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In this paper, we establish an event-triggered intelligent control scheme with a single critic network, to 
cope with the optimal stabilization problem of nonlinear aeroelastic systems. The main contribution lies 
in the design of a novel triggering condition with input constraints, avoiding the Lipschitz assumption on 
the inverse hyperbolic tangent function. Based on an improved weight updating criterion that eliminates 
the requirement of initial admissible control, the control law is obtained approximately by online training 
of a single critic network. The Lyapunov stability and the Zeno phenomenon of the closed-loop system are 
analysed. The feasibility of the established algorithm is verified by applying it to an optimal stabilization 
task of a nonlinear aeroelastic system. The results reveal that the developed approach can handle input-
constrained optimal control problems, with performance comparable to the time-based method that 
updates control inputs at each instant, while reducing the computational and communication’s load.
© 2021 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY 

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Aeroelastic systems exhibit a variety of unstable phenomena, 
such as flutter and limit-cycle oscillations (LCOs), which can signif-
icantly degrade the flight performance of an aircraft [1–3]. For this 
reason, stable controller design for aeroelastic systems has been 
receiving considerable attention for decades in aerospace engineer-
ing research groups [2,4–6]. Most current controllers are designed 
based on feedback linearization approaches [4]. However, with the 
rapid development of aviation technologies, these traditional meth-
ods show their limitations in dealing with stronger nonlinearities. 
Input nonlinearities such as saturation constraints commonly exist 
in real systems [7,8], but they are rarely investigated for aeroe-
lastic systems in existing literature. Furthermore, complex systems 
usually involve multiple control loops closed through some com-
munication mediums, which brings a growing interest in enhanc-
ing resource utilization [9]. Motivated by the demands for tackling 
these challenges, this paper aims at developing a constrained-input 
optimal control approach with reduced computational and com-
munication’s cost for nonlinear aeroelastic systems.

Optimal control problems pursue optimal control policies for 
dynamical systems by maximizing/minimizing a pre-defined per-
formance function that captures desired objectives [10]. When 
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dealing with optimal control problems, it is common to solve 
the Hamilton-Jacobi-Bellman (HJB) equation, but there are few ef-
fective approaches to obtain its analytical solutions for nonlinear 
systems [10,11]. Adaptive dynamic programming (ADP) provides a 
promising method to acquire numerical solutions of general HJB 
equations. By incorporating artificial neural networks (ANNs), ADP 
acquires a more powerful generalization capability and has been 
successfully applied to a variety of aerospace systems [12–17]. As 
a branch of reinforcement learning (RL), the principle of ADP lies 
in the effective iterations between policy improvement and policy 
evaluation [10,18], which are sometimes approximated by an actor 
network and a critic network, respectively [12,13,15]. However, for 
continuous-time (CT) systems, by solving the HJB equation, the sin-
gle critic network (SCN) architecture is able to perform ADP with 
lower computational cost and eliminating the approximation error 
introduced by the actor network [8,19]. Different from the actor-
critic architecture, where the input saturation constraints are ad-
dressed by the bounded output neurons of the actor network [13], 
the SCN structure ordinarily utilizes a non-quadratic cost function, 
such that the control inputs derived from the solution of HJB equa-
tion can be bounded by a hyperbolic tangent function [8,20,21].

Although time-based ADP approaches provide a mature and 
normative solution to nonlinear optimal control problems, the 
need for reducing transmitted data is not fully satisfied. Arising 
from networked control systems [22,23], event-triggered control 
(ETC) has attained a lot of attention in recent years because of its 
ability to reduce computational and communication’s load [10]. A 
ess article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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cross fertilization of ETC and ADP produces event-triggered ADP, 
which has successfully been implemented for optimal stabiliza-
tion of both discrete-time systems [24,25] and CT systems [26,27]. 
The key attribute of the event-triggered mechanism lies in that 
the control signals are updated only when a certain condition is 
triggered [24]. Therefore, designing a sound triggering condition 
is the principal task of ETC. For CT systems adopting ETC methods, 
the inter-execution time can be zero, resulting in the accumulation 
of event times. This is the infamous Zeno phenomenon that must 
be avoided in the controller design. The related analysis is con-
ducted in [28,29] without incorporating ANNs and in [9] without 
taking the input constraints into account. Based on these studies, 
the closed-loop analysis is carried out to ensure that the Zeno phe-
nomenon is inapplicable to the proposed method.

Developing from the time-based ADP, event-triggered ADP 
methods inherit and continue most of the properties and tech-
niques of the time-based ADP, including the technique for handling 
input constraints with a non-quadratic cost function [29,30]. How-
ever, in most existing literature, the triggering-condition is derived 
by involving a Lipschitz constant of the inverse hyperbolic tan-
gent function without effectively narrowing its domain. Although 
satisfying experimental results can be obtained in certain circum-
stances, this derivation is not mathematically rigorous. According 
to [31], in which the actor-critic structure is adopted, this paper 
replaces this Lipschitz constant using meticulously mathematical 
transformations with the SCN architecture.

In addition, the initial admissible control is a requirement for 
both time-based and event-triggered ADP methods, which weakens 
their application, especially for closed-loop online learning control. 
Inspired by [9,32,29], an improved weight updating rule is de-
signed by adding a stabilizing term based on the Lyapunov stability 
theory, such that the requirement of initial admissible control is 
eliminated.

The contributions of this paper are summarized as follows:

1. It is the first time that an ADP-based controller is developed 
for a nonlinear aeroelastic system. This paper develops a gen-
eral control method that can be applied directly without mak-
ing coordinate transformations.

2. A novel triggering-condition incorporating input constraints is 
derived without requiring the Lipschitz assumption on the in-
verse hyperbolic tangent function.

3. The demand for the initial admissible control is relaxed by an 
improved critic weight updating criterion.

4. The Zeno phenomenon is analysed and avoided regarding the 
closed-loop system with the event-triggered control strategy.

The remainder of this paper is organized as follows: Section 2
states the constrained-input optimal control problem for a CT non-
linear aeroelastic system under the event-triggered framework. 
Section 3 provides the implementation of the event-triggered con-
troller using ANN, and analyses the closed-loop stability as well as 
avoids the Zeno phenomenon. The simulation verification is pre-
sented in Section 4, and Section 5 summarizes this paper and 
states further research.

The main notations used in what follows are listed. N is the 
set of all natural numbers. R denotes the set of all real numbers. 
Rn indicates the Euclidean space of all n-dimensional real vectors. 
Rn×m is the space of all n × m real matrices. | · | is the scalar 
absolute value and || · || is the norm of the corresponding vector 
or matrix. (·)− denotes the left continuity and (·)T represents the 
transpose operation. In denotes the n × n identity matrix and 1
is a column vector with all elements equal to one. λ(·) and λ(·)
respectively represents the maximal and minimal eigenvalues of a 
matrix. Denote � as a compact subset of Rn , �u as a compact 
2

subset of Rm , and A (�) as the set of admissible controllers on �. 
The symbol ∇(·) � ∂(·)/∂x stands for the gradient operator.

2. Problem description

A typical aeroelastic wing section plant with two degrees 
of freedom is modeled in this section. Then, we describe the 
constrained-input optimal control problem of general nonlinear 
systems, and present the event-triggered control mechanism.

2.1. Aeroelastic wing section model

With the wide usage of composite materials, high aspect-ratio 
aircraft wing can suffer from aeroelastic instability phenomena, in-
cluding the LCOs [3,33]. If not suppressed by active control, LCOs 
can lead to structural failure and even flight accidents [2]. The 
schematic of an aeroelastic wing section controlled by a single 
trailing-edge flap is illustrated in Fig. 1 [4], where c.m. is the ab-
breviation of center of mass. It has two degrees of freedom: the 
plunge displacement h and the pitch angle θ . In this problem, it is 
assumed in the undisturbed case, that the freestream is along the 
airfoil chord, and thus pitch angle θ is equal to angle of attack α. 
Consequently, the governing expressions of motion are presented 
as [4,6]:[

mt mw xαb
mw xαb Iα

][
ḧ
α̈

]
+

[
ch 0
0 cα

][
ḣ
α̇

]

+
[

kh(h) 0
0 kα(α)

][
h
α

]
=

[−L
M

]
,

(1)

where kh(h) and kα(α) respectively represents the plunge and 
pitch stiffness, which can be formulated by nonlinear polynomi-
als as [2]:

kh = 2844(1 + 0.9h2)

kα = 2.82(1 − 22.1α + 1315.5α2 − 8580α3 + 17289.7α4),
(2)

and the remaining constant parameters are listed in Table 1; L and 
M respectively denotes the aerodynamic force and moment, which 
are formulated in a quasi-steady form as [4]:

L = ρU 2bcLα

(
α + ḣ

U
+ ab

α̇

U

)
+ ρU 2bcLββ,

M = ρU 2b2cmα

(
α + ḣ

U
+ ab

α̇

U

)
+ ρU 2b2cmββ,

(3)

where a = 0.5 − a, and β is the control surface deflection. As pre-
sented by (1) - (3), the motion dynamics of the aeroelastic system 
are nonlinear. To describe the system more profoundly, the prop-
erties of a simplified linear system are provided. By neglecting 
the nonlinear terms in (2), the flutter speed of the resulting lin-
ear aeroelastic system is 12.41 m/s. The natural frequencies of the 
corresponding linear undamped aeroelastic system are 9.11 rad/s
and 13.28 rad/s.

The complete flight control system often involves the actuator, 
which can be described as a first-order component [13]:

β̇ − kββ = kββc, (4)

where βc is the deflection command directly generated by the con-
troller. In this case, the complete state vector is x = [x1, x2, x3, x4,

x5]T = [h, α, ̇h, α̇, β]T , and the control input is u = βc . Besides, due 
to mechanical limitations, the control surface deflection always has 
constraints, which should be taken into consideration in the con-
troller design process.
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Fig. 1. An two-degree-of-freedom aeroelastic system with one control surface.
Table 1
Constant parameters for the aeroelastic system.

Symbol Meaning Value

a nondimensional distance from 
the midchord to the elastic axis

−0.6847

b wing semichord 0.135 m
mt total mass of the wing and the 

flap
12.387 kg

mw mass of the wing 2.049 kg
xα nondimensional distance from 

the elastic axis to the c.m.
(0.0873 − (b + ab))/b

Iα moment of inertia mw x2
αb2 + 0.0517 kg m

ch plunge damping coefficient 27.43 kg/s
cα pitch damping coefficient 0.036 kg m2/s
cLα lift coefficient per α 6.28
cmα moment coefficient per α (0.5 + a)cLα

cLβ lift coefficient per β 3.358
cmβ moment coefficient per β −1.94
ρ density of air 1.225 kg/m3

U freestream velocity 15 m/s

2.2. Optimal control design with input constraints

To provide a general description, we consider a class of nonlin-
ear CT systems formulated by:

ẋ(t) = f (x(t)) + g(x(t))u(x(t)), (5)

where x(t) ∈ � ⊂ Rn is the state vector and u(x(t)) ∈ �u is the 
control signal vector, and �u = {u|u ∈ Rm, |ui | < ub, i = 1, . . . , m}, 
in which ub is the control saturating bound. f (·) is Lipschitz con-
tinuous in � satisfying f (0) = 0. The initial state at t = 0 is 
x(0) = x0, and x = 0 is the equilibrium point of the system. Sys-
tem (5) is generally assumed to be controllable. For simplicity, we 
denote x(t) by x hereafter.

For system (5), an infinite-horizon cost function can be defined 
as:

J (x) =
∞∫

t

xT Q x + Y (u)dτ , (6)

where Q ∈ Rn×n is positive semi-definite and is set to be a di-
agonal matrix in this paper, and Y (u) is a positive semi-definite 
integrand function utilized to handle control input constraints. 
We denote U (x, u(x)) = xT Q x + Y (u) as the utility function, and 
U (x, u(x)) satisfies U (x, u) ≥ 0 and U (0, 0) = 0. Inspired by [8,21], 
we define Y (u) as:
3

Y (u) = 2ub

u∫
0

tanh−T(υ/ub)Rdυ

= 2ub

m∑
i=1

ui∫
0

tanh−T(υi/ub)ridυi,

(7)

where tanh−T(·) stands for (tanh−1(·))T , and tanh−1(·) is the in-
verse hyperbolic tangent function, which is a monotonic odd func-
tion; R = diag([r1, · · · , rm]) ∈ Rm×m is a positive definite weight 
matrix, where diag(·) reshapes the vector to a diagonal matrix. 
Y (u) satisfies Y (u) ≥ 0, and only when u = 0, Y (u) = 0.

Admissible control is a prerequisite of optimal feedback stabi-
lization, such that the cost function J (x) is guaranteed to be finite. 
Choosing an admissible control law u(x) ∈ A (�), and accordingly 
the Hamiltonian is defined as:

H(x, u(x),∇ J (x)) = U (x, u(x)) + ∇ J T(x)[ f (x) + g(x)u(x)]. (8)

The optimal value of the cost function given in (6) is:

J∗(x) = min
u(x)∈A (�)

∞∫
t

U (x(τ ), u(x(τ )))dτ , (9)

and it satisfies the HJB equation:

0 = min
u(x)∈A (�)

H(x, u(x),∇ J∗(x)). (10)

By making ∂ H(x, u(x), ∇ J (x))/∂u(x) = 0, the corresponding opti-
mal feedback control solution is derived by:

u∗(x) = arg min
u(x)∈A (�)

H(x, u(x),∇ J∗(x))

= −ub tanh(D∗),
(11)

where tanh(·) denotes the hyperbolic tangent function, and D∗ is 
given by:

D∗ = 1

2ub
R−1 gT(x)∇ J∗(x). (12)

The control input u∗ is bounded by ub , and the nonquadratic cost 
(7) regarding u∗ is:

Y (u∗(x)) = ub∇ J∗T(x)g(x) tanh(D∗) + u2
b R ln(1 − tanh2(D∗)),

(13)
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where ∇ J∗T(x) denotes (∇ J∗(x))T and R = [r1, · · · , rm]T . Substi-
tuting (11) and (12) into the HJB equation produces:

0 = xT Q x + u2
b R ln(1 − tanh2(D∗)) + ∇ J∗T(x) f (x), (14)

with J∗(0) = 0 that leads to H(x, u∗(x), ∇ J∗(x)) = 0.

2.3. Event-triggered scheme design

Considering the event-triggered scheme, we define a sequence 
of triggering instants {sk}∞k=0, where sk satisfies sk < sk+1 with k ∈
N . The output of the sampled-data module is x(sk) � xk for all 
t ∈ [sk, sk+1). Subsequently, we define the gap function using the 
event error:

ek(t) = xk − x,∀t ∈ [sk, sk+1). (15)

We denote ek(t) briefly by ek hereafter. Everytime when a certain 
triggering condition is satisfied, the event-triggered state vector 
is updated and the event error ek is reset to zero. At every trig-
gering instant (instead of time instant), the state feedback control 
law u(x(sk)) = u(xk) is accordingly updated. By introducing a zero-
order holder (ZOH), the control sequence {u(xk)}∞k=0 actually turns 
to be a piecewise signal that remains constant during the time in-
terval [sk, sk+1), ∀k ∈N . Based on the control signal u(xk), system 
(5) takes the form:

ẋ = f (x) + g(x)u(x + ek),∀t ∈ [sk, sk+1). (16)

Considering the event-triggered framework, combined with (12), 
the feedback control function (11) becomes:

u∗(xk) = −ub tanh(D∗
k), (17)

where D∗
k is given as:

D∗
k = 1

2ub
R−1 gT(xk)∇ J∗(xk). (18)

For system (5), with the infinite-horizon cost function repre-
sented by (6), we define a triggering condition as follows:

||ek||2 > ||eT ||2, (19)

where eT is the threshold to be determined. We say the event 
is triggered if (19) is satisfied, and in the following section, we 
present the details of how to determine the threshold.

3. Intelligent critic control implementation

Since (14) is a nonlinear partial differential equation intractable 
to be solved analytically, in this section an ANN with an improved 
updating rule is used to approximate the optimal control policy. 
Then, the system stability is analysed and the Zeno phenomenon 
is avoided regarding the closed-loop system.

3.1. Improved neural control implementation

In light of the powerful generalization property of ANNs, the 
optimal cost function can be reconstructed as follows:

J∗(x) = wT
c σc(x) + εc(x), (20)

where wc ∈ Rlc stands for the ideal weight, lc is the number of 
neurons, σ(x)c ∈Rlc denotes the activation function, and εc(x) ∈R
represents the neural approximation error. Accordingly, the gradi-
ent vector of the optimal cost is:

∇ J∗(x) = ∇σ T
c (x)wc + ∇εc(x). (21)
4

Since the ideal weight vector is unavailable in advance, a critic 
network is constructed to approximate the cost function with an 
estimated weight vector ŵc ∈Rlc such that:

Ĵ∗(x) = ŵT
c σc(x). (22)

Similarly, we determine:

∇ Ĵ∗(x) = ∇σ T
c (x)ŵc . (23)

Considering the ANN formulation (21), (18) can be rewritten as:

D∗
k = 1

2ub
[R−1 gT(xk)(∇σ T

c (xk)wc + ∇εc(x))]. (24)

Based on the mean-value theorem [21], we can accordingly rewrite 
(17) as:

u∗(xk) = −ub tanh(Dk) + εu∗
k
, (25)

where Dk = 1/(2ub)(R−1 gT(xk)∇σ T
c (xk)wc), and εu∗

k
= −1/2(1 −

tanh2(ξ))R−1 gT(xk)∇ε, where ξ ∈Rm is selected between Dk and 
D∗

k .
Hence, according to (17) and (23), the event-triggered approxi-

mate optimal policy can be formulated as:

û(xk) = −ub tanh(D̂k), (26)

and D̂k is modulated as:

D̂k = 1

2ub
(R−1 gT(xk)∇σ T

c (xk)ŵc). (27)

Substituting (25) into the Hamiltonian (8) yields that:

H(x, u∗(xk), wc) = wT
c ∇σc(x)[ f (x) + g(x)u∗(xk)] + xT Q x

+ Y (u∗(xk)) � ecH ,
(28)

where u∗(xk) = ub tanh(D∗
k ), and ecH = −∇εT

c (x)[ f (x) + g(x)u∗(xk)]
is the residual error brought by the ANN. Utilizing (23), the ap-
proximate Hamiltonian is presented as:

Ĥ(x, u∗(xk), ŵc) = ŵT
c ∇σc(x)[ f (x) + g(x)u∗(xk)] + xT Q x

+ Y (u∗(xk)) � ec .
(29)

Defining the critic error vector as w̃c = wc − ŵc and combining 
(28) with (29), we obtain an equivalent expression of ec :

ec = ecH − w̃T
c ∇σc(x)[ f (x) + g(x)u∗(xk)]. (30)

Hence, the aim of training the critic network is to obtain an 
appropriate weight vector ŵc such that the objective function 
Ec = (1/2)eT

c ec is minimum. It is worth mentioning that the actual 
control law utilized during the learning process is the approxi-
mated control (26). In [30], a direct gradient-descent method is 
applied to adjust critic weight vector:

˙̂wc,trad = −ηc
∂ec

∂ ŵc
ec = −ηcφec, (31)

where ηc > 0 is the learning rate parameter, and φ=∇σc(x)( f (x) +
g(x)û(xk)).

The admissible control is essential for the general ADP-based 
optimal control design but is intractable to obtain in advance. To 
overcome this challenge, inspired by [9,29,32], we bring in an ex-
tra stabilizing term to improve the direct gradient-descent method 
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and adopt it to enhance the ANN weight updating. Similar to 
[9,21,32], we make the following assumption:

Assumption 1. Consider system (5) with the cost function (6) and 
its closed-loop form governed by the event-triggered optimal con-
troller (17) and (24). Let J s(x) be a continuously differentiable 
Lyapunov function candidate satisfying:

J̇∗
s (x) = ∇ J T

s (x)[ f (x) + g(x)u∗(xk)] < 0.

Then, there exists a positive definite matrix M ∈ Rn×n such that 
the following inequality holds:

J̇∗
s (x) = ∇ J T

s (x)M∇ J s(x) ≤ −λ(M)||∇ J s(x)||2. (32)

When adopting the event-triggered approximate optimal con-
trol (26), we should exclude the following case to guarantee the 
system stability:

J̇ s(x) = ∇ J T
s (x)[ f (x) + g(x)û(xk)] > 0.

Hence, the learning performance is reinforced by adjusting the 
time derivative of J s(x) along the direction of the negative gra-
dient, which is modulated as follows:

˙̂wc,stab = −ηs
∂∇ J T

s (x)[ f (x) + g(x)û(xk)]
∂ ŵc

= 1

2
ηs∇σ(xk)g(xk)R−1(1 − tanh2(D̂k))gT(x)∇ J s(x),

(33)

where ηs > 0 is the designed learning rate. By combining the sta-
bilizing term (33) and the traditional rule (31), we established the 
improved ANN learning criterion as follows:

˙̂wc = ˙̂wc,trad + �(x, û(xk))
˙̂wc,stab, (34)

where �(x, ̂u(xk)) is a sign function utilized to eliminate the effect 
of the reinforced term when the system is already stable, which is 
defined as:

�(x, û(xk)) =
{

0,when J̇ s(x) < 0,

1,elsewhere.
(35)

Remark 1. The improved updating rule (34) with the reinforced 
term relaxes the demand for initial admissible control, which im-
plies that the critic weight vector can initially be set as any ran-
dom vector.

3.2. Closed-loop stability analysis

We firstly construct the error dynamics of the critic network by 
defining w̃c = wc − ŵc and finding that ˙̃wc = − ˙̂wc . Consequently, 
the critic error dynamics is presented as:

˙̃wc = −ηcφ(φT w̃c − ecH ) − 1

2
ηs�(x, û(xk))∇σ(xk)g(xk)

× R−1(1 − tanh2(D̂k))gT(x)∇ J s(x).
(36)

Remark 2. The persistent excitation (PE) assumption is required. If 
the PE condition holds, we easily derive λ(φφT) > 0 [26], which 
is of great significance for stability analysis. A common approach 
to achieve PE is introducing a probing noise to excite the system 
[29,13,32].
5

Subsequently, we study the closed-loop stability based on the 
approximate event-triggered feedback control incorporating the 
weight estimation dynamics. Before proceeding, the following as-
sumptions are required, which are commonly employed in ADP 
literature, such as [21,23,9,29].

Assumption 2. g(x) is Lipschitz continuous rendering ||g(x) −
g(xk)|| ≤ Lg ||ek||, and is upper bounded as ||g(x)|| ≤ bg , where Lg

are bg are positive real constants.

Assumption 3. Denote L∇σc , b∇σc , b∇εc , bεu∗ , and becH as posi-
tive real constants. ∇σc(x) is Lipschitz continuous guaranteeing 
||∇σc(x) − ∇σc(xk)|| ≤ L∇σc ||ek||. ∇σc(x), ∇ε(x), εu∗

k
, and ecH are 

all upper bounded, such that ||∇σc(x)|| ≤ b∇σc , ||∇ε(x)|| ≤ b∇εc , 
||εu∗

k
|| ≤ bεu∗ , and |ecH | ≤ becH .

Theorem 1. Considering Assumptions 1-3, utilizing the formula (34) to 
update the critic network, and with the event-triggered approximate op-
timal control policy (26), the closed-loop system is asymptotically stable 
while the weight error dynamics is ultimately uniformly bounded (UUB) 
if

||ek||2 ≤ (1 − η)λ(Q )||x||2 + Y (u∗(xk))

C1||ŵc||2 � ||êT ||2, (37)

and ||w̃c||2 ≥W , where η ∈ (0, 1), C1 and W are given in the proof.

Proof. We construct a Lyapunov function candidate as:

L = Lx + Lxk + Lw̃c
+ L J s , (38)

where Lx = J∗(x), Lxk = J∗(xk), Lw̃c
= (1/2)w̃T

c w̃c , and L J s =
ηs J s(x). The proof consists of two situations conforming to whether 
the event is triggered or not.

Situation 1: the events are not triggered, i.e., ∀t ∈ [sk, sk+1). 
Computing the time derivative of the Lyapunov function, the sec-
ond term is L̇xk = 0.

Considering the closed loop system using the approximate feed-
back control (26), and the optimal HJB equation (14), the first term 
can be derived as:

L̇x = J̇∗(x) = ∇ J∗T(x)[ f (x) + g(x)û(xk)]
= − xT Q x − u2

b R ln(1 − tanh2(D∗)) + ∇ J∗T(x)g(x)û(xk).

(39)

According to the definition of utility function, the second term of 
(39) is converted into:

u2
b R̄ ln(1 − tanh2(D∗)) =

u∗(x)∫
û(xk)

2ub tanh−T(υ/ub)Rdυ + Y (û(xk))

− ub∇ J∗T(x)g(x) tanh(D∗).
(40)

Besides, (11) and (12) imply that:

∇ J∗T(xk)g(x) = −2ub tanh−T(u∗(x)/ub)R. (41)

Therefore, the last term in (39) can be rewritten as:

∇ J∗T(x)g(x)û(xk) =
û(xk)∫

u∗(x)

2ub D∗T(x)Rdυ

− u ∇ J∗T(x)g(x) tanh(D∗(x)).

(42)
b
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Substituting (40) and (42) into (39) yields:

L̇x = −xT Q x − Y (û(xk)) +
û(xk)∫

u∗(x)

2ub[tanh−1(υ/ub) + D∗]T Rdυ.

(43)

Letting υ = −ub tanh(ω), the last term in (43) is written as:

û(xk)∫
u∗(x)

2ub[tanh−1(υ/ub) + D∗]T Rdυ

=
D̂k∫

D∗
2u2

b(ω − D∗)T R[1 − tanh2(ω)]dω

≤ u2
b(D̂k − D∗)T R(D̂k − D∗).

(44)

Therefore, (43) satisfies:

L̇x ≤ −xT Q x − Y (û(xk))

+ 1

4
λ(R)||gT(xk)∇ Ĵ (xk) − gT(x)∇ J∗(x)||2, (45)

where ∇ Ĵ (xk) = ∇σ T(xk)ŵc . According to Assumptions 2 and 3, 
we obtain:

||gT(xk)∇ Ĵ (xk) − gT(x)∇ J∗(x)||2
=||(gT(x)∇σ T

c (x) − gT(xk)∇σ T
c (xk))ŵc + gT(x)(∇σ T

c (x)w̃c

+ ∇εc(x))||2
≤2||∇σc(x)g(x) − ∇σc(xk)g(xk)||2||ŵc||2

+ 2b2
g(b

2∇σc
||w̃c||2 + b2∇εc

),

(46)

in which

||∇σ c(x)g(x) − ∇σc(xk)g(xk)||2
≤2||∇σc(x)(g(x) − g(xk))||2 + 2||(∇σc(x) − ∇σc(xk))g(xk)||2
≤2(b2∇σc

L2
g + L2∇σc

b2
g)||ek||2.

(47)

Therefore (45) continues as:

L̇x ≤ C1||ŵc||2||ek||2 + C2||w̃c||2 + C3 − Y (û(xk)) − ηλ(Q )||x||2
− (1 − η)λ(Q )||x||2,

(48)

where C1 = λ(R)(b2∇σc
L2

g + L2∇σc
b2

g), C2 = 1
2 λ(R)b2

gb2∇σc
, and C3 =

1
2 λ(R)b2

gb2∇εc
.

Then, we investigate the last two terms in (38). By taking the 
definition of �(x, ̂u(xk)) into consideration, two scenarios are ex-
amined separately.

I: �(x, ̂u(xk)) = 0. We have L̇ J s < 0 and

L̇ w̃c
= −ηc w̃T

c φ(φT w̃c + ecH ) ≤ −C4||w̃c||2 + C5, (49)

where C4 = 1
2 ηcλ(φφT) and C5 = 1

2 ηce2
cH . Combining (48) and (49), 

we observe:

L̇ =L̇x + L̇ w̃c

≤C1||ŵc||2||ek||2 + C2||w̃c||2 + C3 − C4||w̃c||2 + C5

− ηλ(Q )||x||2 − (1 − η)λ(Q )||x||2 − Y (û(x )).

(50)
k

6

By choosing an appropriate ηc , we can achieve C4 > C2. Therefore, 
when ||w̃c ||2 ≥ (C3 + C5)/(C4 − C2) �W1 and ||ek||2 < ||êT ||2, we 
have L̇< 0, ∀x 
= 0.

II: �(x, ̂u(xk)) = 1. We combine L̇ J s with the stabilization term 
of L̇ w̃c

as:

L̇′ =L̇ J s + L̇′
w̃c

=ηs∇ J T
s (x)[ f (x) + g(x)û(xk)]

− 1

2
ηs w̃T

c ∇σ(xk)g(xk)R−1(1 − tanh2(D̂k))gT(x)∇ J s(x)

=ηs∇ J T
s (x) f (x) − ηs∇ J T

s (x)g(x)[ub tanh(D̂k)

+ 1

2
(1 − tanh2(D̂k))R−1 gT(xk)σ

T(xk)w̃c].
(51)

By taking the first-order Taylor series expansion of tanh(Dk), we 
obtain:

tanh(Dk) = 1

2ub
(1 − tanh2(D̂k))R−1 gT(xk)σ

T(xk)w̃c

+ tanh(D̂k) + o[(Dk − D̂k)
2],

(52)

where o[(Dk − D̂k)
2] has a bound, which is denoted by boD [21]. 

Substituting (52) into (25) and then (51) yields:

L̇′ =ηs J̇∗
s (x)−ηs∇ J T

s (x)g(x)εu∗
k
+ ηs∇ J T

s (x)g(x)ubo[(Dk − D̂k)
2]

≤ − ηsλ(M)||∇ J s(x)||2 + ηsC6||∇ J s(x)||

= − ηsλ(M)

(
||∇ J s(x)|| − C6

2λ(M)

)2

+ C7,

(53)

where C6 = bg(bεu∗ + ubboD), and C7 = ηsC2
6/(4λ(M)). Accordingly, 

we obtain:

L̇ =L̇x + L̇ w̃c
+ L̇ J s

≤ − ηλ(Q )||x||2 − (1 − η)λ(Q )||x||2 − Y (û(xk))

+ C1||ŵc||2||ek||2 + C2||w̃c||2 + C3 − C4||w̃c||2

+ C5 − ηsλ(M)

(
||∇ J s(x)|| − C6

2λ(M)

)2

+ C7.

(54)

Therefore, when ||w̃c||2 ≥ (C3 + C5 + C7)/(C4 − C2) � W2 and 
||ek||2 < ||êT ||2, we have L̇< 0, ∀x 
= 0.

Consequently, combining I and II, we can conclude that, if the 
event is not triggered, i.e., ||ek||2 < ||êT ||2, if ||w̃c||2 ≥ max{W1,

W2} �W is satisfied, then we have L̇ < 0, ∀x 
= 0.
Situation 2: the events are triggered, i.e., ∀t = sk+1. Utilizing 

(38), the difference terms are derived as:

�L =�Lx + �Lxk + �Lw̃c
+ �L J s

= J∗(xk+1) − J∗(x(s−
k+1)) + J∗(xk+1) − J∗(xk)

+ 1

2
w̃T

c (xk+1)w̃c(xk+1) − 1

2
w̃T

c (x(s−
k+1))w̃c(x(s−

k+1))

+ ηs J s(xk+1) − ηs J s(x(s−
k+1)).

(55)

From Situation 1, we find that if ||ek||2 ≤ ||êT ||2 and ||w̃c ||2 ≥ W , 
L̇ < 0, ∀t ∈ [sk, sk+1). Since the states and cost function are both 
continuous, according to the property of the limit, we have �Lx +
�Lw̃c

+ �L J s < 0 and then obtain �L < �Lxk ≤ −κ(||ek+1 − ek||), 
in which κ(·) is a class-κ function [34]. Hence, (38) is still decreas-
ing when ∀t = sk+1.

In summary, if ||ek||2 ≤ ||êT ||2 and ||w̃c ||2 ≥ W hold, we can 
reach the conclusion that the closed-loop state is asymptotically 
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Fig. 2. Structural diagram of the developed event-triggered ADP control method, where solid lines represent the feed-forward flow of signals and the dashed line is the 
back-propagation path.
stable while the critic error dynamics is UUB, which ends the 
proof. �
3.3. Analysis of Zeno phenomenon in the closed-loop system

For nonlinear CT systems with event-triggered control inputs, 
the inter-execution time is denoted as �s = sk+1 − sk , and the 
minimal inter-execution time �smin = mink∈N{sk+1 − sk} might be 
zero, which can lead to the accumulation of event times, a.k.a., the 
Zeno phenomenon. Hence, the condition of �s > 0 should be guar-
anteed such that the undesired Zeno phenomenon is avoided.

Theorem 2. Considering the closed-loop form of the nonlinear system 
(5) governed by the event-triggered approximate optimal control (26), 
the k-th inter-execution time �sk determined by (37) has a lower bound 
as:

�sk ≥ 1

k f
ln (

k f ||êT ||
k f ||ek|| + bg ub

+ 1) > 0, k ∈N, (56)

where k f is a positive constant.

Proof. We apply the approximate optimal control (26) to formu-
late the closed-loop dynamics as follows:

ẋ = f (x) − g(x)û(xk). (57)

By noticing the fact that û(xk) is upper bounded by ub , and ac-
cording to Assumption 2, we can derive that:

||ẋ|| = || f (x) − g(x)û(xk)|| ≤ k f ||x|| + bg ub. (58)

Considering (15), we can further derive that:

||ėk|| ≤ k f ||xk|| + k f ||ek|| + bg ub, ∀t ∈ [sk, sk+1). (59)

Since ek(sk) = xk − x(sk) = 0, by employing the comparison lemma 
[34,9] to solve (59), for any t ∈ [sk, sk+1), we have:

||ek|| ≤ k f ||ek|| + bg ub

k

(
ek f (t−sk) − 1

)
. (60)
f

7

Therefore, the k-th inter-execution time �sk satisfies:

�sk = sk+1 − sk ≥ 1

k f
ln (

k f ||êT ||
k f ||ek|| + bg ub

+ 1). (61)

According to (37), ||êT || > 0. In summary, �sk > 0 for any xk 
= 0, 
i.e., �smin > 0, which ends the proof. �

Overall, the structural diagram of the present control imple-
mentation is depicted in Fig. 2 to clarify the design procedure.

4. Simulation study

Finally, we verify the effectiveness of the proposed control ap-
proach through the numerical simulation experiments based on 
the nonlinear aeroelastic system demonstrated above. Considering 
the cost function (6) from t = 0, we choose Q = I5 and R = 1 as 
a trade-off between fast stabilizing and avoiding aggressive con-
trol, and set the deflection constraint as ub = 10 deg. For purpose 
of simulation, we set the simulation frequency as 1 kHz whereas 
the sensing frequency as 100 Hz. Let the initial state vector be 
x0 = [−0.01 m, 10 deg, 0, 0, 0]T . In what follows, we implement 
the event-triggered intelligent critic control with the facilitation of 
an ANN.

A critic network is constructed to approximate the optimal 
cost function. The number of neurons and the nonlinearity of 
the activation function positively correlate with the approxima-
tion precision. However, more neurons with higher nonlinearities 
can also increase computational load and cause the overfitting that 
harms the control robustness [13]. For balancing control accuracy 
and computational complexity, we choose the activation function 
as σc(x) = [x1x2, x1x3, x1x4, x1x5, x2x3, x2x4, x2x5, x3x4, x3x5, x4x5]T . 
We choose J s(x) = 0.5xTx to enhance stability and experimen-
tally set ηc = 0.05, ηs = 0.001, η = 0.1, and C1 = 250. As claimed 
in Remark 2, an exploration noise ue is introduced to satisfy 
the PE condition. The probing noise is designed as a compo-
sition of decaying sinusoidal functions, whose formula is ue =
−0.05e−20t(sin2(100t) cos(100t) + sin2(2t) cos(0.1t) + sin2(1.2t)×
cos(0.5t) + sin5(t)) deg. Only at the instant when it is triggered, 
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Fig. 3. Convergence process of the critic weights. (For interpretation of the colours 
in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. Evolution of the approximate cost function.

will ue really be added to the control command. Since the critic 
network has different hidden neurons, the weights can initially be 
set as zero. Recalling the triggering condition in (37), we find that 
||ŵc|| appears in the denominator, which can cause a large time 
interval of control at the beginning. Therefore, we manually set an 
upper bound for the inter-execution time as �smax = 0.1 s. This 
configuration is set in the engineering sense for safety guarantee, 
and does not affect the theoretical completeness.

The simulation is conducted in an online manner, which means 
that the control policy improves in a closed-loop way. For present-
ing the advantage of the ETC scheme, a time-based approach is 
adopted for comparison, whose settings are exactly same as the 
proposed intelligent critic control approach except for the event-
triggered scheme, i.e., the time-based control approach updates the 
control input at each time instant. We can observe from Fig. 3
that the convergence of the weight vector occurs around 1 s. 
Subsequently, we display the trajectory of the approximated cost 
function in Fig. 4, which presents the direct performance of the 
controller. Due to the initial zero values of the weight vector, the 
initial approximate cost is zero, and subsequently grows as the 
learning continues. Then because of the convergence of the weight 
vector, the approximate cost function swiftly decreases to a low 
level. Furthermore, the triggering threshold trajectory is displayed 
in Fig. 5, which presents a trend to zero along with the event error. 
The inter-execution time is depicted in Fig. 6. It is worth men-
tioning that 800 samples are utilized by the time-based controller, 
8

Fig. 5. Evolution of the triggering condition.

Fig. 6. Evolution of the inter-execution time.

Fig. 7. Evolution of the plunge motion states.

whereas the proposed event-triggered approach only requires 366 
samples. Therefore, the event-triggered method reduces the control 
updates in the learning process up to 54.25%, and thus improves 
the resource utilization.

Figs. 7 and 8 present the aeroelastic system states trajectory di-
vided into plunge and pitch motion, respectively. We compare the 
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Fig. 8. Evolution of the pitch motion states.

Fig. 9. Control command generated by the controller.

results between the event-triggered and time-based approaches, 
and observe that, although the event-triggered controller utilizes 
fewer data samples, the state variables eventually converge to 
a small vicinity of zero without deteriorating the converge rate. 
Figs. 9 and 10 respectively presents the control command directly 
generated by the controller, u (βc), and the real deflection of the 
control surface, x5 (β). The developed event-triggered approach 
has overall comparable curve to the time-based approach. Due 
to the event-triggered mechanism, the control command signal 
is stepwise. Nevertheless, the control command signal has to go 
through an actuator and the real deflection is adequately smooth 
for the wing surface control. Furthermore, we observe that the 
control command (incorporating exploration noise) is bounded by 
the pre-designed saturation constraints, i.e., |u| < ub . Therefore, we 
conclude that the control input constraints problem has been over-
come.

The phase portraits of plunge and pitch motions are illustrated 
in Figs. 11 and 12, respectively. As can be observed, the trajectories 
of the proposed method and the open-loop simulation almost co-
incide at the beginning. This phenomenon is due to the collective 
effect caused by LCOs and the initial unlearned policy, and dis-
appears quickly as the weight vector updates. Then all states are 
stabilized to a small vicinity of the equilibrium point.

To further verify its performance, robustness tests are carried 
out with different freestream velocities using the proposed event-
triggered intelligent optimal control strategy. In addition to nomi-
9

Fig. 10. Real deflection of the control surface.

Fig. 11. Phase portrait of the plunge motion states.

Fig. 12. Phase portrait of the pitch motion states.

nal velocities, the freestream is also assumed to be disturbed. The 
uncertain freestream is modeled as a composition of a white noise 
with unit variance and a sinusoidal gust 0.5 cos(4πt + 0.3π) m/s. 
With other settings unchanged, the results are depicted in Figs. 13
- 15, in which the nominal freestream velocity U respectively 
equals to 12 m/s, 15 m/s and 27 m/s. For simplicity, the plunge 
displacement is selected as a representative to show the state 
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Fig. 13. Evolution of plunge displacements with different freestream velocities.

Fig. 14. Control commands generated by the controller with different freestream 
velocities.

Fig. 15. Convergence process of the RMS of critic weights with different freestream 
velocities.

evolution, as illustrated in Fig. 13. It can be observed that in all 
conditions, the controller manages to stabilize the plunge displace-
ment within 8 s. The situations with and without uncertainties 
demonstrate similar performance for U = 15 m/s and U = 27 m/s, 
whereas for U = 12 m/s, the control performance is even better 
with uncertainties involved. The reason behind this phenomenon 
lies in that when U = 12 m/s the flutter frequency is low and 
10
it is difficult to fully excite the system. The velocity uncertainties 
disturb the system but meanwhile provide stronger excitation and 
thus speed up the learning process. In fact, this acceleration phe-
nomenon also takes place in the other two situations though it 
is more obvious with lower freestream velocity, which illustrates 
the robustness of the proposed control method to uncertainties. 
With lower incoming flow speed (U = 12 m/s), the control effec-
tiveness is also lower, and therefore it requires larger deflection of 
control surface to generate sufficient control torque, leading to the 
aggressive but saturated control command shown in Fig. 14 (a). 
When the freestream velocity is higher (U = 27 m/s), the flutter 
frequency is higher, which provides more excitations at the initial 
stage. Therefore, it can be seen from Fig. 14 (c) that the control 
command becomes effective earlier than for the other two condi-
tions. However, it is remarkable that if U < 12 m/s or U > 27 m/s, 
the controller is capable for stabilizing the system within 8 s with 
current settings due to the insufficient control effectiveness or the 
excessive flutter frequency, respectively. Nevertheless, this can be 
improved by adapting hyperparameters. Fig. 15 compares the root 
means square (RMS) of critic weights with 3 different freestream 
velocities in the presence of uncertainties. Consistent with the 
above, the convergence speed is faster when the freestream veloc-
ity is higher because of the stronger excitation. These curves are 
different in that the control policy is learned online, and therefore 
the controller adapts to different conditions in real time, which 
validates the adaptability of the proposed control approach. The 
simulation results collectively verify the feasibility and the effec-
tiveness of the event-triggered intelligent optimal control approach 
developed in this paper.

5. Conclusion

In this paper, we develop an event-triggered intelligent opti-
mal control scheme, and apply it to an aeroelastic system control 
problem. Taking the input constraints into account, we derive a 
novel triggering condition without making the Lipschitz assump-
tion on the inverse hyperbolic tangent function. The controller is 
conducted by adopting the adaptive dynamic programming (ADP) 
technique with a single critic network.

The theoretical analysis of the closed-loop system shows that, 
with the derived event-triggered controller, the system states can 
be guaranteed asymptotically stable, while the Zeno phenomenon 
is also avoided during the learning phase. The simulation results 
demonstrate that the nonlinear aeroelastic system is successfully 
stabilized with input saturation constraints handled. Besides, com-
pared to the conventional time-based ADP method, the present 
event-triggered ADP method can achieve comparable performance 
with reduced control updates, which presents the advantages of 
the developed method in saving the computational and communi-
cation’s load. Furthermore, the robustness tests demonstrate that 
the designed controller is able to adapt online to different situa-
tions and has the robustness to uncertainties to some extent.

At the current stage, we concentrate on the control algorithm 
development based on the known system dynamics and perfect 
measurements. Due to the fact that uncertainties generally exist in 
the real world, further investigation into robust control methods is 
recommended. Besides, due to the limitation of actuator power, the 
deflection rate of the control surface should also be constrained, 
which can be studied in the future.
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