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Simulated Annealing-based Ontology Matching

MAJID MOHAMMADI, Delft University of Technology

WOUT HOFMAN, The Netherlands Institute of Applied Technology (TNO)

YAO-HUA TAN, Delft University of Technology

Ontology alignment is a fundamental task to reconcile the heterogeneity among various information systems

using distinct information sources. The evolutionary algorithms (EAs) have been already considered as the

primary strategy to develop an ontology alignment system. However, such systems have two significant

drawbacks: they either need a ground truth that is often unavailable, or they utilize the population-based EAs

in a way that they require massive computation and memory. This article presents a new ontology alignment

system, called SANOM, which uses the well-known simulated annealing as the principal technique to find

the mappings between two given ontologies while no ground truth is available. In contrast to population-

based EAs, the simulated annealing need not generate populations, which makes it significantly swift and

memory-efficient for the ontology alignment problem. This article models the ontology alignment problem

as optimizing the fitness of a state whose optimum is obtained by using the simulated annealing. A complex

fitness function is developed that takes advantage of various similarity metrics including string, linguistic,

and structural similarities. A randomized warm initialization is specially tailored for the simulated annealing

to expedite its convergence. The experiments illustrate that SANOM is competitive with the state-of-the-art

and is significantly superior to other EA-based systems.

CCS Concepts: • Information systems → Data cleaning; Mediators and data integration; • Theory of

computation → Data integration;
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1 INTRODUCTION

Ontologies are the tools to formalize the objects and their corresponding relations in a domain.
Due to their extraordinary power of expressiveness, ontologies have been used in diverse fields
to model the underlying concepts in a formal manner (Baader et al. 2006; Bandrowski et al. 2016;
Hoehndorf et al. 2015; Reitsma et al. 2009).

The ontology-based modeling is subjective and expert-dependent, hence the similar concepts
in one particular domain can be constructed in entirely distinct ways. The discrepancy in models
is referred to as heterogeneity, and it is seemingly inevitable despite the fact that data are coming
from various sources in the era of information explosion.
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The heterogeneity among various data sources is a major impediment to the path of interop-
erability. This difference among information systems calls for the need to design an automatic
solution to make them interact. Ontology matching, or alignment, is one approach to make the
heterogeneous information systems interoperable by finding the semantically identical concepts
of two ontologies that are stated in distinct ways. The ontology alignment systems usually take ad-
vantage of multiple similarity measures to find similar entities. However, the way to decide among
various similarity measures is a fundamental issue to attack.

1.1 Related Works

The evolutionary algorithms (EAs) have long been used for ontology alignment. There are two
different ways to apply EAs to the ontology alignment problem. The first approach is the so-
called meta-matching, whose goal is to find heuristically the hyper-parameters of an alignment
system. Generally, a set of similarity measures for each pair of entities is selected, and the goal is
to achieve the optimal weights for the chosen similarity metrics. Another critical parameter usually
computed by meta-matching techniques is the threshold according to which the final alignment
will be obtained. The major shortcoming of the meta-matching is that they often need a reference
alignment, or a part of it, to identify the hyper-parameters. In reality, however, the ground truth of
given ontologies is often unavailable, and the applicability of such systems is thus restricted. Such
a drawback is present in most of the meta-matching systems using EAs (Acampora et al. 2014;
Martínez-Romero et al. 2013; Xue and Liu 2017).

To our knowledge, there is only one meta-matching system that is able to discover alignments
of two given ontologies without the ground truth (Xue and Wang 2015). In their proposed system,
X. Xue et al. have used two heuristic measures that are not reliant on the ground truth. The mea-
sures are MatchFmeasure and Unanimous Improvement Ratio (UIR), based on which memetic algo-
rithm is applied to identify the alignment.

The second way of using EAs is to solve the ontology alignment problem directly. Similar to the
meta-matching techniques, there are multiple systems that require a reference alignment. These
systems optimize various objective functions such as F-measure (Gil et al. 2008; Xue et al. 2015a)
and a weighted sum of similarity metrics (Xue et al. 2015b). Such systems also have narrow appli-
cability in real-world situations, since no gold standard is available in reality.

In addition, there are several EA-based systems suitable for real-world situations. J. Wang
et al. are arguably the first ones who used an evolutionary algorithm, i.e., genetic, to find the align-
ment between two given ontologies (Wang et al. 2006). Their proposed system, GAOM,1 models a
possible alignment as a population member (chromosome). They further define the intension of a
concept as a set containing its name, properties, and instances, and the extension of a concept as its
relation (i.e., object property) to some other entities at the same ontology. Based on the intensional
and extensional features, the fitness of a chromosome is computed, and the optimal alignment is
discovered using the genetic algorithm.

GAOM suffers from several drawbacks. First, it solely matches the classes, not the object or data
properties, although they are used to measure the similarity of classes. On top of that, it is not
clear how the structural similarity of concepts is considered.

A well-developed system, called MapPSO (Bock and Hettenhausen 2012), identifies the align-
ment based on the discrete particle swarm optimization (PSO). MapPSO is able to align classes and
properties of two given ontologies without the requirement of a reference alignment. This system
utilizes lexical, linguistic, and structural similarity metrics to determine the fitness of a particle.

1Stands for Genetic Algorithm-based Ontology Matching.
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Aside from its salient characteristics, MapPSO has several severe drawbacks as well. First, there
is no pre-processing (e.g., tokenization and stemming) over the names of various entities. In their
alignment algorithm, the Levenshtein string similarity (Yujian and Bo 2007) is directly applied to
the names of two entities to gauge their similarity. This approach has low applicability in real-
world ontologies, since the concepts are likely to be named as the combination of various tokens.
As a result, the similarity computation of names merely based on the Levenshtein metric would
lead to overall poor performance, since the recent studies have accented the role of string similarity
metrics for ontology matching (Cheatham and Hitzler 2013). Such names cannot be discovered in
WordNet (Miller 1995), neither would the linguistic similarity used in MapPSO lead to a significant
mapping discovery when the linguistic heterogeneity is present.

Yet another subtle but essential drawback of MapPSO is that the same string similarity metric has
been used for matching properties. Nonetheless, the sole consideration of the names of properties
would increase simultaneously the false negative and false positive (Cheatham and Hitzler 2014).

There are also several pitfalls inherited from PSO. PSO is a population-based evolutionary algo-
rithm, and MapPSO used it in such a way that it needs to generate a significant number of particles
to transition to the next generation and to find the optimum of the given problem. Such popula-
tions need to be stored in the main memory so it requires a considerable amount of space. The
computation of population fitness would also be time-consuming. Further, PSO is suffering from
the so-called premature convergence, hence it is likely that it converges to the local optima. There
are also other systems based on the population-based incremental learning (Xue and Chen 2018)
and the non-dominated sorting genetic algorithm-II (NGSA-II) (Xue and Wang 2017), which solve
the ontology alignment problem as well.

1.2 Contributions

In this article, the simulated annealing (SA) is used as the primary strategy to find the alignment
between two given ontologies. SA has several salient features that make it practically more effi-
cient than other evolutionary techniques. SA mimics the slow cooling in metallurgy in a way that
it slowly decreases a temperature value that is high at the beginning of the process. When the tem-
perature is high, it is more likely that the transition to a worse state (based on the fitness function)
happens. As the temperature decreases, the odds of moving to a worse solution diminishes as well.
Accepting the worst solution at the beginning would help explore the whole solution space so the
chance of the premature convergence significantly falls. Along with its convergence, SA is more
time- and memory-efficient than the population-based EAs, since it only operates on one single
state based on it producing a successor. Therefore, it requires less memory to store the populations
and less time for computing the fitness of multiple chromosomes in a population.

Aside from the inherent characteristics of SA, there are several other advantages of the sys-
tem proposed in this article, SANOM.2 Contrary to MapPSO, SANOM performs a complete pre-
processing step that is proved to enhance significantly the performance of matching (Cheatham
and Hitzler 2013). Further, it benefits from the so-called Soft TF-IDF (term-frequency and inverse
document frequency) string metric (Cohen et al. 2003) and generalizes it with two base similar-
ity metrics. One of the string similarity metrics is Jaro-Winkler, which only compares the names,
and the second is a WordNet-based metric to gauge the linguistic proximity of tokens. The pro-
posed Soft TF-IDF is able to detect the correspondences whose parts of names have been stated by
different but synonymous tokens.

2Stands for Simulated ANnealing-based Ontology Matching.
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For matching properties, SANOM will use the notion of the core concept, defined in Cheatham
and Hitzler (Cheatham and Hitzler 2014) as an extra name for the given properties. This would
increase the likelihood of mapping while the false positive decreases as well.

Among EA-based ontology alignment systems, MapPSO is the only one that participated in the
OAEI, and its implementation is also freely available.3 Thus, we compare in particular SANOM
with MapPSO in terms of the execution time as well as efficiency gauged by various performance
metrics.

The contributions of this article can be summarized as follows:

• An alignment is modeled as a state whose optimum based on a fitness function will solve
the ontology matching problem;

• An intrinsic fitness function is developed by using various similarity measures. In this re-
gard, the Soft TF-IDF metric is extended by using two base similarity metrics: one for the
strings similarity of tokens and one for their linguistic relations;

• The simulated annealing is adjusted to find the alignment between two given ontologies. In
this regard, a randomized greedy algorithm is developed for the initialization that expedites
the convergence of the algorithm;

• The proposed system is evaluated by the OAEI anatomy, conference, and disease and phe-
notype tracks. An extensive statistical comparison is conducted as well to display the ad-
vantages and pitfalls of the proposed system.

The preliminary implementation of SANOM participated in the OAEI 2017 (Mohammadi et al.
2017a), and the current, enhanced implementation participates in the OAEI 2017.5 and 2018.

1.3 Structure

This article is structured as follows: Section 2 dedicates to the preliminary concepts of ontology
alignment and simulated annealing required for the further sections. The computation of the align-
ment fitness using string and structural similarity metrics is discussed in Section 3. Section 4 con-
tains the details of the proposed system, SANOM, and the experimental results are presented in
Section 5. The article concludes in Section 6.

2 PRELIMINARIES

In this section, the fundamental concepts regarding the ontology and ontology alignment are first
revised, and it follows by the explanation of the simulated annealing method.

2.1 Ontologies and Ontology Matching

Ontologies are keys to formally modeling a domain of interest. One of the salient advantages of
doing so is the interoperability among various systems in one particular domain.

In this article, the ontologies can be simply considered as a 4-tuple of their different entities.

Definition 2.1 (Euzenat et al. 2007). An ontology O could be defined as

O = (C,DP ,OP , I ),

where

• C is the set of classes that are the principal concepts in a domain;
• DP is the set of data properties explaining the characteristics of the classes;
• OP is the set of object properties defining the relation of two classes;
• I is the set of individuals that instantiate the modeled concepts.

3https://sourceforge.net/projects/mappso/.
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Simulated Annealing-based Ontology Matching 3:5

The ontologies are designed by humans and are not homogeneous by nature. This would prevent
the systems from sharing data with each other, as their modeling would not concur. Ontology
alignment would be a solution to enable the interoperability between two or multiple systems
having different models. Several rudimentary concepts are first presented that are required for
ontology alignment.

Definition 2.2 (Correspondence (Euzenat et al. 2007)). A correspondence between two given on-
tologies O and O ′ is defined as a set of 4-tuples

< e, e ′, r , c >,

where

• e is an entity, e.g., class, property, or instance, from the first ontology;
• e ′ is an entity form the second ontology;
• r is the type of relation between two entities, e.g., equivalence, subsumption;
• c ∈ [0, 1] is the confidence of the matching.

Definition 2.3 (Alignment (Euzenat et al. 2007)). An alignment is the typical outcome of the on-
tology matching systems and consists of several correspondences between different entities of two
given ontologies.

The goal of this article is to take advantage of several similarity measures and to propose a
methodology based on the well-known simulated annealing to discover the alignment between
two ontologies.

2.2 Simulated Annealing

Simulated annealing is a probabilistic approach to estimate the global optimum of problems that
cannot be solved by the standard optimization techniques (Metropolis et al. 1953). As the name
suggests, this technique simulates the annealing in metallurgy that slowly cools the materials to
decrease their defects.

Such a controlled cooling is implemented in the simulated annealing as the probability to tran-
sition to a worse solution. The probability of a move to a worse solution is proportionate to the
temperature: The higher the temperature, the more chance to move to a worse solution. Such a fea-
ture would enable SA to explore the whole search space, hence it does not converge prematurely,
unlike the genetic and swarm intelligence algorithms.

In contrast to population-based EAs, SA only operates on one possible solution, called state, and
tries to improve it to get a better solution. Such an enhancement is performed by creating a new
successor in the neighborhood of the current state and then probabilistically transitioning to it.
Let S be the current state and S ′ be the successor (or the neighbor) created based on the current
state. The proposed move from S to S ′ happens based on a fitness function: If the fitness of S ′ is
superior to S , then the transition certainly happens, and it probably occurs otherwise.

The probability of a move when the fitness of the successor is less than the current state is
commensurate with the value of their fitness and the temperature. In more detail, let f (S ) and
f (S ′) be the fitness of the current and successor states, respectively. If the f (S ′) > f (S ), then
transition to successor happens. Otherwise, let ΔE = f (S ′) − f (S ), then the probability to move to
the proposed successor Pmove can be stated as

Pmove =min
(
e

ΔE

T , 1
)
, (1)

where T is the temperature.

ACM Transactions on Management Information Systems, Vol. 10, No. 1, Article 3. Publication date: May 2019.



3:6 M. Mohammadi et al.

It is evident from Equation (1) that if f (S ′) > f (S ), then eΔE/T > 1 and Pmove = 1. Thus, the
proposed move to S ′ will certainly happen. Otherwise, the transition is reliant on ΔE and T : The
greater ΔE or smaller T , the smaller chance to accept the move to a state with lower fitness.

Having generated the successor and having then computed the probability of accepting the
move using Equation (1), the move is accepted or rejected in practice by sampling from a uniform
distribution in the interval [0, 1]. If the sampled value is less than Pmove , then the move to S ′

is accepted. Otherwise, the transition is rejected, and a new successor is produced based on the
current state.

The temperature also plays a critical role in the transition to a worse state. The simulated an-
nealing algorithm starts with a higher temperature so the transition to worse states are more likely
at the beginning. However, the temperature becomes lower as time goes by, hence it is unlikely
to move to a worse solution. This enables SA to explore the whole solution space at the begin-
ning to find the global optima and to prevent premature convergence. The overall SA algorithm is
summarized in Algorithm 1.

ALGORITHM 1: Simulated annealing

Input: S = S0, maxIter
for iter=1:maxIter do

T = updateTemperature (iter ,maxIter )
S ′ = дenerateSuccessor (S )
Compute Pmove = Pr (S, S ′,T ′) by Equation (1)
Sample r from the uniform distribution in the interval [0, 1]
if Pmove > r then

S = S ′

end if

end for

Output Final state S

3 ALIGNMENT FITNESS

At the heart of any evolutionary algorithm, there must be a way to measure the fitness of different
solutions based on which the evolution happens. First, a precise definition is presented for the
alignment fitness:

Definition 3.1 (Alignment Fitness). Given an alignment A between two ontologiesO1 andO2, the
fitness of A is computed by the function F: A∗ → R (where A∗ is the set of all possible alignments),
and is defined as

F (A) =
∑
c ∈A

f (c ),

where f : A→ R computes the similarity of each correspondence in the given alignment A.

The alignment fitness definition reveals the need for computing the fitness of each correspon-
dence for having the overall fitness of a given alignment. The function f calculates the similarity
of two entities in the correspondence c .

The first way of the similarity calculation is to consider the names (e.g., URI, label, comments,
etc.) of two given entities and to determine their sameness using either string similarity metrics or
their linguistic relations using WordNet (Miller 1995). The way of finding the similarity between
two classes and two properties are different in the proposed system.

ACM Transactions on Management Information Systems, Vol. 10, No. 1, Article 3. Publication date: May 2019.
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It is also possible to consider the positions of two entities in their ontologies as a meter of
similarity. For instance, if two classes match from two ontologies, then the likelihood of mapping
their subclasses increases. Such metrics are referred to as the structural similarity measures. In a
nutshell, f (c ) = fstr inд (c ) + fstrucutur al (c ), where fstr inд (c ) and fstrucutur al (c ) are the string and
structural similarity measures, respectively.

In the remainder of this section, the appropriate similarity metrics that are utilized by SANOM
are reviewed.

3.1 String Similarity Metric

In this section, the techniques for computing the similarity between the strings of two entities
are revised. We take advantage of the Soft TF-IDF (term frequency-inverse document frequency)
with two base similarity metrics. The reason for using this metric is that it can be generalized to
accommodate multiple base similarity metrics. There are some other metrics such as Soft Jaccard
that have the same capability, but Soft TF-IDF has shown better performance in terms of both
precision and recall in recent studies (Cheatham and Hitzler 2013). The base metrics for Soft TF-
IDF are Jaro-Winkler to deal with names as a sequence of characters, and the other one is Wu
and Palmer (Wu and Palmer 1994), which computes the linguistic relatedness of two names using
WordNet.

It is common that ontologies have several annotations that facilitate finding their peers in other
ontologies. Further, the sole comparison of properties names would lead to poor results. Therefore,
we consider a set of names for each entity as follows:

• For classes, the essential name is their uniform resource identifier (URI). Besides, there are
some annotations that might help the process of matching. Among them are label and com-

ment annotations that provide more information about the corresponding class. There are
sometimes related synonyms for classes in the ontology that should also be considered.
The OAEI anatomy track has several related synonyms that would enhance the alignment
outcome.

• For the property alignment, considering solely the names would mislead the matching pro-
cess. As recommended by Cheatham and Hitzler (2014), we consider the core concept as
another name for each property. The core is the first verb, if it exists, in the property name
whose length is higher than three, or otherwise the first noun along with its corresponding
adjective. The Stanford part of speech tagger is utilized to extract the core of each property
(Toutanova et al. 2003).

Evidently, it is likely that each concept has more than one name; therefore, we take the maximum
similarity among various names as the string similarity among two corresponding entities. Let
S ∈ O and T ∈ O ′ be a set of names pertaining to two entities e1 and e2, then

fstr inд (c ) = Sim(S,T ) = max
s ∈S,t ∈T

Soft TF-IDF(s,t), (2)

where c represents a correspondence containing the mapping e1 to e2, Sim(S,T ) is the similarity
between the names of two entities S and T, and Soft TF-IDF denotes the string similarity measure.
In further subsections, the Soft TF-IDF is explained. Prior to that, we need to use several pre-
processing strategies to increase the chance of matching.

3.1.1 Pre-processing Strategies. The modification of strings before the similarity computation is
essential to increase the chance of mapping entities. The primary pre-processing strategies utilized
by SANOM are:

ACM Transactions on Management Information Systems, Vol. 10, No. 1, Article 3. Publication date: May 2019.



3:8 M. Mohammadi et al.

• Tokenization. The terminology of concepts is usually constructed from a sequence of
words. The words are often concatenated by white space, the capital letter of first letters,
and several punctuations such as “−” or “_”. Therefore, the initial strings can be broken into
a bag of words that is called tokenization.

• Stop word removal. Stop words refer to the common words that do not convey any par-
ticular meaning. The stop words can be distinguished by looking up the tokens (identified
after tokenization) in a table storing the potential stop words. The Glasgow stop word list
is utilized in the current implementation.4

• Stemming. The entities may refer to the same concept, but they appear differently due to
various verb tense, plural/singular, and so forth. Therefore, we need to revert them to the
normal state to be able to detect the similar concepts that have been altered for grammatical
reasons. The Porter stemming method is used for this matter (Porter 1980).

3.1.2 Soft TF-IDF with Multiple Base Similarity Metrics. TF-IDF, or cosine similarity, is one of
the most popular strategies in information retrieval (Cohen et al. 2003). To calculate TF-IDF, we
need to compute the frequency of the word w in the bag of tokens S (e.g., TFw,S ) and the inverse
fraction of strings that contain w (e.g., IDFw ). Then, TF-IDF of two given strings S and T are
computed as

TF-IDF(S,T ) =
∑

w ∈S∩T

V (w, s )V (w,T ), (3)

where V is defined as

V (w, S ) =
loд(TFw,S + 1).loд(IDFw )∑

w ′ loд(TFw ′,S + 1).loд(IDF ′w )
. (4)

Equation (3) only considers the words that are exactly the same in both bags of words. However,
the sameness can be interpreted differently, especially for ontology alignment. Thus, TF-IDF can be
extended by defining the sameness using a base string similarity measure. Given such a similarity
metric and a threshold, the setC is defined as the set of triples (s, t , sim), where s ∈ S and t ∈ T are
tokens whose similarity sim is computed by the base similarity metric (and is, of course, greater
than a given threshold). Having the set C, the Soft TF-IDF is defined as

Soft TF-IDF(S,T ) =
∑
w ∈C

V (w, s )V (w,T )D (w,T ), (5)

where D (w,T ) =maxv ∈Csim(w,v ), and sim(w,v ) is the similarity of w and v in the set C.
The base similarity metric gauges the similarity of tokens obtained from each name. In this

study, we take advantage of two similarity metrics and take their maximum as the final similarity
of two given tokens. The reason of considering the maximum similarity is that two tokens are
assumed to be identical if their names are the same or they are linguistically related. For instance,
ConferenceDinner and ConferenceBanquet are deemed the same, since the first token of two names
is identical, and the second token is linguistically similar. The similarity metrics for measuring the
strings similarity and lingual relatedness are:

• Jaro-Winkler metric. The combination of TF-IDF and Jaro-Winkler has shown promising
performance in the name entity matching (Cohen et al. 2003), and also in ontology align-
ment (Cheatham and Hitzler 2013). By the same token, SANOM exploits Jaro-Winkler with
the threshold 0.9 as one of the base similarity metrics. The value of the threshold is in line
with recent studies (Cheatham and Hitzler 2013).

4http://ir.dcs.gla.ac.uk/resources/linguistic utils/stop words.

ACM Transactions on Management Information Systems, Vol. 10, No. 1, Article 3. Publication date: May 2019.
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• WordNet-based metric. The linguistic heterogeneity is also rampant in various domains.
Therefore, the existence of a similarity metric to measure the lingual closeness of two en-
tities is absolutely essential. In this study, the relatedness of two given tokens is computed
by the Wu and Palmer measure (Wu and Palmer 1994) and is used as a base similarity
metric. The threshold should be high enough, since two distinct tokens might seem alike,
since Wu and Palmer check the semantic relatedness of given tokens. Our investigation
showed that any value less than 0.8 would practically state that most of the given tokens
are claimed to be the same according to Wu and Palmer. Thus, one needs to specify a much
higher threshold to avoid it. In the current implementation of SANOM, the threshold for
this similarity metric is set to 0.95.

Using these two base similarity metrics, we can discover the concepts with synonymous changes
in one or multiple tokens.

3.2 Structural Similarity

The preceding string similarity metric gives a high score to the entities that have lexical or lin-
guistic proximity. Another similarity of two entities could be derived from their positions in the
given ontologies.

We consider two structural similarity measures for the current implementation of SANOM:

• The first structural similarity is gauged by the subsumption relation of classes. If there are
two classes c1 and c2 whose superclasses are s1 and s2 from two given ontologiesO1 andO2,
then the matching of classes s1 and s2 would increase the similarity of c1 and c2. Let s be a
correspondence mapping s1 to s2, then the increased similarity of c1 and c2 is gauged by

fstructur al (c1, c2) = f (s ). (6)

• Another structural similarity is derived from the properties of the given ontologies. The
alignment of two properties would tell us that their corresponding domain and/or ranges
are also identical. Similarly, if two properties have the analogous domain and/or range, then
it is likely they are similar as well.

The names of properties and even their corresponding core concepts are not a reliable
meter based on which they are declared a correspondence. A recent study has shown that
the mapping of properties solely based on their names would result in high false positive and
false negative rates; e.g., there are properties with identical names that are not semantically
related while there are semantically relevant properties with totally distinct names.

The current implementation treats the object and data properties differently. For the ob-
ject properties op1 and op2, their corresponding domains and ranges are computed as the
concatenation of their set of ranges and domains, respectively. Then, the fitness of the
names, domains, and ranges are computed by the Soft TF-IDF. The final mapping of two
properties is the average of the top two fitness scores obtained by the Soft TF-IDF. For the
data properties, the fitness is computed as the similarity average of names and their corre-
sponding domain.

On the other flow of alignment, it is possible to derive if two classes are identical based
on the properties. Let e1 and e2 be classes, op1 and op2 be the object properties, and R1 and
R2 are the corresponding ranges, then the correspondence c = (e1, e2) is evaluated as

fstructur al (c ) =
fstr inд (R1,R2) + fstr inд (op1,op2)

2
. (7)
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Fig. 1. The architecture of SANOM.

4 ONTOLOGY ALIGNMENT USING SIMULATED ANNEALING

Having computed the fitness function, the simulated annealing can be exploited to find the best
possible alignment of two given ontologies. In this section, the necessary steps of the simulated
annealing are described to solve the ontology alignment problem. Figure 1 displays the details of
the SANOM implementation. In the following, we explicate different modules of SANOM depicted
in Figure 1.

4.1 Ontology Parsing and Similarity Computation

According to Figure 1, ontologies are first parsed using OWL API (Horridge and Bechhofer 2011),
and they are stored in a list of a data structure called lexicon. Lexicon is the main data structure of
SANOM, which contains a list of hash sets for each concept in the ontology. This list contains all
the names of a concept (e.g., URI and labels) that are tokenized and undergone the pre-processing
strategies before being saved. Thus, a hash set in the list contains the tokens of a name of a concept
form ontology. The overall concepts of each ontology are stored in a list of lexicon. The list index
is considered as the index of the corresponding concept in the ontology. The index will be used to
store the similarity of concepts.

After parsing the ontologies, we first need to compute the similarity of each concept from
the first ontology to all concepts from the target. As is recently recommended (Faria et al. 2018),
the similarity computations should efficiently be stored in a hash table. Further, we only store the
similarities whose magnitude is bigger than a value. In the current implementation, this value is
set to 0.5 (Faria et al. 2018). The keys of the hash table can be simply generated based on the index
of the concept of the first ontology to that in the target. Using hash tables decreases significantly
the amount of memory required for saving the similarities for large-scale ontologies.

Since the computation of similarity metrics is a nested loop, it is a time-consuming proce-
dure. Thus, we used the Java Fork/Join framework (Lea 2000) to expedite this procedure. The Java
Fork/Join framework uses the divide and conquer strategy so it divides the initial big tasks into
several small ones (the fork step) and then solve the smaller tasks. At the end, the small tasks are
aggregated together (the join step). For computing the similarity of a concept from the first ontol-
ogy, we divide the concepts of the second ontology into different disjoint partitions, and compute
the similarities of the concept of the first ontology with those concepts in the smaller tasks.

Having computed the similarities, we now look into other elements in SANOM. Prior to that,
we need to model an alignment to be able to use the SA for ontology alignment.
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4.2 Representation of an Alignment

The state in the simulated annealing would represent an alignment. Therefore, the optimal map-
pings between the given ontologies are obtained by optimizing the state fitness.

Let n and m be the number of concepts of two given ontologies, the state S ∈ Rn is an integer
vector whose values are between 1 andm, e.g, 1 ≤ Si ≤ m. Hence, if the ith cell contains the number
j, it indicates that (ei , ej ) is the related correspondence.

Definition 4.1 (Alignment State). Any arbitrary state S during the simulated annealing represents
an alignment between two given ontologies, and can be seen as a set containing pairs of concepts
from two ontologies:

S = {(e1, ej1 ), (e2, ej2 ), . . . , (en , ejn
)} (8)

where (ei , eji
) is a correspondence mapping ei in the first ontology to eji

in the target, and ji ∈
{1, 2, . . . ,m}.

Definition 4.1 formally describes the state in the simulated annealing as an alignment. From the
implementation view, the set S can be defined as a vector whose entries would indicate a corre-
spondence. More in detail, the element at the kth position of this vector is the mapping (ek , ejk

).
In contrary to the population-based evolutionary strategies, the simulated annealing only oper-

ates on one single state and tries to evolve it to obtain a better solution. Therefore, it is more time-
and memory-efficient. The length of S could be more optimal if we choose it as the minimum of m
and n, especially if their difference is high. However, such an improvement is not significant and
is ignored in the current implementation.

4.3 Warm Initialization with a Randomized Greedy Technique

To expedite the convergence of the simulated annealing, we use a randomized greedy technique
for the initialization. An element from the alignment state is arbitrarily chosen by finding a random
number r between 1 andn. Then, the entity er is mapped to entity ejr

, which has the maximum sim-
ilarity, e.g., arд maxe ∈O2 f (e, er ) = ejr

. The similarity of the correspondences f (e, ejr
) is stored in

a hash table that can be retrieved immediately so finding an initial solution is not time-consuming.
It is evident that this way of mapping does not result in optimal alignment, but it is significantly
better than using an arbitrary initial state.

The mapping is considered to be one-to-one, hence it must be fulfilled in the initialized state as
well. Therefore, some auxiliary variables are required to check these constraints. We also need to
compute the fitness of the initial solution, since it is required in the SA. The fitness can be simply
calculated by adding the fitness of each correspondence we added to the alignment. Algorithm 2
summarizes the whole procedure of finding an efficient initial state.

4.4 Generating a Successor

The simulated annealing finds the optimal solution by the transition to a new state that usually
has a higher fitness value. The prerequisite to such a move is to first generate the next state in the
neighborhood of the current.

We swap the elements of the current state to produce a successor. The number of elements to be
swapped can be a fraction of the state length. In the current implementation, we alter q elements
of the current state where q = �5% ∗ |S |	 and |S | is the length of the current state. The alteration is
by finding q distinct number between 1 and n, called k, and then exchanging the elements s (k (i ))
and s (k (i + 1)) where i is an index.

The fitness of the successor can also be computed while it is created based on the current
state. When the values at the k (i ) position are replaced with the value of k (i + 1), it means the
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ALGORITHM 2: Randomized greedy technique for initialization

Input: Set of entities of the source and target ontologies E1 and E2

n = |E1 |, m = |E2 |, counter = 0, fit = 0, S

while counter < n do

r = дenerate − random − number (1,n)
If(Chosen-Before(r)) continue;

ejr
= arд maxe ∈O2 f (e, er )

fit += f (er , ejr
)

S(r) = ejr

Remove(ejr
, E2)

++counter;
end while

Output State S and its fitness fit

correspondence (ek (i ), eS (k (i )) ) is replaced with (ek (i ), eS (k (i+1)) ), and the correspondence
(ek (i+1), eS (k (i+1)) ) is substituted with (ek (i+1), eS (k (i )) ). As a result, we need merely to subtract the
fitness values of the previous correspondences and add those of the new ones. The fitness of these
correspondences have already been stored in a hash table. Algorithm 4 summarizes the overall pro-
cedure for creating a successor and its fitness. Since the fitness of correspondences is computed in
a hash table before running the SA, the creation of a successor and its fitness is quite swift. It only
requires to swap k/2 elements and conduct 4k/2 additions/subtractions.

ALGORITHM 3: Generating a successor and its fitness calculation

Input: State S and its fitness f(S)
n = |S |, m = |E2 |, S ′ = S , f (S ′) = f(S)
q = �5%n	
k=generate-distinct-number(q,1,n); // generating q distinct number in the interval [1,n]
for i < length(k); k+2 do

swap(S ′,k(i),k(i+1)); // replacing the elements of S in the positions k (i ) and k (i + 1)
f (S ′) −= f (ek (i ), eS (k (i )) ).
f (S ′) −= f (ek (i+1), eS (k (i+1)) )
f (S ′) += f (ek (i ), eS (k (i+1)) )
f (S ′) += f (ek (i+1), eS (k (i )) )

end for

Output State S ′ and its fitness f (S ′)

4.5 SANOM in a Nutshell

SANOM first computes the similarity of each entity from the first ontology to the entities from
the target. Then, the warm initialization would find a possibly good initial alignment state for the
given ontologies. The initial alignment is then enhanced by the simulated annealing by generating
a successor, computing its fitness, and then moving to it. Such an enhancement is recurrently
repeated for some number of iterations.

The number of iterations is a parameter that can be tuned by the user. According to the num-
ber of iterations, the temperature in each iteration can be simply computed. Given the number
of iterations itermax and the initial temperature t , the temperature at the iteration iter can be
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computed as

tk =

(
1 − iter

itermax

)
t .

Having computed the temperature, the overall ontology alignment algorithm is summarized in
Algorithm 4.

ALGORITHM 4: SANOM

Input: Source and target ontologies O1 and O2, number of iteration itermax , initial temperature
t=1.
Finding the initial state S and its fitness f (S ) by Algorithm 2
while iter < itermax do

tk = t − iter
itermax

t .

S ′ and its fitness f (S ′) are generated by Algorithm 3.
ΔE = f (S ′) − f (S ).

Pmove =min
(
e

ΔE

t , 1
)
.

if Pmove > random(0,1) then

S = S ′

f (S ) = f (S ′)
end if

end while

Output State S

In terms of the time complexity, the randomized greedy initialization is of order O (n) and it is
only executed once. The successor generation is quite swift, and it only requires k/2 swap opera-
tions and 4k/2 additions/subtractions, where k is the number of elements in the alignment to be
swapped. Thus, the SA is very swift. However, the most time-consuming module is the similarity
computation hash table. However, it is efficiently implemented using Java Fork/Join framework.
As a result, the time complexity varies significantly with respect to n, since the string similarity is
partly reliant on the length of the concept names (or the number of tokens) and structural similarity
is dependent on the number of superclasses/subclasses. However, it is certain that both structural
and string similarity metrics are required to be conducted for each element of two ontologies.

5 EXPERIMENTAL RESULTS

To evaluate the efficiency and efficacy of the proposed ontology alignment system, several standard
datasets with a known ground truth are required. In this section, the proposed system is evaluated
and compared with the state-of-the-art. We take advantage of the datasets from three tracks of
the ontology alignment evaluation initiative (OAEI), i.e., anatomy, conference, and disease and
phenotype tracks, to evaluate the performance of SANOM and to compare it with several other
alignment systems.

The proper performance metrics are also required to gauge the fineness of an alignment. There
are three common performance measures for this end. The first metric is precision whose magni-
tude shows how accurate the system is. Let R and A be the reference and an alignment identified
by a system, respectively, the precision of the system A given R, e.g., Pr(A,R), is computed as

Pr (A,R) =
|A ∩ R |
|A| ,

where |.| is the cardinality operator.
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Recall is another popular performance metric and is an indicator to show the completeness of
a system over a mapping task. Given R and A, recall Re (A,R) is calculated as

Re (A,R) =
|A ∩ R |
|R | .

The drawback of precision is that it does not consider how well the system could discover the
underlying correspondences. Recall, however, only gauges the ability of a system in identifying
the matches, but not its accuracy. These metrics might be useful in situations where the false
correspondences are not tolerated, or the discovery of more true correspondences are appreciated
even at the expense of having more false positives.

To consider both accuracy and completeness of a system, F-measure should be used, which is
the harmonic mean of precision and recall, e.g.,

F-measure(A,R) = 2
Pr (A,R) × Re (A,R)

Pr (A,R) + Re (A,R)
.

The above performance measures are the three popular metrics to gauge different facets of
the performance of a given system. Along with reporting these metrics, the statistical techniques
have been used as well for comparing our system with other competing ones. The McNemar’s
test is recommended to compare the systems when there is one mapping task (Mohammadi
et al. 2018). This test is suitable to compare various systems over the OAEI anatomy track, and
the corresponding results will be visualized by a directed graph.

For the conference track, the systems are compared based on the Friedman test and its related
post hoc procedure (Mohammadi et al. 2017b). The results of such comparisons are visualized by
the critical difference diagrams. The statistical comparison is discussed at the experiments in more
details.

5.1 The Anatomy Track

The anatomy track is one of the earliest benchmarks in the OAEI. The task is about aligning the
Adult Mouse anatomy and a part of NCI thesaurus containing the anatomy of humans. Each of
the ontologies has approximately 3,000 classes, which are designed carefully and are annotated
in technical terms. A simple string similarity measure can discover an acceptable portion of the
similar concepts; however, there is a considerable share of non-trivial mappings that requires more
in-depth analysis to be discovered.

SANOM is applied to this problem and then compared with AML (Faria et al. 2017), XMap
(Achichi et al. 2016), LogMap and LogMapLite (Jiménez-Ruiz and Grau 2011), KEPLER (Kachroudi
et al. 2017), Wiki3 (Hertling 2017), and ALIN (da Silva et al. 2017). The number of iteration was
set to 1000 for this track. We applied MapPSO to the anatomy track, but its outcome was not
acceptable at all with both precision and recall less than 0.05. Thus, we left it out for comparison
on the anatomy track. Among the participating systems, LogMap and LogMapLite, SANOM, and
ALIN are the systems that do not take advantage of any background knowledge such as UMLS
Metathesaurus (Bodenreider 2004). Hence, it is evident that these systems have lower performance
with respect to those with biomedical background knowledge.

The systems are first compared based on precision, recall, and F-measure, which are tabulated
in Table 1. According to this table, AML is the system with the highest discovery, followed by
XMap. Both of these systems have utilized biomedical background knowledge that led to the better
performance.

Among the system without background knowledge, SANOM has the best performance with
respect to recall, which means that the proposed system could discover more correspondences.
LogMap, however, has better performance in terms of precision. The difference between these
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Table 1. The Precision, Recall, and F-measure of

Participatory Systems on the OAEI Anatomy Track

System Precision F-measure Recall
AML 0.95 0.943 0.936
XMap 0.926 0.893 0.863

KEPLER 0.958 0.836 0.741
LogMap 0.918 0.88 0.846

LogMapLite 0.962 0.829 0.728
SANOM 0.888 0.870 0.853
WikiV2 0.883 0.802 0.734
ALIN 0.996 0.506 0.339

two systems is approximately 1% regarding recall and 3% with respect to precision. The overall
difference between SANOM and LogMap is 1% regarding F-measure, which is the trade-off between
precision and recall. Further, SANOM is interestingly quite competitive with XMap as well; their
difference is nearly 1% in terms of precision and 2% regarding recall, in spite of the fact that XMap
takes advantage of UMLS, dedicated background knowledge in the biomedical domain.

We further compare the systems in the anatomy track via the McNemar’s mid-p test
(Mohammadi et al. 2018). The McNemar’s test applies to the experiments with dichotomous out-
comes, hence it can be used for the alignment comparison, since their findings could be seen as
dichotomous (true vs. false correspondence) as well. The McNemar’s mid-p test requires two num-
bers from two systems for comparison: The number of correspondences that are correctly iden-
tified by the first system and not by the second, e.g., n10, and the number of correctly discovered
correspondences by the second system and not by the first, e.g., n01.

The computation of n10 and n01 can be performed in two different ways. The first approach only
considers the correct correspondences of both systems and neglects the false positive. Given the
alignments A1 and A2 along with the reference R, the number n01 and n10 could be calculated as{

n01 = |(A2 ∩ R) −A1 |
n10 = |(A1 ∩ R) −A2 |

. (9)

By the same token, the numbers could be obtained while the false positive is considered, e.g.,{
n01 = |(A2 ∩ R) −A1 | + |A1 −A2 − R |
n10 = |(A1 ∩ R) −A2 | + |A2 −A1 − R |

. (10)

The numbers pertaining to Equations (9) and (10) are computed and displayed in Tables 2 and
3, respectively. To compare the ith and jth systems, the elements (i, j ) and (j, i ) of these tables are
taken as n10 and n01, and the McNemar’s mid-p test is applied. The mid-p-value is computed as
follows:

mid-p-value = 2

n∑
x=n01

(
n
x

)
0.5n −

(
n
n01

)
0.5n ,

where n = n01 + n10. If the null hypothesis of this test is rejected, then it is drawn that the sys-
tem with higher positive discovery is the better systems. Otherwise, the systems are practically
analogous.

The result of the McNemar’s test over the foregoing systems are visualized by the directed graph
in Figures 2 (ignoring false positive) and 3 (considering false positive). In these graphs, the nodes
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Table 2. The Required Numbers for the Comparison of Systems via the McNemar’s

Test while the False Positive Is Neglected

ALIN AML KEPLER LogMap LogMapLite SANOM WikiV3 XMap
Alin 0 2 0 4 3 10 14 0
AML 903 0 301 168 326 161 322 143

KEPLER 608 8 0 28 134 61 106 22
LogMap 766 29 182 0 180 73 213 53

LogMapLite 592 14 115 7 0 31 128 20
SANOM 782 32 225 83 214 0 239 77
WikiV3 610 17 94 47 135 63 0 37
XMap 788 30 202 79 219 93 229 0

The entries above the main diagonal can be viewed as n10’s, and those below the diagonal would be n01’s.

Table 3. The Required Numbers for the Comparison of Systems via the McNemar’s

Test while the False Positive Is also Considered

ALIN AML KEPLER LogMap LogMapLite SANOM WikiV3 XMap
ALIN 0 74 48 121 47 166 160 103
AML 909 0 338 266 366 292 456 213

KEPLER 608 63 0 118 174 196 239 107
LogMap 766 76 203 0 184 176 346 127

LogMapLite 592 76 159 84 0 161 269 111
SANOM 783 74 253 148 233 0 370 140
WikiV3 616 77 135 157 180 209 0 121
XMap 794 69 238 173 257 214 356 0

The entries above the main diagonal can be viewed as n10’s, and those below the diagonal would be n01’s.

Fig. 2. The comparison of various systems via the McNemar’s test while the false positive is ignored. The

nodes in this graph are the systems, and the edge A→ B displays the superiority of A with respect to B.
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Fig. 3. The comparison of various systems via the McNemar’s test while the false positive is ignored. The

nodes in this graph are the systems, and the edge A→ B displays the superiority of A with respect to B.

are the systems and the edge A→ B indicates that A outperforms B. If there is no such edge, then
the corresponding systems are identical.

As expected, SANOM outperforms LogMap when the false positive is ignored and is the third
systems overall. The other two are the systems that use the background knowledge. If the false
positive is considered as well, then LogMap has better performance than SANOM, which confirms
that LogMap has fewer false correspondences.

In sum, SANOM consistently outperforms KEPLER, LogMapLite, WikiV3, and ALIN either the
false positive is considered or ignored. In the opposite, AML and XMap have better performance
than SANOM in both situations. The performance analysis of SANOM would call the need to use
the biomedical background knowledge to enhance its performance in matching the biomedical
ontologies.

Since the outcome of MapPSO is not acceptable, we did not compare it with SANOM in terms of
precision, recall, and F-measure. However, we compare them concerning their execution times.
SANOM completed the anatomy matching task in 118 seconds, while it took 806 seconds for
MapPSO to complete it. The execution time on this track supports the efficiency of SANOM with
respect to the population-based EAs.

5.2 The Conference Track

The experiments in this section include the alignment of seven ontologies from the conference
track of the OAEI: cmt, conference, confOf, iasted, edas, ekaw, sigkdd. These ontologies describe
the conference organization from different proceedings; therefore, they are heterogeneous by
nature.

Pairing every two ontologies together, there are overall 21 mapping tasks. The tasks comprise
not only the alignment of classes but the alignment of properties as well. Therefore, it is a suitable
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challenge to gauge the goodness of systems for the alignment of properties. Our experience over
this track showed that SANOM converges to the optimal solution with less than 100 iterations in
all tracks. Thus, the number of iterations was set to 100.

Along with the systems used for comparison in the anatomy track, MapPSO is also considered
for comparison, since it has a better performance in the conference track. The overall performance
is also gauged by the micro and macro averaging. The macro averaging is the mean of the per-
formance scores over all tasks. For the micro averaging, however, the false positive (FP), false
negative (FN), and true positive (TP) in each task are first computed. Then, the micro averages of
the precision and recall are

ˆPrecision =

∑N
i=1TPi∑N

i=1TPi + FPi

, ˆRecall =

∑N
i=1TPi∑N

i=1TPi + FNi

, (11)

where TPi , FNi , and FPi are, respectively, the true positive, false negative, and false positive for

the ith task and ˆPrecision and ˆRecall are, respectively, the precision and recall micro average.
Table 4 tabulates the precision, recall, and F-measure of various systems along with the micro

and macro averages. In terms of recall, the proposed system has the best performance by the
margin of 6% from AML, the second-best performing system, and by the margin of 14% from
XMap and LogMap. Regarding precision, XMap, LogMap, and AML have better performance than
SANOM. It is usually the case that the true positive increases at the expense of more false positives.
Concerning F-measure, however, SANOM is superior to those of LogMap and XMap and is quite
competitive with AML, which is the best-performing alignment system in this track.

The outcome of systems will be further analyzed statistically. To this end, the Friedman test and
its corresponding post hoc test are used. The family-wise error rate, which happens when there
are more than two systems for comparison, is controlled by the Bergmann’s correction method
(Bergmann and Hommel 1988). The statistical comparison over multiple datasets needs a per-
formance metric; hence, we perform such an analysis with each of three common metrics. The
outcome of the test is visualized by critical difference (CD) diagrams.

Figure 4 displays three critical diagrams regarding three performance scores, e.g., precision,
recall, F-measure. The horizontal axis in these figures are the rank obtained by the Friedman test,
and each red line connects multiple systems whose performances are not significantly different
from each other.

Based on these figures, it is evident that SANOM is competitive with AML and is superior to
other systems with respect to recall. Regarding precision, SANOM has a moderate performance but
the overall performance gauged by F-measure indicates that SANOM is among the top-performing
systems.

In the conference track, there is no particular background knowledge to be utilized by the sys-
tems. Thus, the comparison among participatory systems is entirely fair. Thus, the conclusion can
be drawn that SANOM has a great performance in discovering new correspondences at the ex-
pense of having false discovery. One can conclude that SANOM is more suitable for the domains
where the false positive is tolerable if more correspondences are to be identified.

We finally compare SANOM and MapPSO, two alignment systems based on the evolutionary
algorithm, from the execution time view over a computer with CPU core-i5 and 4GB RAM. Table 5
shows the execution time in seconds of both systems over the mapping tasks in the conference
track. It is evident that SANOM is significantly faster than MapPSO. The overall time required for
MapPSO to complete all the tasks is approximately 747 seconds, while SANOM completes them in
about 58 seconds. Therefore, SANOM is not only superior from precision and recall metrics but is
also remarkably swift with respect to MapPSO.
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Fig. 4. The critical difference diagrams of systems on the OAEI conference tracks corresponding to three

different performance measures: (a) Recall; (b) F-measure; (c) Precision. The x-axis in diagrams are the ranks

obtained from the Friedman test, and red lines connect the systems whose performance are not significantly

different.

Table 5. The Consumed Time for MapPSO (Bock and Hettenhausen 2012) and SANOM

to Produce an Alignment for Each of the Tasks in the Conference Track

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

MapPSO 32.0 26.7 27.2 27.1 32.0 24.5 30.0 40.6 39.3 53.3 34.6 32.1 24.2 2.4 29.6 50.1 78.6 30.8 46.7 32.3 32.0

SANOM 9.4 0.9 1.8 1.2 1.5 1.7 1.7 3.2 2.2 3.4 1.6 2.0 2.3 2.3 1.1 3.0 4.9 2.8 4.3 2.3 4.3

The times are in seconds, and the number of each task corresponds to mapping two ontologies displayed in Table 4.

5.3 The Disease and Phenotype Track

SANOM is further applied to the OAEI disease and phenotype track (Harrow et al. 2017), which
consists of matching various disease and phenotype ontologies. In particular, we consider the map-
ping of the human phenotype (HP) to the mammalian phenotype (MP), and aligning the human
disease ontology (DOID) and the orphanet and rare diseases ontology (ORDO).

The ontologies in this track contain approximately 15,000 concepts; therefore, the alignment
of these ontologies is challenging. Faria et al. (Faria et al. 2018) investigated the challenges of
large biomedical ontologies, and they recommended several ways of dealing with these ontologies.
Some of these recommendations have been used in SANOM, which makes it possible to align even
ontologies with this size.

ACM Transactions on Management Information Systems, Vol. 10, No. 1, Article 3. Publication date: May 2019.
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Table 6. The Precision, Recall, and F-measure of the

Systems Participated in Aligning DOID and ORDO

Ontologies from the Disease and Phenotype Track

Precision F-measure Recall
LogMap 0.937 0.848 0.775

AML 0.514 0.646 0.870
LogMapLite 0.988 0.758 0.615

XMap 0.969 0.700 0.548
SANOM 0.975 0.747 0.605

Table 7. The Precision, Recall, and F-measure of the

Systems Participated in Aligning HP and MP Ontologies

from the Disease and Phenotype Track

Precision F-measure Recall
LogMap 0.875 0.855 0.835

AML 0.889 0.843 0.801
LogMapLite 0.993 0.755 0.609

XMap 0.994 0.477 0.314
SANOM 0.995 0.728 0.574

MapPSO could not find the alignment of ontologies in this track, since it requires a massive
amount of memory space. Thus, it cannot be compared with SANOM on this track.

For the reference, a voted reference alignment has been used that was created based on the
outputs of the alignment systems participated in this track for the last three years. A reasoner was
also used to validate the final alignment.

In comparison to the systems participated in other tracks of the OAEI, fewer systems can gener-
ate a reliable alignment for this track. All other participating systems in this track use a biomedical
background knowledge. In particular, LogMap uses normalizations and spelling variants the SPE-
CIALIST Lexicon,5 XMAP uses a dictionary of synonyms extracted from the UMLS Metathesaurus
(Bodenreider 2004), and AML has three background resources, one of which is selected automat-
ically (Faria et al. 2014). The current version of SANOM, however, does not utilize any sort of
background knowledge for the biomedical domain.

Table 6 tabulates the result of the various alignment systems for aligning DOID and ORDO on-
tologies. According to this table, the precision of SANOM is better than those of AML, LogMap,
and XMap, and is competitive with LogMapLite. In terms of recall, however, AML and LogMap
have better outcomes. SANOM is also better than XMap and is competitive with LogMapLite. Re-
garding F-measure, LogMap is the best system in this track, followed by LogMapLite and SANOM.
Thus, SANOM outperformed XMap and AML in this track in spite of the fact that it does not use
any background knowledge.

Table 7 displays the performance of systems on aligning HP and MP ontologies. According to
this table, SANOM has excellent performance in terms of precision and outperforms all systems in
this sense. Regarding recall, LogMap and AML are the top two systems, and SANOM is better than
XMap and is competitive with LogMapLite. Concerning F-measure, LogMap and AML are the best
systems, followed by LogMapLite and SANOM.

5http://wayback.archive-it.org/org-350/20180312141706/https://www.nlm.nih.gov/pubs/factsheets/umlslex.html.
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The outcomes of SANOM on the disease and phenotype tracks are acceptable, but interestingly,
its precision is high in contrast to other tracks. This gets back to the nature of the ontologies and
the fact that SANOM has no use of biomedical background knowledge. Thus, SANOM can con-
sider only the concepts as potential mappings that have a high string or structural similarity. In
this case, mapping based solely on these similarity metrics has led to high precision and low recall.
Another important topic is that the reference alignment has been created based on the alignments
of other systems in previous years. Thus, the participating systems have contributions to the ref-
erence alignment, which means that it is more likely that they have much more correspondences
in common with the reference. SANOM, however, has not participated in this track before and has
therefore no impact on the creation of the reference. Nevertheless, the performance of SANOM is
comparable and acceptable.

6 CONCLUSION AND DISCUSSION

This article presented a new ontology alignment system, called SANOM, which uses the simu-
lated annealing to find the correspondences among two given ontologies. The problem of on-
tology matching was first revised as the minimization of a fitness function. Then, a compound
fitness function was developed using several similarity metrics. The simulated annealing was then
adapted to optimize the energy function and consequently derive the final alignment. SANOM has
shown a great performance in discovering the correspondences of two given ontologies. Further,
it is also fast and memory-efficient, especially in comparison to other alignment systems using
evolutionary algorithms.

However, there are multiple avenues on which SANOM can be improved. SANOM has already
acceptable performance in terms of recall, but its precision is not as good as its recall. This is
probably due to the nature of the evolutionary algorithms that compute the overall performance
of an alignment. Thus, the chances are that in an intermediate state with the superior fitness, there
are multiple false correspondences that can be simply refuted. Rejecting the false correspondences
could be done using an alignment repair technique. Thus, one avenue to enhance the precision of
SANOM would be the use of an alignment repair technique.

Yet another way of improving SANOM is to use background knowledge such as UMLS. Most
of the tracks of the OAEI lie within the biomedical realm, hence utilization of such background
knowledge would increase the performance on those tracks and help us fairly compare it with
competing ones over those tracks.

SANOM is both memory- and time-efficient. However, mapping the big ontologies (e.g., ontolo-
gies with more than 50,000 concepts, is another problem. Recently, there are several suggestions
to enable the alignment systems matching these ontologies as well. For instance, one can store the
concepts of one ontology in a hash table and then search the concepts of the second into this hash
table. Since finding in hash tables is of the order one, the overall searching of all concepts is of
the order m, where m is the number of concepts in the second ontology. It was shown that such
a strategy finds many correspondences in the biomedical domain and decreases the consequent
search space quadratically. Such suggestions are left for the future development of SANOM.
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