
Permissionless Banking API

Christos Kyprianou

Permissionless Banking API

Master’s Thesis in Embedded Systems

Parallel and Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Christos Kyprianou

Jan 31, 2018

Author
Christos Kyprianou

Title
Permisionless Banking API

MSc presentation
Jan 31, 2018

Graduation Committee
dr. ir. J. A. Pouwelse Delft University of Technology
dr. J.S. Rellermeyer Delft University of Technology
dr. Z. Erkin Delft University of Technology

Abstract

In this document we present an in-depth vulnerability assessment of the HSBC
banking system. Going beyond prior work, we investigate the full stack down to
the Java bytecode level and further analyze its 3 key platforms: Android OS, IOS
and online banking. During the process we analyze their main security feature,
OTP generation algorithm and examine the inner workings of mobile/online bank-
ing through various vulnerability assesment techniques and successful man in the
browser attacks in their main platforms showing the client-server communication
packet flow. During the process we discovered several vulnerabilities and show that
HSBC leaks details to multiple webserver which are not under it’s direct control
such as: lo.v.liveperson.net. Additionally, the HSBC app is found to be inefficient,
for instance, it repeatedly sends ”Lorum Ipsum” phrases. A gross waste of band-
width, bordering on incompetence. Finally we present our own version that is able
to perform the basic banking functions: 1-log-in, 2-view accounts and balances, 3-
view transaction history and 4-perform transactions, adding more than 200% speed
improvement.

iv

Preface

This is the report of my MSc thesis project on implementing and testing a permis-
sionless banking API, for the completion of my MSc degree in Embedded Systems.
This research has been carried out with the Parallel and Distributed Systems re-
search group of the Faculty of Electrical Engineering, Mathematics, and Computer
Science of Delft University of Technology, supervised by J. A. Pouwelse.

I would like to thank my supervisor, Johan Pouwelse, for giving me the opportunity
to work on such exciting project and the motivation he inspired during our meet-
ings. Further, I would like to thank Egbert Bouman and Martijn de Vos for sharing
their knowledge and experience, helping me make this work possible.

Christos Kyprianou

Delft, The Netherlands
26th January 2018

v

vi

Responsible Disclosure

This work is part of a greater project from the research group of Parallel and Dis-
tributed Systems of the Faculty of Electrical Engineering, Mathematics, and Com-
puter Science of Delft University of Technology which studies the performance
and feasibility of an open banking environment. During this work we point out
vulnerabilities and potential critical security issues found in the inspected app, and
this report can be considered as a complete summary to help solving the potential
security issues.

To protect the code safety, we DID NOT work with the original Java or C/C++
source code, but only decompiled code from the Android APK files which are pub-
licly available. In this report we only provide high level descriptions of algorithms
and vulnerabilities, without giving functioning code parts or detailed descriptions,
keeping this way important algorithms and code confidential.

vii

viii

Contents

Preface v

Responsible Disclosure vii

1 Introduction 1

2 Research Goals 3
2.1 Faults of the past . 3
2.2 History repeats . 4
2.3 European pressure for change . 4

3 Vulnerability assessment tools 7
3.1 Android debug bridge - ADB . 7
3.2 Androguard . 7
3.3 Smali/BackSmali . 8
3.4 Deobfuscation tools . 8
3.5 ApkTool . 8
3.6 Dex2jar and JD-GUI . 8
3.7 APK debugging . 9

3.7.1 JDB-Java debbuger . 9
3.7.2 IDA PRO debugging . 10

3.8 Drozer . 10
3.9 Data storage/transfer vulnerabilities 10

3.9.1 Side Channel Data Leakage 10
3.9.2 Shared preferences . 11
3.9.3 SQLite and NoSQL databases 11
3.9.4 Internal and External storage 11
3.9.5 User Dictionary cache 11
3.9.6 Android adb backup . 11

3.10 Encryption . 12

4 Authentication using tokens 13
4.1 Authentication practices . 13
4.2 OTP generator . 14

ix

4.2.1 Get token Key . 17
4.2.2 Generate time-stamp . 18
4.2.3 Generate hash code . 18
4.2.4 Generate code . 18
4.2.5 Truncate code . 18

5 HSBC vulnerability assessment 19
5.1 HSBC mobile banking . 19
5.2 Starting point - Transferring registration 20
5.3 Exploring Android app . 23
5.4 Man-in-the-Middle in iOS . 25
5.5 Man-in-the-Middle in full-access online banking 25

6 HSBC mobile & online banking 29
6.1 Mobile banking walk-through 29
6.2 Online banking walk-through . 32
6.3 Security assessment . 35

7 Vulnerability assessment of HSBC OTP generation 41
7.1 Yet another APK update . 41
7.2 Locating OTP generator . 42
7.3 OTP function calls . 43
7.4 HSBC code protection mechanisms 45

7.4.1 Renaming Identifiers . 45
7.4.2 Call Indirection . 46
7.4.3 Code reordering . 46
7.4.4 Arithmetic obfuscation 46
7.4.5 Really complex call graph 48

7.5 OTP main algorithm . 48

8 HSBC open-source banking 51
8.1 Application and code size . 52
8.2 Function calls . 52

8.2.1 HSBC manager . 52
8.2.2 HSBC requests . 53

9 Permisionless banking API evaluation 55
9.1 Un-necessary data . 55
9.2 Performance evaluation . 60
9.3 Flexibility . 60

10 Conclusion 63

x

Chapter 1

Introduction

Every day we entrust our life earnings to banks and manage our finances through
bank accounts. Banks put an effort into making money handling easier for their
customers by giving access to accounts through mobile and web banking applic-
ations while employing mechanisms to keep the accounts secure from malicious
persons. The collapse of Cyprus banking system in 2013, has shown to the world
that banks can not be completely trusted for keeping public’s money safe [1]. Un-
like this one occasion, the security risks from malicious attacks or exploits from
poor app design make up, an even worst danger to be concerned.

In previous work of our research group [2], the today’s dangers in mobile bank-
ing applications are presented, coming from attacks such as Man-in-the-middle
(MITM) [11], rogue access point[10] and the mallware targeting both, mobile
banking applications [4, 5] and Android in general [6, 3]. Following to that, in
”Vulnerability Analysis of Banking Applications on Android Smartphones”, [2] a
vulnerability assessment on the Android banking application of Bank of Cyprus
takes place. Similar work is done by J. Awsome et al. and J. Doe et al. [8, 9] for
Mobile banking applications of ING, Rabobank, ABN AMRO and German open
HBCI/FinTS protocol. This work can be considered as a follow-up on vulnerabil-
ity analysis on mobile banking applications with UK’s HSBC bank as a target [17].
However, this time instead of singling out a platform for the analysis, we explore
all options including the banking applications on Android, iOS and website since
a system is only as secure as its weakest link. Our findings show that HSBC has
put considerable effort to secure the Android system while iOS app security can
easily be bypassed with a jail-broken phone and a certificate killing app. On the
other hand website is proved to be the most vulnerable since there is no protection
against man in the browser attacks. Furthermore, as our project capstone, we in-
troduce our own open version of the HSBC banking application which is able to
perform the basic functions: 1-Log-in, 2-View Balance, 3- View transactions and
4- make transactions, and limits the redundant information/packets during client-
server communication.

The rest of the thesis is structured as follows: In section 2 we discuss the goals

1

and expectations of our research. In section 3, we present a collection of Android
hacking tools and vulnerabilities that are easily accessible and freely available in
the internet, require no root access for the attacker, and are simple enough even for
a beginner to use. Moving to section 4, we discuss the inner workings of one time
passwords (OTPs) [18] that are used by most of the banks today either in special
devices [19] or in mobile applications. Furthermore, our vulnerability analysis is
presented in sections 5, 6, and 7, where we go through the security of mobile/on-
line banking platforms, present their inner workings and OTP algorithm. In section
8, we introduce our permissionless banking API version of HSBC and then com-
pare it with the current banking options in secton 9. Finally, the key findings and
conclusions are discussed in section 10.

2

Chapter 2

Research Goals

In this section we will discuss how banks handled failures and money loss in the
last three decades, and their behaviour towards the customers. Further, we propose
a method which could result in faster failure identificaton and improvment, thus
better customer protection and satisfaction.

2.1 Faults of the past

In a paper published in 1993, R. Anderson discusses about why cryptosystems
and, more specific, banking cryptosystems fail [12]. According to Anderson, un-
like other engineering problems, state of the art cryptosystems keep failure reports
secret, while only outdated systems might publish the causes of a crash. Further-
more, bank behaviour in cases of frauds differs from country to country. On the
one hand, US regulation demands banks to refund customers for all disputed trans-
actions unless they can prove the customer has committed a fraud, which pushed
the development of advanced security mechanisms. On the other hand, Britain
bankers, due to lack of strict customer protection regulations, deny faults from
their systems, resulting into people being charged for crimes they did not commit.

R. Anderson provides a plethora of fraud examples on ATM machines conduc-
ted by working employees, maintenance engineers even outsiders. In some cases
customers lost large amounts of money while bank kept blaming them for fraud.
Further research shows that techniques used almost three decades ago still exist
today with a prime example ”jackpotting”. Jackpotting is a technique where the
attacker can replay the communication sessions between ATM and bank in order
to withdraw money from the machine multiple times [12]. Similar attacks still ex-
ist today through many malware families, including ALICE which is discovered
recently and stands out for its simplicity [13].

Besides attacks on ATM, R. Anderson discusses how poor decisions in PIN gen-
eration and management increase the chances of the code being guessed, decryp-
ted, and even result into exposing the account number. With this, Anderson notes
the importance of having security experts review how these procedures should be

3

performed.
As a consequence of those failures along with bank behaviour, the author ex-

plains that banks put customers in a position that they cannot prove that a failure
occurred, while it creates an encouraging factor for bank employees to exploit their
position and commit fraud. Furthermore, the lack of keeping central records from
customer complaints makes frauds possible to be repeated without notice.

Finally, the author proposes two approaches to improve systems. First, by formal
verification of hardware and software safety features, and second, through constant
feedback and improvement.

2.2 History repeats

In a more recent time-line, technological progress like online/mobile banking makes
banking fraud and money theft even easier, since the attacks can be performed from
remote location and target larger groups of people. According to Brignall [14], on-
line bank fraud is the ”UK’s fastest growing area of crime”, with £25m being lost
due to scams among 5000 customers in the first 9 months of 2015. While the bank
refuses any refunds for around 70% of those customers, security experts claim that,
most of the scams could be prevented if the banks matched the payee account with
account name. However, instead of taking action, government rules demand that
fraud cases should be reported to banks instead of police. This results to banks
labeling reported frauds as customers fault, lowering this way the crime figures.
Even in the current year, UK banks still keep the same mentality and claim that in
cases of fraud, victims ”should accept the blame and not expect automatic refunds”
[15].

Considering that bank fraud is still an ongoing problem, while banks have turned
their backs against customers-victims we review R. Anderson approaches for im-
proving the systems in view of recent technological development. Starting with
formal verification is something that bank employees should do before releasing
their systems thus there is nothing outsiders can do about it. However, Anderson’s
second approach, feedback and improvement is something that gets a new meaning
in today’s society. Employing open protocols and open standards, is something that
could benefit both bank and customers. This way, outsiders can view and test the
banking APIs and report any vulnerabilities or bugs they find before an exploit is
implemented. Furthermore, the customers can know exactly what happens behind
the interface and machine they use to manage their account.

2.3 European pressure for change

This approach comes a bit closer to reality with European union’s Payment Ser-
vices Directive (PSD2) law that is applied since January 2016 and EU countries
have to incorporate it into national law by 13 January 2018 [16]. PSD2 law aims
to force banks into allowing a secure way for customers to authorize a third party

4

provider to provide access to account, and transaction data, or make payments,
without other parties being involved. This puts customers in control, since it cre-
ates more options for managing their finances, bank’s banking platform or third
party applications. By this law, banks across EU have to provide a public API that
can perform the noted tasks for third parties to use. This could impact the way
payments are made since a payment can be done directly from the bank without
any intermediate companies involved. Furthermore, account aggregation becomes
possible since an application could use APIs from multiple banks, having this way
all the accounts stored in one application.

However, the law alone cannot fix everything since bank behaviour will play a
significant role. Banks could provide the minimum requirements and then keep
a defensive stance against third parties while keep their old ways of working, or
embrace the opportunity, accept feedback, and improve their business model and
systems, in cooperation with the third parties.

Having covered those topics, with the deadline of PSD2 law incorporation this
January, our research lies on how open APIs and constant feedback can improve the
current banking system. For that reason, we chose a well known, globally operating
bank, HSBC, in order to analyze their mobile and online API along with their key
generating algorithms and develop our own open API in an attempt to evaluate
whether there is space for improvement in security, usability and performance.

5

6

Chapter 3

Vulnerability assessment tools

While examining the HSBC mobile banking app on Android, all operations were
done on a non-rooted device. Even though rooting a device provides more efficient
methods/tools when analyzing an Android app and a significant increase in rooting
malware is noticed in the last years [20], not every device in the field is rooted. In
order to include all Android devices in our research we decided to conduct our vul-
nerability analysis on the HSBC mobile banking app on Android on an unmodified
Nexus 6 device.

Interestingly, after conducting a research on vulnerability assessment tools, even
for non-rooted devices, we came across countless tutorials for numerous applica-
tions designed to be used even by inexperienced users. Due to this plethora of
tools and vulnerabilities, this section is dedicated to present some worth mention-
ing findings of our search.

3.1 Android debug bridge - ADB

Android debug bridge (ADB) is a command-line tool that performs communication
between Android device and user [21]. Using adb, one can install or remove ap-
plications from a device, create backups, and restore them, even navigate through
the device folders, and send or receive files from device to computer and vice versa.

3.2 Androguard

Androguard [22] is a python based tool set to be used for static analysis [23]. It
can be installed individually and is also included in the virtual machines A.R.E.
(Android Reverse Engineering) [24] Santoku [25] running on linux. Androguard
supports three compilers that can be used for .APK, .DVM, .dex, .class files result-
ing to a more readable .Java code. Other functions of Androguard are included in
table 3.1

7

Tool Purpose
Androlyze 1) Decompile: DAD, dex2jar+jadx, DED option,

2) Get list of: classes, permissions, strings,
activities, methods.

Androaxml View AndroidManifest.xml
Androsim Compare two apk files
Apkviewer View methood calls in mathematical graphs

Androapkinfo Information about apk file

Table 3.1: Androguard tools.

3.3 Smali/BackSmali

Smali [26] is an assembler used for the .dex format used by Dalvik [35] Java Virtual
machine that is used by Android and BackSmali is its disassembler [27]. Even
though Smali files are difficult to read, understanding the code is possible. For a
better understanding of Smali code, lohan provides an example of Smali code in
use in his blog [28].

3.4 Deobfuscation tools

Simplify [29] is a generic Android deobfuscator. It virtually executes the selected
app and then, based on its behaviour, optimizes the code to be human readable
while maintaining the original semantics. Like simplify, JMD [30] is also a Java
bytecode deobfuscation tool for general purposes.

3.5 ApkTool

ApkTool [31] is an essential tool for analyzing Android binary apps. It is used for
disassembling/rebuilding resources from/to APK binaries. After disassembling an
APK file, the user can then decompile using Dex2jar and JD-GUI in order to read
the code in Java language. Also user can add patches to the disassembled bytecode.
In the case where the user added a patch to the code they can rebuild the APK but
before installing it back to the mobile device they have to sign the APK [32].

3.6 Dex2jar and JD-GUI

Dex2jar [33] and JD-GUI [34] are decompiling tools. The first is used to decompile
the Dalvik executable, classes.dex, to Java bytecode in .jar format. The latter is a
lightweight GUI to help navigating through the Java code.

8

3.7 APK debugging

An Android vulnerability assesment tool discussion would not be complete without
included application debugging. On Android, is possible to perform debugging
during run-time if the apk is set to debuggable. This Android feature helps catch-
ing bugs but also provides a great way of understanding the inner workings of
an application and spotting vulnerabilities. Android application debugging can be
achieved using multiple methods for byte code up to Java code debugging.

3.7.1 JDB-Java debbuger

JDB [36] is a command-line debbuger for Java classes that comes preinstalled with
JDK. Using JDB, the user is also able to inject code during the run time of the
applicaton by altering variable values. Basic functions/commands of JDB are the
following:

• run - start JVM

• stop in <function> - Set breakpoint

• list - Show source code around current location

• clear - Show all breakpoints set

• threadgroups - Show threadgroups

• threads - Show threads

• classes - Show all classes loaded in JVM

• class < classname > - Show info about class

• methods < classname > - Show methods of class

• next - Execute next line

• step - Get into method

• step up - Get out of method

• where - Command shows the current call stack.

• locals - See local variables (if compiled with -g)

• stop in - Set breakpoint on method

• print < variavle > - Print variable value

• set < variable > = ... - Change variable value

9

3.7.2 IDA PRO debugging

Ida pro [37] is an advance and well known tool for disassembling and debugging
applications. Use of this tool makes it possible to debug Android byte-code at
run-time [38].

3.8 Drozer

Drozer is an open source software attack framework for Android that allows the
user to interact with other Android apps [39]. It can be used on both emulators and
Android devices to find, test and exploit Android vulnerabilities. As an example,
one of the most common uses of Drozer is exploiting Android’s Inter-Process Com-
munication in order to extract sensitive information that an app installed on the
device makes accessible to other apps [40].

3.9 Data storage/transfer vulnerabilities

Besides the applications and attack tools, the whole concept of a portable device
such as a mobile phone itself can become a significant threat when it comes to
sensitive data and storage. As mentioned earlier, Drozer is one app that can exploit
the communication between Android process to capture sensitive information that
an app shared. However, this is just one of the many points that an attacker could
start when examining an app. Infosec discusses about side channel data leakage
and their Androud hacking & security tutorial series [41, 42] . Furthermore, in
their 2016 report, OWASP Mobile Security Project - Top Ten Mobile Risks [43],
has rated insecure data storage and unintended data leakage as the second highest
risk below improper use of platform. Thus, unintended data leakage and easily
accessible data storage are a crucial issues of data security and should be treated
accordingly when designing an Android app.

3.9.1 Side Channel Data Leakage

Data leakage through side channels refers to inputs/outputs that a process might
send or receive and that may be easily accessed to third parties. This sources might
be copy/paste data, application logs, even data analytic or browser cookies. As
an example to the latter, in their article - vulnerability analysis of mobile banking
applications [2], the author show that after a successful log-in, the authentication
of the server to the client is depending on a single cookie. As a result, any person
that gets to know the cookie can have access to the mobile banking without ever
knowing the credentials of the user.

10

3.9.2 Shared preferences

SharedPreferences falls into the category of data local storage. SharedPrefereces
files are XML files containing values that are used by the app. They are stored in the
path /data/data/<package name>/shared prefs/<filename.xml> and according to
the Android developers getting started tutorial, the SharedPreferences API should
be used when saving a small collection of Key-Value Sets [44]. However, knowing
the path of the files, a simple adb command allows an attacker with physical acces
to the device to extract, read and modify the files as shown by J Rizzo [45].

In order to protect SharedPreferences, the Secure-preferences library [46] , provides
an encryption wrapper that encrypts sharedPreferences values stored in .XML files.
Even though this will increase the security of sharedPreferences, the encryption
keys are still stored on the device and anybody with root access could extract them.

3.9.3 SQLite and NoSQL databases

Similar to SharedPreferences, SQLite and NoSQL are used for storing data into
databases [47], [50] . Those databases are located in the path /data/data/<package
name>/databases
/<databasename.db> and can also be extracted using adb.

3.9.4 Internal and External storage

Internal and external storage refers to device storage space or SD card. After a
simple search in the Smali code using keywords such as ”toString()”, *.txt, ”open-
FileOutput”, ”FileOutputStream” or ”sdcard” can reveal whether information is
stored in those storage spaces along with the path to reach them. When storing
data on SD card one should always keep in mind that the card can be removed
from the device and tampered with by an adversary with physical access to the
device. Furthermore, Srinivas [49] demonstrates an attack where a simple patch on
an app can change storage path to SD card instead of internal storage.

3.9.5 User Dictionary cache

According to Srinivas [49], Android feature, user dictionary, where user stores
frequently used or new words, can also store sensitive information that the user
typed in. This information is stored in a single database and can be accessed by
any Android application.

3.9.6 Android adb backup

Android backup [51], is a way to extract an Android application including its stored
data using Android Debug Bridge (ADB). By extracting the app and data on a
computer, an attacker can read the data and APK code, or alter them to replace the
old app with a patched version.

11

3.10 Encryption

Encryption libraries can be used to protect localy stored data [46, 48]. Encryption
methoods can increase the security of an app only when they are used in a cor-
rect way. The two most common mistakes when using cryptography according to
Srinivas [52] are:

• Weak encryption algorithms or the use of encoding as encryption that can be
easily be decrypted/decoded.

• Weak implementation on strong encryption algorithms - i.e. hard code the
keys into the app.

12

Chapter 4

Authentication using tokens

4.1 Authentication practices

Over the years banks have introduced multiple mechanisms for authenticating the
user when online banking is used [53]. As part of the bank authentication evol-
ution, we have seen PIN codes and password phrases, memorable questions, use
of transaction authentication codes (TAN) or one time passwords (OTP) and two
factor authentication techniques. The use of PIN code, an information that only
the authorized client should know, in combination of a TAN code generated by a
physical device that only the client is supposed to have, falls into the two factor
authentication (TFA) category [54]. TFA is considered the current state of the art
in authentication used by not only banks but tech companies as well including
Google, Facebook and Apple [57].

In general, in authentication systems, PIN and TAN codes are combined in dif-
ferent ways in order to enhance the security of the generated codes under MITM
and phishing attacks. In [56], RedTeam Pentesting GmbH, discuss the vulnerabil-
ities PIN/TAN, PIN/iTAN and PIN/chipTAN authentication systems under MITM
thread.

Starting with PIN/TAN [55], a currently outdated method, the client obtains a
list of TNAs that each be used only once. In the case of PIN/TAN, if any of the
TAN codes becomes known along with the client’s credentials, it can be used by a
malicious person to perform unauthorized transactions. J. Buchmann et al. in [58],
shows that this system is vulnerable to MITM and phishing attacks by attacking
banking applications that support PIN/TAN authentication.

As an extra step of security, indexed TAN (iTAN) [55] is used to protect the
client of phishing attacks that may obtain TAN codes. In PIN/iTAN systems, the
TAN codes are indexed and bank requests a specific TAN code for a transaction.
This way intercepted TAN codes cannot work for other transactions. However,
this system is still vulnerable to MITM attacks where the attacker has control over
client-bank communication and can make the user believe he gives the iTAN for his
transactions but providing the iTAN for an unauthorized transaction instead [56].

13

Moving to today’s technologies, TAN or OTP codes can be sent to a registered
mobile device that the user owns through a ”secure” channel in the form of SMS.
This is also known as mTAN method [55]. According to C. Serrato [59] this tech-
nique includes three main drawbacks. First the system may put extra charges to
clients for the SMS and the availability of the technology depends on the area net-
work coverage. Finally, this system is still vulnerable to MITM attacks that target
mobile devices message services. An example of such attack is described in [60],
where Zeus botnet was used to steal $47M from European bank customers.

An attempt to eliminate the MITM thread from capturing or misusing the TAN
codes, a trusted device (hardware token) that is responsible to generate the desired
codes [55] is given from the bank to the customer. This devices come in differ-
ent variations based on the bank’s security standards. Some of them can calculate
a sequence and provide an OTP while others are able to respond to authentication
challenges based on a common secret [61]. ChipTAN is an example of such applic-
ation where the user receives a calculator-like device from the bank [56]. ChipTAN
codes are generated with the user inserting his bank card inside the device and also
providing information regarding the specific transaction. This way for a MITM
attack to succeed, should be targeting both transaction data and device data. How-
ever, according to [56], chipTAN system is still vulnerable to multiple types of
transactions since an attacker could still change some of the transaction data that
are not included in the TAN code generation.

Even though use of a hardware token proves to increase security it still has a
functional drawback, the user needs to have the physical device with him every
time there is a need for an OTP generation. For this reason there are banks includ-
ing HSBC, that implement their OTP generator within a mobile app using software
(soft token). The advantages of this method is its simplicity since no extra hard-
ware is needed besides a smart phone. In addition to that, not having to buy extra
equipment or be charged for SMS codes, soft token minimizes the costs of an OTP
generator and is also immune to network coverage since the OTP is generated loc-
ally through software [59].

A soft token authentication mechanism could perform in the same manner of a
hardware token but when it comes to security, since the codes generators operate
in mobile platforms, including Android, all vulnerabilities and threads discussed
in section 3 along with more sophisticated attacks and malware may used against
it. For that reason a poorly designed soft token mechanism instead of securing the
client could leave him vulnerable in the hands of attackers

4.2 OTP generator

In the previous paragraphs we discussed the advances in threads and security that
led to OTP and their evolution. Considering hard and soft tokens being the pre-
ferred OTP generation solution for mobile banking applications, as presented in
[2], [8], [9] and soft tokens being used for both log-in and transactions in our target

14

bank [17] thus, we devote the next paragraphs to examine the inner workings and
algorithms of OTP generators.

Multiple solutions have been deployed for authenticating clients and servers by
various banks, governments and institutions. OATH is the initiative for open au-
thentication. They provide a reference architecture for strong authentication to be
applied to any kind of device and network using open standards [62]. They op-
erate in the areas of authentication protocols, credentials for security devices and
credential validation. Their methods include public key infrastructure (PKI) [63]
and X509 certificates [64] for Internet protocol authentication, OTP credentials for
applications depending on user passwords and Subscriber identity module (SIM)
[65] for authenticating users over WiFi and cellular networks. OATH provides
two OTP algorithms, HOTP and TOTP with the first used to generate OTP codes
from Hashed Message Authentication Codes with an increasing counter as input
while the latter is a variation of the first one using an integer time counter instead.
Both HOTP and TOTP have been adopted by IETF and presented in [67] and [66]
consecutively.

According to [67], HOTP is defined within 4 variables C - an 8-bit counter value
synchronized between client and server, K - the shared key, T - number of failed
authentication attempts before locking the user, s - synchronization parameter that
is used to verify codes up to C + s counter values and D - number of digits in the
output HOTP code. In the process of calculating the code, first the HMAC-SHA-1
of key and counter is calculated and a 20 byte string is received:

HS = HMAC − SHA− 1(K,C)

Then, the output string undergoes a dynamic truncation in order reduce the size
into a 4 byte string. During the truncation, the low order 4 bits of the final byte
in the output string are turned into a number that indicates the byte offset. At
that point, starting with the string position at byte offset+ 1, the next 31 bits are
returned. In the final step, the truncated string is converted to a number and with a
modulo the number is reduced to the range of 0..10D − 1:

Num = Str2Num(truncated string)

Return HOTP = Num mod 10D

HOTP provides an OTP generation that can be used both by client and sever
authentication however, this implementation might have a synchronization problem
when more than s codes are generated by one side while no authentication requests
are sent on the other side. TOTP comes to solve that problem using an integer time
counter instead of an incremental one.

As mentioned earlier, TOTP is a variation of HOTP with the difference being that
instead of C, the counter value is generated by time input using three variables: X
- time window duration in seconds with default value 30 seconds, T0 - initial Unix

15

time to start counting steps that is by default 0 and TU - current Unix time. The
time counter T is generated as follows:

T = floor[(TU − T0)/X]

At this point should be noted that T value must be higher than 32-bits if the
system is used after 2038.

Examining an open authentication protocol is rather trivial since everything is
given a-priory, on the other hand, vendors may use their own algorithms enforced
with obfuscation in order to make it harder to get insight of the algorithms used. In
their work, B. Mueller [61] and T. Valverde [68], present how they reverse engineer
the soft token OTP generation bypassing all protection layers for RSA SecurID
[69], Vasco DIGIPASS [19] and a Brazilian bank.

RSA SecurID operates on AES encryption and protects the code using pro-
Guard obfuscation, making it harder to understand. In addition the app uses Secur-
IDlib for OTP computation. B. Mueller suggests three starting points for extracting
the OTP algorithm:

• Check for classes in SecurIDlib that include keywords related to ”OTP”,
”Signature”, ”token” etc

• Check static plain text strings with keywords related to OTP

• Check for AES S-box or SHA256 algorithm constants

However, in the specific case the procedure becomes simpler with one extra in-
formation - stoken [71], is an open source OTP generator compatible with RSA Se-
curID app. Examining stoken algorithm gives significant insight on how RSA Se-
curID algorithm operates. Stoken performs 5 rounds of AES encryption using keys
that are generated by time-stamps and a PIN code for the final round encryption. ,
SecurID app uses a class that performs the same algorithm, com.rsa.securidlib.D.n.
Furthermore, seed is stored in an SQLite database, securidDB in an encrypted
form. At this point the author uses frida [72] and code injection to get the seed
plaintext after is decrypted from the app. Finally, using the seed and token serial
the OTP is generated through stoken algorithm.

Vasco DIGIPASS is the second case study that B. Mueller provides [61]. It uses
in AES and triple DES encryption and supports multiple OTP options based on con-
firmation codes, challenge-response, MAC signatures and timestamps-events. Fur-
thermore Vasco DIGIPASS employs multiple anti-tampering and anti-debugging
mechanisms using libshield.so. This library is responsible for preventing any de-
bugger from attaching to the app, checking whether the device is rooted and kill the
app if that is the case and perform checks to make sure that the app is not modified
and the APK signature is not altered. In addition, on start-up a child process is
attached to the main process as a debugger that monitors and prevents other pro-
cesses to attach to it. Also, the main process monitors the PIDs of the tasks that
trace it and if a PID other than the child’s process is found the app is terminated.

16

To bypass root detection the author hides system calls that attempt to acces root
privilege data, creates a fake /proc directory where stat files are not showing any
root access as well as a fake /sys/fs/selinux/enforce. Anti-debugging process is
dealt by intercepting the first attach attempt from child process and storing its PID
while returning an EOK. Then a fake process with child’s process PID is shown
to main process as the tracer PID. Finally, all trace calls from child process are
intercepted and the expected values are returned to the process. After the initial
phase of the child process a stop message is snd to put the process to sleep. At this
point attaching a debugger to the process is possible but stil the debugger packets
are not received due to JdwpState::HandlePacket(). To overcome this the function
is changed and the library libart.so updated.

After bypassing the protection layers and performing static and dynamic ana-
lysis, the author provides the OTP generation algorithm as follows:

1. Generate FPH = SHA256(AndroidID+IMEI+Key1), Key1 is hard-
coded in the app.

2. Generate DeviceKey = PDBKF2(FPH+Key2, SEED, 320, 32), Key2
& seed are hard-coded in the app.

3. Decrypt dynamic and static vectors using DeviceKey and AES-CFB algorithm

4. Final OTP is a function of timestamp, static and dynamic vector data and
device fingerprint after being processed by PBKDF2 algorithm.

5. After the OTP is generated dynamic vector updates the number of OTPs gen-
erated by one, passes through AES encryption using device key and stored
in memory.

Finally, the author presents a proof of concept attack where the java code of the
app responsible for generating the OTP is copied and used with the extracted Keys
and data.

T. Valverde, in his project [68] he revrese engineers a Brasilian bank in order to
make a hardware implementation of OTP generator using a TI Stellaris LaunchPad
[73], cryptosuite [74] and RTClib [75]. The bank provides a code generator that
is activated through a phone call and is PIN-Protected. For starting, the author
extracts the APK and decompiles it using APKtool, dex2jar and JD-GUI, to get
the java code of the APK. Then he deobfuscates the exception strings, using hard-
coded keys and an algorithm function found in the app. Then by examining the
exception strings and classes that are called, he finds out that the OTP generation
algorithm is as follows:

4.2.1 Get token Key

A token-key stored in token.db is extracted after decrypting the file using SHA-1
digest of Android ID as a key.

17

4.2.2 Generate time-stamp

Time stamp is generated by calculating the number of 36 sec intervals since 1 aprin
2007 00:00.

4.2.3 Generate hash code

Time-stamp becomes a byte array and hashed using HMAC-SHA-1 algorithm with
token-key.

4.2.4 Generate code

Last four bits of hashed output are used to generate the code.

4.2.5 Truncate code

Final output code is the modulo 10000 of the generated code.
According to the author, the algorithm of the bank shows high similarities with

TOTP Google’s authenticatior implementation with small differences in the period
that token lasts and time-stamp date.

In this chapter we discussed about authentication mechanisms and the signific-
ance of OTP as well as its inner workings. In addition, we have examined two
open source OTP generators and three case studies of reverse engineering Android
apps with added security layers such as obfuscation and encryption. During the
case studies we realize the effort that the organizations put in order to secure their
custom OTP generators in order to protect their customers.

In the next chapter is our turn to start the analysis on UK’s HSBC bank to reverse
engineer the communication between the user and bank in order to provide insight
regarding their security.

18

Chapter 5

HSBC vulnerability assessment

In this chapter, we present the methods used to analyze and assest HSBC online
and mobile banking platforms. During the process we discuss some of strong and
weak security mechanisms that the banking system employs.

5.1 HSBC mobile banking

HSBC [17] bank in UK provides a mobile banking app that users can download
from Google store and use it, either with their devices registered or not. The basic
app is used to show balances, bank messages, pay bills and make transfers using
Paym system [76], a mobile payment service between seventeen banks and build-
ing societies. Registered users link their mobile number to their bank account and
using that number they are able to transfer and receive money with a daily transfer
money limit.

When someone makes a bank account he may register to online banking and
create a username an online banking password as well as a memorable question for
log-in purposes. Finally, for verifying the registration he should provide a physical
or digital secure secure key. Physical secure key is received by mail and includes
a key generating device and an activation code. Digital secure device, refers to the
mobile banking app when running on a registered device. To register the device,
user should have already registered for online banking and received a validation
code for activating digital secure key. By registering a device, user is able to ac-
tivate digital secure key generator. Using the DSK generator the user is able to
generate three kinds of OTPs:

• Log-in OTP

• Confirm transaction OTP

• Register device OTP

Using log-in OTP the user is able to log in to full access online banking that
enables making transfers to new and global accounts while confirm transaction

19

OTP is used to verify such transaction. Finally, when a mobile device is already
registered as digital secure key device changing the registration to another device
needs the register device OTP otherwise the user should contact the bank and get a
secure key by mail. To log in to a registered mobile app user can use his username
and a DSK password that he created during registering the device. In the other
hand, when user attempts to log-in with a non-registered mobile device as well as
online banking he has to provide username, memorable answer and chose between
generating a log-in OTP for full access log-in or use part of the online banking
password for limited access log-in.

5.2 Starting point - Transferring registration

As shown in the previous section, in HSBC, mobile and online banking are closely
cooperating in order to allow the user have a full-access log-in and perform transac-
tions without fully exposing passwords or critical information but providing OTPs
instead. Also, for unknown and beyond understanding reasons, mobile banking
cannot perform any transactions besides Paym. In our work we aim to analyze the
online and mobile banking platforms to first examine the security of mobile app
and online interface as well as the client-server communication for log-in, balance
view and transactions.

In order to achieve our goals, we have in our hands a registered device and
the account related keywords (username, passwords etc.). The registered device
we have, has been previously hacked and the APK has a different signature than
HSBC’s. Furthermore the app is been outdated and does not allow any use if not
updated. Since the installed APK is modified and signed by a different key it is
not possible to accept an update from HSBC. The only options to get a registered
device with an updated APK are:

• Contact the bank and getting a registration activation code by mail.

• Update the device through hacking the app.

The first choice would take time to receive the code and could raise questions by
the bank, thus the second approach is decided.

By examining the app files we observed that sharedPrefs folder contained mul-
tiple XML shown in figure 5.1 files including the files named SOPValueStore 148
and TOKEN ValueStore 148. Furthermore, a comparison with an updated non-
registered mobile banking app shown that most of the XML files also found in
the updated version and are the same in both name and context with the old ver-
sion, besides some version numbers and dates HSBCHybridSharedPrefs, configur-
ation 148 and nameValueStore files. However, SOTPValueStore 148 is not found
in the updated non-registered version thus we considered that it has to do with OTP
generation and device registration. For that reason we decided to attempt transfer-
ring the files from the registered app to the updated non-registered app to check

20

whether it is possible to transfer the registration just by editing and adding the files
from sharedPrefs folders. However this attempt failed thus further examination of
the code is required.

Figure 5.1: SharedPrefs files

In a second test, since the registered device already had certificate checks re-
moved we tried to intercept the communication in order to check whether the up-
date request comes from server or application. Results shown that packet flow is
coming normally without any update requests and the app still gives the update
message and kills itself afterwards.

In order to find a starting point for hacking the update we examined the java
byte codes from both updated and old-registered apps starting with the calls of data
from sharedPrefs files and methods related to ”update” or ”register” keywords. At
that point several patches were applied to the code without any significant res-
ult. However, during our search we came across a forceUpdate form in configur-
ation 148.xml file in sharedPrefs that included the same output string as the one
shown on the mobile screen when the app requires an update. The force update
form included the following fields under Android section:

• forceUpdate

• forceUpdateTargetVersion

• forceUpdateVersion

• forceUpdateLink

• forceUpdateMessage

• forceEntityListChecksumUpdate

21

By changing forceUpdateMessage string, the new string is shown on the mobile
screen when the update is requested thus it concludes that this form is responsible
for the update request. In the next step the forceUpdate value is changed from 1
to 0 and the result is that the application still requires for an update. However, this
time the force update request comes from the bank server instead of the applica-
tion. Specifically, a JSON form is sent containing an updated version of configur-
ation 148.xml with the field of forceUpdate as shown in figure 5.2. At this point,
a script is written if fiddler [78] that changes the received JSON form forceUpdate
field from 1 to 0 in a same way as we did earlier with the XML file.

Figure 5.2: Force update received JSON form.

Having bypassed the forceUpdate message request, updating the app is a series
of simple steps:

• Log-in to new device using username

• Provide answers to memorable/security questions

• Provide OTP from registered device

• Use confirmation code received in email

• Create a new DSK password

Since the registration transfer was successful and the required OTP was provided
by the outdated app version, is clear that the OTP algorithm is the same as the
one used in previous versions. This means that even if the current app uses an
enforced security mechanisms to protect their OTP algorithm from being inspected,
the algorithm can be extracted simply by using an old and less protected app.

22

5.3 Exploring Android app

After updating APK and registering the device we attempt to make a backup of the
mobile app using adb and extract the APK for analysis. In a first attempt to find out
more about the app we patched the Android manifest to make the app debuggable
and be able to gain access into sharedPrefs. However, the installed app could not
start. In a second attempt we installed the APK without any changes in the code
or manifest but with a different APK signature. The result is the same as the first
attempt which shows that the app is killed is due to a failure in signature validation.

Doing some further investigation in the APK files we found out that it uses three
libraries:

• libmobicheck.so

• libopencv java.so

• libshield.7cc6b7f1.so

In a first look on the libraries used our attention is on libshield which is also
seen in the previous section in B. Mueller’s [61] paper. This library is described
to perform various tests and employ multiple anti-tampering and anti-debugging
methods to protect the app. A check in the Smali code libsield calls, revealed that
libshield is called in 293 Smali files. However, in all cases there are only two
different function calls that are performed in a single line and return nothing back.

The first line of code that is called in almost every process is
invoke-static , Lno/promon/shield/LibshieldStarter;− >startLibshieldFromClinit()V
The second function call is called only in AppMonitor.Smali and the code is de-
scribed as
invoke-static p0, Lno/promon/shield/LibshieldStarter;− >
startLibshieldFromAppMonitor(LAndroid/content/Context;)V

Knowing that the libshield function calls do not return anything back, an attempt
to remove all function calls, is all that its needed to bypass the signature and de-
bugging protection! To test if the debugging is possible we created a Smali project
in intelijIDEA and performed a real time debugging on Android APK monitoring
logs from Android DDMS and setting various breakpoints in the code. In a small
debugging session it was possible to identify some methods related to SSL certi-
ficate protection and are responsible for killing the app when a MITM attack is
attempted.

More interestingly, code parts show that debug flags hard-coded in Smali code
as shown in figure 5.3. Setting the debug flags to true, more than 600 log messages
can be printed within 100 plus Smali files, that probably authors of the app used for
debugging. While some logs are used to state that certain app tasks are (should be)
taking place when the log is printed, some others provide information regarding the
requests and responses that the app is taking. Smali code examples 1 that produces

1For further understanding of the Smali code refer to [28]

23

the logs are shown in figure 5.4 and 5.5. However, the significance of these logs
might not be the content of the logs but the fact that almost 1/40 th of the total
Smali files contains at least one log file. This may provide an important insight on
how the code is executed and reduce the work of adding extra logs in the code.

Figure 5.3: Field to enable debugging logs (line 30).

Figure 5.4: The string ”task- animating content in logo” is printed in log (line 36)
when isDebug() function returns True.

At this point, since the mobile banking app cannot perform any transactions,
further Anrdoid analysis is unnecessary. For that reason, the study moves from
Android platform into exploring the other two options for the mobile and online
banking, iOS app and web application.

24

Figure 5.5: In the case where isDebug() returns true, the URL that post request was
sent will be printed in log along with the response.

5.4 Man-in-the-Middle in iOS

Since a lot of effort is put into Android app to hack the update/registration and patch
it in order to remove app protection layers, in iOS a different approach is tested. A
jailbreak iPhone using iOS Kill Switch in order to disable SSL verification func-
tions and a tsprotector to bypass jailbreak detection proved to be more than enough
to perform a successful MITM attack capturing communication packets using fid-
dler. The communication session between iPhone and bank are presented in figure
5.6 for log-in using password and figure 5.7 for log-in using OTP.

The packets captured are used to gain insight regarding inner working of mobile
banking app and as a final result, make our own version of the app.

5.5 Man-in-the-Middle in full-access online banking

As mentioned earlier, for unknown reasons, mobile banking app does not let the
users perform any transactions besides paym and linked accounts which only per-
mits a limited amount of money to be transferred per day. In order get an insight

25

Figure 5.6: Log-in session for iPhone using Password

Figure 5.7: Log-in session for iPhone using OTP

of the transactions functionality, we had to work with the online banking as well.
Online banking provides two options to the user: 1- limited-access banking

where the user can log-in providing username, memorable answer and some re-
quested password digits, 2- full-access banking in which the user can log-in through
username, memorable answer and OTP generated by a registered device. In the
limited access log-in user can use online banking services but he can not perform
transactions to accounts that he has never sent money before while full-access on-
line banking has no limit on where the user can send money to.

Working with online banking proved to be even simpler than iOS since there
are no protection mechanisms between client and server and a MITM attack can be
perform just by redirecting the packets to fiddler. In figure 5.8, the packet exchange
during log-in phase is shown. comparing figures 5.7 and 5.8, is concluded that web
application sends almost 3 times more packets just for log-in.

26

Figure 5.8: Log-in session for iPhone

27

28

Chapter 6

HSBC mobile & online banking

Performing a successful MITM between application and bank service, we are able
to capture all communication that happens in between. Furthermore, using fid-
dler’s features, enables us to process the sessions for deeper analysis and extract
the desired information. Gaining access to the communication sessions for both
mobile and online banking we analyze the following functions:

• Mobile banking: log-in using Password

• Mobile banking: log-in using OTP

• Mobile banking: balance view

• Mobile banking: transaction

• Mobile banking: log-out

• Online banking: log-in using OTP

• Online banking: balance view

• Online banking: transaction history

• Online banking: view known accounts

• Online banking: transaction to known European accounts

• Online banking: transaction to new European accounts

6.1 Mobile banking walk-through

In mobile banking, log-in process using OTP or password is quite similar. Log-in
through password is the simplest way of log-in in the mobile banking app since no
OTP generator device is needed and in both log-in types the user cannot perform
any transactions besides paym and linked accounts.

29

Figure 6.1: Mobile banking log-in questions. rccDigits refers to the digits of pass-
word that the user must provide, in that case 1st 3rd and 7th.

The log-in session starts with three GET requests sent to www.hsbc.co.uk for
getting the app related content. Then a POST request is made to start software as
a service (SAAS) authentication and in return, SAAS token ID and SAAS token
assertion ID are produced and sent in a response along with a session cookie -
JSESSIONID(1) and the URL, www.security.hsbc.co.uk to the user.

In the next step, a POST request is sent to the new URL containing SAAS
token ID and SAAS token assertion ID. In reply to that, a status code showing that
the SAAS token ID and SAAS token assertion ID are valid and two new session
cookies -JSESSIONID(2,3) are received. For the rest of the communication with
www.mobile.security.hsbc.co.uk the JSESSIONID(3) is used. Being identified by
the host, in the next session the client is required POST its userID and receives in
reply to provide his memorable answer and either three digits from his password or
an OTP as shown in figure 6.1. After that a new POST request is made to initiate
OTP log-in. If the user wants to log-in through password another POST request
should be sent for selecting password log-in.

In the case where the user chooses to log-in using his password, he has to provide
the three requested digits of his password along with his memorable answer and if
he chooses the OTP log-in he has to provide a generated OTP using his registered
device along with his memorable answer. For both requests a reply is sent noting
that log-in is successful and including the last successful log-on date and time.
When using a registered device for log-in OTP generation, user has to provide the
Finally, a new POST request is sent to redirect the user back to the initial URL with

30

Figure 6.2: Mobile banking balance view.

a new SAAS token ID and SAAS token assertion ID. Using the provided SAAS
token assertion ID, SAAS token ID and JSESSIONID(1) cookie the user verifies
his authentication and the log-in process is completed.

After a successful log-in the user can view his accounts and balances by sending
a single POST request. The balances are presented in a JSON form as shown on
figure 6.2.

A money tranfer can be performed using the app through linked accounts. This
is possible after log-in by sending a POST request including a form with a field
”requestName = prepare inhouse transfer”. However, as a reply we received a
json form with the followig description field: ”desc=Sorry, you do not have any
UK accounts that will allow you to make a domestic payment or transfer using this
app. Please select Global Transfers from the menu to move money between your
globally linked accounts. (PMT022)”.

Finally, log-out takes place sending a single POST request with the command
log-off in a JSON form.

31

6.2 Online banking walk-through

Online banking log-in follows a similar process to mobile banking log-in with
some variations. At first GET requests to HSBC.co.uk are sent in order to get the
web page content. Within the GET request content, SAAS token ID and SAAS
token assertion ID are included along with the field action=’https://www.
security.hsbc.co.uk/gsa?idv_cmd=idv.SaaSSecurityCommand’.
Then a POST request is sent to www.security.hsbc.co.uk to initiate SAAS authen-
tication followed by multiple GET requests in order to obtain the page content.
Similar to the mobile banking log-in, the first step user sends his userID in a post
request and then he is required to provide memorable answer and OTP to proceed
with full access log-in. There is also the option for limited access log-in where
the user provides parts of his password that is not included in our research. Along
with log-in information in both userID and password/memorable-answer POST re-
quests, the user sends a field called ESDS token-null<number> along with the
value 0. That token is received from the previous session reply and <number> is
different every time. In password/memorable answer POST request, if the log-
in is successful the user will receive a new SAAS token ID and SAAS asser-
tion token ID. Finally, the obtained tokens will be sent to www.services.online-
banking.hsbc.co.uk in a POST request and a session cookie JSESSIONID will be
received. By obtaining the JSESSIONID log-in process is complete.

After a successful log-in, a POST request is sent in order to obtain a cookie
named SYNC TOKEN that should be included in all future sessions in the header
field ”X-HDR-Synchronizer-Token” along with JSESSIONID. From that point for-
ward a series of POST request and replies are taking place in order perform various
functions and retrieve account information. The most significant requests are se-
lected and presented in table 6.1. Before moving to transactions and other web
application functions, it should be noted that in online banking, all responses from
the bank up to this point are in HTML code in contrast to mobile banking app that
all log-in process is done by exchanging JSON forms. However, after a successful
log-in, online banking replies include a JSON form with all the requested fields
and values.

Using the commands from table 6.1, the user is able to retrieve information about
balances, transaction history and even his personal data. Furthermore, the user can
perform money transfers to known accounts just by selecting the account that he
wants to send the money to or to new accounts by filling a long form.

The packet exchange during a transfer to a known account is presented in figure
6.4, with strikeout sessions being identified as redundant packets. As shown from
the figure more than half of the sessions taking place during a transaction are not
needed. A transaction starts with a POST request sending a single field form to
initiate a new payment. Then another POST request is sent asking for operation
codes for each transaction type and its confirmation code. These codes are differ-
ent every time a new transaction is requested and are used by the user as a code
in the header field ”X-HDR-DoubleSubmit-Token”. An example of the received

32

Function name Description
rtrvAcctSumm User bank accounts basic information:

Balane, account holder name account index
and ID

rtrvTxnSumm Transaction history per bank account
rtrvDDAcctDtl User bank accounts detailed information:

IBAN info, last update, limit etc.
rtrvMsgStat Number of bank messages that the user has
menu/getMenuItems Menu optons
rtrvCustPrsnDetl User personal details:

Name, address, phone, email, date of birth
rtrvLastLoggedOnTime Last log on time
rtrvPendTrans List of pending transactions
rtrvMoveMnyAcctList List of accounts eligible for moving money
getTime Server time
rtrvUnreadDocCnt Numbe of unread bank documents

Table 6.1: List of requests that are sent after log-in to retrieve information and their
description.

tokens is shown in figure 6.3. After obtaining the tokens a request is performed
to retrieve a list of accounts that are eligible to money transfer and their account
index and following that another request to retrieve a list with all known payees.
Known payees are the accounts that the user has made a transfer to in the past.
Those two sessions can be avoided since after log-in, the exact same requests are
performed and the information is already obtained by the user. In the next session,
another single field form is being posted to the server to declare a new online bank-
ing transfer (OTR) followed by the payment details. For this request, the header
”X-HDR-DoubleSubmit-Token” will take the value of the code corresponding to
”prpslPymt” token. In the response a payeeID will be included which is used for
the next and final request in order to confirm the payment. Payment confirmation
request includes the information that was sent in the previous request, payeeID
and the header field ”X-HDR-DoubleSubmit-Token” gets the code value of ”con-
firmPymt” token. At this point should be noted that transaction to a known account
does not need an OTP to be completed.

Money transfer to a new account is almost identical shares a lot of similarities
with the known account transfer however, some extra steps/sessions are involved
in the procedure. Before analyzing log-in procedure should be noted that the fol-
lowing applies to transfers to European banks, and is being tested using a Dutch
bank ABN AMRO and UK’s bank Barkleys. It starts with the tokens POST request
and again the lists of known payees and accounts that are used for transfers are re-
quested. After the lists and tokens are obtained a POST request for OTR is sent
followed by a request to note that the transfer is to a new account. Following that,

33

Figure 6.3: Tokens different for transfer and confirmation operation.

the user must provide the information of the account that he is sending the money
to, along with the personal information of the one receiving them. Then a POST
request is sent containing a JSON form with account number and country code in
order to receive a list of possible BIC codes and bank details. The user will chose
the bank details and BIC code from the list provided. Then, user will choose the
currency of transfer and if is not GBP another POST request is sent in order to re-
ceive the amount in GBP and the selected currency. At this point, the information is
combined to fill a JSON form and a POST request is sent for making the payment.
For the transfer request, the header field ”X-HDR-DoubleSubmit-Token” gets the
code value of ”prpslNwPyeeIntPymt” token and an OTP is required. For generat-
ing the OTP, DSK generator gets as input the last four digits of the receiver’s IBAN
and the DSK password. In the bank’s response a form is sent that includes the pos-
ted transfer information (Payee account, personal info, transfer account, amount
in selected currencies), the transfer fee charge and a transaction ID. Finally, the
user will POST a confirmation form with the transfer information and transaction
ID. The full procedure is presented in figure 6.5 with strikeout sessions being re-
dundant and red ones being cancelled in fiddler to avoid the charges from bank
fees.

34

Figure 6.4: User-bank communication for money transfer to known accounts.

6.3 Security assessment

One of our first concerns using the mobile/online banking services lies around
suspicious activity. While working with the app, we observed that the bank allows
users to log-in multiple successive times, without a proper log out from the last
log-on time. In addition, log-on through different devices at the same time, seems
to be also possible, since multiple times in our tests two or even three devices were
connected to the mobile app or online banking.

Examining HSBC’s inner-workings and communications we see that even though
a powerful app is developed, protected by multiple security layers, the functions
for OTP generation are still the same with their older, outdated apps. Furthermore,
their choice of limiting their well secured mobile banking app from performing
transactions, while letting transactions being done in the online banking web ser-
vice, which is vulnerable to MITM attacks, might not be wise. Adding to that, a
successful MITM attack on the online banking not only exposes part of the pass-
word and the memorable answer to the attacker during a log-on, but also account
details, history, balances and even user identity including name, address, phone
and even date of birth.

Besides data theft, MITM attack can also result to even worse consequences
when the victim attempts a transaction. When a transaction to a known payee takes
place, the attacker will receive the known payee list and by altering the packet
data, he can redirect the money to other known accounts or change the amount that
is transferred. On the other hand, redirecting the money to a new account is not
possible since for transaction to unknown accounts the OTP generation demands
adding the last 4 digits of the account. However, in the case were a transaction to a
new payee takes place, the attacker could still change the amount of money that is
transferred.

Summing up, with a MITM attack in online banking, an attacker could obtain
the personal information of the user, his bank account details, history and is even
able to alter the amount of money transferred when a new transaction takes place.
Adding to this, if an attacker is able to convince a victim to transfer a small amount
of money then he could alter that amount without the victim noticing.

35

Figure 6.5: User-bank communication for money transfer to new accounts.
Redandunt session are overlined.

Messing with the transactions and getting personal data from an account are at-
tacks that require a certain set of conditions to be met. Their execution demands
the proper planning and expertise, and there is also the possibility of failure. How-
ever, in the online banking website lies a flaw far more dangerous that could expose
multiple accounts and exploits can be performed by anybody with some basic pro-
gramming skills.

This flaw is due to the structure of HSBC online banking log on web page,
which requires: first the user-name, and then redirects to a new page for providing
password and answering security questions. In figure 6.6, we present how the web
site looks when a user-name that does not exist is given. The image shows a prompt
saying there is no match for the specific user-name. From this, we conclude that
if the account does not exist, the ”no match” prompt will appear but if it exists
the page is redirected to the password and security questions page. This alone
sets every HSBC user-name in danger of exposition since it could verify existing
account user-names.

Further more, by getting our account locked and attempting a log-on, we come
across the page shown in figure 6.7, whereas a new page notifying that the account
is locked, is presented. Further research has shown this happens also for suspended
accounts. This is presented in figure 6.8.

Using this user-name exposition, one could attempt log-on with various user-
names and find out whether the specific user-name responds to an existing account
and if it does, the account state. This information alone could be a huge vulnerab-

36

,

Figure 6.6: Online banking log-on attempt with wrong user name.

ility since the attacker could use the user-name to block any existing account that
he finds and perform a denial of service (DoS) attack to the online banking users.
This can be achieved by creating a series of failed log-on attempts due to providing
incorrect data. Such attack could have the same results as the one happened in
2016 ,when users were locked out for two days [77].

Finally, putting together the data obtained from a MITM attack, the fact that one
can know and alter the state of an existing account without the victim noticing, give
unlimited options to an attacker with shapr social engineering skills.

An attacker, after achieving a successful MITM and has obtained the victim’s
data, could attempt to lock the account and even verify that he has succeeded.
Then by attempting to unlock the account, he will reach the point where he has
to receive the unlock code from bank through email or SMS. The attacker can
contact the victim presenting himself as the bank representative and by providing
some personal information convince the victim. Then he could notify the victim
that their account is locked for some reason, and ask for a reply back with the
unlock code that they will be receive in a few minutes. If the attack succeeds the
attacker can register his own device on the victim’s account and even change log-
on password. This way the attack would result into taking complete control of the
victim’s account.

To conclude, HSBC employs strict state of the art mechanisms to protect its cli-
ents, to the point that can be considered ”terribly inconvenient” by users as shown
in HSBC’s mobile banking app review in figure 6.9 However, the way it uses its
resources is really poor, and while giving the sensation of a highly secure service
it proves to leave users unprotected from being locked out from it to losing their
personal data or their money and bank accounts.

37

Figure 6.7: Online banking log-on attempt when account is locked.

Figure 6.8: Online banking log-on attempt when account is suspended.

38

Figure 6.9: HSBC mobile banking app reviews on Google store on 10/7/2017.

39

40

Chapter 7

Vulnerability assessment of
HSBC OTP generation

As a final part of our work, we decided to give a look in the insight of OTP gen-
eration algorithm and define how secure it is for being replicated. For this part we
focus our research on log-on OTP generation process.

7.1 Yet another APK update

Before starting with OTP analysis, we realized that the app had a mandatory update
that demanded to be done. Installing the newest version of the APK in a new
device, with a quick check up we were able to draw some conclusions about the
update:

• APK contains two classes.dex (classes.dex and classes2.dex) instead of just
one like the previous version. Classes2.dex seems to contain mostly crypto,
x509 certificate and other mathematical methods.

• Using adb shell command we are not able to access the HSBC folder getting
a ”Permission denied” message.

• Adb backup does not include Shared preferences folder.

• APK not debuggable.

Moving forward, disassembling the APK and using a simple text search for the
word ”libshield”, we find that Libshield key word is in 4 different .Smali files.
From here we see that there are some changes in the new file since in the previous
versions the keyword is found in 293 files. Those files are AppMonitor, Libshield-
Loader, LibshieldStarter$ActivityMonitor and LibshieldStarter. However, follow-
ing the code is clear that AppMonitor.Smali is responsible for calling Libshield-
Starter and then the rest are called from there.

41

Figure 7.1: OTP input password extracted during debugging

To this point, by just removing the two lines of code that call LibshieldStarter
and build the app as debuggable we have a fully functional APK that:

• Is debuggable

• Provides access to HSBC folder through adb shell

• Backup returns shared preferences folder

Finally, we transferred the registration to the new device and started with OTP
analysis.

7.2 Locating OTP generator

After successfully transferring the registration to the new device, at first we created
a backup of the APK. This time backup included shared preferences folder and spe-
cifically a file called SOTPValueStore 148, which contains static vector (SV), dy-
namic vector (DV), encryptedGUID, clientServerTimeShift and soft token random
number.

Keeping that in mind, a followup search is conducted with SOTPValueStore
as the text key. The search revealed the file com/hsbc/k/c/g.Smali that seemed
to be involved in fetching the data from SOTPValueStore. Following the key
search, with the key word ”generate”, lead to com/hsbc/k/a/c.Smali and com/hsb-
c/util/a/ag.Smali that are both calling a function with ”GenerateLogonOTP” string
as a parameter.

At this point we used aused a trial version of an Android debugging tool, JEB
[81], that gives the flexibility to debug .Smali code while apk is running. Setting
break points to the files found in the previous step we were ready to start the de-
bugging process.

During debugging we were able to see the input password, input parameters and
OTP code in the system registers as shown in figure 7.1 and figure 7.2. At this
point we were able to identify the entry points to OTP generation algorithm.

42

Figure 7.2: OTP code extracted during debugging

7.3 OTP function calls

Using dynamic analysis we managed to reach the entry points of the OTP al-
gorithm. Specifically we consider the ”root entry point” to be in the file com/hsb-
c/k/c/a.Smali.

However, to move forward and be able to understand what happens in each func-
tion we decided to perform a static analysis of the code. In order to achieve that
the .Smali code is decompiled to java to make it easier to read.

Starting from our entry point in com/hsbc/k/c/a.java we realized that the method

p u b l i c s t a t i c com . a . a . a . a . f a (C o n t e x t c o n t e x t , S t r i n g
Password , i n t l o g \ i n t \ 1 , boolean bl2 , S t r i n g []
a c c n t \ ID)

is responsible for receiving SV, DV from ValueStore 148, perform some checks
on them and then do a Base64 decode on each vector. After that it will retrieve cli-
entServerTimeShift from SOTPValueStore 148 and based on the input parameter
bl2 will call proceed for transaction OTP generation or logon and registration OTP
generation. The calling code is the following:

i f (b l 2) {
re turn com . a . a . a . a . a (SV , DV, a c c n t I D ,

Password , l2 , l o g i n t 1 , n u l l) ;
}
re turn com . a . a . a . a . a (SV , DV, Password , l2 ,

l o g i n t 1 , n u l l) ;

At this point it should be noted that input parameters and main variables were
renamed in order for an easier understanding. Specifically, the inputs to our root
entry point function are explained in table 7.1 and those names are going to be used
in future references.

Following the code we move to a/a/a/a.java where a method is called with sole
purpose to add some constant boolean and null values to the given parameter set
and call a new method from ai.java. The called method is considered to be the
OTP generator main function responsible for controlling the whole OTP generation
process. The function is presented in the code below:

43

Context context Related to SOTPValueStore 148 directory
String Password OTP input password

int log int 1 1− > logon, 2− > reauth, 3− > transaction
boolean bl2 1 if transaction OTP, 0 for reauth or login

String[] accnt ID transfer account digits

Table 7.1: Inputs variables for OTP root entry point.

p u b l i c s t a t i c com . a . a . a . a . f a (byte [] SV , byte [] DV,
long c l i e n t S e r v e r T i m e S h i f t , i n t l o g i n t 1 , S t r i n g
Password , byte [] a r r b y n u l l , boolean b l 2 f a l s e ,
S t r i n g s t r i n g 3 n u l l , boolean b l 3 f a l s e , S t r i n g []
a r r s t r i n g n u l l , boolean b l 4 n u l l , S t r i n g
s t r i n g 4 n u l l , S t r i n g s t r i n g 5 n u l l , boolean b l 5 n u l l
) {

b l oc k4 : {
o b j e c t c = a i . a ((byte []) SV , (byte []) DV,

l o g i n t 1 , Password , a r r b y n u l l , b l 2 f a l s e ,
s t r i n g 3 n u l l , b l 3 f a l s e , a r r s t r i n g n u l l ,

b l 4 n u l l , s t r i n g 5 n u l l , b l 5 n u l l) ;
i f (o b j e c t c . b () == 0)

break b l oc k4 ;
O b j e c t c o m a a a a f = new com . a . a . a . a . f (

o b j e c t c . b () , o b j e c t c . a . c . b , l . a (o b j e c t c .
a) , o b j e c t c . c , nul l , n u l l) ;

o b j e c t c . a . a () ;
re turn O b j e c t c o m a a a a f ;

}
t r y {

O b j e c t c o m a a a a f = a i . a (o b j e c t c . a ,
l o g i n t 1 , o b j e c t c . b , s t r i n g 4 n u l l ,
c l i e n t S e r v e r T i m e S h i f t) ;

O b j e c t c . a . a () ;
re turn O b j e c t c o m a a a a f ;

}
catch (j j 2) {

re turn a i . d (j 2 . a ()) ;
}
catch (E x c e p t i o n e x c e p t i o n) {

n . a (”Unknown e r r o r ” , e x c e p t i o n) ;
re turn a i . d (6 0 5 3 7) ;

}
}

44

At first, some functions are performed using SV, DV, password, and and log int 1
and an object of c.class is generated. Then using the new object a second object
from com.a.a.a.a.f.class is generated by feeding the parameters of the first object,
clientServerTimeShift and log int 1 value. The second object contains the new DV
and OTP. Finally, if the outputs pass a series of tests and no exceptions are thrown
during the process the object is returned from the function, DV is stored in memory
and OTP is presented to the user.

Further work is done to follow up the function calls in order to gain a deeper
understanding of OTP working, and the level of obfuscation employed. However,
before diving into the OTP algorithm, we use the following paragraphs to present
some of the the protection mechanisms that the app employs in order to make code
understanding more challenging.

7.4 HSBC code protection mechanisms

In the previous sections we discussed about HSBC’s security mechanisms on on-
line banking and seen some security holes that could permit an attacker to redirect
money or steal personal information from the user. However, those vulnerabilities
need to meet certain conditions to be enabled and also depend on how, when and
where the app is used. Besides that, if a malicious person is able to set hands on
OTP generation algorithm and OTP related keys which are stored in app memory
the results could be tragic for the victim.

The attacker could be able to reproduce OTP codes and even take over the
bank account. Based on that, we consider OTP generation algorithm to be one
of HSBC’s most valued algorithms when it comes to client service. This statement
is also supported by the obfuscation mechanisms that the application employees in
order to hide their algorithm, data structures and logic from being being revealed
to unauthorized entities.

According to Collberg et al [82] obfuscation is a process of transforming a
source program into a target program that behaves the same way but is more com-
plex to follow and understand. In this section we are identifying some of HSBC’s
obfuscation techniques that are used to make the code understanding a time con-
suming task.

7.4.1 Renaming Identifiers

In general HSBC renames paths, class names, methods and variables using the al-
phabet. As shown in figure 7.3 and in previous code samples, names like ”a/a/a/f”
are quite common and considering the large number of identifiers with similar
names (”a/a/a/a.class” and ”a/a/a.class”) following through becomes confusing.
The replacement of those identifiers cannot be undone but it’s not impossible to
understand the code either, since it can be approached as a code with poor choice
of variable names.

45

Figure 7.3: Example of renaming identifiers in decompiled HSBC code.

7.4.2 Call Indirection

Call Indirection refers to the case where having a call to some method A is altered
to a new method B that will then call method A. This technique is used in the very
first steps on the root entry point of OTP algorithm, when com.a.a.a.a.a method
is called with sole purpose to call a method from ai.java. The decompiled code
samples of this example are shown in figure 7.4.

7.4.3 Code reordering

Code reordering refers to altering the order of instructions in the program. In
HSBC’s code this is shown through the numerous GOTO commands in the Smali
and decompiled code. An example of code reordering in the decompiled code is
presented in figure 7.5

7.4.4 Arithmetic obfuscation

Making an arithmetic function more complex than it should be. In the following
code we present a simple example of such technique found on the disassembled
code:

. method p u b l i c s t a t i c a (J J) Z

46

Figure 7.4: Example of call indirection in decompiled HSBC code.

Figure 7.5: Example of code reordering in decompiled HSBC code with multiple
GOTO commands.

47

. l o c a l s 2

and−l ong v0 , p0 , p2

cmp−l ong v0 , v0 , p2

i f−nez v0 , : cond 0

c o n s t / 4 v0 , 0x1

: g o t o 0
r e t u r n v0

: cond 0
c o n s t / 4 v0 , 0x0

go to : g o t o 0
. end method

where the commands and-long v0, p0, p2 and cmp-long v0, v0, p2 could just be
cmp-long v0, p0, p2 making the first command redundant.

7.4.5 Really complex call graph

Observing the first 30 method calls in call graph starting with OTP entry point, we
find out that HSBC employs a really long call graph with more than 20 function
calls depth that are called repeatedly over and over again.

7.5 OTP main algorithm

Having discussed on the importance of OTP and the protection mechanisms in the
code is time to give a look at the actual algorithm. Due to legal issues we present
a high level approach to the algorithm instead of a detailed explanation without
revealing any static codes, keys etc. Due to the obfuscation employed in the app it
would be really hard to explain all the different functions and results thus we group
them together in simpler steps and provide our own, easy to understand names for
inputs, outputs and functions involved.

For the purposes of our work we analyze two OTP methods out of the three,
log-on OTP and transaction OTP. Their process is quite similar with some minor
differences. At first, both algorithms need to do a pre-processing to extract codeA
from SV and vector second, logonCounter and codeB from DV. Combining codeA,
codeB, password and a static code, hard-coded in the app (static1) a 32 byte code is
obtained. Passing that bytecode through two SHA256 hashing functions and some
small byte processing in between (SHAfunc1), vector first is generated. Vector first

48

is fed to a function (keyGen1) in order to generate a 10 by 4 matrix used as an AES
key, key1. Finally, vector second is processed (IVgen) in order to extract the AES
initial vector (IV) and using key1, a 10 round AES encryption is performed. The
result of the AES encryption is processed in order to come to the form of a 16 byte
vector, vector third.

For log-on OTP, vector third is fed to a function (keyGen2) and produces a new
10 by 4 matrix, the logonKey. KeyGen2 is identical to keyGen1 with one step
less. At this point dynamic data are used. First the logonCounter is read and a
timestamp is generated. Those two are processed (timeFunc) to generate the ts
vector and then the logonCounter is increased by 1. In the next step ts vector is
passed through IVgen in order to output the IV for the next AES encryption. After
passing IV and logonKey through a 10 round AES encryption algorithm the result
is broken to a 16 byte vector. The bytes are then mixed, processed and tured to a
number vector, numVec using the mixing function mixer. Finally the 2nd number
will be replaced by logonCounter%10 and the first 6 numbers are outputted as
the OTP.

Transaction OTP generation involves some extra steps compared to logon OTP.
After vector third generation, third is combined with codeA, codeB and another
hard-coded value (static2) to generate a new 32 byte code. The generated code
is fed to a SHAfunc2, a very similar process to SHAfunc1 that also involves two
SHA256 hashing functions. This results to vector fourth generation that when fed
to keyGen2 will output a 10 by 4 matrix, the txnKey. Similar to OTP transaction-
Counter and a generated timestamp are combined to provide the timestamp vector.
However, this time timestamp vector also includes the last 4 digits of the transac-
tion account. After timestamp generation the process is identical to log-on OTP
with the use of transactionCounter instead of logonCounter in the final step.

The OTP algorithm for both transaction and logon is shown in figure 7.6, using
the function and vector names explained in the previous paragraphs.

49

Figure 7.6: OTP generation algorithm flow chart for log-on and transaction OTPs.

50

Chapter 8

HSBC open-source banking

We now present the start of an HSBC application with superior security. Our work
presents some fixes to our discovered vulnerabilities. The work presented in previ-
ous chapters enables us to create all core banking operations in a fully transparent
and open source methodology. We believe this open ecosystem approach will yield
superior security and faster response to discovery of new vulnerabilities.

Disclaimer, this work is only partially finished. Creating a full features stable
banking app is not a single person project, but we successfully started. In our
application we included the functions discussed in section 6:

• Mobile banking: log-in using Password

• Mobile banking: log-in using OTP

• Mobile banking: balance view

• Online banking: log-in using OTP

• Online banking: balance view

• Online banking: transaction history

• Online banking: view known accounts

• Online banking: transaction to known European accounts

• Online banking: transaction to new European accounts

• OTP: OTP generation for log on

• OTP: OTP generation for transactions

In this section we provide a description of our HSBC open-source banking ap-
plication and its features.

51

8.1 Application and code size

HSBC open-source banking app is a command line interface were the user can
perform various banking functions around HSBC mobile and online banking in-
frastructure. It is implemented using python and requests [79] library and its main
function is to reproduce the communication sessions that the other HSBC banking
apps use in a more efficient way, removing redundant sessions and unnecessary
information exchange. The implementation consists of two parts, the first one is
the HSBC manager class that is responsible for client-bank connection, perform-
ing the communication sessions and providing the basic communication with the
user. The second part is a custom made library HSBC requests that includes the
JSON templates for each session, processes the banks responses to get the desired
information through web scraping functions using beautiful soup library or custom
made functions for JSON reading and finally, it provides user dialog functions. In
addition to banking related code, an extra library: OTP, handles OTP generation
for log on and transaction.

HSBC manager is implemented within 340 lines of python code and HSBC requests
within 845 (both including comments and empty lines). The size for HSBC manager
is 19 KB and HSBC requests is 33 KB. OTP library is implemented in 880 lines of
code and total size of 40KB. Compared to the original 483 KB zipped APK code of
the mobile banking app and the 27.7 MB of the whole HSBC app, our open-source
API is almost 5 times smaller in size and can perform transactions to both known
and new accounts.

8.2 Function calls

In this section we provide a more detailed description of the main class HSBC manager
functions is presented as well as the main workings of HSBC requests library. Fi-
nally the system flow is presented and explained.

8.2.1 HSBC manager

HSBC manager contains the six main functions of the class which are initialization
three different log-in methods and the two different kinds of transactions. It is
responsible for completing the necessary communication sessions and calling the
suitable functions from HSBC requests library to process the responses and print
user dialogues.

init (): Initial function for creating the class. At this point, the session objects
are created and certificate verification is decided by hard-coding variable debug.
When debug is set to 0, then a secure connection is established while otherwise the
communication is forwarded to fiddler.
log in AppOTP(): This function is responsible for performing a mobile banking
app log-in using OTP. The log-in happens in seven communication sessions re-
sponsible for are SAAS authentication token fetch, SAAS authentication, provid-

52

ing credentials, verifying authentication and retrieving account information. Fi-
nally it prints account balances.
log in AppPassword: Similar to log in AppOTP(), this function performs a mo-
bile banking app log-in using password. The log-in happens in nine communication
sessions and in the end, it prints account balances.
log in WebOTP: This function performs an online banking log-in within eight
sessions starting with two GET requests, authentication using userID, memorable
answer and OTP provided by the user, authentication verification and finishes with
two sessions, one to retrieve account information and extract account index and an-
other to receive transaction history and print it through TransactionSummary(resp)
function. Finally, this function provides a dialogue for user to chose between new
transaction, known transaction or exit the application.
At this point should be noted that for automating the log-in task, userID, memor-
able answer and password are hard-coded while OTP should be provided through
a registered device. This way security is preserved since without the trusted device
the OTP cannot be obtained.
known transaction(Header Services,Account index): Using this function, user
can perform transactions to known accounts as mentioned in section 6. This func-
tion is completed within seven sessions where the user has to chose the account to
send money to, amount and date and the rest is done automatically.
new transaction(Header Services,Account index): This function is responsible
for performing transactions to new accounts as described in section 6. The user
provides as input the transaction amount, IBAN, country code, name, address, city
and date of transaction and the rest is completed automatically in eight sessions.

8.2.2 HSBC requests

HSBC requests library contains:

• Five different static header templates for mobile banking log-in

• Five different static header templates for online banking log-in

• One dynamic header template for online banking transactions

• Four static JSON templates for mobile banking log-in

• Five dynamic JSON generation functions for mobile banking log-in

• Four static JSON templates for online banking log-in

• Eight dynamic JSON generation functions for online banking log-in and
transactions

• Seven user dialogue functions for presenting account data or receiving user
input

53

The functions included in HSBC requests are the following:
showAccounts(resp): Gets a session response and prints account information and
balance after mobile banking log-in.
AccountSummary(resp): Gets a session response and prints account information
and balance after online banking log-in. Also returns account index.
TransactionSummary(resp): Gets a session response and prints transaction his-
tory after online banking log-in.
get payee(resp): Gets a session response and prints the list of known accounts
after user chooses to perform transaction to known account. Then asks user to
choose an account and returns the account information.
get account(resp): Gets a session response and returns account index without any
printing.
get txn details(): User dialog for getting the necessary data for a transaction to a
known account.
get new txn details(): User dialog for getting the necessary data for a transaction
to a new account.

Modes of operation - certificate verification

As mentioned in the beginning of this section, an option of SSL certification is ad-
ded to our application. When the application is used for debugging, packet capture
is needed thus SSL certification can be disable and when it is used as a banking
service SSL certification should be enabled.

When certificate verification is used, the app introduces a layer of protection to
prevent from MITM attacks. In order to achieve that Mozila trust store is used
which is included in python’s requests library [79]. It contains the certificates
of root certificate authorities of witch HSBC is part of their certificate chain and
expires in 2036 [80].

54

Chapter 9

Permisionless banking API
evaluation

In the previous sections we introduced the idea of an open banking API, presented
the inner workings of a mobile banking system and implemented our own open
version of it. For the following paragraphs we are going to evaluate our API com-
paring it to the original mobile and online banking app in three different aspects:

• Un-necessary data

• Performance evaluation

• Flexibility

9.1 Un-necessary data

According to [83], after analyzing 500 mobile apps, MIT researchers found out
that almost 50 percent of communication channels do not relate with user exper-
ience. In some cases those channels are associated with with other companies’
servers. By checking the traffic from online banking and iOS mobile banking app,
we found out that both platforms send packets to other hosts besides HSBC. Spe-
cifically, online banking sends information to lo.v.liveperson.net, a company with
products including in-app messaging, real-time analytics and customer care bots
[84]. In figure 9.1, we present two screen shots from the WebForm data sent to this
host. Data from image (a) are sent during web log-on where, transaction history is
presented to the user within the first screen. In image (a) there is a field with value
Transaction history — My banking — HSBC which seems to keep track on what
the user is going to see or chose with log-on. Further more, image (b) shows a
WebForm captured while attempting to make a new transaction, and similar to im-
age (a) the field value contains the information New payment or transfer — Move
money — My banking — HSBC.

55

(a) Data sent while log-on

(b) Data sent when attempting a transaction

Figure 9.1: Data sent to lo.v.liveperson.net while using online banking.

Similar to that, on iOS mobile banking app there is a communication with a
host other than HSBC. This time the hosts are mobile.eum-appdynamics.com and
col.eum-appdynamics.com, both from appdynamics, an analytics platform which
describes it services as ”Monitor every critical swipe, tap, and click” [85]. Re-
garding the frequency of sessions between app and appdynamics, during a log-on,
around 2/3 of the total sessions are associated with appdynamics. A sample of the
log-on session is shown in figure 9.2. After an attempt to read the session con-
tent, we see that col.eum-appdynamics.com sends a JSON form with information
regarding the log-on and timestamp, while mobile.eum-appdynamics.com seems to
sent data in an encrypted format. Deciphering the content is not in the purposes of
this work thus the actual data sent to this third party host are unknown.

Coming back to our work, while implementing our own online and mobile bank-
ing version, we did not include any third party hosts besides HSBC related. That
choice is made due to the reason that packets sent to third parties do not return any
useful data, other than empty acknowledgments and banking functions are able
to be performed without them. Adding to that, our fully functional code proves
that those data are not needed for actual banking functions making them redundant
for the user, and consume extra data and time resources while they have no clear
purpose.

Sending redundant data when using the online and mobile banking does not
apply only when data is sent to third parties, but also within the bank sessions. Re-
dundant sessions between the bank-user communication can be considered: Ses-
sions to get data that the user did not ask to see and the ones that do not affect the
process that user selected (log-on, view balance, transaction etc.).

56

Figure 9.2: Packets exchanged during a log-on using iOS mobile banking app. We
see that sessions related to eum-appdynamics host appear more often than sessions
related to hsbc host.

57

Figure 9.3: Number of sessions involved in log-on process for mobile and online
banking.

While developing our own mobile and online banking versions, we attempt to
remove redundant sessions and keep only the ones, vital for the task that the user
requests. Doing this, we found out that for both online and mobile banking, a lot
of unnecessary sessions were involved. As a comparison, we break down the num-
ber of sessions that take place during a log-on, for online/mobile and our banking
platform and categorize them into Log-on sessions, and To third parties. In our
analysis we did not count sessions related with user interface, including images
or javascript code since our application does not use any. Finally, we present our
findings in figure 9.3. From the graphs we see that mobile banking app sessions
are mostly between third parties leaving 1/3 of the whole communication to take
place between the actual bank service. On the other hand, online banking involves
less communication with third parties, but sends a huge amount of redundant data,
including three sessions filled with multiple ”lorem ipsum” paragraphs.

In another test, we measure the number of bytes sent and received during log-on
for online, mobile banking and our python online banking version. The results are
presented in figure 9.4. Measuring the amount of data sent and received, reveals
that for mobile banking, sessions to third parties are short and contain a small size
of data. For online banking, the opposite behaviour is observed. Even though
during log-on only two sessions take place outside of HSBC host, the size of data
received is quite large.

Finally, similar measurements are done for transaction to a new payee between
HSBC online banking and our online banking app. The results regarding number
of sessions involved are shown in figure 9.5. In figure 9.6 we present the amount
of bytes sent and received during each process.

58

Figure 9.4: Bytes sent/received during log-on process for mobile and online bank-
ing.

Figure 9.5: Number of sessions involved in a new transaction for HSBC’s and our
version of online banking.

59

Figure 9.6: Bytes sent/received during a new transaction for HSBC’s and our ver-
sion of online banking.

9.2 Performance evaluation

Considering the redundant amount of bytes sent and received within mobile and
online banking apps, in this discussion we evaluate the speed performance of our
application compared to the bank provided platforms. To compare the speed, we
measure the aggregate session duration for log-on and a successful transaction.
Aggregate session duration is the sum of the duration from all involved sessions,
timed at the start of the request to the end of the response. This way we have a
clear time measurement without involving random delays due to user interactions.
The results are presented in table 9.1.

Mobile Banking Online Banking Python online banking
Log-on Duration 03.133 ms 09.973 ms 01.612 ms

Transaction Duration N.A. 07.647 ms 04.853 ms

Table 9.1: Aggregate session duration for log-on and transaction process.

In another attempt to evaluate our OTP generator, we measure the time that is
required for a log-on OTP to be generated by a registered device and our API. Our
application generated the OTP in around 1.23 sec, while the registered device took
3.82 sec. This means our application is almost 3 times faster than the registered
device when comes to generate a log-on OTP.

9.3 Flexibility

The final aspect is more of a discussion than testing and measurements. From
HSBC, we have the HSBC mobile banking that is restricted on transactions and has

60

some really bad reviews from the users while online banking provides more to the
user while lacking the security and always needs a trusted device to operate fully.
In addition, communication between application and bank includes redundant and
questionable exchange of data, something that the average user might not be aware
of.

Introducing an open banking API, where everybody could have access to the
source code gives the users the privilege to know exactly what happens behind the
scenes and customize the app by adding new features or a user interface of their
liking. For the purposes of our work we limited the banking functions into log-on,
transactions, OTP generation and viewing balances and history, which we consider
the most important for money transferring. However, this does not limit the future
developers that will set hands on the code to add messaging or opening new account
features, even their own security measures between user and application. This
flexibility of knowing what’s inside and the option to add, remove or customize
features to one’s preferences, is what makes the API we present a huge innovation
among banking interfaces.

61

62

Chapter 10

Conclusion

In this work we have discussed about the failures in banking systems and meth-
ods to improve them. Further we took the discussion to mobile devices and show
that even a non-rooted mobile device is in danger by numerous attacks. Moving
ahead from the banking failures and mobile device threads, we presented the meth-
ods employed by banks to protect the mobile devices from fraud utilizing various
authentication methods. Then, we presented five case studies of software token
authentication techniques, two open-source and three through reverse engineering
work.

Moving ahead to our vulnerability assessment work, we manage to get the in-
sight of user-server communication for online and mobile platforms of HSBC. At
that point we show the vulnerabilities found on the bank’s webpage and the lack
of usability for mobile applications, accompanied with bad reviews from Google
store. Besides inspecting the online and mobile application, we took a deeper dive
and understood how OTP work for HSBC log-on and transaction options which we
present and discuss in section 7.

Finally, we introduce our own open API that is able to log-on, view transac-
tion, history and make transactions, without involving any HSBC applications
since OTP is also a feature of our application. On evaluation we show that our
application, outperforms HSBC in delays and data usage. Furthermore, our open
API does not send data to third parties but only what is necessary to perform the
tasks that the user needs and since the code is available to read anybody is able to
understand what happens behind the interface and add/modify features as he likes.

This work could be an example of a minimum requirement open API after PSD2
law is applied. In addition, by identifying some vulnerabilities of the actual bank’s
application proves that R. Anderson’s approach for improving banking systems
could really apply on today’s society. Having an open API will provide valu-
able feedback and improvement from the community that will contribute to a safer
banking experience for customers.

63

64

Bibliography

[1] Cyprus banking system collapse
Online: http://www.businessinsider.com/r-amid-fears-
of-greek-controls-cyprus-shows-restrictions-are-
bearable-2015-6

[2] J. Pouwelse and C. Kyprianou, Vulnerability Analysis of Banking
Applications on Android Smartphones, 2017

[3] The Stagefright exploit: What you need to know:
Online: http://www.androidcentral.com/stagefright

[4] TROJAN-BANKER.ANDROIDOS.SVPENG:
Online:
https://threats.kaspersky.com/en/threat/Trojan-
Banker.AndroidOS.Svpeng/

[5] C. Castillo, Phishing Attack Replaces Android Banking Apps With
Malware:
Online: https://securingtomorrow.mcafee.com/mcafee-
labs/phishing-attack-replaces-android-banking-
apps-with-malware/

[6] The Biggest Splash at BlackHat and DEFCON 2015:
Online: http://blog.zimperium.com/the-biggest-
splash-at-blackhat-and-defcon-2015/

[7] J. Pouwelse, L. Versluis and M. Vos, Internet-of-Money: sub-second money
routing using existing bank accounts, 2016

[8] J. Awsome and J. Pouwelse, A vulnerability analysis on mobile banking
applications, Unpublished research, 2015

[9] J. Doe and J. Pouwelse, A vulnerability analysis of smartphone banking
applications, Unpublished research, 2015

[10] Rogue APs: All you need to know about them: Online:
http://www.rogueap.com

65

[11] Man-in-the-middle attack:
Online: https://www.owasp.org/index.php/Man-in-the-
middle_attack

[12] R. Anderson, Why Cryptosystems Fail, 1st Conf.- Computer and Comm.
Security ’93, Nov. 1993

[13] S21sec Labs, ALICE: SIMPLICITY FOR ATM JACKPOTTING, Jan. 2017
Online:
https://www.s21sec.com/en/blog/2017/01/alice-
simplicity-for-atm-jackpotting/

[14] M. Brignall, So you think you’re safe doing internet banking?, the
guardian, Nov 2015
Online: https://www.theguardian.com/money/2015/nov/
21/safe-internet-banking-cyber-security-online

[15] M. Brignall, Why are Britain’s banks blaming customers for online banking
fraud?, the guardian, Aug. 2017
Online:
https://www.theguardian.com/commentisfree/2017/
aug/08/banks-online-banking-fraud-ross-mcewan-rbs

[16] Payment services (PSD 2) - Directive (EU) 2015/2366:
Online: https://ec.europa.eu/info/law/payment-
services-psd-2-directive-eu-2015-2366_en

[17] HSBC website:
Online: www.hsbc.co.uk

[18] Entrust IdentityGuard One-Time Passcodes (OTP)
Online: https://www.entrust.com/products/mobile-otp/

[19] VASCO DIGIPASS:
Online: https://www.vasco.com

[20] Michael Bentley, Lookout discovers new trojanized adware; 20K popular
apps caught in the crossfire,
Online: https://blog.lookout.com/trojanized-adware

[21] Android Debug Bridge
Online:
https://developer.android.com/studio/command-
line/adb.html

[22] Androguard documentation:
Online: http://doc.androguard.re/html/index.html

66

[23] Androguard Reverse engineering:
Online: http://www.technotalkative.com/part-1-
reverse-engineering-using-androguard/

[24] A.R.E-Android Reverse Engineering:
Online:
https://redmine.honeynet.org/projects/are/wiki

[25] Santoku:
Online: https://santoku-linux.com/download

[26] Smali wiki:
Online: https://github.com/JesusFreke/smali/wiki

[27] Beginer’s guide to smali:
Online: https://forum.xda-
developers.com/showthread.php?t=2193735

[28] Smali example:
Online: http://androidcracking.blogspot.nl/2010/09/
examplesmali.html

[29] Simplify:
Online: https://github.com/CalebFenton/simplify

[30] JMD
Online: https://github.com/Contra/JMD

[31] Apktool documentation:
Online: https://ibotpeaches.github.io/Apktool

[32] Signing android app:
Online:
https://developer.android.com/studio/publish/app-
signing.html

[33] Dex2jad:
Online: https://github.com/pxb1988/dex2jar

[34] JD-GUI:
Online: http://jd.benow.ca/

[35] Android A to Z: What is Dalvik:
Online: http://www.androidcentral.com/android-z-
what-dalvik

[36] JDB-java debugger:
Online: http://docs.oracle.com/javase/7/docs/
technotes/tools/windows/jdb.html

67

[37] IDA Pro:
Online: https://www.hex-rays.com/products/ida/ida-
executive.pdf

[38] Debugging Dalvik programs with IDA:
Online: https://www.hex-rays.com/products/ida/
support/tutorials/debugging_dalvik.pdf

[39] Drozer:
Online: Online:https:
//labs.mwrinfosecurity.com/tools/drozer/

[40] Drozer data leakage attack:
Online: https://labs.mwrinfosecurity.com/assets/
BlogFiles/mwri-drozer-user-guide-2015-03-23.pdf

[41] Infosec: Side Channel Data Leakage:
Online:
http://resources.infosecinstitute.com/android-
hacking-security-part-4-exploiting-unintended-
data-leakage-side-channel-data-leakage/#article

[42] Infosec resources:
Online: http://resources.infosecinstitute.com

[43] Projects/OWASP Mobile Security Project - Top Ten Mobile Risks 2016:
Online: https://www.owasp.org/index.php/Mobile_Top_
10_2016-Top_10

[44] Android: Saving Key-Value Sets
Online: https://developer.android.com/training/
basics/data-storage/shared-preferences.html

[45] Hacking an Android Banking Application, Juliano Rizzo, 2012
Online: http://blog.ioactive.com/2012/11/hacking-
android-banking-application.html

[46] Secure Preferences:
Online:
https://github.com/scottyab/secure-preferences

[47] Android: Saving Data in SQL Databases
Online: https://developer.android.com/training/
basics/data-storage/databases.html

[48] Zetetic - SLCipher:
Online: https://www.zetetic.net/sqlcipher/

68

[49] Infosec: Insecure local Storage Online:
http://resources.infosecinstitute.com/android-
hacking-security-part-10-insecure-local-storage/

[50] Why NoSQL trumps relational databases for mobile applications,
Online: https://www.techopedia.com/2/29256/
development/mobile-development/why-nosql-trumps-
relational-databases-for-mobile-applications

[51] What is android ADB backup?
Online: https://forum.xda-
developers.com/showthread.php?t=2011811

[52] infosec: Broken Cryptography
Online:
http://resources.infosecinstitute.com/android-
hacking-security-part-16-broken-cryptography/

[53] What can be done to promote trust in electronic banking systems?
Online: http://www.techradar.com/news/world-of-
tech/what-can-be-done-to-promote-trust-in-
electronic-banking-systems-1280633/2

[54] SecurEnvoy, What is 2FA?,
Online: https://www.securenvoy.com/two-factor-
authentication/what-is-2fa.shtm

[55] Online banking and safety: TAN Methods
Online: http://mkenyaujerumani.de/2014/02/07/online-
banking-and-safety-tan-methods/

[56] RedTeam Pentesting GmbH, Man-in-the-Middle Attacks against the
chipTAN comfort Online Banking System,
Online: https://www.redteam-
pentesting.de/publications/2009-11-23-MitM-
chipTAN-comfort_RedTeam-Pentesting_EN.pdf,2009

[57] List of websites and whether or not they support 2FA,
Online: https://twofactorauth.org/

[58] A. Wiesmaier, M. Fischer, M. Lippert, J. Buchmann, Outflanking and
Securely Using the PIN/TAN–System, Proceedings of the 2005 International
Conference on Security and Management (SAM’05), June 2005

[59] C. Serrato, Soft tokens, hard security: the best way to beat online banking
threats,

69

Online: http://www.techradar.com/news/world-of-
tech/soft-tokens-hard-security-the-best-way-to-
beat-online-banking-threats-1284689/2 , 2015

[60] S. Musil, Zeus botnet steals $47M from European bank customers,
Online: https://www.cnet.com/news/zeus-botnet-
steals-47m-from-european-bank-customers, 2015

[61] B. Mueller, Hacking Soft Tokens Advanced Reverse Engineering on
Android, 2016

[62] OATH website:
Online: https://openauthentication.org

[63] R. Moulds, What is PKI and why is it important?
Online: https://www.thales-
esecurity.com/blogs/2013/march/what-is-a-pki, 2013

[64] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley and W. Polk,
Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,
Online: https://www.ietf.org/rfc/rfc5280.txt,2008

[65] ETSI - SIM:
Online: http://www.etsi.org/technologies-
clusters/technologies/smart-cards/sim

[66] D. M’Raihi, S. Machani, M. Pei and J. Rydell, TOTP: Time-Based
One-Time Password Algorithm,
Online: https://tools.ietf.org/html/rfc6238, 2011

[67] D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache and O. Ranen, HOTP:
An HMAC-Based One-Time Password Algorithm,
Online: https://www.ietf.org/rfc/rfc4226.txt , 2005

[68] T. Valverde, Reverse engineering mt bank’s security token,
Online: http://blog.valverde.me/2014/01/03/reverse-
engineering-my-bank’s-security-token/

[69] RSA SecureID:
Online: https://www.rsa.com/en-us/products/rsa-
securid-suite

[70] ProGuard:
Online: https://www.guardsquare.com/en/proguard

[71] Stoken - Software Token for Linux/UNIX:
Online: https://github.com/cernekee/stoken

70

[72] Frida:
Online: https://www.frida.re/docs/android/

[73] Stellaris LaunchPad:
Online: http://www.ti.com/stellaris-launchpad

[74] Cryptosuite:
Online: https://github.com/Cathedrow/Cryptosuite

[75] RTClib
Online: https://github.com/adafruit/RTClib

[76] Paym:
Online: https://www.paym.co.uk

[77] K. Hall, Day 2: Millions of HSBC customers still locked out of online
banking, Jan 2016
Online: https:
//www.theregister.co.uk/2016/01/05/millions_of_
hsbc_customers_still_locked_out_of_online_banking/

[78] Fiddler:
Online: http://www.telerik.com/fiddler

[79] Requests: HTTP for Humans
Online: http://docs.python-requests.org/en/master/

[80] Mozila trust store:
Online:
https://hg.mozilla.org/mozilla-central/raw-file/
tip/security/nss/lib/ckfw/builtins/certdata.txt

[81] An introduction to JEB anrdoid debuggers:
Online: https://www.pnfsoftware.com/blog/jeb-
android-debuggers

[82] C. Collberg, C. Thomborson, D. Low, A taxonomy of obfuscating
transformations, Technical Report 148, Dept. of Computer Science, Univ.
of Auckland, 1997.

[83] L. Hardesty, MIT news, Nov 2015,
Online: http://news.mit.edu/2015/data-transferred-
android-apps-hiding-1119

[84] Liveperson url: https://www.liveperson.com/

[85] APPDYNAMICS product overview: , Online:
https://www.appdynamics.com/product/

71

