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a b s t r a c t 

We present an electron backscattered diffraction (EBSD)-trained deep learning (DL) method integrating 

traditional material characterization informatics and artificial intelligence for a more accurate classifi- 

cation and quantification of complex microstructures using only regular scanning electron microscope 

(SEM) images. In this method, EBSD analysis is applied to produce accurate ground truth data for guid- 

ing the DL model training. An U-Net architecture is used to establish the correlation between SEM input 

images and EBSD ground truth data using only small experimental datasets. The proposed method is 

successfully applied to two engineering steels with complex microstructures, i.e., a dual-phase (DP) steel 

and a quenching and partitioning (Q&P) steel, to segment different phases and quantify phase content 

and grain size. Alternatively, once properly trained the method can also produce quasi-EBSD maps by 

inputting regular SEM images. The good generality of the trained models is demonstrated by using DP 

and Q&P steels not associated with the model training. Finally, the method is applied to SEM images 

with various states, i.e., different imaging modes, image qualities and magnifications, demonstrating its 

good robustness and strong application ability. Furthermore, the visualization of feature maps during the 

segmenting process is utilised to explain the mechanism of this method’s good performance. 

© 2021 Published by Elsevier Ltd on behalf of Chinese Society for Metals. 
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. Introduction 

Microstructure classification and quantification act as a bridge 

etween chemical composition, processing conditions and me- 

hanical properties and hence it is crucial in the development 

f new metals and physical metallurgy models for microstruc- 

ure evolution [1–3] . When developing metallic materials (or other 

aterials with a well-defined microstructure) via purely exper- 

mental routes, it is essential to build quantitative “microstruc- 

ure/property” correlations and explore the physical mechanism 

nderlying these correlations [4] . Alternatively, for development of 

ew materials based on integrated computational materials engi- 

eering (ICME) or methods from the materials genome initiative 

MGI), inclusion of quantitative microstructural information of ex- 
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sting materials into a computational framework is also very im- 

ortant to enhance the robustness of the model and to be able 

o backtrack “microstructure/property” relationships [ 5 , 6 ]. In order 

o meet the request for metals with extremely good mechanical 

roperties the microstructures of various metallic materials have 

ecome increasingly more complicated. Complex microstructures 

an exhibit improved mechanical properties but they also make it 

ncreasingly difficult to quantify them properly, which limits the 

urther development of MGI using quantitative microstructural in- 

ormation. Traditionally, microstructures were observed via optical 

icroscopy (OM) and some rough first-order quantitative analyses 

ere performed using software based on image statistics [7] . How- 

ver, this method can only apply reliably to simple microstructures, 

nd any quantitative data extracted from these images is closely 

elated to the operator’s experience or the set threshold values in 

he image analysis. While optical microscopy certainly has its at- 

ractive features, for more complex microstructures with micron- 

ized dimensions, higher resolution electronic imaging techniques 

re required [8–10] . For example, high-resolution SEM has become 

he common approach for recording the detailed features of dif- 

https://doi.org/10.1016/j.jmst.2021.04.009
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erent phases and phase classification [ 11 , 12 ]. Moreover, quantita- 

ive analysis of microstructures can also be performed based on 

EM images. Medinaa et al. quantified the various kinds of phases 

n DP600 steel based on SEM images using conventional image 

nalysis software [13] . However, this method often yielded semi- 

ccurate results because the software parameters were set by the 

perator. Taillon et al. acquired more accurate quantitative mi- 

rostructural information for solid oxide fuel cell cathode samples 

e.g., overall porosity and tortuosity) based on advanced FIB/SEM 

anotomography [14] , but the enormous time and funding costs of 

uch experiments limits their efficiency and large-scale application. 

lthough microstructures are regularly characterized and quan- 

ified using SEM images, the method has some intrinsic limita- 

ions: (i) an SEM image provides contrast information as the mor- 

hology, making it difficult to apply SEM to complex microstruc- 

ures in which phase boundaries are sometimes not observable and 

he pattern depends on the etching conditions; and (ii) quantifi- 

ation of the microstructural components usually requires time- 

onsuming experiments combined with image processing software 

hat utilizes human intervention. Notwithstanding its limitation in 

ccuracy and reproducibility, SEM in combination with image anal- 

sis remains an interesting technique as it is fast and hence rel- 

tively cheap and can be applied to scan larger surfaces at ad- 

ustable and appropriate magnifications. 

To overcome the limitations mentioned above, two research di- 

ections for quantitative metallography have been developed over 

ecent years. Some studies focused on the limits of the contrast in- 

ormation itself. However, the morphology or contrast information 

rovided by SEM intrinsically is not the most accurate informa- 

ion to distinguish phases and dimensions of microstructural enti- 

ies. Such information only can come from measurements revealing 

he local crystal structure and orientation. Therefore, EBSD tech- 

iques have grown to become a powerful tool for both microstruc- 

ure classification and quantification [15–18] . Various complex mi- 

rostructures in common steels have been accurately identified by 

BSD methods [19–21] . For example, Ryde was successfully classi- 

ed bainite, ferrite, martensite and retained austenite (RA) in sheet 

teel, showing the unique advantages in classifying complex mi- 

rostructures [20] . However, often a relatively small step size, e.g., 

ess than 0.1 μm, is required to acquire sufficiently detailed in- 

ormation to accurately classify microstructures, making the tech- 

ique time consuming and expensive, limiting its application [22] . 

ecently, Gaskey et al. developed a novel approach to produce the 

rystal orientation map using nothing more than a conventional 

M image and a commercial laptop, which greatly expanded ap- 

licability and broadened access [23] . However, this approach was 

nly suitable to capture large-scale ( > 100 μm) features, and is not 

uitable for multiphase steels with micron-scale microstructures. 

In order to reduce the time and hence the costs required for 

icrostructure classification and quantification, a more generic and 

ffective method capable of handling with micron- and sub-micron 

cale dimensions is required. With the rapid development of data- 

riven artificial intelligence (AI) techniques in the field of materials 

cience, research has focused on methods of identifying phases on 

he basis of morphology information. In contrast to the first ap- 

roach, which focused on just the morphology information itself, 

his second approach still uses morphology information as the sole 

nput, but uses AI techniques instead of human experience to ex- 

ract the morphological features. Because they have more power- 

ul and reproducible segmentation and analysis abilities than the 

uman brain, AI techniques effectively reduce the level of arti- 

cial errors during microstructure classification of various metal 

aterials and do so at an extremely low time cost. Using con- 

entional machine learning (ML) methods, Gola et al. applied a 

upport vector machine (SVM) to successfully classify microstruc- 

ures in dual-phase steel with acceptable accuracy [ 24 , 25 ]. Decost 
192 
t al. classified microstructures in various types of materials us- 

ng an SVM (e.g., brass and ductile cast iron), showing the high 

fficiency of this technique [26] . However, these studies classi- 

ed microstructures using only visual micrographic input features, 

hich implies rather incomplete descriptions in case of compre- 

ensive microstructures and limits the predicted accuracy. In the 

ast decade, DL methods have rapidly developed that outperform 

onventional ML [ 27 , 28 ], especially on image segmentation tasks. 

onsidering their excellent performance, advanced DL approaches 

ave been widely applied in a variety of research fields, e.g., au- 

onomous driving [ 29 , 30 ], health care [ 31 , 32 ] and intelligent trans-

ortation [ 33 , 34 ]. Additionally, DL methods for microstructure seg- 

entation and further quantification have gathered attention in 

he material science community [35–38] . Azimi et al. performed 

ixelwise segmentation of low carbon steel microstructures in SEM 

mages by employing a fully convolutional neural network (FCNN), 

nabling them to segment martensite in a ferrite matrix [35] . How- 

ver, this work required a large dataset: 21 large-size images with 

0 0 0 × 80 0 0 pixels were used to train the model, and equally im-

ortant to state, the ground truth labels were annotated manually. 

jioka et al. applied the U-Net architecture to successfully classify 

imple microstructures in DP steel (ferrite and martensite) using 

0 images (1536 × 1536 pixels) again with manual ground truth, 

emonstrating that this model is also applicable to relatively small 

amples [36] . To achieve further quantification, DeCost et al. ap- 

lied the segmentation model to obtain various types of quantita- 

ive microstructural information for ultrahigh carbon steel, but this 

tudy also used manually (and subjectively) produced ground truth 

ata to train the network [38] . Although rapid microstructure clas- 

ification and quantitation via DL methods have been successfully 

erformed, due to the limitation of manual annotation most of 

hem were applied to steels with relatively simple microstructures. 

ecently, Müller et al. [39] proposed that material knowledge is 

ndispensable for building a high-quality ML-based segmentation 

ethod, and in their work a correlative characterization using OM, 

EM and EBSD was successfully applied to annotate complex mi- 

rostructure. e.g., bainite. Moreover, in most researches, DL models 

ere only available to high-quality images taken under the same 

onditions (magnification, resolution, etc.) as those used in model 

raining. However, in practice, the image quality may change due 

o changes in experimental conditions and often the images are 

aken at different magnifications to optimally observe the different 

icrostructural features. Thus, a genetic DL-based method suitable 

o analyze images taken under different imaging conditions is also 

eeded. 

In present work, an EBSD-trained DL method is proposed to 

stablish a generic, robust and low-cost framework for classify- 

ng and quantifying complex microstructures only using regular 

EM images. The proposed method uses a small number of EBSD 

aps to form the ground truth of SEM images and then applies 

 popular U-Net architecture to learn the high-order features and 

erform a pixelwise segmentation of the input SEM images, and 

nally obtain quantitative microstructural information via pixel 

tatistics using the OpenCV package [40] . Based on the method to 

e described, complex microstructures of two common engineer- 

ng steels, a DP steel and a Q&P steel, were segmented and quan- 

ified, and quasi-EBSD maps can be produced using regular SEM 

mages. Additionally, this method was also applied to low-quality 

mages and images with different magnifications, to reveal its ro- 

ustness and applicability in real-world scenarios. 

. Methodology 

The schematic diagram of the present method is shown in 

ig. 1 . The available inputs come from two engineering steels with 

 complex microstructure, i.e., a DP steel (austenite and marten- 
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Fig. 1. The schematic diagram of the EBSD-trained DL method and its applications. 

Table 1 

Composition of the alloys used in this work. Compositions are in weight percentages. 

Fe C Si Mn Ti Nb Cr Ni 

DP / DP-validation steel Bal. 0.02 0.52 1.23 0.09 – 17.60 9.22 

Q&P steel Bal. 0.25 1.70 2.00 0.03 0.02 – –

Q&P-validation steel Bal. 0.27 1.64 2.22 0.01 0.01 0.01 –
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ite) and a Q&P steel (ferrite, martensite and RA), and the images 

ere in different states, i.e., of lower qualities and taken at various 

agnifications, while high-quality SEM images of these two steels 

ere used to train and test the DL model. The proposed EBSD- 

rained DL model was built based on U-net architecture using a 

mall high-quality experimental dataset with EBSD ground truth. 

nce the DL models was well trained, it has three main applica- 

ions: (1) classifying complex phases from SEM images; (2) skip- 

ing a lot of experimental effort to produce quasi-EBSD maps; and 

3) high-throughput microstructure quantification combining the 

resent model with the OpenCV package. The detailed implemen- 

ation method is described below. 

.1. Dataset establishment 

.1.1. Experimental materials 

In this work, microstructure of DP steel consists of austen- 

te and martensite, which is produced by temperature-induced 

artensite transformation in austenite stainless steel. Such dual- 

hase microstructure is more complex than usual DP steel (fer- 

ite and martensite [36] ), representing a bigger challenge for ac- 

urate microstructural classification. The chemical composition of 

he DP steel, i.e., austenite stainless steel, used in this work is 

isted in Table 1 . Ingot was prepared in the vacuum furnace. Af- 

er forging, the material was heated to 1200 °C, held for 2 h, 

nd then hot rolled into sheets of 3.5 mm. Subsequently, these 

heets were solution-treated at 1050 °C for 5 h and then air cooled 

o room temperature. Through the above thermal processing, a 

etastable fully austenitic microstructure was obtained. Then, a 

ub-zero treatment was performed in liquid nitrogen to obtain a 

ertain amount of martensite. The processing routine is shown in 
193 
ig. 2 a. For the Q&P steel, the chemical composition is also listed 

n Table 1 . The material was firstly hot rolled into sheets. Then, 

hese sheets were annealed at 600 °C for 5 h and then air cooled 

o room temperature. After acid pickling, they were cold-rolled into 

heets of approximately 1.2 mm thick. As shown in Fig. 2 b, the 

heets were reheated to the dual-phase region temperature of 790 

C, held for 80 s, and then cooled to 310 °C at a cooling rate of 30

C/s and held for 50 s. Subsequently, they were reheated to 460 °C 

t a heating rate of 10 °C/s, held for 35 s, and then cooled to room

emperature at a cooling rate of 30 °C/s. 

.1.2. Validation materials 

In order to validate the general applicability of trained models, 

wo validation steels were also prepared. For DP-validation steel, 

he composition of the steels remained the same, but a magnetic 

eld instead of temperature was used to induce martensitic transi- 

ions. The experiment was carried out under magnetic field of 1 T 

n room temperature. For the Q&P-validation steel, a new alloy was 

elected with a composition also listed in Table 1 . Also, the process 

arameters for the annealing and Q&P treatments were changed. 

he sheet was annealed at 650 °C for 5 h and then air cooled to

oom temperature. For Q&P treatment, the sheet was also reheated 

o the dual-phase region temperature at 790 °C, held for 60 s, and 

hen air cooled to 240 °C and held for 40 s. Partition temperature 

nd time were appropriate for this 2nd experimental steel grade. 

.1.3. Microstructure characterization 

SEM and EBSD experiments were used to obverse the morphol- 

gy and produce ground truth, respectively. For the SEM exper- 

ments, both backscatter electron (BSE) and second electron (SE) 

odes were applied to obverse the microstructures using a field- 
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Fig. 2. The processing routes for the selected steels: (a) DP steel, (b) Q&P steel; the typical microstructures: (c) BSE image of DP steel, (f) SE images of Q&P steel; (d) EBSD 

ground truth from (c) BSE image; (g) EBSD ground truth from (f) SE image; (e, h) original EBSD maps. 
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mission scanning electron microscope (FE-SEM) system. The nor- 

al imaging rate (10 0 0 ns/pixel) was used to produce high-quality 

mages for building the training and testing dataset, and faster 

maging rates, i.e., 100 ns/pixel, 200 ns/pixel and 500 ns/pixel, 

ere used to acquire lower-quality images. EBSD experiments were 

onducted using a FE-SEM system with an accelerating voltage of 

0 kV. A scanning step size of 0.1 μm was used to acquire ground 

ruth datasets, and larger step sizes, i.e., 0.2 μm, 0.5 μm, 0.7 μm 

nd 1.0 μm, were also used to investigate the experimental effi- 

iency. The specimens were prepared by electrolytic polishing af- 

er mechanical polishing. The electropolishing solution was a mix- 

ure of 700 ml glacial acetic acid (CH3COOH) and 100 ml per- 

hloric acid (HClO4). Electropolishing was conducted at 25 °C and 

0 V for 20 s. In order to avoid the mechanically-induced marten- 

ite transformation of meta-austenite in Q&P steel during sample 

reparation, the grinding and polishing were carefully performed 

ith very little force. As reported by Hofer et al. [41] , a final man-

al polishing step should perform after electropolishing in order 

o prevent the transformation of the metastable retained austenite 

uring preparation. However, this step is not available in present 

ork because the surface morphology after electropolishing should 

e retained well for observing the SEM morphology to maintain 

he same morphology as in the EBSD experiment. 

For the DP steel, BSE imaging was applied to characterize 

he microstructure, and these images were used as inputs of DL 

odel. Then, the phase maps from EBSD experiment covering 

he same sample regions were used to accurately label the input 

SE images based on the local crystal structure being martensite 

r austenite. In this experimental process, the BSE images were 

aken at predefined positions, and then the EBSD experiment was 
194 
arried out at the same location over an area of approximately 

6 μm × 44 μm at a magnification of 20 0 0 × . The sizes of the

ollected standard BSE images were 1024 × 768 pixels. It is well 

nown that the angle between beam direction and specimen is 

ifferent for EBSD and BSE experiments, so a careful image reg- 

stration is required between BSE image and its corresponding 

BSD image. In this process, manual adjustment of the length and 

idth of EBSD phase map was performed referred to correspond- 

ng BSE image to develop the good pixel correspondence between 

wo images. Then regions with good pixel correspondence in SE 

nd EBSD images were preserved to build dataset, and other re- 

undant edge regions are cropped. For Q&P steel, secondary elec- 

ronic (SE) imaging, instead of BSE, was used as this gives bet- 

er morphological contrast. Electrolytically polished samples were 

sed to observe the SE morphology to maintain the same mor- 

hology as in the EBSD experiment. The scanning area in the EBSD 

xperiment was approximately 56 μm × 44 μm at a magnification 

f 20 0 0 × and the pixel size of the SE image was 2048 × 1536

ixels. To classify the microstructures, the phase map of EBSD ex- 

eriment was applied to distinguish fcc-structure RA and other 

cc-structure phases. Ferrite and martensite were separated us- 

ng a band scope (BS) map, in which martensite was defined by 

S values of less than 90 and ferrite was defined by BS values 

reater than 90 [20] . For Q&P steel, SE mode was used to ob- 

erse morphology and SE image can be taken during EBSD experi- 

ent. Thus, a relatively good pixel correspondence exists between 

E image and corresponding EBSD map due to the same angle be- 

ween beam direction and specimen for SE and EBSD experiments, 

nd only simple adjustments were required to reach precise pixel 

orrespondence. 
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A typical BSE image of DP steel is shown in Fig. 2 c, containing

artensite (M) and austenite (A). It can be observed that most of 

he grain boundaries were somewhat fuzzy, and the morphologi- 

al features of austenite in different locations were not consistent, 

uch as location 1 and location 2 in Fig. 2 c, representing a difficulty 

n the accurate classification. For the Q&P steel, which is a typ- 

cal representative of 3rd generation advanced ultrahigh strength 

teels, proper microstructure segmentation is a longstanding issue, 

specially when classifying martensite and RA. A typical SE image 

f the Q&P steel is shown in Fig. 2 f. The SE image contains two

ypes of areas, in which the matrix phases are defined as polygo- 

al ferrite presented as equiaxed, and other bulk-shape phases are 

egarded as “M/A islands” that include both martensite and RA. 

lthough ferritic areas can be identified relatively easily by their 

orphology, determining exact locations of their grain boundaries 

s nontrivial. Moreover, martensite and RA mixed together show 

ittle differences in morphology and contrast, making it almost im- 

ossible to distinguish them just from the micrographs. But with 

he help of EBSD analysis, such complex microstructures can be 

learly and faultlessly classified. The corresponding EBSD ground 

ruth of Fig. 2 (c and f) are shown in Fig. 2 (d and g), respectively.

he original EBSD phase maps are shown in Fig. 2 (e and h). 

.1.4. Dataset construction 

The DP steel dataset, named D DP , contained 248 subimages (in- 

uts) of 128 × 128 pixels cut from 6 original BSE images and 248 

round truth images from the phase maps produced by EBSD (out- 

uts). For D DP , the training set consisted of 208 subimages and 

he testing set was comprised of 40 subimages from one origi- 

al BSE image. Only two phases (martensite and austenite) were 

resent and classified as such to form the ground truth levels. 

he Q&P steel dataset, named D QP , contained 726 subimages (in- 

uts) of 128 × 128 pixels cut from 4 original SE images. The train- 

ng set contained 656 subimages while the testing set contained 

0 subimages cut from one original SE image. By combining the 

hase map and the BS map from the EBSD experiment, three- 

hase ground truth (outputs) were provided: ferrite + marten- 

ite + RA. These data are provided in the Supplementary Material. 

or the two datasets named above, common methods of data aug- 

entation, e.g., flipping and random cropping, were used to ex- 

and the training data. After data augmentation, the number of 

raining set increased to 1914 subimages for D DP and 6048 subim- 

ges for D QP . Moreover, common image processing methods, such 

s adjusting contract and brightness, were applied to balance the 

uality of the input images. For validation, one original BSE image 

onsisting of 40 subimages from the DP-validation steel was used, 

nd 70 subimages from an entire area of one original SE image 

f Q&P-validation steel was used. The corresponding EBSD phase 

aps were used as ground truth. 

.2. Modeling 

.2.1. Establishment of U-Net architecture 

There are two reasons for the selection of U-Net architecture: 

rst, it has shown an excellent performance in previous complex 

egmentation tasks with limited data in combination with data 

ugmentation (e.g., biomedical images) [ 42 , 43 ]. Second, A unique 

skip layer” is designed to connect the encoder and decoder, and 

s capable of avoiding the loss of detailed features during down- 

ampling, which has the potential to maximize the guiding role of 

BSD ground truth in model’s training. The structure of the model 

efers to the classical U-Net architecture reported by Ronneberger 

t al. [44] , and consists of a contracting path and an expanding 

ath. Four convention layers and four up-convention layers were 

ocated in contracting path and expanding path, respectively. The 

etwork architecture and some detailed information for each layer 
195 
re illustrated in Fig. 3 . The parameter padding was set as ‘same’ 

o maintain the feature map at the same size after the convolution 

perations. To prevent overfitting, batch normalization and dropout 

egularization with a rate of 50% were adopted [ 45 , 46 ]. The opti-

al parameter set for the U-Net architecture (including batch size, 

oss function and optimizer), was determined by trial and error. 

s mentioned in the previous section, two datasets, i.e., D DP for 

P steel and D QP for Q&P steel, were built using experimental im- 

ge data from two actual steels. Based on these datasets, two U- 

et models with the highest segmentation accuracy were obtained 

ia parameter adjustment, named DL DP , DL QP respectively. The op- 

imal parameter sets of optimizer and loss function for above DL 

odels are as follows: an AdaGrad optimizer [47] and a mean ab- 

olute error (MAE) loss function [48] for DL DP , and an Adam opti- 

izer [49] combined with MAE loss function for DL QP . The batch 

ize for above models is 32. Trained DL models can rapidly clas- 

ify microstructures from input SEM images, and the quasi-EBSD 

aps can also be produced using available DL models, skipping the 

eed for comprehensive and time-consuming physical EBSD exper- 

ments. 

The U-Net architecture implementation was constructed using 

ython and the Keras framework. The training and testing were 

erformed on a system equipped with an AMD® 2920X CPU @ 

.50 GHz (12 cores), 128 GB of RAM, and an NVIDIA GeForce RTX 

080Ti GPU with 11 GB of graphics memory. 

.2.2. Evaluation methods 

This study used two standard evaluation metrics for semantic 

egmentation to evaluate the segmentation performance: pixel ac- 

uracy ( PA ) and mean intersection over union ( MIoU ). They are de-

ned in Eqs. (1) and (2) [50] , respectively: 

A = 

∑ 

i n ii ∑ 

i t i 
(1) 

IoU = 

1 

n cl 

∑ 

i 

n ii 

t i + 

∑ 

j n ji − n ii 

(2) 

here n i j is the number of pixels of class i predicted to belong 

o class j ; n cl represents the number of different classes and t i = 

 

j 

n i j is the total number of pixels of class i . 

.3. High-throughput quantitative metallography 

Based on the present EBSD-trained DL model, an automatic 

uantitative method for microstructure analysis was applied us- 

ng an image processing method based on the OpenCV package. 

he quantitative process was as follows. First, the target SEM im- 

ges (SE or BSE modes) were cut into subimages of 128 × 128 pix- 

ls for use in segmenting the microstructures. For subimages with 

ixel size less than 128 × 128 pixels after cutting, resize function 

f OpenCV package can be used to convert them to standard size. 

hen, the microstructures in these subimages were classified based 

n the trained DL models, and the segmentation results for the 

riginal SEM images were obtained by splicing all the subimages. 

inally, the quantitative microstructural data were calculated ac- 

ording to the statistics of the pixel information obtained for each 

hase. 

. Results 

.1. Experimental materials 

.1.1. Segmentation result of DP steel 

The segmentation results of DP steel by DL DP model are shown 

n Fig. 4 . Fig. 4 a shows the statistical distribution of the two evalu-

tion indexes PA and MIoU of testing set, in which six numerical 
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Fig. 3. The U-Net network architecture. The numbers on the top (or bottom) and at the right (or left) of each block correspond to the number of filters and the size of the 

feature map, respectively. 

Fig. 4. The segmentation results of DP steel: (a) the distribution of the evaluation indices PA and MIoU ; (b, e) BSE images of two areas taken from the testing images, (c, f) 

corresponding EBSD ground truth and (d, g) corresponding segmentation results. 
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alue ranges for the evaluation indexes are plotted along X-axis 

nd the proportion of the number of samples in each numerical 

ange to the total is plotted in Y-axis. The PA is the pixel accu- 

acy, and MIoU represents the ratio of the intersection and union 

f the segmentation result and ground truth of each class. The 

A values are mainly distributed in the range above 85% with a 

ean value of 90.1% ( ±5.8%), showing the good pixel consistency 

etween segmentation result and ground truth. The MIoU values 

re mainly concentrated in the range of 80%–95% with a mean 

alue of 83.2% ( ±9.3%), indicating a good segmentation accuracy. 

ig. 4 b-g shows two cases taken from the testing set: the BSE im- 

ge (b, e), the ground truth (c, f) and the segmentation results 

d, g). As shown in Fig. 4 (b and e), these BSE images contain am-

iguous grain boundaries and fine and non-easily identifiable fea- 

ures between the martensite and austenite, which would be hard 

o classify accurately by human microscopists leading to datasets 

ith incorrect ground truth values. Any incorrect classification au- 

omatically lowers the accuracy of the DL models trained on these 

ata. However, such BSE images can be accurately calibrated using 

hase maps from the EBSD experiment, as shown in Fig. 4 (c and 

). Thus, with the assistance from the EBSD, the proposed method 

chieved accurate classification results compared with the true la- 

els as shown in Fig. 4 (d and g). 

.1.2. Quantitative analysis of DP steel 

In present work, an automatic quantitative image analysis 

ethod is proposed by combining the EBSD-trained DL model 

nd the OpenCV package. One original BSE image (cut into 40 
196 
28 × 128-pixel subimages) of DP steel taken at 20 0 0 × magnifi- 

ation was used to determine the martensite content. The selected 

SE image from testing set is shown in Fig. 5 a. The recording of 

his area on the SEM took only 25 s. The related microstructure 

lassification result using DL DP model is shown in Fig. 5 b, where 

artensite and austenite are marked in red and blue. The com- 

lete quantitative process of present DL-based method, including 

he previous segmentation process, takes only approximately 35 s, 

ndicating its high efficiency. In contrast an actual EBSD experi- 

ent for the same image takes approximately 100 min with a 

canning step size of 0.1 μm to produce the phase map as shown 

n Fig. 5 c. In addition, the quantitative results of the phase map of 

BSD analysis can be used as reference to evaluate the accuracy of 

he present DL-based quantitative method, which is more reliable 

han referring to manual ground truth [51] . To better quality the re- 

ults, the deviation is used to describe quantitative error between 

resent method and EBSD, and its value is the absolute value of 

he quantitative result of present method minus EBSD quantita- 

ive result. The distribution of these deviations of 40 subimages 

etween EBSD and the present method is plotted in Fig. 5 d. It is

bserved that the majority of deviations were less than 6%, show- 

ng the good accuracy and stability of this automatic quantitative 

ethod. Moreover, the scanning area of each subimage is very 

mall, only approximately 50 μm 

2 , also indicating the strong abil- 

ty to analyze the microregions. With respect to the whole image, 

he quantitative results of the two methods also demonstrated a 

igh consistency, i.e., 38.5% for the present method and 35.2% for 

he EBSD analysis, also showing the applicability to regular SEM 
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Fig. 5. Quantitative analysis of martensite content in DP steel: (a) original BSE image, (b) segmentation result and (c) ground truth for calculating martensite content; (d) 

distribution of deviations of quantitative results between EBSD and the present method. 

Fig. 6. The segmentation results of Q&P steel: (a) the distribution of the evaluation indices PA and MIoU ; (b, e) SE images of two areas taken from the testing images, (c, f) 

corresponding EBSD ground truth and (d, g) corresponding segmentation results. 
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.1.3. Segmentation results of Q&P steel 

The distribution of the two segmentation evaluation indexes of 

esting set is plotted in Fig. 6 a. For MIoU , the mean value of all

amples in testing set is 75.5% ( ±6.5%), and the majority of val- 

es is concentrated in the range from 70% to 80%, which accounts 

or 61.4% of the total. With respect to PA , about 86% of the results

re located in the range from 80% to 100% with the mean value of 

5.4% ( ±5.1%). Two cases from the testing set, containing SE images 

b, e), ground truth (c, f) and segmentation results (d, g) are shown 

n Fig. 6 b-g. Although no fine features in morphology and contrast 

an be observed in each M/A island in the BSE images in Fig. 6 (b

nd e), the EBSD-trained DL QP model has the ability to classify not 

nly the ferrite matrix and the M/A island, but also the actual dis- 

ribution of martensite and RA inside each M/A island based on the 

ccurate ground truth as shown in Fig. 6 (c and f). These segmen- 

ation results as shown in Fig. 6 (d and g) are basically consistent 

ith the ground truth. 

.1.4. Quantitative analysis of Q&P steel 

For the Q&P steel, an original SE test image (later cut into 70 

28 × 128-pixel subimages) shown in Fig. 7 a is used for the quan- 

itative image analysis. The image was first segmented into fer- 
197 
ite, martensite and RA, respectively, using DL QP model. The EBSD 

round truth and segmentation result are shown in Fig. 7 (b and c), 

n which ferrite, martensite and RA are presented in blue, white 

nd red, respectively. Compared to the EBSD ground truth, shown 

n Fig. 7 b, the microstructure in the SE image ( Fig. 7 a) was could

e reconstructed with good accuracy into martensite, ferrite and 

A as shown in Fig. 7 c. Fig. 7 (d and e) give the detailed quan-

itative results of the EBSD analysis and the present method, re- 

pectively. With respect to phase content as shown in Fig. 7 d, it 

an be seen that the quantitative results of the present method are 

n good agreement with EBSD analysis, and the deviation value of 

ach phase is within 1.0%. Particularly for RA, the deviation value 

s only 0.1%. The area of RA reconstructed using the segmentation 

esult and that obtained via EBSD is shown in Fig. 7 e. Although 

he present method slightly underestimates the RA area, such as 

he frequency of DL method is lower than EBSD for RA with the 

rea > 1.0 μm 

2 (frequency: 1.7% for DL method, 7.0% for EBSD), the 

requency in other area ranges was highly consistent between both 

ethods. 

.2. Results obtained on the two validation steels 

The morphology of the DP-validation steel is shown in Fig. 8 a. 

ompared to the microstructure of the DP steel used for training 

nd testing dataset (shown in Fig. 5 a), it the martensite content in 
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Fig. 7. The quantitative analysis of Q&P steel. (a) the SE image, (b) EBSD ground truth and (c) segmentation result; (d) phase content calculated based on present method 

and EBSD; (e) the distribution of area of RA from present method and EBSD. 

Fig. 8. Segmentation and quantitative analysis of validation steels: (a) BSE image, (b) EBSD phase map and (c) segmentation result of DP-validation steel; (d) SE image, (e) 

EBSD result and (f) segmentation result of Q&P-validation steel. 
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he validation steel is significantly lower and the martensite basi- 

ally exists in the form of laths. Given the EBSD phase map shown 

n Fig. 8 b, it is clear that the DL DP model trained on the other

P steel is found to be surprisingly capable of accurately identi- 

ying martensite and austenite of this validation steel as shown 

n Fig. 8 c. The martensite content for the segmentation image is 

9.8%, which is very consistent with the EBSD result, i.e., 19.1%. 

The microstructure of the Q&P-validation steel is shown in 

ig. 8 d. It consists of a coarse-grained ferrite matrix and many 

mall M/A islands, which are completely different in appearance 

rom those observed in the original training and testing sets as 

hown in Fig. 7 a. Again, the martensite and RA inside M/A islands 

o not show obvious differences in morphology or contrast. The 

egmentation result of trained DL QP model is shown in Fig. 8 f. It 

s found that not only ferrite matrix and M/A islands are properly 

dentified, but also the martensite and RA phases inside M/A is- 

and are identified with acceptable accuracy as shown in Fig. 8 e. 

ased on the segmentation results, SE image ( Fig. 8 d) contains 
198 
1.1% ferrite, 26.9% martensite and 2.0% RA, which is in good agree- 

ent with the EBSD result, i.e., 74.6% ferrite, 23.3% martensite and 

.1% RA. The above segmentation and quantitative results for the 

alidation steels strongly proves the good applicability of present 

ethod for microstructure segmentation and quantification for dif- 

erent kinds of steels. It also shows that a well-trained model can 

e used to properly analyze other (related) steels for which it was 

ot trained. 

. Discussion 

.1. The complexity of segmented microstructure 

In previous studies [ 36 , 37 ], DL-based microstructural analysis 

as applied only to simple and relatively coarse microstructures 

aving clearly distinctive morphologies and easily locatable phase 

oundaries. In such cases human phase identification to form a re- 

iable training set can work well, but DL becomes significantly less 
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owerful if the training data is corrupted by incorrect data. EBSD 

an provide significantly more accurate labels for complex and fine 

icrostructures, which enables DL-based methods to be expanded 

o fine and complex microstructures. Once the model is established 

nd trained, quasi-EBSD maps can be obtained by inputting simple 

EM results, without time-consuming and costly EBSD experiments 

et keeping an accurate estimate of the real microstructure. 

As far as DP steels are concerned, in most cases, its microstruc- 

ure is composed of martensite and ferrite [ 52 , 53 ]. Such phases

an be clearly identified on the basis of their SEM morphology and 

ence they have been properly classified based on the DL method 

36] . In the present work, the selected DP steel contains austen- 

te and martensite as shown in Fig. 4 (b and e), which are more

ifficult to be classified because of their fuzzy SEM morphology. 

ut an EBSD-trained DL-based method is capable of segmenting 

he images properly as shown in Fig. 4 (d and g) and it quanti-

ed the microstructures with a very high accuracy. The QP steel 

tudied here contained three types of phases (see Fig. 6 (b and e)), 

.e., ferrite, martensite and RA, but only two types of phases, i.e., 

errite and M/A islands, can be distinguished based on just their 

EM morphology. That implies that traditional DL models without 

BSD information and manual calibration can only provide two- 

hase ground truth data. However, the EBSD data showed clearly 

hat the M/A islands in Q&P steel consisted of martensite and RA, 

hich are almost completely indistinguishable in the SEM images 

ue to minimal morphological contrast and invisible phase bound- 

ries. In the present work, the complex microstructure was classi- 

ed using EBSD analysis to solve the labeling problems as shown 

n Fig. 6 (c and f). Then, the smart DL model was applied to dis-

over the correlation between the phase species and their com- 

rehensive morphologies because it has a strong ability to extract 

mage features by sensing the small differences in the contrast, 

rayscale, etc., based on computer vision, and finally these complex 

icrostructures were successfully classified, as shown in Fig. 6 (d 

nd g). While the EBSD trained model using high resolution imag- 

ng clearly showed positive results, it is interesting to examine its 

ehavior under less-optimal imaging conditions and to examine 

hy the method as developed performs so well. 

.2. Robustness to low-quality images 

In earlier DL-based microstructure segmentation attempts the 

atasets used for training and evaluation consisted only of im- 

ges of equal high quality [35–38] . However, when evaluating 

any samples or evaluation samples over an extended period of 

ime the stability of the quality of the SEM images cannot be 

uaranteed. Furthermore, sometimes low-quality images may be 

aken intentionally to speed up data gathering and to reduce the 

osts involved in microstructure classification. To study the robust- 

ess of the classification model developed in the basis of a high- 

uality images, new lower resolution BSE images of the DP steel 

ere collected using three faster imaging rates (i.e., 100 ns/pixel, 

00 ns/pixel and 500 ns/pixel). In addition, BSE images with a nor- 

al imaging rate (i.e., 10 0 0 ns/pixel), were also obtained from the 

ame area as the reference. To make the robustness test even more 

ritical, the experiments were conducted on another FE-SEM with 

 longer service life. EBSD experiments were conducted to pro- 

uce the ground truth for the BSE image, and 20 subimages of 

28 × 128 pixels from each original BSE images with the different 

maging rate were used to test the robustness of DL DP model to 

ow-quality images. To compare the differences between the nor- 

al and low-quality images, their grayscale distributions were cal- 

ulated using OpenCV and they are shown in Fig. 9 a. Significant 

rayscale differences exist between the various BSE images. The 

ray values for the high-resolution images are distributed over a 

ide range from 50 to 200. The gray values of the three low- 
199 
uality BSE images are distributed over a much smaller range, 

panning values from 75 to 150. The change in segmentation re- 

ults of BSE images with different qualities is shown in Fig. 9 b. Al-

hough the segmentation accuracy decreases with decreasing im- 

ge quality, the mean values of MIoU and PA of 20 subimages are 

till greater than 71.7% and 81.3%, respectively, even for BSE im- 

ges with an exposure rate of 100 ns/pixel. as shown in Fig. 9 c

nd 9 d, respectively. Under these conditions the input image had 

 poor contrast between the two phases and, in comparison to 

he reference image shown in Fig. 9 i, included massive amounts 

f noise. However, martensite and austenite could still be prop- 

rly segmented using the DL DP model trained on high-quality in- 

ut images. As the imaging rate increased to 200 ns/pixel, the seg- 

entation accuracy increased and the mean values of MIoU and 

A reach 76.2% and 85.0%, respectively, as shown in Fig. 9 f. For the

SE image with an exposure rate of 500 ns/pixel, the mean val- 

es of MIoU and PA increase to 82.5% and 89.1%, respectively, and 

 high segmentation accuracy is obtained, which is quite close to 

hat of the DL DP model when applied to the high-quality images 

82.9% for MIoU and 90.1% for PA respectively). The above segmen- 

ation results demonstrated that the present DL model trained by 

igh-quality image data is capable of being directly expanded to 

ow-quality images with massive noise and experimental instru- 

ents with different capacities. The reason for this robustness will 

e explained in more detail in Section 4.5 . 

.3. Robustness to images taken at different magnifications 

In the metallographic practice pictures are often taken at dif- 

erent magnifications to either get a more general overview or to 

ecord fine details. In this study, the DL DP model trained via in- 

ut images at a magnification of 20 0 0 × was used to examine its 

bility to analyze images taken at different magnifications. The re- 

ults for the images taken at 20 0 0 × and reported in Section 3.1 ,

(83.2% ( ±9.3%) for MIoU and 90.1% ( ±5.8%) for PA ) were used 

o set the reference level. Images taken at magnifications of 500 

, 10 0 0 × and 40 0 0 × are shown in Fig. 10 a-c. At magnifica-

ions of 500 × and 10 0 0 ×, the morphology of the microstruc- 

ures remained close to that in the reference images. When the 

agnification was increased to 40 0 0 ×, new and more detailed 

eatures of martensite laths were observed and the overall mor- 

hology differed from the reference morphology. The segmenta- 

ion accuracy of the model as a function of the magnification is 

hown in Fig. 10 d. As shown in Fig. 10 d, the segmentation results

f images taken at different magnifications do not deviate signif- 

cantly from the reference level, and all the deviation values are 

elow 3%. These results demonstrate that the current U-Net model 

hows high generalizability for images with various magnifications. 

wo examples for the BSE images at magnifications of 500 × and 

0 0 0 × are shown in Fig. 10 e-g and h-j, respectively, showing that 

he segmentation results are in good agreement with the ground 

ruth. Although changes in magnification do slightly affect the sta- 

ility of the proposed method, the model still obtains good seg- 

entation results. 

.4. Comparison of the present DL-based method and the traditional 

inary method 

Traditionally, to obtain the phase fraction results directly from 

M or SEM images, the images are converted into binary images 

sing image processing, and then the quantitative results are ob- 

ained based on an experimentally determined threshold value. In 

rder to demonstrate the advantages of the automatic quantitative 

ethod used in the present work, the traditional binary method 

as also used to perform microstructure quantification of the DP 

teel. A selected area of 384 × 384 pixels is shown in Fig. 11 a.
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Fig. 9. (a) The grayscale distribution of BSE images with various qualities; (b) the segmentation results of BSE images with various qualities by the DL DP model trained on 

high-quality images; the detailed cases of images with various qualities and ground truth: (c) BSE image and (d) segmentation result for an imaging rate of 100 ns/pixel; (e) 

BSE image and (f) segmentation result for an imaging rate of 200 ns/pixel; (g) BSE image and (h) segmentation result for an imaging rate of 500 ns/pixel; (i) BSE image and 

(j) segmentation result for an imaging rate of 10 0 0 ns/pixel; (k) ground truth. 

Fig. 10. The SE images at the magnification of (a) 500 ×, (b) 1000 × and (c) 4000 ×; (d) the deviations of evaluation indexes between images with magnifications of 500 

×, 10 0 0 × and 40 0 0 × and the reference image with 20 0 0 × magnification; two segmentation cases for the BSE images at the magnification of (e-g) 500 × and (h-j) 40 0 0 

×: (f, i) EBSD ground truth, (g, j) segmentation results. 
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ased on the phase map of EBSD analysis shown in Fig. 11 b, the

eference value of the martensite content is 16.6%. Using the new 

L-based quantitative method, the martensite content was evalu- 

ted as 17.5%, as shown in Fig. 11 c—a result that is basically con-

istent with the result of EBSD analysis. In the binary images, the 

artensite content was calculated by counting the portion of white 
200 
ixels among the total pixels, where martensite and austenite are 

epresented by white and black, respectively. To study the effect 

f the threshold value on the quantitative result, threshold val- 

es ranging from 130 to 155 were chosen to calculate the appar- 

nt martensite content. Fig. 11 e shows that the martensite con- 

ent changes almost linearly with the threshold value. Varying the 
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Fig. 11. Comparison between the proposed method and a traditional binary image method: (a) BSE image; (b) EBSD phase map; (c) segmentation result; (d) result of binary 

image; (e) variation in measured martensite content as the threshold value changes. (f) The binary image with noise in austenite; (g) comparative result for the number of 

noises in austenite between the binary method and the present method; (h) the binary image with noise in martensite; (i) comparative result for the number of noises in 

martensite between the binary method and the present method; Segmentation result of low-quality images using binary method: (j) the imaging rate of 100 ns/pixel; (k) 

the imaging rate of 200 ns/pixel; (l) the imaging rate of 500 ns/pixel; (m) the imaging rate of 10 0 0 ns/pixel. 

t

f

n

r

g

t

A

l

m

e

p

m

w

a

d

n

a

t

d

t

hreshold from 130 to 150 changed the martensite are fraction 

rom 22.4 to 13.4%, However, while the fraction levels changed sig- 

ificantly the morphologies as represented in the binary images 

emained remarkably similar. In addition to the phase fraction, the 

rain size is also an important piece of microstructural informa- 

ion. In the binary method, this is not so simple to determine. 

s shown in Fig. 11 f (threshold value of 130), when a relatively 

ow threshold is selected, martensite being the white phase is seg- 

ented well. However, many white “martensite” with a small size 

xist in the austenite as the black phase. From metallographic ex- 
201 
erience we know, these “white phases” are the noise, not actual 

artensite. The number of noises in austenite in the binary images 

ith different threshold values and the DL segmentation results 

re shown in Fig. 11 g. Although the amount of noise continuously 

ecreases with the increase of the threshold value, the amount of 

oise in the binary image with the threshold value of 140 is still 

n order of magnitude higher than that of the DL result. As the 

hreshold value continues to increase, the noise in austenite nearly 

isappears, but the black noise as “austenite” starts to appear in 

he martensite lathes, as shown in Fig. 11 h. The number of noise 
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Fig. 12. (a) Visualization of feature maps in the U-Net architecture, a case for Q&P steel; the original feature map and the enhanced feature map from the “skip layer” in (b) 

Upconv1 and (c) Upconv2; feature maps of Conv1 and Bottleneck for input images with imaging rates of (d) 100 ns/pixel and (e) 10 0 0 ns/pixel, respectively. 
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ixels in martensite in the binary images with different thresh- 

ld values and the DL segmentation result is shown in Fig. 11 i, 

howing that the amount of noises in the binary method is much 

igher than that in the DL result. The segmentation results of low- 

uality images (as shown in Fig. 9 c, 9e, 9 g and 9i) using the binary

ethod are shown in Fig. 11 (j-m). It can be clearly seen that the

inary method lacks the ability to accurately classify ferrite and 

artensite due to the small pixel difference between two phases 

nd amounts of noise, showing the high sensitivity of classification 

ccuracy to image quality. However, DL-based method is capable 

f reliably segmenting microstructures as shown in Fig. 9 , demon- 

trating that present DL-based method has a stronger robustness 

nd practical application ability than traditional binary method. 

.5. The origin of the model’s good performance 

To better understand the origin of the excellent performance 

nd stability of the present model based on the U-Net architecture, 

he entire segmentation process is visualized using feature maps 

 54 , 55 ], as shown in Fig. 12 a, where feature extraction was con-

ucted through the convolution operations (i.e., Conv1–4), while 

he output construction process was conducted via up-convolution, 

.e., Upconv1–4 (see Fig. 3 ). The brightness in Fig. 12 a indicates the

eature strength at a given location in the feature map, in other 

ords, the brightness of a location directly represents its level of 

mportance for segmentation. Clearly, the ferrite and M/A islands in 

he input image can be distinguished well via the Conv1 and Conv2 

eature maps according to the extracted morphology using trained 

lters, and brightness differences can be observed inside the M/A 

slands, indicating that different phases may exist there. These dif- 

erences provide a good basis for classifying ferrite, martensite and 

A in SE images. Although the feature maps in Conv4 and bottle- 

eck layer may seem difficult to understand, apparently, the impor- 

ant features are extracted and stored in these maps. In the subse- 
202 
uent up-convolution process, the detailed features of input image 

re recovered. Note that after two up-convolutions, the morphol- 

gy of the input image has basically been recovered in Upconv2. 

oreover, the detailed information is continuously enriched in the 

ubsequent process. The final output is similar to the ground truth 

rom the EBSD experiments. In conclusion, the good generalizabil- 

ty of the present model stems from the suitable complexity of the 

esigned U-Net architecture, which is capable of fully mining the 

ataset information. On the other hand, the reliable ground truth 

rom the EBSD analysis is also fundamental to achieving the ac- 

urate results because it provides the correct “knowledge” from 

hich the DL model learns. 

The present U-Net architecture differs from other segmentation 

etworks in that it adopts a unique “skip layer” that directly trans- 

ers the convolution layer feature maps to the corresponding up- 

onvolution layers, ensuring that the detailed information is not 

ost in the total segmentation process. In order to clearly show this 

ole, two feature maps before and after “skip layer” in Upconv1–2 

ayers are shown in Fig. 12 (b and c). The feature maps processing 

ia “skip layers” have better resolution compared to the original 

eature maps due to the enhancement of the detail information. 

he existence of such “skip layer” not only enables EBSD ground 

ruth to be used for training network parameters, but also en- 

bles the morphological information extracted in contracting path 

o be used for again output construction in expansive path, which 

reatly enhances guidance role of EBSD labels on model training. 

oreover, visualizing the feature maps is also a good approach for 

xplaining why the model is robust to low-quality images with 

assive amounts of noise. Fig. 12 (d and e) show the feature maps 

f Conv1 and bottleneck layer from the images with imaging rate 

f 100 ns/pixel and 10 0 0 ns/pixel, respectively for which the input 

mages have been shown in Fig. 9 (c and i). With respect to Conv1, 

he greatest difference still exists in feature maps between images 

ith 100 ns/pixel and 10 0 0 ns/pixel because of the difference in 
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Fig. 13. Comparison of computational efficiency and classification accuracy among 

present method, EBSD and binary method. The number marked on points repre- 

sents the step size in EBSD region and threshold value in the region of binary 

method, respectively. 
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orphology. However, for the bottleneck layer, the feature maps 

f two images are very similar and the areas with high brightness 

re located in the bottom right corner, indicating that accurate and 

mportant features are successfully extracted from the low-quality 

mages by the accurate DL model trained via EBSD-trained ground 

ruth even when faced with large noise effects. Thus, this model 

rovides a good basis for constructing reliable output. 

.6. Computational efficiency 

In the present work, the computational efficiency E is defined 

y equation: E = 

P A i / t i 
, in which P A i and t i represent the pixel ac- 

uracy and time of obtaining the phase map of SEM image i , re-

pectively. In a DL-based method the computational time mainly 

epends on the network size [56] (e.g., the number of layers). 

he present U-Net model takes only about 10 s to process a stan- 

ard SEM image using the relatively simple network structure as 

hown in Fig. 3 , the PA values, as described in Sections 3.1.1 and

.1.3 , were used to calculated to E value. For EBSD, various scan- 

ing steps were used to produce phase maps with different ex- 

erimental time, i.e., 0.1 μm, 0.2 μm, 0.5 μm, 0.7 μm and 1.0 

m. The phase map with 0.1 μm was used as ground truth ( PA 

alue: 100%) to calculate the PA values of phase maps with other 

tep size. For binary method, the experimental time was about 8 s 

or processing a SEM image. The thresholds were adjusted to pro- 

uce different segmented results, and the PA values of each seg- 

ented results were calculated refer to corresponding EBSD phase 

ap. Based on above experimental time and PA value, the E val- 

es of each method were calculated. According to normalized E 

alue and PA value, each method is plotted in E- PA space in Fig. 13 .

or binary method, some points had a relatively high computa- 

ional efficiency with the E value from 0.6 to 1.0, but a relatively 

ow PA values, representing its limited ability for microstructure 

lassification. Moreover, the binary method can only be applied to 

dentify simple microstructures of dual-phase materials based on 

he contrast, and cannot be applied to complex multi-phase mi- 

rostructures, such as Q&P steel. For EBSD, all points are located 

n the right-bottom corner, which shows that it has a unique su- 

eriority in classification accuracy but the time cost is also very 

igh. It can be seen that the E and PA values of present DL-based

ethod are concentrated in the region of high E (0.93–0.98) and 

A (85% −91%), indicating its high accuracy and computational ef- 

ciency. DP steel obtains larger E value than Q&P steel because it 
203 
as the higher PA value. Although dataset construction and model 

raining require a certain amount of time, the trained DL model is 

apable of rapidly producing an EBSD map using only regular SEM 

mages. Compared to binary method, present DL method has simi- 

ar efficiency but a much higher segmentation accuracy. Compared 

o EBSD, the present DL method has a much higher efficiency in 

ombination with an almost equal accuracy. 

. Conclusion 

A novel method for complex microstructure segmentation and 

uantification of engineering steels requiring only small experi- 

ental data sets is presented, which expands the DL method to ex- 

remely complex microstructures by integrating EBSD labeling and 

L. The present method showed significant advantages in accuracy, 

enerality, robustness and efficiency over previous DL methods: 

1) The present method was successfully applied to DP and Q&P 

steels. It is not only able to analyze DP steel (M-A) with am- 

biguous grain boundaries, but also to accurately quantify mi- 

crostructure of Q&P steel, especially martensite and RA inside 

M/A island, which indicates that the EBSD-trained DL method 

possesses good generality by eliminating the limits of label- 

ing error incurred by manual experience in the conventional DL 

method. 

2) The present method achieved a success application of validation 

steels of DP and Q&P steels, and the quantitative results were 

in good agreement with EBSD experiments, showing that the 

trained model also could be used to adequately analyze other 

(related) steel for which it was not trained. 

3) The present method could be applied successfully for the two 

modes of SEM imaging, i.e., SE and BSE, with different qual- 

ities (imaging rate: 100~1000 ns/pixel) and different magnifi- 

cations (50 0~40 0 0 ×), indicating its impressive robustness and 

good application prospect in practical scenarios. 

4) The present method showed advantages in both accuracy and 

efficiency. It has better accuracy than traditional binary method 

and higher efficiency than EBSD experimental method. More- 

over, EBSD phase maps can be rapidly produced only using reg- 

ular SEM images via trained models, skipping time-consuming 

experiments and contributing to accelerate EBSD analysis. 

5) The accurate EBSD ground truth provided an essential founda- 

tion for good performance, and the “skip layer” of U-Net model 

enhanced the guiding role of EBSD analysis. This combination 

provided a bright prospect for hybrid DL methods and physi- 

cal metallurgy for high-throughput quantitative metallography 

in order to accelerate material development. 
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