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Abstract

Droughts are considered to be one of the most damaging, yet least understood, natural hazards of
all. Despite their prevalence, a thorough understanding of them lacks because they are such complex
phenomena, and their manifestation can differ depending on the region they occur in. Monitoring
hydrological variables and processes is imperative for a good understanding of how droughts develop
and persist.

Backscatter from ASCAT and previous scatterometers has long been used for soil moisture retrieval.
The first and second order derivative, slope and curvature respectively, of the backscatter - incidence
angle relation in the TU Wien Soil Moisture Retrieval algorithm are used to correct for vegetation ef-
fects. Recently, new developments to this algorithm have allowed to account for interannual varia-
tions in the slope and curvature. This has given rise to the potential of monitoring vegetation directly
with slope and curvature, rather than only using it to correct for vegetation effects in soil moisture
retrieval. The long data record of ASCAT and previous scatterometers combined has the potential to
provide valuable information for drought monitoring.

This study investigates if ASCAT could be used as a self-contained dataset in drought monitoring.
The spatial variability, the seasonal cycle, and the drought response of backscatter, slope and curva-
ture across different vegetation types in Australia is assessed. Simulated surface- and root zone soil
moisture, LAI and GPP from the land surface model ISBA are used to aid in the interpretation of the
ASCAT signal.

The results from this study show that backscatter, slope and curvature can adequately capture veg-
etation dynamics in times of drought across dry semi-arid grasslands and croplands. Over these
regions the soil moisture and vegetation anomalies observed with ASCAT and simulated in ISBA cor-
respond well. Considerable information into the vegetatin dynamics can be gained from analyzing
the backscatter - incidence angle relationship. Especially the ability to monitor drought in crops with
a coarse spatial resolution is promising for future applications.

It proved more difficult to accurately capture the propagation from a soil moisture anomaly into veg-
etation anomaly across forests and mixed vegetation with grasses and trees. The first reason for this
is the increased attenuation of the signal by vegetation, which hampers accurate measurements of
soil moisture content. The second reason is that it is more difficult to separate the soil moisture and
vegetation effects due to the fact that less is known about the scattering mechanisms induced by
vegetation structure and moisture distribution.

Overall the results support earlier findings the slope can be used as a measure of vegetation wet
biomass and confirm that curvature is also a valuable source of information that gives insight into
the relative contribution from surface or volumetric scattering to total backscatter. These relations
have been shown to also adequately describe vegetation dynamics in times of drought.
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1
Introduction

Droughts are considered to be one of the most damaging, yet least understood, natural hazards of all
(Wilhite, 2000). Unlike other natural hazards droughts are characterised by a slow and creeping onset,
extensive duration, and often far-reaching geographical extent. Moreover, damage done by droughts
accumulates slowly over a considerable amount of time, and may even linger far past the end of the
drought (Wilhite, 2000). This causes droughts to have profound impacts on the environment, soci-
ety, and the economy, with secondary ’spinoff’ effects further increasing their impact (Sheffield and
Wood, 2011; Wood et al., 2015).

This is especially the case for Australia where droughts are a natural and recurrent climate feature
(Kiem et al., 2016). The fairly recent ‘Millenium Drought’ lasted from the late 1990’s to mid-2010
and heavily impacted Australia’s most populous and important agricultural region. At its worst the
drought lead to an estimated drop of A$7.4 billion in agricultural production in a year, good for more
than 1.6% of Australia’s GDP (Heberger, 2012). The droughts in Australia often also contribute to the
occurrence of bushfires with the recent 2019 Black Summer fires as one of the worst in history. More
than 17 million ha of land burned, destroying over 3000 houses and costing the lives of 33 people, as
well as affecting the public health through intense air pollution (Richards et al., 2020).

Droughts are, however, not limited to regions with a similar climate to Australia, but can occur virtu-
ally anywhere. They are a natural climate feature which makes their recurrence inevitable (Wilhite,
2000). Despite the fact that droughts are so prevalent, a thorough understanding of them lacks be-
cause they are such complex phenomena, and their characteristics make it difficult to monitor them
accurately.

1.1. Drought monitoring
Monitoring of hydrological variables and processes is imperative for a good understanding of how
droughts develop and persist (Crocetti et al., 2020; Tallaksen and Van Lanen, 2004). Traditionally ob-
servations have relied on site-based measurements, but these are scarce over the large spatial scales
that are of interest for drought monitoring and analysis (Sheffield and Wood, 2011). For this reason
research has often favored the use of land surface models forced by climate observations, since these
are generally more available than variables of the terrestrial hydrological cycle (Sheffield et al., 2009).
Many soil moisture drought indices are in fact based on estimated values from climatic variables or
hydrological modelling (Carrão et al., 2016). In their review of drought indices Keyantash and Dracup
(2002) even found the computed soil moisture from a model that performs a water balance assess-
ment over the soil column, to be superior to other soil moisture drought indices.

However, towards the end of the 20th century a major shift took place, concurrent with advances in
remote sensing, from site-based to remote sensing-based indices(West et al., 2019). Together with the
evidence that land-atmosphere feedback mechanisms play a large role in the persistence and prop-
agation of droughts, this has made direct observation of vegetation and soil moisture very relevant
for drought monitoring (Herrera Estrada et al., 2017).

1



2 1. Introduction

Even though a drought is often triggered by a precipitation deficit, the direct impacts of a meteorolog-
ical drought are typically limited (West et al., 2019). Soil moisture is often the first component in the
hydrological system to be affected. In general soil moisture is a particularly useful drought indicator
because it is roughly an aggregate of the available water from the balance precipitation, evaporation,
and runoff (Martínez-Fernández et al., 2015; Sheffield et al., 2009). The top layers of the soil reflect
recent precipitation conditions and are highly correlated to meteorological droughts. The root zone
soil moisture, on the other hand, is the governing factor of the state of vegetation, and since plant
growth is one of the first to be affected by a drought a soil moisture deficit is often a good early indi-
cator of a vegetation anomaly. This makes soil moisture perhaps also the most important variable to
monitor since the biggest economic losses, national food security and social stability are related to
(a reduction) in crop production (Liu et al., 2016; Tallaksen and Van Lanen, 2004).

The impact of droughts on vegetation health can also be monitored directly. Vegetation water stress is
typically assessed using passive multispectral sensors. The most commonly used indices are NDVI,
or related indices such as the VHI, NDWI or the EVI (West et al., 2019). These all depend to some
extent on photosynthetic activity, vegetation greenness (chlorophyll content) or brightness temper-
ature. The main disadvantage of using these spectral and thermal indices is, however, that these
operate at a wavelength that is often hampered by cloud cover, and need sunlight as a natural source
of illumination (Jones et al., 2012).

Soil moisture can be successfully retrieved through microwave remote sensing. Microwaves have the
advantage to be able to penetrate clouds and operate independent of a natural light source for il-
lumination. Moreover, they are especially suited for measuring soil moisture and vegetation water
content due to the dielectric properties of materials in the microwave region of the EM spectrum,
which depend largely on water content. Recognizing this potential of microwaves and the key po-
sition of soil moisture in global energy distribution, the terrestrial hydrological cycle, as well as its
importance in a wide range of applications, SMOS (Soil Moisture and Ocean Salinity) and SMAP (Soil
Moisture Active Passive) were launched in 2009 and 2015 respectively (Scipal et al., 2002). These mis-
sions, dedicated specifically to the retrieval of soil moisture, measure passively at L-band (0.39 - 1.55
GHz) because the microwave signal is less sensitive to vegetation, and the penetration depth into the
soil is larger for longer wavelengths. Though passive microwave measurements can be used for veg-
etation applications as well, the understanding of vegetation signals in these measurements is weak,
such that often a model like the Water Cloud model, or a large set of input parameters is needed to
describe vegetation properties (Crocetti et al., 2020; Konings et al., 2019). In addition, these missions
often have a coarse spatial resolution, which is not a big problem for drought studies, but their lim-
ited data record make it less ideal for drought analysis since a long historical dataset is often needed
to form the basis for a calculation of drought indices.

Incidentally the first operational global, near real time, soil moisture product is derived from active
C-band scatterometer data (Bartalis et al., 2007). Already soon after the launch of the European Scat-
terometer (ESCAT) onboard the ERS 1 in 1991, operating at ~5.3 GHz (C-band), it was found that over
land the radar backscatter is sensitive to soil moisture, and to some extent to vegetation cover (Fri-
son and Mougin, 1996; Wagner et al., 1999; Woodhouse, 2005). Though in general C-band is seen as
sub-optimal for soil moisture retrieval because of its shorter wavelength, scatterometers are origi-
nally designed to monitor the speed and direction of ocean winds and can therefore very precisely
evaluate 𝜎𝑜 over the surfaces being observed (Frison et al., 2016). This high radiometric accuracy has
often been overlooked, but several studies have shown that it allows for sufficiently good soil mois-
ture retrieval compared to L-band instruments (Wagner et al., 2013). Since the launch of ESCAT, its
successor, the Advanced Scatterometer (ASCAT) instrument has been launched onboard three dif-
ferent satellites in 2006, 2012, and 2018. Together with ASCAT’s planned successor on the METOP
Second Generation (SG), set to be launched in 2022, a data record of almost 40 years of backscatter
will be available.
The high radiometric accuracy, a temporal resolution of 1-2 days, and the promised data continu-
ity make backscatter from ASCAT ideal for monitoring soil moisture. The current product is used
in amongst others the ESA Climate Change Initiave (ESA CCI), and has proven its worth in drought
monitoring in multiple studies, either directly or derived as the Soil Water Index (SWI) (Baik et al.,
2019; Gouveia et al., 2009). Schroeder et al. (2016) also showed the ability to monitor droughts di-
rectly with backscatter by showing consistent spatial and temporal patterns between 𝜎𝑜
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and the U.S. Drought Monitor.

1.2. Dynamic vegetation parameters
The algorithm used to retrieve soil moisture from ASCAT backscatter was developed at TU Wien and
is based on a change detection method, which essentially consists of subtracting a reference im-
age, based on a vegetated land surface under dry soil conditions, from the actual backscatter image
(Naeimi et al., 2009; Wagner et al., 2007). At the hart of this algorithm is the relationship between
backscatter 𝜎𝑜 and incidence angle 𝜃 . To account for vegetation effects the multi-incidence angle
looking capabilities of ASCAT are exploited. The incidence angle behaviour of 𝜎𝑜 depends on whether
volume scattering from vegetation or surface scattering from the soil dominates the total backscatter
(Steele-Dunne et al., 2019). The slope (𝜎′) and the curvature (𝜎″) of the function 𝜎𝑜 (𝜃 ) are the so-
called ’vegetation parameters’ because they are sensitive to vegetation dynamics and surface struc-
ture, and as such are used to account for soil and vegetation effects when retrieving soil moisture
(Naeimi et al., 2009).
Until recently, to account for noise effects in the measurements, a large number of backscatter ob-
servations had to be averaged to ensure robust calculations of 𝜎′and 𝜎″. Hence, only climatological
values of 𝜎′and 𝜎″were available. However, with twice the number of fan-beam antennas on ASCAT
compared to the ERS scatterometer, the data density of observations has increased significantly. This
has led to dynamic calculations of 𝜎′and 𝜎″using a kernel smoother, and hence has allowed to ac-
count for interannual variability (Vreugdenhil et al., 2016).

1.3. Recent developments
In light of these new developments, Steele-Dunne et al. (2019) proposed to use the slope and cur-
vature as a source of information about vegetation, rather than to see it as a hindrance in soil mois-
ture retrieval. Steele-Dunne et al. (2019) examined this approach for North American Grasslands and
found that the scattering mechanisms are influenced by total vegetation water content, vertical dis-
tribution of water within vegetation, and the geometry of the vegetation. More specifically, the slope
appeared to be related to vegetation density, or wet biomass, and the curvature to the dominant
scattering mechanism related to the vegetation structure. They also found clear seasonal variations,
and that soil moisture anomalies resulted in lagged slope and curvature anomalies, suggesting that
these dynamic vegetation parameters could be potentially useful in detecting water stress. Petchi-
appan (2019) built on this and showed that variations in slope and curvature match different land
cover types in the Amazon, and that water stress could be observed in the form of negative anoma-
lies, corresponding to recorded drought years. Another study by Pfeil et al. (2020) demonstrated good
agreement between the slope signal and the phenology in deciduous broadleaved forest. The peak
in slope corresponded with the maximum woody water content, and preceded the increase in leaf
area index.

These recent studies have highlighted the possibility of using the dynamic vegetation parameters as
a new means of gaining insights into the vegetation water dynamics. This study sets out to further
explore the behaviour of slope and curvature, specifically in times of drought, or water stress.

1.4. Research objective
The aim of this research is to assess whether ASCAT can be used to monitor the propagation of a
drought from a soil moisture anomaly into a vegetation anomaly.
ASCAT has already proven its worth in soil moisture retrieval and drought assessment, though disen-
tangling vegetation effects from backscatter remains a challenge. A condition for successful retrieval
algorithms is that the relationship between measurements and the soil and vegetation is well under-
stood (Mattia et al., 2003). This study focuses more on the dynamic vegetation parameters to deter-
mine if these can also adequately capture the vegetation water dynamics in times of droughts.

If ASCAT, as a self-contained dataset, can be used to evaluate both the root causes (i.e. a soil moisture
deficit) and the symptoms (a vegetation anomaly) without the need for ancillary datasets or scatter-
ing models, this could greatly benefit drought monitoring. Moreover, the long data record could
contribute significantly to research into drought onset and persistence.
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In a more general sense this study also serves to gain more insight into which physical parameters
most strongly influence the dynamic vegetation parameters. At the same time it serves to reinforce
the current hypothesis regarding slope and curvature, as there have only been a very limited number
of studies on these dynamic vegetation parameters so far.

With these objectives in mind the main research question formulated is:

Can ASCAT be used as a self-contained dataset in drought monitoring?

To adequately analyse the response of ASCAT parameters to droughts, it is necessary to first get a gen-
eral idea of the distribution of backscatter, slope and curvature across Australia. Subsequently a more
indepth understanding of the seasonal cycle across the dominant vegetation types has to be gained,
after which it can be assessed how the response of ASCAT parameters change in times of drought.
Hence, the following sub questions are investigated to build up to the main conclusions:

1. How does the spatial variability in backscatter, slope and curvature relate to climate and land
surface features across Australia?

2. What is the influence of different vegetation types on the seasonal cycle of ASCAT parameters?

3. What is the response of ASCAT parameters to droughts across different vegetation types?

As a reference, to aid in the interpretation of the backscatter, slope and curvature, the land surface
model ISBA (Interaction Sol-Biosphère-Atmosphère) from Météo France is used. This model pro-
vides surface- and root zone soil moisture, as well as LAI and GPP and serves as a proxy to compare
the backscatter and dynamic vegetation parameters with. The droughts in this study are defined
based on the root zone soil moisture from ISBA. It may be important to note that the focus of this
study is not on identifying droughts, or finding the best drought index. Rather, it looks at the possi-
bility of using a novel data set to monitor vegetation water stress directly, day and night, without the
need for ancillary datasets or models.

The choice for Australia as the study site is made in light of previous research on dynamic vegeta-
tion parameters. Steele-Dunne et al. (2019) studied grasslands in North America, which exhibit very
high seasonal variability. Petchiappan (2019) studied the Amazon rain forest, which has extremely
low seasonal variability. Australia is a home to a number of different climate regimes, and as a con-
sequence holds many different land cover types. This allows to confirm the conclusions made for
grasslands and forests and extend these to other vegetation types. Moreover, environmental and hy-
drological data is generally widely available and well documented in Australia, which may be useful
in the interpretation of ASCAT data.

1.5. Thesis outline
Chapter 2 gives a brief theoretical overview, which is by far not exhaustive, but should make the reader
familiar with the important concepts underlying this study. It covers the threshold level method used
to identify drought periods in the root zone soil moisture, and elaborates further on the TU Wien Soil
Moisture Retrieval algorithm and the dynamic vegetation parameters.

Chapter 3 provides more information on the datasets used, and describes the study area and the re-
gions of interest in more depth. It also explains the choices that were made in applying the threshold
level method.

Chapter 4 visualizes the results. First the seasonal climatologies of the regions of interest are inter-
preted, then the full time series are shown to analyze the response of backscatter and the dynamic
vegetation parameters amidst drought events.

Chapter 5 discusses the results and reflects on them in light of the current developments in monitor-
ing vegetation with backscatter from ASCAT. The conclusions and the implications of this study are
given in chapter 6.



2
Theoretical overview

This chapter provides a brief theoretical background to the two main topics explored in subsequent
chapters; droughts and scatterometers, specifically ASCAT. If the reader is familiar with the concept
of drought, how it is defined, and how it is quantified, section 2.1 can be skipped, though section 2.1.3
elaborates on the theory of the threshold level method used to identify drought events in this study.
Section 2.2 is particularly interesting because it discusses the relatively novel TU Wien Soil Moisture
Retrieval algorithm and the recent developments concerning the dynamic vegetation parameters,
which forms the core of this study.

2.1. Droughts
2.1.1. Defining a drought
One of the major obstacles in drought studies lies in its definition. On the one hand the lack of a
universally accepted definition, reflected in the wide range of variables used to describe a drought,
can lead to multiple, even contradicting, conclusions. On the other hand there is actually a need for
different definitions because a drought impacts so many different sectors in society and can manifest
itself differently depending on where in the hydrological system it occurs (Sheffield et al., 2004; Wil-
hite, 2000). Thus, any definition given will depend on both the objectives of the study, and the nature
of the water deficit (Van Loon, 2015). In general terms though, a drought can be defined as ”a sus-
tained and regionally extensive deficit of water compared to normal conditions, often with reference
to a specific demand”(Tallaksen and Van Lanen, 2004).

Commonly, droughts are classified into three categories based on their disciplinary perspective, which
also reflect the hydrological variable used to quantify the drought(Hisdal and Tallaksen, 2000).

• Meteorological drought: refers to a precipitation deficiency over an extensive area, generally for
a period of months to years. It can be accompanied by above average temperatures, leading to
increased evaporation, and is often the cause of other types of drought.

• Soil moisture drought: is a deficit in soil moisture, predominantly in the root zone, essen-
tially reducing the amount of water available to vegetation. This leads to reduced plant growth
and crop production, which in turn can be a local feedback that enhances anomalies in land-
atmospheric processes, thus further affecting the drought. When the focus is specifically on
cultivated crops, as opposed to natural vegetation, the term agricultural drought is often used.

• Hydrological drought: refers to negative anomalies in surface and subsurface flow, often trig-
gered by a precipitation, or soil moisture, anomaly. A hydrological drought could also be the
trigger to a soil moisture drought, depending on the regions characteristics. It often develops
more slowly due to the fact that it involves storage in, amongst others, rivers, lakes, reservoirs,
or aquifers (Dai, 2011; Van Loon, 2015).

A fourth type, the socio-economic drought, is often also included. However, unlike the three ’envi-
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ronmental droughts’ it is rather a measure of failure of the water resources to meet the specific water
demands of a socio-economic system (Liu et al., 2016).

It may be important to note that a drought is not the same as aridity. Although an arid region, such as
large parts of Australia, characterized by extremely low rainfall, may be more susceptible to droughts
because it depends on only a few precipitation events, it still represents a (relatively) permanent con-
dition. A drought on the other hand is always a temporary abberation, though perhaps a long lasting
one (Wilhite, 2000).

2.1.2. Drought propagation
The different types of drought roughly follow the propagation of a water deficit through the terres-
trial part of the hydrological system (Sheffield and Wood, 2011). The onset of a drought is frequently
a result of prolonged precipitation deficiency, possibly in combination with higher temperatures.
Although the exact science concerning the onset of a drought is still unclear, it is widely accepted
that droughts are caused by extremes in climate due to random variability of atmospheric circula-
tion patterns such as El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), and the
Southern Annular Mode (SAM) (Dai, 2011; Herrera Estrada et al., 2017). Though most droughts are
triggered by a rainfall deficit, compared to other types of droughts a meteorological drought has rela-
tively few direct impacts (West et al., 2019). It is, however, often an early indicator of more impactful
events.

Figure 2.1: Propagation of precipitation anomaly through the terrestrial part of the hydrological cycle (from Van Loon (2015))

As the drought propagates through the hydrological system the drought signal is often delayed and
smoothed (see fig. 2.1. It can take months to years, or the drought signal may even be completely
attenuated, before it registers in the groundwater (Sheffield and Wood, 2011). However, the recov-
ery from a drought is dictated by the same principles and will also take longer further down the hy-
drological system (Van Loon, 2015). The speed of propagation and drought recovery is largely de-
pendent on regional characteristics, the capacity of the catchment to store water, and antecedent
conditions.

Local land-atmosphere feedbacks can cause droughts to persist for a prolonged period of time (Her-
rera Estrada et al., 2017). When this happens the precipitation anomaly may propagate into a soil
moisture anomaly. Initially evaporation and transpiration from bare soil and plants will increase,
partially due to the frequently high temperatures associated with a meteorological drought. If this
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situation perseveres and soil moisture levels become too low, a vegetation anomaly will ensue and
plants may, depending on their drought coping strategy, whither and die (Sheffield and Wood, 2011).
This limits further evaporation and could also limit locally generated precipitation, further reinforc-
ing the drought condition. A hydrological drought may subsequently follow if the soil moisture no
longer drains to the groundwater causing reduced streamflow, and runoff is also reduced due to a pre-
cipitation deficit (Van Loon, 2015). It is, however, good to remember that even though these drought
categories are often studied separately for practical reasons, they are not physically isolated but ac-
tually intimately linked (Dracup et al., 1980).
In this study, the primary focus is on soil moisture droughts and the propagation into a vegetation
anomaly, because these are the variables that can be monitored with ASCAT.

2.1.3. Quantifying droughts
A drought can occur virtually anywhere around the world but the way it manifests itself can vary
strongly depending on the climatic region it occurs in (Dracup et al., 1980). To adequately be able to
compare droughts across space and time essential drought characteristics such as duration, magni-
tude (i.e. the maximum deviation from normal during a drought event), severity (cumulative deficit
during the entire drought) and spatial extent, have to be identified (Sheffield and Wood, 2011).

The most common way to express drought characteristics numerically is through indices (Mishra
and Singh, 2010). The advantage of standardized drought indices lies in the opportunity to compare
droughts across space and time. Like drought definitions, there exist a vast number of indices to
quantify droughts. The purpose of monitoring largely defines which index is used and all have their
advantages and disadvantages (Heim, 2002; Keyantash and Dracup, 2002; Wanders, 2010). However,
the amount of drought indices also highlights the complexity of droughts, and the inability of a single
index to adequately capture all the aspects impacted by a drought (Heim, 2002). Moreover, drought
indices generally only describe one type of drought, like rainfall deciles (RD) used by the Australian
Bureau Of Meteorology (BOM) (Hisdal and Tallaksen, 2000). Standardized drought indices are often
also not directly based on the time series of the drought variable but rather on a distribution fitted to
the data (e.g. the Standard Precipitation Index, SPI), or on a water balance computation (e.g. Palmer
Drought Severity Index, PDSI) (Van Loon, 2015).

Threshold level method
In this study preference is given to the threshold level method. The main advantage of this method is
that it stays close to the actual time series and is ideal for monitoring drought propagation through
the terrestrial hydrological cycle. This section covers the theoretical concepts of the threshold level
approach, largely based on the work of van Loon (2013). Chapter 3.3.3 elaborates on the subjective
choices that have to be made to quantify the exact drought characteristics in this study.

In the threshold level method a site is considered to be in drought if the variable measured is below
a predefined threshold. The drought ends once the threshold is exceeded again (Van Loon, 2015;
Yevjevich, 1969). Each drought event can then be characterised by its duration or some measure of
severity (see fig. 2.2) (van Loon, 2013). The transparency with which drought characteristics can be
identified allows for easy comparison with other (hydrological) variables. The method was originally
intended, and is primarily used, for hydrological droughts, but has also been applied to soil moisture
(Borgomeo et al., 2015; Sheffield et al., 2009; van Loon, 2013). Even though for state variables like soil
moisture the severity (area under the curve) of a drought is physically meaningless, it still gives a good
indication of the total deficit during a drought, and makes comparison with other variables possible
(Van Loon et al., 2014). In this study, where soil moisture, backscatter, and vegetation parameters are
compared this is a great benefit. Alternatively, a more suitable measure of the drought severity for
state variables is the magnitude, the maximum deviation 𝑑𝑚𝑎𝑥 from from threshold during a drought
event of 𝑇 time steps, defined as:

𝑑𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑑1(𝑡), ..., 𝑑𝑇 (𝑡)) (2.1)

The propagation of a drought through a catchment strongly depends on regional characteristics like
soil and vegetation (Van Loon and Van Lanen, 2012). Therefore, to be able to quantify drought char-
acteristics and identify a water deficit the threshold chosen should reflect a certain regional bias (Wil-
hite, 2000). The threshold can be a fixed threshold or a variable threshold. Preference is often given



8 2. Theoretical overview

Figure 2.2: Drought characteristics explained (own work). Magnitude is the max. deviation from threshold. Severity is the
cumulative deficit of an event. Droughts that fall within the inter-event period are pooled and droughts with short duration

are not considered.

to a variable threshold because a fixed threshold would mean that seasonal periods of low soil mois-
ture content would wrongly be marked as a drought (Van Loon and Van Lanen, 2012). Moreover, a
variable threshold also shows deficiencies in the wet season that could lead to drought in the next
dry season.

Defining a suitable threshold is a crucial, yet subjective, step in the threshold level method. Ideally
the threshold should reflect the water demand in a region, but since this is often difficult to quantify
it is frequently derived from flow duration curves (for hydrological droughts), and will depend on the
flow regime (Van Loon, 2015). An area with a time series containing many zero values, for example,
may require a specific threshold to avoid too many non-drought years. For perennial and intermit-
tent streams a threshold ranging between the 70th and 95th percentile is frequently used(Fleig et al.,
2006). A 70th percentile would lead to more events with longer durations and higher deficit volumes,
whereas the opposite would be true for thresholds based on the 95th percentile (Hisdal et al., 2004;
van Loon, 2013). This range has also been applied to droughts in soil moisture. For state variables
like soil moisture the flow duration curve translates to the proportion of time a specified soil moisture
level is equalled or exceeded during the record period (Hisdal and Tallaksen, 2000).

The threshold also varies depending on whether it is based on a daily, monthly or seasonal duration
curve. Together with the length and time resolution of the data record this will influence the num-
ber and length of the drought events (Fleig et al., 2006; Vidal et al., 2010). For short time series a
low threshold can be problematic because a certain number of events are required for a suitable cal-
culation of percentiles, and when the time resolution used is short in comparison with the droughts
two other problems can arise. 1) Minor droughts skew the drought distribution and disturbs extreme
value analysis. 2) Mutually dependent droughts interrupt what is actually one long event with short
excess periods, causing multiple drought events (Fleig et al., 2006).

To deal with short droughts a minimum drought duration can be set. This is once again quite arbi-
trary, but should logically reflect the purpose of the study and the regional characteristics. To pool de-
pendent droughts together the inter-event time criterion, 𝑡𝑐, can be used. This approach defines two
mutually dependent droughts as one long drought if the the number of days between the droughts
𝜏𝑖 is less than the predefined 𝑡𝑐 (see fig. 2.2). The duration (𝑑) of the drought event is then defined
as:

𝑑𝑝𝑜𝑜𝑙𝑒𝑑 = 𝑑𝑖 + 𝑑𝑖+1 + 𝜏𝑖 [𝑇 ] (2.2)

The deficit volume (𝑣) is defined as the sum of the individual deficits, without the excess volume from
the inter-event period, though this could be included depending on the study purpose (Fleig et al.,
2006).

𝑣𝑝𝑜𝑜𝑙𝑒𝑑 = 𝑣𝑖 + 𝑣𝑖+1 [𝐿3] (2.3)

Another way of dealing with mutually dependent droughts is to use the moving-average procedure,
which smooths the time series. Even though this eliminates both short duration droughts and pools
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mutually dependent droughts, the disadvantage is that the deficit volume also changes as a result.
Alternatively, the moving average can be used to to identify only the pooled duration, with the deficit
still being calculated from original time series (Fleig et al., 2006). In this study the minimum duration
and inter-event time criterion are used to remove and combine drought events respectively, because
these don’t require manipulating the original time series.
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2.2. Scatterometry and soil moisture retrieval
Scatterometers are radars that provide very accurate measurements of the backscatter coefficient of
the observed surface, usually over a wide range of incidence angles (Woodhouse, 2005). As an active
system, scatterometers transmit a continuous series of microwave pulses, and measure the power
of the proportion of the signal that is reflected back by the surface in the direction of the incident
wave after scattering. The received power depends on instrument properties (power transmitted 𝑃𝑡,
antenna gain 𝐺, wavelength 𝜆), the distance to the surface (𝑅), and the footprint, the area over which
the measurement is made (𝐴). Naturally, it also depends on the properties of the illuminated surface,
captured in the backscattering coefficient, 𝜎𝑜 (Woodhouse, 2005).

Since the objective of monitoring is to gain information about the surface, the radar equation (2.4)
is used to convert the received power measurements to 𝜎𝑜 , commonly expressed in decibels [𝑑𝐵]
(Wagner, 1998).

𝑃𝑟 = 𝜆2𝐺2𝑃𝑡𝐴
(4𝜋)3𝑅4 𝜎𝑜 (2.4)

Dielectric constant
The backscattering coefficient 𝜎𝑜 is dependent on the interaction between microwaves and the (veg-
etated) surface, governed by the dielectric properties of the surface materials and their geometrical
structure. The dielectric constant is a measure of how well a material polarizes in an electric field and
strongly affects the reflective and emissive properties of the material. Especially in the low-frequency
microwave region of 1-10 GHz the dielectric constant of water (∼80) differs significantly from that
of soil and air (∼4 and 1 respectively) (Woodhouse, 2005). A higher dielectric constant will result in
higher backscattering of the incident wave and, consequently, a lower penetration depth as shown in
figure 2.3a. As such, a higher 𝜎𝑜 is often related to higher moisture content in soil or vegetation.

Scattering
The amount of energy redirected in the direction of the incident wave is the result of either direct sur-
face scattering, volume scattering, multiple scattering, or a combination of them. Surface scattering
generally occurs at the air-soil boundary and is determined by the dielectric properties of the up-
per few centimetres of soil, and by incidence angle and surface roughness relative to the wavelength
(Wagner, 1998). As shown in figure 2.3a a smooth surface will typically reflect a focused narrow beam
in the forward direction, whereas a rough surface scatters more diffusely, increasing the component
of the wave scattered in the incident direction, thus increasing 𝜎𝑜 . Surface scattering can also occur
at the top of a vegetation canopy due to high vegetation water content.

Volume scattering refers to scattering caused by dielectric discontinuities of discrete elements with a
significant cross section compared to the wavelength in an otherwise homogeneous dielectric medium
(Ulaby and Long, 2014). Forest canopies are often considered volume scatterers as each individual
scattering element, a trunk, branches or leaves, may scatter in a particular direction but the com-
bined result has no preferential direction (see fig. 2.3b). For this reason, backscattering as a result of
volume scattering will tend to show less dependence on the incidence angle (Rees, 2013).

Multiple scattering refers to multiple interactions of a signal between the soil and the vegetation, or
between vegetation components (Konings et al., 2019). Nr. 3 and 4 in figure 2.3b give an idea of this
scattering mechanism (though it is by far not limited to these). Across forests multiple scattering can
occur between bare twigs and branches that are high in water content, while at the same time atten-
uating the signal from the underlying surface (Pfeil et al., 2020). In croplands multiple scattering can
be strongly influenced by the geometrical arrangement and 3D structure of the vegetation (Veloso et
al., 2017). Similarly, Steele-Dunne et al. (2019) observed ground-bounce terms, and the attenuation
thereof, from scattering from vertical constituents in grasslands. Multiple scattering can contribute
significantly to the total backscatter, especially over surfaces where the signal is not rapidly attenu-
ated by vegetation.

2.2.1. The Advanced Scatterometer (ASCAT) instrument
ASCAT is a scatterometer operating at a frequency of 5.3 GHz (C-band) on board EUMETSAT’s Meteo-
rological Operational (MetOp) -A, -B, and -C satellites, launched in 2006, 2012, and 2018, respectively.
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(a) Scattering over bare soil (b) Scattering over vegetated surface

Figure 2.3: (a) A: relatively smooth surface. B: rough surface. C: wet soil.
(b) 1: Surface scattering from top of canopy. 2: Surface scattering from underlying soil (fig. 2.3a) 3: Ground-vegetation (and
vice versa) scattering 4: Ground-vegetation-ground scattering 5: Volume scattering from canopy.

These satellites fly in a near-polar, sun-synchronous orbit at an altitude of 817 km, completing an or-
bit in approximately 100 minutes, so 14 orbits a day (Wagner et al., 2013). The satellites cross the
equator around 9:30 and 21:30 local time for descending and ascending overpasses and have an in-
orbit separation of half an orbital period, about 50 min (Hahn et al., 2017). Though the revisit times
of the satellites is 29 days, it only takes 3 days to achieve full global coverage. With only one satellite a
daily coverage of 82% can already be achieved, but with gaps around the equator. This spatial irreg-
ularity also causes an irregular temporal coverage (Wagner et al., 2013). Therefore, the backscatter
product from ASCAT is aggregated into 10 day intervals, or dekads.

The ASCAT instrument builds on the succes of the European Scatterometer (ESCAT) which flew on
board the ERS1/2 from 1991-2011. Like the ERS1/2 scatterometer ASCAT is a fixed fan beam scat-
terometer, but with two instead of one, sets of three fan-beam side ways looking antennas. The three
antennas on each side, referred to as fore, mid and aft beams, are oriented at 45∘, 90∘, and 135∘with
respect to the satellite track. Each set of antenna triplets illuminates a 550 km swath, with a satellite
track of about 360 km separating the swaths (Figa-Saldaña et al., 2002). The incidence angles of the
fore and aft beam range from 34∘- 65∘and for the mid beam range from 25∘- 55∘, see figure 2.4.

This ability to measure at multiple incidence angles forms the basis for the TU Wien Soil Moisture
Retrieval algorithm.

2.2.2. TU Wien Soil Moisture Retrieval Algorithm
Originally scatterometers were only intended to measure wind speed and direction over oceans, with
no services foreseen over land. However, early studies by Frison and Mougin (1996) already showed
high agreement between backscatter and global vegetation index maps. Later, Wagner et al. (1999)
and Woodhouse and Hoekman (2000) provided evidence that scatterometer data could possibly be
used for soil moisture monitoring.

Generally a wavelength of 5.7 cm (C-band) is considered sub-optimal for soil moisture retrieval com-
pared to longer wavelengths like L-band, which are less sensitive to surface roughness and have a
deeper penetration through vegetation (Wagner et al., 2007). What is often overlooked, however, is
the high radiometric accuracy of scatterometers like ASCAT. Scatterometers are designed to make
very accurate estimates of 𝜎𝑜 by taking the average of the power received at the antenna of a large
number of ’looks’ so that the variance in 𝑃𝑟 becomes very small, but the average remains unchanged,
resulting in a high signal to noise ratio (Frison et al., 2016). The high radiometric accuracy does come
at the cost of spatial resolution, which for ASCAT is 25 km.

The potential to monitor soil moisture with C-band scatterometry led to the development of the TU
Wien Soil Moisture Retrieval algorithm (TUW SMR). At C-band the effects of surface roughness gener-
ally dominate over soil moisture, and disentangling these effects in the backscattered signal remains
a major challenge (Scipal et al., 2002). Typically semi-emperical backscattering models, like the Water
Cloud Model, are used. However, if instead of looking at the spatial signal pattern the temporal pat-
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Figure 2.4: Specifications of the ASCAT instrument onboard MetOp-A, B and C (from Hahn et al. (2017))

terns are investigated, the effect of soil moisture becomes apparent because the temporal effects in
soil moisture dominate that of vegetation phenology, while surface roughness can be taken as a con-
stant, as illustrated in figure 2.5 (Scipal et al., 2002). This so called ’change detection method’ forms
the basis of the TUW SMR. One disadvantage is that this is a lumped approach where soil moisture
and vegetation are all still lumped together (Wagner et al., 2013).

Figure 2.5: Time series of one year with evident differences in temporal signal patterns between soil moisture, vegetation
phenology and surface roughness for a point in Queensland, Australia (from Vreugdenhil et al. (2016))

At the core of the algorithm is the relationship between incidence angle 𝜃 and backscatter 𝜎𝑜 . In gen-
eral, the overall level of backscattering is determined by the surface properties, such as the dielectric
constant, or moisture content. The dependence of backscatter on incidence angle is largely gov-
erned by the scattering mechanism; whether the total backscatter is dominated by surface scattering
or volume scattering from vegetation (Rees, 2013; Steele-Dunne et al., 2019). At higher incidence the
backscatter is more sensitive to vegetation as the contribution from the soil surface becomes very
small due to most of the signal being attenuated by the vegetation. As can be seen in figure 2.6 over
dense vegetation the backscatter is influenced less by the incidence angle as a result of volume scat-
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tering. Visually, this is associated with a rotation in of the 𝜎𝑜 − 𝜃 curve.

Figure 2.6: The two panels show the 𝜎𝑜 - 𝜃 relation changes with increasing soil moisture and vegetation (from Steele-Dunne
et al. (2019))

In the dB domain the relation between 𝜎𝑜 and 𝜃 can be modeled by a linear function (eq. 2.5).

𝜎𝑜(𝜃) = 𝜎𝑜(𝜃𝑟) + 𝜎′(𝜃𝑟) ⋅ (𝜃 − 𝜃𝑟) [𝑑𝐵/𝑑𝑒𝑔] (2.5)

However, towards the higher incidence angles the backscatter signal tends to flatten out. In order to
accurately describe this behaviour the linear function can be expanded into a second order Taylor
polynomial around a reference angle 𝜃𝑟 (Wagner et al., 1999).

𝜎𝑜(𝜃) = 𝜎𝑜(𝜃𝑟) + 𝜎′(𝜃𝑟) ⋅ (𝜃 − 𝜃𝑟) + 1
2𝜎″(𝜃𝑟) ⋅ (𝜃 − 𝜃𝑟)2 [𝑑𝐵/𝑑𝑒𝑔] (2.6)

The slope (𝜎′) and the curvature (𝜎”) of the function 𝜎𝑜(𝜃) are used to normalize all backscatter mea-
surements to a single reference angle 𝜃𝑟. Equation 2.6 can be rearranged into equation 2.7 to remove
the incidence angle dependence on backscatter and make different backscatter observations com-
parable at a single reference angle, which in the TUW SMR algorithm is 40∘(Hahn et al., 2017).

𝜎𝑜(𝜃𝑟) = 𝜎𝑜(𝜃) − 𝜎′(𝜃𝑟) ⋅ (𝜃 − 𝜃𝑟) + 1
2𝜎″(𝜃𝑟) ⋅ (𝜃 − 𝜃𝑟)2 [𝑑𝐵/𝑑𝑒𝑔] (2.7)

The parameters 𝜎′and 𝜎″are also known as the vegetation parameters because they are estimated
to correct for vegetation effects in soil moisture retrieval. While 𝜎𝑜

40 is mainly controlled by surface
soil moisture, 𝜎′is related to wet biomass, and 𝜎″is used to describe the backscatter signal at higher
incidence angle where the 𝜎𝑜 - 𝜃 curve tends to flatten out due to volume scattering (see fig. 2.6)
(Hahn et al., 2017).

2.2.3. Dynamic Vegetation Parameters
The slope and curvature are estimated from the simultaneously observed backscatter at different
incidence angles, so called backscatter triplets. A backscatter triplet consists of the backscatter signal
measured by the fore (𝑓), mid (𝑚) and aft (𝑎) antenna, of which the fore and aft beam measure at the
same incidence angle. This allows for an instantaneous computation of the so called local slope,
which is only valid near the respective incidence angle (see eq. 2.8) (Hahn et al., 2017). However, the
local slope values are typically noisy measurements so a large number of local slopes distributed over
the entire incidence angle range must be combined (Naeimi et al., 2009). Until recently several years
of local slope data was used to produce a seasonal climatology of slope and curvature.

𝜎′ (
𝜃𝑚𝑖𝑑 − 𝜃𝑎/𝑓

2 ) =
𝜎𝑜

𝑚𝑖𝑑(𝜃𝑚𝑖𝑑) − 𝜎𝑜
𝑎/𝑓(𝜃𝑎/𝑓)

𝜃𝑚𝑖𝑑 − 𝜃𝑎/𝑓
[𝑑𝐵/𝑑𝑒𝑔] (2.8)

However, recently Melzer (2013) demonstrated the possibility to calculate 𝜎′and 𝜎″dynamically, which
allows to take interannual variations into account. Melzer (2013) uses a Kernel Smoother approach
whereby the slope and curvature are estimated from local slopes within a 42 day window around a
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particular day. An Epanechnikov kernel with 𝜆 = 21 is used to give more weight to local slopes closer in
time. Hahn et al. (2017) found that using a kernel window of 42 days yielded a good trade-off between
bias and variance in the calculation of daily slope values.

In light of this new development, Steele-Dunne et al. (2019) suggested to use 𝜎′and 𝜎″as information
on vegetation phenology and water dynamics instead of only using it to correct for vegetation in
soil moisture retrieval. They confirmed that slope is not so much related to vegetation greenness
but more to the seasonal dynamics in wet biomass of the vegetation and found that curvature also
holds information about vegetation. They showed that, in grasslands, curvature is dependent on the
relative dominance of direct scattering over ground-bounce contribution, which in turn depends on
the vegetation water content and geometry (Steele-Dunne et al., 2019).
This study sets out to investigate whether slope and curvature can provide the same information over
other types of vegetation, and whether they are also able to describe the vegetation water dynamics
during periods of water stress.



3
Data & Methods

This chapter gives more information on the datasets used, particularly from the land surface model.
The study area and regions of interest are described in detail in section 3.2. Section 3.3 covers the
methods, including the application of the threshold level method in this specific study.

3.1. Datasets
3.1.1. ASCAT
The three ASCAT datasets, normalized (40∘) backscatter 𝜎𝑜

40 , slope 𝜎′, and curvature 𝜎″, are provided
on the discrete global WARP5 (Soil Water Retrieval Package) 0.25∘x 0.25∘grid. The datasets span 13
years, from 2007 - 2019. The slope and curvature are calculated at daily time steps using the TUW
SMR algorithm and kernel smoother as explained in section 2.2.2. The temporal resolution of the
backscatter is more irregular because the constellation of the three MetOp satellites provides obser-
vations every one to three days (Figa-Saldaña et al., 2002). Therefore the backscatter data is aggre-
gated into 10 day intervals (dekads).

3.1.2. Land surface model ISBA
The variables soil moisture, LAI and GPP are obtained from the land surface model ISBA, which
stands for Interaction Sol-Biosphère-Atmosphère and is part of the surface modelling platform SUR-
FEX, developed by Météo-France. SURFEX (SURface EXternalisée) merges the surface variables from
several land and ocean surface models to be coupled with atmospheric models for numerical weather
prediction purposes (Moigne, 2018). Within SURFEX, the ISBA scheme computes the exchange of en-
ergy and water between the soil, vegetation and atmosphere. The ISBA version that is currently used
is ISBA-A-gs, a CO2 responsive module that simulates photosynthesis and the associated net CO2 as-
similation (𝐴𝑛), and stomatal conductance (𝑔𝑠). Through the simulation of these water vapour fluxes
and the diurnal carbon cycle daily LAI and biomass values can be produced. The ISBA-A-gs version
also includes the effect of soil moisture stress on vegetation represented by one of two drought cop-
ing mechanisms, namely reducing evaporation through stomatal regulation (drought-avoiding), or
applying a more efficient root water uptake or a more rapid growing cycle (drought-tolerant)(Moigne,
2018).
For this study ECMWF’s ERA5 climate reanalysis dataset is used as atmospheric forcing in ISBA to
generate the soil moisture, LAI and GPP datasets at a spatial resolution of 0.25∘x 0.25∘, consistent
with ASCAT. All ISBA datasets also span from 2007 - 2019 and have a daily time resolution.

Soil Moisture
The soil moisture in ISBA is calculated using a ’force-restore’ method for heat and water content in
which capillary rises act as a restore term to bring the near surface soil moisture in equilibrium with
the root zone soil moisture after transpiration (Calvet and Noilhan, 2000). The distribution of roots is
generally taken to be uniform through the root depth, which can be specified, or is taken as a constant
based on vegetation type (Moigne, 2018). In this study simulated soil moisture [𝑚3 𝑚−3] is provided

15
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at different depths (0.01m, 0.04m, 0.1m, 0.2m, 0.4m, 0.6m, 0.8m and 1m). This is consistent with the
Soil Water Index (SWI) which has been successfully used in conjunction with ISBA before (Albergel
et al., 2008). The SWI is one of the products offered by the Copernicus Global Land Service, and sim-
ulates the infiltration process from ASCAT derived surface soil moisture down to 1m depth using an
exponential function . Nevertheless, using a single static root zone depth of 1m for vegetation rang-
ing from croplands to forests definitely has its limitations. These are discussed further in chapter 5.
For the purpose of this study the top two layers ( 0.04m), and the deeper layers are aggregated sepa-
rately using a depth weighted average to represent surface soil moisture and root zone soil moisture,
respectively. The reason for this distinction is that the C-band signal from ASCAT has a soil penetra-
tion depth in the order of 0-5cm. Thus when analyzing ASCAT backscatter it is better to compare it to
the faster reacting top two surface soil layers than to the often slower reacting lower layers that also
contain more ’memory’ of antecedent conditions. To analyse the vegetation’s response to soil mois-
ture shortage the root zone soil moisture is more useful because that is where the vegetation draws it
water from. For most trees, however, this happens at depths much greater than 1m (Robinson et al.,
2006).

Leaf Area Index
Leaf Area Index (LAI) [𝑚2 𝑚−2] is the ratio of total upper leaf surface of vegetation to the surface area
of land on which the vegetation grows. In ISBA-A-gs LAI is a prognostic variable derived from leaf
biomass, in contrast to the standard ISBA scheme where LAI is a prescribed surface parameter.

Gross Primary Production
Gross Primary Production (GPP) [𝑡 𝐶 ℎ𝑎−1 𝑦−1] is a measure of the raw carbon uptake in vegetation
through photosynthesis. As such, it is a measure of the accumulation of biomass.

ISBA vegetation type
The land surface parameters used in SURFEX come from the ECOCLIMAP database, which com-
bines land cover maps and satellite information. Each of the SURFEX grid cells is divided into four
tiles; town, vegetation, sea, and lake. For the ISBA scheme the vegetation tile is split into 12 different
patches, listed in table 3.1. These patches are the vegetation types used as land cover in this study.
Each grid cell is made up of a fraction of these 12 patches. Fig. 3.1 shows a map of the vegetation
types with the highest fraction per grid cell.

ISBA vegetation type abbreviation

bare soil NO

bare rock ROCK

permanent snow SNOW

deciduous broadleaved TREE

needleleaved CONI

evergreen broadleaved EVER

C3 crops C3

C4 crops C4

irrigated crops IRR

temperate grassland GRAS

tropical grassland TROG

wetlands, parks and gardens PARK

Table 3.1: ISBA vegetation types

3.1.3. Data preparation
Since the ISBA surface and rootzone soil moisture are frequently compared to backscatter, for both
practical reasons and to resemble the backscatter time series better, the soil moisture time series are
aggregated into dekads. The dekads are grouped from day 1-10, 11-20, and 21 to the last day of the
month. The time signature of the dekads is always the last day of the 10 day interval.
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To make the comparison between LAI and GPP, and the dynamic vegetation parameters more con-
venient, the LAI and GPP time series are also smoothed using an Epanechnikov kernel with a half
window (𝜆) of 21 days. This especially makes a difference for GPP, which otherwise has a high fre-
quency signal, but also the LAI signal is now smoothed over 42 days. The Epanechnikov kernel in
equation 3.1 weighs all values within the interval of |(𝑑 − 𝑑0)/𝜆| ≤ 1 according to their distance to the
current day of year 𝑑0 (Hahn et al., 2017).

𝑘(𝑑0, 𝑑) = 3
4 ⋅ (1 − (𝑑 − 𝑑0

𝜆 )
2
) , (3.1)

with 𝑑 ranging from [-21, 21].
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3.2. Study area
The study area contains mainland Australia and Tasmania, and extends from from 112∘E - 155∘E, and
10∘S - 44∘S. Based on the same 0.25∘x 0.25∘WARP5 grid as ASCAT, which roughly translates to 25km x
25km, this comes down to 11135 grid points (or grid point indices, gpis) over land. Figure 3.1 shows
the dominant vegetation types in the study area. Almost half of the gridpoints are dominated by bare
soil (5187 gpis). The four other prevalent dominant vegetation types are tropical grasslands (3907
gpis), C3 crops (905 gpis), evergreen broadleaf forests (653 gpis) and temperate grasslands (459 gpis).
The dominance is relative to the other vegetation types in a grid point so for a heterogeneous grid
point the absolute cover fraction of the dominant vegetation type can still be quite low. Figure 3.2
shows the cover fraction of each of the vegetation types.

Figure 3.1: ISBA vegetation type with the highest fraction per grid cell

Droughts are considered a natural part of Australia’s highly variable hydroclimate (Kiem et al., 2016).
Due to its location between the Indian, Antarctic and Pacific Ocean, Australia is particularly sensitiv-
ity to large scale climate modes such like the El Nino Southern Oscillation (ENSO), the Indian Ocean
Dipole (IOD), and the Southern Annular Mode (SAM) (BoM, 2021; Vreugdenhil et al., 2017). Though
the focus of this study is not on the science of the origin of droughts, for an accurate interpretation
of backscatter, slope, and curvature signals it is important to be aware of the wide range of climate
conditions in Australia that determine the energy distribution, and thus in part the occurrence of
droughts (Tallaksen and Van Lanen, 2004).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.2: Fractions per grid point of each of the 12 ISBA vegetation types

Figure 3.3 shows a climate classification of Australia based on the Köppen Geiger climate classes,
which are divided according to precipitation and temperature data. Much of central Australia is
dominated by a dry arid climate. The southwest and east have a temperate climate with predom-
inantly warm summers, and the north(east) is characterized by a monsoonal tropical climate. The
resemblance of spatial patterns between the climate classes in figure 3.3 and the dominant vegeta-
tion types in figure 3.1 acknowledge the strong influence of climate on vegetation, and to some extent,
vice-versa.
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Figure 3.3: Climate classification of Australia based on the Köppen Geiger Climate Classes from the Australian Bureau of
Meteorology (BOM) (from (Bureau of Meteorology - Climate Classifications Maps 2021))

3.2.1. Regions of interest
Several regions of interest are defined, primarily based on a high fraction of one of the ISBA vegeta-
tion types. These regions of interest are chosen to facilitate the interpretation of backscatter, slope
and curvature across an otherwise very heterogenous, in terms of vegetation types, study area. To
further differentiate within the vegetation types the bioregions from the Interim Biogeographic Re-
gionalisation of Australia (IBRA 7.0) were used. These correspond in large to the ecoregions from
Olson et al. (2001), used succesfully by Steele-Dunne et al. (2019) and Petchiappan (2019) to differen-
tiate the behaviour of ASCAT parameters within one land cover type. Similarly to Olson et al. (2001),
IBRA7 classifies distinct bioregions based on common climate, geology, landform, species and native
vegetation, and is slightly more detailed and tailored to Australia 1.
Three main criteria used to determine the regions of interest (ROIs) were:

1. homogeneous vegetation type. Grid points with a cover fraction < 80% were excluded (for GRAS
and TROG < 70% was used, otherwise the second criteria could not be met)

2. large enough number of grid points. The ROIs had to be large enough for a drought signal to be
actually considered a drought. Approximately 25000𝑘𝑚2, or 40 grid points, is used by Andreadis
et al. (2005), and used as the minimum number to qualify as an ROI in this study.

3. contiguous grid points. The grid points within an ROI had to be relatively contiguous so if a
drought occurred, it most likely affected all the points in the ROI.

Finally, a manual revision of the slope time series was done to remove outliers within each ROI. Grid
points near the coast for example can show a highly divergent temporal signal due to the high fraction
of water present.

Identifying ROIs is important because droughts manifest themselves differently from region to re-
gion. Moreover, backscatter data from ASCAT has been shown to be sensitive to vegetation type, thus
for an accurate interpretation of 𝜎𝑜

40 and the dynamic vegetation parameters it is imperative to have
a firm knowledge of the land surface. Spatial averaging over the ROIs is performed after climatology
and anomalies have been calculated for each individual grid point.

1https://www.environment.gov.au/land/nrs/science/ibra
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Figure 3.4: The ROIs delineated by the IBRA7 bioregions. The dominant (>70% or >80%) ISBA vegetation type is given in
brackets.

All the information below about the ROIs is obtained from Woinarski and Mockrin (2020), Bastin
(2008) and the overview of bioregions from the State of New South Wales (Bioregion Overviews 2016).
For some ROIs an image is included to give an appreciation of the types of vegetation in these regions.
The vegetation images are all from the Australian National Botanic Gardens’ collection (Vegetation
Photos in the ANBG Collection 2012).

The region of interest within vegetation type C3 crops are:

Avon Wheatbelt (AVW): the AVW makes up most of the Wheatbelt in Western Australia, an impor-
tant economic region which exports more than 80 percent of its produce. Practically all of the native
savanna vegetation has been cleared for wheat and barley cultivation, and sheep rearing. It has a
temperate climate where yields depend strongly on winter rains, as spring rainfall is generally unre-
liable. Both wheat and barley are winter crops, meaning they are sown in SH-autumn and harvested
in spring or summer.

Murray Darling Depression (MDD): part of the economically important wheat-sheep zone. The na-
tive mallee woodlands in this region have been extensively cleared for cereal cropping and pasture.
Both the Murray and the Darling river flow through this region, and the landscape consists of un-
dulating plains with lakes, swamps and depressions. It has a warm semi-arid climate with annual
rainfall ranging from 200-400mm.

Riverina (RIV): part of the wheat-sheep zone. Most of the original eucalypt vegetation has been
cleared for wheat cropping and sheep pastures. This region is strongly marked by the presence of
the presence of several large rivers creating alluvial fans, floodplains and river channels. It has a
dry semi-arid climate with hot summers and cool winters. The highest level rainfall occurs in May
and September. Rainfall in winter is more consistent than rainfall from summers which come from
thunderstorms. Mean annual rainfall ranges from 250mm in the north to 600 in the south.

NSW South Western Slopes (NSS): also part of the wheat-sheep zone. The native vegetation has been



22 3. Data & Methods

heavily cleared for cereal cropping and pasture. The grid points are located in the foothills and ranges
to the west of the Great Dividing Range. The region is dominated by a sub-humid climate with hot
summers and no dry season. Rainfall is distributed with high mean annual rainfall (1200mm) in the
east and lower values to the west (400mm).

Figure 3.5: Eucalypt forest with rain forest understory, VIC.
Typical Australian wet sclerophyll forests are similar. Com-
pared to rain forests these canopies are less dense.

The region of interest within vegetation type ev-
ergreen broadleaved forest are:

NSW North Coast (NNC): This region borders
the coast to the east, and the Great Dividid-
ing Range to the west. From east to west the
topography changes from coastal sand barri-
ers, to foothills, to steep slopes. Vegetation
changes accordingly and is dominated by tem-
perate rainforests in the east and eucalypt com-
munities on the slopes. The mean annual rain-
fall ranges from 600-3000mm, increasing land
inwards, while the mean annual temperature
decreases from 8-20∘C along this gradient. This
ROI also has some points in the Sydney Basin
and South East Queensland.

South Eastern Highlands (SEH): This ROI has points in the South Eastern Highlands and the South
Eastern Corner IBRA7 bioregions. It is characterized by a temperate climate with warm summers
and no dry season. Mean annual temperature ranges from 6-16∘C and annual rainfall ranges form
500-1500mm, with the wetter regions near the coast. Grid points are located on both sides of the
Great Dividing Range. Its diverse topography and climate is reflected in the diversity of vegetation
communities, though the majority is made up by eucalypt forest and wet sclerophyll forests, with
some temperate rain forest.

Tasmanian West (TWE): this ROI is heavily dominated by rain forests at a large range of elevations.
The terrain is rugged with a chain from north to south along the east side of the region. It has tem-
perate climate with mild winters and cool summers. Rainfall is heaviest in winter and no strong
seasonality exists.

Figure 3.6: Mitchell Tussock Grasslands, Queensland

The region of interest within vegetation type
temperate grasslands are:

Mitchell Grass Downs (MGD): all grid points lie
in the northern Queensland part of the biore-
gion. It consists mostly of treeless plains dom-
inated by Mitchell tussock grasslands. MGD
has a dry semiarid climate, influenced by SH-
summer monsoons to the north. Average an-
nual rainfall is around 300mm.

The region of interest within vegetation type
tropical grasslands are:

Cape York Peninsula (CYP): CYP is dominated
by eucalyptus and melaleuca woodland, with some rain forest to the east. Its climate is strongly mon-
soonal with most rains falling in the SH-summer. Summers are hot and humid and the annual rainfall
gradient decreases from 2400mm to 800mm from north to south.

Arnhem Plateau (ARP): the grid points are spread over several bioregions with a similar climate and
vegetation cover. Towards the west a sandstone massif dominates the otherwise flat topography. Veg-
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etation communities include heathlands, hummock grasslands, open eucalyptus woodlands, and
patches of monsoon forest. The tropical monsoonal climate has a distinct wet and dry season with
high temperatures throughout the year. Almost all of the approximate 1200mm rain falls in the wet
season between November and March, leaving a nearly rain free period for the rest of the year. North-

(a) Melaleuca woodland with grass understory, northern Queensland (b) Open eucalypt woodlands, northern Queensland

Figure 3.7: Open woodlands in ISBA vegetation type Tropical Grasslands

ern Kimberley (NOK): the vegetation in this region is characterised by open eucalyptus woodlands
with canopy heights between 5-15m and understories of tall grass savanna. The vegetation varies
strongly from the rugged coastal areas to the plateaus more inland. A strong seasonal monsoonal cli-
mate makes for a short wet season from October to March and a long, nearly rain free dry season for
the rest of the year. Mean annual rainfall ranges from 1400mm in the north to 600mm in the south-
west.

The region of interest within cover type bare soil are:

Simpson Strzelecki Dunefields (SSD): the SSD is very arid and has an unpredictable rainfall of 150-
200mm annually, which usually falls during summer storms. It comprises long linear dunefields and
sandplains, and some saltpans. The little vegetation that occurs is predominantly made up of acacia
and chenopod shrublands.

(a) Acacia shrublands and sand dunes in the Simpson Desert (b) Chenopod shrublands in Channel Country

Figure 3.8: Vegetation types in Australian deserts; ISBA vegetation type is bare soil

Channel Country (CHC): CHC is characterised by multiple river channels that drain to Lake Eyre
and vast braided flood and alluvial plains. It is characterised by an arid climate with very dry hot
summers and short dry winters. Although rainfall is persistently low and erratic (approx. 150mm per
year), extensive flooding from the north can lead to considerable pasture growth. Vegetation then
includes ephemeral grass and herbs, mulga, Mitchell grass and some eucalypt.
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3.3. Methods
3.3.1. Spatial patterns
Backscatter data from scatterometers is known to be useful in discriminating main vegetation re-
gions. It is also sensitive to water bodies, and the relief and moisture content of the soil surface (Wag-
ner et al., 1999). Hence, for a first indication of the distribution of 𝜎𝑜

40 , 𝜎′and 𝜎″values across the
whole of Australia, and to give an idea of how the values in the ROIs correspond to the rest of the
country, maps of the mean and range of the 13 year long ASCAT datasets are made.

Thereafter the focus is on the ROIs. Scatterplots of mean vs. range are shown first to appreciate
the difference between the ROIs in different vegetation types. Each marker represents an individual
gridpoint in an ROI.

3.3.2. Seasonal climatology
To analyse the seasonal climatologies of each ROI the time series of all the variables is decomposed
manually into two additive components:

Observed time series (O) = Seasonal climatology (S) + Anomalies (R)

The climatology is calculated by taking the average of the entire time series (2007-2019) for each day of
the year, or each dekad. Since the climatology is based on only 13 years of data it is important to keep
in mind that the seasonal climatologies may be skewed compared to an actual climatology based on
30+ years of data. The seasonal climatologies are presented in three panels: 1) soil moisture related
variables (𝜎𝑜

40 , ISBA rzsm & ssm), 2) vegetation related variables (𝜎′, LAI & GPP), 3) ASCAT parameters
(𝜎𝑜

40 , 𝜎′& 𝜎″).

To give more insight into the scattering mechanisms that drive the seasonal cycle of ASCAT parame-
ters the 𝜎𝑜 - 𝜃 relation is plotted, with some key moments highlighted.

3.3.3. Drought response
In this study the simulated root zone soil moisture from ISBA is used as the variable to define droughts.
As stated before soil moisture is generally a good indicator of droughts as it is roughly an aggregate
of the available water from the balance precipitation, evaporation, and runoff (Sheffield et al., 2009).
Moreover, the root zone soil moisture determines the available water for plant growth, and since most
of the vegetation growth in Australia is water limited (Nemani et al., 2003), that makes root zone soil
moisture anomalies a good representation of droughts.

The full time series of all ASCAT and ISBA parameters are studied to analyze the response of backscat-
ter, slope and curvature in and around droughts. The droughts are primarily used to identify the
periods of extreme root zone soil moisture deficit, and not to study the individual drought charac-
teristics. The anomalies in root zone soil moisture and other variables prior to, and after the drought
event, are just as important. For the propagation of drought in this context the exact magnitude and
accuracy of a drought event is less relevant compared to the relative magnitude of the droughts to
each other within the time series.

The droughts are defined using the threshold level method because it stays close to the original time
series, and the quantification of drought characteristics is very transparent which makes it ideal for
studying drought propagation. The choices made in the application of the threshold level method
are discussed below.

In the results the drought events in the time series are highlighted. Since the seasonality of the
droughts is important because it can determine the impact on the available moisture content the
next season, the highlighted droughts have slightly different colors depending on whether they oc-
cur in SH-summer or SH-winter. This is determined based on whether at least 50% of the drought
days falls between Oct. - Mar. or Apr. - Sep. respectively.

The anomalies prior to, and following a drought event are equally important when studying the
drought response in ASCAT parameters. Anomalies here are defined as the observed time series mi-
nus the seasonal climatology. In this case the anomalies contain both long term trends and short term
residuals, and in general in this study no further differentiation is made between the two because de-
termining which part belongs to which component is rather subjective. However, occasionally in the
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presence of a clear long term trend in the observed data series the statsmodels.tsa.seasonal.seasonal_
decompose package in Python is used to appreciate the different long and short term components
in the anomalies better. This package calculates the long term trend using a centred rolling average
with a window of 365 days. Because the window is centred the first (last) six months of the time series,
that would otherwise be empty, are extrapolated using the first (last) year of the trend. The observed
time series then consists of the following three additive components:

Observed time series (O) = Seasonal climatology (S) + Trend (T) + Anomalies (R)

Identifying drought events
Chapter 2.1 covers the theoretical concepts of the threshold level approach, and this section elabo-
rates on the (italicized) subjective choices that have to be made to quantify the drought characteris-
tics for this study.
Since the analyses in this study are based on ROIs, the average soil moisture profile of all grid points
in the region is used to identify whether a ROI is in drought or not. That is also why the ROIs consist
of spatially contiguous grid points.

A variable threshold is used so as to take seasonal variations into account. It is a monthly threshold,
which allows for seasonal variation to be apparent while ignoring the high variability of daily values.
As mentioned before the soil moisture is often presented in dekads in this study, but the monthly
threshold value is based on the monthly duration curves using daily soil moisture data because this
leads to more data points in a month and thus a more accurate determination of the monthly thresh-
old. In this study this monthly threshold is derived from the80thpercentile, meaning a value is chosen
that is exceeded 80% of the time in a specific month (see fig. 3.9). This is a reasonable threshold, used
before to define droughts in soil moisture (van Loon, 2013). However, it remains a subjective choice,
and the effect of this choice on the distribution of drought characteristics can be found in appendix
A.

Based on twelve monthly duration curves a threshold is defined for each month of the year, and ap-
plied to the entire time series, as seen in figure 3.9. To prevent unnatural droughts characteristics due
to a ’staircase’ pattern, the threshold is smoothed using a centred moving average of 30 days (see fig.
3.10).

Figure 3.9: Monthly probability of exceedance curves for the months Jan. and Aug. for of a point in Western Tasmania
(lon:146.125, lat:-43.125). The 80th percentile is used to define monthly threshold values. Discrete monthly threshold values

lead to a ’staircase’ pattern which creates unrealistic drought events

Finally short dependent droughts are pooled together, and minor droughts are removed. Pooling is
based on the inter-event time criterion, as described in chapter 2.1. Since this is quite a subjective pa-
rameter the influence of different inter-event times on deficit characteristics is tested, and the results
are shown in appendix A. In this study an inter-event time of 10days is used, concurrent with van Loon
(2013). It is quite a conservative number, but a good trade off between minimizing the occurrence of
dependent droughts and including too long periods of high moisture content. Minor droughts with
a duration shorter than 20 days have been excluded. Though this is a fairly high number it has been
shown that minor droughts can have durations up to 20 days (van Loon, 2013). Also, by applying a
minor duration larger than the pooling criteria, individual drought days just within the inter-event
time that form artificial drought events are not taken into account. Moreover, the objective here is to
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Figure 3.10: Same grid point in Tasmania as in fig. 3.9. Smoothing the ’staircase’ pattern using a 30 day moving average leads
to much more realistic drought even characteristics. Mutually dependent drought events within the inter-event time period
are pooled.

study drought propagation, and not the distribution of drought characteristics, which is why short
droughts are less relevant.

The spatial distribution of droughts identified here are visually compared to historic drought events
from the Australian Bureau of Meteorology (BOM) to see if they roughly agree. The comparison can be
found in appendix A. The spatial pattern will never be exactly the same because the BOM uses rainfall
deciles (RD) to define droughts. However, what is most important is that no known major historical
droughts are not absent from the time series because this would hamper the accurate interpretation
of drought response in observed ASCAT parameters.

3.3.4. Burnt area detection
To assess whether ASCAT dynamic vegetation parameters can also be used to identify burnt areas,
as they should be sensitive to such big and sudden changes in vegetation water dynamics, the time
series of 𝜎𝑜

40 , 𝜎′, and 𝜎″for single grid points are examined. As an example, a single grid point is shown
to illustrate the results. The current burnt area information is obtained from the MODIS burnt area
product (MCD64A1)2.

2https://modis-fire.umd.edu/
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Results

The results first cover the variability in 𝜎𝑜
40 , 𝜎′and 𝜎″across the whole of Australia to give an impres-

sion of how this relates to the climate, the distribution of vegetation, and other land surface variables.
Then the mean and ranges of the ROIs are reviewed to see how these compare to each other. Section
4.2 zooms in further on one ROI per ISBA vegetation type to show what the regular seasonal cycle
looks like. With this in mind, section 4.3 shows the entire time series of all the variables for that ROI
so that an analysis of the response of ASCAT parameters in and around a drought can be made.

4.1. Spatial patterns
Figures 4.1 shows the spatial distribution of mean and range of backscatter, slope and curvature for
all 13 years of data. The backscatter mean (fig. 4.1a) is highest along the eastern and northern coast,
congruent with the high rainfall zones and generally woody vegetation, and decreases land inwards.
The patch of high mean backscatter in the west is over the Hamersley ranges in Pilbara, where veg-
etation is a mix of tropical grasslands and bare soil. The lowest mean backscatter is found in the
Simpson desert, the lightest patch in the middle of figure 4.1a, north-west of Cameron Corner.

Comparing the mean slope (fig. 4.1b) to the bioregions in figure 3.4 (e.g. the orange Avon Wheatbelt
in Western Australia) the croplands in the wheat-sheep zone (AVW, MDD, RIV, NSS) are clearly distin-
guishable with their low mean slope compared to surrounding higher rainfall zones. The temperate
grasslands (MGD) and bare soil (SSD, CHC) have even lower mean slope values. These are also the
regions with the highest range in slope and backscatter (see fig. 4.1d & 4.1e) suggesting a relatively
clear seasonal cycle, as would be expected in the grass and croplands.

The high range of the ASCAT parameters in the Simpson Desert may be a result of occasional flash
floods from the north that drain to Lake Eyre (the gridpoints with a range of ±12 dB south of Simpson
Desert). Vegetation in this arid region will respond quickly changing the land cover from bare soil
to vegetated for a short while. It could also indicate enhanced volume scattering from deeper soil
layers, common for very dry soils.

The spatial pattern of the range in slope and curvature is quite similar. The generally arid regions with
a high slope range are dominated by grass-like vegetation, including crops. Curvature is most sensi-
tive to this type of vegetation as the relative contribution of either ground bounce or direct scattering
from vertical plant constituents is more pronounced than over bare soil or evergreen forests.

27
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Mean and range of ASCAT parameters from 2007-2019

Figure 4.2 zooms in on the ROIs and shows the distribution of the mean and range of backscatter,
slope and curvature for individual grid points in each ROI. The arid desert regions (SSD, CHC) clearly
have the lowest backscatter values, and the tropical grasslands (CYP, ARP, NOK, blueish points) and
evergreen forests (SEH, NNC, TWE, darkgreen points) have the highest mean backscatter, which is a
result of high annual rainfall and subsequent soil moisture content.

Tropical grasslands and evergreen forest also have similar slope values, where the range across trop-
ical grasslands is even lower than for forests. This is likely the effect of the high presence of trees in
the ISBA vegetation type tropical grasslands (see section 3.2.1) and the fact that tropical vegetation
usually exhibits less seasonality than vegetation in temperate climates, where the evergreen forests
ROIs are located. For the range in backscatter, however, the inverse is true as the tropical grassland
ROIs in the north of Australia have a more pronounced soil moisture seasonality due to monsoonal
rainfalls, whereas the soil moisture in the more temperate climate of evergreen forests is likely to be
more constant.

The distinction between evergreen forests and tropical grasslands is more evident in the curvature.
The fraction of the dominant ISBA vegetation type in tropical grasslands on average is lower than in
evergreen forests (0.75 and 0.95 resp.), which means the vegetation cover in CYP, ARP, and NOK is
more heterogeneous. More specifically, they contain a higher fraction of grasslands (see figure 3.2),
which generally have a higher curvature values than forests.

The curvature of the Mitchell Grass Downs (light green fig. 4.2c) is even more positive, as are the
croplands, which mainly consist of winter crops and some grazing pastures. Both the mean and range
of the backscatter over the MGD is also similar to the croplands. The MGD slope, on the other hand,
resembles the sparser vegetated arid bare soil ROIs, which is not surprising considering that more
densely vegetated croplands are likely to have a higher biomass and vegetation water content, which
is what drives the slope.

The distinct variation between dominant ISBA vegetation types, and particularly between translu-
cent (crops and grasses) and non transparent (forests and bushes) vegetation is consistent with ear-
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lier studies where scatterometer data is used to discriminate between regions with different domi-
nant vegetation types (Wagner et al., 1999).

(a)

(b) (c)

Figure 4.2: Mean and range of ASCAT parameters for each grid point in the ROIs. Red/orange are croplands, darkgreens are
forests, tan/brown are bare soil, light greens are temperate grasslands, and blueish are tropical grasslands.
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4.2. Seasonal climatology
Having looked at the difference in distribution of mean and ranges across the different vegetation
types, this section describes the seasonal cycles of 𝜎𝑜

40 , 𝜎′and 𝜎″. Since ROIs within a vegetation type
often resemble each other only one ROI per dominant vegetation type is evaluated here. Figures of
the additional ROIs can be found in appendix B. The figures of the seasonal cycles are accompanied
with a 𝜎𝑜 - 𝜃 plot with some key dates highlighted to better explain the change in ASCAT parameters
throughout the year.

4.2.1. C3 crops
Figure 4.3a shows the seasonal climatology of the Murray Darling Depression. It has a distinct wet
season, approximately from day 120-300. The 𝜎𝑜

40 signature is very similar to the surface soil moisture,
with the exception of a small peak in 𝜎𝑜

40 around day 300. This peak coincides with the peak in slope,
meaning that the 𝜎𝑜

40 value has a large contribution from vegetation water content, which is why it
deviates from the soil moisture signal.

The vegetation (middle panel fig. 4.3a) peaks in the SH-spring, slightly after the soil moisture peaks,
as expected for predominantly winter crops. During the growing season slope follows the same pat-
tern as LAI and GPP, but lags slightly behind. This is likely due to the fact that ISBA simulates the
annual cycle of crops in the same way it does natural vegetation and does not take into account exact
harvesting dates, whereas slope is calculated from observed backscatter (Moigne, 2018). Interesting
to note is that prior to the growing season the slope dips considerably, which is a feature not seen in
LAI or GPP.

(a) Top panel: soil moisture related variables.
Middle panel: vegetation related variables.

Bottom panel: ASCAT parameters.

(b) Climatology of 𝜎𝑜
40 , 𝜎′and 𝜎″with key dates highlighted in the 𝜎𝑜 - 𝜃 curve. Each

line represents a dekad.

Figure 4.3: Seasonal climatologies across the Murray Darling Depression, one of the C3 cropland ROIs.

The similar seasonal cycle and lag between 𝜎″and 𝜎′can be explained by their sensitivity to the phe-
nology and changes in vegetation structure of winter crops like wheat and barley. During the tillering
phase, as the plants start to emerge, around doy 160, backscatter is still dominated by direct scattering
from soil moisture (Mattia et al., 2003). Hence the steep dark blue curve with high 𝜎𝑜 values in figure
4.3b. As the wet biomass increases, which is in large due to stem elongation, the slope increases and
the 𝜎𝑜 - 𝜃 curve flattens as the soil return signal is increasingly attenuated at lower incidence angles,
and volume scattering starts to dominate. Around doy 290 the biomass is at its peak, at the formation
of the heads. The backscatter minimum around 50∘at this point (light green line fig. 4.3b) is the re-
sult of a change in dominant scattering mechanisms. At lower incidence angles scattering involving
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a ground bounce term is dominant. However, as the incidence angle increases, this ground bounce
term becomes insignificant due to the vertically polarized waves that couple with the vertical struc-
ture of the wheat stalks (Stiles et al., 2000). In addition, direct scattering from the upper portion of the
stalk and the grains, which are rich in water content, increases with increasing incidence angles. This
leads to a minimum of the 𝜎𝑜 - 𝜃 curve around 50∘and a curving upwards at higher incidence angles,
as was observed by Mattia et al. (2003) and Stiles et al. (2000). After heading, as the vegetation water
content decreases, and in this case soil moisture decreases too, the sensitivity to ground scattering
from soil moisture increases. This leads to a sharp decrease in backscatter at low incidence angles,
whereas the interaction of the microwave signal with the vertical stalks still dominates at higher in-
cidence angles, resulting in the peak in 𝜎″(yellow line fig. 4.3b). The ability to describe the growing
season of wheat so neatly with the combined seasonal cycles of slope and curvature at this spatial
resolution is encouraging.

(a) Top panel: soil moisture related variables.
Middle panel: vegetation related variables.

Bottom panel: ASCAT parameters.

(b) Climatology of 𝜎𝑜
40 , 𝜎′and 𝜎″with key dates highlighted in the 𝜎𝑜 - 𝜃 curve. Each

line represents a dekad.

Figure 4.4: Seasonal climatologies across the South Eastern Highlands, one of the evergreen broadleaf forest ROIs.

4.2.2. Evergreen broadleaved forests
Seasonal variations in 𝜎𝑜

40 , 𝜎′and 𝜎″are generally small over evergreen forests. Figure 4.4a shows that
the range in 𝜎𝑜

40 climatology is only 0.3dB and its seasonal cycle is also significantly different from root
zone and surface soil moisture, which have a more distinct wet season. This dissimilarity is likely due
to the fact that over dense forests the microwave signal attenuates before reaching the soil, and the
backscatter signal is dominated by vegetation water content, or interception at the top of the forest
canopy.

Though there appears to be a clear seasonal cycle in the slope, its magnitude is really small compared
to grass-like vegetation. This is evident in the compact and almost linear 𝜎𝑜 - 𝜃 curve in figure 4.4b,
meaning dominant scattering mechanisms are the same all year long at all incidence angles. This
stable backscatter signal is typical for evergreen forests. The limited variation in slope could be at-
tributed to small phenological changes in leafy biomass, whereby the 𝜎𝑜 - 𝜃 relation changes from
slightly convex to linear throughout the year. Consequently the curvature becomes inversely related
to the slope.

The seasonal variations in LAI and GPP are larger than in slope when compared to other vegetation
types. This highlights a perhaps trivial point in this study that though the slope is often said to be
a measure of vegetation density, it is ultimately a measure of different scattering mechanisms in-
duced by vegetation. Nonetheless, in this case it is apparent that slope is more strongly driven by the
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woody water content, which is more closely related to the faster reacting GPP than leaf emergence or
vegetation greenness (Vreugdenhil et al., 2017). Hence why the LAI cycle lags behind the slope and
GPP.

4.2.3. Temperate grasslands
The Mitchell Grass Downs is a region with relatively low vegetation density, dominated by tussock
grasses, which is why backscatter correlates fairly well with soil moisture. It is a dry semi arid re-
gion, with a distinct wet season influenced by summer monsoons from the north, and otherwise low
backscattter and soil moisture values from doy 120 onwards.

Slope, LAI and GPP all have a very similar seasonal cycle due to the fact that the production of biomass
is all in the form of leaf-like structures, with no woody components. The slope, LAI, and GPP also
follow the peak in soil moisture much faster than over croplands. This is because in an otherwise
dry climate, grasses well tend to bloom rapidly in response to a rainfall event (Jones et al., 2012). The
curvature values are all positive too, consistent with what Steele-Dunne et al. (2019) found in North
American grasslands, though the signal is not as smooth as over croplands.

Looking at figure 4.5b and comparing the 𝜎𝑜 - 𝜃 curve with croplands it is clear that the intra-annual
variation, especially at lower incidence angles where direct scattering from the soil dominates, is
much smaller across these grasslands. At higher incidence angles, however, the presence of vegeta-
tion and consequent volume scattering becomes evident as the dark blue and purple lines, which are
clearly higher due to increased soil moisture content, start to curve.

(a) Top panel: soil moisture related variables.
Middle panel: vegetation related variables.

Bottom panel: ASCAT parameters.

(b) Climatology of 𝜎𝑜
40 , 𝜎′and 𝜎″with key dates highlighted in the 𝜎𝑜 - 𝜃 curve. Each

line represents a dekad.

Figure 4.5: Seasonal climatologies across the Mitchell Grass Downs, the temperate grassland ROI.
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4.2.4. Tropical grasslands
The tropical grasslands are woody savannas in the north of Australia, with a distinct summer mon-
soon in an otherwise fairly dry climate. The seasonal cycles across the Arnhem Plateau shown in
figure 4.6a have high slope values, comparable to evergreen forests, but the timing is inversed due
to the wet season occurring in SH-summer instead of winter. The range in the seasonal cycle of 𝜎′is
also similar to evergreen forest, indicating that vegetation is stable throughout the year, which can be
expected in tropical regions. This is also evident from the 𝜎𝑜 - 𝜃 relation in figure 4.6b. Variations are
even slightly larger at low incidence angles than at high incidence angles underscoring that fact that
changes in the 𝜎𝑜 - 𝜃 relation are dominated by changes in soil moisture rather than phenology.

The magnitude of the GPP climatology is similar to evergreen forests but the LAI is lower indicating
the foliage is not as dense as over forests. This is further emphasized by high cover fraction of grasses,
and the positive curvature. The slight changes in curvature throughout the year from a convex to a
concave curve in figure 4.6b could be ascribed to small seasonal fluctuations tree foliage, as a direct
result of available plant water. Hence the curvature is also directly out of phase with 𝜎𝑜

40 climatol-
ogy. Nonetheless the mix of grasses and trees makes adequately interpreting the ASCAT signal more
challenging.

Finally, looking at appendix B the seasonal signal in curvature is roughly the same for all tropical
grassland ROIs, whereas the slope varies more. The opposite is true for evergreen forests.

(a) Top panel: soil moisture related variables.
Middle panel: vegetation related variables.

Bottom panel: ASCAT parameters.

(b) Climatology of 𝜎𝑜
40 , 𝜎′and 𝜎″with key dates highlighted in the 𝜎𝑜 - 𝜃 curve. Each

line represents a dekad.

Figure 4.6: Seasonal climatologies across the Arnhem Plateau, one of the tropical grassland ROIs.



34 4. Results

4.2.5. Bare soil
Though bare soil is technically not a vegetation type it is an abundant land cover type in Australia.
The climatological values of the variables from the land surface model in figure 4.7a are indicative
of a desert like region, and the 𝜎𝑜

40 values are low too. However, the Simpson Desert and to a larger
extent Channel Country (see appendix B) are known to experience rare flooding events due to rain
prolonged extreme rainfall to the north. Consequently these arid regions can become rapidly vege-
tated. The small fraction of tropical grassland, as seen in figure 3.2 supports this. However, a seasonal
climatology constructed from a relatively short (13 years) time series with prolonged positive or nega-
tive anomalies should be interpreted with care, especially if the magnitude of the climatology is small
compared to the anomalies, which is the case here. As can be seen in figure 4.7b and the time series
in section 4.3 the seasonal cycle is really insignificant. Hence the slope and curvature climatologies
are actually a construct of large anomalies in the time series.

(a) Top panel: soil moisture related variables.
Middle panel: vegetation related variables.

Bottom panel: ASCAT parameters.

(b) Climatology of 𝜎𝑜
40 , 𝜎′and 𝜎″with key dates highlighted in the 𝜎𝑜 - 𝜃 curve. Each

line represents a dekad.

Figure 4.7: Seasonal climatologies across the Mitchell Grass Downs, one of the bare soil ROIs.
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4.3. Drought response
This section looks at the full time series from 2007-2019 to analyse the response of 𝜎𝑜

40 , 𝜎′and 𝜎″in
and around drought events. The results shown here are for the same ROI as in the previous section,
and the results for the other ROIs can be found in appendix C. Two types of plots are produced that
show the anomalies in two different ways to appreciate the magnitude and the timing of the anoma-
lies. The first (a) shows the anomalies shaded (lightgrey=positive, red=negative) as the difference
between the observed. This allows to accurately see when the anomaly takes place in the seasonal
cycle, and, for example, how large the impact of this anomaly is on the next season. The second fig-
ure (b) shows panels with time series and anomalies of soil moisture related, vegetation related, and
ASCAT parameters so that the timing and magnitude of these can be more easily compared amongst
each other.

As mentioned in chapter 3.3.3 the drought events are primarily defined to highlight the worst anoma-
lies in ISBA root zone soil moisture in the 13 year data record. Rather than isolating the individual
droughts events and studying those, the time series are studied in their entirety because an anomaly
in any of the variables, preceding or succeeding the actual drought event, can be equally valuable to
interpret the vegetation dynamics. Looking at the entire time series also allows to better appreciate
the relative magnitude of the seasonal cycles compared to the anomalies.
The timing of the drought events can also play an important role in whether a soil moisture anomaly
propagates into a vegetation anomaly. Hence the drought events in the figures in this section are
highlighted slightly different depending on whether they occur in SH-summer or SH-winter.

4.3.1. Drought signal in backscatter
In this chapter the root zone soil moisture from ISBA is used to define droughts. This is because we
are interested in the effect a soil moisture deficit has on vegetation, and whether this can be picked up
by the dynamic vegetation parameters slope and curvature, and root zone soil moisture determines
the available water for plant growth. Appendix A shows that the droughts defined based on ISBA
root zone soil moisture visually compare well to the droughts identified by the BOM using rainfall
deciles. Multiple studies have also proven the worth of ASCAT in detecting soil moisture droughts,
though these have all been based on the surface soil moisture retrieved through the TU Wien Soil
Moisture Retrieval algorithm, or on the SWI, which is estimated from this surface soil moisture (Baik
et al., 2019; Gouveia et al., 2009). However, Schroeder et al. (2016) also showed the ability to monitor
droughts directly with backscatter by showing consistent spatial and temporal patterns between 𝜎𝑜

54 anomalies and the U.S. Drought Monitor. The potential to monitor droughts directly with 𝜎𝑜
40 is

reaffirmed here in figure 4.8.

(a) (b)

Figure 4.8: 𝜎𝑜
40 anomaly and rainfall deciles from the BOM averaged over 2018

The reason the 𝜎𝑜
40 anomalies in figure 4.8 resemble the rainfall deciles so well is that 𝜎𝑜

40 , which is
largely governed by the soil moisture in the top cm of soil, is a more close and direct representation of
antecedent rainfall conditions than the deeper and slower responding root zone soil moisture.
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4.3.2. C3 crops
The three longest drought events in the Murray Darling Depression are in 2011, 2013, and 2018 (see
fig. 4.10a). The 2011 drought occurs due to a root zone soil moisture deficit in the rising limb of the
wet peak. However, the influence on 𝜎′is minimal with no negative anomalies present, even in the
next season. The large positive slope anomaly prior to the drought due to unusually high antecedent
soil moisture conditions in early 2011 appears to be large enough to bridge the effect of the drought
in slope. The mechanisms driving slope appear to have a longer ’memory’ than LAI and GPP, which
do develop a negative anomaly as soon as the drought starts in 2011. This could perhaps be expected
since these are outputs from the same land surface model that simulates soil moisture.

Looking at the slope, LAI and GPP anomalies in figure 4.10b (panel 4) the slope anomalies are slightly
lagged behind LAI and GPP, just like their seasonal climatologies. This is also the case for all other C3
crop ROIs in appendix C. As mentioned before, this likely due to the strong anthropogenic influence
on croplands, which is not taken into account by ISBA.
The large positive anomaly in LAI and GPP that follows from the unusually high wet season in 2016
also highlights the non-linear relation between 𝜎′and LAI and GPP. Compared to the magnitude of
their seasonal cycle the anomaly in LAI and GPP is almost twice as large, whereas for slope the positive
anomaly is only half the magnitude of the seasonal cycle (fig. 4.10b, panel 4).

The 2013 and 2018 droughts both occur in the low soil moisture season. Though these have a delayed
impact on the slope, figure 4.10b (panel 4) shows that the 𝜎′anomalies are not as large as, for exam-
ple, after the droughts in end 2014 and 2015. These droughts, which are of shorter duration, cause
a larger slope anomaly because they occur in the rising limb of the increase in vegetation biomass.
This shows that the seasonality of the drought is equally important in the propagation from a soil
moisture to a vegetation anomaly.
Moreover, the fact that a small soil moisture anomaly at the end of 2016, despite a very wet season,
propagates into a 𝜎′anomaly, but the drought at the end of 2007 does not underlines the fact that
antecedent conditions play a large role in drought propagation. It is likely the vegetation in 2016 is
still vulnerable from the deficits in 2015, and has not fully recuperated, despite the large wet sea-
son. This also highlights the difficulty in studying individual drought events because the effect of a
single drought event cannot be viewed separately from potential anomalies occurring prior to the
drought.

Figure 4.9: 𝜎𝑜 - 𝜃 relation for dekad from 10-20 Nov. Orange line
is for a dekad in drought in 2015. The blue line is for a dekad
with a large positive slope anomaly in 2010.

Across C3 croplands, positive anomalies in
curvature tend to be associated with negative
anomalies in slope and backscatter, and vice
versa. Thus, in periods of drought the curvature
will tend to be even more positive. This is simi-
lar to the drought response Steele-Dunne et al.
(2019) found across grasslands. Though vege-
tation density is lower than normal, hence the
negative slope anomaly, direct scattering from
the vegetation still dominates over the ground
bounce term because the soil is so dry. This is
illustrated in figure 4.9 which shows the 𝜎𝑜 - 𝜃 re-
lation for the dekad when the curvature peaks in
the 2015 drought. The orange line still curves at
high incidence angles due to volume scattering
effects from vegetation, but at lower incidence
angles, where direct scattering from the surface
dominates, backscatter decreases rapidly with
increasing incidence angles because of a dry
soil.
The opposite is true for the blue line which is
much flatter, and as explained in section 4.2,
even curves upward at high incidence angles
due to the top of the wheat stalks being full of
water. At lower incidence angles scattering from
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the underlying soil is also less sensitive to incidence angle because the vegetation is denser, and the
soil is wetter.

(a)

(b)

Figure 4.10: Murray Darling Depression (C3 crops) time series with anomalies and droughts highlighted
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4.3.3. Evergreen broadleaved forests
The observed time series across the South Eastern Highlands contain a clear long term trend (see
fig. C.4 in appendix C). Usually, in the absence of a clearly visible long term trend, the anomalies in
the time series are not further distinguished because separating what are long term and short term
anomalies is rather arbitrary. However, when a long term trend is apparent, it can be useful to de-
trend the time series to better study and compare the anomalies in the different variables.
The figures 4.11a and 4.11b show the time series with the trend removed from the anomalies, and
added to the seasonal cycle. The separate long term trend is shown in figure 4.12. The anomalies
at the time series edges are perhaps more artificial because of the need to extrapolate the trend in
the first and last six months of the time series (see methodology in section 3.3.2). It is good to keep
in mind, however, that the actual anomalies are really a sum of both the short and long term varia-
tions.

From figure 4.12 it is obvious that all the land surface model variables have roughly the same trend.
The trend in 𝜎𝑜

40 to some extent also follows the same pattern. Looking at 𝜎𝑜
40 in figure 4.11b, that

the seasonal cycle is minimal compared to the anomalies, and also less pronounced compared to
ISBA root zone and surface soil moisture. As discussed in section 4.2 this is because vegetation cover
is fairly stable over evergreen forests, so the backscatter signal is more a measure of interception or
dew on top of the canopy, rather than soil moisture. The fact that 𝜎𝑜

40 anomalies still align well with
the soil moisture anomalies could be the simple result of the simulated soil moisture in ISBA being
forced using the ERA5 climate reanalysis, and that over forests the backscatter may be even more
directly related to rainfall.

As can be seen in the 𝜎𝑜 - 𝜃 curve in section 4.2 the variation in vegetation across evergreen forest
is generally really small. Looking at the interannual variation in figure 4.11, the long term 𝜎′trend
has a range of ±0.02 dB/deg, similar to the seasonal cycle. In terms of the 𝜎𝑜 - 𝜃 relation this trans-
lates to minor changes in the slope, possibly as a result of a slightly more or less dense canopies over
the years. Looking at the remaining short term anomalies in figure 4.11a these are really high fre-
quency fluctuations, unlikely to be related to the variations in 𝜎𝑜

40 as the wet biomass in evergreen
forests generally doesn’t directly increase after a rainfall event. It is more feasible that these short
term fluctuations are a result of the kernel window used to smooth the slope and curvature signal,
rather than actual fluctuation in vegetation dynamics. Recently, Steele-Dunne et al. (2021) showed
that a shorter kernel window leads to considerably more short term fluctuations, as not enough local
slope values are averaged to filter out the measurement noise, which incidentally also led to strongly
reduced accuracy in the soil moisture retrieval. Though the effect on the ability of slope and cur-
vature to accurately capture vegetation dynamics using different kernel windows remained mixed
across broadleaf forests, Steele-Dunne et al. (2021) suggested that using smoother dynamic vegeta-
tion parameters yielded better results in the soil moisture retrieval algorithm. This means that in the
case of this ROI the interannual variations, captured in the long term trend, are most interesting to
study vegetation anomalies.
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(a)

(b)

Figure 4.11: South Eastern Highlands (evergreen broadleaved forests) time series with the long term trend removed from the
anomalies and added to the seasonal cycle
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The difference in long term trend between LAI and GPP, and 𝜎′and 𝜎″could possibly be the result of
how the simulated root zone is defined in ISBA. As mentioned in chapter 3.1 the simulated root zone
is only 1m deep, and has a uniform root distribution. However, Eucalyptus trees, which make up
large portions of the forest, are known to have rooting depths that easily exceed 10m (Robinson et al.,
2006). This can make a considerable difference in the vegetation’s reaction to changes in soil moisture
content. Looking at figure 4.12 LAI and GPP start to increase as soon as the root zone soil moisture
starts to increase, whereas the rise in 𝜎′is delayed until 2011. The dip in root zone soil moisture at
the end of 2012 has clearly propagated to LAI and GPP, but is much more smoothed out in 𝜎′, and
finally the strong decline in LAI and GPP from 2018 onwards is barely visible in 𝜎′and 𝜎″. This is
consistent with the notion that vegetation with a shallower root zone depth as simulated in ISBA will
react much faster to soil moisture deficits than the observed forest. The slower reaction of Eucalyptus
trees with a deep rooting depth can also explain why the 𝜎′deficits are concentrated in 2007-2011
(see fig. C.4a). This is towards the end of the Millenium Drought, which affected most of southeast
Australia from 2000-2010, and it is probable that towards the end of such a drought, even vegetation
with deep rooting depths will be impacted significantly.

The difference in long term trends also makes it difficult to compare anomalies between variables,
and difficult to follow the drought propagation from soil moisture to vegetation anomalies. The
droughts in ISBA root zone soil moisture are all clearly concentrated in two periods (2009-2011 and
2018-2020) because of the simple fact that the other 8 years have a higher than usual soil mois-
ture value. This is the drawback of using relatively short time series of 13 years to define droughts.
The anomalies are easily overemphasized because they cannot be viewed in light of more historical
records.

Figure 4.12: South Eastern Highlands (evergreen broadleaved forests) long term trend
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4.3.4. Temperate grasslands
The Mitchell Grass Downs experience three major droughts, in 2013, 2015, and 2017. In most of the
other years there also appears to be a consistent negative anomaly in the dry season in both soil
moisture and vegetation parameters. This is because two ’out-of-season’ wet peaks in 2007 and 2016
increase the climatological values of the dry season.

The negative anomalies in 𝜎𝑜
40 correspond well with the defined drought periods, and with ISBA soil

moisture anomalies in general (see fig. 4.14a). This high sensitivity to soil moisture can be explained
by less hindrance due to lower vegetation density compared to other vegetation types (e.g. slope ±-0.2
[𝑑𝐵/𝑑𝑒𝑔] and LAI ±0.5 [𝑚2𝑚−2]). Looking at figure 4.14b (panel 5 & 6) the 𝜎′time series and anomalies
are also very similar to the 𝜎𝑜

40 , especially during the drought periods. This is because in (semi-) arid
regions vegetation tends to respond rapidly to precipitation pulses (Jones et al., 2012). For herba-
ceous vegetation the accumulation of biomass and greening occur at roughly the same time, so the
LAI and GPP anomalies are both similar to slope, with no consistent lag between observed and sim-
ulated paremeters due to anthropogenic influences like sowing dates. Thus, the strong dependence
and rapid response of slope to changes in backscatter make 𝜎𝑜

40 and 𝜎′relatively good indicators of
drought propagation from soil moisture to vegetation anomalies.

At first sight the 𝜎″time series in figure 4.14b does not appear to have a consistent relationship with
𝜎′. In 2009 and 2012, for example, the slope anomaly is largely positive all year long, but the curva-
ture anomaly is for the most part negative in 2009, and positive in 2012. However, when looking at
the combination of 𝜎′and 𝜎″in the 𝜎𝑜 - 𝜃 relationship, the curvature gives insight into the dominant
scattering mechanism, which is determined by the abundance of vegetation, which is in line with the
findings of Steele-Dunne et al. (2019) in North American grasslands.
Looking at figure 4.14a, 2009, and especially 2012, are years with positive 𝜎𝑜

40 and 𝜎′anomalies, in-
dicative of high soil moisture content and vegetation density. The minimal difference between these
two years in figure 4.13, beside higher 𝜎𝑜 values, is the curving at higher incidence angles. Hence,
the presumably slightly higher vegetation water content that leads to stronger volume scattering at
higher incidence angles in 2012 is enough to make the difference between a positive and negative
curvature anomaly.

Figure 4.13: 𝜎𝑜 - 𝜃 relation averaged over the period of 20 Mar.
- 20 Dec., corresponding to the duration of the 2015 drought
event

In contrast, in the drought events of 2015 and
2017 both years experience low backscatter val-
ues and low slope values as a result of dry soil
with little vegetation. This is also evident from
figure 4.13 where 2015 and 2017 are the low-
est, and steepest curves. In 2015 the 𝜎𝑜 - 𝜃
line is practically linear, which is not surpris-
ing considering it’s the third consecutive year
with below average soil moisture conditions.
Now comparing the year 2017 with 2009 it is
apparent that, though at higher incidence an-
gles the curves are fairly similar, at lower inci-
dence angles the 2017 line is much steeper. This
indicates strong dominance of surface scatter-
ing at most incidence angles. The slight curv-
ing at higher incidence angles could be due to
the presence of some vegetation as a result of
the positive slope anomaly in 2016, consider-
ing tussock Mitchell grasses are generally quite
drought tolerant. Thus, looking at curvature
values alone, 2012 and 2017 seem similar, but
looking at them in combination with backscat-
ter and slope values reveal the dominance of di-
rect surface scattering in a dry and sparsely veg-
etated 2017, and more volume scattering in a
wetter, more densely vegetated, 2012.
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(a)

(b)

Figure 4.14: Mitchell Grass Downs (temperate grassland) time series with anomalies and droughts highlighted
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4.3.5. Tropical grasslands
The Arnhem Plateau in northern Australia has a steady monsoonal climate with a very distinct wet
season in an otherwise dry year. This makes that the defined drought periods occur frequently due
to delayed onset or shorter length of the wet season.

The time series for this ROI have been detrended again because of a clear long term trend in slope
(see fig. C.7a in appendix C). Looking at the trends in figure 4.16 all variables, except for the slope,
have a similar trend (opposite sign for curvature). Comparing the anomalies of 𝜎𝑜

40 and 𝜎″in figure
4.15b and their long term trend shows that in both cases they are the exact opposite of each. The
curvature has a really stable seasonal cycle, unlike in any other vegetation type, and appears to be
strongly driven by 𝜎𝑜

40 . This means that sensitivity to soil moisture is high at almost all incidence
angles and dominates changes in the 𝜎𝑜 - 𝜃 curve, irregardless of the season. This is plausible since
vegetation density as observed in the slope is high but fairly constant throughout the year, typical for
tropical climates. Remembering the climatological 𝜎𝑜 - 𝜃 relation in section 4.2 this translates to a
change from a slightly concave to convex curve for low to high 𝜎𝑜 values.

Though there is a clear seasonal cycle in the slope, figure 4.15a shows that it is largely dominated
by short term fluctuations. It is difficult to say whether these fluctuations, like in the South Eastern
Highlands (evergreen forest), are a result of unsurpressed measurement noise due to not enough lo-
cal slope values being averaged within the kernel window (Steele-Dunne et al., 2021). It could also
be that these are actually due to short term changes in vegetation dynamics, since the typical short
term fluctuations do follow changes in 𝜎𝑜

40 and are less apparent in curvature. Both the mean and
the range of the 𝜎′time series in figure 4.15a indicate tree cover, though it is known the understory is
largely made up of grasses (see section 3.2.1). This could explain the rapid response to small pulses
of increased moisture content.
The abundance of both trees and grasses in tropical grassland ROIs make it difficult to interpret the
signal in ASCAT parameters. Within ISBA it is also recognized that the heterogeneity of this vegetation
type makes it difficult to precisely calculate the vegetation fractions, which could explain the discrep-
ancy between the simulated ISBA and observed ASCAT vegetation parameters (Moigne, 2018). The
curvature is relatively similar for all tropical grassland ROIs(see also appendix C), but the timing of
the slope peak, and how broad the peak is, varies considerably. And though the range in slope time
series is small, the variations are highly dynamic. This indicates that the differences in vegetation
primarily manifest themselves in vegetation density and above ground wet biomass, but are small
enough to not greatly affect the relative importance of surface, volume, or multiple scattering effects
on total backscatter.
Looking at the time series in figure 4.15a again this means that the vegetation water content in the
canopy decreases near the end of the dry season, and even more so if the wet season is delayed, lead-
ing to a slightly higher sensitivity to underlying soil and grass understory.

Although the deviating long term trend in slope adds to the difficulty of comparing anomalies, it is an
interesting feature. This type of interannual variation is typically a feature that can be observed using
dynamically calculated 𝜎′values, in contrast to using only climatological 𝜎′values (Steele-Dunne et
al., 2021). Such a long term trend could perhaps indicate a change in the dominance of certain vegeta-
tion cover, though this would have to be confirmed with more detailed (ground) observations.
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(a)

(b)

Figure 4.15: Arnhem Plateau (tropical grasslands) time series with the long term trend removed from the anomalies and
added to the seasonal cycle
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Figure 4.16: Arnhem Plateau (tropical grasslands) long term trend
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4.3.6. Bare soil
The time series in figure 4.17 is made up of two extended periods of positive anomalies, interchanged
with three prolonged negative anomalies. It is clear from this that the seasonality shown in section
4.2 is actually a construct of the interannual variation, as the seasonal cycle is negligible compared
to the magnitude of the anomalies.

Sandy deserts are often problematic for accurate retrieval of 𝜎′values due to the high variance in local
slope (Hahn et al., 2017). However, in this case the slope appears to adequately capture the response
of vegetation to a sudden increase in soil moisture content. This occasional sprouting out of vegeta-
tion in the Simpson desert as a result of heavy rainfall and flash floods to the north is a well known
phenomenon. It is also in line with the observations of Vreugdenhil et al. (2017) that found good
agreement between 𝜎′and VOD across bare soil and sparsely vegetated areas in Australia.
The reason this region is marked as bare soil is because the LAI and GPP are practically zero. It could
be that due to the highly variable nature of the vegetation in these arid regions the ECOCLIMAP
database under estimates the vegetation content. Therein lies perhaps an opportunity to use ASCAT
dynamic vegetation parameters to calibrate land surface models.

The particular bare soil ROIs investigated here resemble a very arid form of grasslands. Looking at the
reaction of ASCAT parameters in and around drought periods it is very similar to the Mitchell Grass
Downs. The 𝜎′rises almost instantaneously due to increased 𝜎𝑜

40 values, and the 𝜎″, when viewed in
combination with 𝜎′, gives insight into the vegetation dynamics and the contribution of surface or
multiple scattering effects.

As can be seen in appendix D the time series can easily be divided into a clear ’step-wise’ long term
trend which is far more important in this region than any short term fluctuations. Hence for sparsely
vegetated regions the current calculation of ASCAT dynamic vegetation parameters appears to allow
for sufficiently good monitoring of vegetation anomalies.

Figure 4.17: Simpson Strzelecki Dunefields (bare soil) time series with anomalies and droughts highlighted
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Figure 4.18: Simpson Strzelecki Dunefields (bare soil) observed time series and anomalies with droughts highlighted
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4.4. Burnt area detection
This section briefly explores the possibility of using the dynamic vegetation parameters in identify-
ing areas affected by bush fires, one of the most frequently experienced natural hazards in Australia
(Sharples et al., 2016). Bush fires generally occur after prolonged periods of drought, in part due to
the drying out of vegetation (Yebra et al., 2018).

Burnt areas are, however, typically not as spatially extensive as droughts. Hence, averaging over all
grid points in an ROI, especially when these grid points are non-adjacent, will suppress the burn
signal. Therefore, the analysis is carried out for some individual grid points. Hypothetically, if the
bushfire covered enough of the 25km x 25km grid point, this should result in a considerable change
in scattering mechanism over an otherwise vegetated surface, especially if it involves a change from
a dense forest to bare soil.

As an example the time series of ASCAT parameters for one of the grid points in Victoria, southeast
Australia, that was affected by the Black Saturday fires in February 2009, is shown in 4.20. It clearly
shows unprecedented low slope and high curvature values in the season following the burn. This
is consistent with the effect a fire would have on vegetation water dynamics in a forest; the above
ground wet biomass plummets leading to the relative dominance of direct surface scattering and
ground bounce terms over volume scattering.

Figure 4.19: Difference in burnt area between Feb. 7th and 8th (Black Saturday) 2009 for a gridpoint dominated by evergreen
forest in the state of Victoria

When zooming in on the actual burn date, it shows that exactly 21 days prior to this day 𝜎″starts to rise
and 𝜎′starts to drop. This corresponds to the edge of the 42 day kernel window centred around the
burn date. Thus the premature rise and fall in 𝜎″and 𝜎′, respectively, can be attributed to the kernel
smoother used. It is, however, encouraging that such a big sudden change in vegetation dynamics is
visible, even at the edge of the kernel window.
In 𝜎𝑜

40 the burn is not clearly detectable because of its sensitivity to soil moisture which would already
change at the slightest rainfall event after the fire, especially with the forest canopy gone. Hence, it is
really the dynamic vegetation parameters 𝜎′and 𝜎″that allow to detect burnt areas.

Currently, for a burn to be detected as an anomaly in the time series a region must not experience
bushfires on a regular basis, the 𝜎′and 𝜎″signal across the vegetation type must differ considerably
from bare soil, and a large enough area of the grid point has to be affected by the bushfire, otherwise
the burn signal is not visible in the time series. Though much further detailed analysis is needed,
ASCAT has a potential to be used in the monitoring of burnt areas, for example complementary to
visible or infrared products, which often have a higher spatial resolution but can be hampered by
cloud cover.

The Fuel Moisture Content (FMC) strongly influences key components of flammability (Yebra et al.,
2018). In theory the high sensitivity of 𝜎′and 𝜎″to vegetation water dynamics could be used to give
early warnings of high FMC. However, to be of added value in prediction of bush fires, and take ad-
vantage of the high temporal resolution of ASCAT, the dynamic calculation for daily values of 𝜎′and
𝜎″would have to be strongly improved so that short term fluctuations are picked up, but measure-
ment noise is still suppressed.
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Figure 4.20: Time series of ASCAT parameters for a grid point in evergreen forest in Victoria
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Discussion

This chapter discusses the results, reflects on some of the limitations of this study, and points to
possible improvements for future studies.

Spatial variability
The findings of this study are in agreement with previous studies that backscatter from scatterome-
ters can be used to differentiate between main vegetation regions, most notable between translucent
(grasses and crops) and nontransparent (forest and shrubs) vegetation (Wagner et al., 1999). With the
addition of slope and curvature considerably more information can be gained from the vegetated
surface. For example, the spatial distribution of mean slope clearly followed the delineation of some
bioregions in Australia, something that was less visible in the 𝜎𝑜

40 map. In addition, the slope allowed
to identify differences in vegetation density between C3 crops and temperate grasslands, which oth-
erwise have similar backscatter values. In tropical grasslands the lower range in slope indicated that
the range in 𝜎𝑜

40 was due to changes in soil moisture rather than phenology. Thus when combined
with backscatter data, slope and curvature can be used to discriminate further between main vege-
tation regions based on soil moisture and land cover features.

Seasonal climatology
Despite its coarse resolution, the seasonal vegetation dynamics can be captured quite accurately with
ASCAT’s dynamic vegetation parameters. This is especially apparent in C3 croplands, which in the
Australian wheat-sheep zone is largely dominated by wheat. The seasonal cycle of slope and cur-
vature, particularly when viewed in the 𝜎𝑜 - 𝜃 relation, is able to neatly explain the growth stages of
wheat. This is primarily thanks to the numerous studies, like Veloso et al. (2017) and Mattia et al.
(2003), that have studied scattering mechanisms with high resolution from wheat fields in exper-
imental sites, or with more detailed Sentinel satellite data. Understanding the vegetation-ground
interaction, the vertical distribution of water content, and the difference in scattering mechanisms
before and after heading is vital in an accurate interpretation of slope and curvature across wheat
fields.
The ability to monitor the seasonal cycle of vegetation at this spatial resolution with such detail
should be an encouragement for future studies investigating the 𝜎𝑜 - 𝜃 relation across other vege-
tation types. An improved understanding of the influence that vegetation structure, water content
distribution, and biomass density have on scattering mechanisms in certain grasslands or woodlands
could lead to greatly improved interpretations of the slope and curvature signals there too.

It must be said that in this study the ROIs were defined based on grid points with highly uniform
ISBA vegetation type fractions (>80% for crops and forests; >70% for grasses). In croplands, where a
land cover fraction of 100% crops is not unusual, this makes the interpretation of the ASCAT signal
significantly easier. In contrast, the tropical grasslands vegetation type is heterogeneous by nature.
The mix of grasses and trees make it difficult to exactly attribute changes in scattering mechanisms
to phenology. Similarly Pfeil et al. (2020) found that for grid points dominated by crops in Austria,
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even a small fraction of deciduous broadleaved forest could already result in a ’spring-peak’ in slope,
caused by scattering from bare trees. Thus for a solid interpretation of the seasonal cycle of slope
and curvature in terms of vegetation dynamics, it is desirable to have grid points with highly uniform
vegetation, or a detailed knowledge of the land cover.

In general the seasonal cycle of backscatter agrees well with surface soil moisture from ISBA, with
the exception of evergreen forest ROIs. This poor relation between backscatter and soil moisture
as a result of signal attenuation in the canopy is also problematic in the TUW SMR (Wagner et al.,
2013).

Drought response
To adequately capture the propagation of drought, and the highly dynamic and often non-linear re-
lation between soil moisture and vegetation the entire time series are studied. The drought events
themselves are not analyzed in detail in this study, they primarily serve to identify periods with the
lowest root zone soil moisture, even though a datarecord of 13 years is relatively short to define
droughts.

Based on the results from this study, ASCAT parameters are most suitable to monitor droughts in fairly
dry semi-arid regions, like the temperate grasslands. The anomalies in ASCAT parameters match the
anomalies in their ISBA equivalent well, and there is practically no lag between anomalies in soil
moisture and vegetation parameters, which makes interpretation of the propagation of drought a
lot simpler. This is in line with earlier conclusions of Wagner et al. (2013) who showed particularly
strong correlations between SWI derived from ASCAT backscatter, and NDVI time series across semi-
arid regions of Africa.
Steele-Dunne et al. (2019) found clear anomalies in slope and curvature over the arid Nebraska Sand
Hills that lagged behind negative 𝜎𝑜

40 anomalies. In this study, across temperate grasslands, the onset
and duration of anomalies in slope neatly followed 𝜎𝑜

40 . The curvature was more difficult to interpret
and seemed to have no consistent relation with slope. Looking at the 𝜎𝑜 - 𝜃 relation in such cases really
helps to link the slope and curvature time series. It allows to unravel whether scattering is dominated
by surface scattering from dry or wet soils, and what contribution, if any, is made by volume scattering
from vegetation.

Over the bare soil ROIs the ASCAT parameters respond in much the same way as they would over
a dry, sparsely vegetated grassland, because in Australian deserts vegetation growth can come as a
rapid response to rare heavy precipitation events. This has also been observed by Vreugdenhil et al.
(2017), who found good correlation between VOD from ASCAT backscatter, and satellite derived LAI.
However, these prolonged positive slope anomalies are not reflected in the simulated LAI and GPP, as
a result of how the vegetation fraction is defined in ISBA. Potentially, ASCAT parameters, and partic-
ularly slope, could be exploited for monitoring land cover changes, and be used to calibrate the veg-
etation fraction in land surface models dynamically. This could improve the critical contribution of
land-atmosphere feedback interactions in drought monitoring (Herrera Estrada et al., 2017).

The vegetation dynamics in times of water stress over croplands also seemed to be adequately cap-
tured by slope and curvature time series, mostly because the seasonal cycle could be interpreted so
well. However, it was difficult to compare this to simulated LAI and GPP, primarily because ISBA
doesn’t take into account anthropogenic influences like irrigation or sowing and harvesting dates.
Over croplands this resulted in early onset of biomass peak compared to slope.
One of the limitations of using simulated LAI and GPP is that they are largely driven by climate. LAI
does not explicitly simulate phenology but the onset of leaf growth simply follows a carbon balance.
Moreover, a single optimum temperature for photosynthesis is used for each vegetation type across
the globe (Gibelin et al., 2006). Whereas the simulated LAI performs better in dry periods compared
to observations, the opposite is true for GPP (Albergel et al., 2010; Brut et al., 2009). The simulated
GPP is also highly sensitive to temperature, and the optimum temperature is often overestimated in
ISBA. Furthermore, GPP is in part dependent on LAI, because respiration takes place through pho-
tosynthesis (Albergel et al., 2010).
Although each dataset, simulated or remotely sensed, has its own advantage and disadvantages it
would be good for a future study that compares vegetation variables directly to slope and curvature
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to use satellite derived data. Especially over croplands where phenology can be highly dynamic, ob-
served optical or NIR vegetation indices would be worth comparing too. It would also be interest-
ing because in this study the LAI peak preceded the slope but indicated a lower vegetation density,
whereas in validation studies the simulated LAI in ISBA was often higher and delayed compared to
satellite derived products (Brut et al., 2009).

Across evergreen forests monitoring the propagation of drought from a soil moisture anomaly to a
vegetation anomaly was more challenging because of mismatch in timing between the two. One of
the reasons is likely that the root zone soil moisture depth in this version of ISBA is limited to 1m,
whereas the rooting depth of Eucalyptus trees are known to easily extend to 10m depth (Robinson
et al., 2006). It has been recognized that the plant extractable water capacity of soils and the rooting
depth are rather uncertain parameters in ISBA (Brut et al., 2009). Using prescribed rooting profiles,
which in reality are highly dynamic and actively respond to environmental stress, is a short coming
in many land surface models (Sivandran and Bras, 2013). The fact that the simulated anomalies in
root zone soil moisture corresponded so neatly with backscatter, which across evergreen forests is
more influenced by vegetation and interception than actual soil moisture, also raises some flags. This
could explain why soil moisture deficits and simulated vegetation anomalies on the one hand, and
the observed anomalies in slope and curvature on the other, react on different time scales.
Another aspect in the different responses to soil moisture deficits is that, though for most parts of
Australia vegetation growth is moisture driven, across the high rainfall zones like the evergreen forests
it is radiation driven (Nemani et al., 2003). (Petchiappan, 2019) found that across the Amazon the
seasonal cycle of slope was closely related to the radiation cycle. This would be useful to consider in
future studies when comparing slope from wet forest regions with relatively shallow simulated root
zone soil moisture.

Differences in long term trends, potentially as a result of the above mentioned limitations in ISBA,
have also made it difficult to asses the accuracy with which vegetation water stress can be captured
by slope and curvature. These differences were mostly in regions with high stable slope values, i.e.
evergreen forests and tropical grasslands. Whereas the long term trends themselves were suitable
to explain the interannual variability from a physical point of view, the remaining anomalies were
small high frequency fluctuations in the time series. A recent study by Steele-Dunne et al. (2021)
found that these short term variations increased with shorter kernel smoother windows. This makes
it difficult to determine whether these anomalies that remain after the trend is removed are a result
of short term vegetation dynamics, or unsurpressed measurement noise. Their preliminary conclu-
sion is that smooth dynamic vegetation parameters lead to better soil moisture retrieval, i.e. better
representation of vegetation effects. In this study that would be feasible to apply since the interan-
nual variation can be adequately captured in the smoother long term trend. However, much can be
gained from a calculation of a short kernel window that still leads to robust slope and curvature val-
ues. This is a big challenge, also for the soil moisture retrieval algorithm, that needs to be further
investigated.
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Conclusions

This study investigates if ASCAT could be used as a self-contained dataset in drought monitoring. The
spatial variability, the seasonal cycle, and the drought response of backscatter, slope and curvature
across different vegetation types is assessed. More specifically, it is examined whether the ability of
the dynamic vegetation parameters, slope and curvature, to adequately describe vegetation water
dynamics also holds during periods of water stress. Simulated soil moisture, LAI and GPP from ISBA
are used to aid in the interpretation of the ASCAT signal.

The ability of ASCAT to be used as a self-contained dataset in drought monitoring largely depends
on the vegetation type. Across dry semi-arid regions with grasses (or crops), the good correlation be-
tween both moisture and vegetation related variables from ASCAT and ISBA indicate that ASCAT per-
forms at least as well as the land surface model, and could thus be used alone in monitoring droughts
over these regions. This could start to fill the gap in the need of near-real-time satellite-based moni-
toring of vegetation for successful drought monitoring. Particularly good insights into the vegetation
dynamics of the grasses and crops in times of drought can be gained from the 𝜎𝑜 - 𝜃 relationship. This
is because the scattering mechanisms from the structure and moisture distribution in these types of
vegetation is better understood.

The vegetation’s response to a drought in forests or a mix of grasses and trees showed more incon-
sistencies regarding the propagation of a soil moisture anomaly into a vegetation anomaly. For more
accurate retrieval of soil moisture over these regions, more knowledge is needed of the relationship
between backscatter measurements and scattering from these types of vegetation. It is further rec-
ommended to also compare ASCAT dynamic vegetation parameters over forests and mixed vegeta-
tion to other observed (remote sensing) vegetation indices as these can be better at capturing the real
vegetation phenology than simulated variables.

The results of this study are particularly promising for monitoring droughts with ASCAT over ex-
tended croplands, which from an economic point of view is the most valuable vegetation type. The
dynamic vegetation parameters have shown, qualitatively, to adequately capture the vegetation anoma-
lies in wheatfields. The sensitivity to vegetation structure and density, to the water content and dis-
tribution, and to ground conditions could greatly complement optical or NIR indices that primarily
provide measures of photosynthetic leaf area and vegetation greenness. The temporal stability of
spatial patterns in vegetation would allow the coarse resolution, but high revisit time, of ASCAT to be
used for local scale crop monitoring with these other indices.

For future studies in regions where using ASCAT as a self-contained dataset in drought monitoring is
still too ambitious, it has a real potential to be used as calibration in land surface models. Considering
the increasingly recognized role that land-atmosphere feedback mechanisms play in the propagation
and persistence of droughts, and the often limited representation of vegetation responses in land
surface models, points to the added value the dynamic vegetation parameters can have in drought
monitoring. The high revisit times and low spatial resolution of ASCAT make it especially compatible
with land surface models.
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56 6. Conclusions

To conclude, this study confirms that the dynamic vegetation parameters yield valuable information
of how vegetation dynamics change over time. The understanding of slope as a measure of vegetation
density has been reinforced, and across woody vegetation has been specified to a measure of vegeta-
tion water content. The curvature as a measure of the relative dominance in scattering mechanisms
related to vegetation structure and variations in phenology, and the ground contribution is also sup-
ported by the results. Depending on the land cover, the curvature can show a direct relation with the
backscatter or slope signal. These interpretations of slope and curvature have been shown to hold in
time of vegetation water stress. This should further encourage the development of the dynamic veg-
etation parameters in the TUW SMR algorithm. With future research into the the kernel smoothing
technique to allow for a dynamic calculation of slope and curvature, the benefit of a high temporal
signature of ASCAT backscatter can be exploited, and other applications like bushfire prediction can
potentially be explored.
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A
Sensitivity to threshold level parameters

Visual comparison of droughts

Figure A.1: Visual comparison of the droughts defined across the SEH in this study (middle panel), and the drought maps
as defined by the BOM based on RD ranges. The ranges ’very much below average’ and ’lowest on record’ are considered
droughts.

Figure A.1 show the visual comparison of droughts identified in this study for the South Eastern High-
lands (SEH) and those identified by the BOM. Because the former is based on root zone soil moisture
and the latter on rainfall deciles there won’t be an exact match. Moreover, the drought maps from the
Bureau of Meteorology (BOM) are yearly averages. There needn’t be an exact match either because in
this study the drought events are mostly as an indication of lowest soil moisture levels in the 13 years
of data available. In studying the propagation of drought through the hydrological system the focus
is just as much on the anomalies surrounding a drought, and not only on the drought characteris-
tics of individual events. Hence, the idea of this comparison is to check whether there are no major
droughts missing in the time series that could have significantly impacted the dynamic vegetation
parameters.
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64 A. Sensitivity to threshold level parameters

Sensitivity to percentile monthly duration curve
The choice of the percentile of the monthly duration curve on which to base the threshold value
has the largest influence on the distribution of drought characteristics. A threshold value between
70-95% of the monthly duration curve is common for perennial and intermittent streams (Fleig et
al., 2006; Hisdal and Tallaksen, 2000). Figure A.2 shows the effect of the percentile of the monthly
duration curve on the number of drought events, the mean duration, and the maximum deficit of
drought events in one of the ROIs.

(a) (b)

(c)

Figure A.2: Effect on the distribution of relevant drought characteristics across the Murray Darling Depression based on dif-
ferent threshold levels

Naturally, a lower threshold produces more and longer droughts, and the converse is true for a higher
treshold. For soil moisture droughts the 80th percentile has been used before by van Loon (2013) and
produces good results (see fig. A.1).

Sensitivity to inter-event time and minimum duration

(a) (b)

Figure A.3: Effect on the distribution of the number of drought events and their mean duration across the Murray Darling
Depression based on different inter-event times

The inter-event time really only has an influence on the number of drought events (less droughts for
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higher pooling number) and the duration (longer duration for higher pooling number). The maxi-
mum deficit, or magnitude, which is a measure of the severity of droughts for state variables such as
soil moisture, is not affected because pooling only adds days with a positive soil moisture anomaly
to the event.

The same is true for the sensitivity to the choice of minimum event duration. Naturally the num-
ber of drought events decreases, and the mean duration increases with increasing minimum dura-
tion. Once again though, this doesn’t change the maximum magnitude of the drought events that
remain.

(a) (b)

Figure A.4: Effect on the distribution of the number of drought events and their mean duration across the Murray Darling
Depression based on different minimum event durations





B
Seasonal climatologies of ROIs

C3 crops

(a) Top panel: soil moisture related variables.
Middle panel: vegetation related variables.

Bottom panel: ASCAT parameters.

(b) Climatology of 𝜎𝑜
40 , 𝜎′and 𝜎″with key dates highlighted in the 𝜎𝑜 - 𝜃 curve. Each

line represents a dekad.

Figure B.1: Seasonal climatologies across the Avown Wheatbelt, one of the C3 cropland ROIs.
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68 B. Seasonal climatologies of ROIs

(a) Top panel: soil moisture related variables.
Middle panel: vegetation related variables.

Bottom panel: ASCAT parameters.

(b) Climatology of 𝜎𝑜
40 , 𝜎′and 𝜎″with key dates highlighted in the 𝜎𝑜 - 𝜃 curve. Each

line represents a dekad.

Figure B.2: Seasonal climatologies across the Riverina, one of the C3 cropland ROIs.

(a) Top panel: soil moisture related variables.
Middle panel: vegetation related variables.

Bottom panel: ASCAT parameters.

(b) Climatology of 𝜎𝑜
40 , 𝜎′and 𝜎″with key dates highlighted in the 𝜎𝑜 - 𝜃 curve. Each

line represents a dekad.

Figure B.3: Seasonal climatologies across the NSW Southern Slopes, one of the C3 cropland ROIs.
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Evergreen broadleaved forests

(a) Top panel: soil moisture related variables.
Middle panel: vegetation related variables.

Bottom panel: ASCAT parameters.

(b) Climatology of 𝜎𝑜
40 , 𝜎′and 𝜎″with key dates highlighted in the 𝜎𝑜 - 𝜃 curve. Each

line represents a dekad.

Figure B.4: Seasonal climatologies across the NSW Nort Coast, one of the evergreen broadleaf forest ROIs.

(a) Top panel: soil moisture related variables.
Middle panel: vegetation related variables.

Bottom panel: ASCAT parameters.

(b) Climatology of 𝜎𝑜
40 , 𝜎′and 𝜎″with key dates highlighted in the 𝜎𝑜 - 𝜃 curve. Each

line represents a dekad.

Figure B.5: Seasonal climatologies across the Tasmanian West, one of the evergreen broadleaf forest ROIs.



70 B. Seasonal climatologies of ROIs

Tropical grasslands

(a) Top panel: soil moisture related variables.
Middle panel: vegetation related variables.

Bottom panel: ASCAT parameters.

(b) Climatology of 𝜎𝑜
40 , 𝜎′and 𝜎″with key dates highlighted in the 𝜎𝑜 - 𝜃 curve. Each

line represents a dekad.

Figure B.6: Seasonal climatologies across the Cape York Peninsula, one of the tropical grassland ROIs.

(a) Top panel: soil moisture related variables.
Middle panel: vegetation related variables.

Bottom panel: ASCAT parameters.

(b) Climatology of 𝜎𝑜
40 , 𝜎′and 𝜎″with key dates highlighted in the 𝜎𝑜 - 𝜃 curve. Each

line represents a dekad.

Figure B.7: Seasonal climatologies across the Northern Kimberley, one of the tropical grassland ROIs.
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Bare soil

(a) Top panel: soil moisture related variables.
Middle panel: vegetation related variables.

Bottom panel: ASCAT parameters.

(b) Climatology of 𝜎𝑜
40 , 𝜎′and 𝜎″with key dates highlighted in the 𝜎𝑜 - 𝜃 curve. Each

line represents a dekad.

Figure B.8: Seasonal climatologies across the Channel Country, one of the bare soil ROIs.





C
Time series of ROIs for drought analysis
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74 C. Time series of ROIs for drought analysis

C3 crops

(a)

(b)

Figure C.1: Avon Wheatbelt (C3 crops) time series with anomalies and droughts highlighted
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(a)

(b)

Figure C.2: Riverina (C3 crops) time series with anomalies and droughts highlighted



76 C. Time series of ROIs for drought analysis

(a)

(b)

Figure C.3: NSW Southern Slopes (C3 crops) time series with anomalies and droughts highlighted
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Evergreen broadleaved forests

(a)

(b)

Figure C.4: South Eastern Highlands (evergreen broadleaved forests) time series with anomalies and droughts highlighted



78 C. Time series of ROIs for drought analysis

(a)

(b)

Figure C.5: NSW Northern Coast (evergreen broadleaved forests) time series with anomalies and droughts highlighted
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(a)

(b)

Figure C.6: Tasmanian West (evergreen broadleaved forests) time series with anomalies and droughts highlighted



80 C. Time series of ROIs for drought analysis

Tropical grasslands

(a)

(b)

Figure C.7: Arnhem Plateau (tropical grasslands) time series with anomalies and droughts highlighted
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(a)

(b)

Figure C.8: Cape York Peninsula (tropical grasslands) time series with anomalies and droughts highlighted



82 C. Time series of ROIs for drought analysis

(a)

(b)

Figure C.9: Northern Kimberley (tropical grasslands) time series with anomalies and droughts highlighted
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Bare soil

(a)

(b)

Figure C.10: Channel Country (bare soil) time series with anomalies and droughts highlighted





D
Detrended time series of ROIs with

clear long term trends
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86 D. Detrended time series of ROIs with clear long term trends

Evergreen broadleaved forests

(a)

(b)

Figure D.1: NSW North Coast (evergreen broadleaved forests) time series with the long term trend removed from the
anomalies and added to the seasonal cycle
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Figure D.2: NSW North Coast (evergreen broadleaved forests) long term trend



88 D. Detrended time series of ROIs with clear long term trends

(a)

(b)

Figure D.3: Tasmanian West (evergreen broadleaved forests) time series with the long term trend removed from the
anomalies and added to the seasonal cycle
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Figure D.4: Tasmanian West (evergreen broadleaved forests) long term trend



90 D. Detrended time series of ROIs with clear long term trends

Tropical grasslands

(a)

(b)

Figure D.5: Cape York Peninsula (tropical grasslands) time series with the long term trend removed from the anomalies and
added to the seasonal cycle
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Figure D.6: Cape York Peninsula (tropical grasslands) long term trend



92 D. Detrended time series of ROIs with clear long term trends

(a)

(b)

Figure D.7: Northern Kimberley (tropical grasslands) time series with the long term trend removed from the anomalies and
added to the seasonal cycle
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Figure D.8: Northern Kimberley (tropical grasslands) long term trend



94 D. Detrended time series of ROIs with clear long term trends

Bare soil

(a)

(b)

Figure D.9: Simpson Strzelecki Dunefields (bare soil) time series with the long term trend removed from the anomalies and
added to the seasonal cycle
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Figure D.10: Simpson Strzelecki Dunefields (bare soil) long term trend



96 D. Detrended time series of ROIs with clear long term trends

(a)

(b)

Figure D.11: Channel Country (bare soil) time series with the long term trend removed from the anomalies and added to the
seasonal cycle
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Figure D.12: Channel Country (bare soil) long term trend
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