras2
4 #PBS -l nodes=1:ppn=25,walltime=80:00:00
5 #PBS -q pme
6 #PBS -
7 #PBS -m bea
8

9 seq 25 | parallel -j 25 python ~/BBO3/Tien_tetras/BBO3_tien_tetras.py >> ~/BBO3/
Tien_tetras/Result_BBO3_tien_tetras.log
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H
TetraFEM Code

This appendix contains the TetraFEM algorithm written in Python. The code can be divided in 3 parts:
Importing Libraries, Defining Functions and Control Panel. As the code itself contains few comments,
a brief description of these 3 parts will be provided in this appendix.

H.1. Importing Libraries

The first and shortest part of the code is responsible for importing several libraries. These libraries are
mainly required for mathematical calculations (numpy and sympy), plotting (matplotlib and mpl_toolkits)
and optimizing (scipy).

H.2. Defining Funtions

The second and largest part of the code is responsible for defining the 23 functions of the TetraFEM
tool. Table H.1 may help the reader understand the TetraFEM tool by providing a short description of
each function and relating them to a section, figure or equation of the main paper or appendix.

H.3. Control Panel

The third part of the code lists the input of the TetraFEM algorithm. It contains:

• The amount of tetrahedra in the simulated joint
• All parameters from Table I
• Amount of self-weight iterations
• Parameters determining the evenly distributed Pgoal points
• Data on the prototype’s identified equilibria
• All boundaries from Table II
• The simulated joint’s independent geometric parameters

Additionally, the Control Panel allows the user to choose between testing the simulated joint, validating
the prototype, validating the TetraFEM tool itself or performing an optimization run.
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Name function Short description (Mainly) relates to:

Geometric_calculations1 Calculates the weight and geometric parameters of flexure AC + calculates β. Subsection II-B

Ref_frames_and_points1 Defines frames and points of flexure AC and points related to the tetrahedron. Subsection II-B

Geometric_calculations2 Calculates the weight and geometric parameters of flexures AB and BC. Appendix E

Ref_frames_and_points2 Defines frames and points of flexures AB and BC. Appendix E

T_matrix_calculator Calculates the transformation matrix given two points and two frames. Eq. 26, 35, 36, 54 and 57

C_matrix_calculator Calculates the compliance matrix of a flexure. Subsubsection II-C1

C_matrix_ref_transformer Transforms a compliance matrix to a different frame and point. Eq. 37 and 38

sym_to_num_nonscalar Changes a parameter from symbolic to numerical. Eq. 34

Tetra_calculations Uses the previous functions to calculate the tetrahedron’s compliance matrix. Subsubsection II-C2

Joint_calculations_slow Loops Tetra_calculations n times and captures all relevant data. Subsubsection II-C2

calculate_point_coords Returns the coordinates of a point. Fig. 16-26, 28, 29

tetra_plotter Plots the flexures of a tetrahedron as (projected) planes. Fig. 16-26, 28, 29

colour_point Returns the color of a PEE -indicator point based on its moment error. Fig. 28, 29

prototype_val_plotter Plots the points, ROM, colorbars and disk in Fig. 28 of the main paper. Fig. 28

TetraFEM_val_plotter Plots the Pgoal points and the colorbar in Fig. 29 of the main paper. Fig. 29

Joint_Sphere_plotter Plots the figures, Pgoal points (except for Fig. 29) and PEE points. Fig. 16-26, 28, 29

radius_calc Calculates RMo. Eq. 7

P_goal_calculator Calculates the coordinates of the evenly distributed Pgoal points. Subsubsection II-C4

deflection_function Calculates the deflection of the simulated joint. Subsubsection II-C3

deflection_function_nsw Calculates the deflection of the simulated joint, neglecting its self-weight. Subsubsection II-C3

Def_EE_calc Executes deflection_function for evenly spaced Pgoal points + calculates savg . Subsubsection II-C4

Def_EE_calc_TetraFEM_val Executes deflection_function for the PEE -indicator points + calculates savg . Subsubsection II-C4

Pendulum_test Uses the previous functions to calculate davg + the total calculation time. Subsubsection II-C4

Table H.1: A short description of the 23 functions in the TetraFEM tool.
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H.4. Python Code
1

2 globals().clear()
3

4 ### IMPORTING LIBRARIES ###
5

6 import sympy as sm
7 import sympy.physics.mechanics as me
8 import matplotlib.pyplot as plt
9 from mpl_toolkits.mplot3d import Axes3D, art3d
10 from mpl_toolkits.mplot3d.art3d import Poly3DCollection
11 from sympy.matrices import block_collapse
12 import numpy as np
13 from collections import namedtuple
14 import time
15 from scipy import optimize
16 from matplotlib import colors as mcolors
17 from mpl_toolkits.axes_grid1.inset_locator import inset_axes
18

19

20 ### DEFINING FUNCTIONS ###
21

22 def Geometric_calculations1(alpha_d, gamma_d, t_min, R_in, R_w, n_samples , E, G,
density):

23

24 #From degrees to radians:
25 alpha = alpha_d/180*np.pi
26 gamma = gamma_d/180*np.pi
27

28 #Calculate maximum thickness
29 t_max = ((R_in+R_w)/R_in)*t_min
30

31 #AC flexure parameters
32 R_out = R_in+R_w
33 R_Mo = R_out - R_w*(t_max+2*t_min)/(3*(t_max+t_min))
34 R_Mm_AC = R_Mo*np.cos(alpha/2)
35 R_in_m_AC = R_in*np.cos(alpha/2)
36 R_w_m_AC = R_w*np.cos(alpha/2)
37 R_out_m_AC = R_out*np.cos(alpha/2)
38

39 L_a1c1 = 2*np.sin(0.5*alpha)*(R_out)
40 L_a2c2 = 2*np.sin(0.5*alpha)*(R_in+0.5*R_w)
41 L_a3c3 = 2*np.sin(0.5*alpha)*(R_in)
42

43 #Calculate mass stuff
44 Mass_AC = density*(L_a1c1*t_max*R_out_m_AC - L_a3c3*t_min*R_in_m_AC)/3
45 V_AC_1 = t_max*L_a1c1*R_out_m_AC/3
46 V_AC_3 = t_min*L_a3c3*R_in_m_AC/3
47 R_AC_1 = 3*R_out_m_AC/4
48 R_AC_3 = 3*R_in_m_AC/4
49 R_AC_com = (R_AC_1*V_AC_1-R_AC_3*V_AC_3)/(V_AC_1-V_AC_3)
50

51 #Calculating optimal beta:
52 poisson = E/(2*G)-1
53 L_a2c2 = 2*np.sin(0.5*alpha)*(R_in+0.5*R_w)
54 H = 0.5*((4*L_a2c2**4 + (48*L_a2c2**2*R_w_m_AC**2*(poisson+1))/5)**0.5 +

L_a2c2**2 + (12*R_w_m_AC**2*(poisson+1))/5)**0.5
55 beta = np.arctan(H/(R_in_m_AC+R_w_m_AC/2))
56

57 #AB-BC flexure paramater
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58 phi = np.arctan(np.tan(beta)/np.sin(alpha/2)) #Formule bepaald aan hand
van reverse engineering

59

60 #Delta_alpha numerical values:
61 delta_alpha = np.linspace(0, alpha,n_samples ,endpoint=True).transpose()
62

63 return alpha, beta, gamma, phi, t_min, t_max, R_in, R_w, R_out, R_Mo,
R_Mm_AC, R_in_m_AC , R_w_m_AC , R_out_m_AC , delta_alpha , Mass_AC,
R_AC_com

64

65

66 def Ref_frames_and_points1(T0, P_O, alpha, delta_alpha , beta, gamma, phi, R_Mo,
R_Mm_AC, R_in, R_out, R_in_m_AC , R_out_m_AC , R_AC_com):

67 #Introduce the Reference frames
68 AC_a = me.ReferenceFrame('AC_a')
69 AC_c = me.ReferenceFrame('AC_c')
70 AC_l = me.ReferenceFrame('AC_l')
71 AC_m = me.ReferenceFrame('AC_m')
72 AB_a = me.ReferenceFrame('AB_a')
73

74 #Orient the Reference frames
75 AC_a.orient_axis(T0, -gamma, T0.y)
76 AC_c.orient_axis(AC_a, -alpha, AC_a.z)
77 AC_l.orient_axis(AC_a, -delta_alpha , AC_a.z)
78 AC_m.orient_axis(AC_a, -alpha/2, AC_a.z)
79 AB_a.orient_axis(AC_a, -phi, AC_a.y)
80

81 #Introduce the centroid Points
82 M_a = me.Point('M_a')
83 M_c = me.Point('M_c')
84 M_l_AC = me.Point('M_l_AC')
85

86 #Introduce other important Points
87 P_a1 = me.Point('P_a1')
88 P_a3 = me.Point('P_a3')
89 P_b1 = me.Point('P_b1')
90 P_b3 = me.Point('P_b3')
91 P_c1 = me.Point('P_c1')
92 P_c3 = me.Point('P_c3')
93 P_AC_com = me.Point('P_AC_com')
94

95 #Calculate Centroid radius of the AC flexure
96 R_M_AC = R_Mm_AC/sm.cos(alpha/2 - delta_alpha)
97

98 #Determine the position of the centroid Points
99 M_a.set_pos(P_O, R_Mo*AC_a.y)
100 M_c.set_pos(P_O, R_Mo*AC_c.y)
101 M_l_AC.set_pos(P_O, R_M_AC*AC_l.y)
102

103 #Determine the position of the other Points
104 P_a1.set_pos(P_O, R_out*AC_a.y)
105 P_a3.set_pos(P_O, R_in*AC_a.y)
106 P_b1.set_pos(P_O, R_out_m_AC*AC_m.y + (R_out_m_AC*np.tan(beta))*AC_m.z)
107 P_b3.set_pos(P_O, R_in_m_AC*AC_m.y + (R_in_m_AC*np.tan(beta))*AC_m.z)
108 P_c1.set_pos(P_O, R_out*AC_c.y)
109 P_c3.set_pos(P_O, R_in*AC_c.y)
110 P_AC_com.set_pos(P_O, R_AC_com*AC_m.y)
111

112 return AC_a, AC_c, AC_l, AB_a, M_a, M_c, M_l_AC, P_a1, P_a3, P_b1, P_b3, P_c1,
P_c3, P_AC_com, R_M_AC

113
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114

115 def Geometric_calculations2(P_O, AB_a, P_a3, P_a1, P_b3, P_b1, t_min, t_max, R_in,
R_w, n_samples):

116 r_a3 = P_a3.pos_from(P_O).to_matrix(AB_a)
117 r_a1 = P_a1.pos_from(P_O).to_matrix(AB_a)
118 r_b3 = P_b3.pos_from(P_O).to_matrix(AB_a)
119 r_b1 = P_b1.pos_from(P_O).to_matrix(AB_a)
120 r_a3_b3 = P_b3.pos_from(P_a3).to_matrix(AB_a)
121

122 r_w_a = P_a1.pos_from(P_a3).to_matrix(AB_a)
123 r_w_b = P_b1.pos_from(P_b3).to_matrix(AB_a)
124

125 theta = sm.acos(r_a3.dot(r_b3)/( r_a3.norm() * r_b3.norm() ) )
126 theta2 = np.pi - sm.acos(-r_a3.dot(r_a3_b3)/( -r_a3.norm() * r_a3_b3.norm() )

)
127 theta3 = np.pi/2 - theta2
128 theta4 = theta-theta3
129

130 r_Ma = r_a1 - r_w_a*(t_max+2*t_min)/(3*(t_max+t_min))
131 r_Mb = r_b1 - r_w_b*(t_max+2*t_min)/(3*(t_max+t_min))
132

133 R_Ma = r_Ma.norm()
134 R_Mb = r_Mb.norm()
135 R_w_a = r_w_a.norm()
136

137 R_M90_df = (sm.cos(theta3)*R_Ma)
138 R_w_90_df = (sm.cos(theta3)*R_w_a)
139

140 R_out = R_in+R_w
141 R_in_90_df = sm.cos(theta3)*R_in
142 R_out_90_df = sm.cos(theta3)*R_out
143 L_a3b3 = R_in_90_df*(sm.tan(theta3)+sm.tan(theta4))
144 L_a1b1 = R_out_90_df*(sm.tan(theta3)+sm.tan(theta4))
145

146 #Mass stuff
147 Mass_df = density/3*(L_a1b1*t_max*R_out_90_df - L_a3b3*t_min*R_in_90_df)
148 V_df_1 = t_max*L_a1b1*R_out_90_df/3
149 V_df_3 = t_min*L_a3b3*R_in_90_df/3
150 R_df_1 = 3*R_out_90_df/4
151 R_df_3 = 3*R_in_90_df/4
152 R_90_com = (R_df_1*V_df_1-R_df_3*V_df_3)/(V_df_1-V_df_3)
153 angle_df_com = theta/2 - theta3
154 R_df_com = R_90_com/sm.cos(angle_df_com)
155

156

157 delta_theta = np.linspace(0, float(theta), n_samples , endpoint=True).transpose
()

158

159 return theta, theta3, theta4, delta_theta , R_Mb, R_M90_df , R_w_90_df , Mass_df,
R_df_com

160

161

162 def Ref_frames_and_points2(P_O, AB_a, AC_c, theta, theta3, theta4, delta_theta ,
phi, R_M90_df, R_Mb, R_df_com):

163 R_M_AB = R_M90_df/sm.cos(theta3-delta_theta)
164 R_M_BC = R_M90_df/sm.cos(theta4-delta_theta)
165

166 AB_b = me.ReferenceFrame('AB_b')
167 AB_l = me.ReferenceFrame('AB_l')
168 AB_com = me.ReferenceFrame('AB_com')
169 BC_c = me.ReferenceFrame('BC_c')
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170 BC_b = me.ReferenceFrame('BC_b')
171 BC_l = me.ReferenceFrame('BC_l')
172 BC_com = me.ReferenceFrame('BC_com')
173

174 AB_b.orient_axis(AB_a, -theta, AB_a.z)
175 AB_l.orient_axis(AB_a, -delta_theta , AB_a.z)
176 AB_com.orient_axis(AB_a, -theta/2, AB_a.z)
177 BC_c.orient_axis(AC_c, phi, AC_c.y)
178 BC_b.orient_axis(BC_c, theta, BC_c.z)
179 BC_l.orient_axis(BC_b, -delta_theta , BC_b.z)
180 BC_com.orient_axis(BC_c, theta/2, BC_c.z)
181

182

183 M_b = me.Point('M_b')
184 M_l_AB = me.Point('M_l_AB')
185 M_l_BC = me.Point('M_l_BC')
186

187 P_AB_com = me.Point('P_AB_com')
188 P_BC_com = me.Point('P_BC_com')
189

190 M_b.set_pos(P_O, R_Mb*AB_b.y)
191 M_l_AB.set_pos(P_O, R_M_AB*AB_l.y)
192 M_l_BC.set_pos(P_O, R_M_BC*BC_l.y)
193

194 P_AB_com.set_pos(P_O, R_df_com*AB_com.y)
195 P_BC_com.set_pos(P_O, R_df_com*BC_com.y)
196

197 return AB_b, AB_l, M_b, M_l_AB, R_M_AB, BC_c, BC_l, M_l_BC, R_M_BC, P_BC_com ,
P_BC_com

198

199

200 def T_matrix_calculator(P_begin, P_end, Ref_frame_begin , Ref_frame_end):
201 r_end_begin = P_end.pos_from(P_begin)
202 r_end_begin_mat = r_end_begin.to_matrix(Ref_frame_begin) #

Convert to a matrix type
203 begin_rr_end_begin = np.matrix([[0, -r_end_begin_mat[2], r_end_begin_mat[1]],
204 [r_end_begin_mat[2], 0, -r_end_begin_mat[0]],
205 [-r_end_begin_mat[1], r_end_begin_mat[0], 0]])
206

207 begin_R_end = Ref_frame_begin.dcm(Ref_frame_end)
208 begin_T_end = sm.Matrix.vstack(
209 sm.Matrix.hstack(begin_R_end , sm.zeros(3)),
210 sm.Matrix.hstack(begin_rr_end_begin*begin_R_end , begin_R_end)
211 )
212 return begin_T_end
213

214

215 def C_matrix_calculator(T_matrix , main_angle , sec_angle , delta_angle , R_M, R_w,
R_in, t_min, t_max, G, E, c_shear, p_total, vals, n_samples):

216 b_y = c_shear
217 b_z = c_shear
218

219 R_w_M = R_w/sm.cos(sec_angle -delta_angle)
220 A_x = (t_max+t_min)*R_w_M/2
221 I_y = R_w_M*(t_min+t_max)*(t_min**2+t_max**2)/(48)
222 I_z = R_w_M**3*(t_min**2+4*t_max*t_min+t_max**2)/(36*(t_max+t_min))
223

224 #t_avg = (t_max+t_min)/2
225 #J = R_w_M*t_avg**3 * (1/3-0.21*(t_avg/R_w_M)*(1-t_avg**4/(12*R_w_M**4)))

#[m^4] Torsional constant if approximated
as rectangular cross-section
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226 R_in_M = R_in/sm.cos(sec_angle -delta_angle)
227 R_out_M = R_in_M + R_w_M
228 eta = sm.atan(t_min/(2*R_in_M))
229 V_L = 0.10504 - 0.2*sm.sin(eta) + 0.3392*sm.sin(eta)**2 - 0.53968*sm.sin(eta)

**3 + 0.82448*sm.sin(eta)**4
230 V_S = 0.10504 + 0.2*sm.sin(eta) + 0.3392*sm.sin(eta)**2 + 0.53968*sm.sin(eta)

**3 + 0.82448*sm.sin(eta)**4
231 J = (2/3)*(sm.sin(eta)**3)*(R_out_M**4-R_in_M**4) -16*sm.sin(V_L*R_out_M**4+V_S

*R_in_M**4)**4
232

233 l_K = sm.diag(E*A_x, b_y*G*A_x, b_z*G*A_x, G*J, E*I_y, E*I_z)
234

235 l_K_num = sym_to_num_nonscalar(l_K, delta_angle , p_total, [], vals, n_samples)
236 T_matrix_num = sym_to_num_nonscalar(T_matrix, delta_angle , p_total, [], vals,

n_samples)
237 R_M_num = sym_to_num_nonscalar(R_M, delta_angle , p_total, [], vals, n_samples)
238

239 l_K_num_inv = np.linalg.inv(l_K_num)
240 T_matrix_num_trans = np.transpose(T_matrix_num , axes=(0,2,1))
241

242

243 C_function_num = np.zeros((n_samples ,6, 6))
244

245 for i in range(n_samples):
246 C_function_num[i] = np.matmul((np.matmul(T_matrix_num_trans[i],

l_K_num_inv[i])), T_matrix_num[i])*R_M_num[i]
247

248 C_matrix_num = (main_angle/n_samples)*(np.sum(C_function_num , axis=0)-(
C_function_num[0]+C_function_num[n_samples -1])/2)

249

250 return C_matrix_num
251

252

253 def C_matrix_ref_transformer(C_matrix, P_begin, P_end, Ref_frame_begin ,
Ref_frame_end):

254

255 begin_T_end = T_matrix_calculator(P_begin, P_end, Ref_frame_begin ,
Ref_frame_end)

256 C_matrix_t = np.matmul((np.matmul(begin_T_end.transpose(), C_matrix)),
begin_T_end)

257

258 return C_matrix_t
259

260

261 def sym_to_num_nonscalar(expr, delta_angle , p_total, p_scalar, values, n_samples):
262 expr_lamb = sm.lambdify(p_total, expr, 'numpy')
263

264 if isinstance(expr, sm.Mul):
265 expr_num = np.zeros(n_samples)
266 else:
267 expr_num = np.zeros((n_samples , 6, 6))
268

269 for i in range(n_samples):
270 args = [values[param] for param in p_scalar]
271 args.extend([values[delta_angle][i]])
272

273 expr_num[i] = expr_lamb(*args)
274

275 return expr_num
276

277
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278 def Tetra_calculations(alpha_d, gamma_d, t_min, R_in, R_w, n_samples , E, G,
density, c_shear_val , T0, P_O):

279

280 #Extracting values from the Geometric_calculations1 function
281 alpha, beta, gamma, phi, t_min, t_max, R_in, R_w, R_out, R_Mo, R_Mm_AC,

R_in_m_AC , R_w_m_AC , R_out_m_AC , delta_alpha_val , Mass_AC, R_AC_com =
Geometric_calculations1(alpha_d, gamma_d, t_min, R_in, R_w, n_samples , E, G
, density)

282

283 #Introducing AC flexure symbol
284 delta_alpha = sm.symbols('delta_alpha')
285

286 #Extracting parameters from the Ref_frames_and_points1 function:
287 AC_a, AC_c, AC_l, AB_a, M_a, M_c, M_l_AC, P_a1, P_a3, P_b1, P_b3, P_c1, P_c3,

P_AC_com, R_M_AC = Ref_frames_and_points1(T0, P_O, alpha, delta_alpha , beta
, gamma, phi, R_Mo, R_Mm_AC, R_in, R_out, R_in_m_AC , R_out_m_AC , R_AC_com)

288

289 p_total1 = sm.Matrix([delta_alpha])
290 vals1 = {delta_alpha:delta_alpha_val}
291

292 #Extracting values from the Geometric_calculations2 function
293 theta, theta3, theta4, delta_theta_val , R_Mb, R_M90_df , R_w_90_df , Mass_df,

R_df_com = Geometric_calculations2(P_O, AB_a, P_a3, P_a1, P_b3, P_b1, t_min
, t_max, R_in, R_w, n_samples)

294

295 #Introducing AB-BC symbols
296 delta_theta = sm.symbols('delta_theta')
297

298 #Extracting parameters from the Ref_frames_and_points2 function:
299 AB_b, AB_l, M_b, M_l_AB, R_M_AB, BC_c, BC_l, M_l_BC, R_M_BC, P_AB_com ,

P_BC_com = Ref_frames_and_points2(P_O, AB_a, AC_c, theta, theta3, theta4,
delta_theta , phi, R_M90_df , R_Mb, R_df_com)

300

301 p_total2 = sm.Matrix([delta_theta])
302 vals2 = {delta_theta:delta_theta_val}
303

304 #Extraction Transformation matrices
305 ACl_T_ACc = T_matrix_calculator(M_l_AC, M_c, AC_l, AC_c)
306 ABl_T_ABb = T_matrix_calculator(M_l_AB, M_b, AB_l, AB_b)
307 BCl_T_BCc = T_matrix_calculator(M_l_BC, M_c, BC_l, BC_c)
308

309 ACc_C_num = C_matrix_calculator(ACl_T_ACc , alpha, alpha/2, delta_alpha , R_M_AC
, R_w_m_AC , R_in, t_min, t_max, G, E, c_shear, p_total1 , vals1, n_samples)

310

311 ABb_C_num = C_matrix_calculator(ABl_T_ABb , theta, theta3, delta_theta , R_M_AB,
R_w_90_df , R_in, t_min, t_max, G, E, c_shear, p_total2, vals2, n_samples)

312 BCc_C_num = C_matrix_calculator(BCl_T_BCc , theta, theta4, delta_theta , R_M_BC,
R_w_90_df , R_in, t_min, t_max, G, E, c_shear, p_total2, vals2, n_samples)

313

314

315 ##########################################)
316

317 ABb_C_t = C_matrix_ref_transformer(ABb_C_num , M_b, M_c, AB_b, AC_c)
318 BCc_C_t = C_matrix_ref_transformer(BCc_C_num , M_c, M_c, BC_c, AC_c)
319

320 ABBCc_C_t = ABb_C_t+BCc_C_t
321

322 ABBCc_C_t = ABBCc_C_t.astype(float)
323 ACc_C_num = ACc_C_num.astype(float)
324

325 #Adding stiffness matrices
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326 ABBCc_K_num = np.linalg.inv(ABBCc_C_t)
327 ACc_K_num = np.linalg.inv(ACc_C_num)
328 a_K_c = ABBCc_K_num+ACc_K_num
329 a_C_c = np.linalg.inv(a_K_c)
330

331 Tetra_output = namedtuple(
332 'Tetra_output',
333 ['a_C_c', 'P_a1', 'P_a3', 'P_b1', 'P_b3', 'P_c1', 'P_c3',
334 'M_a', 'M_b', 'M_c', 'AC_c', 'AC_a', 'P_AC_com', 'P_AB_com', 'P_BC_com', '

Mass_AC', 'Mass_df', 'phi', 'theta', 'R_AC_com', 'R_df_com']
335 )
336

337 return Tetra_output(a_C_c, P_a1, P_a3, P_b1, P_b3, P_c1, P_c3, M_a, M_b, M_c,
AC_c, AC_a, P_AC_com, P_AB_com, P_BC_com, Mass_AC, Mass_df, phi, theta,

R_AC_com, R_df_com)
338

339

340 def Joint_calculations_slow(alpha_d, gamma_d, t_min, R_in, R_w, n_samples , E, G,
density, c_shear):

341

342 T0 = me.ReferenceFrame('T0') #Reference frame of the world
343 P_O = me.Point('P_O') #The origin and center of rotation
344

345 n_tetra = np.size(alpha_d)
346

347 T_start = [T0]
348 Tetra_outputs = []
349

350 P_a1 = []
351 P_a3 = []
352 P_b1 = []
353 P_b3 = []
354 P_c1 = []
355 P_c3 = []
356 M_a = []
357 M_b = []
358 M_c = []
359

360 for i in range(n_tetra):
361

362 #Tetra_outputs verkrijgen
363 Tetra_output = Tetra_calculations(alpha_d[i], gamma_d[i], t_min[i], R_in[i

], R_w[i], n_samples , E, G, density, c_shear, T_start[i], P_O)
364

365 T_start.append(Tetra_output.AC_c)
366 Tetra_outputs.append(Tetra_output)
367

368 #Points voor plotten verkrijgen
369 P_a1.append(Tetra_output.P_a1)
370 P_a3.append(Tetra_output.P_a3)
371 P_b1.append(Tetra_output.P_b1)
372 P_b3.append(Tetra_output.P_b3)
373 P_c1.append(Tetra_output.P_c1)
374 P_c3.append(Tetra_output.P_c3)
375 M_a.append(Tetra_output.M_a)
376 M_b.append(Tetra_output.M_b)
377 M_c.append(Tetra_output.M_c)
378

379 if i == n_tetra -1:
380 T_joint = (Tetra_output.AC_c).orientnew('T_joint', 'Axis', (-np.pi/2,

(Tetra_output.AC_c).x))
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381

382 return Tetra_outputs , P_a1, P_a3, P_b1, P_b3, P_c1, P_c3, M_c, T_joint, T0,
P_O

383

384

385 def calculate_point_coords(point, origin, world_frame):
386 point_coords = point.pos_from(origin).to_matrix(world_frame)
387 return [float(element) for element in point_coords]
388

389

390 def tetra_plotter(P_a1, P_a3, P_b1, P_b3, P_c1, P_c3, M_c, origin, world_frame ,
ax_3d, ax_xz, ax_yz, ax_xy, color, i):

391 # Get the coordinates of the points in your reference frames
392

393 P_a1_coords = calculate_point_coords(P_a1[i], origin, world_frame)
394 P_a3_coords = calculate_point_coords(P_a3[i], origin, world_frame)
395 P_b1_coords = calculate_point_coords(P_b1[i], origin, world_frame)
396 P_b3_coords = calculate_point_coords(P_b3[i], origin, world_frame)
397 P_c1_coords = calculate_point_coords(P_c1[i], origin, world_frame)
398 P_c3_coords = calculate_point_coords(P_c3[i], origin, world_frame)
399

400 P_a1_coords_mm = np.array(P_a1_coords) * 1000
401 P_a3_coords_mm = np.array(P_a3_coords) * 1000
402 P_b1_coords_mm = np.array(P_b1_coords) * 1000
403 P_b3_coords_mm = np.array(P_b3_coords) * 1000
404 P_c1_coords_mm = np.array(P_c1_coords) * 1000
405 P_c3_coords_mm = np.array(P_c3_coords) * 1000
406

407 opvulling = 0.4
408

409 #Plotting the flexures as planes:
410 #In 3D:
411 surfaces = [[P_a1_coords_mm , P_a3_coords_mm , P_c3_coords_mm , P_c1_coords_mm],
412 [P_a1_coords_mm , P_a3_coords_mm , P_b3_coords_mm , P_b1_coords_mm],
413 [P_b1_coords_mm , P_b3_coords_mm , P_c3_coords_mm , P_c1_coords_mm]]
414 ax_3d.add_collection3d(Poly3DCollection(surfaces , facecolors=color[i],

linewidths=0.3, edgecolors='r', alpha=opvulling))
415

416 surfaces_yz = [surface[:4] for surface in surfaces]
417

418 # Plot the projected surfaces
419 for surface in surfaces_yz:
420 surface = np.array(surface) # Convert the surface to a NumPy array
421 ax_yz.add_patch(plt.Polygon(surface[:, [1, 2]], closed=True, facecolor=

color[i], edgecolor='r', alpha=opvulling))
422

423 surfaces_xz = [surface[:4] for surface in surfaces]
424 for surface in surfaces_xz:
425 surface = np.array(surface) # Convert the surface to a NumPy array
426 ax_xz.add_patch(plt.Polygon(surface[:, [0, 2]], closed=True, facecolor=

color[i], edgecolor='r', alpha=opvulling))
427

428 surfaces_xy = [surface[:4] for surface in surfaces]
429 for surface in surfaces_xy:
430 surface = np.array(surface) # Convert the surface to a NumPy array
431 ax_xy.add_patch(plt.Polygon(surface[:, [0, 1]], closed=True, facecolor=

color[i], edgecolor='r', alpha=opvulling))
432

433 if i == 0:
434 x = [P_a1_coords_mm[0], P_a3_coords_mm[0]]
435 y = [P_a1_coords_mm[1], P_a3_coords_mm[1]]
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436 z = [P_a1_coords_mm[2], P_a3_coords_mm[2]]
437 ax_xy.plot(x, y, linewidth=3, c='k', linestyle='dashed', zorder=1)
438 ax_yz.plot(y, z, linewidth=3, c='k', linestyle='dashed')
439 ax_xz.plot(x, z, linewidth=3, c='k', linestyle='dashed')
440 ax_3d.plot(x, y, z, linewidth=3, c='k', linestyle='dashed', zorder=10)
441

442 if i == len(P_a1)-1:
443 EE_coords = calculate_point_coords(M_c[i], origin, world_frame)
444 #Plotting Points
445 #3D:
446 ax_3d.scatter(EE_coords[0]*1000, EE_coords[1]*1000, EE_coords[2]*1000, c='

black', marker='o', label=r'P$_{EE}$', s=40)
447 #2D:
448 #ax_xz.scatter(EE_coords[0], EE_coords[2], c='black', marker='o', label='

EE', s=40)
449 #ax_xy.scatter(EE_coords[0], EE_coords[1], c='black', marker='o', label='

EE', s=30)
450 #ax_yz.scatter(EE_coords[1], EE_coords[2], c='black', marker='o', label='

EE', s=40)
451

452 return
453

454

455 def colour_point(point, L_w, M_w, M_r, max_moment , indicator_multiplier):
456 L_w = L_w*1000 #in mm
457 #print(L_w, point[4])
458 if point[4]>L_w:
459 colour_func_point = ((indicator_multiplier*(point[4]-L_w))/L_w, 1-(

indicator_multiplier*(point[4]-L_w))/L_w, 0, 1)
460 if point[4]==L_w:
461 colour_func_point = (0, 1, 0, 1)
462 if point[4]<L_w:
463 colour_func_point = (0, (L_w-indicator_multiplier*(L_w-point[4]))/L_w, 1-(

L_w-indicator_multiplier*(L_w-point[4]))/L_w, 1)
464 #display("colour_func_point", colour_func_point)
465 if point[3] > 30:
466 Moment_error = "nvt"
467 Moment = "nvt"
468 else:
469 Moment_error = (M_w*g*(point[4]/1000-L_w/1000))*np.sin(point[3]/180*np.pi)
470 Moment = max_moment*np.sin(point[3]/180*np.pi)
471

472 return colour_func_point , Moment_error , Moment
473

474

475 def prototype_val_plotter(ax_xy, fig_xy, radius, H_p_range_d , L_w, L_r, M_w, M_r,
g):

476 radius = radius *1000
477

478 ROM_points = [[28.8, -42.8, 59.8, 42.7], [22.3, -43.2, 62.5, 39.6], [5.7,
-45.3, 65.1, 36.5], [-11.4, -45.1, 64.6, 32.9], [-23.7, -34.4, 67.5, 32.9],
[-34.9, -24.8, 66.8, 34.0], [-46.2, -8.1, 64.9, 37.2], [-52.5, 12.9, 58.2,
44.4], [34.3, -40.6, 58.8, 44.0]]

479

480 angle_lim = 45
481 radius_limxy = np.sin(angle_lim/180*np.pi)*radius
482 resolution = 60
483 radii_xy = np.linspace(0, radius_limxy , resolution)
484

485 max_moment = M_w * g * L_w + M_r * g * L_r / 2
486 color_value_max = max_moment*np.sin(angle_lim/180*np.pi)
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487 color_value_30 = max_moment*np.sin(30/180*np.pi)
488 color_value_15 = max_moment*np.sin(15/180*np.pi)
489 color_value_min = 0
490

491 indicator_multiplier = 5
492 L_w_min = L_w*(1-1/indicator_multiplier)*1000
493 L_w_max = L_w*(1+1/indicator_multiplier)*1000
494

495 for rad in radii_xy:
496 colour_func_circle = (1-rad/radius_limxy , 1-rad/radius_limxy , 1-rad/

radius_limxy , 1)
497 coloured_circle = plt.Circle((0, 0), rad, edgecolor=colour_func_circle ,

facecolor='none', linewidth=3)
498 ax_xy.add_patch(coloured_circle)# Create a circle
499

500 #Add circle 30 degrees
501 radius_30xy = np.sin(H_p_range_d[1]/180*np.pi)*radius
502 circle = plt.Circle((0, 0), radius_30xy , edgecolor='yellow', facecolor='none',

alpha=1, linewidth=0.8)
503 ax_xy.add_patch(circle)# Create a circle
504

505 abs_moment_error_coll = []
506 Moment_coll = []
507

508 for point in stable_points:
509 colour_func_point , Moment_error , Moment = colour_point(point, L_w, M_w,

M_r, max_moment , indicator_multiplier)
510 if isinstance(Moment_error , (int, float)):
511 abs_moment_error_coll.append(abs(Moment_error))
512 Moment_coll.append(Moment)
513 ax_xy.scatter(point[0], point[1], c=[colour_func_point], marker="s", s

=100, edgecolor=(0,0,0,0.4), linewidth=1)
514 ax_xy.scatter(point[0], point[1], c='k', marker=".", s=4)
515

516 for point in unstable_points:
517 colour_func_point , Moment_error , Moment = colour_point(point, L_w, M_w,

M_r, max_moment , indicator_multiplier)
518 if isinstance(Moment_error , (int, float)):
519 abs_moment_error_coll.append(abs(Moment_error))
520 Moment_coll.append(Moment)
521 ax_xy.scatter(point[0], point[1], color=colour_func_point , marker="D", s

=80, edgecolor=(0,0,0,0.4), linewidth=1)
522 ax_xy.scatter(point[0], point[1], c='k', marker=".", s=4)
523

524 for point in ROM_points:
525 ax_xy.scatter(point[0], point[1], c='purple', s=5)
526

527 avg_moment_error = sum(abs_moment_error_coll)/len(abs_moment_error_coll)
528 perc_moment_red = (1 - sum(abs_moment_error_coll)/sum(Moment_coll))*100
529

530 print("The average moment error = ", avg_moment_error , " Nm")
531 print("The moment reduction = ", perc_moment_red , "%")
532

533 # Create a colormap from white to black
534 cmap = mcolors.LinearSegmentedColormap.from_list('WhiteBlack', [(1, 1, 1), (0,

0, 0)])
535 norm = mcolors.Normalize(vmin=color_value_min , vmax=color_value_max)
536 # Add the colorbar
537 sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
538 sm.set_array([])
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539 axins = inset_axes(ax_xy, width="5%", height="30%", loc='upper right',
borderpad=1)

540 cbar = plt.colorbar(sm, cax=axins)
541 #cbar.set_label('Value')
542 cbar.ax.yaxis.set_ticks_position('left')
543 cbar.ax.yaxis.set_label_position('left')
544 cbar.set_ticks([color_value_min , color_value_15 , color_value_30 ,

color_value_max])
545 cbar.set_ticklabels(['0 deg | 0 Nm', f'15 deg | {color_value_15:.3f} Nm', f'30

deg | {color_value_30:.3f} Nm', f'45 deg | {color_value_max:.3f} Nm'],
fontsize=14)

546

547 # Create a colormap from blue to green to red
548 cmap2 = mcolors.LinearSegmentedColormap.from_list('BlueGreenRed', [(0, 0, 1),

(0, 1, 0), (1, 0, 0)])
549 norm2 = mcolors.TwoSlopeNorm(vmin=L_w_min, vcenter=L_w*1000, vmax=L_w_max)
550 # Add the colorbar
551 sm2 = plt.cm.ScalarMappable(cmap=cmap2, norm=norm2)
552 sm2.set_array([])
553 axins2 = inset_axes(ax_xy, width="5%", height="30%", loc='upper left',

borderpad=1)
554 cbar2 = plt.colorbar(sm2, cax=axins2)
555 #cbar.set_label('Value')
556 cbar2.ax.yaxis.set_ticks_position('right')
557 cbar2.ax.yaxis.set_label_position('right')
558 cbar2.set_ticks([L_w_min, L_w*1000, L_w_max])
559 cbar2.set_ticklabels([f'Lw = {L_w_min:.0f} mm', f'Lw = {L_w*1000:.0f} mm', f'

Lw = {L_w_max:.0f} mm'], fontsize=14)
560

561 return
562

563

564 def TetraFEM_val_plotter(ax_xy, fig_xy, radius, H_p_range_d , L_w, L_r, M_w, M_r, g
):

565 radius = radius *1000
566

567 max_moment = M_w * g * L_w + M_r * g * L_r / 2
568

569 indicator_multiplier = 5
570 L_w_min = L_w*(1-1/indicator_multiplier)*1000
571 L_w_max = L_w*(1+1/indicator_multiplier)*1000
572

573

574 for point in stable_points:
575 colour_func_point , Moment_error , Moment = colour_point(point, L_w, M_w,

M_r, max_moment , indicator_multiplier)
576 ax_xy.scatter(point[0], point[1], c=[colour_func_point], marker="s", s

=100, edgecolor=(0,0,0,0.4), linewidth=1)
577 ax_xy.scatter(point[0], point[1], c='k', marker=".", s=4)
578

579 for point in unstable_points:
580 colour_func_point , Moment_error , Moment = colour_point(point, L_w, M_w,

M_r, max_moment , indicator_multiplier)
581 ax_xy.scatter(point[0], point[1], color=colour_func_point , marker="D", s

=80, edgecolor=(0,0,0,0.4), linewidth=1)
582 ax_xy.scatter(point[0], point[1], c='k', marker=".", s=4)
583

584 # Create a colormap from blue to green to red
585 cmap2 = mcolors.LinearSegmentedColormap.from_list('BlueGreenRed', [(0, 0, 1),

(0, 1, 0), (1, 0, 0)])
586 norm2 = mcolors.TwoSlopeNorm(vmin=L_w_min, vcenter=L_w*1000, vmax=L_w_max)
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587 # Add the colorbar
588 sm2 = plt.cm.ScalarMappable(cmap=cmap2, norm=norm2)
589 sm2.set_array([])
590 axins2 = inset_axes(ax_xy, width="5%", height="30%", loc='upper left',

borderpad=1)
591 cbar2 = plt.colorbar(sm2, cax=axins2)
592 #cbar.set_label('Value')
593 cbar2.ax.yaxis.set_ticks_position('right')
594 cbar2.ax.yaxis.set_label_position('right')
595 cbar2.set_ticks([L_w_min, L_w*1000, L_w_max])
596 cbar2.set_ticklabels([f'Lw = {L_w_min:.0f} mm', f'Lw = {L_w*1000:.0f} mm', f'

Lw = {L_w_max:.0f} mm'], fontsize=14)
597

598 return
599

600

601 def Joint_Sphere_plotter(DataPoints_def_EE , P_a1, P_a3, P_b1, P_b3, P_c1, P_c3,
M_c, P_O, T_joint, radius, H_p_range_d , L_w, L_r, M_w, M_r, g):

602

603 P_goal_x = np.array([DataPoints_def_EE[nr].P_goal_loc[0] for nr in range(len(
DataPoints_def_EE))])*1000 # Accessing the x-coordinate of each point
and making it plottable by arraying it

604 P_goal_y = np.array([DataPoints_def_EE[nr].P_goal_loc[1] for nr in range(len(
DataPoints_def_EE))])*1000 # Accessing the y-coordinate of each point

605 P_goal_z = np.array([DataPoints_def_EE[nr].P_goal_loc[2] for nr in range(len(
DataPoints_def_EE))])*1000 # Accessing the z-coordinate of each point

606

607 P_EE_x = np.array([DataPoints_def_EE[nr].def_EE_location[0] for nr in range(
len(DataPoints_def_EE))])*1000 # Accessing the x-coordinate of each
point and making it plottable by arraying it

608 P_EE_y = np.array([DataPoints_def_EE[nr].def_EE_location[1] for nr in range(
len(DataPoints_def_EE))])*1000 # Accessing the y-coordinate of each
point

609 P_EE_z = np.array([DataPoints_def_EE[nr].def_EE_location[2] for nr in range(
len(DataPoints_def_EE))])*1000 # Accessing the z-coordinate of each
point

610

611 colour_tetra = ['purple', 'darkred', 'darkcyan', 'deepskyblue', 'lightcoral',
'forestgreen', 'dodgerblue', 'darkviolet', 'darkslategray', '
mediumspringgreen', 'crimson', 'mediumseagreen', 'darkturquoise', '
mediumorchid' , 'royalblue', 'darkolivegreen', 'tomato', 'mediumblue', '
mediumaquamarine']

612 min_value = -0.11*1000 #in mm
613 max_value = 0.11*1000 #in mm
614

615 # Create a 3D plot
616 fig_xy = plt.figure(figsize=(10, 10))
617 fig_3d = plt.figure(figsize=(12, 12))
618 fig_xz = plt.figure(figsize=(10, 10))
619 fig_yz = plt.figure(figsize=(10, 10))
620

621 ax_xy = fig_xy.add_subplot(111) # X-Y plane (2D)
622 ax_3d = fig_3d.add_subplot(111, projection='3d')
623 ax_xz = fig_xz.add_subplot(111) # X-Z plane (2D)
624 ax_yz = fig_yz.add_subplot(111) # Y-Z plane (2D)
625

626 P_O_coords = (0, 0, 0)
627 ax_3d.scatter(P_O_coords[0], P_O_coords[1], P_O_coords[2], c='red', marker='o'

, label=r'P$_{O}$', s = 50)
628 ax_xz.scatter(P_O_coords[0], P_O_coords[2], c='red', marker='o', label=r'P$_{O

}$', s = 50)
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629 ax_yz.scatter(P_O_coords[0], P_O_coords[2], c='red', marker='o', label=r'P$_{O
}$', s = 50)

630 #ax_xy.scatter(P_O_coords[0], P_O_coords[2], c='red', marker='o', label=r'P$_{
O}$', s = 50)

631

632 # Function to compute the coordinates of a point in a reference frame
633 for i in range(len(P_a1)):
634 tetra_plotter(P_a1, P_a3, P_b1, P_b3, P_c1, P_c3, M_c, P_O, T_joint, ax_3d

, ax_xz, ax_yz, ax_xy, colour_tetra , i)
635

636 if prototype_val_job == True:
637 prototype_val_plotter(ax_xy, fig_xy, radius, H_p_range_d , L_w, L_r, M_w,

M_r, g)
638

639 if TetraFEM_val_job == True:
640 TetraFEM_val_plotter(ax_xy, fig_xy, radius, H_p_range_d , L_w, L_r, M_w,

M_r, g)
641

642 ax_3d.set_xlim([min_value , max_value])
643 ax_3d.set_ylim([min_value , max_value])
644 ax_3d.set_zlim([0, 2*max_value])
645 ax_3d.scatter(P_EE_x, P_EE_y, P_EE_z, c='orange', marker='o')
646 ax_3d.scatter(P_goal_x , P_goal_y , P_goal_z , c='blue', marker='o')
647

648 fontsize_labels = 18
649 fontsize_ticks = 15
650 fontsize_legend = 18
651

652 # Set labels for the axes
653 #ax_3d.set_xlabel(r'X$_{JF}$ [mm]', fontsize=fontsize_labels)
654 #ax_3d.set_ylabel(r'Y$_{JF}$ [mm]', fontsize=fontsize_labels)
655 #ax_3d.set_zlabel(r'Z$_{JF}$ [mm]', fontsize=fontsize_labels)
656

657 ax_xz.scatter(P_goal_x , P_goal_z , c='blue', marker='o', label = r'P$_{goal}$')
658 ax_xz.scatter(P_EE_x, P_EE_z, c='orange', marker='o', label = r'P$_{EE}$')
659 ax_xz.set_xlabel(r'X$_{JF}$ [mm]', fontsize=fontsize_labels)
660 ax_xz.set_ylabel(r'Z$_{JF}$ [mm]', fontsize=fontsize_labels)
661 ax_xz.set_ylim([0, max_value])
662 ax_xz.axis('equal')
663

664 ax_yz.scatter(P_goal_y , P_goal_z , c='blue', marker='o', label = r'P$_{goal}$')
665 ax_yz.scatter(P_EE_y, P_EE_z, c='orange', marker='o', label = r'P$_{EE}$')
666

667 ax_yz.set_xlabel(r'Y$_{JF}$ [mm]', fontsize=fontsize_labels)
668 ax_yz.set_ylabel(r'Z$_{JF}$ [mm]', fontsize=fontsize_labels)
669 ax_yz.set_ylim([min_value , max_value])
670 ax_yz.axis('equal')
671

672 if prototype_val_job == False:
673 if TetraFEM_val_job == False:
674 ax_xy.scatter(P_goal_x , P_goal_y , c='blue', marker='o', label = r'P$_{

goal}$')
675 ax_xy.scatter(P_EE_x, P_EE_y, c='orange', marker='o', label = r'P$_{EE}$')
676

677 ax_xy.set_xlabel(r'X$_{JF}$ [mm]', fontsize=fontsize_labels)
678 ax_xy.set_ylabel(r'Y$_{JF}$ [mm]', fontsize=fontsize_labels)
679 ax_xy.set_ylim([min_value , max_value])
680 ax_xy.axis('equal')
681

682 ax_3d.tick_params(axis='both', which='major', labelsize=fontsize_ticks)
683 ax_3d.tick_params(axis='z', which='major', labelsize=fontsize_ticks)
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684

685 ax_xz.tick_params(axis='both', which='major', labelsize=fontsize_ticks)
686 ax_yz.tick_params(axis='both', which='major', labelsize=fontsize_ticks)
687 ax_xy.tick_params(axis='both', which='major', labelsize=fontsize_ticks)
688

689

690 #Add a legend
691 ax_3d.legend(bbox_to_anchor=(0.9, 0.55), prop={'size': fontsize_legend})
692 ax_xz.legend(prop={'size': fontsize_legend})
693

694 #ax_xy.legend(prop={'size': fontsize_legend})
695 ax_yz.legend(prop={'size': fontsize_legend})
696

697 # Show the 3D plot
698 plt.show()
699 return
700

701

702 def radius_calc(R_in, R_w, t_min):
703 t_max = ((R_in[-1]+R_w[-1])/R_in[-1])*t_min[-1]
704 R_out = R_in[-1]+R_w[-1]
705 radius = R_out - R_w[-1]*(t_max+2*t_min[-1])/(3*(t_max+t_min[-1]))
706 return radius
707

708

709 def P_goal_calculator(radius, H_polar_val , W_polar_val , T_joint, P_O):
710

711 P_goal = me.Point('P_goal')
712 x = radius*np.sin(H_polar_val)*np.cos(W_polar_val -np.pi/2)
713 y = radius*np.sin(H_polar_val)*np.sin(W_polar_val -np.pi/2)
714 z = radius*np.cos(H_polar_val)
715 P_goal.set_pos(P_O, x*T_joint.x + y*T_joint.y + z*T_joint.z)
716 P_goal_loc = P_goal.pos_from(P_O).to_matrix(T_joint)
717 return P_goal_loc
718

719

720 def deflection_function(Tetra_outputs , M_w, M_r, g, Mx, My, P_O, T0, T_joint,
gamma_d, alpha_d, radius, P_AC_prev_com , P_AB_prev_com , P_BC_prev_com):

721

722 n_tetra = np.size(alpha_d)
723

724 #self-weight
725 W_grav_P_AC = []
726 W_grav_P_df = []
727

728 P_AC_next_com = [P_AC_prev_com[0]]
729 P_AB_next_com = [P_AB_prev_com[0]]
730 P_BC_next_com = [P_BC_prev_com[0]]
731

732 for i in range(n_tetra):
733 W_grav_P_AC.append(np.array([[0], [0], [-Tetra_outputs[i].Mass_AC *g],

[0], [0], [0]]))
734 W_grav_P_df.append(np.array([[0], [0], [-Tetra_outputs[i].Mass_df *g],

[0], [0], [0]]))
735 #self-weight
736

737 W_pendulum = np.array([[0], [0], [-(M_w+M_r)*g], [Mx], [My], [0]])
738 AC_a_start = me.ReferenceFrame('AC_a_start')
739 AC_c_start = me.ReferenceFrame('AC_c')
740 AC_a_start.orient_axis(T0, (-gamma_d[0]*np.pi/180), T0.y)
741 AC_c_start.orient_axis(AC_a_start , (-alpha_d[0]*np.pi/180), AC_a_start.z)
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742 AC_c_next = AC_c_start
743

744 M_c_start = me.Point('M_c_start')
745

746 R_Mo = radius
747 M_c_start.set_pos(P_O, R_Mo*AC_c_start.y)
748 M_c_next = M_c_start
749

750 for i in range(n_tetra): #For-loop for calculating
deflection in every tetra

751

752 M_c_undef = M_c_next #The undeformed M_c of tetra
[i] is equal to the M_c_next of tetra[i-1]

753 AC_c_undef = AC_c_next #The undeformed AC_c of
tetra[i] is equal to the AC_c_next of tetra[i-1]

754 W_i_mass = 0
755 #self-weight
756 for k in range(n_tetra-i):
757 T_mat_mass_AC = T_matrix_calculator(M_c_undef , P_AC_prev_com[k+i],

AC_c_undef , T_joint)
758 T_mat_mass_AB = T_matrix_calculator(M_c_undef , P_AB_prev_com[k+i],

AC_c_undef , T_joint)
759 T_mat_mass_BC = T_matrix_calculator(M_c_undef , P_BC_prev_com[k+i],

AC_c_undef , T_joint)
760 W_i_mass += np.dot(T_mat_mass_AC , W_grav_P_AC[i+k]) + np.dot(

T_mat_mass_AB , W_grav_P_df[i+k]) + np.dot(T_mat_mass_BC ,
W_grav_P_df[i+k])

761 #self-weight
762

763 T_matrix_force_sym = T_matrix_calculator(M_c_undef , P_O, AC_c_undef ,
T_joint)

764 W_i_pendulum = np.dot(T_matrix_force_sym , W_pendulum)

#Calculating the force/moment acting on M_c in ref-frame AC_c of tetra[
i]

765 ds = np.dot(Tetra_outputs[i].a_C_c, W_i_pendulum + W_i_mass)

#The local displacement of the specific tetra[i] in reference frame
AC_c of tetra[i]

766

767 M_c_def = me.Point('M_c_def')
768 M_c_def.set_pos(M_c_undef , float(ds[0])*AC_c_undef.x + float(ds[1])*

AC_c_undef.y + float(ds[2])*AC_c_undef.z)
#The location of M_c in the deformed

tetra[i]
769

770 AC_c_def = me.ReferenceFrame('AC_c_def')
771 AC_c_def.orient_space_fixed(AC_c_undef , (float(ds[3]), float(ds[4]), float

(ds[5])), '123')
#The orientation of AC_c in the deformed tetra[i]

772

773 if i < (n_tetra -1):

#For every tetra applicable , except the last one:
774 M_a_next = M_c_def
775

776 AC_a_next = me.ReferenceFrame('AC_a_next')
777 AC_a_next.orient_axis(AC_c_def , (-gamma_d[i+1]*np.pi/180), AC_c_def.y)

#Orientation of
AC_a_next is AC_c but rotated by gamma[i+1]

778
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779 AC_c_next = me.ReferenceFrame('AC_c_next_frame')
780 AC_c_next.orient_axis(AC_a_next , (-alpha_d[i+1]*np.pi/180), AC_a_next.

z) #Orientation of
AC_c_next is AC_a_next but rotated by alpha[i+1]

781

782 r_num = (Tetra_outputs[i+1].M_c).pos_from(Tetra_outputs[i+1].M_a).
to_matrix(Tetra_outputs[i+1].AC_a)

#All from the undeformed joint:
The distance between M_a and M_c, expressed in AC_c.

783 M_c_next = me.Point('M_c_next')
784 M_c_next.set_pos(M_a_next , float(r_num[0])*AC_a_next.x + float(r_num

[1])*AC_a_next.y + float(r_num[2])*AC_a_next.z) #The distance
is same as tetra[i+1] is not yet deformed , but needs to be
expressed in AC_c_next to get M_c_next.

785

786 #self-weight
787 AC_m_next = me.ReferenceFrame('AC_m_next')
788 AC_m_next.orient_axis(AC_a_next , (-alpha_d[i+1]/2*np.pi/180),

AC_a_next.z)
789 P_AC_next_com_point = me.Point('P_AC_next_com_point')
790 P_AC_next_com_point.set_pos(P_O, Tetra_outputs[i+1].R_AC_com*AC_m_next

.y)
791 P_AC_next_com.append(P_AC_next_com_point)
792

793 AB_a_next = me.ReferenceFrame('AB_a_next')
794 AB_a_next.orient_axis(AC_a_next , -Tetra_outputs[i+1].phi, AC_a_next.y)
795 AB_com_next = me.ReferenceFrame('AB_com_next')
796 AB_com_next.orient_axis(AB_a_next , -Tetra_outputs[i+1].theta/2,

AB_a_next.z)
797 P_AB_next_com_point = me.Point('P_AB_next_com_point')
798 P_AB_next_com_point.set_pos(P_O, Tetra_outputs[i+1].R_df_com*

AB_com_next.y)
799 P_AB_next_com.append(P_AB_next_com_point)
800

801 BC_c_next = me.ReferenceFrame('BC_c_next')
802 BC_c_next.orient_axis(AC_c_next , Tetra_outputs[i+1].phi, AC_c_next.y)
803 BC_com_next = me.ReferenceFrame('BC_com_next')
804 BC_com_next.orient_axis(BC_c_next , Tetra_outputs[i+1].theta/2,

BC_c_next.z)
805 P_BC_next_com_point = me.Point('P_BC_next_com_point')
806 P_BC_next_com_point.set_pos(P_O, Tetra_outputs[i+1].R_df_com*

BC_com_next.y)
807 P_BC_next_com.append(P_BC_next_com_point)
808 #self-weight
809

810

811

812 EE_deflection = M_c_def.pos_from(Tetra_outputs[n_tetra -1].M_c).to_matrix(
T_joint)

813 def_EE_frame = AC_c_def
814 def_EE_point = M_c_def
815 #Point_def_EE = M_c_def
816 return def_EE_point , def_EE_frame , W_pendulum , EE_deflection , P_AC_next_com ,

P_AB_next_com , P_BC_next_com
817

818

819 def deflection_function_nsw(Tetra_outputs , M_w, M_r, g, Mx, My, P_O, T0, T_joint,
gamma_d, alpha_d, radius, P_AC_prev_com , P_AB_prev_com , P_BC_prev_com):

820

821 n_tetra = np.size(alpha_d)
822
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823 P_AC_next_com = [P_AC_prev_com[0]]
824 P_AB_next_com = [P_AB_prev_com[0]]
825 P_BC_next_com = [P_BC_prev_com[0]]
826

827 W_pendulum = np.array([[0], [0], [-(M_w+M_r)*g], [Mx], [My], [0]])
828 AC_a_start = me.ReferenceFrame('AC_a_start')
829 AC_c_start = me.ReferenceFrame('AC_c')
830 AC_a_start.orient_axis(T0, (-gamma_d[0]*np.pi/180), T0.y)
831 AC_c_start.orient_axis(AC_a_start , (-alpha_d[0]*np.pi/180), AC_a_start.z)
832 AC_c_next = AC_c_start
833

834 M_c_start = me.Point('M_c_start')
835

836 R_Mo = radius
837 M_c_start.set_pos(P_O, R_Mo*AC_c_start.y)
838 M_c_next = M_c_start
839

840 for i in range(n_tetra): #For-loop for calculating
deflection in every tetra

841

842 M_c_undef = M_c_next #The undeformed M_c of tetra
[i] is equal to the M_c_next of tetra[i-1]

843 AC_c_undef = AC_c_next #The undeformed AC_c of
tetra[i] is equal to the AC_c_next of tetra[i-1]

844

845 T_matrix_force_sym = T_matrix_calculator(M_c_undef , P_O, AC_c_undef ,
T_joint) #Dit zou goed moeten zijn!

846 W_i_pendulum = np.dot(T_matrix_force_sym , W_pendulum)

#Calculating the force/moment acting on M_c in ref-frame AC_c of tetra[
i]

847 ds = np.dot(Tetra_outputs[i].a_C_c, W_i_pendulum)# + W_i_mass)

#The local displacement of the specific tetra[i] in reference frame
AC_c of tetra[i]

848

849 M_c_def = me.Point('M_c_def')
850 M_c_def.set_pos(M_c_undef , float(ds[0])*AC_c_undef.x + float(ds[1])*

AC_c_undef.y + float(ds[2])*AC_c_undef.z)
#The location of M_c in the deformed

tetra[i]
851

852 AC_c_def = me.ReferenceFrame('AC_c_def')
853 AC_c_def.orient_space_fixed(AC_c_undef , (float(ds[3]), float(ds[4]), float

(ds[5])), '123')
#The orientation of AC_c in the deformed tetra[i]

854

855 if i < (n_tetra -1):

#For every tetra applicable , except the last one:
856 M_a_next = M_c_def
857

858 AC_a_next = me.ReferenceFrame('AC_a_next')
859 AC_a_next.orient_axis(AC_c_def , (-gamma_d[i+1]*np.pi/180), AC_c_def.y)

#Orientation of
AC_a_next is AC_c but rotated by gamma[i+1]

860

861 AC_c_next = me.ReferenceFrame('AC_c_next_frame')
862 AC_c_next.orient_axis(AC_a_next , (-alpha_d[i+1]*np.pi/180), AC_a_next.

z) #Orientation of
AC_c_next is AC_a_next but rotated by alpha[i+1]
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863

864 r_num = (Tetra_outputs[i+1].M_c).pos_from(Tetra_outputs[i+1].M_a).
to_matrix(Tetra_outputs[i+1].AC_a)

#All from the undeformed joint:
The distance between M_a and M_c, expressed in AC_c.

865 M_c_next = me.Point('M_c_next')
866 M_c_next.set_pos(M_a_next , float(r_num[0])*AC_a_next.x + float(r_num

[1])*AC_a_next.y + float(r_num[2])*AC_a_next.z) #The distance
is same as tetra[i+1] is not yet deformed , but needs to be
expressed in AC_c_next to get M_c_next.

867

868 EE_deflection = M_c_def.pos_from(Tetra_outputs[n_tetra -1].M_c).to_matrix(
T_joint)

869 def_EE_frame = AC_c_def
870 def_EE_point = M_c_def
871 #Point_def_EE = M_c_def
872 return def_EE_point , def_EE_frame , W_pendulum , EE_deflection , P_AC_next_com ,

P_AB_next_com , P_BC_next_com
873

874

875 class def_EE_data:
876 def __init__(self, def_EE_location , W_pendulum , P_goal_loc , distance_norm):
877 self.def_EE_location = def_EE_location
878 self.W_pendulum = W_pendulum
879 self.P_goal_loc = P_goal_loc
880 self.distance_norm = distance_norm
881

882

883 def Def_EE_calc(H_p_range_d , W_p_range_d , sample_density , self_weight_iterations ,
g, M_w, L_w, M_r, L_r, Tetra_outputs , P_O, T0, T_joint, gamma_d, alpha_d,
radius):

884

885 DataPoints_def_EE = []
886 point_counter = 0
887

888 P_AC_prev_com = []
889 P_AB_prev_com = []
890 P_BC_prev_com = []
891

892 d_def_coll = []
893

894 M_max = g*M_w*L_w + g*M_r*(L_r/2)
895

896 H_p_range = [H_p_range_d[0]*np.pi/180, H_p_range_d[1]*np.pi/180]
897 W_p_range = [W_p_range_d[0]*np.pi/180, W_p_range_d[1]*np.pi/180]
898

899 Mass_total = 0
900 for i in range(len(alpha_d)):
901 Mass_total += Tetra_outputs[i].Mass_AC + 2*Tetra_outputs[i].Mass_df
902

903

904 for H_polar_val in np.linspace(H_p_range[0], H_p_range[1], sample_density ,
endpoint=True):

905 W_polar_samples = 1+int(sample_density*(np.sin(H_polar_val) * abs((
W_p_range[1]-W_p_range[0])/(np.pi/2))))

906

907 if W_p_range[1]-W_p_range[0] == 2*np.pi:
908 end = False
909 else:
910 end = True
911
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912 for W_polar_val in np.linspace(W_p_range[0], W_p_range[1], W_polar_samples
, endpoint=end):

913 point_counter +=1
914 d_def = 2*np.sin(H_polar_val/2)*radius*1000
915 d_def_coll.append(d_def)
916

917 Mx = np.cos(W_polar_val)*np.sin(H_polar_val)*M_max
918 My = np.sin(W_polar_val)*np.sin(H_polar_val)*M_max
919

920 for i in range(len(alpha_d)):
921 P_AC_prev_com.append(Tetra_outputs[i].P_AC_com)
922 P_AB_prev_com.append(Tetra_outputs[i].P_AB_com)
923 P_BC_prev_com.append(Tetra_outputs[i].P_BC_com)
924

925 if self_weight_iterations >0:
926 for it in range(self_weight_iterations -1):
927 def_EE_point , def_EE_frame , W_pendulum , EE_deflection ,

P_AC_prev_com , P_AB_prev_com , P_BC_prev_com =
deflection_function(Tetra_outputs , M_w, M_r, g, Mx, My, P_O
, T0, T_joint, gamma_d, alpha_d, radius, P_AC_prev_com ,
P_AB_prev_com , P_BC_prev_com)

928

929 def_EE_point , def_EE_frame , W_pendulum , EE_deflection ,
P_AC_next_com , P_AB_next_com , P_BC_next_com =
deflection_function(Tetra_outputs , M_w, M_r, g, Mx, My, P_O, T0
, T_joint, gamma_d, alpha_d, radius, P_AC_prev_com ,
P_AB_prev_com , P_BC_prev_com)

930

931 if self_weight_iterations==0:
932 def_EE_point , def_EE_frame , W_pendulum , EE_deflection ,

P_AC_next_com , P_AB_next_com , P_BC_next_com =
deflection_function_nsw(Tetra_outputs , M_w, M_r, g, Mx, My, P_O
, T0, T_joint, gamma_d, alpha_d, radius, P_AC_prev_com ,
P_AB_prev_com , P_BC_prev_com)

933

934 def_EE_location = def_EE_point.pos_from(P_O).to_matrix(T_joint)
935

936 P_goal_loc = P_goal_calculator(radius, H_polar_val , W_polar_val ,
T_joint, P_O)

937

938 distance_vector = def_EE_location -P_goal_loc
939 distance_norm = (distance_vector[0]**2 + distance_vector[1]**2 +

distance_vector[2]**2)**0.5
940

941 info_def_EE = def_EE_data(def_EE_location , W_pendulum , P_goal_loc ,
distance_norm)

942 DataPoints_def_EE.append(info_def_EE)
943

944

945 d_def_avg = sum(d_def_coll)/len(d_def_coll)
946 print(f"The average deflected distance of the {len(d_def_coll)} P_goal points

= {d_def_avg} mm")
947

948 return DataPoints_def_EE , point_counter , Mass_total
949

950

951 def Def_EE_calc_TetraFEM_val(self_weight_iterations , g, M_w, M_r, L_r,
Tetra_outputs , P_O, T0, T_joint, gamma_d, alpha_d, radius):

952 W_polar_range = []
953 H_polar_range = []
954 L_w_range = []
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955

956 d_def_coll = []
957

958 for point in unstable_points:
959 W_polar_val = np.arctan(point[1]/point[0])
960 H_polar_val = np.arcsin(point[0]/(np.cos(W_polar_val)*(radius*1000)))
961 W_polar_range.append(W_polar_val+np.pi/2)
962 H_polar_range.append(H_polar_val)
963 L_w_range.append(point[4]/1000)
964

965 d_def = (point[0]**2+point[1]**2+(point[2]-radius*1000)**2)**0.5
966 d_def_coll.append(d_def)
967

968 for point in stable_points:
969 W_polar_val = np.arctan(point[1]/point[0])
970 H_polar_val = np.arcsin(point[0]/(np.cos(W_polar_val)*(radius*1000)))
971 W_polar_range.append(W_polar_val+np.pi/2)
972 H_polar_range.append(H_polar_val)
973

974 L_w_range.append(point[4]/1000)
975 d_def = (point[0]**2+point[1]**2+(point[2]-radius*1000)**2)**0.5
976 d_def_coll.append(d_def)
977

978

979 d_def_avg = sum(d_def_coll)/len(d_def_coll)
980 print(f"The average deflected distance of the {len(d_def_coll)} P_goal points

= {d_def_avg} mm")
981

982 DataPoints_def_EE = []
983 point_counter = 0
984

985 P_AC_prev_com = []
986 P_AB_prev_com = []
987 P_BC_prev_com = []
988

989 Mass_total = 0
990 for i in range(len(alpha_d)):
991 Mass_total += Tetra_outputs[i].Mass_AC + 2*Tetra_outputs[i].Mass_df
992

993 for k in range(len(H_polar_range)):
994 H_polar_val = H_polar_range[k]
995 W_polar_val = W_polar_range[k]
996 L_w = L_w_range[k]
997

998 M_max = g*M_w*L_w + g*M_r*(L_r/2)
999

1000 point_counter +=1
1001 Mx = np.cos(W_polar_val)*np.sin(H_polar_val)*M_max
1002 My = np.sin(W_polar_val)*np.sin(H_polar_val)*M_max
1003

1004 for i in range(len(alpha_d)):
1005 P_AC_prev_com.append(Tetra_outputs[i].P_AC_com)
1006 P_AB_prev_com.append(Tetra_outputs[i].P_AB_com)
1007 P_BC_prev_com.append(Tetra_outputs[i].P_BC_com)
1008

1009 if self_weight_iterations >0:
1010 for it in range(self_weight_iterations -1):
1011 def_EE_point , def_EE_frame , W_pendulum , EE_deflection ,

P_AC_prev_com , P_AB_prev_com , P_BC_prev_com =
deflection_function(Tetra_outputs , M_w, M_r, g, Mx, My, P_O, T0
, T_joint, gamma_d, alpha_d, radius, P_AC_prev_com ,
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P_AB_prev_com , P_BC_prev_com)
1012

1013 def_EE_point , def_EE_frame , W_pendulum , EE_deflection , P_AC_next_com ,
P_AB_next_com , P_BC_next_com = deflection_function(Tetra_outputs ,
M_w, M_r, g, Mx, My, P_O, T0, T_joint, gamma_d, alpha_d, radius,
P_AC_prev_com , P_AB_prev_com , P_BC_prev_com)

1014

1015 if self_weight_iterations==0:
1016 def_EE_point , def_EE_frame , W_pendulum , EE_deflection , P_AC_next_com ,

P_AB_next_com , P_BC_next_com = deflection_function_nsw(
Tetra_outputs , M_w, M_r, g, Mx, My, P_O, T0, T_joint, gamma_d,
alpha_d, radius, P_AC_prev_com , P_AB_prev_com , P_BC_prev_com)

1017

1018 def_EE_location = def_EE_point.pos_from(P_O).to_matrix(T_joint)
1019

1020 P_goal_loc = P_goal_calculator(radius, H_polar_val , W_polar_val , T_joint,
P_O)

1021 distance_vector = def_EE_location -P_goal_loc
1022 distance_norm = (distance_vector[0]**2 + distance_vector[1]**2 +

distance_vector[2]**2)**0.5
1023 info_def_EE = def_EE_data(def_EE_location , W_pendulum , P_goal_loc ,

distance_norm)
1024 DataPoints_def_EE.append(info_def_EE)
1025

1026 return DataPoints_def_EE , point_counter , Mass_total
1027

1028

1029 def Pendulum_test(var_geo_vals , R_in, R_w, n_samples , E, G, density, c_shear,
H_p_range_d , W_p_range_d , sample_density , self_weight_iterations , g, M_w, L_w,
M_r, L_r):

1030 start_time = time.time()
1031

1032 global iteration # Accessing the global iteration variable
1033 global starting_point
1034 iteration += 1
1035 display(" ")
1036 print(f"Iteration {iteration}")
1037 print(f"starting_point {starting_point}")
1038

1039 alpha_d = var_geo_vals[1:len(R_in)+1]
1040 gamma_d = var_geo_vals[len(R_in)+1:2*len(R_in)+1]
1041 t = var_geo_vals[0]
1042

1043 t_min = [t/(10**6)] *len(R_in)
1044

1045 Tetra_outputs , P_a1, P_a3, P_b1, P_b3, P_c1, P_c3, M_c, T_joint, T0, P_O =
Joint_calculations_slow(alpha_d, gamma_d, t_min, R_in, R_w, n_samples , E, G
, density, c_shear)

1046

1047 radius = radius_calc(R_in, R_w, t_min)
1048

1049 if TetraFEM_val_job == True:
1050 DataPoints_def_EE , point_counter , Mass_total = Def_EE_calc_TetraFEM_val(

self_weight_iterations , g, M_w, M_r, L_r, Tetra_outputs , P_O, T0,
T_joint, gamma_d, alpha_d, radius)

1051 if TetraFEM_val_job == False:
1052 DataPoints_def_EE , point_counter , Mass_total = Def_EE_calc(H_p_range_d ,

W_p_range_d , sample_density , self_weight_iterations , g, M_w, L_w, M_r,
L_r, Tetra_outputs , P_O, T0, T_joint, gamma_d, alpha_d, radius)

1053

1054 if Optimization_job == False:
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1055 Joint_Sphere_plotter(DataPoints_def_EE , P_a1, P_a3, P_b1, P_b3, P_c1, P_c3
, M_c, P_O, T_joint, radius, H_p_range_d , L_w, L_r, M_w, M_r, g)

1056

1057 distance_norm_sum = 0
1058

1059 if sample_density > 0:
1060 for i in range(point_counter):
1061 distance_norm_sum += DataPoints_def_EE[i].distance_norm
1062 distance_norm_avg = distance_norm_sum/point_counter
1063 print("The average distance between P_goal and P_EE is ",

distance_norm_avg *1000, " mm")
1064 else:
1065 distance_norm_avg = 0
1066

1067 #print("Total mass = ", Mass_total)
1068

1069 print("var_geo_vals = ", var_geo_vals)
1070

1071 opt_comp_time = time.time()-start_time
1072 print("opt_comp_time = ", opt_comp_time)
1073

1074 return distance_norm_avg
1075

1076

1077

1078 ### CONTROL PANEL ###
1079

1080 n_tetra = 10
1081

1082 #Fixed geometric parameters
1083 R_in = [6.7e-2] *n_tetra #[m] Inner radius
1084 R_w = [2.5e-2] *n_tetra #[m] Difference inner and outer radius
1085

1086 #Material parameters
1087 E = 1700*10**6 #[Pa] Youngs modulus
1088 poisson = 0.38
1089 G = E/(2*(1+poisson)) #[Pa] Shear modulus
1090 density = 1010 #kg/m^3
1091 c_shear = 5/6 #[-] Shear coefficient
1092

1093 #Determines the accuracy of the numerical calculations
1094 n_samples = 200
1095

1096 #Amount of self-weight iterations
1097 self_weight_iterations = 0 #zero for no self-weight, two for accurate self-

weight
1098

1099 #Forces parameters
1100 g = 9.81
1101 M_w = 0.1 #kg
1102 L_w = 0.25 #m
1103 M_r = 0.0235
1104 L_r = 0.320
1105

1106 #P_goal points parameters
1107 sample_density = 3 #higher is more points
1108 H_p_range_d = [0, 30] #polar height range
1109 W_p_range_d = [0, 360] #polar width, also range around JF.z
1110

1111 #TetraFEM_validation_job
1112 TetraFEM_val_job = False
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1113

1114 #prototype_validation job
1115 prototype_val_job = False
1116

1117 stable_points = [
1118 #[-12.6, -12.2, 77.0, 13.3, 200], [-23.7, -13.9, 94.8, 18.9, 200], [-16.4,

-24.1, 73.3, 33.7, 200], [-26.8, -10.8, 73.6, 22.1, 200],
1119 #[-16.5, -8.7, 76.8, 13.9, 202.5], [-31.2, 3.6, 72.6, 23.7, 202.5], [-29.9,

11.5, 72.0, 24.2, 202.5], [-24.7, -11.0, 74.2, 20.5, 202.5], [-22.8, -15.8,
74.0, 21.3, 202.5],

1120 [-24.4, 4.1, 75.1, 18.4, 205], [-14.2, -28.3, 72.3, 24.7, 205], [-32.3, -1.4,
72.1, 24.8, 205], [-37.9, 5.4, 69.2, 29.4, 205], #TetraFEM_val_job

1121 #[-26.0, -2.3, 74.7, 19.5, 207.5], [-29.3, -9.1, 72.9, 23.4, 207.5],
1122 #[-20.3, -11.5, 75.8, 17.5, 210], [-33.0, 4.8, 71.9, 25.2, 210], [-24.9,

-21.1, 72.3, 25.1, 210], [-27.9, -8.1, 73.6, 22.2, 210], [-38.2, 6.2, 68.9,
29.8, 210],

1123 [-30.1, 1.3, 73.3, 22.7, 212.5], [-38.1, 7.9, 68.8, 29.9, 212.5], #
TetraFEM_val_job

1124 #[-37.7, 2.6, 68.9, 29.3, 215], [-32.2, 5.8, 72.0, 24.9, 215],
1125 #[-34.6, -9.3, 70.2, 27.6, 217.5], [-38.0, -10.6, 68.2, 30.8, 217.5],
1126 [-30.9, -8.5, 72.0, 24.7, 220], [-39.5, 0.8, 67.9, 31.0, 220], #

TetraFEM_val_job
1127 [-48.0, 20.6, 58.7, 42.9, 235] #TetraFEM_val_job
1128 ]
1129

1130 unstable_points = [
1131 #[-28.5, -15.7, 72.3, 25.0, 222.5],
1132 #[-21.7, -11.7, 75.0, 18.8, 225], [-26.9, -12.7, 73.0, 22.8, 225],
1133 [-32.9, -20.2, 69.0, 30.3, 227.5], #TetraFEM_val_job
1134 #[-33.7, -17.4, 69.1, 29.8, 230],
1135 #[-37.8, -18.8, 66.6, 33.6, 232.5],
1136 [-32.3, -15.5, 70.2, 28.0, 235], #TetraFEM_val_job
1137 #[23.0, 12.3, 74.4, 19.6, 245],
1138 #[18.6, 16.6, 74.8, 18.6, 247.5], [22.3, 18.4, 73.4, 21.6, 247.5],
1139 #[11.8, 14.4, 76.9, 13.7, 267.5],
1140 [11.3, 11.5, 77.5, 11.8, 265], [13.8, 18.2, 75.7, 16.9, 265], #

TetraFEM_val_job
1141 #[14.3, 14.2, 76.5, 14.9, 262.5], [12.5, 15.1, 76.6, 14.5, 262.5], [9.5, 11.6,

77.7, 11.1, 262.5], [18.3, 25.7, 72.3, 23.9, 262.5],
1142 #[13.1, 12.9, 76.9, 13.6, 260], [11.8, 9.9, 77.6, 11.4, 260], [20.8, 26.4,

71.2, 25.8, 260],
1143 [13.2, 13.5, 76.8, 13.7, 257.5], [21.6, 37.4, 65.8, 33.6, 257.5], #

TetraFEM_val_job
1144 #[11.9, 19.5, 75.7, 16.8, 255], [13.6, 15.2, 76.6, 15.0, 255], [15.7, 41.4,

65.2, 34.3, 255], [13.1, 10.8, 77.4, 12.6, 255],
1145 #[20.2, 17.2, 74.5, 19.9, 252.5], [12.5, 15.1, 76.8, 14.5, 252.5], [14.8,

29.6, 71.7, 24.9, 252.5],
1146 [26.0, 22.6, 71.0, 26.3, 250], [16.1, 16.3, 75.8, 17.1, 250] #TetraFEM_val_job
1147 ]
1148

1149 #Optimization parameters
1150 iteration = 0
1151 starting_point = 0
1152 max_iterations = 1000
1153 tol_var_geo_vals = 0.5
1154 min_geo_vals = [1000, 5, -90]
1155 max_geo_vals = [1800, 60, 35]
1156 step_geo_vals = 5
1157 Optimization_job = False
1158

1159
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1160 if Optimization_job == False:
1161

1162 #Result BBO3V2_tien_tetras2
1163 alpha_d = [16.30, 27.74, 56.64, 22.24, 43.66, 43.02, 31.80, 15.71, 31.40,

24.23]
1164 gamma_d = [0, -39.13, 7.83, -22.22, -44.36, -22.58, -38.04, -40.34, -83.87,

-2.07]
1165 t = [1290.61]
1166

1167 var_geo_vals = t + alpha_d + gamma_d
1168 distance_norm_avg = Pendulum_test(var_geo_vals , R_in, R_w, n_samples , E, G,

density, c_shear, H_p_range_d , W_p_range_d , sample_density ,
self_weight_iterations , g, M_w, L_w, M_r, L_r)

1169

1170

1171 if Optimization_job == True:
1172 constraints = [
1173 {'type': 'ineq', 'fun': lambda x: x[0] - min_geo_vals[0]}, # Lower bound

for t
1174 {'type': 'ineq', 'fun': lambda x: max_geo_vals[0] - x[0]}, # Upper bound

for t
1175 {'type': 'ineq', 'fun': lambda x: x[1:n_tetra+1] - min_geo_vals[1]}, #

Lower bound for alpha_d
1176 {'type': 'ineq', 'fun': lambda x: max_geo_vals[1] - x[1:n_tetra+1]}, #

Upper bound for alpha_d
1177 {'type': 'ineq', 'fun': lambda x: x[n_tetra+1:2*n_tetra+1] - min_geo_vals

[2]}, # Lower bound for gamma_d
1178 {'type': 'ineq', 'fun': lambda x: max_geo_vals[2] - x[n_tetra+1:2*n_tetra

+1]}, # Upper bound for gamma_d
1179 ]
1180

1181 n_starting_points = 1
1182

1183 for n in range(n_starting_points):
1184 iteration = 0
1185 t = np.random.uniform(min_geo_vals[0], max_geo_vals[0], size=(1,))
1186 alpha_d = np.random.uniform(min_geo_vals[1], max_geo_vals[1], size=(

n_tetra ,))
1187 gamma_d = np.random.uniform(min_geo_vals[2], max_geo_vals[2], size=(

n_tetra ,))
1188 var_geo_vals = np.concatenate((t, alpha_d, gamma_d))
1189 print(var_geo_vals)
1190

1191

1192 starting_point +=1
1193 # Perform optimization
1194 Optimized_geo_vals = optimize.minimize(
1195 Pendulum_test , var_geo_vals ,
1196 args=(R_in, R_w, n_samples , E, G, density, c_shear, H_p_range_d ,

W_p_range_d , sample_density , self_weight_iterations , g, M_w, L_w,
M_r, L_r),

1197 method='COBYLA',
1198 tol = tol_var_geo_vals ,
1199 options={'maxiter': max_iterations , 'rhobeg': step_geo_vals},
1200 constraints=constraints
1201 )
1202 print(Optimized_geo_vals)
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