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Estimation of Friction Power during Manual Wheelchair

Propulsion using Inertial Measurement Units

N.C. van Dam

Abstract

Propulsion power is an important metric in wheelchair racing. For a flat surface, it can

be estimated from the sum of friction power and kinetic power. Usually, to determine friction

power, the rolling and air drag coefficient first need to be determined with coast-down tests

or other time-consuming methods. The aim of this paper was to investigate whether friction

power could be estimated from Inertial Measurement Unit (IMU) data during wheelchair

propulsion without the need for previously determining these coefficients. Two approaches

were investigated using the kinematic data of a wheelchair athlete measured by a wheel,

frame and trunk IMU. Firstly, an approach was used that considers the recovery phase of the

propulsion cycle to be a coast-down period. Secondly, a machine-learning approach (Random

Forest Regressor) was implemented. Coast-down tests were used to calculate a reference power

with which the results from the two approaches could be compared. Results indicate that

the machine-learning approach is more promising than the recovery phase analysis. However,

whether the current machine-learning model can predict friction power for unseen subjects and

surfaces should still be determined with inter-subject validation. Otherwise, it is recommended

that a machine-learning model is trained for multiple subjects and a variation in conditions

affecting friction force (surface, tyre pressure, wind, slope) to achieve a more robust model.

I. INTRODUCTION

Mechanical power is an important metric in endurance sports. Because mechanical power is

less sensitive to variations in environmental variables such as wind, slope and road conditions,

it can be used as an objective measurement to assess an athlete’s performance [1]. On top of

this, it can be used to monitor fitness and fatigue, and to assess training load [2]. Consequently,

it can play an important role for coaches and athletes in training and game preparation [3].

However, in wheelchair racing, determining mechanical power is challenging. One way to

determine it is by measuring the forces and moments on the hand rim directly and multiplying

these with the linear and angular velocities of their point of application. However, this requires

an instrumented wheel. Such a wheel adds mass to the system, which is undesirable as this

significantly influences performance [3]. Moreover, only a few instrumented wheels exist [4].

Therefore, mechanical power is often estimated via the resistive forces by solving the power

equation [5].

The power equation can be deducted from the Free Body Diagram in Figure 1 and can be

expressed as [6], [7]:

Pp = Pf + Pg + Pkin

= (Froll + Fair + Fint +mg sin (α) +ma)v
(1)

where N is the normal force, Froll is the rolling resistance, Fair is the air resistance, Fint is

the internal friction, m is the mass of the wheelchair-athlete combination, g is the gravitational

constant, α is the angle of slope and a and v are the linear acceleration and velocity of the



Fig. 1: Free body diagram of a wheelchair and athlete

wheelchair, respectively. According to the power equation, the mechanical power produced by

the athlete to propel the wheelchair (Pp) is equal to the sum of the friction power due to rolling

and air resistance (Pf), the kinetic power (Pkin), and the gravitational power which is present

when wheeling on a slope (Pg). In other words, the propulsion power due to the propulsion

force that is applied to the hand rims by the athlete (Fp) is used to overcome power losses

due to resistive forces which results in an acceleration of the wheelchair [5]. Thus, in order to

determine the propulsion power, the friction forces and power need to be determined.

Most methods that are described in the literature to determine the friction forces and power

require the previous estimation of the rolling and air resistance coefficient for the specific

wheelchair-athlete combination and the relevant surface [1], [3], [8]–[13]. The available meth-

ods to determine these coefficients include drag tests, Computational Fluid Dynamics (CFD)

software and coast-down tests. However, these procedures are time-intensive. Moreover, in para-

triathlons and marathons, multiple surfaces and/or wind conditions might be encountered during

one race. In that case, the coefficients would have to be determined for each specific condition.

Therefore, a method which can directly determine the friction power during propulsion without

the previous determination of these coefficients would be preferable.

During a coast-down test, the wheelchair is accelerated to a certain speed, after which the

athlete sits as still as possible in a racing position while the wheelchair decelerates. Since there

is no propulsion force, the total friction force can be calculated by multiplying the mass by the

deceleration of the wheelchair (Ffriction = ma).

During the recovery phase of the propulsion cycle, the athlete does not apply any force to

the hand rims. Therefore, the recovery phase can be considered a short coast-down period and

similar to a coast-down test, the total friction force can be calculated from ma. Rietveld et al.

[3] have done research on this. They used line-fitting to velocity data from Inertial Measurement

Units (IMUs) from sprint tests to determine the deceleration in the recovery phases. However,

they did not succeed in performing power prediction using this method and recommended

further research.
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The aim of this paper was to investigate whether friction power could be estimated from IMU

data without the need for previously determining the rolling and air resistance coefficients. Two

approaches to achieve this goal were investigated. Firstly, the approach by Rietveld et al. [3]

was further investigated, in which the recovery phase of the propulsion cycle is considered a

coast-down period. Secondly, a machine-learning approach was implemented to try and estimate

the friction power directly from IMU propulsion data.

II. METHODS

A. Experimental procedure

One subject (male, 75 kg) participated in this study. He used a racing wheelchair with a

mass of 10.5 kg, a camber angle of 0.18 rad, a rear wheel diameter of 67 cm, a front wheel

diameter of 47 cm, a wheel base of 61 cm and a tyre pressure of 6 and 7 bar of the left and

right tyre, respectively. The tests were performed on an outdoor athletic track in Papendal in

the Netherlands. The study was approved by the Human Research Ethics Committee of the

Technical University of Delft. Prior to the experiment, the participant gave informed consent.

Firstly, two sets of coast-down tests were performed on the athletic track: for the first set, the

subject completed three pushes before coasting and for the second set the subject was instructed

to complete 10 pushes before coasting to achieve a higher velocity. For each set, the coast-down

test was performed two times in both directions, so four times in total. During the coast-down

test, the subject was instructed to sit in a racing position while remaining as still as possible.

Secondly, the subject executed a series of propulsion tasks on the athletic track. The subject

was first instructed to do two sets at a relaxed pace with rest in between (relaxed-pace). Then

the subject was instructed to perform three sprints in succession (sprints). Finally, the subject

performed 5 sets of 800 m, in which the first 250m were at a fast pace, the following 300m at

a slower pace and the final 250m at a fast pace again (fast-pace).

B. Equipment

Three IMUs (MoveSense, Suunto Oy, Vantaa, Finland) were used to collect 3D inertial sensor

data. The IMUs were placed on the axis of the right rear wheel, on the wheelchair frame and

on the trunk of the athlete. The IMU on the wheel and frame had a sampling frequency of

100Hz and provided gyroscope data. The IMU on the trunk had a sampling frequency of 50Hz
and provided both gyroscope and accelerometer data. The IMU data were collected via Wi-Fi

using the wheelchair mobility performance monitor (WMPM) app [14], which automatically

synchronised the time between the sensors.

C. Pre-processing

All IMU data were imported and processed in Python (version 3.8.5, Python Software

Foundation, Wilmington, DE, United States). All data were resampled to a sampling frequency

of 50Hz using linear interpolation. The gyroscope signal of the frame IMU around its vertical

axis was low-pass filtered with a recursive Butterworth filter with a cut-off frequency of 0.2Hz.

All other IMU data were low-pass filtered with a recursive Butterworth filter with a cut-off

frequency of 10Hz [15].

To determine the linear wheelchair velocity (v), a series of transformations were applied to the

IMU data. Because of the wheel camber, the angular wheel velocity measured by the wheel IMU
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around the wheel axis (ωwheel) is affected by frame rotations [16]. Accordingly, the measured

angular wheel velocity was corrected for frame rotations with the use of the frame angular

velocity (ωframe) measured by the frame gyroscope around its vertical axis, using Equation 2.

From the corrected angular wheel velocity (ωwheel, corrected), the wheel linear velocity (vwheel) and

finally, the linear wheelchair velocity (v) were determined using Equation 3, 4 and 5.

ωwheel, corrected = ωwheel − ωframe sin (ϕcamber) (2)

vwheel =
ωwheelDπ

360
(3)

daxle,centre = WB/2− sin (ϕcamber)0.5D (4)

v = vwheel − (tan (ωframe/fs)daxle,centre)fs (5)

In which, D is the wheel diameter, daxle,centre is the distance between the wheel axle and

frame centre, WB is the wheelbase, ϕcamber is the camber angle and fs is the sampling

frequency. These equations are based on the approach described by van Dijk et al. [17].

The linear acceleration (a) of the wheelchair was determined by taking the derivative of the

linear wheelchair velocity. The trunk angle was determined by combining the gyroscope and

accelerometer data of the trunk, using the imufusion Python package which is based on an

Attitude And Heading Reference System (AHRS) algorithm.

D. Data analysis

Coast-down tests: The coast-down tests were used to determine the rolling coefficient (µR)

and the lumped drag coefficient (CDA). Firstly, the coast-down areas were manually selected.

Subsequently, non-linear least-square fitting was used to fit Equation 6 to the linear velocity

data in the coast-down areas (see Figure 2) in order to determine c1 and c2 [13], [18]. The µR

and CDA were determined using Equations 7 and 8, in which ρ is the air density. Lastly, the

values for each coast-down test were averaged to get one final value for µR and CDA. The

mean deceleration was determined as well by fitting a line to the coast-down velocity data and

finding the slope.

v =

√

c2

c1

tan

[

tan−1

(

v0

√

c1

c2

)

− t

√
c1c2

m

]

(6)

c1 =
ρACD

2
(7)

c2 = µRmg (8)

Reference power: The reference friction power was determined from Equations 9, 10 and 11

using the linear velocity data of the wheelchair and the constants determined in the coast-down

tests.

Pf = (Froll + Fair)v (9)

Froll = c2 (10)

Fair = c1v
2 (11)
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Fig. 2: Coast-down test velocity data with the non-linear least-square fit (black line). The grey

areas represent the manually selected coast-down areas. The first four coast-down tests were

performed after 3 pushes and the last four after 10 pushes.

Recovery phase analysis: An automated push-detection algorithm was used to identify the

pushes. The main forward accelerations were considered to be pushes [19]. A frequency spec-

trum was made and the mean push frequency was assumed to be the most prominent frequency

over 1.2Hz and below 3.5Hz. The linear acceleration was low-pass filtered with a low-pass

recursive Butterworth filter with a cut-off frequency of 1.5 times this mean push frequency.

Subsequently, acceleration peaks were identified using a minimal peak height and prominence

of 1.2 times the standard deviation and a minimal peak distance of 0.83 times the assumed

mean push frequency. In this way, only the large peaks were defined as pushes. From visual

inspection, it became clear that two types of pushes could be distinguished: short and long

pushes. Preliminary results showed that the recovery phases of the short pushes were too short

to count as coast-down periods resulting in too high decelerations. Therefore, only the long

pushes (at least 1 second long) were selected.

Subsequently, the coast-down periods were identified. The large peaks in the velocity signal

corresponding to the long pushes were selected as the beginning of the coast-down period and

were found using a minimal peak height of 0.3 times the standard deviation and prominence

and a minimal peak distance of 20 times the mean frequency. To find the end of the coast-down

period, a non-push detection algorithm was implemented. A non-push was defined as the final

minimum in the acceleration before the subsequent push (see Figure 3). To find the non-pushes,

a minimal peak height and prominence of 0.1 times the standard deviation, a peak distance of

0.83 times the mean frequency and a width of 2 times the standard deviation were used. Only

the non-pushes following the long pushes were selected.

To improve the algorithm, faulty coast-down periods were removed by implementing an extra

check that checks the distance between the beginning and end of the coast-down period. When

the distance between these two was larger than 3 seconds or smaller than 0.6 seconds, the

coast-down period was removed.

A line was fitted to the velocity signal for each coast-down period (see Figure 3). The slope

of this line represents the deceleration in these areas. Deceleration values that were 2 times

larger or 0.5 times smaller than the mean deceleration from the coast-down tests were removed
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Fig. 3: Example of the linear velocity, acceleration and trunk angle signal with the selected

pushes (orange dot), non-pushes (orange x) and large peaks in velocity (orange triangle). The

black lines show the fit that is made by the automated algorithm in the selected coast-down

periods (grey areas).

to remove unrealistic values. Thereafter, the deceleration was used to determine the total friction

force using Ff = ma. The rolling mean per 5 seconds was computed to produce a continuous

friction force signal. The friction power was then calculated using Equation 12).

Pf = Ffv (12)

To be able to distinguish between straights and turns on the track, the angular velocity of

the frame around its vertical axis was used. Whenever it was higher than 6 deg/s, this was

considered a turn and when it was lower than this value, it was considered a straight. This

threshold was chosen in such a way that the calculated distance on the straights (determined

from the integration of the linear velocity) corresponded to the actual distance of the straights

(∼ 85m).

To evaluate this analysis, the predicted friction force and power were plotted against their

reference value. Moreover, for the relaxed-pace and fast-pace propulsion sets, boxplots of the

predicted and reference power were computed. In the boxplots, a division was made between

the straights and turns. Since the predicted power is based on a rolling mean, the first and last

values of the turns and straights are influenced by each other. Therefore, the first 3 and last 3

seconds of the turns and straights were removed before creating the boxplots.

Machine learning: The data were manually divided into a training and test set so that each

type of propulsion task (relaxed-pace, sprints, fast-pace) was represented in both the training

and test set. The last half of the second relaxed-speed propulsion, the last set of sprints and

the last set of fast-pace propulsion were selected for the test set. The rest of the velocity signal

was assigned to the training set (see Figure 4).
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Fig. 4: Training and test set.

The velocity was chosen as a predictor feature since this signal was also used to determine

the reference friction power. Using this feature, a machine-learning model was trained to predict

friction power.

A Random Forest Regressor algorithm was employed to train and test the friction power

prediction. Random forests are an ensemble of prediction trees which are trained in parallel.

Each tree is trained based on a random part of the training set. The results of each tree are

averaged to produce a single result [20]. All hyperparameters were set to their default values

in Scikit-Learn. No hyperparameter tuning was performed since the model already worked

sufficiently without.

To evaluate the performance of the model, the mean absolute error (MAE), root mean

squared error (RMSE) and coefficient of determination (R2) were computed. To compare

the performance for the different propulsion tasks, the performance metrics were computed

separately for each propulsion task.

III. RESULTS

A. Coast-down tests

The non-linear least-square fit resulted in a µR of 0.0102± 0.00101 and a CDA of 0.136±
0.0293m2. The mean deceleration during the coast-down tests after performing three pushes

(average velocity around 2.5m/s) and ten pushes (average velocity around 4.7m/s) were

−0.0984± 0.00788m/s2 and −0.126± 0.00359m/s2, respectively.

B. Recovery phase analysis

For relaxed-pace propulsion, there was an overestimation for both the straights and turns (see

Figure 5). This overestimation was higher for the turns than for the straights. On average the

predictions for the straights were 12.5% (set 1) and 4.66% (set 2) higher than the reference,

whereas for the turns the predictions were 17.9% (set 1) and 16.9% (set 2) higher. Figure 7a

shows the instantaneous predicted friction force and power and their corresponding reference

signal for the first set. It shows that the friction force and friction power show large deviations

from their reference signal.

The sprints only consisted of short pushes. Therefore, no rolling mean could be computed for

the sprints (see Figure 7b). Before the actual sprints start, there are some long pushes present

where the rolling mean could be computed.
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(a) Relaxed-pace, set 1 (b) Relaxed-pace, set 2

Fig. 5: Boxplots of the predicted and reference friction power for the two sets of relaxed-pace

propulsion, separated for the turns and straights.

For fast-pace propulsion, there was a general underestimation of the friction power (see Figure

6). Only for the straights in the fourth set, there was an overestimation. There is a large variation

in the estimated averages between the different sets, indicating that the average prediction is not

consistent. Figure 7c shows the instantaneous friction force and power estimation of the first

fast-pace set. It shows that there were not enough long pushes present to produce a continuous

rolling mean, resulting in gaps in the prediction signal.

C. Machine learning

The RFR model prediction had an MAE of 3.49 · 10−4W, an RMSE of 6.67 · 10−4W and

an R2 of 1.00. The performance measures of the model per propulsion task are presented in

Table I. Figure 8 shows the predicted friction power from the velocity signal by the machine-

learning model and the reference power for a small part of the relaxed-pace propulsion data

to demonstrate the goodness of fit of the machine-learning model and illustrate the shape of

the friction power signal throughout the propulsion cycle. It shows that the variation in friction

power is approximately 7.5W within the propulsion cycle.

TABLE I: Performance measures for the RFR model per type of propulsion task.

Relaxed-pace Sprints Fast-pace

MAE (W) 2.28 · 10
−4

7.20 · 10
−4

4.21 · 10
−4

RMSE (W) 3.39 · 10
−4

1.26 · 10
−3

7.70 · 10
−4

R2 (-) 1.00 1.00 1.00

IV. DISCUSSION

The aim of this study was to investigate whether it is possible to estimate friction power from

IMU data during manual wheelchair propulsion. Two approaches were implemented. Firstly,
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(a) Fast-pace, set 1 (b) Fast-pace, set 2 (c) Fast-pace, set 3

(d) Fast-pace, set 4 (e) Fast-pace, set 5

Fig. 6: Boxplots of the predicted and reference friction power for the five sets of fast-pace

propulsion.

a recovery phase analysis was implemented, which estimates the deceleration in the recovery

phase to estimate friction forces and power. Secondly, a Random Forest Regressor algorithm

was trained to predict friction power based on velocity data.

A. Recovery phase analysis

Results indicate that the recovery phase analysis in which the recovery phase is considered a

coast-down period is not a viable method to determine friction power. First of all, this approach

can only be used when long pushes are frequently present. However, the results show that this

was not the case during sprints and fast-pace propulsion. On top of this, even when long pushes

were frequently present, which was mainly the case for relaxed-pace propulsion, the friction

power estimation was not accurate enough for use by professional athletes. Firstly, there was

a significant mean overestimation of the friction power. Secondly, the instantaneous prediction

showed too much variation, leading to large errors in the instantaneous friction power estimation.

The recovery phases could be selected using an automated algorithm. However, in some

cases, this algorithm still resulted in the selection of faulty recovery phases. Sometimes, this

even led to a fitted acceleration instead of a deceleration. Moreover, the algorithm sometimes

selected a segment in which braking occurred. When looking at the whole measurement, it was

found that the selection of faulty recovery phases with unrealistic fitted decelerations mainly

occurred at lower velocities (below 2.5 m/s). These velocities were not analysed in this study
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(a) Relaxed-pace

(b) Sprints

(c) Fast-pace

Fig. 7: Velocity, estimated and reference friction force and friction power for a relaxed pace,

sprints and fast pace. The black lines represent the fits in the recovery phase. The orange line

is the 5-second rolling mean of the black line which forms the final prediction.
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Fig. 8: Velocity, reference power and predicted friction power by the RFR for a few pushes in

the test set (relaxed-pace).

and would not occur often in a wheelchair race, but this could be a problem when this analysis

would be used for a wheelchair sport in which velocities are lower. To remove the faulty

coast-down areas, some extra checks were implemented after the automated algorithm was

implemented (removing too short and long recovery phases and removing unrealistically high

or low deceleration values). Furthermore, Figure 3 shows that the selection of the beginning of

the coast-down area was inconsistent: in some cases, the first peak was selected and in some

cases, the second peak was selected. This happens because the algorithm simply selects the

peak that is highest and this varies. Thus, the automated selection of the recovery phase was

also not completely flawless.

For the relaxed-pace propulsion, the prediction of friction power was slightly higher for the

turns than for the straights. It is indeed expected that there is a higher rolling resistance in

turns: In turns, there is a centripetal force directed towards the centre of the turn. This force is

counteracted by a lateral force which causes a lateral deformation of the tyre. This increased

deformation of the tyre increases the rolling resistance loss in turns [21]. In some instances of

the relaxed-pace data, it was seen that the velocity is slightly higher on the straights as compared

to the surrounding turns, supporting this assumption. Often the velocity was not visibly lower

in the turns than on the straights. In that case, it makes sense that the friction power would be

higher in the turns as the velocity is similar but there is a higher friction force. However, this

higher rolling resistance in the turns was not taken into account when determining the reference

friction power.

A possible explanation for the inaccurate results is that the recovery phase is in fact not a

perfect coast-down area. The assumption made in a coast-down test is that there is no applied

force to the wheelchair. Whereas there is no applied force by the hands, there is trunk movement

and movement of the arms which cause forces to be applied to the wheelchair seat. When

rotating the trunk forwards or moving the arms forwards, the wheelchair is pushed backwards

and vice versa. In the first half of the recovery phase, the trunk still rotates forwards and we
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see a slight reduction in the velocity of the wheelchair (see Figure 3). At the end of some

of the selected recovery phases, we see that even though the trunk hardly moves, there is

an increase in the velocity at the end of the recovery phase. This could be explained by the

arms moving backwards to prepare for the next push. Since the athlete’s technique will not be

perfectly consistent, these influences will also differ for each push. If all these movements were

modelled, it should be possible to quantify their effects and get a more accurate result using

this analysis. However, this would make the analysis significantly more complex.

B. Machine learning

The machine-learning approach was successful in accurately estimating friction power (R2 =

1.00) from the linear velocity of the wheelchair. This shows that a model can be successfully

trained for a specific athlete-wheelchair combination on a specific surface and used to predict

the power of the specific athlete-wheelchair combination for unseen IMU data.

In order to train an accurate model, the data of only two IMUs was needed: one on the

wheel and one on the frame. From the wheel IMU, the gyroscope data around the wheel axis

is required. The gyroscope data of the frame IMU around its vertical axis is needed to correct

the wheel IMU measurement for frame rotations.

To the knowledge of the author, no other papers have been published that use a machine-

learning approach to estimate the friction power of a wheelchair athlete. However, since the

machine-learning model results accurately follow the reference power which is determined from

coast-down tests, it is useful to compare the friction coefficients from the coast-down tests to

those in other literature to validate the results. Fuss [22] reported µR values of 0.0104, 0.0116
and 0.0117, and CDA values of 0.1262−0.1358m2, 0.1385−0.1445m2 and 0.1234−0.1352m2

for three different athletes on a granulated rubber track. They also determined these values using

a coast-down test. However, Forte et al. [23] reported higher CDA values of 0.24m2 (recovery

phase), 0.33m2 (release phase) and 0.41m2 (catch phase). These were determined using CFD

software. In this paper, µR was 0.0102± 0.00101 and CDA was 0.136± 0.0293m2, matching

the results of Fuss, but not those of Forte et al. The reason for this might be that the non-linear

least-square fit is sensitive to the initial guess and therefore, prone to errors. However, as CFD

is sensitive to uncertainties as well, it remains unknown which values are correct.

The present study shows that a machine-learning model is a promising approach to estimating

friction power during propulsion without the need to previously determine the friction coeffi-

cients with time-consuming methods such as a coast-down test. However, coast-down tests are

still required to compute the reference friction power which is needed for training. It remains

to be seen if the current model also works for unseen subjects and surfaces. If this is not

the case and the model only works for one subject and surface, there is no benefit of this

approach over the one used to determine the reference power since both require a coast-down

test. Nevertheless, suppose the machine-learning model is able to predict the friction power for

unseen subjects and surfaces. This would mean it can predict the power of a subject and surface

without the need for a coast-down test for this specific subject and surface. This would mean

that an athlete does not need to train a personalised model. Moreover, the model would be able

to account for changes in the surface during training which often occur in para-triathlons and

marathons without the need for a coast-down test for each surface.

The prediction of friction power can be used to estimate the propulsion power of the athlete,

which is the power metric that is interesting for coaches and athletes. To determine the propul-
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sion power from the friction power, the power equation needs to be solved (Equation 1). Since

only flat surfaces are considered, Pg is zero. Hence, the propulsion power is equal to the sum

of the friction power (Pf ) and the kinetic power (Pkin). The kinetic power can be determined

as described in Equation 1 (Pkin = mav).

However, the instantaneous propulsion power is not practical for coaches and athletes. Be-

cause of the inevitable cyclic upper body movement in wheelchair propulsion, the acceleration

signal of the wheelchair contains large peaks when measured in the field, which translates to

large peaks in the propulsion power. This effect was also found by Pelland-Leblanc et al [1].

These peaks hardly relate to the performance of the athlete, but rather to the cyclic chair motion.

Therefore, the instantaneous signal should be converted to a more useful signal for coaches

and athletes by filtering out these peaks. One way to reduce these peaks is by strongly filtering

the acceleration that is used to compute the kinetic power so that the cyclical accelerations due

to the chair movement are removed from the acceleration signal. This would mean that the

acceleration that is used to compute the kinetic power should remain zero when the wheelchair

is being propelled at an overall constant velocity. Another way to possibly reduce these cyclic

accelerations and get a more practical signal would be by looking at the centre of mass motion

instead of the wheelchair motion [1]. Another approach to removing the cyclic peak values is

by averaging the power over certain time intervals. The 5-second average power is for example

often used as a metric in the Wingate Anaerobic Test in which an athlete pedals for 30 seconds

at maximum speed against a constant resisting force [24]. Such a time frame still allows the

coach and athlete to know how the power changes throughout the training or game without

being perturbed as much by the upper body motion.

Although the machine-learning model can accurately predict the reference power, there are some

limitations to this study. Based on these limitations some recommendations for future studies

can be made.

Firstly, is important to note that the reference power that was used to train the model is

also just an estimation and no golden standard. During the coast-down test, the athlete sits as

still as possible. However, during actual propulsion, the athlete is moving which causes more

friction. This means that the reference power used in this paper was an underestimation of the

actual friction power. Since the machine-learning model was trained on this reference power,

the machine-learning model also has this underestimation. On top of this, when conducting

the least-squares fit to find the coefficients from the coast-down tests, it was concluded that

the results depended highly on the initial guess and thus are prone to errors. This also leads

to uncertainty in the reference friction power. Moreover, the higher rolling resistance in the

turns because of higher tyre deformation due to lateral forces was not taken into account in the

prediction of the reference power. However, since the exact relation is not known, this would

be difficult to implement. So, even though the machine-learning model can accurately predict

the reference friction power, it might not be a perfect prediction of the actual friction power.

Secondly, data from only one subject on one surface was used to train and test the model.

This could also explain the high accuracy of the model. Since only intra-subject validation was

used, it remains unclear if the current model can predict the friction power of unseen athletes

and surfaces. However, it is expected that because only one subject and surface were used

(and thus the model was trained for a fixed µR and CDA), the model was overfitted to this

specific subject and surface. Consequently, inter-subject validation of the model is still required

by testing the current model on an unseen subject and/or surface in future research.
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If it is found that the current model does not work for unseen subjects and surfaces, it is

recommended a model be trained for multiple subjects and surfaces, but also other conditions

affecting friction forces such as tyre pressure. It is expected that this would produce a model

that is more robust to varying circumstances. Furthermore, the model could be expanded by

training it for variations in slope and wind, since these conditions can also vary when racing

in a triathlon or marathon and influence friction power and propulsion power.

V. CONCLUSION

Machine learning is a more promising approach to estimating friction power from IMU

propulsion data than the recovery phase analysis approach. However, in order to really benefit

trainers and athletes, the model needs to be able to predict friction power for unseen subjects

and surfaces. Whether the current machine-learning model can do this should still be determined

with inter-subject validation. Otherwise, it is recommended that a machine-learning model is

trained for multiple subjects and a variation in conditions affecting friction force (surface, tyre

pressure, wind, slope) to achieve a more robust model.
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