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Theoretical derivation of the WLF- and annealing equations 

T.A.C.M. van der Put, 

TU-Delft, Civil Engineering and Geosciences, Timber Structures and wood technology, 

PO Box 5048, NL-2600 GA Delft, Netherlands, E-mail: vanderp@xs4all.nl:  

Journal of Non-Crystalline Solids 356 (2010) p 394–399 

Abstract: Based on the deformation kinetics approach, the theoretical derivation is given of 

the empirical WLF-equation of the time-temperature equivalence. The same is done for 

annealing at glass transition. The derivation provides a general theory for any loading history 

and replaces the inconsistent free volume model.  

PACS 64.70.Q- 

1. Introduction

Time dependent behaviour is explained by the equilibrium theory of deformation kinetics

(see [1]) and it never is necessary to apply the phenomenological relaxation time spectra. It is, 

on the contrary, easy to show (see [2]) that the row expansion of the kinetic equation gives the 

Rouse spectrum and e.g. the Zimm spectrum, explaining the success of the use of line spectra. 

The apparent need of linear viscoelastic spectra thus indicates non-linear behaviour according 

to deformation kinetics. This exact approach also applies for glass transition and annealing 

and there is no need of the phenomenological free volume model and Doolittle viscosity 

equation giving no explanation of the WLF-equation. This follows from the theoretical 

derivation based on the, in Appendix A discussed, deformation kinetics of structural changes 

and the constitutive equations of Appendix B. Annealing has to be discussed because the 

determination of the constants of the WLF-equation and of the glass transition temperature 

gT is based on annealing experiments. Two connected cases are regarded, one with the 

Arrhenius shift and the other with a dominating WLF-shift. The results are given in the 

conclusions. 

2. Derivation of the WLF-equation of time-temperature equivalence

As known, viscosity curves, compliance curves, etc. measured at different temperatures

may show the same shape independent of the temperature and can be shifted along a 

logarithmic time or frequency axis to form one curve, predicting the behaviour after long 

times at the lower temperature. Near glass transition temperature, the horizontal shift factor 

Tln(a )  of the displacement of the curves, by temperature difference, along the log-time axis 

follows WLF-equation, Eq.(4), applying for amorphous uncross-linked polymers and other 

super-cooled non-crystallizing liquids. According to the classical model, e.g. in [3] pg.225, 

this shift factor is equal to the differences in relaxation times on logarithmic scale:  

© 2018 Manuscript version made available under CC-BY-NC-ND 4.0 license 
https://creativecommons.org/licenses/by-nc-nd/4.0/
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ln( Ta ) = ln( r1t ) - ln( r2t )  (1)  

where r1t  and r2t  are the relaxation times at temperatures 1T  and 2T  (see Fig. 1).  

 
Fig. 1 – Temperature shift of the viscosity plot along the frequency axis 

 

It is assumed for the viscosity   that: 

ln( 1 ) - ln( 2 ) = ln( r1t ) - ln( r2t )  (2)  

With the Doolittle viscosity equation: 

ln(  ) = ln(A) + B(v - fv )/ fv  = Aꞌ + Bv/ fv  = Aꞌ + B/f  (3) 

in which f = fv /v is the free volume fraction of volume v, the shift factor Ta  becomes:  

Tln(a )  = ln( r1t ) - ln( r2t ) = ln( 1 ) - ln( 2 ) = B/ 1f  - B/ 2f  =  

      
 −−

= =
 + −

1 2 12 1

1 2 1 2 1

(B /f ) (T T )f f
B

f f (f / ) (T T )
1 2 1

2 2 1

c (T T )

c T T

−
=

+ −
  (4)  

where: 2f  = 1f 2 1(T T )+ −  and 

 

  is the difference of the thermal expansion coefficients 

below and above the glass-transition temperature gT , determining the increase in free 

volume.  

Because this free volume model is a phenomenological model, there are many 

inconsistencies. For instance:  

- The necessity of volume changes without shear, (because of the independency of the 

molecular weight), while the WLF-equation also applies for shear.  

- The value of 

 

 , being an order too low for e.g. inorganic glasses, or still more for e.g. 

Cellulose derivatives and orders to low for wood material, shows the amount of free volume 

increase not to be a parameter but an accompanying phenomenon.  

- Eq.(2): =  r1 r2 1 2ln(t /t ) ln( / )  can not be true for a horizontal shift of the ln(  )-plot 

along the frequency axis as shown in Fig.(1). Because when ln( 1 ) at 1T  is equal to ln( 2 ) at 

2T , then also r1 r2t t=  which can not be right for shifted positions.  

- Also the Doolittle equation, Eq.(3), can not be applied for a horizontal shift.  

If ln( 1 ) = ln( 2 ), then 1f  = 2f  (constant independent of temperature).  

The Doolittle equation thus should be replaced by the empirical relation:  

rA'' exp(B / f) t =     (5)  
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in order to show the shift and to be proportional to rt  according to the classical Eq.(2). Then, 

when ln( 1 ) = ln( 2 ), Eq.(5) becomes:  

ln( Ta ) 2 1ln( ) ln( )=  −  =  ln( r1t / r2t ) + B(1/ 1f - 1/ 2f )  (6) 

equal to Eq.(15) and Eq.(6) thus is explained by deformation kinetics providing the theoretical 

derivation of the WLF-equation as follows.  

According to Eq.(a6) of Appendix A, the rate equation for structural change is:  

v v' 'dN
B N 2sinh B Nexp

dt Nk Nk

      
=       

   
 (7) 

This equation is extensively verified e.g. as damage equation for the change of bonds N, also 

within transition zones with changing N and  . For instance in [1], pg. 51) 

( ) =  + −  0 0 0 01 C (T T ) /  applies exactly at temperature T within the temperature range 

of the transition for the compression strength of wood at moisture content  . Because the 

WLF-equation shows about the same activation volume parameter value: 

v 1/Nk 2.3 c 2.3 17.44 40  =  =  = , characteristic for self-diffusion, creep and creep to 

failure, the same mechanism and parameter form can be expected to apply at this “melting“ of 

the secondary bonds, which can be given as:  

( )g g' T T =  + − .  (8)  

The same applies for the concentration N, as also applied in the empirical Eq.(4): 

g gN N (T T )= +  −   (9)  

These linear changes with temperature T are shown in [1] to be in accordance with the 

thermodynamics of molecular activation. The activation volume term of Eq.(7) then is  

( )g g

g g

T T'

kN k N (T T )

 + − 
 = 

+  −
 (10)  

In this equation is gN  the site concentration at gT , the glass transition temperature.  

Because of the stress dependency of “N”, comparison of viscosities at different temperatures 

is difficult. Therefore, the shift of the curve of the apparent creep modulus (the inverse of the 

creep compliance) along the time axis is chosen as simple illustration of the behaviour. The 

rate of bond breaking and bond reformation in shifted position dN/dt is proportional to the 

viscous strain rate and neglecting the minor important temperature dependent pre-exponential 

terms, the steady creep strain rate   is according to Eq.(7) in the form of Eq.(a5) of Appendix 

A:  

 =  =  rAexp( ) (exp( )) / t  (11)  

where rt  is the relaxation time. Integration of Eq.(11) gives:  =   r(exp( )) t / t  and the 

apparent creep modulus is: rE / t /(t exp( ))=   =    
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Thus, at the same loading   (which should be kept the same because of the stress dependency 

of N), the shift of the E - plot follows from:  

1 2ln(E ) ln(E )− = 2 1ln(t / t ) + +   −  r1 r2 2 1ln(t /t )   (12)  

 

Fig. 2 – Temperature shift of the apparent creep modulus E, ( 2 1T T ). 

 

For a shift of the plot along the time axis, a value 1ln(E )  at temperature 1T  must be equal to 

2ln(E )  at temperature 2T . Thus: 1 2ln(E ) ln(E ) 0− = , (see Fig. 2) or according to Eq.(12): 

1 2 r1 r2 2 1ln(t /t ) ln(t /t )= +   −     (13) 

In this equation is: 

2 1  −   =
g 2 g g 1 g2 1

2 1 2 1

(T T ) (T T )' '

N k N k k N N

 +  −  +  −   
− =  − = 

 
   

g g 2 1 g g g 2 1

1 2 1 1 2 1

( N ) (T T ) (( N / ) 1) (T T )

k N N kN (N / ) T T

  −   −    −  −
= = 

  + −
  (14) 

because: 2 g 2 g g 2 1 1 g 1 2 1N N (T T ) N (T T ) (T T ) N (T T )= +  − = +  − +  − = +  − .  

With 1 g 1n /kN=   and g gm N / 1=   − , Eq.(13) becomes according to Eq.(14):  

     −
= = +   

 + −   

1 2 11 r1
T

2 r2 1 2 1

n m (T T )t t
ln(a ) ln ln

t t (N / ) (T T )
 1 2 1r1

r2 2 2 1

c (T T )t
ln

t c T T

  −
= + 

+ − 
  (15)  

giving the corrected, general form of the WLF-equation. In Eq.(15) is mainly:  

r1

r2 1 2

t H H
ln

t kT kT

 
 − 

 
  (16) 

giving the Arrhenius shift and thus a combined Arrhenius–WLF shift always applies:  

−
 − +

+ −

1 2 1
T

1 2 2 2 1

c (T T )H H
ln(a )

kT kT c T T
  (17) 

being noticeable when both amounts are comparable near transition (e.g. for methacrylate 

polymers, see [3]). The WLF shift thus only approximately applies when the enthalpy H is 
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small. The Arrhenius shift in the transition zone applies separately when 1c 0= , thus when m 

= 0 and thus when: g gN =  , giving: 

g gd N dN

dT dT

  
= , (18) 

Because N is proportional to the free volume Eq.(18) states that the relative increase of the 

activation volume with temperature is proportional to the relative increase of the free volume. 

This is e.g. the case for glass. When the WLF-shift applies, thus when there is a relative 

higher increase of specific activation volume g/   with respect to the increase of specific 

free volume gN / N , this will be due to an increase of the density of active sites. If at a certain 

temperature step, the effective distance between the sites is halved, the number of sites is 

doubled and “m” can be expected to be: 

=   − =     − = − =g g g gm N / 1 ( / )/ (N/N ) 1 2 1 1 .  

Eq.(15) then, due to this site multiplication, also can be written as: 

     
= = + −     

     

1 r1
T 1 1

2 r2 1 2

t t 1 1
ln(a ) ln ln n N

t t N N
  (19)  

explaining the extended empirical Eq.(6) when f is replaced by N.  

By Eq.(14), it is shown that in the WLF-equation any reference temperature 1T  can be 

chosen in stead of gT , when also gN  is replaced by 1N . Further it follows from this 

derivation, that, although 1c  and 2c  of Eq.(15) are temperature dependent, depending on the 

choice of 1T , the product 1 2c c  is constant, temperature independent, because: 

g g g g g1 1
1 2 g

1 g

N NN N
c c m n m m m m n

kN k kN

  
 =  =  = = = 

    
  (20) 

In the equations above is: H the enthalpy and k, Boltzmann’s constant. The temperature T is 

in K and “N” is the concentration of mobile segments and not the free volume concentration 

and thus 

 

  is not necessarily the difference of the thermal expansion coefficients below and 

above the transition temperature.  

 

3. Annealing of amorphous solids  

Arrhenius temperature dependence 

When an amorphous material, (equilibrated far above 
  

 

Tg ), is suddenly cooled near 
  

 

Tg , the 

liquid-like molecular adjustment to a new equilibrium becomes slow. The system is under 

internal stress and annealing is a process relieving the stress when the system passes to 

equilibrium. Accompanying this relaxation, some properties of the system (as: birefringence, 

specific volume, viscosity, concentration, etc.) change with time. This is discussed in 

Appendix B, where it shown that one and the same equation describes all these types of 

changes.  

According to Appendix B, the rate equation of viscous flow at annealing is:  
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v  = - 2B  

 

v sinh(  

 

Kv )   (21)  

Performing the division 1/sinh(x), or:  

  

 

1

e x − e−x = e
−x

+ e
−3x

+ e
−5x

+ ... ,  Eq.(21) becomes:  

dln(  

 

v ) ( )v v vK 3 K 5 Ke e e Bdt−  −   −   + + +  = − ,   giving as solution (  

 

v0  v ): 

( )1 v 1 v0
n 0

B t E ( K (1 2n)) E ( K (1 2n))


=

 =   + −   +   (22)  

being a row solution of one process. Fitting this equation shows that there always is a high 

internal stress on the sites. For these high values of   

 

Kv  a more simple solution is possible 

because Eq.(21) then becomes:  

v v
dln( ) K

Be
dt

  
= −   (23)  

or:  dln(  

 

v )∙ vKe− 
=  B∙dt ,    or integrated: 

1 v 1 v0E ( K ) E ( K ) Bt  −   =   (24)  

where ( )1E x  is the exponential integral: ( )1E x  = 

  

 

e
−s

s
x



 ds .  Thus:  

( )1
v 1 1 v0K E E ( K ) Bt−  =   +   (25)  

In [4], measurements are given of the birefringence and density of a crown glass and Eq.(23) 

or Eq.(b5) apples exactly with a correlation close to 1 in the given temperature range between 

490  to 540 
0 C  (see Fig. 3).  

 
Fig.3 – Density increase and stress decrease during annealing of crown glass.  
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The theoretical curves follow from Eq.(24).  

 

The test-specimens showed mutually variability of the parameters. Every specimen is an 

unique giant molecule. The average value of v0 0K  =  , from the fit of stress relaxation 

and of the volume contraction data, was 4.7. However, there might be a sudden change of 

  

 

Kv0 , between 520 and 530 0C,  from about 5 to nearly halve this value, indicating two 

processes acting. More data are necessary to confirm this. The variability of   

 

Kv0  among 

the test-specimens is a property of glasses having a structure depending on the thermal 

history. This also applies for the viscosity, specific heat, specific volume, index of refraction, 

etc. Eq.(24) can be written for higher values of   

 

Kv  as: 

v0v
1 v 1 v0

v v0

exp( K )exp( K )
E ( K ) E ( K ) Bt

K K

− − 
  −    − =

   
    or:  

( )v
v v0

v0 v0

1
1 ln 1 B K t exp( K )

K


 − +    

  
,  (26) 

After the delay time, the value v01/ K   is the slope of the approximate straight line on ln(t) 

scale. This slope has to be constant independent of temperature and stress to have shifted lines 

along the time axis at different temperatures. The independency of stress means that in 

c0 0 0K /NkT  =  =   , the number of sites N is proportional to the maximal initial stress 

0 . This time-stress equivalence combined with the time temperature equivalence is 

mentioned in [5], pg. 94, where it is found that high strain has the same effect on aging as an 

increase in temperature. The time-stress equivalence is an important property of e.g. building 

materials, making it possible to determine the long term strength by constructing the master 

creep curve at constant temperature (see e.g. [1] pg.70).  

From Eq.(26) follows for the shift along the time axis at different temperatures: 

  

 

v1 / v01 − v2 / v02 = 0 , that   =  1 v1 1 2 v2 2B K t B K t  or: 

    =    1 v10 v1 v10 1 2 v20 v2 v20 2B K ( / )t B K ( / )t     or:   =1 1 2 2B t B t ,  

giving the Arrhenius shift:  

1 2 2 1 1 2ln(t ) ln(t ) ln(B ) ln(B ) H'/ kT H'/ kT− = − = −   (27) 

 

WLF temperature dependence 

With reference to the equilibrium values eN  and using Eq.(19), Eq.(7) becomes: 

e e e
e

dN 1 1
B(N N ) exp n N

dt N N

  
= − −  −   

  
 (28) 

with: e g en /kN=   and N -   

 

Ne  as active amount of sites.  

Eq.(28) can not be solved in terms of familiar functions and solutions in the form of infinite 

series can be obtained that can be tabulated, just like is done with sin(x), that represents an 

infinite series as solution of its appropriate differential equation. However, also a precise 

approximation is possible as follows:  

Eq.(28) can be written:  
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e
e e

e e

Nd 1 1 1 1 1
B exp n N

dt N N N N N N

     
= − −             

  (29) 

or:   eNds
Bs exp(s)

dt N
= − ,          where: e e

e

1 1
s n N

N N

 
= − 

 
   or: 

dln(s)  

 

.exp(- s) = - B  

 

.
  

 

N e

N
  

 

.dt  (30)  

At the end stage of the process   

 

Ne / N  

 

 1 and integration of Eq.(30) then gives:  

1 1 0E (s) E (s ) Bt− =   (31)  

where 1E (x)  is the exponential integral.  

More general the solution is: 1 1 0 eE (s) E (s ) BtN /N− = , with a weighted mean value N . For 

high values of “s” 1E (s) exp(s)/s=  and the solution then becomes: 

−− − =0
0 e

sse / s e / s BtN / N , being approximately:   

0
0 e

ssNe N e BnN t B't−− − = =     (32) 

because for high values of 0s  and s is: e e e es n (1 N / N) n (1 N / N) n= − = −  , about 

constant and the best estimate of N  is N in the first term and 0N  in the second term.  

Because Eq.(31) is the solution at the safe side and Eq.(32) the solution at the unsafe side, the 

mean of both equations can be taken as total solution of Eq.(29):  

0
0 1 1 0 r

ssNe N e E (s) E (s ) B'' t t / t−− − + − = =   (33) 

The proof that this is right, follows from differentiation of Eq.(33). This gives Eq.(30) with a 

small negligence of e e(N N )/nN−  ( e e(N N )/40N − ) with respect to 1. Examples of 

curve fitting to Eq.(33) of materials showing the WLF-shift at annealing, as glucose, 

Polystyrene, Polyvinyl acetate, are given in [3]. There also Fig. 4, of A Kovacs is given, 

showing a perfect fit by the theoretical Eq.(33). 

 
Fig. 4. Isothermal volume contraction of glucose measured after sudden cooling to the 

temperatures indicated from [3] (test-points and theory: Eq.(33))  
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4. Conclusion  

- Not the volume effect, but the structural change equation (Eq.(7), Eq. (21), Eq.(28) or 

Eq.(b5)) of the equilibrium theory of molecular deformation kinetics, as treated in [1], which 

is shown to explain all aspects of time dependent behaviour of wood, is shown here to also 

give the theoretical explanation of the empirical WLF-equation and of the volume change and 

stress relaxation at annealing.  

- The form of the WLF-equation is explained by the properties of the activation volume 

parameters near transition, as given by Eq.(10).  

- It is shown by Eq.(17) that the WLF- shift is accompanied by the Arrhenius shift. The right 

WLF-shift has to be done on an by a factor exp(H/kT) reduced curve.  

- The constant value of g g/kN , or the proportionality of gN  (the concentration of sites) 

with the initial applied stress  , is a similar property of the activation volume as applies for 

glasses, wood, concrete and some metals (see [1]) which explains the time-stress-equivalence.  

- The equations show that always high internal stresses are acting even at the end of stress 

relaxation, probably by the high molecular attraction forces in the voids. The decrease of 

stress then is due to a decrease of restrained voids.  

- The WLF-shift is due to site multiplication with temperature increase near gT . 

- The WLF temperature shift applies, when the increase of specific activation volume g/   

is twice the increase of specific free volume gN / N  with temperature.  

- The Arrhenius temperature shift in the transition zone applies when the increase of the 

specific activation volume with temperature is proportional to the increase of the specific free 

volume.  

 

Appendix A - Basic equation of structural change 

As discussed in [1], the reaction rate equation for structural change: 

a ad /dt B 2sinh(f A /(kT)) =     (a1) 

can be expressed in the concentration term:  

a a 1N A / =      (a2) 

where  is the jump distance of the activated unit; aA , the cross-section of that unit; 1  the 

distance between the activated sites, and aN , the number of these sites per unit area. Then 

a 1 tN / N =  is the number of activated elements per unit volume. The work of the stress af  

on the activation unit is: a af A  .  

The equivalent work by the part of the mean macro stress  that acts at the site is  times the 

unit area thus is:  

v a a a1 1 N f A    =     or:   a a v af A /N =   . (a3)  

Also the chemical work, expressed as an equivalent chemical driving stress, can be added as 

stress to the external stress. Eq.(a1) thus becomes: 

a a 1 a a 1 ad(N A / )/dt B (N A / ) 2sinh( /(N kT))  =         (a4)  

 a a 1d(N A / )/dt  can be  the rate of increase of activation volume. If this is proportional to 
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the free volume, this term also gives the rate of free volume increase.  a a 1N A /  also may 

be the mean viscous strain per unit area and Eq.(a4) then becomes: 

 =v  2B v sinh( vK  ). For pure creep, at bond breaking and bond reformation in a shifted 

position, the number of bonds or sites remains constant and Eq.(a4) becomes:  =v  - 

2B v0 sinh( vK  )  −   v0 vB exp( K )   (a5)  

For a process of changing site density at annealing Eq.(a4) becomes with 'T =   because of 

the entropic driving force:  

v vdN /dt B N 2sinh( '/(Nk)) B Nexp( '/(Nk))=          (a6)  

This last approximation of 2sinh(x) ≈ exp(x) follows from the derivation of the WLF-equation 

showing always a high internal stress on the sites.  

 

Appendix B - Basic equation of annealing relaxation 

The following mechanism scheme is able to explain the measurements. At suddenly cooling, 

the shrinkage and configurationally change is confined by strong side bonds in the same way 

as crossing molecules bridging voids. It follows from the theory that the internal stress on 

these sites is always high and thus the crossing molecules are always under high pressure by 

the molecular attraction forces of the void boundaries trying to close the void. A segmental 

jump of the highest loaded crossing unit will unload this unit but increases the load on the 

adjacent crossing units causing the next one to be high loaded. The segmental jumps cause a 

decrease of the void volume (free volume) as well as a decrease of the number of jumping 

elements. This causes a process of decreasing sites according to Eq.(a6) also by the 

decreasing void volume, a mean stress decrease in the visco-elastic material surrounding the 

voids. The rate of decrease of the void volume determines the rate of viscous displacement 

and thus the rate of density increase and a relief of the elastic stress in the surrounding 

material and a description is possible in terms of elastic and viscous strains,   and v  of that 

material. The stress on the elastic material of the unit cross section is v −   and the strain: 

v 2( )/E =  −  , where 2E  is the modulus of elasticity of the elastic material. This strain 

causes a stress on the viscous sites of v v 1( )E =  −   where 1E  is the equivalent modulus of 

elasticity of the elastic material at the site. 

These constitutive equations are the same as given by the non-linear three-element analogy of 

Fig. 5, applied to annealing.  

At a sudden cooling and no external loading, the free spring can be assumed to shorten 

directly what is not followed by the dashpot, and there is an internal stress  

v 1 vE ( ) =  −   (b1)  

This is in equilibrium with the force on the parallel spring. Thus:  

v 2E =    (b2) 

and from Eq.(b1) and (b2) follows that:  

1 2 1 v(E E ) E+  =       or:   1 2
v 2 v v

1 2

E E
E K

E E
 =  =  = 

+
  (b3) 

The strain rate of the non-linear Maxwell element, for a structural change process, is:  
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Fig. 5. Three-element model 

 

 =v  - 2B  

 

v sinh( vK  ) v vB exp( K ) −      (b4)  

According to Eq.(b3), this equation also can be written in v =  : 

 =  - B  exp(  )   (b5)  

giving the stress relaxation of annealing.  

Eq.(b5) is the stress relaxation equation for high stresses, that does not only apply at the start, 

but also at the end of the relaxation process when   approaches zero. As discussed before, 

this is due to the remaining high loaded units crossing the voids.  

As discussed in Appendix A, a segmental jump of  , of the bridging segments, decreases the 

void volume with vA  when vA  is the surface of the bridged void. The relative decrease of 

the free volume then is v v 1N A /  , when vN  is the number of adjacent voids per unit cross 

section and 1  the distance perpendicular. This decrease of the free volume is v vN A  times 

the viscous strain 1/   thus is proportional to viscous strain v . In Eq.(b4), v  can be 

replaced by the free volume change being the same as the total volume change (as contraction 

or density increase). The same equation gives in the form of Eq.(b5) the stress relaxation.  

Because the birefringence (mm/mm) is proportional to the stress (for most real glasses 0.1 

N/mm2 produces a birefringence of 3.10 – 7), Eq.(b5) also gives the decrease of the 

birefringence. Further, when the equation is written in 0/  , it also gives the change of the 

relaxation modulus:   

 

( / 0) / (0 / 0) , or the change of the viscosity: (

 

 / 0 )/(  

 

0  / 0 ) 

=  0/  with time, when the relaxation modulus is measured at the different temperatures 

with the same   

 

0 , and the viscosity with the same 0 .  
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