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Foreword

This MSc graduation project is a collaboration between the group of Numerical Mathe-
matics, TU Delft, and TenneT TSO B.V. TenneT is a European electricity transmission
system operator (TSO) that manages the high-voltage grid in the Netherlands and large
parts of Germany.

The power flow problem involves determining the voltages in every bus of the power
system. The voltages are then used to compute the power flow in every branch of the
power system network. This constitutes steady state power flow simulations which, for
given generation and consumption data, give insight into the steady state behavior of
the network. Hence, power flow simulations play a fundamental role in various sectors
of a TSO such as operation and planning.

In this project, we develop a mathematical framework that automates AC power flow
simulations by solving both converging and diverging power flow problems. On the
basis of the mathematical framework, we develop an algorithm that can be used in Ten-
neT to perform year-round AC power flow simulations with little manual intervention.
We demonstrate the applicability of the algorithm by implementing it on artificial test
networks, and two real-world transmission networks - the Dutch transmission network
and a sub-European transmission network.

i



Contents

1 Introduction 1

2 The Electric Grid 4
2.1 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Transmission and Distribution . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Modelling the Transmission System 8
3.1 Fundamentals of AC circuits . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 The Power Flow Model . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Power Flow Solvers 20
4.1 Newton-Raphson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Fast Decoupled Load Flow . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 DC approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Gauss-Seidel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Software Packages 35
5.1 PowerFactory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 PSS®E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 pandapower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 The Interface 38
6.1 Grid Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ii



6.2 The Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Power Flow Convergence 50
7.1 Classification and methods . . . . . . . . . . . . . . . . . . . . . . . . 50

8 Automating AC Power Flow Simulations 70
8.1 The automating algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9 Results 83
9.1 The Dutch transmission grid . . . . . . . . . . . . . . . . . . . . . . . 83
9.2 The sub-European transmission grid . . . . . . . . . . . . . . . . . . . 85

10 Conclusion 90

Bibliography 94

iii



Chapter 1

Introduction

TenneT is responsible for safe and reliable transport of electric power in the Netherlands
and large parts of Germany (fig. 1.1 shows the grid map of TenneT). One of the key
challenges to ensure safety and reliability is to keep the voltages within safe limits across
the transmission network. The rapid increase in addition of Renewable Energy Sources
(RES) into electricity networks causes voltage fluctuations to occur more frequently.
To manage such situations best in the future, clever planning of the infrastructure that
is needed to keep the voltages within safe limits is necessary. Hence, the objective of
transmission system planning is to plan the essential infrastructure to best prepare the
transmission system for the future to ensure safety and reliability.

Year-round AC power flow simulations are required in TenneT to plan the future grid.
An essential part of planning is to make modifications or additions to the existing grid
and test it with varying hourly load and generation data. For example, modifications to
the topology (structure) of the grid are made by adding a few lines to the network and
such changes are studied with varying load and generation data. A consequence of this
is that the power flow problem often fails to converge to a solution. In TenneT, con-
vergence problems are currently being solved by manually making adjustments to the
power flow problem. For example by making changes to the topology of the grid or by
making adjustments to the load and generation data. This is a trial and error technique
which does not guarantee an optimal solution. Moreover, it is impossible to manually
solve convergence problems during year-round simulations which involve solving the
power flow problem with hourly load and generation data of the next few decades. For
this reason, AC power flow simulations are currently being done at TenneT for only a
few critical hours. Hence, in order to perform AC year-round simulations, a computer
program that can automatically solve convergence problems without manual interven-
tion is necessary. This problem statement forms the basis for this project and we thus
develop an algorithm which can automatically fix convergence problems during year-
round AC power flow simulations.
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Figure 1.1: Grid map of TenneT

The project is structured as follows. Themathematical model of the transmission system
is derived and studied in order to understand the power flow problem which lies at the
heart of power flow analysis. To derive the mathematical model, we study the funda-
mentals of AC circuits and the transmission network topology. Solving the power flow
problem requires a good understanding of power flow solvers. We investigate some
of the prominent power flow solvers used in power flow analysis and understand their
capabilities and limitations. The key to automate simulations is understanding power
flow convergence. We present a detailed mathematical background that is necessary to
understand the problems that are commonly encountered with power flow convergence.
Based on this premise, we design a mathematical framework to solve both converging
and diverging power flow problems during year-round simulations.

To practically realize the designedmathematical framework, we develop an algorithm in
Python which can be used in TenneT for automating year-round AC power flow simula-
tions. We call this algorithm the automating algorithm. As TenneT is currently using a
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commercial software for power flow analysis which does not allow access to its solvers,
a crucial part of the automating algorithm is an interface that converts electricity grid
models from the commercial software to an open source Python package. The capabili-
ties and limitations of the automating algorithm are demonstrated by applying it to some
test networks that are commonly used in the literature on power flow analysis and two
networks that are used in TenneT to perform year-round simulations - the transmission
network of the Netherlands and a sub-European transmission network that consists of
the Netherlands, Germany, Belgium, France and Luxembourg. Finally, we present our
conclusions and recommendations for taking this project ahead in the future.
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Chapter 2

The Electric Grid

Electric grids are some of the largest networks humanity has ever built. For more than
a hundred years1 now, they have been doing an incredible job lighting up our societies.
It’s very hard to imagine life without electricity, for the world then would come to a halt.

The fact that electric power is just a switch away in most parts of the world today is
a result of the intricate electric grids that quite seamlessly bridge generation and con-
sumption. The complexity of electric grids is increasing at a rapid pace with integration
of renewable energy sources. A strong mathematical approach and collective effort are
imperative to understand, model, and control the electric grids of this day better.

This chapter briefly describes the fundamental stages of an electric grid and a few chal-
lenges down the road.

2.1 Generation
Conventionally, electric power is generated as Alternating Current (AC) at places known
as power plants or generating stations. An AC generator transforms mechanical energy
to electric energy by electromagnetic induction. The prime movers that drive generators
could be steam/gas/water/wind turbines, internal combustion engines or nuclear reac-
tors depending on location and availability of resources. For example, electricity in the
Netherlands is produced primarily from natural gas and coal [2].

An exception to AC generation is the use of photovoltaic (PV) cells. PV cells transform
solar energy to Direct Current (DC) which is then converted to AC by an inverter before
injecting it into the grid.

1World’s first central electric generating station - The Pearl Street Station, began operation on 4
September 1882 [1].
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Electric power is generated at a frequency of 50 or 60 Hz [3]. This has been widely
accepted as the optimal frequency considering several applications on a wide scale over
a long period of time. In Europe, the operating frequency is 50 Hz.

2.2 Transmission and Distribution
The distinct advantage of alternating current is that it can be efficiently stepped up and
down in voltage using a transformer [4]. High voltage power is preferred for transmis-
sion over large distances as resistive losses are less. The high voltage network called
the transmission system is responsible for transporting electricity in the order of 110-380
kV from power plants to substations [5]. The rest of the grid constituting of medium
and low voltage lines is called the distribution system and is responsible for distributing
electric power to end users. The substations shift the voltage down to the order of 10-20
kV and finally distribution transformers that are locally installed step it further down to
the order of utilization voltage (<1kV) making it suitable for domestic and commercial
use. It should also be noted that high voltage DC (HVDC) is sometimes preferred to AC
when transmission distances are long enough to justify a reduction in cost of conductors
(three phase AC needs three cables whereas DC needs two) over AC/DC conversion
costs.

Electric power is generated and transmitted in three phases for two significant reasons.
One, it facilitates smooth conversion of energy by applying uniform torque on gener-
ators and motors, unlike single phase AC which results in pulsating torque. This is an
engineering advantage as the rotors are well balanced. Two, it offers cost benefits as the
same amount of power can be transmitted with fewer conductors when compared to sin-
gle phase transmission. Currents and voltages add up to zero in a balanced three phase
system, eliminating the need for a common return wire2. This is under the assumption
that all loads have equal impedance3. However, in practice the impedances are slightly
different, hence requiring a return wire to complete the circuit. This is achieved by con-
necting the combined return wires to the common ground4 at both ends.

Transmission systems are modelled and analyzed as single phase AC systems for the
very reason of being balanced. That is, currents and voltages are equal in magnitude in
all three phases. Whereas in distribution systems, current and voltage magnitudes are
different because of the difference in loads and hence distribution systems are modelled

2The three return wires are combined as a single return wire.
3Impedance is the AC equivalent of resistance.
4In electric circuits, ground refers to an electrically neutral reference that has 0 voltage. In this

context, it refers to the earth which acts as the return pathway of the circuit.
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considering all three phases. In fact, it is interesting to note that residential and most
commercial circuits run on single phase AC and have two wires, one live and the other
neutral (return).

2.3 Consumption
Loads are devices that consume electric power and are characterized by impedance.
Theoretically, they can be broadly classified as resistive, inductive and capacitive loads.
Resistive loads are heating conductors that are seen in incandescent bulbs and heaters.
Inductive loads are all kinds of motors, fluorescent lamps and the transformers used
in power supplies. Capacitors generally do not do physical work like other loads but
are part of electrical circuits [4]. Based on usage, loads can be classified as residential,
commercial, industrial and electric railways. Another important category of loads is
consumer electronics [4].

From the system and also modelling perspective, electric power consumption is consid-
ered as aggregate load that combines several consumers. This may include households,
city blocks or entire cities and regions. Given that the electric power industry is largely
customer driven, capacity planning and serving instantaneous demand are very crucial
for grid operators. Load forecasting is a discipline in itself and plays an important role
in uninterrupted supply of electricity.

2.4 Challenges
The stochastic nature of renewable energy sources such as wind and sun poses unprece-
dented challenges to the electric grid. Solar and wind farms are highly uncertain in
generating power and cause severe problems to grid stability, possibly resulting in over-
loading and blackouts. Decentralized power generation by small windmills and rooftop
solar panels that are connected to the distribution system causes a change in power-flow
direction. This results in two-way traffic, making grid control and even power-flow
analysis a hard task. Electric vehicle charging is another difficult-to-predict scenario on
the distribution side of the electric grid.

The largest power outage in history occurred in north-east India on 30, 31 July, 2012
and affected 620 million people. In 2016, a blackout occurred in South Australia due to
storms that caused a cascading failure of the transmission system infrastructure, affect-
ing 1.7 million people. In May 2020, TenneT declared emergency state due to a high
voltage incident that occurred due to high RES infeed and low demands.

6



It is very likely that such events take place in the future owing to the rapid changes the
electricity systems are experiencing lately. Hence, power flow simulations play a pivotal
role in understanding the steady-state behavior of the constantly evolving electricity
grids.
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Chapter 3

Modelling the Transmission System

Power flow analysis is the numerical analysis of the flow of electric power and involves
determining the operating state of the entire power system. The state describes how the
power system functions and helps to understand how the system responds to inputs. In
this chapter we derive the mathematical model of the transmission system and define
the power flow problem which is cardinal to power flow analysis.

3.1 Fundamentals of AC circuits
This section describes the characteristics of an AC circuit, as required to model the
transmission system. Definitions and equations are based on electric circuit theory.

3.1.1 Current and Voltage
In an AC system, current and voltage are sinusoidal functions characterized by ampli-
tude, frequency and phase. They are expressed as,

i(t) = Imax sin (ωt+ ϕI) v(t) = Vmax sin (ωt+ ϕV) (3.1)

where,

Imax = amplitude of current, A
Vmax = amplitude of voltage, V

ω = angular frequency, rad/s
t = time, s
ϕ = phase shift, rad

For load-flow calculations, average values of currents and voltages are preferred. Av-
eraging is done by considering Root Mean Sqaure (RMS) values of current and voltage
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functions. Since sinusoidal functions are perfectly symmetric, the effective or rms value
is 1/

√
2 times the amplitude. Instantaneous current and voltage are now written as,

i(t) =
√

2|I| sin (ωt+ ϕI) v(t) =
√

2|V | sin (ωt+ ϕV) (3.2)

where |I| and |V | are rms values which are calculated as follows.

|I| =

√
1
T

∫T

0
i2(t)dt |V | =

√
1
T

∫T

0
v2(t)dt (3.3)

where T = 2π/ω [s] is the period of sine wave. Intuitively, rms value is equal to the
DC equivalent that dissipates the same amount of electric power in a given resistor per
unit time.

In balanced three phase systems, current and voltage are equal in magnitude in all three
phases but shifted in phase by 2π/3 rad. Consequently, the power flow problem is
solved by considering only one phase and the other two phases are analyzed simply by
incorporating the phase shift. Note that it is convention to use the cosine function to
describe current and voltage in power flow analysis. For a balanced three phase system,
the governing equations are,

i(t) =
√

2|I| cos (ωt− ϕ− δ) v(t) =
√

2|V | cos (ωt− δ) (3.4)

where δ = {0, 2π/3, 4π/3} rad is the phase shift between the three phases and ϕ is the
phase shift between current and voltage.

3.1.2 Phasor notation
Steady-state power flow analysis can be considerably simplified by using phasors to
represent sinusoidal current and voltage functions. A phasor is an arrow that is imag-
ined to spin in the complex plane and it characterizes a sine wave by specifying its
magnitude and angle. Length of the phasor corresponds to amplitude or rms value, its
angle with respect to real axis corresponds to time and its rotation corresponds to angu-
lar frequency which is constant and is generally not considered for steady-state power
flow calculations. Considering sinusoidal current and voltage expressions:

i(t) = Imax cos (ωt− δI) and v(t) = Vmax cos (ωt− δV),
we use Euler’s identity ejϕ = cosϕ+ j sinϕ and obtain,

i(t) =
√

2Re(|I|ejδIejωt) v(t) =
√

2Re(|V |ejδVejωt)

=
√

2Re(Iejωt) =
√

2Re(Vejωt)
(3.5)

9



where,
I = |I|ejδI and V = |V |ejδV

Here I and V are current and voltage phasors. In a balanced three phase system, current
and voltage values of one phase can be used to determine values of other phases just by
accordingly rotating the phasors.

3.1.3 Power
Considering the phase with δ = 0 and equations (3.4), instantaneous power can be
expressed as,

p(t) = v(t)i(t)

=
√

2|V | cos (ωt)
√

2|I| cos (ωt− ϕ)

= |V ||I| cosϕ[1 + cos (2ωt)] + |V ||I| sinϕ[sin (2ωt)]

= P[1 + cos (2ωt)] +Q[sin (2ωt)]

(3.6)

where P = |V ||I| cosϕ is called active power and Q = |V ||I| sinϕ is called reactive
power.

As evident from equation (3.6), instantaneous power is made up of two sinusoidal com-
ponents. The first component P[1 + cos (2ωt)] is unidirectional with average value P
and the second component Q[sin (2ωt)] is bidirectional with an average of 0.

Active power P is measured in watts [W]. It represents the power actually transmitted
or consumed by loads and is always positive. For instance, for purely resistive loads,
active power corresponds entirely to conversion of electric energy to heat or light. Ac-
tive power is also called real power or average power.

Reactive powerQ is expressed in volt-ampere reactive [Var]. For loads with reactance,
phase difference between current and voltageϕ is not zero and it results in instantaneous
power sometimes being negative which can be interpreted as power flowing backwards
from the load to the generator. This power that is oscillated back and forth through the
lines is exchanged between electric and magnetic fields and is not dissipated [4]. Reac-
tive power is also called imaginary power.

Power factor, often abbreviated as p.f. is defined by cosϕ. When current lags voltage,
ϕ is positive and power factor is said to be lagging. When current leads voltage, ϕ is
negative and power factor is said to be leading. As ϕ varies from 0 to 90◦, p.f. varies
from 1 to 0 corresponding to the loads from being purely resistive to purely inductive.
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The vector sum of P and Q is called complex power and is expressed as,

S = VI∗ = P + jQ (3.7)

where V and I are voltage and current phasors and I∗ is the complex conjugate of I.
Another important quantity is apparent power which is generally used to specify the
rating of an electrical apparatus. It is the product of current and voltage, regardless of
their phase shift. It is measured in volt-amperes [VA] and is written as,

S = |V ||I| (3.8)

3.1.4 Impedance and Admittance
In AC circuits, the opposition to flow of current is called impedance which is the vector
sum of resistance and reactance. It is given by,

Z = R+ jX (3.9)

where R is resistance (real part) and X is reactance (imaginary part). Impedance is mea-
sured in ohms [Ω] and comes with every device in an AC circuit. When X is positive,
reactance is inductive and jX = jωL where L is the inductance. When X is negative,
reactance is capacitive and jX = 1/jωC where C is the capacitance. Note that R,L and
C are always positive. When X is zero, impedance is purely resistive, indicating that
there are no inductors and capacitors in the circuit.

The inverse of impedance is called admittance denoted by Y . It is expressed as,

Y = 1/Z = G+ jB (3.10)

where G is called conductance and B, susceptance. Considering the magnitudes of G
and B, admittance can be written as,

Y =
R

Z2 − j
X

Z2 (3.11)

where Z is the magnitude of Z. Conductance G, susceptance B and hence admittance
Y are measured in siemens [S].

Furthermore, Ohm’s law is extended to AC circuits as follows.

V = ZI or I = YV (3.12)
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3.1.5 Kirchhoff’s Circuit Laws
Kirchhoff’s Voltage Law (KVL) states that the sum of voltages around any closed loop
in a circuit must be zero. ∑

j

Vj = 0 (3.13)

where Vj is the voltage across component j in the closed loop.

Kirchhoff’s Current Law (KCL) states that the currents entering and leaving any node
in the circuit must add up to zero. ∑

k

Iik = 0 (3.14)

where Iik is the current flowing from node i to node k.

Kirchhoff’s laws are extensively used to calculate currents and voltages in electrical
circuits.

3.1.6 Per unit system
It is common practice to normalize numerical values for ease of calculation. In per unit
(pu) system, the quantities of interest are expressed in terms of base value as follows.

per unit value =
actual value
base value

The per unit value is dimensionless. In power system analysis, voltages, currents, impedances
and powers are normalized [7].

3.2 Network Topology
The transmission system is modelled as a directed graph of nodes and edges. Nodes
are called buses and they represent points in the circuit where system components such
as loads, generators, transformers, phase shifters, shunts or substations are connected.
Edges are transmission lines that connect buses and hence system components to each
other. In this section, we look at the topology in detail and describe how the components
are modelled.

12



3.2.1 Buses and lines
Buses are considered to be electrically distinct, meaning that there exists an impedance
between them which sustains a potential difference. Each bus is characterized by the
following four quantities.

• Voltage phasor magnitude, V

• Voltage phase angle, δ

• Injected active power, P

• Injected reactive power,Q

Furthermore, buses are distinguished based on the parameters specified or controlled by
components that they are connected to. Following three types are commonly used in
power flow analysis.

Load Bus: As loads signify power consumption, they are modelled as such. At each
load bus, active power and reactive power are specified, which together constitute neg-
ative power injection1. A load bus is called PQ bus, suggesting that P andQ are known.
V and δ are unknown, corresponding to the fact that loads do not control voltage.

Generator Bus: Generators are known to have control over active power and voltage.
Hence, a generator bus is referred to as PV bus. However, wind turbines do not have
voltage control and they are treated as PQ buses with a positive P. Another exception is
that some generators supply only active power and they are modelled as PQ buses with
Q = 0. The following reason clarifies this approach.

Asmentioned earlier, supply and demand in an electric grid should always be in balance.
This is achieved by matching generation and consumption of active and reactive power.
Generators are solely responsible for active power balance, whereas reactive power can
also be balanced by using devices such as shunts2. Hence, generators are modelled as
PV or PQ buses depending upon the parameters they control.

Slack Bus: The challenge with achieving power balance is that generation should also
account for transmission losses which are not known in advance. For active power, the
trick in practice is to make an empirical assumption of what the losses could be and get
a fixed power dispatch from all generators except one3. This generator’s output is said

1An exchange of power between the network and a device such as a load or a generator is called
power injection.

2Shunts are devices that inject or consume reactive power.
3Could also be a few but as done in literature, we consider them as one to explain a slack bus.
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to be controllable. It takes up the slack by generating more power if losses are greater
than expected or less power if losses are smaller. Likewise, in power flow analysis, the
slack bus or swing bus is analogous to the variable generator. As real power balance is a
manifestation of steady frequency and hence of voltage angle, the phase angle δ is spec-
ified for the slack bus. On the other hand, slack in reactive power is shared by shunts
and all generators that dispatch reactive power. Hence, V is specified for the slack bus
as it is equivalent to requiring a balanced reactive power4. Note that it is convention to
use δ = 0 for the slack bus.

Table 3.1 summarizes the above described distinction of buses and helps visualize the
parameters. N is the total number of buses in the network and Ng is the number of
generator buses.

Table 3.1: Bus types and variables

Bus type Number of buses Known Unknown

Slack bus 1 δ, |V | P, Q
PV bus Ng P, |V | δ, Q
PQ bus N−Ng − 1 P, Q δ, |V |

Buses such as transmission substations that are not connected to generators or loads are
modelled as loads with P = Q = 0. A bus can also have both generator and load con-
nected. Such buses are modelled as PV buses with P = Pgen + Pload.

A transmission line is modelled as an impedance between two nodes i and j. The
impedances of transmission lines are assumed to be time-invariant under any electric
potential and current. This allows the application of Ohm’s law to determine line cur-
rents. Since a balanced three phase system is modelled considering the single phase
equivalent, all transmission lines in the model correspond to one phase out of the three.

3.2.2 Tap Transformers and Shunts
The frequency of a transmission system, sometimes called system frequency, is constant
throughout the network whereas the voltage is not. The voltage largely depends on the
local situation of the system and as a consequence, can only be controlled locally [3].
Tap transformers and shunts are system components that play a very important role in
controlling the voltage across the network.

4For a more detailed description about buses and choice of variables, we refer to [4], section 7.2.
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A tap transformer, also called tap-changing transformer is a transformer in which the
turns ratio5 can be adjusted. A mechanical tap is used to adjust the ratio. The voltages
on either side of the transformer are related as,

|V2| =
|V1|

t

where t is the turns ratio.

As there is a strong relation between reactive power exchange and voltage levels, shunts
are used to balance voltage levels by consuming or injecting reactive power. At a net-
work bus, reactive power consumption results in a lower bus voltage and reactive power
injection results in a higher bus voltage. Shunt capacitors inject reactive power whereas
shunt inductors consume reactive power. A shunt is modelled as a reactance zs = jxs

between the bus and the ground. The shunt admittance is defined as follows.

ys =
1
zs

= −j
1
xs

= jbs

For inductive shunts, xs is positive and for capacitive shunts, xs is negative. Note that
the shunt susceptance is bs = −1/xs.

3.3 The Power Flow Model
As the name implies, power flow or load flow simulations involve understanding the
flow of electric power from source to destination. Power flow gives insight about the
state of the transmission system and is one of the most important network computations.
State, also referred to as grid state, describes steady-state behavior of the network and
is defined by three quantities; power, current and voltage. Steady-state means that only
power frequency (50 or 60 Hz) is considered for calculations and the time step could
be minutes, hours, months or years6. Given power injections at different parts of the
network, the objective is to compute voltage at every node and current in every line. We
derive power flow equations and define the power flow problem as follows.

At each node i of the network, complex power is defined by,

Si = ViI
∗
i (3.15)

5Turns ratio is the ratio between number of windings on primary and secondary sides of a transformer.
6Dynamic(kHz) and transient(MHz) analyses consider milliseconds and microseconds respectively

for calculations.
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where Vi is the potential difference between the node i and ground, and Ii is the current
injected at node i. From Kirchhoff’s Current Law we have,

Ii =

N∑
k=1

Iik (3.16)

where Iik is the current between node i and node k ̸= i. That is, it’s the current flowing
from every node in the network to node i. From Ohm’s law, line current is related to
voltage as,

Iik = YikVk (3.17)

where Vk is the voltage at node7 k and Yik is the admittance8 of the transmission line
joining nodes i and k. In matrix form,

I = YV (3.18)

where I ∈ CN is the vector of current injections at nodes, V ∈ CN is the vector of node
voltages and Y = [Yik] ∈ CN×N is called admittance matrix. The entries [Yik] define
the line impedance between node i and node k. From (3.10) we have, Yik = Gik+jBik.
For nodes not directly connected to node i, Yik = 0 and hence Y is sparse and in KCL,
it is sufficient to sum only over nodes that are directly connected to node i.

Complex power at node i can now be written as,

Si = Vi(YV)
∗
i

= Vi

( N∑
k=1

YikVk

)∗

(3.19)

Using phasors and expanding Yik,

Si =

N∑
k=1

|Vi||Vk|e
jδik(Gik − jBik)

=

N∑
k=1

|Vi||Vk| (cos δik + j sin δik) (Gik − jBik))

7From Ohm’s law, Vk should have been the voltage drop across the impedance but we consider it as
voltage at node k for now, as we will see further that the potential difference between nodes i and k arises
in the power flow equations once we introduce phasors.

8It is convenient to use admittance Y instead of impedanceZ as we can define the admittance between
two unconnected nodes as 0.

16



where δik = (δi − δk) denotes the difference in phase angles between node i and k.
Considering the real and imaginary terms of complex power Si, we have the following
two equations for active and reactive power which are called power flow equations.

Pi =

N∑
k=1

|Vi||Vk| (Gik cos δik + Bik sin δik) (3.20a)

Qi =

N∑
k=1

|Vi||Vk| (Gik sin δik − Bik cos δik) (3.20b)

The power flow problem, also called load flow problem can now be stated as:

Given the power injection S at each node,
find the voltage V at every node and current I in every line.

This problem is solved by computing V from the power flow equations and then com-
puting I using Ohm’s law and KCL.

The power flow equations form a system of non-linear equations for which a closed-
form solution is not known to exist. However, it is a root-finding problem and we use
well established methods such as the Newton Raphson iterative algorithm to find a nu-
merical solution.

3.4 Applications
Solving the power flow problem is of tremendous importance since it lies at the root of
various applications in power system analysis. In this project we focus on the following
applications which are important for TenneT.

3.4.1 Year-round simulations
As discussed in chapter 1, year-round AC power flow simulations involve perform-
ing simulations for an electricity grid with changing hourly load and generation data.
Given consumption and generation data of each hour of a year, the power flow problem
is solved to determine the voltage in each bus and current in each line of the network.
This gives insight into the steady-state behavior of the electricity grid for an entire year
or a decade. Year-round simulations are required in TenneT to plan the infrastructure
needed to best prepare the grid for the future. Due to convergence problems, AC power
flow simulations are currently performed in TenneT only for a few critical hours. The
load and generation that could possibly cause the currents in lines to go beyond the safe
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operating limit are chosen for simulations and the behavior of the grid is studied for
those few hours. The critical hours are chosen based on the results of an approximate
method called the DC load flow method (described in the next chapter) which is a lin-
ear approximation of the power flow problem that assumes that the voltages across the
network are 1pu. Hence, the selection of critical hours is not guaranteed to be accu-
rate. For this reason, it is imperative that AC power flow simulations are performed to
determine the actual flow of electric power in the network.

3.4.2 Reactive power compensation
As we know, the voltages across the transmission network should be within safe lim-
its throughout the year to ensure safe transport of electric power. The voltages in the
transmission network can be controlled by balancing the reactive power in the system.
Generally, there are two possible ways to achieve reactive power balance. One way
is to let the generators exchange reactive power with the network in such a way that
the voltages at the generator buses are maintained at predefined levels. The predefined
voltage levels are called voltage setpoints. For example, if the voltage setpoint at a gen-
erator bus is 1.05pu, the generator exchanges the right amount of reactive power with
the network to make sure that the voltage at its bus is 1.05pu. Another way is to use
shunts to balance reactive power in the network. As explained in section 3.2.2, a shunt
is a device that can be used to exchange reactive power with the network and hence
keep the voltages within safe limits. For a TSO, buying reactive power from generators
is expensive and thus it is best practice to use shunts in the network to keep voltages
within safe limits throughout the year. Reactive power compensation assessments are
made to determine the amount of shunts that are needed in the network for the future.

3.4.3 Contingency analysis
In electricity systems, contingency analysis is an investigation of scenarios where sys-
tem components such as generators or transmission lines are out of service or are taken
down for maintenance. A standard criterion in contingency analysis is the N-1 criterion
which is often called N-1 secure (for normal minus one). If an electric grid is called N-1
secure, it means that the grid should be functional even if one system component such as
a major transmission line is out of service. For higher security, some electric grids are
made N-2 secure in which case the grid should be able to withstand two contingencies,
that is, the loss of two system components.

We would like to reiterate that currently in TenneT, due to convergence problems, there
is some compromise with all the tasks discussed above. Either an approximate method
such as the DC load flow method is used or AC power flow simulations are performed
only for a few cases. Even with the few cases, convergence problems persist and are
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currently being solved by trial and error techniques. For example by adding shunts or
more slack buses in the system to ensure power balance. This is certainly not an opti-
mal solution and there is no guarantee that it works for all cases. Even if a solution is
found using trial and error techniques, the voltages in the system might not lie within
safe limits. Hence, in this project we develop the automating algorithm that can be used
in TenneT to perform year-round AC power flow simulations and do reactive power
compensation assessments and contingency analyses without having to manually solve
convergence problems. We will show that the algorithm, which is based on a mathe-
matical framework, finds optimal solutions to convergence problems.
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Chapter 4

Power Flow Solvers

Digital solution methods to solve the power flow problem first appeared in the literature
in 1956 and major breakthroughs in power flow computations were made in the 1960s
[8]. There has been a lot of research in numerical methods to efficiently solve the power
flow problem ever since. In recent times, considering the rapidly growing sizes of elec-
tric grids, power flow solvers are of tremendous importance to power system operators.

Since the performance of a power flow solver depends largely on various factors such as
problem size, available computing power and ways of implementation, it is often hard
to choose the right solver for a given problem. In this chapter, we describe some of the
most widely used power flow solvers.

4.1 Newton-Raphson
The Newton-Raphson (NR) method is a widely accepted root-finding algorithm that can
be used to solve a system of non-linear equations of the form F(x) = 0. Starting with
an initial approximation, the iterative scheme involves making successive corrections to
vector x. The correction vector∆x is assumed to satisfy F(x+∆x) = 0 at each iteration
and a first order Taylor expansion of F(x+ ∆x) gives the NR iterative formula

−J(x)∆x = F(x) (4.1)

where J(x) is the Jacobian matrix, hereafter called as the Jacobian, and is calculated as
Jik = ∂Fi(x)

∂xk
. The partial derivatives represent the slopes of the tangent hyperplanes [8].

Algorithm (1) describes the basic structure of the Newton-Raphson method. Tradition-
ally, direct solvers are used to solve the linear system (4.1) in each iteration. The resid-
ual norm ∥F(xk)∥ or the relative residual norm ∥F(xk)

F(x0)∥ is used as a measure to check
convergence. The Newton-Raphson method is known to have quadratic convergence
when iterates are close to the solution [7]. The iteration process of the Newton-Raphson
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method for a one-dimensional function is shown in fig. 4.1.

Algorithm 1: Newton-Raphson Method
i := 0
Initialize: x0

while not converged do
Solve for the correction: −J(xi)∆xi = F(xi)

Update the approximation: xi+1 = xi + ∆xi

i = i+ 1
end

x2 x1 x0

x

F(x)

Figure 4.1: Newton-Raphson iterations

The classical approach to initialize x0 is to use the flat start as initial value. That is, all
voltage angles are set to 0 and voltage magnitudes are set to 1pu (equal to that of the
slack bus). For better convergence, the solutions of approximate methods such as DC
approximation (described in section 4.3) are used as initial values.

To solve the power flow problem using the NRmethod, F(x) can be formulated as power
or current mismatch functions. The unknown variable vector x can be represented in
three different coordinates such as polar, Cartesian and complex form as shown in table
4.1.

The two mismatch formulations of F(x) and three coordinate forms of x result in six
possible ways of applying the Newton-Raphson method to solve power flow problems.
These sixmethods are considered as the fundamental Newton power flowmethods based
on which various modified versions are developed [9].
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Table 4.1: Variable x in different coordinates

Coordinates Variable x

Polar
(
Vi = |Vi|e

jδi
)

[δ1, . . . , δn, |V1|, . . . , |Vn|]
T

Cartesian (Vi = Vr
i + jVm

i ) [Vm
1 , . . . ,Vm

n ,Vr
1 , . . . ,Vr

n]
T

Complex form (Vi) [V1, . . . ,Vn]
T

The most widely used version is power-mismatch formulation with polar coordinates
[10]. The current-mismatch versions with polar and Cartesian coordinates developed
in [9] are found to perform well for large scale transmission systems. In this report,
we review the three versions; polar power-mismatch version as described in [10], polar
and Cartesian current-mismatch versions as developed in [9]. For a detailed comparison
of NR methods, we refer to [9] where all six versions are investigated with numerical
experiments and a general framework for applying NRmethods to power flow problems
in transmission and distribution systems is presented.

4.1.1 Polar power-mismatch version
The power-mismatch function F(x) is formulated as,

Fi(x) = ∆Si(x) = S
sp
i − Si(x)

= S
sp
i − Vi

N∑
k=1

Y∗
ikV

∗
k (4.2)

where Ssp
i = P

sp
i + jQ

sp
i is the specified complex power injection at bus i and Si(x) is

the complex power computed at bus i which follows from (3.19).

In polar coordinates, ∆Si(x) is separated using (3.20) as,

∆Pi(x) = P
sp
i −

N∑
k=1

|Vi||Vk| (Gik cos δik + Bik sin δik) (4.3a)

∆Qi(x) = Q
sp
i −

N∑
k=1

|Vi||Vk| (Gik sin δik − Bik cos δik) (4.3b)

Using the polar power-mismatch function, the Newton-Raphson iterative formula can
be written as follows.

−

[
J11 J12

J21 J22

][
∆δ

∆|V |

]
=

[
∆P

∆Q

]
(4.4)
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where the Jacobian sub-matrices are defined as J11 = ∂∆P
∂δ

, J12 = ∂∆P
∂|V |

, J21 = ∂∆Q

∂δ
,

J22 = ∂∆Q

∂|V |
and the partial derivatives Jik = ∂Fi(x)

∂xk
are calculated as follows.

∂∆Pi(x)

∂|Vk|
= −|Vi|(Gik cos δik + Bik sin δik)

∂∆Qi(x)

∂|Vk|
= −|Vi|(Gik sin δik − Bik cos δik)

∂∆Pi(x)

∂δk
= −|Vi||Vk|(Gik sin δik − Bik cos δik)

∂∆Qi(x)

∂δk
= −|Vi||Vk|(−Gik cos δik − Bik sin δik)

(i ̸= k)

∂∆Pi(x)

∂|Vi|
= −

(
2|Vi|Gii +

∑
i̸=k

|Vk|(Gik cos δik + Bik sin δik)

)
∂∆Qi(x)

∂|Vi|
= −

(
−2|Vi|Bii +

∑
i̸=k

|Vk|(Gik sin δik − Bik cos δik)
)

∂∆Pi(x)

∂δi
= −

∑
i̸=k

|Vi||Vk|(−Gik sin δik + Bik cos δik)

∂∆Qi(x)

∂δi
= −

∑
i̸=k

|Vi||Vk|(Gik cos δik + Bik sin δik)

(i = k)

To solve the linear system (4.4), it has to be modified based on the information available
at each bus for the following reason. We know from section 3.2.1 that at each PV bus,
P and |V | are specified whereas Q and δ are unknown. Hence, for each PV bus j, ∆Qj

cannot be formulated and the corresponding partial derivatives in the Jacobian cannot
be computed. As a result, we eliminate the entries ∂∆Pi

∂|Vj|
, ∂∆Qi

δ|Vj|
, ∂∆Qj

∂|Vi|
and ∂∆Qj

∂δi
for all

i = 1 . . .N from the Jacobian J(x), ∆|Vj| from the correction vector ∆x and ∆Qj from
the power mismatch function F(x) for each PV bus j. Similarly, δ and |V | are known
for the slack bus and the corresponding entries in the linear system are eliminated. The
order of J(x) reduces to (2N−Ng − 2) and the vector x becomes,

x =
[
δ2, . . . , δN, |VNg+2|, . . . , |VN|

]T
Note that conventionally, δ1 and |V1| correspond to the slack bus. The modified linear
system is solved at each NR iteration.

4.1.2 Polar current-mismatch version
The current-mismatch function is formulated using the current equation (3.16) and the
complex power equation (3.15) as follows.
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Fi(x) = ∆Ii(x) = I
sp
i − Ii(x)

=

(
S
sp
i

Vi

)∗

−

N∑
k=1

YikVk (4.5)

where Ispi =
(

S
sp
i

Vi

)∗
is the complex current injection specified at bus i and Ii(x) is the

complex current computed at bus i.

The function∆Ii(x) is separated into real∆Iri(x) and imaginary∆Imi (x) current-mismatch
functions in polar form as follows.

∆Iri(x) =
P
sp
i cos δi +Q

sp
i sin δi

|Vi|
−

N∑
k=1

|Vk| (Gik cos δk − Bik sin δk) (4.6a)

∆Imi (x) =
P
sp
i sin δi −Q

sp
i cos δi

|Vi|
−

N∑
k=1

|Vk| (Gik sin δk + Bik cos δk) (4.6b)

The NR iterative formula for the polar current-mismatch version can be written as,

−

[
J11 J12

J21 J22

][
∆δ

∆|V |

]
=

[
∆Ir

∆Im

]
(4.7)

where J11 = ∂∆Ir

∂δ
, J12 = ∂∆Ir

∂|V |
, J21 = ∂∆Im

∂δ
, and J22 = ∂∆Im

∂|V |
. The partial derivatives are

calculated as follows.

∂∆Iri(x)

∂|Vk|
= −(Gik cos δk − Bik sin δk)

∂∆Imi (x)

∂|Vk|
= −(Gik sin δk + Bik cos δk)

∂∆Iri(x)

∂δk
= |Vk|(Gik sin δk + Bik cos δk)

∂∆Imi (x)

∂δk
= −|Vk|(Gik cos δk − Bik sin δk)

(i ̸= k)
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∂∆Iri(x)

∂|Vi|
= −(Gii cos δi − Bii sin δi) −

P
sp
i cos δi +Q

sp
i sin δi

|Vi|2

∂∆Imi (x)

∂|Vi|
= −(Gii sin δi + Bii cos δi) −

P
sp
i sin δi −Q

sp
i cos δi

|Vi|2

∂∆Iri(x)

∂δi
= |Vi| (Gii sin δi + Bii cos δi) −

P
sp
i sin δi −Q

sp
i cos δi

|Vi|

∂∆Imi (x)

∂δi
= −|Vi| (Gii cos δi − Bii sin δi) +

P
sp
i cos δi +Q

sp
i sin δi

|Vi|

(i = k)

Similar to power-mismatch version, the linear system (4.7) has to be modified. For a PQ
bus, computation of real and imaginary current-mismatch functions is straightforward
since the associated real and reactive power mismatches are known. Whereas represent-
ing a PV bus in the linear system is tricky and there are several approaches available in
literature. In this report, we review the new approach developed in [9] which is found
to be promising.

For each PV bus j, the reactive power Qj is considered as a dependent variable of |V |
and δ. The current-mismatch formulation is directly used. That is, ∆Iri(x) and ∆Imi (x)

are calculated using Q
sp
i = Qj in equations (4.6) for each PV bus j at each iteration.

The partial derivatives ∂∆Iri
∂|Vj|

and ∂∆Imi
∂|Vj|

in the Jacobian J(x) are replaced by ∂∆Iri
∂Qj

and
∂∆Imi
∂Qj

for all i = 1 . . .N which are calculated as follows.

∂∆Iri(x)

∂Qj

= 0

∂∆Imi (x)

∂Qj

= 0
(i ̸= j)

∂∆Irj (x)

∂Qj

=
sin δj

|Vj|sp

∂∆Irj (x)

∂Qj

= −
cos δj
|Vj|sp

(i = j)

The entries ∆|Vj| in the correction vector ∆x are replaced by ∆Qj for each PV bus j.
The initial reactive power Q0

j is calculated for each PV bus j as follows.

Q0
j =

N∑
k=1

|Vj||Vk| (Gjk sin δjk − Bjk cos δjk)

The order of J(x) remains (2N − 2). At each NR iteration, the modified linear system
is solved and the reactive power Qj is updated using the computed correction ∆Qj.
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4.1.3 Cartesian current-mismatch version
In Cartesian form, the current-mismatch function F(x) is separated as,

∆Iri(x) =
P
sp
i Vr

i +Q
sp
i Vm

i

(Vr
i )

2 + (Vm
i )2 −

N∑
k=1

(GikV
r
k − BikV

m
k ) (4.8a)

∆Imi (x) =
P
sp
i Vm

i −Q
sp
i Vr

i

(Vr
i )

2 + (Vm
i )2 −

N∑
k=1

(GikV
m
k + BikV

r
k) (4.8b)

and the Jacobian matrix equation is formulated as follows.

−

[
J11 J12

J21 J22

][
∆Vm

∆Vr

]
=

[
∆Ir

∆Im

]
(4.9)

where J11 = ∂∆Ir

∂Vm , J12 = ∂∆Ir

∂Vr , J21 = ∂∆Im

∂Vm , and J22 = ∂∆Im

∂Vr . The partial derivatives are
computed as,

∂∆Iri(x)

∂Vr
k

= −Gik

∂∆Imi (x)

∂Vr
k

= Bik

∂∆Iri(x)

∂Vm
k

= Bik

∂∆Imi (x)

∂Vm
k

= −Gik

(i ̸= k)

∂∆Iri(x)

∂Vr
i

= −Gii −
P
sp
i ((Vr

i )
2 − (Vm

i )2) + 2Vr
iV

m
i Q

sp
i

|Vi|4

∂∆Imi (x)

∂Vr
i

= −Bii +
Q

sp
i ((Vr

i )
2 − (Vm

i )2) − 2Vr
iV

m
i P

sp
i

|Vi|4

∂∆Iri(x)

∂Vm
i

= Bii +
Q

sp
i ((Vr

i )
2 − (Vm

i )2) − 2Vr
iV

m
i P

sp
i

|Vi|4

∂∆Imi (x)

∂Vm
i

= −Gii +
P
sp
i ((Vr

i )
2 − (Vm

i )2) + 2Vr
iV

m
i Q

sp
i

|Vi|4

(i = k)

In [9], the reactive power Qj is chosen as a dependent variable to represent a PV bus,
similar to polar current-mismatch version. The partial derivatives ∂∆Iri

∂Qj
and ∂∆Imi

∂Qj
com-

puted as,
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∂∆Iri(x)

∂Qj

= 0

∂∆Imi (x)

∂Qj

= 0
(i ̸= j)

∂∆Irj (x)

∂Qj

=
Vm
j

(Vr
j )

2 + (Vm
j )2

∂∆Irj (x)

∂Qj

=
−Vr

j

(Vr
j )

2 + (Vm
j )2

(i = j)

are added to the Jacobian matrix J(x) and the correction ∆Qj is added to the correction
vector ∆x for each PV bus j. As a result, the Jacobian matrix becomes a rectangular
matrix. That is, J(x) ∈ R(2N)×(2N+Ng). In order to make the Jacobian matrix square,
the equation

∆|V | =
Vr

|V |
∆Vr +

Vm

|V |
∆Vm

is used with ∆|Vj| = 0 since |Vj| is specified for each PV bus j. This gives the relation,

∆Vr
j = −

Vm
j

Vr
j

∆Vm
j

which is used to add the column of the Jacobian corresponding to the derivatives ∂∆Iri
∂Vr

j

and ∂∆Imi
∂Vr

j
to the column corresponding to the derivatives ∂∆Iri

∂Vm
j
and ∂∆Imi

∂Vm
j

as follows.

∂∆Iri
∂Vm

j

∆Vm
j =

(
∂∆Iri
∂Vm

j

−
Vm
j

Vr
j

∂∆Iri
∂Vr

j

)
∆Vm

j

∂∆Imi
∂Vm

j

∆Vm
j =

(
∂∆Imi
∂Vm

j

−
Vm
j

Vr
j

∂∆Imi
∂Vr

j

)
∆Vm

j

The correction vector∆Vr
j is now eliminated from the correction vector∆x for each PV

bus j. The initial reactive powerQ0
j is calculated for each PV bus j as follows.

Q0
j =

N∑
k=1

(
Vm
j (GjkV

r
k − BjkV

m
k ) − Vr

j (BjkV
r
k +GjkV

m
k )
)

With the slack bus included, the order of J(x) remains (2N− 2). At each NR iteration,
the modified linear system is solved and the reactive power Qj is updated using the
computed correction ∆Qj.
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Despite its widespread popularity, a drawback the Newton-Raphson method has is com-
putational complexity. The Jacobian has to be computed in every iteration as it depends
on the current approximation of the solution. Which means, there is a new linear system
(4.1) in every iteration for the algorithm to solve. This makes the solution process com-
putationally bound, particularly for applications such as contingency analysis of large
networks. These difficulties in solving the AC power flow problem have led to exten-
sive numerical studies and various simplified methods have been proposed and used.
The simplified methods involve making a series of approximations to the non-linear
powerflow problem (3.20). More the approximations made, the easier it is to find a so-
lution. However, note that the AC power flow methods such as Newton-Raphson and
all the approximate methods attempt to solve the same underlying power system. In this
report, we review two methods that are commonly found in literature: decoupled load
flow and DC approximation. In situations where a full power flow model is an absolute
necessity, the solutions of these simplified methods are used as initial values, essentially
when it is quite certain that the flat start approximation doesn’t converge.

4.2 Fast Decoupled Load Flow
The Fast Decoupled Load Flow (FDLF) method is a simple and fast power flow solu-
tion technique which is derived from Newton’s method. We briefly describe the basic
version of the formulation here and refer to [3, 11] for further details.

The polar power-mismatch version of the Newton-Raphson method described in section
4.1.1 is used as a starting point to derive the decoupled load flow formulation. The linear
system that is solved in every iteration of the NR polar power-mismatch version is given
by (4.1) as,

−

[
J11 J12

J21 J22

][
∆δ

∆|V |

]
=

[
∆P

∆Q

]
(4.10)

The decoupling principle involves making the following assumptions which generally
hold for power systems under normal operating conditions [3].

1. Voltage angle differences between buses are small.

cos δik ≈ 1; sin δik ≈ δik

2. Transmission line susceptances are much larger than conductances.

Gik sin δik ≪ Bik
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3. The reactive power injected into a node is much smaller than the reactive flow that
would result if all lines connected to that bus were short circuited to reference [3].

Qi ≪ Bii|Vi|
2

Evaluating the partial derivatives J12 = ∂∆P
∂|V |

and J21 = ∂∆Q

∂δ
(see section 4.1.1 for

equations) with the first two assumptions shows that the Jacobian sub-matrices J12 and
J21 are small and can be neglected. Additionally, the terms [J22

ik] are multiplied with
voltage magnitude |Vi|, the convenience of which will be clear in the derivation below.
The following decoupled system of equations is then obtained.

−
[
J11
] [

∆δ
]
=
[
∆P

]
(4.11a)

−
[
J̃22
] [

∆|Ṽ |
]
=
[
∆Q

]
(4.11b)

where, J11
ik = ∂∆Pi

∂δk
, J̃22

ik = |Vi|
∂∆Qi

∂|Vk|
and ∆|Ṽi| =

∆|Vi|

|Vi|
. The Jacobian sub-matrices J11

and J̃22 are computed using the partial derivatives defined in section 4.1.1 with the three
assumptions stated above as follows.

∂∆Pi

∂δk
= |Vi|

∂∆Qi

∂|Vk|
= −|Vi||Vk| (Gik sin δik − Bik cos δik) (i ̸= k)

≈ |Vi||Vk|Bik

∂∆Pi

∂δi
=

∑
i̸=k

|Vi||Vk|(Gik sin δik − Bik cos δik) (i = k)

= Bii|Vi|
2 +

N∑
k=1

|Vi||Vk| (Gik sin δik − Bik cos δik)

= Bii|Vi|
2 +Qi

≈ Bii|Vi|
2

|Vi|
∂∆Qi

∂|Vi|
= 2Bii|Vi|

2 −
∑
i̸=k

|Vi||Vk|(Gik sin δik − Bik cos δik) (i = k)

= Bii|Vi|
2 −Qi

≈ Bii|Vi|
2

The decoupled system (4.11) is now written as,
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−
[
|V |TB|V |

] [
∆δ

]
=
[
∆P

]

−
[
|V |TB|V |

] [
∆|Ṽ |

]
=
[
∆Q

]
where B = [Bik] ∈ RN×N is the matrix of line susceptances. Finally, the terms |Vi|

T

are taken to the right hand side and the terms |Vi| are set to 1pu. A distinction is made
at this stage for matrix B in the two linear systems for convenience.

With all the above modifications, the final decoupled power flow equations become,

−
[
B′
] [

∆δ
]
=
[
∆P̃

]
(4.12a)

−
[
B′′
] [

∆|V |
]
=
[
∆Q̃

]
(4.12b)

where ∆P̃i = ∆Pi

|Vi|
and ∆Q̃i = ∆Qi

|Vi|
. The decoupled system (4.12) is modified to rep-

resent a PV bus, similar to NR polar power-mismatch version as described in section
4.1.1. The order of the systems (4.12) will then be (N−1) and (N−Ng−1) respectively.

The matrices B′ and B′′ depend only on network parameters and are constant in every
iteration. This means that the matrices have to be calculated and factorized only once,
leading to faster computations of the power flow problem even though the number of
iterations needed for convergence could be higher because of the approximations made.
The steps involved in the fast decoupled load flow method are given in the following
algorithm.

Algorithm 2: Decoupled load flow
k := 0
Initialize: δ0 and |V |0

while not converged do
Compute: ∆P̃
Solve for the correction ∆δ: − [B′] [∆δ] = [∆P̃]

Update the approximation: δk+1 = δk + ∆δk

Use δk+1 to compute ∆Q̃
Solve for the correction ∆|V |: − [B′′] [∆|V |] = [∆Q̃]

Update the approximation: |V |k+1 = |V |k + ∆|V |k

k = k+ 1
end
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4.3 DC approximation
DC approximation or DC load flow is a linear approximation of the power flow prob-
lem. The extent to which the non-linear power flow equations (3.20) are approximated
and the kinds of assumptions made may vary based on the problem or the application.
In fact, ’DC’ refers to the collection of approximations made such that the network is
decoupled. In some cases, the FDLF method is also considered as a DC approximation
method. However, there is a fundamental difference between FDLF and DC approx-
imation methods. In FDLF, the non-linear system is solved in each iteration and the
approximation is made only to the Jacobian. In DC load flow methods, the non-linear
equations are linearized to speed up computation, which considerably affects the accu-
racy of the final solution.

The DC load flow method described in [3] is derived as follows. The following approx-
imations are made to the power flow problem (3.20).

• Bus voltage magnitudes are set to 1 pu in active power equations (3.20a).

• Voltage magnitudes are approximated as: |V | = 1 +∆|V | and 1
1+∆|V |

= 1 −∆|V |

in reactive power equations (3.20b).

• Conductances of transmission lines are neglected: Gik ≪ Bik.

• Voltage angles are small: cos δik ≈ 1 and sin δik ≈ δik.

Under these assumptions, the linearized version of the power flow problem (3.20) is
given by,

Pi =
∑
k̸=i

Bikδik (4.13a)

Qi + Bii = (Qi − Bii)∆|Vi|+
∑
k̸=i

(1 + ∆|Vk|)Bik (4.13b)

where ∆|V | represents the deviation of the voltage magnitude from 1pu voltage level.

The DC approach provides a fairly good approximation of voltage magnitudes and an-
gles which can be used as initial values in NR or FDLF methods. It is also claimed in
[12] that while the DC approximation leads to some loss of accuracy, the results match
fairly closely with full power flow solution. The following approach of DC approxima-
tion is presented in [12] as the most dramatic of DC approximation methods.

The assumptions made to the non-linear power flow problem are:
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• the reactive power balance equations are ignored,

• voltage magnitudes are set to 1 pu,

• line losses are ignored.

These assumptions reduce the non-linear power flow problem to the system of linear
equations:

[B′] [δ] = [P] (4.14)

where [B′] is the line susceptance matrix, [δ] is the vector of bus voltage angles and [P]
is the active power injection vector.

It should be noted that the lack of losses in the DC solution can be reasonably com-
pensated for by increasing the total load by the amount of estimated losses. The DC
approach (4.14) has the following significant advantages over the Newton-Raphson
method.

1. The linear system is half the size of the full problem since only the active power
mismatch equations are solved.

2. The algorithm is not iterative, requiring just one single solution of (4.14).

3. The matrixB′ is dependent only on network parameters and needs to be factorized
only once.

We refer to [12] for further details, where a comparison between AC and DC methods
is also made.
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4.4 Gauss-Seidel
Gauss-Seidel method is another iterative technique that can be used to solve the non-
linear power flow problem. The iterative scheme is derived from the complex power
equation (3.19) with complex voltage Vi as the iteration variable.

Si = Vi(YV)
∗
i

= Vi

(
N∑

k=1
YikVk

)∗

= Vi

(∑
k ̸=i

YikVk

)∗

+ ViY
∗
iiV

∗
i ⇐⇒

ViY
∗
iiV

∗
i = Si − Vi

(∑
k̸=i

YikVk

)∗

⇐⇒

V∗
i =

1
Y∗
ii

(
Si

Vi

−
∑
k ̸=i

Y∗
ikV

∗
k

)
⇐⇒

Vi =
1
Yii

(
S∗
i

V∗
i

−
∑
k̸=i

YikVk

)

=
1
Yii

(
Pi − jQi

V∗
i

−
∑
k̸=i

YikVk

)
(4.15)

The fixed point equation (4.15) leads to the following iterative formula.

Vh+1
i =

1
Yii

(
Pi − jQi

Vh∗
i

−
∑
k ̸=i

YikV
h
k

)
, h = 0, 1, 2, . . . (4.16)

where V0
i is a given initial approximation for each bus i. Equation (4.16) is evaluated at

each iteration until convergence is met. If the approximations Vh
i are computed at once

for all buses and applied at once in the next iteration, the iterative procedure is called
Jacobi iteration. If the approximations are computed for one bus at a time and immedi-
ately used in the same iteration, the procedure is referred to as Gauss-Seidel iteration.

For a PQ bus, it is straightforward to apply the iterative formula (4.16), whereas for a
PV bus, modifications are required, similar to Newton-Raphson method.

The Gauss-Seidel method is flexible and relatively easy to implement but it is gener-
ally slow and inefficient for large systems. The iterative scheme has a tendency to use
a lot of computations, particularly in large scale problems, and could also converge to
incorrect solutions. Hence, the Gauss-Seidel method is not preferred in practice. How-
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ever, despite the shortcomings, it can be used to get a good perspective on power flow
problems [13].

4.5 Summary
The following can be inferred from the power flow solvers that are described in the
preceding sections (4.1 to 4.4).

• The Newton-Raphson method is widely regarded as the most commonly pre-
ferred power flow solver [8]. Several formulations of the NR method are found
in literature. Among the six fundamental NR methods, the most widely used ver-
sion is the power-mismatch formulation with polar coordinates [10]. The current-
mismatch version with polar and Cartesian coordinates are found to give the best
results for transmission networks [9].

• The Gauss-Seidel method is another full power flow solver that is used in power
flow analysis. Despite the ease of implementation that the Gauss-Seidel method
offers, it is seldom preferred in practice due to computational intensity [13].

• The FDLF method offers computational benefits against full power flow solvers
by making approximations as described in section 4.2. The FDLF method is ad-
vantageous in terms of speed and simplicity compared to full power flow solvers
[11]. However, the accuracy of the solution is not on par with full power flow
solvers because of the approximations made.

• The DC approximation method is the simplest of approximate methods to solve
the power flow problem. It has been concluded in [12] that the results of the DC
approximation method match fairly closely with full power flow solvers despite
the loss in accuracy. However, the DC approach considers only active power
equations and hence can only substitute a full power flow solver for applications
that do not require reactive power to be taken into account.

We would like to emphasize that the selection of a power flow solver is largely problem
specific. For instance, while the DC approximation method is well suited for problems
that are not sensitive to the approximations made, it cannot be used for applications that
require calculation of reactive power in the network. Full power flow solvers such as
the Newton-Raphson method and its formulations are always necessary for AC power
flow analysis. Hence, for reactive power compensation assessment, AC power flow
simulations are absolutely necessary.
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Chapter 5

Software Packages

Given the importance of digital solution methods to power flow analysis, there are many
commercial software packages available. These software packages are quite powerful
and they are extensively used in the industry for power system operation, control and
planning among many other applications. In this chapter we explore PowerFactory,
PSS®E and pandapower and understand their capability to solve the power flow prob-
lem.

5.1 PowerFactory
PowerFactory is an engineering tool for the analysis of transmission, distribution and
industrial electrical power systems. It is an integrated and interactive software package
dedicated to electrical power systems in order to achieve the main objectives of plan-
ning and operation. PowerFactory has a single-line graphical interface which includes
drawing functions, editing capabilities, and static and dynamic calculation features. The
simulation functions offered by PowerFactory include power flow analysis, contingency
analysis, optimal power flow among many other functions. PowerFactory is licensed by
DIgSILENT GmbH.

PowerFactory offers both AC and DC power flow methods. In AC power flow method,
the user can select one of the following formulations for solving the power flow problem.

1. Newton-Raphson power mismatch

2. Newton-Raphson current mismatch

PowerFactory allows the calculation of both balanced and unbalanced power flows. It
is claimed in [14] that the Newton-Raphson power mismatch version converges best for
large transmission systems, especially when heavily loaded and the Newton-Raphson
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current mismatch version converges best for unbalanced distribution systems.

In DC power flow method, only active power flow without losses is considered as ex-
plained in section 4.3 with the linear system (4.14).

PowerFactory has options for integration with Python scripts. Python scripts are gener-
ally used with PowerFactory for automation of tasks, creation of user defined calculation
commands and integration of PowerFactory into other applications. PowerFactory also
supports interfaces for softwares such as PSS®E and MATLAB. For further details, we
refer to [14].

5.2 PSS®E

PSS®E is a power system simulation and analysis tool for power transmission operation
and planning. Similar to PowerFactory, it offers a wide range of simulation functions.
For AC power flow simulations, PSS®E has the following algorithms along with a few
other modified methods available. PSS®E is licensed by Siemens.

1. Gauss-Seidel

2. Newton-Raphson

3. Decoupled Newton-Raphson

Since the convergence properties of solvers depend on the grid model, the following
procedure is suggested in [15] to solve the power flow problem, particularly in situations
where the characteristics of new power flow problems are not known.

1. Use flat start values as initial values.

2. Execute Gauss-Seidel method until the corrections made to voltages and angles
decrease to, for instance, 0.01 or 0.005 pu in consecutive iterations.

3. Switch to Newton-Raphson method and execute it until the problem converges or
until there are signs of divergence.

4. If Newton-Raphson method does not converge within 8 to 10 iterations, switch
back to Gauss-Seidel.

PSS®E also has an embedded Python interpreter which can be used to access and run
models in PSS®E from Python scripts.
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5.3 pandapower
pandapower is an open source tool for power system modelling, analysis and optimiza-
tion. pandapower combines the data analysis library pandas and the power flow solver
PYPOWER. PYPOWER is a port of MATPOWER to the Python programming lan-
guage. pandapower offers the following power flow methods and a few other modified
ones.

1. Newton-Raphson

2. Newton-Rapshon with optimal multipliers

3. Gauss-Seidel

4. Fast decoupled load flow

5. DC power flow

The default solver uses the power mismatch formulation with polar coordinates of the
Newton-Raphson method (see section 4.1.1). It is mentioned in [16] that the Gauss-
Seidel method is included only for academic interests as it has many disadvantages
compared to the Newton’s method.

By default, the AC power flow solvers in pandapower solve the power flow problem
without considering voltage limits, line current limits and generator limits. Currently,
none of the solvers include options for automatic updating of transformer taps and for
satisfying constraints such as voltage limits [16]. However, there is an option to keep
the generator reactive power within limits, but at the expense of voltage setpoints. That
is, when the generator reactive power is kept within limits, the voltages could go be-
yond the safe operating range which is generally set to 0.9 to 1.1pu. This is based on
a brute force technique which adds an outer loop around the AC power flow solver. If
the reactive power limit of a generator is violated, the reactive power injection by that
generator is force fixed at the limit and the power flow is solved again. This procedure is
repeated until there are no more violations. pandapower also has many test grid models
to evaluate power flow algorithms.

In this project, we use PowerFactory and pandapower for our simulations. As the real-
world grid models that we use in this project are built in PowerFactory which is a com-
mercial software that does not allow access to its solvers, we develop a software interface
that converts grid models from PowerFactory to pandapower. This enables us to apply
our mathematical methods to all the real-world grid models that are used on a regular
basis in TenneT.
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Chapter 6

The Interface

An electricity grid model is a dataset that consists of information about the topology of
the grid and about generation and consumption of electric power, in a computer readable
format. A transmission system operator like TenneT uses grid models for several pur-
poses such as operation and planning. Hence, grid models are developed and managed
by TSOs on a regular basis. Moreover, a transparent exchange of grid models between
the TSOs is of utmost importance considering the interconnected nature of electricity
networks. For instance, there are 42 TSOs in Europe that collectively represent 35 coun-
tries and are responsible for safe operation of the European electricity system, which is
the largest interconnected electricity network in the world. The European Network of
Transmission System Operators for Electricity (ENTSO-E) is the association that facili-
tates the cooperation between European TSOs. ENTSO-E is responsible for aggregating
grid models and distributing them to all the TSOs. The frequency of data exchange de-
pends on the application. For example, grid models are exchanged on an hourly basis
for the purpose of transmission system operation whereas on a yearly basis for trans-
mission system planning.

For a long time now, PowerFactory has been the software of choice for the European
TSOs and ENTSO-E for creation, development, management and exchange of gridmod-
els. PowerFactory’s graphical user interface makes grid model development quite con-
venient. PowerFactory also has a version control system which is useful for managing
grid models and also for creating investment plans for the future. Given the massive
size and extent of the European electricity system, grid model exchange is a complex
process in itself. The grid models are exchanged based on a standard called Common
Information Model (CIM) which was developed by the electric power industry to allow
efficient exchange of information regarding electricity networks. Among many other
formats, PowerFactory also supports CIM. And of course, as discussed in the previous
chapter, PowerFactory is used for power flow simulations, contingency analysis and
several applications in TenneT.
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However, from the perspective of research, PowerFactory is still a black box. Like most
commercial softwares, calculations in PowerFactory are done behind the screen and the
user has access only to the results. This is a hindrance, especially for power flow simu-
lations where the freedom to examine the power flow problem and its solution in detail
makes a big difference. For example, in case there is no power flow convergence, an-
alyzing the power mismatches in each bus of the network gives a lot of insight into the
problem and could possibly lead us to a solution. At the moment, it is unfortunately not
possible to access the power flow solvers in PowerFactory. Hence, either there is a so-
lution or there is not. Even if a small mismatch at a single bus is causing the power flow
problem to diverge, the user would have to blindly accept that there is no solution. This
leads to an uncertain attempt of trial and error based on heuristics to solve a diverging
power flow problem. These limitations of PowerFactory formed a daunting barrier in
the way of achieving the objectives of this project.

Luckily, PowerFactory has an Application Programming Interface (API)1 that can be
used by other applications to externally access grid model data and functionality of
PowerFactory. We use the API to develop a software interface in Python that trans-
lates grid models from PowerFactory to pandapower. The interface is an API in itself,
that is built as a user friendly software package that can be used in TenneT not only
for power flow simulations but also for several other applications such as grid topology
reconfiguration2 and calculation of Power Transfer Distribution Factors (PTDFs)3 and
Line Outage Distribution Factors (LODFs)4. We thus have the best of both worlds: the
eminent strengths of PowerFactory and the transparency of pandapower. We hope that
the interface helps to bridge the gap between research and practice in the years to come.

6.1 Grid Models
The amount and accuracy of information that an electricity grid model contains depend
on its usage. The reactances of lines and active power injections in the network suffice
for DC power flow simulations whereas AC power flow simulations also require line
resistances and reactive power injections. Dynamic power flow, optimal power flow
and short circuit analysis would need even more details about the grid. In this project,
for the development of the interface and for simulations, we focus on grid model details

1An API is a software interface that connects computer programs.
2Grid topology reconfiguration is performed, for example using machine learning, to determine the

best grid topology for safe operation of the electricity system [17].
3PTDFs indicate the relative change in active power that occurs on transmission lines due to power

transfers between two regions which could be countries, areas or zones [18].
4LODFs describe the changes in active power flow in the network when a particular line in the net-

work fails [18].
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that are sufficient to perform steady state AC power flow simulations. The elements of
a grid model can be categorized into the elements that form the topology of the grid and
the ones that correspond to load and generation.

Grid topology
As discussed in chapter 3, the transmission network is modelled as a directed graph of
buses and lines. Each bus is defined by a unique index and its voltage level. Some
real-world grid models also contain geographic coordinates of buses. A line is defined
by its resistance and reactance.

Switches are devices that are used to close or open electrical circuits. An ideal switch
has zero impedance. In the transmission network model, two buses connected by an
ideal switch are merged together. That is, the two buses are replaced by a single bus.
Even though in reality a switch would have a small impedance, it is assumed to be zero in
steady state power flow simulations. This has the advantage that the number of buses in
the network that are considered for calculations reduces and the power flow convergence
problems that could arise due to small impedances are avoided. A real world transmis-
sion network contains a large number of switches. For example, the Dutch transmission
network has about 15517 switches which is more than the 14685 buses that it has. Merg-
ing the switches results in a simplified network with just 1700 buses. This means that the
size of the Jacobian becomes significantly smaller, leading to computational benefits. If
the impedance of a switch is large enough to be considered necessary for calculations,
it is modelled as a line.

The voltages in the network are shifted up and down using transformers. In our mod-
els, we have two-winding and three-winding transformers. As the names suggest, a
two-winding transformer creates two different voltage levels in the network and a three-
winding transformer creates three different voltage levels. For details about modelling
various types of transformers see [14] and [19].

Shunts are devices that exchange reactive power with the network. A shunt inductor
consumes reactive power whereas a shunt capacitor injects reactive power into the net-
work. As discussed in chapter 3, a shunt is modelled as a reactance.

All the above elements which constitute the topology of the grid are built into the ad-
mittance matrix. That is, the admittance matrix of the network contains the necessary
information about the elements that form the topology (structure) of the electric grid.
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Load and generation
Loads and generators are elements that exchange electric power with the network. Loads
consume electric power and are generally aggregated, in the sense that several loads are
combined into a single load and connected to a single bus. Generators inject electric
power into the network. A generator that does not control its voltage is called a static
generator and is modelled similar to a load. For this reason, active power and reactive
power are both defined for a static generator. A voltage-controlled generator, hereafter
referred to as generator, adjusts its reactive power output to maintain the defined volt-
age. Hence, for a generator, active power and the voltage setpoint are defined whereas
reactive power is calculated during power flow simulations. Loads and generators are
collectively called power injectors. If power is consumed, as by a load, the power in-
jection is negative. The distinction between loads, generators and static generators is
defined using the concepts of PQ buses and PV buses as explained in chapter 3. In
PowerFactory, a generator is called a synchronous machine.

By default, the slack bus is modelled as an external grid. In principle, an external grid
is another network, such as the network of a neighboring country, that is modelled as a
power source or sink at a single bus. As we know from chapter 3, the voltage magnitude
and the voltage angle are defined for a slack bus. In fact, a generator can also be a slack
bus, in which case the voltage angle is also predefined along with voltage magnitude.

6.2 The Interface
The interface is written in Python and it uses the PowerFactory API as the channel of
communication. PowerFactory is written in C++ and so is its API. To facilitate com-
munication with Python, the PowerFactory API consists of a module5 that can be dy-
namically imported into Python. That is, the module and its contents can be imported
into Python runtime, without having to decide in advance the imports that are needed by
the program. Hence, a dynamic import of the Python module means that the software
PowerFactory can be accessed from Python runtime. This possibility serves as the basis
for the interface.

As the interface is part of a larger initiative of software migration towards Python in
TenneT and not meant only for this project, we built it as an importable Python package
that also comes with a few useful functions such as validation and diagnostics along
with grid model conversion.

5A Python module is a file that contains Python definitions and statements.
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6.2.1 Grid model conversion
In PowerFactory, a grid model is made of objects6. Each element of a grid model is an
object and an object contains more objects. For example, the object that represents a
line contains an object each for the two buses that the line connects. Hence, the dynam-
ically imported Python module is like a sack of objects that collectively represent a grid
model. The characteristics of the elements such as the resistance of a line are read from
the corresponding object using attributes7.

In pandapower, a grid model is a collection of pandas dataframes8. The collection of
pandas dataframes is built as a pandapower data structure, which is used for creating
grid models and doing calculations. The results are stored in the same pandapower data
structure as well. This makes handling a grid model very convenient in pandapower.

The interface picks the objects from the Python module one by one, just like peeling
the layers of an onion, and builds a pandapower data structure. This is done by looping
over all the elements of a PowerFactory grid model and reading their characteristics in
each iteration using the corresponding attributes. The elements and their characteristics
are then built into a grid model in pandapower.

In fact, the interface is a map between two data structures that represent the same grid
model in two different ways. As we know, a grid model is fundamentally a graph of
buses and lines. All other elements are connected to buses. We represent the graph by
G = (N,E), whereN is a set of nodes (buses) and E is a set of edges (lines). To connect
the two data structures, we need a function that maps the buses in PowerFactory to the
buses in pandapower. That is, we need a function that maps the nodes of the graph of the
PowerFactory grid model to the nodes of the graph of the pandapower grid model. This
function forms the core of the interface. We denote the function by f : Npf → Npp,
where Npf = {v1, v2, v3, . . . , vn} is a set of unique objects that represent the buses of
the PowerFactory grid model and Npp = {1, 2, 3, . . . ,n} is a set of unique indices that
represent the buses of the pandapower grid model.

The function f is used throughout the interface. For example, to create lines in the pan-
dapower grid model, the interface loops over all the objects that represent lines. In each
iteration, the two buses that the line connects are extracted from the object using the
corresponding attributes. The two buses are objects themselves. The function f is then
used to identify the indices of the two buses in pandapower. The indices and the char-

6In Object Oriented Programming (OOP), an object is a bundle of data structures and functions.
7An attribute is a specification that defines the property of an object.
8pandas is a data analysis library written in Python. A pandas dataframe is a two-dimensional data

structure in tabular format, similar to a spreadsheet.
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acteristics of the line such as resistance and reactance are then used to create the line in
pandapower. All other elements are similarly created.

In our grid models, we have the elements that are listed below. The attributes shown
in brackets fetch a list of objects that represent the elements, from the Python module.
For example, ’elmlne’ is the attribute used to extract all the lines from the PowerFactory
grid model through the Python module.

• Buses (elmterm)

• Switches (elmcoup)

• Lines (elmlne)

• Two winding transformers (elmtr2)

• Threewinding transformers (elmtr3)

• Loads (elmlod)

• Static generators (elmgenstat)

• Generators (elmsym)

• Shunts (elmshnt)

• External grids (elmxnet)

The characteristics of the elements are similarly read from their objects using attributes.
For example, ’R1’ is the attribute used to read the resistance of a line, ’X1’ is the one
used to read the reactance and so on. Not all attributes are mentioned in the user manu-
als of PowerFactory and they can only be found in the PowerFactory application itself,
distributed across the software. Which means, one of the challenges in developing an
interface like this is finding the right attributes for all the elements. Hence, this interface
is also an extensive library of objects and attributes of a PowerFactory grid model. This
saves a significant amount of time for further developing Python scripts to communicate
with PowerFactory for other applications, without having to search every corner of the
software for attributes.

In PowerFactory, the nomenclature for buses is that all the buses are called terminals and
some of them are regarded as busbars depending upon their usage. That is, a terminal
is called a busbar if it is connected to several other terminals and elements. Figure 6.1
shows the screenshot of a substation (within the dotted rectangle) in a PowerFactory
grid model. The buses A and B (long red horizontal lines) are called busbars. All the
red dots correspond to terminals. This arrangement of two busbars is called as double-
linked bus chain. As can be seen in the figure, all the terminals are connected via closed
switches. This means, all the terminals can be merged and the entire substation can be
modelled as a single bus in pandapower. As discussed in section 6.1, this considerably
simplifies grid models. In this project, we develop an algorithm to merge terminals that
are connected by closed switches into one single bus.
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Figure 6.1: A substation in a PowerFactory grid model

Merging buses

If the impedance of a switch is assumed to be zero, the buses connected by the switch
cannot independently exist in the mathematical model. If they do, as the impedance
between them is assumed to be zero, the two buses are consequently disconnected in
the model but they are connected in the physical grid. Hence, either the switch should
be modelled as a line with an impedance or the two buses should be merged into a single
bus. Algorithm 3 shows the steps involved in merging the buses connected by closed
zero-impedance switches.

Algorithm 3:Merging buses

Initialize:
Npp = {1, 2, 3, . . . ,n}

for each switch do
pi = parent of bus i
pj = parent of bus j
Npp[pi] = pj

end

for each bus do
k = index of last bus in the chain
Npp[i] = k

end
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(a) With switches (b) With buses fused

Figure 6.2: Merging buses

Figure 6.2 shows a small network and its buses merged. The working principle of the
algorithm is as follows. By default, a unique index is assigned to each bus by defining
the set Npp = {1, 2, 3, . . . ,n}. The algorithm loops over the switches first, and then
over buses. In the first loop, the elements of the set Npp are modified in such a way
that if a bus j is to be merged with bus i, the number j is placed at index i in the set
Npp. For example, to merge bus 1 with bus 2, 2 is placed at index 1 of Npp. That is,
Npp[1] = 2. This implies that bus 1 is mapped to bus 2 (i → j). For single switches, the
buses i and j could just be the buses of a switch (i, j). However, there could be a bunch
of switches connected together as shown in figure 6.3a. In such cases, a few more steps
are necessary to merge the buses together.

(a) Initialize (b) Step 1 (c) Step 2

Figure 6.3: Steps of the merging algorithm
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The idea is to form a chain (figure 6.3b) for each bunch of switches in the network such
that every bus leads to the end of the chain that it belongs to. For example, after the
transition from 6.3a to 6.3b, the setNpp will be {2, 5, 4, 4, 3}. This is obtained by merg-
ing the ends of the chains (called parents in algorithm 3) that bus i and bus j belong to,
for a switch (i, j) in the first loop of the algorithm.

The second loop runs over all the buses and for each bus, finds the last index in the
chain and assigns it to the bus. Now for the example, the set Npp will be {4, 4, 4, 4, 4}
after the second loop. This means that all the buses {1, 2, 3, 4, 5} are connected to bus 4
(see figure 6.3c). Note that any bus could be the last bus of the chain depending upon
the order of switches read by the first loop. In the end, the set Npp represents a map
between it’s elements and their indices inNpp. The setNpp is then used to create buses
in pandapower. That is, a bunch of buses is modelled as a single bus in pandapower.

6.2.2 Validation
As developing an interface that can convert a grid model as big as the transmission grid
of the Netherlands from a commercial software to an open source software is an intense
task, we do it in small steps. We choose small grid models and few elements at first and
then extend the interface to larger grid models. To validate the interface in every step,
we develop a subroutine that can perform AC and DC power flow simulations in both
PowerFactory and pandapower, and compare the results. The relative error in voltage
magnitudes (ϵV) and in voltage angles (ϵδ) are calculated as,

ϵV =
∥Vpf − Vpp∥2

∥Vpp∥2
(6.1)

ϵδ =
∥δpf − δpp∥2

∥δpp∥2
(6.2)

where Vpf is the voltage magnitude vector calculated by PowerFactory and Vpp is the
voltage magnitude vector calculated by pandapower. Similarly, δpf and δpp are voltage
angles calculated in PowerFactory and pandapower respectively. To demonstrate the
interface, we convert a small part of the 110 kV grid in the Overijssel9 region and the
Dutch grid.

The 110kV Overijssel grid

A small part of the 110 kV grid in Overijssel, which is part of the Dutch grid is converted
from PowerFactory to pandapower. A PowerFactory schematic of the grid model is
shown in figure 6.4. The PowerFactory grid model consists of 32 terminals, 7 loads

9Overijssel is a province in the east of the Netherlands.
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and 1 generator (slack bus). Merging the terminals leads to 8 buses and the size of the
Jacobian is 2N−Ng−2 = 13. We use the polar power mismatch version of the Newton-
Raphson method (4.1.1) to perform AC power flow simulations in PowerFactory and
pandapower. Surprisingly, the errors are exactly zero:

ϵV = 0.0000
ϵδ = 0.0000

Figure 6.4: A small part of the Overijssel 110 kV grid model in PowerFactory

The Dutch grid

The high voltage transmission grid of the Netherlands consists of the following ele-
ments.

• Terminals: 14685

• Switches: 15517

• Lines: 1197

• Shunts: 160

• Two-winding transformers: 439

• Three-winding transformers: 216

• Loads: 334

• Generators: 4

• Static generators: 352

• External grids: 1

The voltage levels in the grid are 110 kV, 150 kV, 220 kV and 380 kV. Merging the
terminals leads to 1700 buses and the size of the Jacobian is 2700. Doing AC power
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flow simulations using the polar power mismatch of the Newton-Raphson method gives
the following errors.

ϵV = 0.037
ϵδ = 0.042

Figure 6.5 shows a comparison between the voltage magnitudes and angles calculated
in PowerFactory and pandapower. The errors are due to the following reasons.

1. Attributes: As discussed earlier in this chapter, finding the right attribute for a
characteristic of an element is difficult in PowerFactory. Moreover, for certain
elements, there could be two attributes for the same characteristic with slightly
different functions. For example, the attribute for active power of a load is ’plini’
which is defined by the user whereas PowerFactory calculates the active power
of a load during power flow simulations which could be different from the active
power defined by the user. The attribute for the calculated value is ’plini_a’, where
’a’ stands for ’actual values’. These nuances are imperceptible and can only be
understood by working closely with PowerFactory for a long time.

2. PowerFactory API: It has been found that at a few buses in the grid, the calculated
values are not communicated to Python by the PowerFactory API. However, it has
been manually checked that these values are the same in both PowerFactory and
pandapower. The exact reason for this has not been found yet.
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Figure 6.5: Voltage magnitudes and angles in PowerFactory and pandapower
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The errors can be further reduced by fixing the above listed issues and we feel that it can
be achieved over a period of time by validating the interface with more PowerFactory
grid models. In any case, the errors are already quite less and we use the interface
throughout this project to convert grid models from PowerFactory to pandapower.
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Chapter 7

Power Flow Convergence

A fact well known in power flow analysis is that the power flow problem often fails to
converge to a solution or rather diverges from the solution. This occurs especially dur-
ing contingency analyses and system planning when the grid topology and the power
injections frequently vary. In such cases, most power flow analysis softwares to this
day give up saying that the power flow problem did not converge and provide very lit-
tle insight about what went wrong. As the power flow problem could diverge due to a
wide variety of reasons and given that the commercial power flow analysis softwares
do not allow access to their solvers, it is often hard to identify the cause and find a so-
lution. In practice, this problem is tackled by using trial and error techniques that are
based on heuristics to make changes to the grid topology or to the power injections or
to both. Even though this could lead to a solution in most cases, it is time consuming
and the solution is not guaranteed to be optimal. During year-round simulations where
the power injections change for every hour, it is certainly not feasible to manually solve
convergence problems. This makes it impossible to performAC year-round simulations.

In this project, we develop a rationale to understand and solve convergence problems us-
ing mathematical methods. We develop the automating algorithm that can automatically
fix convergence problems and perform year-round simulations with little or no manual
assistance. In the remaining parts of this thesis we design the mathematical framework,
develop the automating algorithm and demonstrate capabilities and limitations by ap-
plying them to a variety of grid models and test cases.

7.1 Classification and methods
To develop the automating algorithm, it is convenient to classify power flow problems
on the basis of convergence properties. In this section, we describe each problem clas-
sification and the methods we use to solve them. Power flow problems can be mathe-
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matically classified on the basis of convergence properties as follows.

1. Well-posed problems

(a) Well-conditioned problems

(b) Ill-conditioned problems

2. Ill-posed problems

A mathematical problem is called well-posed1 if the following conditions hold.

• Existence: There exists at least one solution.

• Uniqueness: There is at most one solution.

• Stability: The solution’s behavior changes with the initial conditions.

A problem which is not well-posed is called ill-posed. Figure 7.1 shows two ill-posed
root-finding problems of the form f(x) = 0, where f(x) is a single variable function.
In power flow analysis, the power flow problem is called ill-posed if any one of the
following conditions is true.

• The system has no solution. For example, in fig. 7.1a, f(x) never crosses the x -
axis. Hence it has no solution.

• The system has multiple solutions. For example, in fig. 7.1b, f(x) crosses the
x - axis twice, leading to two solutions. For power flow problems, the practical
consequence of this is that the solution may converge to a lower voltage value.

The above classification is very general. That is, the power flow problem could be ill-
posed due to several reasons that are often hard to identify. For example, modelling
errors such as a line in the network that has a disconnected end, line resistance and re-
actance values set to zero and so on. A list of such modelling errors could be endless
and is hard for an automated algorithm to comprehend. Hence, in this thesis we restrict
the scope of power flow convergence to power injections of the power flow problem.
We will show that the algorithms developed also give insight into modelling errors that
could be causing divergence, although the algorithms do not fix the errors automatically
during year-round simulations.

1Widely known as Hadamard well-posedness, named after Jacques Hadamard, a 20th century math-
ematician who introduced the concept.
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Figure 7.1: Ill-posedness

We define a space of input parameters which contains the following power injections.

• Active powers and reactive powers of loads and static generators.

• Reactive powers of shunts and active powers of generators.

For simplicity, the voltage setpoints and hence reactive powers of generators are not
included in the parameter space. Based on convergence properties, the parameter space
can be divided into three regions as shown in figure 7.2. The regions 1.a, 1.b and 2 corre-
spond to the set of input parameters that make the power flow problemwell-conditioned,
ill-conditioned and ill-posed respectively. Region 1 (a and b) is called the solvable re-
gion and region 2 is called the unsolvable region. The boundary between the solvable
region and the unsolvable region is denoted by σ.

1.a 1.b

2
σ

Figure 7.2: Regions in parameter space
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During year-round simulations, the power flow problem could move back and forth
across the boundary σ. In the following sections we describe each classification and the
methods we use to solve the power flow problem in all the three regions.

7.1.1 Well-conditioned problems
A power flow problem is called well-conditioned if it can be solved using conventional
power flow methods such as the Newton-Raphson method. If a well-conditioned power
flow problem is solved using the Newton-Raphson method, the Jacobian (see section
4.1) is non-singular in every iteration. In this case, the number of iterations is generally
small. In most cases, the flat start initial condition suffices to solve a well-conditioned
power flow problem.

7.1.2 Ill-conditioned problems
A power flow problem is termed ill-conditioned if the Jacobian matrix is singular or
nearly singular. Use of conventional methods to solve ill-conditioned power flow prob-
lems results in very slow convergence or divergence. That is, even though a solution
exists, the conventional power flow solver cannot find it or convergence is very diffi-
cult. This is known as false divergence and could be due to a poor initial estimate. For
example, fig. 7.3 shows the tendency to diverge when the initial value x1 is far from the
solution. It is clear that x3 > x1 and continuing the iteration further from x3 causes the
solution to diverge. Hence, more advanced methods are needed to solve ill-conditioned
power flow problems. The most widely used method is the optimal multiplier method
which is also called the Iwamoto multiplier method. This method was developed in
1981 by Iwamoto and Tamura [20]. The method is derived as follows.
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Figure 7.3: False divergence
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Optimal multiplier method

The Newton-Raphson method has local quadratic convergence as mentioned in section
4.1. That is, the NR method converges quadratically when the initial value is close to
the solution. A method that converges for any initial value is called globally conver-
gent. The optimal multiplier method ensures global convergence and aims to solve the
problems of false divergence of the NR method. The idea is that a scalar multiplier µ is
introduced in the update step xk+1 = xk + ∆xk of the NR method (see algorithm 1) as
follows.

xk+1 = xk + µ∆xk

Determining the optimal multiplierµ∗ is an unconstrained non-linear optimization prob-
lem which can be solved in several ways. In [20], µ∗ is determined as follows.

In the Newton-Raphson method, the first order Taylor expansion of the mismatch func-
tion F(x) is expressed as (see section 4.1),

F(x+ ∆x) ≈ F(x) + J(x)∆x

where the higher order terms of the expansion are neglected. In [20], the higher order
terms are collectively expressed as the mismatch function evaluated at the correction
∆x. That is,

F(x+ ∆x) = F(x) + J(x)∆x+ F(∆x)

Incorporating the multiplier µ,

F(x+ µ∆x) = F(x) + µJ(x)∆x+ µ2F(∆x)

A cost function C : Rn → R which represents the proximity of the approximation to
the solution defined as,

C(x) =
1
2F(x+ µ∆x)TF(x+ µ∆x) (7.1)

is used to determine the optimal value of µ by evaluating the following expression.

dC

dµ
= 0 (7.2)

Algorithm 4 describes the modified Newton-Raphson algorithm with the optimal mul-
tiplier incorporated.
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Algorithm 4: NR algorithm with optimal multiplier
k := 0
Initialize: x0

while not converged do
Solve for the correction: −J(xj)∆xj = F(xj)

Compute µj by evaluating dC
dµ

= 0
Set ∆xj = µj∆xj

Update the approximation: xj+1 = xj + ∆xj

j = j+ 1
end

Note that the cost function C(x) is a fourth order function of µ and the expression (7.2)
results in a third order polynomial in µ which can be solved using well known methods.
Figure 7.4 shows how the optimal multiplier method solves the false divergence prob-
lem in one dimension.
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Figure 7.4: Optimal multiplier

Line search technique: The optimal multiplier µ can be determined using another pop-
ular method known as the line search method [21]. The line search is an iterative method
to find a local minimum x∗ of an objective function f : Rn → R. In our case, in each
iteration the following optimization problem is solved to determine µ∗.

min
µ∈[0,1]

C(xk + µ∆xk) (7.3)

SinceC(x) represents the proximity of the approximation to the solution, the scalar mul-
tiplier µ must satisfy C(xk + µ∆xk) < C(xk) at each iteration. Hence, the search is
limited to µ ∈ [0, 1]. The line search procedure is described as follows.
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The procedure is similar to the binary search algorithm and starts with [µ1,µ2] = [0, 1].
The domain is then divided in half. That is, [µ1,µ3,µ2] = [0, 0.5, 1]. The function C(x)
is evaluated at the three points and the following conditions are checked.

C(µ1) > C(µ3)

C(µ2) > C(µ3)

• If the conditions hold true, the two subdomains [0, 0.5] and [0.5, 1] are further
divided in half and the procedure is continued with [µ4,µ3,µ5] = [0.25, 0.5, 0.75]
and so on (see fig. 7.5a).

• If one of the conditions is violated, the corresponding subdomain is excluded and
the procedure is continued. That is, if C(µ2) < C(µ3), the three points will be
[µ3,µ4,µ2] where µ4 is the point at the center of [µ3,µ2] (see fig. 7.5b).

• The procedure terminates when the search domain converges to a point, which is
the optimal multiplier µ∗.
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Figure 7.5: Line search: subdividing the search domains

Numerical experiments have demonstrated that the optimal multiplier method has good
convergence properties even for very ill-conditioned problems [22].
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7.1.3 Ill-posed problems
As discussed in the introduction of this section, an ill-posed power flow problem is
harder to understand and solve. The first step involves finding the underlying reason
that is making the problem unsolvable. The second step is to determine the optimal
changes that can be made to the power flow problem to restore solvability. In mathe-
matics, the technique of reformulating an ill-posed problem to be able to numerically
solve it is called regularization.

In this thesis, we seek an explanation for ill-posed power flow problems and based on
our findings, we develop methods to regularize them. It is to be noted however that the
reasons we find and explain here are far from exhaustive and are intended to give the
reader a broad insight into ill-posed power flow problems. We classify the errors that
could possibly make a power flow problem ill-posed into two categories: modelling
errors and errors in input parameters.

Modelling errors

As discussed in chapter 6, the size of a real-world electricity grid makes grid model
development a complex task. Hence, grid models are often prone to modelling errors.
In this project, we have come across the following modelling errors.

1. Errors in characteristics of grid elements such as line impedances, short-circuit
voltages2 and losses3 of transformers. One of the possible reasons for these errors
is that in PowerFactory, not all the default characteristics of a newly added ele-
ment are right. For example, when a line is added to the gridmodel, the impedance
of the line is zero by default. As we know, this is not realistic due the fact that
zero impedance means infinite admittance. The right values are then supposed
to be manually fed into the software by the modeller. This leads to human error
as the grid models are large and the grid elements are detailed with many char-
acteristics to be fed in. In case of wrong values, PowerFactory overwrites them
with right ones to a certain extent. This is often not conveyed to the user, possibly
leading to confusion. Hence, in this project, the interface is built in such a way
that it also acts as a filter that identifies and tells the user about such anomalies in
PowerFactory grid models before converting them to pandapower.

2. Errors in the structure of the transmission network such as disconnections. For
example, grid elements with a disconnected end or a part of the network totally

2The short-circuit voltage of a transformer is the overall voltage decrease of the transformer during
rated loading.

3In an electrical machine such as a transformer, loss is defined as the difference between input power
and output power.
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disconnected from the rest of the network. Again, this is likely due to human error
which occurs because of the changes that are constantly made to the topology of
the grid during transmission system planning. For instance, if a line breaks or if it
is put off for maintenance, it is not deleted from the gridmodel but instead not con-
sidered for calculations. This is called putting an element out of service. If a line
that connects two parts of the network alone is put out of service, the network is
split into two parts. This is known as islanding. Power system analysis softwares
such as PowerFactory and pandapower allow islanding in calculations by solving
the parts of the network separately, provided a generator is present to power the
island. In the absence of a generator, the island is disregarded for calculations.
Even though this option of allowing islands in the network by power system anal-
ysis softwares is an essential feature for studying real-world grid model scenarios,
it could lead to difficulties in power flow convergence since the power balance in
the grid is affected. In PowerFactory, the islands are called isolated areas. Dis-
connections in the network also arise due to switching. For instance, if a switch
that connects a line and a transformer is kept open, it leads to disconnected ends
for both the line and the transformer. Switching is very often done to change the
topology of the grid during operation and planning.

Another commonly observed difficulty is with the fictitious border nodes. In Pow-
erFactory, a fictitious border node is a fictitious bus that is placed in between the
networks of two neighboring countries. If the network of a neighboring coun-
try is disconnected, the fictitious buses remain in the grid model unless they are
manually removed by the user. Even though this does not affect the calculations,
it makes analyzing the results troublesome as there is no load flow in most of
the fictitious buses. In the Dutch grid, there are 799 fictitious border nodes out
of which only 13 are regarded for calculations. Moreover, the fictitious border
nodes could also lead to isolated areas in the network as discussed above. In the
Dutch grid model considered in this project, there are 45 isolated areas and in the
sub-European grid model there are 485 isolated areas.

The larger the grid model, the harder it is to find these anomalies. Moreover, a list
of such modelling errors is endless and it seems unrealistic to expect a software to tie
the loose ends on its own. In fact, the changes that PowerFactory makes to the char-
acteristics of grid elements already demonstrate a certain level of automation of fixing
modelling errors. The corrections that can be made are limited and are unfortunately
not transparent enough for the user to easily see their implications. Hence, it seems
more reasonable to avoid modelling errors during the grid model development phase
itself than to fix them later using an automated subroutine. Doing so greatly improves
the quality of the grid models and ensures that the modelling errors are not propagated
throughout a grid model’s lifecycle. We thus recommend that the modelling phase be
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very stringent in checking that the modelling errors do not pass by unnoticed. All the
errors discussed above were found during the development of the interface. We have
tried to build these options in the interface and we hope that it helps to clean up mod-
elling errors at least during the conversion of grid models to pandapower.

To automate power flow simulations in this project, we thus devote all our attention to
the parameter space of the power flow problem.

Errors in parameters

As discussed in the introduction of this section, we define a space called the parameter
space which consists of the power injections of the power flow problem. That is, the pa-
rameter space is constituted by the load and generation data. In TenneT, for year-round
simulations, the load and generation data are generated by an excel sheet and for given
total load and total generation values, a Python program distributes active and reactive
powers among the loads and generators in the grid model. However, for the distributed
load and generation, only DC power flow simulations, but not AC power flow simula-
tions, are performed in PSS®E to ensure balance in active power. This means that the
reactive power injections could be unrealistic for the grid model and the power flow
problem could possibly diverge for a number of cases during year-round simulations.
Physically, such a scenario leads to system instability or voltage collapse. That is, the
voltages in the network decline and could cause a blackout. In this project, we develop
methods that can be used to optimally change the power injections such that a power
flow solution can be determined.

A literature review on power flow problems shows that over the past few decades, a
substantial amount of effort has been put into developing methods to solve an ill-posed
power flow problem by making changes to input parameters (power injections). It has
been found in the literature that an ill-posed power flow problem can be reformulated in
several ways depending upon the application. We highlight two formulations here that
can be considered as the fundamental approaches to solving an ill-posed power flow
problem. Most of the methods can be seen as extensions of the two formulations. For
example, minimum load shedding and generator re-dispatch problems4 can be solved
by further imposing constraints to any of the two fundamental approaches, which are:

1. An approach that uses the left eigenvector associated with the zero eigenvalue of
the Jacobian to steer the problem towards solvability.

2. An approach that involves formulating the problem as a non-linear optimization
problem and solving it using Lagrange multipliers.

4Grid operators do minimum load shedding and generator re-dispatch to relax a stressed network and
hence operate the grid within safety limits.
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In this thesis, for the sake of simplicity and the possibility of easily incorporating the
method into the Newton-Raphson solvers, we use the first approach to find a solution
and then apply constraints to make the obtained solution more realistic to our applica-
tion.

We use the methods presented in [22] and [23] as a foundation to construct our algo-
rithms. The idea is to steer the problem from the unsolvable region (see figure 7.2)
towards the solvable region by making optimal changes to input parameters. The goal
is to find the solvable5 operating point which is closest in the parameter space to the
desired6 operating point.

Recall from section 4.1 that the power flow problem is a system of non-linear equations
given by,

F(x) = ∆S(x) = Ssp − S(x) (7.4)

where, Ssp is the specified complex power injection vector and S(x) is the complex
power vector computed by the Newton-Raphson solver. That is, F(x) represents the
mismatch between the specified values and calculated values of complex power at each
bus of the system. If the power flow problem converges to a solution in the case of well-
posed problems, F(x) = 0, meaning that there is no mismatch between specified power
and calculated power at each bus. However, if the problem is ill-posed, there exists no
solution x ∈ RN that satisfies F(x) = 0.

From the optimal multiplier method described in section 7.1.2, we know that the fol-
lowing cost function is minimized in every step of the Newton-Raphson algorithm (see
algorithm 4).

C(x) =
1
2F(x)

TF(x)

=
1
2 [S

sp − S(x)]T [Ssp − S(x)] (7.5)

As the cost functionC(x) is equivalent to the Euclidean distance between Ssp and S(x),
for a well-posed problem it approaches zero as the approximation S(x) approaches the
solution Ssp. Whereas for ill-posed problems, the mismatch F(x) is,

F(x) = ∆S(x) = Ssp − S(x) ̸= 0 (7.6)

And hence, provided there exists a minimum, the cost function C(x) eventually reduces
to the minimum value but not zero. Starting from an initial estimate such as flat start for

5Solvable operating point refers to the input parameters for which a power flow solution exists.
6Desired operating point refers to the input parameters of the ill-posed problem.
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example, the approximation corresponding to the minimum value of the cost function is
considered as the best possible approximation to the ill-posed problem. Let this approx-
imation be denoted as x̂. As finding the optimal multiplier is a minimization problem,
at the approximation x̂ we have (see equation 7.3),

min
µ∈[0,1]

C(x+ µ∆x) = C(x̂) (7.7)

An important observation to be made here is that the optimal multiplier method mini-
mizes the cost function C(x) in the direction of the correction vector ∆x. Hence, the
gradient of C(x) is orthogonal to ∆x at x̂. That is,

∇C(x̂) · ∆x̂

∥∆x̂∥
= 0 (7.8)

[F(x̂)T J(x̂)] · ∆x̂

∥∆x̂∥
= 0 (7.9)

Since the mismatch F(x̂) ≠ 0 for the ill-posed problem and ∆x̂ ̸= 0, the Jacobain ma-
trix J(x̂) is singular. As J(x) approaches singularity, the optimal multiplier µ → 0 and
∥∆x∥ → ∞.

Figure 7.6 illustrates how the Newton-Raphson method with optimal multiplier tries
to reduce the distance between Ssp and S(x) in every iteration. The point S(x0) cor-
responds to the complex power vector calculated in the first iteration of the Newton-
Raphson algorithm using the initial approximation x0 which could be flat start or the
solution of an approximate method such as DC load flow or fast decoupled load flow.
If the problem is ill-posed, the desired operating point Ssp lies in the unsolvable re-
gion and during some iteration of the Newton-Raphson algorithm, the boundary σ is
encountered. This boundary σ between the solvable region and the unsolvable region
in parameter space plays a crucial role in regularizing the ill-posed power flow problem.

By definition, the boundary is the set of all input parameters for which the Jacobian is
singular. That is, the boundary is a hypersurface in the parameter space that includes
all the points corresponding to the input parameters that result in a singular Jacobian at
some iteration of the optimal multiplier method. in principle a saddle node bifurcation
occurs at the boundary.

Physically, as the operating point of the power system moves towards the boundary,
voltage stability decreases and going beyond the boundary leads to voltage collapse.
The phenomenon of voltage collapse is widely studied using the concepts of bifurcation
theory. Bifurcation theory is the mathematical study of the changes in the stability of a
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Figure 7.6: Moving the operating point in parameter space

dynamical system as the parameters of the system change.

In our case, the power system can be modelled as a dynamical system of the form:

dx

dt
= f(x,Ssp(t)) (7.10)

where Ssp(t) is the specified power injection vector that changes over time, as in year-
round simulations for example. The equation 7.10 is a parameter dependent differential
equation and hence the stability of the system depends on the parameter Ssp(t). The
system is stable as long as the vector Ssp(t) lies in the solvable region of the parameter
space and is unstable if it is in the unsolvable region. As the vector Ssp(t) moves from
the solvable region to the unsolvable region, the system undergoes a saddle node bifur-
cation at the boundary. For further details about using bifurcation theory to understand
the phenomenon of voltage collapse, see [24] and [25].

It is highly unlikely that the complex power vector S(x̂) calculated at the approximation
x̂ is the solvable operating point that is closest to the desired operating point. That is,
S(x̂) ̸= S(x∗), where S(x∗) is the closest solvable operating point (see fig. 7.6 7). This
is due to the fact that S(x̂) computed by the optimal multiplier method is not unique and
depends on the initial approximation of the Newton-Rapshon method. As can be seen
in figure 7.6, S(x0) could be anywhere in the solvable region depending upon the initial
approximation x0. Hence, in order to move from S(x̂) to S(x∗), an iterative method is
developed as follows.

7S(x̂) and S(x∗) are denoted as Ŝ and S∗ respectively in fig. 7.6 for simplicity.
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It is shown in [25] that the left eigenvector corresponding to the zero eigenvalue of the
singular Jacobian is parallel to the normal vector to the boundary σ at S(x̂) and likewise
at S(x∗). We denote the two left eigenvectors, one at S(x̂) and the other at S(x∗) by ŵ
andw∗ respectively. If the surface of the boundary σ is flat, the two eigenvectors ŵ and
w∗ are parallel and a projection of [Ssp−S(x̂)] onto the normalized direction of the left
eigenvector ŵ gives the value [Ssp − S(x∗)] from which S(x∗) can be calculated:

S(x∗) = Ssp − [(Ssp − S(x̂)) · ŵ]ŵ (7.11)

However, if the surface of σ is not flat, (7.11) is an approximation since the two left
eigenvectors ŵ and w∗ are no longer parallel. Hence, (7.11) is used as an update in
every iteration of the optimal multiplier method, which leads to algorithm 5. The itera-
tive method also emphasizes that the convergence of the algorithm is dependent on the
shape of the boundary σ and the distance of the desired operating point Ssp from the
boundary. Note that the algorithm is based on the assumption that the Jacobian has a
unique zero eigenvalue at the boundary and to obtain a solution, the algorithm needs to
run until the solvable operating point is a little inside the solvable region but not exactly
on the boundary.

Algorithm 5: Regularizing ill-posed power flow problems
k := 0
Initialize: x0, S0 = Ssp

while not converged do
Solve the problem using optimal multiplier method
if converged then

break
else

Denote the approximation as x̂k

Determine the normalized left eigenvector ŵk

Set Sk+1 = Ssp − [(Ssp − S(x̂k))T ŵk]ŵk

k = k+ 1
end

end

The difference between Ssp and S(x∗) signifies the optimal change needed to best solve
the ill-posed power flow problem. The distance in parameter space between the de-
sired operating point Ssp and the closest solvable operating point S(x∗) tells us how
far the problem is from being solvable. This distance is introduced as the degree of
unsolvability in [22] and provides good insight into the ill-posed power flow problems.
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Considering Euclidean distance we have the degree of unsolvability as follows.

dS =
√

(Ssp − S(x∗))T (Ssp − S(x∗)) (7.12)

Example: 4-bus grid

To demonstrate the working principle of the methods and algorithms discussed in this
chapter, we apply them to the 4-bus grid model available in pandapower (and MAT-
POWER). Figure 7.7 shows the grid model and the sparsity of the admittance matrix.
The grid model consists of the following elements.

• Buses: 4

• Lines: 4

• Loads: 4

• Generators: 1

• External grids: 1

1
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3

4

(a) Network

1 2 3 4

1

2

3

4

(b) Admittance matrix

Figure 7.7: 4-bus grid model

In this example, the 4-bus grid model is considered as the basis model for implementing
the algorithms. That is, the basis model acts as a reference grid model for which power
flow solution exists and can be calculated using the Newton-Raphson method (using
algorithm 1). Now to demonstrate the algorithms, the power flow problem needs to be
ill-posed. As discussed earlier in this chapter, a power flow problem could become ill-
posed during contingency analysis and system planning due to changes in grid topology
and input parameters, leading to a highly stressed system. Therefore, even in the liter-
ature on ill-conditioned and ill-posed power flow problems, case studies are designed
in such a way that the power flow problem is ill-conditioned or ill-posed for a num-
ber of cases. Depending upon the application, a grid model is chosen as a basis model
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and either contingencies are defined or load scaling is done. Multiplying the active and
reactive power demands of all the loads by a scalar is called as load scaling. Several
examples of case studies can be found in [26].

For our example here, we define a combination of contingency and load scaling. The
line between bus 1 and bus 3 (see fig. 7.7a) is put out of service8 and the loads are
scaled by a factor of three. Figure 7.8 shows the active power and reactive power of all
the loads in the model multiplied by a scalar k. Note that k = 1 represents the base case
and k = 3 represents our case study. The two models are to be thought of as the grid
models that correspond to any two hours of a year. These are also known as snapshots.
Specifically, a snapshot represents the input parameters of the grid model for a particular
hour of the year.
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Figure 7.8: Load scaling

The polar power-mismatch version (see section 4.1.1) of the Newton-Raphson method
is used for power flow simulations of the basis model and the modified model. Buses
1 and 4 are modelled as PV buses as they are connected to an external grid (slack bus)
and a generator respectively. Buses 2 and 3 are modelled as PQ buses as they only have
loads connected to them (see fig. 7.7a).

8If an element such as a line or a generator is put out of service, it is not considered for calculations.
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For the basis model, the NR method yields a solution and is straightforward. How-
ever, for the modified model, the NR method fails to converge to a solution. Figure 7.9
shows the Euclidean norm of the mismatch function F(x) and the condition number9

of the Jacobian for both the cases. As is evident from the figure, ∥F(x)∥2 → 0 for the
basis model whereas for the modified model it oscillates and never reaches zero. For
the basis model, the condition number of the Jacobian is small in all iterations but for
the modified model, it oscillates and is higher than the basis model.

0 5 10 15 20
Iterations

10 10

10 7

10 4

10 1

102

105

||F
(x

)||
2

k=1
k=3

0 5 10 15 20
Iterations

0

100

200

300

400

(J)

k=1
k=3

Figure 7.9: Mismatch function and condition number

At this point, it can be said that the power flow problem for the modified grid model is
either ill-conditioned or ill-posed. That is, it could either lie in region 1.b or in region
2 of the parameter space (see figure 7.2). Next, we try to solve the problem using the
optimal multiplier method. Despite using the optimal multipliers, the problem does not
converge to a solution. Figure 7.10 shows the behavior of ∥F(x)∥2 and the condition
number of the Jacobian in each iteration.

9The condition number of a non-singular matrix A is given by κ(A) = ∥A∥∥A−1∥ of the Jacobian
matrix and tells us how far the matrix is from being singular.
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Figure 7.10: Using optimal multiplier method
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Figure 7.11: Using optimal multiplier method

It can be seen that ∥F(x)∥2 does not go to zero but settles down at a positive value and
the Jacobian approaches singularity as indicated by the increase in the condition num-
ber. Figure 7.11 shows that the optimal multiplier µ → 0 and ∥∆x∥2 → ∞. This
corresponds to the theory discussed earlier in this section, in particular equation 7.8,
thus confirming that the problem is ill-posed.

67



To regularize the problem, algorithm 5 is used. For the first iteration (outer loop) of the
regularizing algorithm, flat start is considered as the initial approximation and for the
subsequent iterations, the solution of the previous iteration is used as the initial approx-
imation for the optimal multiplier method which forms the inner loop of the algorithm.
The first iteration runs until the Jacobian matrix becomes singular (as shown in fig.
7.10). At this point, the rank of the Jacobian matrix is N − 1 and the power injection
vector calculated by the optimal multiplier method corresponds to the point S(x̂) on the
boundary σ in the parameter space (fig. 7.6). The singular Jacobian matrix indicates
that the power injection vector S(x) has encountered the boundary σ, leading to a sad-
dle node bifurcation. From this point on, the left eigenvector is used in each iteration to
update the power injection vector and thereby steer the system towards solvability.

In three outer iterations, the power flow problem converges to a solution. Figure 7.12
shows the condition number and the rank of the Jacobian matrix in all the iterations
(including the inner loop) since the start of the algorithm. It is clear from the figure
that the condition number of the Jacobian matrix decreases as the updates to the power
injections are made and the rank is back toN in just a few iterations.
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Figure 7.12: Condition number and rank of the Jacobian

Changes aremade to active and reactive power of loads and active power of the generator
as shown in figure 7.13. The power injection vector corresponding to the updated power
injections is the closest solvable operating point S(x∗) in the parameter space (see fig.
7.6). Note that in figure 7.13 and in the figures hereafter, reg stands for regularized.
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Figure 7.13: Updated power injections

Figure 7.14 shows a comparison of voltage magnitudes and voltage angles between the
basis model and the regularized modified model.
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Figure 7.14: Voltage magnitudes and angles

This example demonstrates in detail the working principle of the mathematical frame-
work that we developed to solve both converging and diverging power flow problems
and hence automate year-round AC power flow simulations. In the remaining chapters,
we describe the automating algorithm and the practical challenges of implementing it.
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Chapter 8

Automating AC Power Flow Simulations

The goal of this project is to develop an algorithm that can automate AC power flow
simulations for performing year-round calculations. By automation, we mean that the
algorithm should be able to perform power flow simulations with a high degree of suc-
cess. That is, given a grid model, irrespective of whether its power flow problem is
well-posed or ill-posed, the objective is to find a solution. While a well-posed problem
is solved as it is, an ill-posed problem is optimally regularized. Furthermore, as often
emphasized in the previous chapter, the algorithm is based on the assumption that the
grid model is free of modelling errors. The algorithm is meant to be used in TenneT
to perform AC year-round simulations with little manual intervention. We would like
to reiterate that generally, during year-round simulations, only the load and generation
data change while the topology of the grid remains as it is.

In this chapter, the algorithm and its implementation details are described. To demon-
strate the capabilities and limitations, several test networks most of which are commonly
used in the literature to test power flow solution methods are considered.

8.1 The automating algorithm
In essence, the automating algorithm is a consolidation of all the relevant power flow
solution methods discussed in the previous chapters. Figure 8.1 shows a flowchart that
depicts the steps involved in the automating algorithm. The three steps a, b and c cor-
respond to well-conditioned, ill-conditioned and ill-posed problems respectively. Al-
gorithm 6 shows the process of automating AC power flow simulations for several grid
models or a single grid model with varying hourly load and generation data.
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a. Solve using NR (alg. 1)

Converged?

b. Solve using µ (alg. 4)

Converged?

c. Regularize and solve (alg. 5)

Converged? Stop

No solution

no

yes

no

yes

yes
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Figure 8.1: Flow of automation

(a) TheNewton-Raphsonmethod: The polar power-mismatch version of theNewton-
Rapshon method (4.1.1) is used to solve the power flow problem. The linear
system −J(x)∆x = F(x) is solved in double precision using sparse LU decom-
position. The convergence tolerance is set to 10−8 and the maximum number of
iterations is set to 10. In this project we use pandapower [19] for doing power
flow simulations.
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(b) Optimal multipliers: An ill-conditioned power flow problem is solved using op-
timal multipliers that reduce the step size of the Newton-Raphson method in each
iteration. To determine the optimal multipliers, the following cost function in
minimized (see section 7.1.2).

C(x) =
1
2F(x+ µ∆x)TF(x+ µ∆x) (8.1)

where,

F(x+ µ∆x) = F(x) + µJ(x)∆x+ µ2F(∆x) (8.2)

For simplicity, equation 8.2 can be written as a + bµ + cµ2, where a = F(x),
b = J(x)∆x and c = F(∆x). The cost function C(x) is minimized using dC

dµ
= 0,

which results in the following scalar cubic equation.

g0 + g1µ+ g2µ
2 + g3µ

3 = 0 (8.3)

where, g0 = aTb, g1 = 2aTc + bTb, g2 = 3bTc and g3 = 2cTc. We solve the
equation 8.3 using NumPy to determine the optimal multiplier µ in each iteration
of the optimal multiplier method.

(c) Regularization: Ill-posed power flow problems are regularized using the method
discussed in section 7.1.3. Algorithm 5 is an extension of the optimal multiplier
method, the addition being the computation of eigenvectors. We compute the
eigenvectors using the shift and invert Arnoldimethod1, which is known to bewell
suited for finding eigenvalues close to a certain scalar α. In our case, we intend
to find the eigenvalues closest to α = 0. In the first outer iteration of algorithm 5,
the inner loop (optimal multiplier method) is executed until the eigenvalue closest
to α = 0 is less than a predefined tolerance close to zero (10−8), which indicates
that the Jacobian is singular. In each subsequent outer iteration, the inner loop
is executed for a predefined number of iterations (10 or 20 depending upon the
problem) and the eigenvector associated with the eigenvalue that is closest to zero
is used for updating the power injection vector S (see alg. 6). Using the eigen-
values that are computed anyhow in each iteration to check for singularity of the
Jacobian matrix in the first outer iteration significantly improves the speed of the
algorithm. For a detailed explanation about the shift and invert Arnoldi method,
see [27]. In our algorithms, we use the Python library SciPy which is based on
ARPACK [28] to solve the eigenvalue problems.

1The Arnoldi method is an iterative method that is used to approximate eigenvalues of matrices.
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Algorithm 6: Automating AC power flow simulations

for each grid model do
i := 0, x0 = flat start
while not converged do

Solve for the correction: −J(xi)∆xi = F(xi)

Update the approximation: xi+1 = xi + ∆xi

i = i+ 1
end
if converged then

continue
else

j := 0, x0 = flat start
while not converged do

Solve for the correction: −J(xj)∆xj = F(xj)

Compute µj by evaluating dC
dµ

= 0, set ∆xj = µj∆xj

Update the approximation: xj+1 = xj + ∆xj

j = j+ 1
end
if converged then

continue
else

k := 0, x̂k = xj+1

while not converged do
Determine the normalized left eigenvector ŵk of J(x̂k)
Set Sk+1 = Ssp − [(Ssp − S(x̂k))T ŵk]ŵk

l := 0, x̂l = x̂k

while ∥F(x̂l)∥2 > 10−8 or l < 10 do
Solve for the correction: −J(x̂l)∆x̂l = Sk+1 − S(x̂l)

Compute µl by evaluating dC
dµ

= 0, set ∆xl = µl∆xl

Update the approximation: xl+1 = xl + ∆xl

l = l+ 1
end
x̂k+1 = x̂l, k = k+ 1

end
if converged then

continue
else

there is no solution
end

end
end

end
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8.2 Implementation
To demonstrate the feasibility and practical challenges of the automating algorithm, we
apply it to the test network Case 1354pegase, which represents a part of the European
transmission grid [29]. The grid is made of the following elements.

• Buses: 1354

• Lines: 1751

• Shunts: 1082

• Two-winding transformers: 240

• Loads: 621

• Generators: 259

• Static generators: 52

• External grids: 1

The grid model consists of 259 PV buses, 1094 PQ buses and 1 slack bus. The Jaco-
bian J(x) ∈ R2447×2447. Figure 8.2 shows the sparsity of the admittance matrix of the
network.
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Figure 8.2: Case 1354pegase: Admittance Matrix

Similar to the 4-bus example in chapter 7, the loads of the 1354-bus grid model in this
example are scaled by a factor of k = 1.4, which for this grid model is the smallest
scalar for which a solution cannot be found using the conventional Newton-Raphson
method. Additionally, N − 1 contingencies are defined for the lines. That is, as many
contingencies as there are lines in the grid model are defined and in each contingency, a
single line is removed from the grid model. Hence, in this example, 1751 contingencies
are defined for the 1354-bus grid model. The automating algorithm is applied to each
contingency and it successfully regularizes and solves 1744 out of 1751 contingencies.
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Figure 8.3 shows the 20 smallest voltage magnitudes in the network of a randomly cho-
sen regularized contingency. The numbers on the x-axis are the bus indices in the pan-
dapower grid model. As expected, the voltage magnitudes drop due to the scaling of
loads.
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Figure 8.3: Case1354pegase: 20 lowest voltage magnitudes in the network of a randomly chosen
contingency.

Table 8.1 shows the total active and reactive powers of loads. Active power is the total
demand (and supply) in the grid, and reactive power is the sum of the absolute values
of reactive powers of loads.

Table 8.1: Case1354pegase: active and reactive powers of loads.

Case1354pegase Active Power (MW) Reactive Power (Mvar)

Basis model 74146 17018
Scaled model (k = 1.4) 103804 23826

Among all the contingencies, figure 8.4 shows 20 largest changes made to the total
active power of loads and figure 8.5 shows 20 largest changes made to the total reactive
power of loads. The numbers on the x-axis correspond to the indices of the lines that
are removed from the grid model to define contingencies. Note that modifications are
also made to active powers of generators and static generators, and reactive powers of
shunts. In this example, we only show the modifications made to the loads to get an idea
about how the changes are made to regularize and solve an ill-posed power flow problem
during contingency analysis. It can be seen from the figures that the changes made to
reactive powers are very less compared to the changes made to active powers. This
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explains that there is no need to change the reactive powers as much as active powers
in the network to obtain a solution, which is confirmed by the fact that the problem will
still be well-posed if only reactive powers of loads are multiplied by the scalar k = 1.4
and active powers are not.
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Figure 8.4: Case1354pegase: 20 largest changes in total active power of loads.
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Figure 8.5: Case1354pegase: 20 largest changes in total reactive power of loads.

Furthermore, we apply the automating algorithm to 26 test networks that are available
in pandapower. This exercise is to demonstrate the applicability of the automating al-
gorithm to a variety of grid models, ranging from a small 4-bus grid to a large 9241-bus
grid. The loads of each grid model are appropriately scaled by a factor k to make sure
that the power flow problem is ill-posed. In this exercise, contingencies are not defined.
The automating algorithm solves 19 grid models out of 26. Table 8.2 shows the scalar
k used for each grid model and the active and reactive powers of loads.
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Table 8.2: Test grids: Total active and reactive powers of loads.

Grid model k Active Power (MW) Reactive Power (Mvar)

Scaled Regularized Scaled Regularized

Case 4gs 4.6 2300 2285 1425 1413
Case 6ww 3.6 756 628 756 666
Case 9 4.0 1260 936 460 300
Case 14 4.2 1087 1067 341 335
Case 24 2.0 5700 5577 1160 1130
Case 30 5.0 946 876 536 528
Case IEEE30 3.5 991 979 441 432
Case 33bw 4.0 14 14 9 8
Case 39 1.4 8443 83 2301 2295
Case 57 2.0 2501 2495 672 667
Case 89pegase 2.5 20396 20558 5778 6034
Case Illinois200 2.5 5571 5437 1587 1567
Case 300 1.1 26232 26039 8802 8799
Case 1888rte 1.2 71528 71573 12980 13015
Case 2848rte 1.2 64606 64581 14774 14788
Case 6470rte 1.2 130293 129500 24708 24754
Case 2869pegase 1.2 166721 166388 40805 40804
Case 9241pegase 1.1 368950 368469 112675 112675

The test cases that do not converge to a solution can be understood by the following
explanation.

Singularity of the Jacobian

As discussed in chapter 7 (section 7.1.3), for the regularizing method to work, the opti-
mal multiplierµmust approach zero which indicates that the Jacobian becomes singular.
This is explained by the equation 7.8 which is given by,

[F(x̂)T J(x̂)] · ∆x̂

∥∆x̂∥
= 0

and corresponds to the minimum of the cost functionC(x). This is indeed true for all the
previously discussed test cases that converge to a solution. Whereas for the test cases
that do not converge, the optimal multiplier oscillates and the Jacobian does not become
singular, which means that the method fails to determine the minimum of the cost func-
tionC(x). For example, this is observed in the IEEE-118 grid model with k = 2. Figure
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8.6 shows the optimal multiplier µ and the cost function C(x), which indicate that the
Jacobian is non-singular.

In this case, to determine the minimum of the cost function C(x), in each iteration we
multiply the optimal multiplier by a preconditioner2 ω ∈ (0, 1). Note that ω = 1
corresponds to the optimal multiplier method discussed so far in this thesis. Algorithm
7 shows the optimal multiplier method with the preconditioner.
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Figure 8.6: IEEE-118: Optimal multiplier µ and cost function C(x) in each iteration of the
optimal multiplier method.

Algorithm 7: Optimal multiplier method with preconditioner
k := 0
Initialize: x0,ω
while not converged do

Solve for the correction: −J(xj)∆xj = F(xj)

Compute µj by evaluating dC
dµ

= 0
Set ∆xj = ωµj∆xj

Update the approximation: xj+1 = xj + ∆xj

j = j+ 1
end

Choosing an optimal preconditioner ω for the problem depends on the application. In
our case, the objective is to further reduce the step size so that the minimum of the

2In mathematics, a preconditioner is used to make a problem better suited for numerical treatment.
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cost function can be determined. For the IEEE-118 grid model with k = 2, choosing
ω = 0.2 leads to the minimum of the cost function in each iteration and hence a solution
can be determined by the automating algorithm. The problem converges to a solution
in 7 iterations. Figure 8.7 shows the condition number of the Jacobian for all the cases
(basis, scaled and regularized), and the Euclidean norm of the mismatch function in each
iteration. In each outer iteration (color coded), the norm reduces as can be seen in the
figure (right). Similarly, the same preconditioner (ω = 0.2) also solves the rest of the
test grids considered in this project, for which a solution cannot be found without using
a preconditioner. Table 8.3 shows the results of those grid models.
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Figure 8.7: IEEE-118: Convergence of the ill-posed problem, using preconditioner.

Table 8.3: Test grids: Total active and reactive powers of loads. Solved usingω = 0.2.

Grid model k Active Power (MW) Reactive Power (Mvar)

Scaled Regularized Scaled Regularized

Case IEEE-118 2.0 8484 8160 2876 2872
Case IEEE-145 1.1 314687 314455 87728 87810
Iceland 1.4 1914 1864 613 609
Case 3120sp 2.6 55071 44450 23558 23081
Case 6495rte 1.2 137783 136245 26793 26726
Case 6515rte 1.2 142898 137298 28491 28244
GB network 1.2 103106 100854 35482 34934
GB reduced network 2.5 140814 139686 40623 40614
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8.3 Constraints
As demonstrated so far, the automating algorithm regularizes and solves ill-posed power
flow problems by making optimal changes to power injections. Optimal changes mean
that the algorithm makes least changes to power injections to just find a solution. Even
though finding a solution makes a big difference in understanding the grid and its power
flow problem better, it is not sufficient for practical purposes. For example, the algo-
rithm might impose changes in power to buses in the network that are not connected
either to a generator or to a load but connected only to lines. This is obviously not a
practical solution. Furthermore, in TenneT, there is no need to change active power in-
jections since active power is always in balance during year-round simulations whereas
changes are to be made to reactive power injections by adding or removing shunts, for
applications such as reactive power compensation assessments. Hence, to make the
algorithm suitable for real-world networks and practical applications, we define con-
straints to the problem.

In this project we define constraints such that the power injections are modified only
at predefined buses. That is, based on the application and feasibility, a set of buses is
chosen in which power injections are allowed to change. For example, if buses that
are connected to loads are chosen, only the power injections of loads are changed. The
power injections in the rest of the buses in the network remain as they are. To impose
these constraints, we define a constraint vector g := [gi] ∈ N2N−Ng−2

0 where,

gi =

{
1, if a change is allowed at the bus
0, otherwise

(8.4)

In each outer iteration of algorithm 5, the left eigenvector ŵ is multiplied element-wise
with the constraint vector g. Algorithm 8 shows algorithm 5 with the additional step
included. Note that the vector g can also be used for other elements such as generators.
For example, if the power injections of a few generators are not allowed to change, the
constraint vector g can be suitably defined. Simply put, the vectorg ensures that changes
to the specified power injection vector Ssp are made only at buses where gi = 1.

Example: 1354-bus grid

To demonstrate the working of the algorithm with constraints, we apply it to the 1354-
bus test grid considered earlier in this chapter. The loads are scaled by k = 1.4 to make
the power flow problem ill-posed. We define the constraint vector g such that changes
in reactive power are allowed only at buses that are connected to shunts and changes
in active power are allowed at loads, generators and static generators. The algorithm
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Algorithm 8: Regularizing ill-posed power flow problems with constraints
k := 0
Initialize: x0, S0 = Ssp, g
while not converged do

Solve the problem using optimal multiplier method
if converged then

break
else

Denote the approximation as x̂k

Determine the normalized left eigenvector ŵk

ŵk = ŵk ◦ g
Set Sk+1 = Ssp − [(Ssp − S(x̂k))T ŵk]ŵk

k = k+ 1
end

end

regularizes and solves the problem in 9 iterations. Figure 8.8 shows the Euclidean norm
of the mismatch F(x) in each iteration, both inner (along x-axis) and outer (colored),
and the eigenvalues (λ) in each outer iteration.
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Figure 8.8: Case1354pegase: Euclidean norm of the mismatch function F(x) in all the iterations
(left), eigenvalues of the Jacobian closest to zero in each outer iteration (right).

The first step is to solve the ill-posed power flow problem using the optimal multiplier
method until the Jacobian becomes singular. We call this the 0th iteration. As seen in

81



the figure, ∥F(x)∥2 reduces and settles at a positive value greater than zero in the 0th

iteration. In the subsequent outer iterations, ∥F(x)∥2 reduces and in the 9th iteration be-
comes lesser than the tolerance (10−8), hence converging to the solution. As discussed
in chapter 7, to obtain a solution, the closest solvable operating point S(x∗) needs to be
inside the solvable region. This means that in the last few iterations of the algorithm, the
Jacobian is not singular. This can be seen in figure 8.8 where the smallest eigenvalues
are not zero in the last three outer iterations.

For this example, we restrict the number of inner iterations to 3 since the cost function
remains the same after 3 iterations and does not make a difference to the convergence
of the automating algorithm. Note that the more stringent the constraints are, the more
number of iterations the problem takes to converge. Hence, the constraints should be
carefully defined to ensure convergence.

Table 8.4 shows the power exchanges in the grid. As we know, scaling the loads by
k = 1.4 means a 40% increase in active and reactive powers of loads. As shown in the
table, regularizing the problem with the constraints applied to this problem involves a
0.44% decrease in total active power of loads and a 0.028% decrease in total reactive
power of shunts. This means that a solution to the ill-posed problem can be determined
by 461MW of load shedding and 4Mvar of reactive power compensation.

Table 8.4: Case1354pegase: power exchanges.

Case1354pegase Active Power (MW)
Reactive Power (Mvar)

Loads Shunts

Basis model 74146 17018 14820
Scaled model 103804 23826 14820
Regularized model 103343 23826 14816

This example shows that provided the constraints are feasible, an ill-posed power flow
problem can be regularized and solved by the automating algorithm even with con-
straints defined. This makes the algorithm suitable for practical applications such as
year-round AC power flow simulations, reactive power compensation assessments and
contingency analysis.
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Chapter 9

Results

In this chapter we discuss the results of applying the automating algorithm to two real-
world electricity grids: the Dutch transmission grid and a sub-European transmission
grid.

9.1 The Dutch transmission grid
In the Netherlands, the national high-voltage transmission grid, hereafter called the
Dutch grid, is operated and managed by TenneT. The Dutch grid has cross border con-
nections with Germany, Belgium, England, Norway and Denmark. The voltage levels
in the grid are 110kVand higher, and the frequency is 50Hz. The grid constitutes about
11, 500 km of high-voltage lines. Figure 9.1 shows the map of the Dutch grid.

For our simulations we consider the basis model of the Dutch grid, and load and gen-
eration data of 7 randomly chosen hours of the year 2030. This can be analogously
extended to all the hours of a year or a decade, which constitutes year-round simula-
tions. The basis model consists of the following elements.

• Buses: 14685

• Switches: 15517

• Lines: 1197

• Shunts: 160

• Two-winding transformers: 439

• Three-winding transformers: 216

• Loads: 334

• Generators: 4

• Static generators: 352

• External grids: 1
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Figure 9.1: The Dutch transmission grid

Figure 9.2 shows the total active power demand (or supply) in the grid for the 7 hours
considered in this project. The hours are counted from the beginning of the year. For
example, hour 1 corresponds to 1 January 12:00 to 1:00 and hour 0737 corresponds to
31 January 16:00 to 17:00 and so on.
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Figure 9.2: The Dutch grid: Total active power demand of loads (or total active power supply
from generators).
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Each hour of the year is represented by a PowerFactory grid model which consists of the
basis model with load and generation data for one particular hour of the year. Hence,
for one year there are 8760 PowerFactory grid models. In this project we convert the
PowerFactory grid models that correspond to the 7 hours considered in this project to
pandapower using the interface for simulations.
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Figure 9.3: The Dutch grid: admittance matrix (left) and convergence (right).

The basis model consists of 4 PV buses, 1828 PQ buses and 1 slack bus. Merging the
buses connected by closed switches leads to 1833 buses in the network and the order of
the Jacobian is 3660. We perform AC power flow simulations using the polar power-
mismatch version of the Newton-Raphson method. The convergence tolerance is set
to 10−8 and maximum number of iterations is set to 10. All 7 power flow problems
are well-posed and converge to a solution within 7 iterations. Figure 9.3 shows the
admittance matrix of the network and convergence.

9.2 The sub-European transmission grid
The sub-European transmission grid considered in this project, hereafter called as the
EU grid, consists of the high-voltage transmission grids of the Netherlands, Germany,
Belgium, Luxembourg and France. The voltage levels in the network are 110 kV and
higher, and the frequency is 50Hz. The grid constitutes about 83, 527 km of high-
voltage lines, spread roughly across an area of 1, 075, 641 km2.

For our simulations, we consider two versions of the basis model of the sub-European
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grid. Table 9.1 shows the grid elements of the two versions and table 9.2 shows active
and reactive power exchanges in the grid.

Table 9.1: Grid elements of two versions of the sub-European grid

Grid Elements Version-1 Version-2

Terminals 23548 24508
Switches 17225 17928
Lines 7355 7585
Shunts 827 868
Transformers (2w) 1637 1786
Transformers (3w) 1276 1305
External Grids 230 230
Loads 3947 3920
Generators 176 140
Static Generators 9871 8873

Table 9.2: EU grid: power exchanges

EU grid Active Power (MW)
Reactive Power (Mvar)

Loads Shunts

Version 1 134256 31113 705374
Version 2 192288 41625 708099

We convert the two versions from PowerFactory to pandapower using the interface.
The power flow problem of version-1 is found to be well-posed in PowerFactory but
ill-posed in pandapower. This can be explained by the fact that PowerFactory removes
modelling errors to some extent by making changes to the characteristics of grid ele-
ments as explained in chapter 7. However, the changes made are not known us and
hence the errors are carried over to pandapower through the interface. We thus regard
version-1 as ill-posed and solve it using the automating algorithm. Version-2 is ill-posed
in both PowerFactory and pandapower. The results are as follows.

EU grid: version 1

The grid model of version-1 consists of 171 PV buses, 8948 PQ buses and 233 slack
buses. Merging the buses connected by closed switches leads to 9352 buses in the net-
work and the order of the Jacobian is 18067. Applying the automating algorithm with
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preconditioner ω = 0.2 leads to convergence in 6 iterations. Figure 9.4 shows the
admittance matrix and convergence. Figure 9.5 shows the voltage magnitudes in the
network. In most parts of the network, voltage magnitudes are beyond safe limits.
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Figure 9.4: EU grid version-1: admittance matrix (left) and convergence (right).
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Figure 9.5: EU grid version-1: Voltage magnitudes.

Generally, year-round simulations are started with a basis model that is well-posed and
has a feasible solution for at least one snapshot of load and generation data. The automat-
ing algorithm can then be used to fix convergence problems if any, during year-round

87



simulations when load and generation data change for each hour. However, this exam-
ple shows that the automating algorithm can also be used to find a solution if the basis
model is ill-posed in the first place.

EU grid: version 2

The grid model of version-2 consists of 135 PV buses, 9247 PQ buses and 233 slack
buses. Merging the buses connected by closed switches leads to 9795 buses in the net-
work and the order of the Jacobian is 18989.

For this version, despite applying the automating algorithm with preconditioner ω =

0.2, a solution has not been found. Figure 9.6 shows the admittance matrix and di-
vergence. During the last few iterations of the automating algorithm, ∥F(x)∥2 remains
constant and does not meet the tolerance 10−8. The same behavior has been observed
even with other preconditionersω ∈ (0, 1). We suspect that this version has modelling
errors that are prohibiting the automating algorithm to find a solution. Hence, a detailed
evaluation of the mismatch function F(x) is needed to identify modelling errors which
need to be rectified before applying the automating algorithm. We exclude the exercise
of finding modelling errors of this grid model in this project and recommend that they be
fixed before doing year-round simulations with this version of the sub-European grid.
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Figure 9.6: EU grid version-2: admittance matrix (left) and divergence (right).

In fact, the two versions of the EU grid considered in this project are supposed to corre-
spond to two hours of a year during year-round simulations, in which case, as we know
the topology of the grid model is not allowed to change. However, there is a significant
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difference between the topology of the two grid models, which is also evident from the
admittance matrices. Hence, we suspect that the excel sheet template and the Python
program (discussed in chapter 8) that generate load and generation data for year-round
simulations in TenneT might also be changing the topology of the EU grid. Thus, solv-
ing this problem also requires an investigation of the Python scripts that distribute load
and generation data among the generators and loads for year-round simulations, which
is beyond the scope of this project.
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Chapter 10

Conclusion

The objective of this project has been to develop an algorithm that can automate year-
round AC power flow simulations for real-world grid models such as the Dutch grid
model and the sub-European grid model that are used in TenneT for several applications
like reactive power compensation assessment and contingency analysis. We conclude
the following from our research, study and the execution of this project.

1. Power flow problems can be classified into well-conditioned, ill-conditioned and
ill-posed problems. Based on this classification we develop the automating algo-
rithm which can solve both well-posed and ill-posed power flow problems.

2. The Newton-Raphson method is the most distinguished AC power flow solver.
In this project we use the polar power-mismatch version of the Newton-Raphson
method as the basis solver for all our simulations and it has given satisfactory
results. A well-conditioned power flow problem can be efficiently solved using
the polar power-mismatch version of the Newton-Raphson method. All the well-
conditioned power flow problems that we have solved in this project converge
within 7 iterations. The linear system in each iteration of the Newton-Raphson
method is solved using sparse LU decomposition.

3. We solve ill-conditioned power flow problems using the optimalmultipliermethod.
The role of the optimal multiplier is to reduce the step size of the Newton-Raphson
method so that the norm of themismatch function is reduced in each iteration. The
mathematical framework that we have developed in this project to solve ill-posed
power flow problems is an extension of the optimal multiplier method.

4. An ill-posed power flow problem is regularized by making optimal changes to
power injections. The left eigenvector associated with the unique zero eigenvalue
of the Jacobian is used to navigate to the closest solvable operating point in the
parameter space of the power flow problem. We compute zero eigenvalues using
the shift and invert Arnoldi method.
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5. In some cases, the optimal multiplier method fails to determine the minimum of
the cost function in each iteration. For such problems we use a preconditioner to
further reduce the step size and determine the minimum of the cost function. This
method is found to perform exceptionally well in solving ill-posed power flow
problems.

6. The shape of the boundary between the solvable region and the unsolvable region
of the parameter space, and the distance of the desired operating point from the
boundary play a very important role in convergence properties of the automating
algorithm.

7. To make the automating algorithm suitable for practical applications, we apply
constraints to the problem in such a way that power injections are allowed to
change only at a set of predefined buses. Naturally, convergence of the automating
algorithm slows down if constraints are defined. If constraints are unrealistic, the
automating algorithm diverges. Hence, the constraints are to be carefully defined
depending upon the application.

8. We use pandapower for power flow simulations. Since the grid models in Ten-
neT are built in PowerFactory, we develop an interface in Python to convert grid
models from PowerFactory to pandapower. We have successfully converted 10
grid models in this project for doing simulations.

9. The automating algorithm has been applied to 30 grid models (28 test grids and
2 real-world grids), 1751 contingencies and 9 snapshots of hourly load and gen-
eration data. This is a total of 1787 power flow problems (7 well-posed and 1780
ill-posed). Except for one power flow problem (one of the versions of the sub-
European grid), the automating algorithm successfully solves the rest of the power
flow problems considered in this project.

10. Our experiments indicate that if a grid model has a solution for at least one snap-
shot of load and generation data during year-round simulations, the automating
algorithm very likely solves all the convergence problems during year-round sim-
ulations of that grid model. Even if there is no feasible solution for a grid model,
the algorithm can still be used to solve it as we have demonstrated for one of the
versions of the sub-European grid. If there is no solution, the results of the algo-
rithm can be used to analyze the problem further and get a better insight into the
problem, which could possibly lead to a solution.
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Future Work
We recommend the following for taking this project ahead in the future.

1. The optimalmultiplier method can be improved by using better step size optimiza-
tion techniques such as line search. This could eliminate the need for a precondi-
tioner, which at the moment is to be manually determined based on the problem
and cannot be included in the automating subroutine.

2. In this project, to keep the model simple, voltage setpoints of generators are not
included in the parameter space of the power flow problem. Including them could
improve convergence of the automating algorithm. It could be easier to incorpo-
rate the voltage setpoints of generators in the parameter space and hence the au-
tomating algorithm if the polar current-mismatch version or the Cartesian-current
mismatch version of theNewton-Raphsonmethod (described in chapter 4) is used.
This is because of the reason that the voltages of PV buses in these two solvers
are not removed from the linear system (Jacobian).

3. Convergence of the automating algorithm can be improved by studying the ge-
ometry of the boundary between the solvable region and the unsolvable region of
the parameter space in detail. This requires some more research about bifurcation
theory and eigenvalue problems.

4. The automating algorithm finds a solution to ill-posed power flow problems by
making optimal changes to power injections. However, there is no guarantee
that the voltages are within safe limits. Keeping the voltages within safe limits
requires performing optimal power flow simulations for the grid models. Optimal
power flow involves determining the best control action to change the load and
generation data in such a way that the voltages are within safe limits. This is
a non-linear constrained optimization problem and can be solved using standard
non-linear programming (NLP) solvers.

5. More constraints can be added to the automating algorithm such as power limits.
For example, imposing a reactive power limit on a generator.

6. To scale this project further, the interface and the automating algorithm would
have to be built into pandapower.
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tunity to work on a real-world problem and I hope that I have been able to produce a
valuable end result. It has been a wonderful experience!

I would like to thank my supervisors Marieke, Martin, Kees and Jorrit for guiding me
through, for trusting me and for always being kind and supportive. I am happy to have
built the interface with Jasper van Casteren, who has been kind and encouraging right
from the start.

I am honored to have made friends and memories for a lifetime in two wonderful years
of COSSE. I am especially proud to have come this far despite the pandemic. I am
grateful to my parents and my little sister for having my back, no matter what.

- Shravan

93



Bibliography

[1] Carl Sulzberger. Pearl street in miniature: Models of the electric generating station
[history]. IEEE Power and Energy Magazine, 11(2):76–85, 2013.

[2] TenneT. Electricity Producers: The Netherlands and Germany.

[3] Pieter Schavemaker and Lou van der Sluis. Electrical Power System Essentials.
John Wiley & Sons, Inc., Sussex, United Kingdom, 2008.

[4] Alexandra vonMeier. Electric Power Systems. JohnWiley& Sons, Inc., Hoboken,
NJ, USA, 2006.

[5] M.E. Kootte, J.E. Romate, and C. Vuik. Load Flow Computations for (Integrated)
Transmission and Distribution Systems. A Literature Review. Technical report,
Delft University of Technology, 2020.

[6] Fons van der Plas. Power Grid Failures. Thesis bsc mathematics, Radboud Uni-
versity Nijmegen, 2019.

[7] R. Idema, D.J.P. Lahaye, and C. Vuik. Load Flow Literature Survey. Technical
report, Delft University of Technology, 2009.

[8] Brian Stott. Review of Load-Flow CalculationMethods. Proceedings of the IEEE,
62(7):916–929, 1974.

[9] Baljinnyam Sereeter, Cornelis Vuik, and Cees Witteveen. On a comparison of
Newton–Raphson solvers for power flow problems. Journal of Computational
and Applied Mathematics, 360:157–169, 2019.

[10] William. F. Tinney and Clifford E. Hart. Power Flow Solution by Newton’s
Method. IEEE Transactions on Power Apparatus and Systems, PAS-86(11):1449–
1460, 1967.

94



[11] B. Stott and O. Alsac. Fast decoupled load flow. IEEE Transactions on Power
Apparatus and Systems, PAS-93(3):859–869, 1974.

[12] Thomas J. Overbye, Xu Cheng, and Yan Sun. A comparison of the AC and DC
power flow models for LMP calculations. In Proceedings of the Hawaii Interna-
tional Conference on System Sciences, volume 37, pages 725–734, 2004.

[13] James L. Kirtley. Electric power principles: sources, conversion, distribution, and
use. John Wiley & Sons, Ltd, 2010.

[14] DIgSILENT GmbH. PowerFactory User Manual. Technical report, 2020.

[15] SIEMENS. PSSE Program Operation Manual. Technical report, 2017.

[16] MATPOWER. User’s Manual, version 7.1. Technical report, 2020.

[17] Medha Subramanian, Jan Viebahn, Simon H. Tindemans, Benjamin Donnot, and
Antoine Marot. Exploring grid topology reconfiguration using a simple deep re-
inforcement learning approach. nov 2020.

[18] Henrik Ronellenfitsch, Marc Timme, and DirkWitthaut. A Dual Method for Com-
puting Power Transfer Distribution Factors. IEEE Transactions on Power Systems,
32(2):1007–1015, mar 2017.

[19] pandapower - Convenient Power System Modelling and Analysis based on PY-
POWER and pandas. Technical report, Fraunhofer IWES, Universität Kassel,
2017.

[20] S. Iwamoto and Y. Tamura. A load flow calculation method for ill-conditioned
power systems. IEEE Transactions on Power Apparatus and Systems, PAS-
100(4):1736–1743, 1981.

[21] Patricia Rousseaux and Thierry Van Cutsem. Quasi steady-state simulation diag-
nosis using Newton method with optimal multiplier. In 2006 IEEE Power Engi-
neering Society General Meeting, PES. IEEE Computer Society, 2006.

[22] Thomas J. Overbye. A Power Flow Measure for Unsolvable Cases. IEEE Trans-
actions on Power Systems, 9(3):1359–1365, 1994.

[23] Thomas J. Overbye. Computation of a practical method to restore power flow
solvability. IEEE Transactions on Power Systems, 10(1):280–287, 1995.

[24] Ian Dobson and Liming Lu. New methods for computing a closest saddle node
bifurcation and worst case load power margin for voltage collapse. IEEE Trans-
actions on Power Systems, 8(3):905–913, 1993.

95



[25] Ian Dobson. Observations on the Geometry of Saddle Node Bifurcation and Volt-
age Collapse in Electrical Power Systems. IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, 39(3):240–243, 1992.

[26] Joseph Euzebe Tate and Thomas J. Overbye. A comparison of the optimal multi-
plier in polar and rectangular coordinates. IEEE Transactions on Power Systems,
20(4):1667–1674, nov 2005.

[27] Yousef Saad. Numerical Methods for Large Eigenvalue Problems. Society for
Industrial and Applied Mathematics, jan 2011.

[28] R B Lehoucq, D C Sorensen, and C Yang. ARPACK Users’ Guide: Solution of
Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. So-
ciety for Industrial and Applied Mathematics, 1998.

[29] Cédric Josz, Stéphane Fliscounakis, Jean Maeght, and Patrick Panciatici. AC
Power Flow Data in MATPOWER and QCQP Format: iTesla, RTE Snapshots,
and PEGASE. mar 2016.

[30] Konrad Purchala, Leonardo Meeus, Daniel Van Dommelen, and Ronnie Belmans.
Usefulness of DC power flow for active power flow analysis. In 2005 IEEE Power
Engineering Society General Meeting, volume 1, pages 454–459, 2005.

96


	Introduction
	The Electric Grid
	Generation
	Transmission and Distribution
	Consumption
	Challenges

	Modelling the Transmission System
	Fundamentals of AC circuits
	Network Topology
	The Power Flow Model
	Applications

	Power Flow Solvers
	Newton-Raphson
	Fast Decoupled Load Flow
	DC approximation
	Gauss-Seidel
	Summary

	Software Packages
	PowerFactory
	PSS®E
	pandapower

	The Interface
	Grid Models
	The Interface

	Power Flow Convergence
	Classification and methods

	Automating AC Power Flow Simulations
	The automating algorithm
	Implementation
	Constraints

	Results
	The Dutch transmission grid
	The sub-European transmission grid

	Conclusion
	Bibliography

