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Abstract
Using AI to support programming has recently
gained a lot of popularity. Researchers have been
developing tools to support programming activities
using GPT models such as ChatGPT and Codex
In this paper, we present the most common pro-
gramming activities that these models can support.
We show that they have a varying range of success
across solving Code Generation, Code Explana-
tion,and Data Visualisation problems, but are often
able to solve around 50% of problems on the first
try. Multiple tries can raise these averages to 75%.
Additionally, specialized tools using GPT models
have seen promising results regarding Data Visuali-
sation, Software Vulnerability Detection, and Gen-
eral Programming Support. This shows a promis-
ing trend, and can mean we will all be pair pro-
gramming with AI in the near-future.

1 Introduction
Programming is an essential part of modern society. Its ap-
plications are widespread, and range from cars [5] to med-
ical equipment [28] and to simple things like a thermostat
[33]. However, programming is a manual process and subject
to tedious repetition and human errors. With new rapid de-
velopments in AI, and in particular theGenerative Pretrained
Transformer (GPT)[2], this might change. These new ad-
vancements have made it possible to automatically generate
working code. Being able to assist programmers with activ-
ities such as documentation generation, automatic bug fixes,
and code generation may allow programmers to focus on the
higher level aspects. This study will enable identifying the
gaps in current research, and opportunities for future work.

In light of these rapid developments of Large Language
Models (LLM), several papers are published daily [18]. Two
examples of such models are ChatGPT 1 and Codex 2. Pub-
lished by OpenAI, ChatGPT is a prototype chat bot, able to
accept Natural Language (NL) prompts, and respond with
various forms of output. Codex, another GPT also pub-
lished by OpenAI, is specially trained on code, and is more
suited for programming tasks. Research shows that these
models are able to assist and come up with solutions to
many types of questions [7], and synthesise information in
a concise way. Models like ChatGPT and Codex have al-
ready been subjected to numerous tests and experiments [29;
19]. The papers published in the computer science field range
from reporting on performance for introductory programming
courses [9] to the possibility of automating bioinformatics
tasks [21], With this daily influx of papers, there is an ad-
vantage to having a clear overview of the current capabilities
and state-of-the-art in code generation models.

This brings up the question how well these models are able
to support various programming activities.

In order to compose an overview for the capabilities of
LLM, we have determined the following research questions:

1https://openai.com/chatgpt
2https://openai.com/blog/openai-codex

• RQ1: For what kind of programming support activities
have the code generation models been used?

• RQ2: How successful have they been considering these
activities?

Being able to be up to date on the most recent develop-
ments shorten the time it takes for new people to enter the
field, and allows peer researchers to quickly re-inform them-
selves of the newest developments. This is essential in a quick
paced field like Artificial Intelligence. This systematic lit-
erature review aims to report on these uses and provide an
overview of their current performance.

2 Methodology
We conducted a systematic literature review to investigate the
latest developments on code generation models for support-
ing programming activities. The reason this method was cho-
sen is due to the large amount of ongoing research. With
the already extensive amount of research published, our re-
search question can be answered by looking at the published
uses of models. This way readers can quickly see the current
state and progress of code generation models for program-
ming support activities. We followed these general steps[13]:
1) Identifying criteria, 2) Screening papers, 3) Checking el-
igibility, 4) Extracting data, 5) Analysing data and reporting
the results

2.1 Inclusion and Exclusion Criteria
In order to find research pertaining to the research question,
we established inclusion and exclusion criteria. Inclusion cri-
teria were as follows :

• The paper compares capabilities of several GPT models
for programming activities

• The paper has developed a tool that helps with program-
ming activities

• The paper has tested capabilities of a GPT for a certain
programming activity

• The paper is found within the search terms as explained
in 2.2.

Exclusion criteria were as follows:

• The paper is not in English

• The paper is more than 1,5 years old

• The paper is inaccessible

2.2 Search
After the inclusion and exclusions criteria, we created search
terms that pertained to the use of code generation models in
programming activities. The search terms were constructed
in a way to include models such as ChatGPT, and to cover
possible different wordings regarding support for program-
ming. The searches were conducted between 1-05-2023 and
26-05-2023, on Google Scholar and Scopus. As stated in the
inclusion criteria, papers were only required to be published.
There was no requirement for the publication to be in a spe-
cific paper or format.



We used two queries on Google scholar due to the large
number of unrelated papers that it showed. For the query
where we got a large number of results, we only looked at
the first page.

Queries for Google Scholar:
• ”ChatGPT programming” OR ”GPT programming” OR

’”large language models” programming’ OR ”AI model
programming” OR ”OpenAI programming” OR ”GPT
code generation”

• allintitle: programming ChatGPT OR GPT OR ”large
language models” OR ”AI model” OR OpenAI OR
”GPT code generation”

Query for Scopus:
• TITLE-ABS-KEY ( ( chatgpt OR gpt OR ”large lan-

guage models” OR ”AI model” OR openai ) AND ( pro-
gramming OR ”code generation” ) ) AND ( LIMIT-TO
( OA , ”all” ) ) AND ( LIMIT-TO ( PUBYEAR , 2023
) OR LIMIT-TO ( PUBYEAR , 2022 ) ) AND ( LIMIT-
TO ( SUBJAREA , ”COMP” ) )

In Scopus, the first query was done with only the TITLE-
ABS-KEY part of the search terms. When filters were applied
for publication years and subject area, Scopus presented the
search query above, which was subsequently used to as the
final query for the search in Scopus.

2.3 Data Analysis
After excluding papers that did not fit the criteria, we then
read the abstract and introduction of each paper, and judged
whether it was relevant to the research question. This yielded
a result set of papers. Among this result set, we examined
the references for papers references by multiple other papers.
When such a paper was found and it pertained to our research
question, it was including in the set of papers even if it did
not show up in the search results. Then we checked which
papers referenced this paper, and filtered those according to
our exclusion criteria, once again adding the remainder to the
result set. This is also known as backward snowballing.

2.4 Data Extraction
In this result set we looked at the results of each paper in
terms of what programming activities their model or imple-
mentation supported. When it was deemed to indeed pro-
vide programming support, we looked at their reported re-
sults in order to answer the second research question for this
tool. We synthesised other papers reporting results for the
same programming activities, and were able to assess the state
of support for that programming activity. We looked at the
most commonly occurring activities, and used those as base
groups, and studies that were relevant but did not fit in one
of those categories were put in General Programming Sup-
port. This provided us with an overview of published and
used tools that support programming activities and how suc-
cessful they are.

3 Results
In Figure 1 the results of the review process are displayed in
a PRISMA flow diagram.

Figure 1: PRISMA Flowchart

There were five studies that initially seemed to meet the in-
clusion criteria, but were ultimately excluded from the review.
They are listed here along with the reasons for exclusion

• [3] While it seemed that this paper was about the capa-
bilities of ChatGPT for supporting programming activi-
ties, the method and experiment section was unclear and
felt unrepeatable.

• [24] Upon initial screening, this paper was about solv-
ing programming bugs using ChatGPT, but upon further
inspection it has no experiments and simply speculates
on the use of ChatGPT.

• [31] Focused on pre-training a model, but does not talk
about application as support for programming activities.

• [4] Focused on the way Chinese students feel about pro-
gramming courses and how AI can change this rather
than supporting programming activities.

• [25] Focused on the training aspect of the model, and
not on the code completion and the performance in real
tests with users.

We have found several works where code generation models
have been published and used to support programming activ-
ities. We will discuss how the code generation model support
programming activities, and report on the success of these
models. We have grouped together similar programming ac-
tivities, independent of the model used for it. Support for
the following programming activities and their success will
be presented: Code Generation, Code Documentation, Code
Explanation, Data Visualisation, Software Vulnerability De-
tection and General Programming Support. This last category
is meant as a general collection, where the studies discuss ac-
tivities in an intertwined way, instead of focusing on a single
type of activity.



Programming Activ-
ity

Title Author Year

Code Generation &
Code Explaination

Automatic generation of programming exercises and
code explanations using large language models.

Sami Sarsa, Paul Denny, Arto Hel-
las, and Juho Leinonen

2022

Code Generation

Can openai’s codex fix bugs?: An evaluation on
quixbugs.

Julian Aron Prenner, Hlib Babii,
and Romain Robbes

2022

The robots are coming: Exploring the implications of
openai codex on introductory programming

James Finnie-Ansley, Paul Denny,
Brett A. Becker, Andrew Luxton-
Reilly, and James Prather.

2022

A case study on scaffolding exploratory data analysis
for AI pair programmers.

Haoquan Zhou and Jingbo Li. 2023

How readable is model-generated code? examining
readability and visual inspection of github copilot.

Naser Al Madi. 2022

Sketch-based approach for automatic code generation Jia Li, Yongmin Li, Ge Li, Zhi Jin,
Yiyang Hao, and Xing Hu

2023

Promptinfuser: Bringing user interface mock-ups to
life with large language models

Savvas Petridis, Michael Terry, and
Carrie Jun Cai

2023

Code Documentation Automatic code documentation generation using gpt-
3

Junaed Younus Khan and Gias Ud-
din

2022

Code Explanation

Gptutor: a chatgpt-powered programming tool for
code explanation

Eason Chen, Ray Huang, Han-
Shin Chen, Yuen-Hsien Tseng, and
Liang-Yi Li

2023

Using large language models to enhance program-
ming error messages

Juho Leinonen, Arto Hellas, Sami
Sarsa, Brent Reeves, Paul Denny,
James Prather, and Brett A. Becker

2023

Data Visualisation

Chat2VIS: Generating data visualizations via natural
language using chatgpt, codex and gpt-3 large lan-
guage models.

Paula Maddigan and Teo Susnjak 2023

CodexDB: Generating code for processing sql queries
using gpt-3 codex

Immanuel Trummer 2022

Software Vulnerabil-
ity Detection

Transformer-based language models for software vul-
nerability detection.

Chandra Thapa, Seung Ick Jang,
Muhammad Ejaz Ahmed, Seyit
Camtepe, Josef Pieprzyk, and Surya
Nepal

2022

General
Programming
Support

Conversing with copilot: Exploring prompt engineer-
ing for solving cs1 problems using natural language

Paul Denny, Viraj Kumar, and
Nasser Giacaman

2023

Using github copilot to solve simple programming
problems.

Michel Wermelinger 2023

Cracking the code: Co-coding with ai in creative pro-
gramming education.

Martin Jonsson and Jakob Tholan-
der

2022

Is chatgpt the ultimate programming assistant – how
far is it?

Haoye Tian, Weiqi Lu, Tsz On Li,
Xunzhu Tang, Shing-Chi Cheung,
Jacques Klein, and Tegawendé F.
Bissyandè

2023

Stylette: Styling the web with natural language. Tae Soo Kim, DaEun Choi, Yoon-
seo Choi, and Juho Kim.

2022

The programmer’s assistant: Conversational interac-
tion with a large language model for software devel-
opment.

Steven I. Ross, Fernando Martinez,
Stephanie Houde, Michael Muller,
and Justin D. Weisz.

2023

Codefill: Multi-token code completion by jointly
learning from structure and naming sequences.

Maliheh Izadi, Roberta Gismondi,
and Georgios Gousios

2022

Table 1: Works belonging to each category

3.1 Code Generation
There have been several studies [15; 22; 8] published regard-
ing the use of GPT models for code generation. Codex, a
GPT trained mainly on Python code has been tested quali-

tatively and quantitatively. Findings indicate that generated
code is often sensible novel and readily applicable [15], and
often come with generated test cases. Codex is also capable
of fixing generated code [22] and generating programming



exercises [8]. Its shortcomings lie mostly in formatting er-
rors and missing corner cases. Overall, the code generational
models often outperform most human peers [8], and could
prove problematic as an answer generating tool in the hands
of students.

Other studies [32; 1] have looked into GitHub Copilot, an
interface between Codex and several IDE’s such as Visual
Code and JetBrains. Prompt engineering has a significant im-
pact on the success of queries [32]. Word order, terminology
and repeating important information all influence the quality
of the output. CoPilot is generating code that is very close
to human code in terms of readability [1]. This helps users
understand code more easily, and can increase confidence in
the generated code. On the other hand, both studies report
that this confidence can sometimes be dangerous, mention-
ing users were found to perform less checks and inspections
on generated output and sometimes demonstrated an over-
reliance on the AI.

Lastly, standalone tools [17; 20] have been developed to
elavate the power of LLM in a slightly different manner.
Sketch Based Code Generation [17] makes use of a large
database of code, and retrieves and manipulates snippets of
code to answer code question prompts. This method has been
found to be significantly more successful than other LLM ap-
proaches. PromptInfuser [20] is a tool created for supporting
UI-design. It that allows user to connect input and output
fields, with a functional prompt as function, and has shown
a speed-up of the process and an increased understanding of
requirements.

3.2 Code Documentation
Documentation is an important aspect of programming, al-
lowing other programmers to understand code at a glance.
[12] shows that Codex can assist the user in generating doc-
umentation. Using zero-shot learning, Codex was mostly
unable to provide accurate documentation. It performs best
when using few-shot learning, even among its peer models.
Sometimes it was capable of adding extra correct informa-
tion based on the code that the original documentation did not
have. Their research shows that users were skeptical of gen-
erated documentation in the beginning, but after interacting
with the tool had a much better opinion about it. The results
show that the tool was able to assist the user by generating
correct responses in a majority of cases.

3.3 Code Explanation
An important support activity in programming is code expla-
nation. In [6] the authors have created a visual studio exten-
sion utilizing ChatGPT (gpt-3.5-turbo) in order to explain the
meaning of code to programmers. They tackle three found
problems that current GPT have, namely that GPT are su-
perficial, offer irrelevant information, and may often not be
up to date. Results conclude that their extension is an im-
provement on existing GPT. Research shows that Codex is
able to explain code in 67% of the cases [15]. Codex was
also tested on its ability to generate accurate readable error
messages [16]. In almost half of the different error message
cases, Codex was able to provide a correct explanation, while
improving on the original error message. In around 33% of

the cases, Codex even suggested a correct fix for the error
message. This could improve programmers understanding of
why errors occur, and significantly lower the debugging time
required to fix the error. This shows that GPT models seem
to be quite proficient at generating good explanations

3.4 Data Visualisation
GPT models have enabled the conversion from Natural lan-
guage into query processing code such as SQL Queries. Sev-
eral tools have been published for this purpose. They work
by inputting natural language [19] or a combination of SQL
query and natural language [29] Their performance is best
when allowed multiple tries, reaching around 80% success
rate, and in many cases is robust against under-specification
and miss-specification. The latter part is especially important
for the adaption in every day situations. It is important to note
that while 80% is high, in real life application it might not be
practical to have to perform many attempts. In the time it
takes do many attempts to engineer the prompt, the program-
mer could also be manually specifying/fixing the SQL query,
possibly leading to a faster result.

3.5 Software Vulnerability Detection
GPT models have also been used to test software for vulnera-
bilities [26]. Software vulnerabilities testing is often a costly
and long process, and being able to automate this would
be very helpful. The study found that current LLM have
very good performance on detecting vulnerabilities, and re-
port vulnerability detection on most types of vulnerabilities
as high as 93% F1-score, on some data sets. This means that
it has both high precision (this is the percentage of results
predicted as positive that are indeed positive), and high re-
call (this is the percentage of total positives that were found).
However, some types of vulnerabilities, such as API func-
tion calls, have a lower F1-score, being around 78% This may
mean that much of the process could be automated, and de-
crease the chance for software vulnerabilities to be present.

3.6 General Programming Support
As a general programming support assistant, several tools
have been studied [7; 30; 11; 27; 14; 23; 10]. CoPilot shows
capability in solving a number problems out of the box [7].
Results also show that it is very sensitive to input, and small
alterations to input prompts may severely impact the qual-
ity of the output. Similarly, this leads to answers often being
wrong, unnecessary or not related to the question [30]. Exper-
iments for Co-coding with AI [11] show that while are capa-
ble of solving problems in a large number of situations [27],
they are currently impractical to utilize in a realistic situation.
These tools also enable non-programmers to engage in pro-
gramming activities [14], and show an increase in confidence
about programming for users. Integrated assistants were pre-
ferred to be more proactive [23], and multi-token prediction
[10] could provide a solution to this.

4 Discussion
We can see that a number of LLM/GPT uses have been pub-
lished already, and that the results seem optimistic for this



early stage. However there are a number of risks we have to
keep in mind. First off, since there are situations where the
the models performed exceptionally well, there exists the risk
over over-reliance on these models. This can happen because
users get accustomed to correct answers for small problems,
and results in users no longer trying to verify the provided
solutions for more complicated cases. Secondly, it can be the
case that a user is not proficient enough in a certain activity,
and tries to solve the problem using code generation mod-
els. This obtained solution might be working, but might not
provide the intended answer, and could cause a slew of un-
intended problems. Lastly, time spent trying to obtain an an-
swer can quickly get longer than writing the code manually.
When having to do a lot of different prompts and attempts
with high temperature to obtain an answer that works, some-
times it would be better to simply make the program yourself,
especially for smaller programs. Therefore it is important to
stay attentive to the responses we obtain, make sure we have
someone proficient checking it, and to keep human oversight
and intervention. The importance of being aware of the risk
of over-reliance is also reflected in several of the works re-
viewed in this paper. The current iteration of code generation
models can be used mostly as a support tool, but still very
much requires its user to check and correct the outputs.

4.1 Limitations
The Author conducted the systematic literature review in
eight weeks. This limits the scope of the review. The search
and coding of papers was done by only one Author. Only two
databases were used while searching for papers. In addition
because the a lot of information about the subject is currently
being discovered, the review was limited to papers no older
than 1,5 years.

4.2 Responsible Research
The nature of this paper is a systematic literature review. The
ethical consideration of this is that the Author could conclude
what is wanted. Therefore the Author has to be careful to
operate objectively without any bias for outcomes.

4.3 Threats to validity
The breakthroughs in GPT and LLM are relatively new. This
means that not everything is known yet, and a lot of initial
conclusions could be missing key aspects that are discovered
later. In addition, a lot of new research is coming out on a
nearly daily basis. Everything in the literature review is there-
fore only based on a limited time frame of search.

This literature review was conducted in the time span of
8 weeks. This means that the process of gathering informa-
tion had to be done in a few weeks. While striving to be
thorough, the possibility of oversight or missing important
information is present due to these time constraints. The con-
sequences of these factors can arise in the form of, but not
limited to, missing papers in other databases outside of the
search scope, missing papers due to a narrow scope to fit the
time frame, and missing papers due to the inability to process
a large amount of papers in this time frame.

Additionally, only papers with a direct link to the subject,
either in the title or the abstract were chosen. As a result, it

is very much a possibility that papers with relevant informa-
tion outside of these sections are available, but these were not
included in the literature review. However, this threat to the
validity of the literature is neutralized by the search queries
that indicate it should contain these terms in the title.

Lastly, the Author’s expertise regarding this topic is still in
its early stages. This could have the following consequences.
Firstly it might influence or impact decisions to include pa-
pers. Secondly, finding search terms that equate to the same
meaning while conducting the search, which could have left
papers which may have been relevant off the radar.

Despite these possible issues, it is firmly believed that this
paper will answer the research questions to the best of its abil-
ity, and contribute to the understanding of the code generation
models for supporting programming activities and the success
in their current state.

5 Conclusions
Several published uses for GPT models have been found, in-
cluding Code Generation, Code Documentation, Data Visu-
alisation, and Software Vulnerability Detection. While there
are promising results, most of these activities cannot yet be
fully supported in a realistic environment without human
oversight. With the amount of attempts required to obtain a
correct result, it is often faster to manually solve the problem.
Several tools have created an interface to improve the relia-
bility of GPT models through prompt engineering, and this
has shown promising improvements on the previous models.
With the current trend, it will not take long before tools will
be capable of providing reliable support for programming ac-
tivities through the use of LLM.

With global access to LLM, it is important to further re-
search its potential and dangers. Further work is needed into
prompt engineering, as well as the best ways to interface with
these models, and especially things we should avoided au-
tomating. At the current pace, it is not a matter of if we will
be using AI, but when.
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