

Delft University of Technology

Herding Vulnerable Cats
A Statistical Approach to Disentangle Joint Responsibility for Web Security in Shared
Hosting
Tajalizadehkhoob, Samaneh; Van Goethem, Tom ; Korczynski, Maciej; Noroozian, Arman; Böhme, Rainer ;
Moore, Tyler; Joosen, Wouter; van Eeten, Michel
DOI
10.1145/3133956.3133971
Publication date
2017
Document Version
Accepted author manuscript
Published in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security

Citation (APA)
Tajalizadehkhoob, S., Van Goethem, T., Korczynski, M., Noroozian, A., Böhme, R., Moore, T., Joosen, W.,
& van Eeten, M. (2017). Herding Vulnerable Cats: A Statistical Approach to Disentangle Joint Responsibility
for Web Security in Shared Hosting. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (pp. 553-567). Association for Computing Machinery (ACM).
https://doi.org/10.1145/3133956.3133971
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3133956.3133971
https://doi.org/10.1145/3133956.3133971

Herding Vulnerable Cats: A Statistical Approach to Disentangle
Joint Responsibility for Web Security in Shared Hosting

Samaneh Tajalizadehkhoob�
Delft University of Technology

Tom van Goethem
imec-DistriNet, KU Leuven

Maciej Korczyński
Delft University of Technology

Arman Noroozian
Delft University of Technology

Rainer Böhme
Innsbruck University

Tyler Moore
The University of Tulsa

Wouter Joosen
imec-DistriNet, KU Leuven

Michel van Eeten
Delft University of Technology

ABSTRACT
Hosting providers play a key role in fighting web compromise,
but their ability to prevent abuse is constrained by the security
practices of their own customers. Shared hosting, offers a unique
perspective since customers operate under restricted privileges and
providers retain more control over configurations. We present the
first empirical analysis of the distribution of web security features
and software patching practices in shared hosting providers, the
influence of providers on these security practices, and their impact
on web compromise rates. We construct provider-level features on
the global market for shared hosting – containing 1,259 providers –
by gathering indicators from 442,684 domains. Exploratory factor
analysis of 15 indicators identifies four main latent factors that
capture security efforts: content security, webmaster security, web
infrastructure security and web application security. We confirm,
via a fixed-effect regression model, that providers exert significant
influence over the latter two factors, which are both related to the
software stack in their hosting environment. Finally, by means of
GLM regression analysis of these factors on phishing and malware
abuse, we show that the four security and software patching factors
explain between 10% and 19% of the variance in abuse at providers,
after controlling for size. For web-application security for instance,
we found that when a provider moves from the bottom 10% to
the best-performing 10%, it would experience 4 times fewer phish-
ing incidents. We show that providers have influence over patch
levels–even higher in the stack, where CMSes can run as client-side
software–and that this influence is tied to a substantial reduction
in abuse levels.

CCS CONCEPTS
• Security and privacy→Vulnerabilitymanagement; Systems
security; Human and societal aspects of security and privacy; Eco-
nomics of security and privacy; Web protocol security;

KEYWORDS
Shared hosting; hosting providers; web security; patching, large-
scale measurement; factor analysis; empirical evaluation

1 INTRODUCTION
Global web infrastructure is compromised at scale in support of
a myriad of cybercrime business models, from phishing to botnet

command and control (C&C) to malware distribution. The respon-
sibility for remediating compromised resources is shared between
webmasters and multiple infrastructure operators, notably hosting
providers, domain name registrars and internet service providers
(ISPs). The important role of hosting providers is codified in best
practices from industry organizations such as M3AAWG and SANS
[17, 25, 37]. These guidelines encourage providers to take sensible
steps, such as keeping customer software updated.

When the defenses fall short and resources are compromised,
providers are regularly faulted for not doing enough to forestall
compromise (e.g., [7, 42]). This raises the question, however, of
what providers can realistically achieve in terms of preventing
abuse. Compromise rates are driven by many factors outside the
immediate control of providers, not least of which is the security
decisions and patching practices of their own clients [22, 23]. It is
this joint responsibility between providers and webmasters that
makes answering the question so difficult. In this paper, we provide
an answer for the case of shared hosting, one of the most prevalent
and affordable ways to publish web content in which many websites
share the same server.

We focus on shared hosting services for several reasons. First, its
customers operate under restricted privileges. Hosting providers
maintain administrator privileges and can typically regulate what
software is installed and whether it is updated. As acknowledged
in M3AAWG’s best practices, providers have the most control over,
and hence most responsibility for, their resources in shared hosting
plans, compared to other hosting services [25]. Second, even when
customers can change configurations, shared hosting providers
maintain a strong influence by provisioning default configurations
that may or may not be the secure.

Put another way, if hosting providers can and do make a differ-
ence in improving security, we would expect to find evidence for it
in this segment of the market. Third, this segment matters in the
overall scheme of web compromise. Shared hosting is associated
with especially high concentrations of abuse [1, 2, 45]. In the data
examined for this paper, for example, around 30% of all abused
domains were on shared hosting.

Another barrier to assessing provider efforts to prevent abuse
is that their efforts cannot be measured directly. We cannot, for
example, measure each provider’s security budget, abuse team staff
levels, or uptake of technologies to mitigate attacks. In economics
terms, there is an inherent information asymmetry about the extent
and efficacy of the security efforts undertaken by providers.

mailto:s_DOT_t_DOT_tajalizadehkhoob_AT_tudelft_DOT_nl

We overcome this barrier by adopting a new approach, adapted
from psychometrics, that constructs an indirect measure of security
effort by amalgamating a disparate set of observable features such
as patching levels and secure web design practices. There are two
key benefits of our approach. First, we do not presume ex ante if it
is the webmaster or hosting provider who is responsible for these
features. Who drives patching of Content Management Systems
(CMSes), for example? Rather than make a priori assumptions, we
answer these questions empirically and thereby deal with the joint
responsibility problem. Second, we do not presume a direct causal
relationship between the observable features and how the website
is ultimately compromised. For example, setting a Content Security
Policy may not stop compromise, yet its presence does reflect the
security efforts put into increasing website defences.

We make the following contributions:
• We present the first comprehensive measurement study

of the population of shared hosting providers, revealing
patterns in 15 indicators spanning domain security and soft-
ware patching efforts, captured from a sample of 442,684
domains across 1,259 providers.

• We find that most discovered installations of webservers
and admin panels (87%) and (70%) were running unpatched
versions. In stark contrast, CMS installations were un-
patched in just 35% of cases. This perhaps reflects a dif-
ference in the probability of compromise between lower
and higher levels of the software stack. Version hiding is
a widespread hardening effort–e.g., 66% of admin panel
installations hide version information. By contrast, indi-
cators of domain security, such as HttpOnly cookie and
Content-Security-Policy, are rare (13% and 0.2% of do-
mains, respectively).

• We demonstrate a new statistical approach to empirically
disentangle the contributions of different parties to a joint
security outcome. Different from prior research, we do not
make ex ante assumptions about the meaning of security
indicators (e.g., that their configuration is under the con-
trol of the providers and accurately reflect their efforts).
Instead, we use the indicators to induce latent factors that
can be interpreted and empirically attributed to roles of
responsibility. We then regress these factors on measure-
ments of compromise, while controlling for exposure. This
approach can be adopted to study other areas of joint re-
sponsibility, such as between cloud hosting providers and
tenants, or corporate system administrators and end users.

• We find that webmaster and web application security ef-
forts significantly reduce phishing and malware abuse. For
example, the best-performing 10% of providers (in terms of
web application security effort) experience 4 times fewer
phishing incidents than the bottom 10% of providers. More-
over, we find that providers can influence patching levels,
even for software running at the application level such
as CMSes. The providers that do a better job of patching
their customers see reduced rates of compromise. This
provides the first compelling statistical evidence of the se-
curity benefits of hosting providers adhering to industry
best practices.

The paper proceeds as follows: Section 2 explains the data and
methodology used to sample domains, identify shared hosting
providers, estimate their size, and measure compromise rates. Sec-
tion 3 outlines the details of our active measurement setup and
describes the effort-related features we collected. Section 4 presents
an empirical view of the web security landscape in shared hosting.
Section 5 discusses the reasoning behind why the collected features
should not be used as direct causal explanations of abuse, highlight-
ing the need for latent variables. Section 6 explains the statistical
approach to estimate the latent variables and to empirically dis-
entangle the contributions of different parties to a joint security
outcome. Section 7, we assess the impact of the latent factors on
abuse incidents. Section 8 discussed the limitations of our study
and section 9 revisits related work. Finally, we discusses our main
conclusions and implications in Section 10.

2 DATA
Shared hosting providers. Our first task is to identify the pop-

ulation of shared hosting providers. We build on the procedure
developed in prior work [43, 45]. We start by populating a list of
all domain names1 and their IP addresses that were observed by
DNSDB – a large passive DNS database2 – in March 2016. Subse-
quently, we mapped the IP addresses to the organizations to which
they are allocated using MaxMind’s WHOIS API 3. From the re-
sulting list of organizations, we group very similar provider names
as single companies. Next, we applied a series of keyword filters
to weed out non-hosting services, such as DDoS-protection ser-
vices, internet service providers, and mobile service providers, as
discussed in [45]. This provides us with a set of hosting providers.
Next, we mark a provider as a shared hosting provider if we ob-
serve at least one IP address that hosts more than 10 domains. We
adopt the same threshold used in other studies [45, 51]. Using an
elbow plot of domain density per IP address, we confirmed a sharp
increase in density beyond a threshold of 10 to 15 domains per IP
address. The result is a global list of 1,350 shared hosting providers.

Domain sample. From the total set of 110,710,388 domains on
shared hosting, we randomly sampled 500 domain names for each
provider. We scanned them to verify these were still operational4.
If fewer than 100 domains were up and running, the provider was
excluded from the list (91 providers were excluded). It should be
noted that before drawing the random selection of domains, we
dismissed around 4,000 parked domains, following the detection
methodology outlined in [53]. This is specifically because a majority
of parked domains are very similar to each other (share the similar
content) and typically a single webmaster owns numerous parked
domains, as indicated by Vissers et al. [53]. Therefore, if taken into
account, the analysis is more likely to be biased towards a handful
of website administrators owning a large number of domains. By
excluding parked domains, we maintain an unbiased observation
of the features that are related to the efforts of the webmaster.

1We define domain name as a second-level or third-level domain, depending on
whether the relevant TLD registry provides such registrations, e.g., example.pl,
example.com.pl, example.gov.pl, etc.
2https://www.dnsdb.info
3http://dev.maxmind.com
4Domains are sampled only from IPs marked as shared, since a provider can have
shared servers next to dedicated ones

https://www.dnsdb.info
http://dev.maxmind.com

Accordingly, our final set contains 442,684 domains distributed
over 1,259 hosting providers, located in 82 countries all over the
world.

Size of hosting providers. Shared hosting providers differ vastly in
size, a fact to be controlled for when analyzing abuse with providers
as units of analysis. Clearly, a million-site business is likely to ob-
serve more abuse than one with a few thousand customers. Un-
fortunately, there is no authoritative source for provider size. To
estimate it from the available data, we use two different size in-
dicators, each capturing a different aspect of the shared hosting
providers. Shared hosting IP space size is the number of IP addresses
hosting at least 10 or more domains. It is calculated by summing
up all the IP addresses defined as shared, associated with domain
names per provider that have been observed in the passive DNS
data. The mean, median and maximum values are 636, 137 and
71, 448 respectively, across providers in our sample. Shared hosting
domain space size is the number of domains hosted on shared IPs
by a particular provider. It is calculated as the sum of the domains
that are associated with shared IP addresses of the provider, as seen
in the DNSDB data. The mean, median and maximum values are
94,118, 10,233 and 3.3 ∗ 107 respectively, across providers in our
sample. Note that due to a large variance and skewed distribution
of the size variables, a log-transformation of these variables (base
10) is used in the regression analyses of Section 7.

Abuse data. To estimate the compromise rate for each shared
hosting provider, we used two abuse datasets. We extracted all
entries that were associated with the shared hosting IP addresses
of the providers and counted the number of unique domains per
provider.

The phishing data is collected from two sources: the Anti-
Phishing Working Group (APWG) 5 and Phishtank 6. Both datasets
contain IP addresses, fully qualified domains, URLs of phishing
pages, blacklisting times, and additional meta-data. For the second
half of 2016, the data consisted of 62,499 distinct domains, which
resolved to 47,324 IP addresses at the time of reporting. 49,065 of
these domains were hosted by one of 968 shared providers in our
study (The remaining 291 providers did not record any phishing
during the period.)

We include drive-by-download malware URLs flagged by the
Google Safe Browsing program, as reported to StopBadware7. For
the second half of 2016, there were 362,069 distinct domains newly
flagged with malware. Of these, 332,625 resolved to an IP address at
the time of reporting. The rest was likely maliciously registered and
already suspended. Of all resolvable domains, 97,872 were hosted
by one of 1,050 shared providers in our study (The remaining 209
providers did not record any malware during the period.) The high
proportion in both datasets underscores the importance of shared
hosting in distributing web-based phishing and malware.

5http://www.antiphishing.org
6https://www.phishtank.com
7https://www.stopbadware.org

3 MEASUREMENT OF FEATURES
3.1 Measurement setup
We aim to collect a wide range of features, composed of vulnerabil-
ities and weaknesses, security mechanisms, and software patching
practices, all of which can help us estimate the amount of effort
going into securing domains.

We perform a large-scale measurement to obtain information
from the 442,684 sampled domains. More precisely, we instructed
our crawler, which is based on the headless browser PhantomJS8,
to visit up to 20 web page for each domain. The list of web pages
for a certain domain were obtained by following links starting from
the home page, until either the maximum number of page visits
was reached, or no further links could be discovered.

In order to restrict the feature collection process to the target do-
mains, the crawler only consideredweb pages with the same second-
level domain name. If, for example, the target domain example.com
immediately redirects users to website.com, only a limited set
of features could be obtained, i.e., server-level features and those
based on response headers sent out by example.com. This was done
to ensure that only information related to the website hosted in
the shared hosting environment was considered. In total, it took
our crawler, which was distributed over 15 virtual machines, each
composed of 4 CPUs and 4GB RAM, 7 days to visit and extract
information from the 7,463,682 web pages.

We gather information to construct a list of 15 features, which is
an extension of the web-based security features explored in prior
work [49]. Our features give an indication of both security-related
configurations, such as the deployment of Content-Security-Pol
icy, and patching practices of various software such as CMSes,
admin panels, PHP and SSH. Consequently, the captured features
reflect security practices employed by both the shared hosting
providers as well as the domain owners (webmasters) themselves.
In the following sections, we briefly discuss these two groups. For
the extensive list of features, please refer to Table 1.

Note that for most of the collected features, we do not expect to
observe a direct causal relation on abuse practices. Instead, we con-
sider the features to be proxies of the efforts made by the providers
and webmasters. We discuss the limitations of treating these fea-
tures as direct indicators of effort in greater detail in Section 5.

Ethical considerations. We designed our measurement techniques
to be as unobtrusive as possible. We collected no more data than
necessary and carefully scheduled our requests so that no single
server could be overloaded. All features were obtained through pas-
sive observation and we added various countermeasures to prevent
any irregular interactions with third party websites. Finally, we
report the findings in an anonymized manner.

3.2 Domain security indicators
As domains are prone to a large variety of potential vulnerabilities
and weaknesses, the web security community has for a long time
supported hosting providers and webmasters with mechanisms that
enable them to apply a defense-in-depth approach. In this section,
we discuss how we collect a multitude of security-related features
to get an approximation of security efforts for domains.
8http://phantomjs.org/

http://www.antiphishing.org
https://www.phishtank.com
https://www.stopbadware.org
http://phantomjs.org/

Cross-site scripting (XSS) vulnerabilities are among the most
critical security risks according to OWASP [34, 56]. We look for the
presence of the Content-Security-Policy response header, as it
can be used to protect against XSS attacks. We consider a domain to
have weak browser XSS protection if an administrator has disabled
the default browser mechanism to detect and block reflected XSS at-
tacks by means of the X-XSS-Protection response header. We also
check for the presence of HttpOnly, which helps reduce the poten-
tial consequences of XSS attacks, and X-Frame-Options, which can
be used to thwart clickjacking. In addition, we check if the Secure
cookie attribute and the HTTP Strict-Transport-Security re-
sponse header are present, as they both can effectively improve
transport layer security. Properly implemented web applications
are also crucial. We define the SSL-stripping vulnerable form fea-
ture when a website has a form (e.g. on a login page) pointing to an
HTTPS endpoint while being loaded over an insecure connection.
Accordingly, the mixed-content inclusions happen when a website’s
content (e.g. JavaScript code, style-sheets, images etc.) is included
over an insecure connection, while the web page was loaded over
SSL/TLS.

Note that we indicate the direction of the features by (−) and (+)
signs in Table 1 since not all features have a positive effect, such
as mixed-content inclusions, SSL-stripping vulnerable form, and
weak browser XSS protection.

3.3 Software patching practices
In addition to the security mechanisms discussed in the previous
section, the act of patching server software and web applications
plays a crucial role in the security posture of websites.

Often, attackers exploit known vulnerabilities present in un-
patched software (e.g., vulnerabilities reported in the National Vul-
nerability Database [30]). Therefore, it is generally considered best
practice for providers as well as webmasters to employ patch man-
agement mechanisms regularly and extensively.

Content Management Systems (CMSes) have been amongst the
most exploited software stacks for many years [39, 46, 51]. Depend-
ing on the administration rights in the shared hosting environment,
CMSes can be updated either by the webmaster or the shared host-
ing provider herself. In this paper, we limit our scope to the CMSes
with the majority of market share, namely WordPress, Joomla! and
Drupal CMSes [54].

The presence and version number of these three CMSes are
determined in two phases: first, a basic scan is performed using our
crawler which tried to infer the version number from the <meta
name=′′generator′′> HTML tag. However, as many CMSes allow
hiding the version number, something that is generally considered
a good practice against automated attack scripts, we perform a
second, more comprehensive scan. For the comprehensive scan we
made use of well-known industry tools such as Sucuri WPScan9
and WhatWeb10. For the latter, we updated the original scripts to
allow us to incorporate the latest versions of the targeted CMSes.

In addition to the experiment that determines the presence and
version number of CMSes, we performed a similar experiment that
focused on admin panels, a type of technology that is innate to the

9https://wpscan.org
10https://whatweb.net

shared hosting environment. In this paper we focus on the four
most popular admin panels, namely cPanel, Plesk, DirectAdmin,
and Virtualmin. We instructed our crawlers to visit the domains
at the port numbers that are typically associated with the admin
panels, e.g. port 2082 and 2083 for cPanel. We then improved our
measurements by visiting the endpoints that we found to often be
used as a shorthand to link to the admin panel, e.g. /panel/. Based
on the response headers, HTML contents, and redirection chains
that were captured by our crawlers, we tried to determine the pres-
ence and, when possible, the version number of the admin panels.
This allowed us to obtain the version information for approximately
33% of the domains with admin panel in our sample.

Moreover, other components that contribute to the software
stack, such as the HTTP server, SSH server and PHP interface,
should also be treated as part of the threat surface. In this paper
we focus on Apache, Microsoft IIS and nginx for the HTTP servers.
For the features related to the infrastructure of the web host, we
inferred the version information through either the Server and
X-Powered-By response headers (for webserver and PHP), or by
the banner that was returned, e.g. the banner on port 22 for SSH.

Lastly, we look into SSL/TLS implementations, as they are impor-
tant to prevent attacks on the transport layer. To assess weaknesses
in the SSL/TLS infrastructure, we used sslyze [13]. The domain’s
SSL/TLS implementation is considered insecure when it was vulner-
able to Heartbleed, supports old protocols (SSLv2, SSLv3), enables
compression, or is vulnerable to CCS injection [36].

For all software where the version number could be determined
by our scanner, we make the distinction between software that is
patched and unpatched. Generally, we consider a software version
to be patched if it was packaged in one of the supported versions of
OSes with larger market share namely, Ubuntu, Debian, and Cen-
tOS [55] at the time of our the measurement (November 2016). This
approach is relatively generous in considering software patched:
patches are often backported to older versions; as we did not under-
take any intrusive actions to determine the patch-level of software,
no distinction is made between versions with or without these
backported patches. Note that all the older versions of software
packaged in OSes are deprecated and contain vulnerabilities. For
instance, PHP version 5.3.2 had a vulnerability (CVE-2012-2317)
that would allow attackers to bypass authentication in applications
that would otherwise be secure. This was then patched in the later
versions packaged. A more recent example is CVE-2015-8867 in
certain versions of PHP (5.4.44, 5.5.x before 5.5.28, and 5.6.x before
5.6.12) [30]. A list of software and their patched versions is included
in the Appendix.

Due to the automated nature of our experimental setup, the
measurements may be subject to certain limitations. Despite the
preventive measures we have taken to make the generated web
traffic reflect the browsing behavior of a regular user, there could
still be providers who will block our scanning attempts. Moreover, it
is possible that certain software was not found within the scanning
threshold due to hardening techniques. More specifically for admin
panels, if the software was not located at a default location, we
would not be able to detect it. Furthermore, as we focus on a limited
set of software, it is possible that a domain makes use of a different
software stack, or that it was hand-constructed.

https://wpscan.org
https://whatweb.net

Table 1: Summary of measured domain security and soft-
ware patching indicators in absolute and relative terms.

Feature # of domains % of domains

HTTP server 398,929 90.11
no version information 195,474 44.15
Patched version 58,818 13.28
Unpatched versions 144,637 32.67

SSL 288,018 65.06
Patched version 206,680 46.68
Unpatched versions 81,338 18.37

Admin panel 178,056 40.22
no version information 118,768 26.82
Patched version 17,949 4.05
Unpatched versions 41,600 9.39

PHP 156,756 35.41
Patched version 47,596 10.75
Unpatched versions 109,160 24.65

OpenSSH 130,146 29.39
no version information 716 0.16
Patched version 36,444 8.23
Unpatched versions 92,986 21.00

CMS 103,741 23.43
no version information 10,043 2.26
Patched version 61,457 13.88
Unpatched versions 32,264 7.28

HttpOnly cookie (+) 57,696 13.04
X-Frame-Options (+) 22,212 5.02
X-Content-Type-Options (+) 8,685 1.96
Mixed-content inclusions (−) 2,107 0.47
Secure cookie (+) 1,378 0.31
Content-Security-Policy (+) 894 0.20
HTTP Strict-Transport-Security (+) 847 0.19
SSL-stripping vulnerable form (−) 515 0.11
Weak browser XSS protection (−) 376 0.08

4 DESCRIPTIVE FINDINGS ABOUT THE
LANDSCAPE

Previous research has explored individual security features at the
domain level. We now extend this approach in twoways: by combin-
ing these features with software patching practices and by moving
from individual domains to the level of providers. What is the
prevalence of security features across domains and providers? How
patched are software installations? Do patching rates vary substan-
tially from one provider to the next? Do different portions of the
software stack have different updating behavior?

4.1 Distribution of security features
Table 1 presents a summary of the distribution of all security fea-
tures, both positive and negative. The security features are pre-
sented as boolean variables, with 1 pointing to the direction of
the variable. The first column indicates the total number of do-
mains with a particular feature and the second column reports the
percentage of all domains with this feature.

The overall pattern is clear. Across the landscape, although cru-
cial, the positive security indicators have low to almost negligible
adoption rates. Out of 442,684 scanned domains, HttpOnly cookie
reaches a somewhat respectable 13%, but after that the prevalence
drops quickly. Two features are present in less than 0.3% of all

domains. The good news is that the observed negative security
features that can result in vulnerabilities are equally sparse: Mixed-
content inclusions is the most widespread at 0.5%.

To illustrate, Figure 1 displays the percentage of domains at a
provider that have Content-Security-Policy, HttpOnly cookie
or X-Frame-Options. At most providers, only a small fraction of
their domains support these features, hence one sees rarely any
large concentration of a feature within a group of providers. In
fact, for 1,100 providers (95% of the providers we evaluated), fewer
than 20% of their domains in our sample have HttpOnly cookie
enabled. The exception is a group of 9 providers where 80% of
the domains have HttpOnly cookie enabled, indicating a provider
effort in the form of provisioning default secure configurations.
To further validate this assumption, we tried to contact this set of
nine providers manually and check whether they provide certain
security features by default. We have been contacted back by three
of the providers. Two of the providers confirmed that depending
on the customers, they might set HttpOnly cookie by default in
the cases where they are the responsible entity for the customer’s
security. Another provider pointed out that the default HttpOnly
cookie setting is a built-in feature in the DotNetNuke CMS they
employ.

Figure 1: Distribution of security features over hosting
providers

Note that the median and mean complexity of the webpages in
our sample (measured by the number of endpoints) are 11 and 71.68,
respectively. Having that in mind, we expect some of these features
are only useful in specific configurations, so widespread adoption is
not to be expected. Not every pagewill set a cookie, for example, and
not every cookie needs to have the Secure or HttpOnly attribute. A
cookie might set a language preference, it might need to be accessi-
ble in JavaScript, and it does not matter if this leaks in a man-in-the-
middle attack. Also, for X-Frame-Options, it makes sense that this
header is only added on pages that are subject to clickjacking attacks.
On the other hand, features such as Content-Security-Policy
would benefit many domains and, as other work has noted [6],
adoption is disappointingly low.

Of all providers, only 6% has more than a single domain with
Content-Security-Policy in the sample. That being said, there is
an interesting long tail for these scarce features, where the provider
seem to play a role. For instance, the managed hosting provider
Netsolus.com, has more than 92% of its domains in our sample
enabled with Content-Security-Policy and HttpOnly cookie ,
which again suggests a provider wide setting rather than effort of
individual webmasters.

4.2 Distribution of software patching features
Regarding software installations, Figure 2 provides a visual overview
of the data in Table 1. The colored area shows the portion of all
domains where we were able to discover a certain type of software.
This is subdivided in installations where we found the patched
version (dark blue), where we found an unpatched version (light
blue) and where we could not identify the version (grey).

Manual analysis of the software patching features reveals several
interesting patterns. In the rest of this section, we discuss software
discoverability by attackers and version hiding efforts by defenders.
Then we look at the state of patching across the web stack.

Figure 2: Software patching distribution across domains

4.2.1 Hardening practices. Discovering the presence and ver-
sion of a software installation on a domain is more than a mea-
surement problem. The techniques we deploy can also be used by
attackers seeking vulnerable targets, especially if they scale easily.
This incentivizes defenders to harden software installations to be
less trivially discoverable and to not reveal version information.

Indeed, in the case of the three main CMSes, a basic scan was
rarely effective. Figure 3 shows that most installations were dis-
covered only through more intrusive industry tools, described in
Section 3.3. Overall, 23% of the domains had one of the three main
CMSes installed. To determine the validity of our results, we man-
ually inspected 40 domains per CMS type, both from domains for
which we discovered an installation and from those for which we
did not. We found one false positive where the domain did not
have any CMS and no false negatives. Most of the pages that we
marked as no CMS pages were either static HTML or featured some
custom-made CMS. It is an open question as to what made the
discovery more difficult: webmaster action, provider action, or the
default configuration provided by the software vendor.

Similarly to CMS, most of the well-known admin panels were
only discovered after a more comprehensive scans. We found them
on 40% of the domains. In a shared hosting environment, admin
panels seem a necessity, so the actual prevalence is likely to be
higher. Many providers, however, appear to shield them from being
discovered, even by more comprehensive scans. They are using cus-
tom solutions or hide them behind customer portals with restricted
access.

Version hiding is also a popular hardening technique. For SSH,
all version information is available, as required by the protocol. It is
interesting that PHP almost always provides version information,

Figure 3: Portion of CMS installations discovered via basic
vs. comprehensive scans

whereas only 50% of HTTP webservers came with version informa-
tion. Finding the version information was harder for admin panels.
We managed to find it for around 32% of all domains with one of
the main admin panel packages installed. For CMSes, version infor-
mation could be obtained for around 90% of the installations. Given
the known hardening techniques such as password-protecting the
/wp-admin/ directory, disabled PHP execution etc., we suspect that
this reflects the efficacy of the industry scanning tools, rather than
provider or customer practices [57].

We are interested in the difference among providers in version
hiding efforts. We looked at the percentage of software installations
at a provider for which version information was available. Figure 4
displays where providers are located across a range from where
just 0-10% of their installations reveal version information to where
90-100% do. The resulting distributions vary considerably by soft-
ware type. For CMSes, providers are clustered at the high end of the
range. Again, this more likely reflects the efficacy of the scanning
tools than of provider practices. For webservers, however, we see a
very different pattern; an almost uniform distribution across the
range. In some provider networks, nearly all versions are visible.
In others, virtually none are. The rest are somewhat evenly dis-
tributed across the intermediate intervals. If we assume that shared
hosting providers have control over the web server configuration,
which seems reasonable, then this distribution suggests that most
providers are not consistently applying version hiding in one way
or another. The mix of both hidden and visible version information
might reflect changes in the provisioning processes over time. As
new servers get added, a different default setup might be in use,
hiding or not hiding this information. For admin panels, we see
yet another distribution. A concentration of providers is on the
low end of the range, where version information is mostly hidden
across their network. This suggests a consistent practice. But we
also see a flat distribution over the rest of the range. Here, again,
we might see either changing or ad hoc provisioning processes. It
seems unlikely that this reflects customer action.

4.2.2 Patching. More important than hiding version informa-
tion is to ensure that software is not exploitable in the first place [46].
In this section, we explore patching practices. Figure 2 displays the
proportion of domains with the patched version of software, with
unptached versions, and installations for which we could not deter-
mine the version.

Figure 4: Distribution of discoverable software version
across providers

Appendix A lists the patched versions for each software pack-
age and its supported branches. We find that 19% of domains use
unpatched SSL. Note that unpatched means SSLv2 and SSLv3 or
containing certain vulnerabilities such as Heartbleed, CCS injection,
etc. For PHP and SSH, it is clear that fewer domains are running the
patched versions relative to the unpatched version. For webservers
and admin panels, the majority of installations were running un-
patched versions–87% and 70%, respectively.

In stark contrast to this stand CMS patch levels: less than 35%
were not running the latest version. This probably reflects two in-
terlocking mechanisms: a penalty for not updating through higher
probability of compromise, as CMSes are known targets for attack-
ers, and increasing support for auto-updating mechanisms, partly in
response to these attacks. The fact that lower layers of the software
stack such as webserver and SSH do not update as aggressively
suggests that the risk of compromise is lower. This might be due
to older versions still being patched internally with critical secu-
rity updates or to the fact that vulnerabilities are harder to exploit
remotely than in CMS software.

Figure 5: Percentage of domains per provider with patched
software versions

Figure 5 shows the proportion of domains running older ver-
sions in each provider. Providers are somewhat normally distributed
when it comes to unpatched CMS versions in their network. This
is consistent with a natural update cycle over many different cus-
tomers, each with slightly different time lags. The distribution of
providers is more uniform for web servers, which again points to
changes in provisioning. We see a positive skew for admin panels,
where a significant portion of the providers have almost all instal-
lations on the latest version. If we assume that both webserver and
admin panel software is under the provider’s control, this difference
is remarkable. It might reflect different incentives at work. Since
updating incurs cost and can cause compatibility issues, providers
might avoid it in the absence of a pressing need. This leaves only
changes in provisioning to change the mix of software versions over

time, which means the mix of latest and older versions gradually
shifts, consistent with the flat distribution of webserver versions.
For software that is attacked more often, we would indeed expect a
higher concentration of providers running the patched version –
which is indeed what we see for the admin panels.

5 DEAD END: DIRECT RELATION BETWEEN
SECURITY INDICATORS AND ABUSE

Our main goal in this paper is to study the relationship between the
security indicators we collected and abuse, at the level of shared
hosting providers, and eventually understand the influence of provider
security effort. This justifies the choice of inductive statistical tech-
niques which promise coefficient estimates that lend themselves to
meaningful interpretation, as opposed to machine learning, which
maximizes predictive power with non-linear methods. Statistical
techniques produce exact (up to the arithmetic precision) solutions
as well as indicators of confidence, e. g. in the form of significance
tests. They can be calculated as a by-product of the estimation,
therefore relaxing data requirements compared to heuristic cross-
validation typical for machine learning.

Nevertheless, our task is complicated by the fact that each provider
hosts a varying number of sites of varying functionality, complexity,
exposure, and customer (i.e., webmaster) expertise. The security
outcome for each site is a result of joint efforts of provider and
webmaster as well as attacker behavior. On the provider level, it is
the result of joint efforts of many parties. Therefore, it is convenient
and compatible with our statistical approach to model attacker be-
havior as a random process, which generates counts of incidents
observable in our data source.

To explain our method, we contrast it to a naive statistical ap-
proach that models the indicators as direct drivers of abuse rates.
An example is displayed in Table 2. It reports three specifications
of a count-data regression model in columns. The units of analysis
are providers and the dependent variable is the number of phishing
incidents in the provider’s shared hosting domains. Model (1) is the
baseline, including the two size indicators (cf. Section 2). Its Pseudo-
R2 value of 0.68 highlights the importance of size control in this
heterogeneous dataset. Model (2) tries to explain abuse with one
technical indicator (of insecurity), namely the number of domains
with unpatched CMS. The effect is statistically significant, and in
the expected direction: the positive sign of the coefficient means
that more domains (log scaled) with outdated CMS coincide with
more abuse. However, the more comprehensive Model (3) paints a
different picture. The apparent cause of abuse is not the fact that
the CMS is unpatched, but the presence of a CMS in the first place.
Model (2) missed to control for the fact that websites differ in com-
plexity and thus risk. As a result, it detected a spurious effect in the
“unpatched” indicator.

These findings confirm previous work at the level of domain
names [51]. The authors have concluded that i) running popular
CMS platforms (WordPress and Joomla) and ii) running up-to-date
versions of WordPress increases the odds of a domain in getting
compromised. Table 2 reflects that we find similar relationships on
the provider level. In addition, we identify a statistically significant
effect of hardening efforts put in place by defenders in hiding the
version string.

Table 2: Quasi-Poisson GLM with Log Link Function

Dependent variable:

Count of phishing domains

(1) (2) (3)

Number of hosted domains 1.467∗∗∗ 1.539∗∗∗ 1.678∗∗∗
(0.083) (0.085) (0.078)

Number of IPs hosting domains 0.690∗∗∗ 0.672∗∗∗ 0.472∗∗∗
(0.100) (0.100) (0.085)

Number of domains with oudated CMS 0.010∗∗∗ −0.023∗∗∗
(0.002) (0.005)

Number of domains with CMS without version info −0.019∗∗∗
(0.004)

Number of domains with CMS 0.015∗∗∗
(0.001)

Constant −5.596∗∗∗ −6.150∗∗∗ −6.743∗∗∗
(0.274) (0.314) (0.322)

Observations 1,259 1,259 1,259
Dispersion 90 89 68
Pseudo R2 0.68 0.71 0.78

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Standard errors in brackets

But does hiding version information really prevent abuse? While
plausible in principle, this conclusion is too early and suffers from
two issues. The first one is known as ecological fallacy: a rela-
tionship at the level of providers might not hold at the level of
domains, i.e., the abuse may not happen at the sites where the se-
curity indicator was observed. This fallacy tells us not to interpret
aggregate-level analyses as individual causal relationships. As we
mainly aim to study the discretion and responsibility of providers,
site-level effects need to be isolated, but not necessarily attributed
to individual causal relationships. The second issue concerns un-
observed third variables. There is a plethora of web vulnerabilities
and corresponding attack vectors. Any attempt to measure them
comprehensively with security indicators is futile, because each
indicator may suffer from the issues demonstrated in Table 2.

As a way out of this dead end, we first adopt a statistical ap-
proach common in psychometrics, where dealing with unobserved
constructs has a long tradition. With this lens, hiding the version
information should not be interpreted as a direct cause of less com-
promise, but as an indicator of security effort, a latent variable indi-
rectly measured by many correlated indicators. The convention to
use many indicators reduces the measurement error in each of them.
Moreover, latent variables are implicitly defined by the composition
of their indicators. The main advantage of using security effort as
a latent variable is that we do not need to fully understand the
causal relationship of attack and defense mechanisms throughout
the global shared hosting space. Instead, it is sufficient to assume
that if someone makes above-average effort to, e.g., hide version
information, he also takes other steps against attacks, which are
not directly captured with indicators. This way, our results become
more generalizable and robust at the same time.

In the following, we will infer from data not only one, but several
latent variables measuring the security effort of different parties.
This allows us to disentangle the joint responsibility using empirical

data, without the need to a priori assume and impose a responsible
party for each security indicator.

6 SECURITY EFFORT AS A LATENT
VARIABLE

As argued above, constructing latent factors from the security in-
dicators we collected is superior in terms of measuring security
effort than using the indicators on their own. This approach also
allows us to better empirically disentangle provider vs. webmaster
influence over these features.

Given the restricted administrative rights in a shared hosting
environment, among the features we collected, we assume that
features such as HttpOnly cookie can be modified by webmasters
as well as providers, whereas other features such as HTTP web
server, are more likely to be modified only by the provider itself.

However, this statement is speculative and is not necessarily an
accurate reflection of the reality for the following reasons: First, as
earlier work also points out, the hosting market is very heteroge-
neous, meaning that even shared hosting services can be offered
in different variations [45]. This essentially means that different
providers give different administrative rights to their customers (i.e.,
webmasters). Second, even if in principle, shared hosting providers
leave certain options open to be modified by webmasters, due to
the power of default settings, several customers never change those
options, even if they can. Our manual analysis shows that even if
providers do not directly set up a security feature, they can still
trigger security measures via “recommended settings” or regularly
nudging their customers towards a more secure environment. The
same could hold for software vendors: we have noticed that for
instance, from the latest version onwards, cPanel admin panel re-
moved the server type and version parameter from its default server
header. Third, there is an interaction between some of the features
discussed in the Section 3 and content and other applications run-
ning alongside a domain, which might require the webmaster to
setup certain features such as Secure cookie or HttpOnly cookie.

To better capture the role of shared hosting providers in securing
their domains while accounting for such interactions, we suggest
a different methodology than directly using the features that we
have collected. We examine the role of shared hosting providers,
by empirically and systematically deducing groups of provider fea-
tures that correlate strongly together yet vary considerably between
providers. The results of such an approach would then be an em-
pirical recovery of the effects that are throughout the market more
dominant, in the realm of shared hosting providers and are either
due to the fact that webmasters have no choice or due to default
effects, either of which matters significantly.

We do this in two steps: we first use exploratory factor analysis
to define latent variables or factors. Empirically inducing factors
from data confirms (or denies) whether the hypothesized division
of responsibility is actually present in the population. We then
quantify to what extent each factor is under the control of shared
hosting providers or their customers. Note that we purposefully
do not use abuse data in this section in order to avoid circular
arguments.

6.1 Exploratory factor analysis
Factor analysis uses the correlation matrix of all studied variables
and reduces its dimensionality by “looking for variables that cor-
relate highly with a group of other variables, but correlate very
badly with variables outside of that group” [15]. The variables with
high inter-correlations then shape a factor. For the factor analysis,
we use the security and software features discussed in Section 3.
Among all our features, the security features are boolean variables
with 1 pointing to the direction of the variable. The software fea-
tures are ordinal from least to most secure with the following order:
0 unpatched versions, 1 patched versions, 2 no software. Note that
in order to simplify the input data, from this section onwards, we
consider software with ‘no version information’ as ‘patched’ soft-
ware with the latest packaged version. Since our variables are a mix
of binary and ordinal, we use Polychoric factor analysis appropriate
for ordinal scales.

The input of the factor analysis is an n × p data matrix with n
being the number of measurements (in this case our domains) and
p being the number of variables (in this case our features) [10]. The
factor analysis generates a set of factors, their corresponding factor
loadings and factor scores. Factor loadings express the relationship
(correlation) of each original variable with each factor. Factor scores
are the estimated values of the factors per measurement (domain).
We use parallel analysis for selecting the number of factors, which
turns out to be 4. After applying Varimax factor rotation, we obtain
the factor loadings in Table 3. Each row of the table corresponds to
a variable, MR1 to MR4 are the factors, and each number indicates
the loading of a variable per factor. The highest loading per variable
is shown in bold. Stevens et al. suggest a cut-off point of 0.4 for
factor loadings [40].

Table 3: Output of factor analysis

MR1 MR2 MR3 MR4
X-Content-Type-Options 0.87 0.11 0.14 -0.01
Content-Security-Policy 0.80 0.23 -0.01 0.37
X-Frame-Options 0.83 0.09 0.10 -0.16
HTTP Strict-Transport-Security 0.61 0.50 0.04 0.03
Mixed-content inclusions 0.26 0.76 -0.01 -0.24
Weak browser XSS protection -0.39 0.68 0.24 0.29
SSL-stripping vulnerable form 0.08 0.60 -0.05 -0.38
HttpOnly cookie 0.13 0.65 0.14 0.12
Secure cookie 0.36 0.86 0.03 0.11
Patched HTTP* 0.09 0.05 0.74 -0.11
Secure SSL implementation* -0.15 -0.09 0.74 -0.10
Patched SSH* -0.07 0.04 0.42 0.35
Patched PHP* 0.09 -0.12 0.13 0.55
Patched CMS* -0.14 0.01 -0.23 0.78
Patched Admin panel* 0.08 0.08 0.10 0.58

Loadings’ sum of squares 2.90 2.92 1.48 1.90
Proportion of variance explained 0.19 0.19 0.10 0.13
Cumulative variance explained 0.19 0.39 0.49 0.62
* Scale from least to most secure: 0 unpatched, 1 patched or no version,
2 no software

The results in Table 3 indicate all of the 15 features have a
medium to high correlation with corresponding factors and hence
play a significant role in shaping the factors. Factors MR1 to MR4

each explain a part of the total variance. The cumulative variance
explained in Table 3 shows that the four factors together are able to
explain 62% of the variance observed in all the 15 features. This fur-
ther confirms our earlier call for having four factors, as the majority
of variance is captured by them.

From the results it is clear that these four factors (latent variables)
capture different aspects of web security. In other words, the factor
analysis not only reduce the complexity of our data, but also control
for unobserved third variables, as most of the the collected security
features do not directly cause abuse. In the following sections we
further use these factors to (a) study the respective role of providers
and webmasters and (b) assess their impact on abuse.

6.2 Role of Providers in Securing Domains
The combination of the features per factor and their relative load-
ings (i.e. how much they correlate with different factors) in Table 3
suggest that each of the factors capture a different set of web se-
curity efforts. MR1 consist of features that are partially capturing
content security practices. Features in the MR2 factor seem to
capture morewebmaster security practices. Given the high load-
ings on variables such as unpatched HTTP server and insecure SSL
implementation, MR3 clearly captures more infrastructure secu-
rity practices whereas MR4 seems to capture web application
security practices. In other words, the factor analysis shows that
features which one might assume to be related, such as CMS and
admin panel, do indeed covary with each other in practice, as they
correlate with the same underlying factor.

This leads us to the following hypothesis: we expect MR1 and
MR2 to be be less affected by providers’ security efforts than MR3
and MR4. We examine the relation between the factors and the
effort of providers by constructing four linear models.

Table 4: Linear Regression Model

Response Variable: Security Factor(s)

MR1 MR2 MR3 MR4

(1) (2) (3) (4)

Hosting provider fixed effect yes yes yes yes

Constant −0.250∗∗∗ −0.300∗∗∗ 0.100∗ 0.420∗∗∗
(0.064) (0.066) (0.043) (0.051)

Observations 442,075 442,075 442,075 442,075
R2 0.077 0.066 0.270 0.200
Adjusted R2 0.075 0.064 0.270 0.200
Residual Std. Error (df = 440801) 1.400 1.400 0.920 1.100

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Standard errors in brackets

To construct these models, we first calculate the factor scores
(the estimated values of the factors) from the factor analysis, in
a way that a score is assigned to each data point (domain). We
then construct a linear regression model per factor, with the factor
score as the dependent variable and provider fixed effects as the
independent variable. The provider fixed effect consists of fitting
a separate dummy variable as a predictor for each of the hosting
providers in our sample. We are interested to see how much of

the variance in each of the factors (dependent variables) can be
explained by provider efforts, as opposed to individual webmaster
efforts. The relative difference between the amount of variance
explained by each model indicates the extent that shared hosting
providers influence the security indicators associated with these
factors.

Table 4 shows the four models and their R2 and adjusted R2

values. To simplify presentation, we omit the estimated coefficient
for each hosting provider. The findings confirm our hypothesis:
hosting provider fixed effects explain at least three times more
variance in MR3 and partially in MR4 than MR2 and MR1. MR1
and MR2, as we earlier hypothesized, with the lowest amount of
explained variance, seem to bemore a compound of webmaster level
efforts rather than provider level influence. Disregarding the effect
of measurement noise, one should note that the R2 value cannot
be expected to be close to 1 in MR3 and MR4, because there are
differences between hosting packages offered by different providers.
Similarly, MR1 and MR2 are above zero because customers with
specific requirements self-select their provider.

Using the regression results, we are able to empirically confirm
our assumptions regarding the role of hosting providers in influ-
encing each of the latent factors constructed using factor analysis.
In the following section, we use these results to examine which of
the factors have a higher impact on abuse prevalence and which
party, provider or webmaster, can influence it more.

7 IMPACT OF SECURITY EFFORTS ON ABUSE
Having empirically determined the relationship between provider
and website security by constructing latent factor, we now compare
the incidence of abuse at providers to the factors. The objective is
to test the extent to which the actions of hosting companies and
individual webmasters influence the prevalence of abuse, using
malware and phishing sites as case studies.

We define our dependent variableYi as the number of blacklisted
domains in our abuse datasets for i = 1, . . . ,n, withn being the total
number of hosting providers, where Yi follows a Quasi-Poisson dis-
tribution11. We construct separate regression models for phishing
and malware.

The regression results for phishing andmalware abuse are shown
in Tables 5 and 6, respectively. In order to be able to observe the
effect of all variables on abuse, we construct one model per variable
(models 3-6), together with a final model that includes all variables
(model 7).We report the dispersion parameter for each of themodels.
Note that the Quasi-Poisson models are estimated using a Quasi
Maximum Likelihood and are adjusted via the reported estimated
dispersion peremeter. Therefore, the Log Likelihood values are
reported from the original Poisson fitted models, as recommended
in practice [5].

Moreover, since previous research already established the strong
relationship between provider size and abuse prevalence [32, 43],
we use model 2 with only size variables as our base model, and study
the extent to which our four factors further explain the variance
in abuse, on top of the R2=0.71 of model (2). Hence, in addition to
the normal pseudo R2 value used as a goodness of fit measure for

11We choose Quasi-Poisson over Poisson due to the over-dispersion (unequal mean
and variance) in our data.

Table 5: Generalized Linear Regression Model (GLM) for
count of phishing domains observed per provider

Response Variable: Count of phishing domains

Quasi-Poisson with Log Link Function

(1) (2) (3) (4) (5) (6) (7)

domains on shared hosting 1.500∗∗∗ 1.400∗∗∗ 1.400∗∗∗ 1.500∗∗∗ 1.800∗∗∗ 1.800∗∗∗
(0.083) (0.081) (0.093) (0.082) (0.080) (0.110)

IPs on shared hosting 0.690∗∗∗ 0.780∗∗∗ 0.750∗∗∗ 0.700∗∗∗ 0.620∗∗∗ 0.660∗∗∗
(0.100) (0.100) (0.110) (0.100) (0.086) (0.120)

MR1 −0.570∗∗∗ −0.570∗
Content security (0.140) (0.240)

MR2 −1.100∗∗∗ −1.100∗∗
Webmaster security (0.270) (0.390)

MR3 −0.360∗∗ 0.170
Web infrastructure security (0.110) (0.150)

MR4 −1.100∗∗∗ −1.200∗∗∗
Web application security (0.110) (0.160)

Constant 3.300∗∗∗ −5.600∗∗∗ −5.700∗∗∗ −5.500∗∗∗ −5.600∗∗∗ −7.100∗∗∗ −7.100∗∗∗
(0.250) (0.270) (0.270) (0.300) (0.270) (0.320) (0.440)

Observations 1,259 1,259 1,259 1,259 1,259 1,259 1,259
Log Likelihood -99,401 -30,094 -29,152 -28,160 -29,516 -26,173 -24,637
Dispersion 2103 90 88 112 91 75 129
Pseudo R2 - 0.71 0.72 0.73 0.71 0.75 0.76
Pseudo R2 with regards to model 2 - - 0.032 0.066 0.015 0.14 0.19

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 6: Generalized Linear Regression Model (GLM) for
count of malware domains observed per provider

Response Variable: Count ofmalware domains

Quasi-Poisson with Log Link Function

(1) (2) (3) (4) (5) (6) (7)

IPs on shared hosting 1.600∗∗∗ 1.600∗∗∗ 1.600∗∗∗ 1.600∗∗∗ 1.600∗∗∗ 1.400∗∗∗
(0.090) (0.090) (0.087) (0.089) (0.098) (0.095)

domains on shared hosting 0.460∗∗∗ 0.560∗∗∗ 0.520∗∗∗ 0.470∗∗∗ 0.480∗∗∗ 0.600∗∗∗
(0.110) (0.110) (0.110) (0.110) (0.110) (0.110)

MR1 −0.700∗∗∗ −0.310
Content security (0.170) (0.190)

MR2 −1.300∗∗∗ −1.300∗∗∗
Webmaster security measures (0.290) (0.300)

MR3 −0.380∗∗ −0.130
Web infrastructure security (0.130) (0.130)

MR4 -0.170 -0.360∗
Web application security (0.140) (0.140)

Constant 4.300∗∗∗ −4.800∗∗∗ −4.900∗∗∗ −4.600∗∗∗ −4.700∗∗∗ −4.600∗∗∗ −4.300∗∗∗
(0.240) (0.310) (0.310) (0.290) (0.300) (0.330) (0.300)

Observations 1,259 1,259 1,259 1,259 1,259 1,259 1,259
Log Likelihood -273,893 -79,646 -75,986 -73,496 -78,181 -79,392 -71,461
Dispersion 5800 330 334 298 332 320 288
Pseudo R2 - 0.71 0.73 0.74 0.72 0.71 0.74
Pseudo R2 with regards to model2 - - 0.044 0.077 0.017 0.001 0.098

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Standard errors in brackets

the Quasi-Poisson models [16], we report the pseudo R2 value with
respect to model (2) for each table.

We include both phishing and malware data because while we
see some similarities in how abuse type relates to the security char-
acteristics, we also anticipate that there will be differences. Given
the specialization in cybercriminal activity, the actors themselves
and their preferred methods of compromise are likely different,
as is the effectiveness of different security efforts on the side of
defenders [32].

For phishing, three out of four factors are statistically significant
when included together in model (7). Webmaster security (MR2)
and web application security (MR4) play a statistically significant
role in reducing phishing abuse: for each one unit increase in each
of these factors, keeping all other factors constant, phishing abuse
drops by e1.100 = 3 and e1.200 = 3.32, respectively.

Themost prevalent individual indicator that makes upMR2 is the
presence of an HTTPOnly cookie, which is a standard XSS defense.
To reiterate, we interpret these features as indicators of a latent
factor measuring security effort (see Section 5). For example, the
results suggest that when individual webmasters harden the cookie
properties of their websites, this is an indication that they also
take other (unobservable) measures to inhibit abuse. The results
form MR4 indicates that running up to date versions of CMS and
admin panel, or hiding the version information, or running no
software, is negatively associated with compromise. We suspect
this is due to the fact that certain providers administer CMSes
themselves, to make themselves and their customers less prone
to compromise, given the vulnerabilities imposed by CMSes and
admin panels [12, 18]. It also shows that these are the areas that
providers’ effort can be very effective.

For malware, only MR2 (webmaster security) and MR4 (Web
application security) are significant in model (7). From the two,
webmaster security (MR2) explains most variance in the malware
abuse, both when modeled alone (model (4)), and when modeled
with other factors (model (7)). Again, given that HTTPOnly cookie
and Secure cookie dominantly shape webmaster security factor
(MR2), their significant relation with reducing malware abuse is
therefore very intuitive. MR4 plays a less significant role in explain-
ing malware abuse. We suspect this is due to the differences in the
nature of phishing and malware attacks, attack techniques, and
exploited resources.

Moreover, MR1 (Content security) and MR3 (Web infrastructure
security) show a statistical significant relation with malware and
phishing abuse only when considered alone (model (3) and (5),
respectively). By inspecting regressions including other combina-
tions of factors (not included for space considerations), it appears
that MR1 is the more robust indicator than MR3 for the malware
regression.

Overall, the combined model explains 19% of the variance for
phishing prevalence and 10% formalware prevalence among provid-
ers, beyond the baseline of 71% explained variance, showing that
both webmaster and provider efforts influence abuse prevalence.
The influence of these efforts on abuse rates, for disparate types of
abuse (in our caseweb-basedmalware and phishing), is consistent in
direction and somewhat varying in magnitude. Finally, we note that
while we have explained some of the variation in abuse prevalence
among shared hosting providers, much remains unexplained. This
should in turn motivate the collection of additional discriminating
features in follow-up studies.

Figure 6 uses the model to demonstrate how the factors influence
abuse prevalence. Figure 6 (a) plots the expected number of phishing
incidents as a function of provider size while varying the value of
MR1 (content security) and holding other factors at their median
value. Note that we plotted one figure for each of the factors that
showed a significant relation with phishing abuse in model (7) of

0

1000

2000

3000

4000

0 200000 400000 600000 800000 1000000
Shared domain size (log scale)

E
xp

ec
te

d
co

un
t o

f p
hi

sh
in

g
do

m
ai

ns

variable
90% percentile
50% percentile
10% percentile

MR1 − Content security

(a) MR1

0

1000

2000

3000

4000

0 200000 400000 600000 800000 1000000
Shared domain size (log scale)

Ex
pe

ct
ed

 c
ou

nt
 o

f p
hi

sh
in

g
do

m
ai

ns variable
90% percentile
50% percentile
10% percentile

MR2 − Webmaster security

(b) MR2

0

1000

2000

3000

4000

0 200000 400000 600000 800000 1000000
Shared domain size (log scale)

Ex
pe

ct
ed

 c
ou

nt
 o

f p
hi

sh
in

g
do

m
ai

ns variable
90% percentile
50% percentile
10% percentile

MR4 − Web application security

(c) MR4

Figure 6: Plot of expected phishing abuse counts against
shared domain size for MR1, MR2 and MR4 (from model (7)
of Table 5)

table 5. We can see that the bottom 10% of providers (with the least
effort as measured by MR1) should experience less than one and
half as many phishing attacks as the top 10%. In the case of MR2
(webmaster security), the bottom 10% of providers experience more
than twice as many phishing attacks as the top 10%. For MR4 (web-
application security), the difference is even more pronounced: the
best-performing 10% providers by this measure should experience
more than 4 times less phishing than the bottom 10% of providers.
These findings provide reliable empirical evidence regarding the
security benefits of providers adopting industry best practices, most
notably proactive patching practices. Given that patching is costly,
such evidence is critical to move the industry in the right direction.

8 LIMITATIONS
As with all large-scale studies of real-world applications and im-
plementations, we should reflect on the potential impact of mea-
surement errors and other limitations. Potential errors in our mea-
surements are caused by the fact that we scan only for the main
software packages across the web stack. Also, the collected data
can be misinterpreted. One Dutch provider, for example, rolls out
its own back-ported security patches for CMSes, without updating
the version number. Another limitation stems from the use of a
rather crude metric for patching (patched/unpatched). An alterna-
tive would be looking, for example, at the distance in time between
the installed version and the patched versions.

We captured information on 15 different features, associated with
security and patching practices. Some of these features were very
biased, mostly because of their extremely low prevalence. Ideally,
wewould include features withmore variance across the population.
The features were not interpreted as direct defenses against web
compromise, but rather as latent factors that signals effort. However,
these feature might also reflect other latent factors in addition to

security effort, such as website functionality, popularity, complexity
and exposure.

Finally, the reader should bear in mind that our study aggregates
abuse at the provider level, while features are collected on a separate
sample of uncompromised domains in order to increase sample
size. Future work could collect features on compromised websites
directly to establish stronger differentiation between individual and
provider efforts.

9 RELATEDWORK
Because our paper seeks to measure web security in shared hosting
environments, identify the role of the hosting providers and its
impact on abuse, we build upon several aspects of the literature.

Measuring vulnerabilities of websites and webservers. There are
numerous measurement studies aiming to detect web vulnerabil-
ities across domains (e.g. [3, 4, 6, 8, 19, 21, 35, 47, 49, 56]). For
example, Van Goethem et al. assessed 22,000 websites and studied
the severity of certain vulnerability and security features [49]. Se-
cuBat developed by Kals et al. automatically detects XSS and SQL
injection vulnerabilities [19]. Lekies et al. analyzed the 5,000 most
popular domains and found that 9.6% of the examined websites
carry at least one DOM-based XSS problem [21]. Weichselbaum et
al. detected domains adopting CSP and studied how effective the
policies were in protecting against XSS attacks [56]. Calzavara et al.
also studied CSP adoption via a large scale measurement study and
concluded that in addition to limited deployment, existing policies
are frequently misconfigured [6]. Van Acker et al. performed a sys-
tematic examination of login-page security and found that many
login pages are vulnerable to leaking passwords to third parties
and to eavesdropping attacks. They also observed that a few login
pages deploy advanced security measures [47]. Lastly, Aviram et
al. introduced two different attack techniques against SSLv2 and
concluded that SSLv2 weaknesses are a significant threat against
SSL ecosystem [4].

Threats against shared hosting. In addition to general domain vul-
nerabilities, there are certain threats specific to domains hosted on a
shared server. In shared hosting, a physical server is shared among
multiple clients, ranging from a few to over a thousand. Customers
are allocated a fraction of a machine’s overall resources and given
limited user privileges. Server-side software must be managed by
the provider. Canali et al. examined security performance of a small
group of shared hosting providers and concluded that the majority
were unable to detect even basic attacks on their infrastructure [7].
The Anti-Phishing Working Group reported that some attackers
would compromise shared hosting servers and load phishing pages
on each of the hosted websites [1]. Tajalizadehkhoob et al. investi-
gated the security performance of different hosting provider types
in terms of phishing abuse take-down times and concluded that
phishing domains in shared hosting providers often last longer than
other group of providers [45]. The potential for compromise on
a shared environment abuse was first pointed out by Nikiforakis
et al. [31] and Mirheidari et al. [27], who noted that the lack of
enforced session isolation leaves shared web hosts open to mass
compromise. Perhaps reflecting this strategy, Vasek et al. found

that phishing websites were disproportionately likely to be hosted
in a shared environment [51].

Relationship between vulnerabilities and abuse. A few studies em-
pirically investigated the relationship between the vulnerabilities
of a domain and the likelihood of being compromised. Vasek and
Moore found that Apache and nginx server software and popular
CMS platforms, most notably WordPress, Joomla! and Drupal, are
positive risk factors for webserver compromise [51]. In fact, a key
counterintuitive finding was that fully patched installations have a
higher likelihood of compromise than unpatched ones. Soska and
Christin developed an approach that predicts whether websites will
be compromised in the near future. The prediction is done via a
classifier that is trained on features that are extracted from a set
of both malicious and benign websites. They found CMS type and
version to be predictive features, suggesting that many websites
could be compromised through a vulnerability in their CMS [39].

Role of intermediary in dealing with abuse. A number of studies
focused on different types of intervention done by intermediaries
(e.g. [7, 9, 14, 20, 22, 24, 28, 29, 41, 50]). Moore and Clayton, for ex-
ample, examined the effectiveness of phishing websites take-down
by web hosting providers and concluded that website removal is not
yet fast enough to completely mitigate the phishing problem [28].
Stock et al. preformed a large-scale notification campaign of website
owners using a set of over 44,000 vulnerable websites and concluded
that there are no reliable notification channels that would signifi-
cantly inhibited the success of notifications [41]. Li et al. examined
the life cycle of 760,935 hijacking incidents identified by Google
Safe Browsing and Search Quality, and found that direct communi-
cation with webmasters increased the cleanup rate by 51%. They
concluded that in order to decrease the number of security incidents,
one could increase the webmaster coverage of notification while
also equipping hosting providers with tools alerting webmasters to
update software [23].

We build on the existing work in several ways. First, we extend
the measurement approach developed by Van Goethem et al. [49] to
collect a broader set of features. Next, we move the level of analysis
from individual domains to providers. In areas beyond shared host-
ing, researchers have repeatedly found that the intermediaries can
play a key role in improving security [11, 24, 26, 33, 43, 44, 48, 52].

Tajalizadehkhoob et al. studied the different factors at work in
the abuse data generation process of hosting providers. They iden-
tified structural properties and security efforts of hosting providers,
behavior of attackers, and measurement errors, as factors that can
influence concentrations of abuse. Further, they showed that the
structural properties of hosting providers alone – such as different
size, price, and business model variables – can explain more than
84% of the variance in abuse concentration of hosting providers [43].
Noroozian et al. investigated the closely related question of how
provider security practices impact abuse concentration andwhether
the outcome of provider security practices can be indirectly inferred
(as a latent variable) from multiple sources of abuse data employing
Item-Response Theory [32]. Their results quantified the impact
of security practices (without knowledge of what those practices
may be), demonstrating predictive and explanatory power. Finally,
Sarabi et al. studied the implications of end-user behavior in apply-
ing patches. They observed that although both end-users’ patching

speed and vendors’ facilitating policies help in improving the over-
all security posture of a host, they were also overshadowed by
other factors, such as frequency of vulnerability disclosures and
the vendors’ speed in deploying patches [38].

In our study, the hosting company’s role is critical, since many
domain owners will not be willing or able to adequately secure their
site. Our data collection is not based on a random sample from all
domains, but on a sampling strategy that covers all shared hosting
providers. We present a new approach to disentangle the role of
providers and customers in protecting domains. This also allows
us to extend the work on the relationship between vulnerability
and compromise from the level of individual webmasters to that of
providers. Last, but not least, we provide the first estimate of the
potential gains of such efforts for lowering compromise levels.

10 CONCLUSION
We have undertaken an extensive study of web security efforts.
The purpose of this work is (i) to study the state and landscape
of security hygiene at the level of domains and shared hosting
providers, (ii) to disentangle the defensive efforts of providers and
their customers, and (iii) to assess their impact on web compromise.

Our descriptive findings regarding the web-security landscape
shows that most domain security features occur sparsely across the
domain and provider space. Even here, though, we see the potential
influence of providers. A tiny fraction of providers has very high
adoption rates of certain features like Content-Security-Policy
and HttpOnly cookie. They appear to offer more managed forms
of shared hosting, which might enable them to exert more control
over feature configurations of their customers.

Regarding software patching, higher levels of the web stack such
as CMS and admin panels are updated more than infrastructure
software like SSH and PHP. This might reflect the fact that CMSes
and admin panel are attacked more aggressively. Interestingly, even
though infrastructure software is typically under the control of
the provider, we see a lot of heterogeneity of versions within the
same provider. We suspects this is due to changes in provision-
ing processes over time. Since patching is costly, earlier default
configurations might not get updated unless there is an urgent
need.

The individual features should not be interpreted as being di-
rectly causing web compromise, for reasons that we laid out in
Section 5. It is more valid and informative to interpret them as
indicators of a latent factor that is the actual causal driver, namely
security effort. Using exploratory factor analysis, we uncovered
four such latent factors: content security practices, webmaster secu-
rity practices, web application security practices and infrastructure
security practices. The fixed-effect regression analysis uncovered
that providers have control over infrastructure and application se-
curity, as we expected. Regarding CMSes specifically, however, the
influence of providers is more surprising. This software can run
client-side, but still providers influence patch levels. This might
mean that a subset of providers administer these installations them-
selves, or that they found ways of getting their customers to patch
in a timely fashion.

Finally, we model the impact of the four security factors on the
compromise rate of providers, as observed in phishing and malware

incidents, using Quasi-Poisson GLM regression. Taken together, the
results suggest that both webmaster and provider efforts influence
abuse prevalence. While provider security efforts play a more signif-
icant role in fighting phishing abuse, webmasters are also effective
in reducing abuse rates. Most of the four factors play a statisti-
cally significant role in reducing abuse, either when modeled alone
or with other factors. More specifically, the factor that captures
web-master security efforts such as Secure and HTTPOnly cookies,
shows a negative relation with both malware and phishing abuse,
highlighting the effectiveness of webmasters’ efforts in fighting
abuse. The regression results have also shown that web-application
security, a factor associated with provider efforts, has a strong sig-
nificant negative relation with malware and phishing abuse. To
illustrate the relative impact, we show that the best-performing
10% of providers by this measure experience 4 times fewer phishing
incidents than the bottom 10% providers.

In short, our study show that providers have influence over
patch levels–even higher in the stack, where CMSes can run as
client-side software–and that this influence is tied to a substantial
reduction in abuse levels. Our study has provided the first rigorous
evidence of the security benefits of provider efforts to increase
patching levels. This is a critical finding for the dialogue, with
and within the industry community, about the merits, costs and
benefits of the proposed best practices–e.g., [25]. The takeaway
for providers is that improving patch levels pays off. They can do
this by administering themselves more of the software installations
across the web stack, by securely provisioning default installations
or by deploying some other mechanisms that enable them to get
their customers to collectively reach higher patch levels.

Beyond the area of shared hosting and web compromise, our
study provides a new methodological approach to disentangle the
impact of different actors on security. This approach can be adopted
to study other areas of joint responsibility, such as between cloud
hosting providers and tenants, or corporate system administrators
and end users.

Measuring effort in a heterogeneous environment with different
requirements is hard. Future work could measure feature use before
(or together with) security. Measuring security alone is vulnerable
to spurious correlations and inferences, when not controlling for the
differences in website functionality, complexity, exposure, et cetera.
Another future direction is to make this approach longitudinal,
in order to tell apart which fraction of security effort is reactive
(i.e., reacting to compromise) and to better detect the direction of
causality. In the end, we hope to provide better empirical support
for industry best practices focused on hosting providers.

ACKNOWLEDGMENTS
The authors thank Farsight Security for providing access to DNSDB
data. Thisworkwas supported byNWO (grant nr. 12.003/628.001.003),
the Dutch National Cyber Security Center (NCSC) and SIDN, the
.NL Registry, and Archimedes Privatstiftung, Innsbruck. Addition-
ally, we thank our ACM CCS reviewers for their useful feedback
and support in improving the paper for the camera-ready version.

REFERENCES
[1] Greg Aaron and Rod Rasmussen. 2014. Anti-Phishing Working Group (APWG)

Global Phishing Survey: Trends and Domain Name Use in 1H2014. http://docs.

http://docs.apwg.org/reports/APWG_Global_Phishing_Report_1H_2014.pdf
http://docs.apwg.org/reports/APWG_Global_Phishing_Report_1H_2014.pdf

apwg.org/reports/APWG_Global_Phishing_Report_1H_2014.pdf. (2014).
[2] Greg Aaron and Rod Rasmussen. 2015. Anti-Phishing Working Group (APWG)

Global Phishing Survey: Trends and Domain Name Use in 2H2014. http://docs.
apwg.org/reports/APWG_Global_Phishing_Report_2H_2014.pdf. (2015).

[3] Abeer Alhuzali, Birhanu Eshete, Rigel Gjomemo, and V.N. Venkatakrishnan.
2016. Chainsaw: Chained Automated Workflow-based Exploit Generation. In
Proceedings of the 2016 ACM SIGSACConference on Computer and Communications
Security (CCS ’16). ACM, 641–652.

[4] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik
Dankel, Jens Steube, Luke Valenta, David Adrian, J Alex Halderman, Viktor
Dukhovni, et al. 2016. DROWN: breaking TLS using SSLv2. In 25th USENIX
Security Symposium (USENIX Security 16). USENIX Association, 689–706.

[5] Ben Balker. 2017. Dealing with quasi- models in R. https://cran.r-project.org/
web/packages/bbmle/vignettes/quasi.pdf. (2017).

[6] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. 2016. Content Security
Problems?: Evaluating the Effectiveness of Content Security Policy in theWild. In
Proceedings of the 2016 ACM SIGSACConference on Computer and Communications
Security. ACM, 1365–1375.

[7] Davide Canali, Davide Balzarotti, and Aurélien Francillon. 2013. The role of
web hosting providers in detecting compromised websites. In Proceedings of the
22nd international conference on World Wide Web. World Wide Web Conferences,
177–188.

[8] Frank Cangialosi, Taejoong Chung, David Choffnes, Dave Levin, Bruce M. Maggs,
Alan Mislove, and Christo Wilson. 2016. Measurement and Analysis of Private
Key Sharing in the HTTPS Ecosystem. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). ACM, 628–640.

[9] Orcun Cetin, Mohammad Hanif Jhaveri, Carlos Gañán, Michel van Eeten, and
TylerMoore. 2016. Understanding the role of sender reputation in abuse reporting
and cleanup. Journal of Cybersecurity 2, 1 (2016), 83–98.

[10] Steven Cheung and Alfonso Valdes. 2009. Malware Characterization through
Alert Pattern Discovery. In 2th Usenix Workshop on Large-scale Exploits and
Emergent Threats (LEET 09). USENIX Association. http://static.usenix.org/legacy/
events/leet09/tech/full_papers/cheung/cheung_html/

[11] Richard Clayton, Tyler Moore, and Nicolas Christin. 2015. Concentrating Cor-
rectly on Cybercrime Concentration. In 14th Workshop on the Economics of Infor-
mation Security (WEIS). http://www.econinfosec.org/archive/weis2015/papers/
WEIS_2015_clayton.pdf

[12] cPanel. 2017. cPanel TSR-2017-0002 Full Disclosure. http://news.cpanel.com/
cpanel-tsr-2017-0002-full-disclosure. (2017).

[13] Alban Diquet. 2016. SSLyze. https://github.com/nabla-c0d3/sslyze. (2016).
[14] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman, Michael

Bailey, Frank Li, Nicolas Weaver, Johanna Amann, Jethro Beekman, Mathias
Payer, and Vern Paxson. 2014. The Matter of Heartbleed. In Proceedings of the
2014 Conference on Internet Measurement Conference (IMC ’14). ACM, 475–488.

[15] Brian Habing. 2003. Exploratory factor analysis. University of South Carolina-
October 15 (2003).

[16] Harald Heinzl and Martina Mittlböck. 2003. Pseudo R-squared measures for
Poisson regression models with over-or underdispersion. Computational statistics
& data analysis 44, 1 (2003), 253–271.

[17] hosting.com. 2012. Best Practices for Architecting Your Hosted Systems for 100%
Application Availability. http://www.hosting.com/wp-content/uploads/2013/11/
Hosting_2012-04-WP-Architect-Availability.pdf. (2012).

[18] IBM Security Intelligence. 2016. New Year, New Problems: CMS
Vulnerabilites Take on 2016. https://securityintelligence.com/news/
new-year-new-problems-cms-vulnerabilites-take-on-2016. (2016).

[19] Stefan Kals, Engin Kirda, Christopher Kruegel, and Nenad Jovanovic. 2006. Secu-
bat: a web vulnerability scanner. In Proceedings of the 15th international conference
on World Wide Web. World Wide Web Conferences, 247–256.

[20] Marc Kührer, Thomas Hupperich, Christian Rossow, and Thorsten Holz. 2014.
Exit from Hell? Reducing the Impact of Amplification DDoS Attacks. In 23rd
USENIX Security Symposium (USENIX Security 14). USENIX Association, 111–125.

[21] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later:
large-scale detection of DOM-based XSS. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 1193–1204.

[22] Frank Li, Zakir Durumeric, Jakub Czyz, Mohammad Karami, Michael Bailey,
Damon McCoy, Stefan Savage, and Vern Paxson. 2016. You’ve Got Vulnera-
bility: Exploring Effective Vulnerability Notifications. In 25th USENIX Security
Symposium (USENIX Security 16). USENIX Association, 1033–1050.

[23] Frank Li, Grant Ho, Eric Kuan, Yuan Niu, Lucas Ballard, Kurt Thomas, Elie
Bursztein, and Vern Paxson. 2016. Remedying Web Hijacking: Notification Effec-
tiveness and Webmaster Comprehension. In Proceedings of the 25th International
Conference on World Wide Web (WWW ’16). 1009–1019.

[24] He Liu, Kirill Levchenko, Márk Félegyházi, Christian Kreibich, Gregor Maier,
Geoffrey M. Voelker, and Stefan Savage. 2011. On the Effects of Registrar-level
Intervention. In Proceedings of the 4th USENIX Conference on Large-scale Exploits
and Emergent Threats (LEET’11). USENIX Association, 1–8.

[25] M3AAWG. 2015. M3AAWG Anti-Abuse Best Common Practices for Hosting and
Cloud Service Providers. https://www.m3aawg.org/sites/default/files/document/
M3AAWG_Hosting_Abuse_BCPs-2015-03.pdf. (2015).

[26] Damon McCoy, Hitesh Dharmdasani, Christian Kreibich, Geoffrey M. Voelker,
and Stefan Savage. 2012. Priceless: The Role of Payments in Abuse-advertised
Goods. In Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security (CCS ’12). ACM, 845–856.

[27] Seyed Ali Mirheidari, Sajjad Arshad, Saeidreza Khoshkdahan, and Rasool Jalili.
2012. Two novel server-side attacks against log file in SharedWebHosting servers.
In Internet Technology And Secured Transactions, 2012 International Conference
for. IEEE, 318–323.

[28] Tyler Moore and Richard Clayton. 2007. Examining the impact of website take-
down on phishing. In Proceedings of the Anti-Phishing Working Group 2nd annual
eCrime Researchers Summit.

[29] Antonio Nappa, M. Zubair Rafique, and Juan Caballero. 2013. Driving in the
Cloud: An Analysis of Drive-by Download Operations and Abuse Reporting. In
Proceedings of the 10th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA’13). Springer-Verlag, 1–20.

[30] National Institute of Standards and Technology (NIST. 2017. National Vulnerabil-
ity Database. https://nvd.nist.gov/vuln/search/results?adv_search=false&form_
type=basic&results_type=overview&search_type=all&query=PHP5. (2017).

[31] Nick Nikiforakis, Wouter Joosen, and Martin Johns. 2011. Abusing locality in
shared web hosting. In Proceedings of the Fourth European Workshop on System
Security. ACM, 2.

[32] ArmanNoroozian, Michael Ciere, Maciej Korczyński, Samaneh Tajalizadehkhoob,
and Michel Eeten. 2017. Inferring the Security Performance of Providers from
Noisy and Heterogenous Abuse Datasets. In 16th Workshop on the Economics of
Information Security. http://weis2017.econinfosec.org/wp-content/uploads/sites/
3/2017/05/WEIS_2017_paper_60.pdf

[33] Arman Noroozian, Maciej Korczynski, Samaneh Tajalizadehkhoob, and Michel
van Eeten. 2015. Developing Security Reputation Metrics for Hosting
Providers. In 8th Workshop on Cyber Security Experimentation and Test (CSET).
USENIX Association. https://www.usenix.org/system/files/conference/cset15/
cset15-noroozian.pdf

[34] OWASP. 2017. OWASP Top Ten Project. https://www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project. (2017).

[35] Xiang Pan, Yinzhi Cao, Shuangping Liu, Yu Zhou, Yan Chen, and Tingzhe Zhou.
2016. CSPAutoGen: Black-box Enforcement of Content Security Policy Upon
Real-world Websites. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’16). ACM, 653–665.

[36] RedHat. 2014. OpenSSL CCS Injection Vulnerability (CVE-2014-0224). https:
//access.redhat.com/articles/904433. (2014).

[37] SANS. 2003. A Practical Methodology for Implementing a Patch manage-
ment Process. https://www.sans. org/reading-room/whitepapers/bestprac/
practical-methodology- implementing-patch-management-process-1206.
(2003).

[38] Armin Sarabi, Ziyun Zhu, Chaowei Xiao, Mingyan Liu, and Tudor Dumitraş.
2017. Patch Me If You Can: A Study on the Effects of Individual User Behavior
on the End-Host Vulnerability State. In International Conference on Passive and
Active Network Measurement. Springer, 113–125.

[39] Kyle Soska and Nicolas Christin. 2014. Automatically detecting vulnerable
websites before they turn malicious. In 23rd USENIX Security Symposium (USENIX
Security 14). 625–640.

[40] James P Stevens. 2012. Applied multivariate statistics for the social sciences.
Routledge.

[41] Ben Stock, Giancarlo Pellegrino, Christian Rossow, Martin Johns, and Michael
Backes. 2016. Hey, You Have a Problem: On the Feasibility of Large-Scale Web
Vulnerability Notification. In 25th USENIX Security Symposium (USENIX Security
16). USENIX Association, 1015–1032.

[42] Brett Stone-Gross, Christopher Kruegel, Kevin Almeroth, Andreas Moser, and En-
gin Kirda. 2009. Fire: Finding rogue networks. In Computer Security Applications
Conference. IEEE, 231–240.

[43] Samaneh Tajalizadehkhoob, Rainer Böhme, Carlos Ganán, Maciej Korczyński,
and Michel van Eeten. 2017. Rotten Apples or Bad Harvest? What We Are
Measuring When We Are Measuring Abuse. ACM Transactions on Internet
Technology (TOIT) Forthcoming (2017), 00–00. https://arxiv.org/abs/1702.01624

[44] Samaneh Tajalizadehkhoob, Carlos Gañán, Arman Noroozian, and Michel van
Eeten. 2017. The Role of Hosting Providers in Fighting Command and Control
Infrastructure of Financial Malware. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security (ASIA CCS ’17). ACM,
575–586. https://doi.org/10.1145/3052973.3053023

[45] Samaneh Tajalizadehkhoob, Maciej Korczynski, Arman Noroozian, Carlos Ganán,
and Michel van Eeten. 2016. Apples, oranges and hosting providers: Heterogene-
ity and security in the hosting market. In Network Operations and Management
Symposium (NOMS). IEEE/IFIP, 289–297. https://doi.org/10.1109/NOMS.2016.
7502824

http://docs.apwg.org/reports/APWG_Global_Phishing_Report_1H_2014.pdf
http://docs.apwg.org/reports/APWG_Global_Phishing_Report_2H_2014.pdf
http://docs.apwg.org/reports/APWG_Global_Phishing_Report_2H_2014.pdf
https://cran.r-project.org/web/packages/bbmle/vignettes/quasi.pdf
https://cran.r-project.org/web/packages/bbmle/vignettes/quasi.pdf
http://static.usenix.org/legacy/events/leet09/tech/full_papers/cheung/cheung_html/
http://static.usenix.org/legacy/events/leet09/tech/full_papers/cheung/cheung_html/
http://www.econinfosec.org/archive/weis2015/papers/WEIS_2015_clayton.pdf
http://www.econinfosec.org/archive/weis2015/papers/WEIS_2015_clayton.pdf
http://news.cpanel.com/cpanel-tsr-2017-0002-full-disclosure
http://news.cpanel.com/cpanel-tsr-2017-0002-full-disclosure
https://github.com/nabla-c0d3/sslyze
http://www.hosting.com/wp-content/uploads/2013/11/Hosting_2012-04-WP-Architect-Availability.pdf
http://www.hosting.com/wp-content/uploads/2013/11/Hosting_2012-04-WP-Architect-Availability.pdf
https://securityintelligence.com/news/new-year-new-problems-cms-vulnerabilites-take-on-2016
https://securityintelligence.com/news/new-year-new-problems-cms-vulnerabilites-take-on-2016
https://www.m3aawg.org/sites/default/files/document/M3AAWG_Hosting_Abuse_BCPs-2015-03.pdf
https://www.m3aawg.org/sites/default/files/document/M3AAWG_Hosting_Abuse_BCPs-2015-03.pdf
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=all&query=PHP5
https://nvd.nist.gov/vuln/search/results?adv_search=false&form_type=basic&results_type=overview&search_type=all&query=PHP5
http://weis2017.econinfosec.org/wp-content/uploads/sites/3/2017/05/WEIS_2017_paper_60.pdf
http://weis2017.econinfosec.org/wp-content/uploads/sites/3/2017/05/WEIS_2017_paper_60.pdf
https://www.usenix.org/system/files/conference/cset15/cset15-noroozian.pdf
https://www.usenix.org/system/files/conference/cset15/cset15-noroozian.pdf
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://access.redhat.com/articles/904433
https://access.redhat.com/articles/904433
https://www.sans.
org/reading-room/whitepapers/bestprac/practical-methodology-
org/reading-room/whitepapers/bestprac/practical-methodology-
implementing-patch-management-process-1206
https://arxiv.org/abs/1702.01624
https://doi.org/10.1145/3052973.3053023
https://doi.org/10.1109/NOMS.2016.7502824
https://doi.org/10.1109/NOMS.2016.7502824

[46] Mark Usher, Limor Kessem, andMartin Steigemann. 2017. Relying on Data toMit-
igate the Risk of WordPress Website Hijacking. https://securityintelligence.com/
relying-on-data-to-mitigate-the-risk-of-wordpress-website-hijacking/. (2017).

[47] Steven Van Acker, Daniel Hausknecht, and Andrei Sabelfeld. 2017. Measuring
Login Webpage Security. In Proceedings of the 32st Annual ACM Symposium on
Applied Computing (SAC’17). ACM, 8.

[48] Michel Van Eeten, Johannes M Bauer, Hadi Asghari, Shirin Tabatabaie, and
David Rand. 2010. The role of internet service providers in botnet mitigation an
empirical analysis based on spam data. In TPRC 2010. https://ssrn.com/abstract=
1989198

[49] Tom Van Goethem, Ping Chen, Nick Nikiforakis, Lieven Desmet, and Wouter
Joosen. 2014. Large-scale security analysis of the web: Challenges and findings.
In Trust and Trustworthy Computing. Springer, 110–126.

[50] Marie Vasek and Tyler Moore. 2012. Do Malware Reports Expedite Cleanup? An
Experimental Study. In 5th USENIX Workshop on Cyber Security Experimentation
and Test (CSET). USENIX Association.

[51] Marie Vasek, John Wadleigh, and Tyler Moore. 2016. Hacking Is Not Random:
A Case-Control Study of Webserver-Compromise Risk. IEEE Transactions on
Dependable and Secure Computing 13, 2 (2016), 206–219. https://doi.org/10.1109/
TDSC.2015.2427847

[52] Marie Vasek, Matthew Weeden, and Tyler Moore. 2016. Measuring the Impact
of Sharing Abuse Data with Web Hosting Providers. In ACM Workshop on Infor-
mation Sharing and Collaborative Security. ACM, 71–80. http://tylermoore.ens.
utulsa.edu/wiscs16.pdf

[53] Thomas Vissers, Wouter Joosen, and Nick Nikiforakis. 2015. Parking Sensors:
Analyzing and Detecting Parked Domains. In Proceedings of the 22nd Network
and Distributed System Security Symposium (NDSS 2015). Internet Society, 53–53.

[54] Web Technology Survays. 2016. Market share trends for content management sys-
tems for websites. https://w3techs.com/technologies/history_overview/content_
management. (2016).

[55] Web Technology Survays. 2017. Usage statistics and market share of Linux for
websites. https://w3techs.com/technologies/details/os-linux/all/all. (2017).

[56] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. 2016.
CSP is dead, long live CSP! On the insecurity of whitelists and the future of
content security policy. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 1376–1387.

[57] WPBeginner. 2016. Sucuri Review – How Sucuri Helped us Block 450,000
WordPress Attacks in 3 Months. http://www.wpbeginner.com/opinion/
sucuri-review-how-sucuri-helped-us-block-450000-wordpress-attacks-in-3-months/.
(2016).

A VERSION INFORMATION DETAILS

Table 7: The list of versions per software that are considered
patched (patched = latest packaged version in Ubuntu, De-
bian or CentOS)

Software Version considered patched
Apache [2.2.15 - 2.2.22 - 2.4.7 - 2.4.10 - 2.4.18 - 2.4.20 - 2.4.23]
SSH [5.3p1 - 5.9p1 - 6.0p1 - 6.6p1 - 6.6.1p1 - 6.7p1 - 7.1p2 - 7.2p2 - 7.3 - 7.3p1]
WordPress [4.7 - 4.6.1 - 4.5.4 - 4.4.5 - 4.3.6 4.2.10 - 4.1.13 - 4.0.13 3.9.14 - 3.8.16 - 3.7.16]
Joomla! [3.6.4]
Drupal [7.52 - 8.2.3]
cPanel [7.52]
DirectAdmin [1.50.1]
Virtualmin [1.820]
Plesk [12.5.30 - 17.0.16]
Microsoft IIS [12 - 10 - 9 - 8.5]
Nginx [1.2.1 - 1.4.6 - 1.10.0 - 1.10.1 - 1.10.3 - 1.11.5]
PHP [5.3.10 - 5.3.3 - 5.4.45 - 5.5.9 - 5.6.27 - 5.6.28 - 6.6.30 - 7.0.11 - 7.0.12 -7.0.13]

https://securityintelligence.com/relying-on-data-to-mitigate-the-risk-of-wordpress-website-hijacking/
https://securityintelligence.com/relying-on-data-to-mitigate-the-risk-of-wordpress-website-hijacking/
https://ssrn.com/abstract=1989198
https://ssrn.com/abstract=1989198
https://doi.org/10.1109/TDSC.2015.2427847
https://doi.org/10.1109/TDSC.2015.2427847
http://tylermoore.ens.utulsa.edu/wiscs16.pdf
http://tylermoore.ens.utulsa.edu/wiscs16.pdf
https://w3techs.com/technologies/history_overview/content_management
https://w3techs.com/technologies/history_overview/content_management
https://w3techs.com/technologies/details/os-linux/all/all
http://www.wpbeginner.com/opinion/sucuri-review-how-sucuri-helped-us-block-450000-wordpress-attacks-in-3-months/
http://www.wpbeginner.com/opinion/sucuri-review-how-sucuri-helped-us-block-450000-wordpress-attacks-in-3-months/

	Abstract
	1 Introduction
	2 Data
	3 Measurement of Features
	3.1 Measurement setup
	3.2 Domain security indicators
	3.3 Software patching practices

	4 Descriptive Findings about the Landscape
	4.1 Distribution of security features
	4.2 Distribution of software patching features

	5 Dead End: Direct Relation Between Security Indicators and Abuse
	6 Security Effort as a Latent Variable
	6.1 Exploratory factor analysis
	6.2 Role of Providers in Securing Domains

	7 Impact of Security Efforts on Abuse
	8 Limitations
	9 Related Work
	10 Conclusion
	Acknowledgments
	References
	A Version Information Details

