
Evaluating the correctness and safety of hBFT with ByzzFuzz

Attila Birke1

Supervisor(s): Dr. Burcu Kulahcioglu Özkan1, João Miguel Louro Neto1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 26, 2025

Name of the student: Attila Birke
Final project course: CSE3000 Research Project
Thesis committee: Dr. Burcu Kulahcioglu Özkan, João Miguel Louro Neto, Dr. Jérémie Decouchant

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Byzantine Fault Tolerant (BFT) protocols are de-
signed to achieve consensus even in the presence
of Byzantine faults. Although BFT protocols pro-
vide strong theoretical guarantees, bugs in the im-
plementation of the protocols can allow for mali-
cious activity. While previous work, like Twins
and Tyr, has focused on alternative methods to test
BFT protocols, our work builds upon ByzzFuzz, an
automated testing algorithm, which has previously
identified bugs in protocols like Tendermint and
Ripple. Despite its success, its effectiveness has not
yet been tested on speculative BFT protocols like
hBFT. This research evaluates the effectiveness of
ByzzFuzz in assessing the correctness and safety
of hBFT. To address this, we implemented hBFT
in ByzzBench, a comprehensive framework where
BFT protocols can be evaluated using ByzzFuzz
and other testing algorithms. Through testing, Byz-
zFuzz successfully uncovered a potential violation
in hBFT and detected an injected bug in the hBFT
implementation. However, detecting the known vi-
olation of hBFT required a controlled environment,
highlighting areas where ByzzFuzz could be im-
proved. The findings show that ByzzFuzz is ef-
fective at identifying bugs in hBFT, while also sug-
gesting the need for improvement to enhance its ro-
bustness and adaptability.

1 Introduction
Byzantine Fault Tolerance provides resilience against some

Byzantine (malicious) nodes, where a system is Byzantine
Fault Tolerant if it has an answer to the Byzantine Gener-
als Problem [1]. BFT aims to ensure reliability and security
in distributed systems such as blockchains or cloud comput-
ing. The correctness of these systems relies on BFT because
if there are bugs in the BFT protocol that the system uses,
a malicious party could exploit it, and cause system failures,
misbehaviour or even put themselves in an advantageous situ-
ation (e.g. fraudulently transferring cryptocurrencies to them-
selves).

Testing is crucial to ensure the correctness and security
of BFT algorithms which previously have been done mostly
manually. The bugs, in other words, violations, are usually
found years after the protocols are published and put into pro-
duction. This is due to the lack of sufficient testing methods.
For example, a liveness violation [2] was found in 2021 in the
read-only optimisation of PBFT [3], more than 20 years after
its introduction.

Recent advancements in automated testing for BFT proto-
cols have introduced algorithms like Twins [4], Tyr [5] and
ByzzFuzz [6], all of which employ different strategies for
identifying potential violations. Twins uses multiple mali-
cious copies of itself, which to other replicas appear identi-
cal. On the other hand, Tyr uses a so-called Behaviour Di-
vergent Model for constantly generating consensus messages
and making the nodes behave as differently as possible. Both

algorithms demonstrated great results, with Twins being used
in the production environment of DiemBFT[7] and Tyr find-
ing 20 previously unknown bugs in its tested protocols.

Twins and Tyr provide a great advancement in automated
testing for BFT protocols, however, they have only been ap-
plied to a limited number of protocols. Our focus is on Byzz-
Fuzz, a randomised testing algorithm that automatically finds
errors in the implementation of BFT protocols. ByzzFuzz
found multiple bugs in the implementation of PBFT, a po-
tential liveness violation in Tendermint [8] and a previously
unknown bug in Ripple [9]. The success of ByzzFuzz comes
from the round-based small-scope mutation methods which
find bugs that could not be found with other previously used
techniques. Although ByzzFuzz was successful at finding
bugs in PBFT, Tendermint and Ripple, its effectiveness on
protocols beyond remains unexplored.

Another issue in the testing of BFT protocols is the lack
of benchmarking tools. As we can see testing algorithms are
developed for different BFT protocols - Twins for DiemBFT,
ByzzFuzz for Ripple, Tendermint and PBFT - so it is diffi-
cult to compare their bug-finding abilities. Although this pa-
per’s main goal is to evaluate the effectiveness of ByzzFuzz
in finding bugs in the hBFT [10] protocol, it will also con-
tribute to developing a benchmarking tool. This tool is called
ByzzBench, and it already has an implementation of PBFT
and Ripple as well as the ByzzFuzz and baseline testing al-
gorithms. ByzzBench can be extended to adapt more testing
algorithms, e.g. Tyr, and additional BFT protocols. The goal
of ByzzBench is to serve as a benchmark where different test-
ing algorithms can be evaluated on the same BFT protocols,
and where protocol designers can implement their algorithms
and test them with these state-of-the-art testing methods.

hBFT is a speculative protocol, which makes testing it par-
ticularly important due to its unique behaviour. Unlike in tra-
ditional protocols, in hBFT, replicas may diverge while exe-
cuting requests and send different replies, to speed up execu-
tion and avoid an expensive agreement protocol which would
establish order. ByzzFuzz was not tested on speculative pro-
tocols previously, so it is even more crucial to test hBFT.

ByzzFuzz provides a state-of-the-art method for testing
BFT protocols. To further develop ByzzFuzz and evaluate
its performance, additional testing needs to be carried out on
more BFT algorithms. Hence, the following paper will focus
on testing ByzzFuzz on the hBFT protocol and answer the
following question: RQ: To what extent is ByzzFuzz able
to evaluate the correctness and safety of hBFT?. To help
answer the main question, the paper will also answer the fol-
lowing sub-questions:

• RQ1: Can ByzzFuzz find any bugs in the implementa-
tion of the hBFT protocol?

• RQ2: How does the bug detection performance of Byz-
zFuzz compare to a baseline testing method that arbitrar-
ily injects network and process faults?

• RQ3: How do small-scope and any-scope message mu-
tations of ByzzFuzz compare in their performance of
bug detection for hBFT?

1



2 Related work

The testing of distributed systems has been studied exten-
sively. Previous state-of-the-art work, Jepsen [11], can auto-
matically test distributed systems, and provide great results
with its randomised testing method. Despite the great results,
Jepsen is a non-Byzantine testing algorithm. Other works,
like Netrix [12] and Zermia [13], implement frameworks for
testing Byzantine behaviour. Although they are not automatic
testing algorithms, they show the importance of testing pro-
tocols under unsupervised circumstances.

Automatic testing of BFT protocols is still in its early
stages, however, recent works have demonstrated some
promising results. Some of the related contributions to our
work are Twins and Tyr.

Twins [4], an automated unit test generator, which creates
multiple, emulating malicious instances of a process with the
same identity, - ”twins” - with the same credentials as the nor-
mal node. The Twins testing algorithm is designed to test for
conflicts in DiemBFT [7]. Using systematic fault injection,
Twins can detect three types of faulty behaviours: equivoca-
tion, double voting, and losing the internal state. In practice,
however, there is a broader range of faults, such as inject-
ing the sequence number of a request with a future value that
ByzzFuzz can evaluate.

Tyr [5] uses a behaviour-divergent model that constantly
analyses how replicas behave when receiving messages com-
pared to each other. Suppose a replica behaves differently to a
specific message. In that case, the algorithm keeps that mes-
sage in a ”message pool”, from which the algorithm chooses
messages, and will more likely choose this message again.
Tyr mutates the messages structurally, like ByzzFuzz, how-
ever, it only uses any-scope (arbitrary) message mutations.
Tyr uses four oracle detectors to check the safety, liveness,
integrity and fairness of the protocols. The latter is unique for
Tyr as there are no currently known automatic testing algo-
rithms that test for Fairness consensus property. Tyr covers
297.1% more branches than Twins and found 20 previously
unknown bugs in its tested protocols.

Another recent work, BFTDiagnosis [14], focuses on auto-
mated performance testing. BFTDiagnosis is an automatic
testing algorithm for BFT protocols, however, in contrast
to the previously mentioned algorithms, BFTDiagnosis tests
the performance of the protocols under Byzantine behaviour.
They identified that most of the evaluation of BFT proto-
cols focuses on how fast the protocols are in ideal scenar-
ios, and thus they provide an evaluation under non-ideal cir-
cumstances. BFTDiagnosis executes malicious behaviour by
implementing different modes - honest and dishonest mode,
similar to Tyr - and different Byzantine behaviours (e.g. du-
plicate, delay). The message mutations are done structurally
by mutating the field of the messages. BFTDiagnosis can be
an important tool to further evaluate BFT protocols, and see
how they perform under malicious behaviour. BFTDiagnosis
is similar to ByzzBench as both of these tools give a frame-
work for evaluating either the correctness or the performance
of BFT protocols under non-ideal (Byzantine) circumstances.

3 Testing hBFT in ByzzBench
Before conducting any testing on hBFT, the protocol itself

needs the be implemented within the ByzzBench framework.
There are no current production implementations of hBFT,
so the implementation will be based on the hBFT paper [10].
For ByzzFuzz to be able to mutate the messages, the possible
mutations will also need to be implemented for hBFT. The
mutations will be explained in Section 4.2.

3.1 ByzzFuzz
ByzzFuzz uses round-based, structure-aware, small-scope

mutations. Round-based means that networks and process
faults will be applied in a round manner where even in case
of retransmission of a message, the same fault will be applied
to the same message. In normal cases, the fault would only
be applied to single messages which would mean that the re-
transmission would be able to get around the fault by deliv-
ering the correct message the second time. Although this can
be efficient, hBFT does not use many retransmissions. The
only case is when the client does not receive enough replies
and resends the requests.

Structure-aware refers to the mutation of messages, where
the structure of the message will stay the same, but the fields
of the message will be mutated. These mutations can be either
small-scope or any-scope. We explain the possible mutations
for hBFT in Section 4.2.

Small-scope mutations are structure-aware mutations,
where the fields of the messages are only changed by a small
value. We argue that a small change in the message is more
likely to be in the range of acceptable values than changing
them arbitrarily. For example, the view number is only incre-
mented or decremented by one, or a single request is removed
or added to the speculative history. In the case of digest mu-
tations, the object which the digest is created from is mutated
instead of changing the digest by a random value (although in
the case of proper digest/hash, a single change in the original
message should give a completely different value, similarly
to a random change).

Our implementation of ByzzFuzz checks Integrity and
Agreement based on the correctness properties of BFT con-
sensus protocols given in Cachin et al. [15]. Agreement
checks whether two different replicas have committed dif-
ferent requests at the same sequence number, while Integrity
checks whether a single replica has committed the same re-
quest at different sequence numbers. Our implementation of
ByzzFuzz can also detect liveness violations, which checks
whether there are any pending messages (including timeouts)
that can be processed. In BFT systems liveness means that
clients eventually receive replies to their requests, so if there
are no more pending messages, the replies will never arrive.

3.2 hBFT
hBFT is a leader-based protocol that uses speculation. This

means the replicas can be temporarily out of order, but a sub-
protocol solves these inconsistencies. In hBFT, it is the three-
phase checkpoint sub-protocol. hBFT achieves high perfor-
mance by having only two stages in the agreement protocol
which works the same way for both fault-free and normal

2



cases. hBFT only requires 3f + 1 replicas for execution, how-
ever, this violates the lower bound on the number of replicas
needed for a two-stage agreement protocol, set by FaB Paxos
[16][17]. Due to this, hBFT breaks safety and has a known
violation, more of this in Section 5.

3.3 Methodology
RQ1 will be answered by testing the implemented hBFT

protocol through ByzzFuzz using different test parameters.
hBFT is known to have a safety vulnerability [17], which
should be detected by ByzzFuzz if the algorithm is imple-
mented correctly. If other bugs are found then we need to
analyse whether the protocol actually has those violations or
if it is just the implementation that is faulty. In either case,
it would prove that ByzzFuzz can find bugs, as a defective
implementation will most likely have some violations. How-
ever, there is the possibility that the protocol has no other
violations, and we should not be able to find any other bugs.
In this case, bugs will be injected into the protocol intention-
ally to evaluate the performance of the different testing algo-
rithms.

RQ2 will be answered by running multiple scenarios in
ByzzBench with the implemented baseline testing algorithm.
After this, the results will be compared to ByzzFuzz. The
implementation of the baseline algorithm will allow for the
injection of network or process faults arbitrarily. It does not
have a restriction to round-based small-scope mutations and
we will simulate a Byzantine fault by random any-scope mu-
tations.

RQ3 can be answered by testing the implementation of
hBFT by using small-scope mutations (mutating the content
of the messages by a small difference) and any-scope muta-
tions (mutating the messages with an arbitrary value). Then
the results will be collected, and the difference in the number
of violations between the two mutations will be analysed.

4 hBFT in ByzzBench
4.1 hBFT implementation

As there are no existing implementations of hBFT, the cur-
rent implementation in ByzzBench is purely based on our un-
derstanding of the paper. Although the paper explains the
execution of the algorithm quite well, there are some parts
where the paper is vague and we needed to speculate to be
able to code certain parts. As hBFT was introduced after
Zyzzyva [18], another speculative protocol, we implemented
certain parts based on the Zyzzyva paper where hBFT was
too vague (e.g. steps in NEW-VIEW).

The following part is an overview of the implementation
and a shorter explanation of where the implementation might
differ from the paper due to speculation. For a deeper ex-
planation refer to the paper on hBFT [10]. The notations are
described in Figure 2.

The protocol
The protocol consists of 4 major components: agreement,

checkpoint, view change, and client suspicion. The agree-
ment takes 2 stages, which can be seen in Figure 1. We as-
sume a correct client at all times, so client suspicion will be

skipped. Some of the deviations from the paper are in the
commit message, the checkpoint and the view change sub-
protocol.

Figure 1: hBFT two-stage agreement protocol

Agreement

Figure 2: Labels given to fields in messages.

In hBFT the agreement sub-protocol consists of two
phases, where the primary is responsible for order-
ing the request. The primary given a REQUEST,
<REQUEST,o,t,c>, from the client, sends a PREPARE
message, <PREPARE,v,n,D(m),m,c>, to the other replicas.
In our implementation, the primary also sends a COMMIT
message, <COMMIT,v,n,δ,m,D(m),c>, an alternative would
be to consider the PREPARE message from the primary as
a COMMIT message. Additionally, the primary also sends
a REPLY <REPLY,v,t,n,δ,c>, to the client. If the replicas
accept the PREPARE message, they also send a REPLY to
the client, a COMMIT message to other replicas and they
put the request in the speculatively executed requests1. The
replicas also send a COMMIT and REPLY if they receive
f + 1 matching COMMIT messages. Upon receiving 2f
+ 1 (including own) COMMIT messages the replica adds
the request to the speculative history (commit log) and
considers the request committed. If the replica receives f + 1

1The speculatively executed requests contain every request that
had been executed, even if it is not committed yet.

3



COMMITs that differ from the PREPARE that it accepted,
the replica sends a view change message.

Deviation from the hBFT paper: A small change in
our implementation is regarding the acceptance of COMMIT
messages. The paper states that COMMIT messages are ac-
cepted if the sequence number is either one higher or equal
to the replica’s sequence number, depending on whether the
replica accepted a PREPARE for that sequence number or
not. However, this can create a scenario in which requests
will not be committed, or the execution will slow down
tremendously. Given two clients, all replicas correct, and a re-
quest from each client, the primary would PREPARE both re-
quests with sequence numbers 1 and 2 respectively. The repli-
cas then would accept both PREPARE messages and send
COMMIT messages. The COMMITS for the first request
will never be accepted as they are less than the current se-
quence number of the replica. Another way to reach a similar
problem is if a replica misses both PREPAREs and only re-
ceives the COMMITs with sequence number 2, those will not
get accepted as they are too ahead of the replica’s sequence
number.

Checkpoint
The checkpoint sub-protocol consists of 3 steps, which

have been implemented according to the paper. The primary
is responsible for triggering the checkpoint sub-protocol
by sending a CHECKPOINT-I message, <CHECKPOINT-
I,n,D(M),M>. If the sequence number or the speculative
execution history does not match, the replica sends a
VIEW-CHANGE message. Our implementation might differ
from the paper as the paper states - ”seq is the sequence
number of last executed operation” -, however, we use the
greatest sequence number in the speculative history. It
doesn’t necessarily make sense to use the latest executed
operation as the main idea behind speculation is that replicas
might be out of order, thus executing requests differently.
After the replica receives a correct CHECKPOINT-I it
broadcasts a CHECKPOINT-II message, <CHECKPOINT-
II,n,D(M),M>, to other replicas. Upon receiving 2f + 1
(including own) matching CHECKPOINT-II messages, the
replica creates a CER1(M,v). The replica then sends a
CHECKPOINT-III message and after receiving 2f + 1 match-
ing, it creates CER2(M,v), at which point the checkpoint
is stabilised and previous messages with smaller sequence
numbers are discarded.

Possible deviation from the hBFT paper: During the
checkpoint sub-protocol, if a replica is missing some requests
in its speculative history, due to missing some messages, it
needs to adjust to be able to progress ahead. This is not stated
in the checkpoint sub-protocol description, however, later in
the paper, at 4.4 (2), the following is stated - ”correct repli-
cas learn the result and remain consistent”. This suggests that
upon receiving 2f + 1 CHECKPOINT-II or CHECKPOINT-
III messages, the replica is able to copy the speculative his-
tory from the CHECKPOINT messages. This is handled by a
function call to adjustHistory() for which the pseudocode can
be seen at Algorithm 1.

Algorithm 1 adjustHistory

M ▷ SpeculativeHistory - SortedMap(n, request)
for all n, req in M do

if n not in History then
History.put(n, req)
SpecReq.put(n, req) ▷ Also add to speculatively

executed requests

View Change
A view change is responsible for replacing a faulty pri-

mary. A replica will send a VIEW-CHANGE message,
<VIEW-CHANGE,v+1,P,Q,R>, in any of the following
cases: timeout expires for a request; receives f + 1 PANIC
messages and a checkpoint is not started within a given time;
does not receive a checkpoint after executing a given num-
ber of request (primary should trigger the checkpoint after
the same threshold); or receives f + 1 view change messages
from other replicas. If a replica sends a view change, it stops
receiving any messages, other than new-view and checkpoint
messages.

Possible deviation from the hBFT paper: The paper
doesn’t mention any timeouts regarding the view changes,
however, the replicas need to be able to move to a higher view
if the next primary is also faulty (e.g. in the case of 7 repli-
cas with 2 Byzantine nodes). Based on this reasoning we use
the same technique that PBFT uses. When the replica sends
a view change, it starts a timer. If the timer expires, then,
the replica sends another view change message with a higher
view, <VIEW-CHANGE,v+2,P,Q,R>, and starts a new timer
with double the timeout as the previous one (1s, 2s, 4s...).

Possible deviation from the hBFT paper: The new pri-
mary, upon receiving 2f + 1 view change messages (includ-
ing own), will construct a NEW-VIEW message, <NEW-
VIEW,v,V,X,M>, and broadcast it to all replicas. The pa-
per mentions that a checkpoint protocol is immediately called
with M after moving to a new view, however, this is not
enough information for the implementation. First of all the M
cannot be used as the speculative history for the checkpoint,
as replicas may have differing commit-logs (missing some
requests), so it will not be accepted in that case. Second, the
replicas that have received incorrect requests need to adjust
and adapt to the new view requests, or checkpoints. Thus,
in our implementation, we do a similar step as in Zyzzyva
when receiving a new view message. In short, the replica
checks whether the new view message is correct by doing the
same calculation as the primary did to construct the new view.
After this, the replica executes the requests that the primary
proposed in the NEW-VIEW, which can contain possible null
requests in which case nothing happens. The idea is that if a
request is included in the new view message, then it has been
executed by at least 1 correct replica so it can be committed2.
Lastly, as the new view needs to be succeeded by a check-
point, we treat the new view as a CHECKPOINT-I message.

2If the new primary is faulty, it cannot make a random request
committed as at least f + 1 view changes in the view change proofs,
which are signed, need to include that request.

4



4.2 Structure-aware message mutations for hBFT

Figure 3: Structure-aware mutations for hBFT.

An overview of the structure-aware mutations can be seen
in Figure 3. The variables are the same as in Figure 2. The
mutations are similar where the variables are the same. v and
n can be either incremented or decremented. In the check-
point messages the mutations for M include: removing the
last or first request, and incrementing or decrementing the se-
quence number of the last or first request. In each mutation
to the speculative history, the mutation must be reflected in
the digest as well so it needs to be recalculated. For the view
change messages, mutations can be applied to v, P, Q, R. P,
Q, R can be mutated the following way: remove the last or
first request, increment or decrement the sequence number of
the last or first request, replace the last or first request with
another request but keep the sequence number. In the new
view message the view changes V can be mutated the fol-
lowing way: remove a view change message, change a view
change message to duplicate. The checkpoint X can be mu-
tated similarly as in the view change mutations: increment
or decrement the checkpoint’s sequence number, remove the
first or last request. Lastly, the speculative history of the set of
requests proposed, M, can be mutated the following way: in-
crement or decrement the sequence number of the last or first
request, remove the last or first request, add a null request at
the end, change the last of first request to null.

5 Manual analysis of the protocol
Before testing the protocol with automated testing meth-

ods, we analysed the protocol manually and found the fol-
lowing:

5.1 Known safety violation
hBFT has a known safety violation [17]. This is achieved

with a single byzantine primary which equivocates in the
PREPARE phase and in its VIEW-CHANGE message. As

a result, replicas commit different requests at the same se-
quence number, within a single view change. The violation is
illustrated in Figure 4. We were able to reproduce this viola-
tion manually in ByzzBench.

Figure 4: hBFT known violation

Potential violation due to the number of replicas
The number of replicas that hBFT will be tested with is 4.

Based on the paper, hBFT should be able to tolerate f Byzan-
tine nodes if the number of replicas is n ≥ 3f + 1. This would
mean 5 replicas could tolerate 1 Byzantine node, however,
in Figure 5, we show that hBFT violates safety if n ̸= 3f +
1. A single primary can equivocate and send a PREPARE
with request m to f + 1 replicas and with request m’ to f +
1 other replicas. If we have two partitions: {R1, R2} and
{R3, R4} that can only communicate with each other, then it
would lead to replicas committing 2 different requests at the
same sequence number. This violation, also suggests if n is
an arbitrarily large number, a single faulty leader can equivo-
cate by having half of the replicas decide m and the other half
decide m’.

Figure 5: Safety violation with 5 replicas where the primary is
Byzantine and equivocates. The COMMIT messages with dashed
lines can be dropped (or arrive out of order).

5



6 Automated testing of hBFT
6.1 Experimental setup

The Checkpoint sub-protocol is important for hBFT as it is
responsible for contention resolution. As mentioned before,
the Checkpoint protocol is triggered when 2f + 1 PANIC mes-
sages are received or when a certain number of requests are
executed. This certain number is generally set around 100-
150, as a more frequent Checkpoint trigger would slow down
the execution. This would also mean that during testing we
would need to execute a lot of messages in order to reach this
100 threshold. To speed up the testing process, and to prop-
erly evaluate the protocol’s correctness through the Check-
point sub-protocol, the Checkpoint is triggered when the se-
quence number is divisible by 2 (i.e. is triggered after every
2 requests are completed). This would technically slow down
the execution of the protocol, however, we are evaluating the
correctness of the protocol and not its speed.

We tested two variants of the implementation. V1 - the
normal execution of the protocol. V2 - with an implementa-
tion bug seeded into the checkpoint message processing. The
bug allows checkpoint messages with different digests to be
accepted, allowing for a mutated checkpoint to cause a safety
violation.

ByzzBench configurations
All different algorithms are run 5000 times, where each

run is called a scenario. Each scenario has to execute 500
events before terminating, unless a violation occurs, which
terminates the scenario immediately. Events are incremented
when a message or a timeout is delivered/executed. Each sce-
nario uses 2 clients and 4 replicas. The tests were executed in
”sync” mode, which means that instead of randomly picking
a message, we chose a random replica and the oldest mes-
sage in its message log. Additional tests were also executed
in ”async” mode, which randomly picks a message.

Testing
We started our tests with the Random scheduler, responsi-

ble for randomly injecting network and process faults into the
scenarios. During each scenario, the scheduled messages are
executed randomly, and each message can either be delivered,
mutated, or dropped based on two parameters. dropMes-
sageWeight is responsible for the probability of dropping a
message during each step. The mutateMessageWeight is re-
sponsible for the probability of injecting a random mutation
(any-scope) into the message during each step. The higher
the weight, the more likely these events will occur. We ran
the protocol with the Random scheduler by combining the
dropMessageWeight and mutateMessageWeight. These were
set in the range of [0, 50], as seen in Figure 7.

The ByzzFuzz algorithm has 3 parameters. The num-
RoundsWithFaults represents the number of rounds, N, over
which the faults will be distributed. numRoundsWithPro-
cessFaults represents the number of Byzantine faults over N
rounds. Each process fault simulates a byzantine process fault
when delivering messages that contain a round number. If the
message matches the sender, receiver and round number of
the fault, a random mutation is applied to the message. Simi-
larly, the numRoundsWithNetworkFaults represents the num-

ber of network faults (message drop) over N rounds. Each
network fault simulates a network partition when delivering
messages that contain a round number. If the round number
of the message matches the round number of the fault, and the
sender and receiver of the message are not in the same parti-
tion, the message will be dropped. These faults are injected
when the scenarios are initialised in contrast to the Random
scheduler where at each message a decision is made whether
it will be delivered, mutated or dropped. As we were more
interested in the execution of the protocol under Byzantine
behaviour, we ran the ByzzFuzz algorithm with up to 2 num-
ber of rounds with network and process faults. The process
faults were never set to 0. The faults were injected and dis-
tributed over 8 rounds (numRoundsWithFaults).

6.2 Results
Potential agreement violation due to hBFT view change

Our tests found a new bug, which leads to an Agreement
violation. This was found with all testing methods. The vi-
olation comes from the fact that when a replica sends a view
change and changes to a disgruntled state, the replica can only
accept checkpoint or new view messages. When the replica
gets out of the disgruntled state due to correct checkpoint
messages, it can continue accepting requests. In this scenario,
there is a possibility that the replica commits a request, and a
view change happens, where the new primary will not include
this committed request in the new view, as it will consider
the replicas’ old VIEW-CHANGE messages which didn’t in-
clude this request. This can also happen if the new primary
sends the new view, but the replica receives the messages in
this order: (1) checkpoint messages to get out of disgruntled
state, (2) commit message to commit a request (e.g. R5), (3)
new view message. If the other replicas receive the new view
before receiving the commit from this replica, they will not
commit the request (R5). Overview in Figure 6.

Figure 6: Overview of the violation that is achieved with a check-
point completed before receiving a new view.

Random scheduler
The random scheduler found one agreement violation at

multiple different configurations, which can be seen in Fig-
ure 7. The bugs found in version V1 of the protocol is the
violation mentioned in Figure 6. In version V2 of the proto-
col, the injected bug was found as seen in Figure 8.

6



Figure 7: Random scheduler results.

Figure 8: Random scheduler results for protocol version V2.

ByzzFuzz algorithm

Figure 9: ByzzFuzz results with small-scope and any-scope muta-
tions for protocol version V1. N is the number of rounds with net-
work faults, and P is the number of rounds with process faults.

Results for V1: As we can see in Figure 9, ByzzFuzz was
able to find a number of agreement violations with different
input parameters. ByzzFuzz just like the Random scheduler
was not able to find any liveness violation, which was ex-
pected as hBFT has a lot of different timeouts, which trigger
in different scenarios. However, it is important to mention
that, the timeout for consecutively increasing view changes
was not described in the paper, without which, there might be
scenarios where we would get a liveness violation.

The violations, similarly to the Random scheduler, refer to
the violation mentioned in Figure 6.

Results for V2: As we can see in Figure 10, ByzzFuzz
was able to find a great number of agreement violations with
different input parameters. Due to the small-scope mutations,
ByzzFuzz was much more effective at exploiting the seeded
bug in the implementation, than both the Random scheduler
and the any-scope mutations. This was achieved by mutations
to the CHECKPOINT messages which change the digest of
the message. This made the checkpoint to be accepted even if
it did not match other received checkpoints. The requests in
the checkpoint were then executed which led to an agreement
violation either immediately or a few rounds later.

Some any-scope and some small-scope mutations led to the
same previously found violation, mentioned in Figure 6.

Figure 10: ByzzFuzz results with small-scope and any-scope mu-
tations for protocol version V2. N is the number of rounds with
network faults, and P is the number of rounds with process faults.

Twins
In addition to ByzzFuzz and baseline methods, we tested

hBFT through Twins. We ran the schedule with 1 replica hav-
ing a ”twin”, so numReplicas was set to 1 and numTwinsPer-
Replica to 2. The results show that Twins were able to find 2
buggy scenarios, and after analysing them, it shows that they
are the same violations as previously found with the other
methods, Figure 6.

Additional tests
We decided to additionally test the protocol with the check-

points set to trigger after every 100 requests (or triggered by
PANIC or view change). The tests were carried out in the
same manner, with the other configurations staying the same
but only on version V1 of the protocol. The Random sched-
uler and Twins were not able to find any violations in the run
scenarios. ByzzFuzz found a few buggy scenarios but the vi-
olations were again due to the same checkpoint violation as
in previous runs.

Figure 11: ByzzFuzz results for reproducing the known violation
with a forced environment.

We additionally ran tests by forcing the reproduction of
the known violation, Figure 11, which meant that only the
mutations necessary for the reproduction were implemented.
The number of scenarios was set to 20,000 and the number of
messages to 50. The violation was found with the expected
parameters: in sync mode it was found with N=1 and P=2,
while in async mode with N=[0,1] and P=2.

7 Responsible Research
Ethical considerations

Considering the ethical and societal impact of research, in-
tegrity and reproducibility are essential for any scientific pa-
per. This research focuses on testing hBFT and ByzzFuzz
under a simulated environment, and no real-world production
implementation has been used. This ensures that no harm is
done to any operational systems.

7



Reproducibility
Regarding the reproducibility of the experiments, the

ByzzBench framework was used to implement the testing
protocols and the BFT algorithm(s), and conduct any testing.
The paper discusses the configurations which the tests were
run with. Results are reported truthfully and accurately, how-
ever, reproducing the results might deviate from run to run
as a random factor needs to be considered when running the
algorithms. The configuration and results are clearly stated in
the ”Experimental setup” and ”Results” sub-sections.

The implementation of hBFT stays true to the paper as
much as possible, and any deviation from the paper is high-
lighted and explained. ByzzBench is currently still under de-
velopment and will become open source including the test-
ing algorithms and BFT protocols implemented in the frame-
work.

Limitations
Regarding the limitations, the paper introduced an imple-

mentation of the hBFT protocol, which in certain aspects de-
viates from its original description. Considering this, the po-
tential violations highlighted in the paper may not affect the
original protocol itself. Additionally, in ByzzBench we eval-
uate the effectiveness of ByzzFuzz based on our implementa-
tion, which may also differ from the theoretical design of the
algorithm.

Responsible use
In general, conducting a paper where vulnerabilities of a

system can be uncovered, might be a concern, however, our
results show only a potential violation in our implementation
of the hBFT protocol. Our findings do not try to exploit these
vulnerabilities but rather improve the reliability of BFT pro-
tocols and advance protocol testing. Furthermore, hBFT is
not used in a production environment as it breaks safety and is
slower than other current protocols used in production. Given
further testing on protocols used in production, responsible
disclosure should be taken into account when dealing with
newly found bugs, but that falls out of the scope of this re-
search.

8 Discussion of Experimental Results
This section provides answers to sub-questions and a

thorough reflection of the paper with the aim of answering
the primary research question. We answer the questions by
summarising and giving a possible explanation of the results
of our evaluation of ByzzFuzz and its performance in testing
the hBFT protocol:

RQ1: Can ByzzFuzz find any bugs in the implementa-
tion of the hBFT protocol? ByzzFuzz managed to uncover a
new potential violation caused by inconsistencies during the
view changes, as well as the seeded bug in version V2 of
the protocol. Surprisingly, however, ByzzFuzz was not able
to find the previously known violation in the normal environ-
ment. The reason might be that during normal execution there
is a great number of possible mutations and configurations to
choose from. In theory, it is possible for ByzzFuzz to find the

violation as it only requires 2 mutations in 2 different rounds,
thus, given a higher number of runs, there is an almost certain
possibility that the bug would be found. This is further sup-
ported by the fact that the violation was found by ByzzFuzz
in a controlled (forced) environment.

RQ2: How does the bug detection performance of Byzz-
Fuzz compare to a baseline testing method that arbitrarily
injects network and process faults? ByzzFuzz has provided
similar results as baseline testing methods in the normal V1
version of the protocol, as both managed to find the new po-
tential violation. This is due to the fact that the new potential
violation only requires an unreliable (asynchronous) network,
which can be reached by dropping or delivering messages out
of order. In the seeded version V2 of the protocol, ByzzFuzz
found the violation with a much higher likelihood due to its
small-scope mutations.

RQ3: How do small-scope and any-scope message
mutations of ByzzFuzz compare in their performance of
bug detection for hBFT? Both small-scope and any-scope
mutations were able to recognise the same potential violation
in the normal version, V1, of the protocol. In version
V2, the seeded bug was mostly exposed by small-scope
mutations, and although it can be detected by any-scope
mutations, it has a lower likelihood. That is, provided that
any-scope mutations trigger the right message mutation (e.g.
decrementing/incrementing a sequence number by a correct
amount). Additionally, due to similar aforementioned rea-
sons, in the forced execution, only the small-scope mutations
managed to find the known safety violation, which further
proves the strength of small-scope mutations in exposing
critical implementation bugs.

Regarding previous work, ByzzFuzz was compared to
Twins. The results show that ByzzFuzz was more effective
at finding both the known violation - in a controlled envi-
ronment - and the seeded bug in version V2 of the protocol.
The reason is that in contrast to ByzzFuzz, Twins do not use
structure-aware mutations which leads to it missing the re-
quired steps in exploiting the violations.

We believe ByzzFuzz and ByzzBench can be used for test-
ing in a production environment. ByzzBench is an adequate
framework for implementing and testing different testing al-
gorithms on multiple BFT protocols. Based on this paper and
previous work on ByzzFuzz, it is clear that it has the ability to
find bugs in BFT protocols that normal, baseline testing meth-
ods cannot. However, based on the results, further refinement
of the algorithm is necessary to provide better coverage of
protocols. Potentially, it could be combined with other algo-
rithms, such as Twins or Tyr, but that is for future research.

9 Conclusions and Future Work
Conclusion

This paper presents an evaluation of ByzzFuzz on hBFT,
a speculative BFT protocol, alongside our implementation of
both ByzzFuzz and hBFT.

ByzzFuzz is effective at discovering fault-tolerance bugs in
the implementation of hBFT. It was also successful at discov-
ering a seeded bug in a modified version of hBFT, which was

8



found less likely with baseline methods and not at all with
the Twins algorithm. This shows ByzzFuzz’s strengths of its
round-based, small-scope, structure-aware mutations.

Compared to baseline testing, ByzzFuzz has proven more
effective at finding violations. In the normal version of the
protocol, both baseline and ByzzFuzz testing managed to
find the new potential violation. When testing with the bug-
injected version of hBFT, ByzzFuzz was able to discover the
injected bug with a much higher likelihood.

Comparing the small-scope and any-scope mutations
showed that small-scope mutations were more effective at
finding violations. Given the bug-injected version of hBFT,
the small-scope mutations discovered the bug with a much
higher probability. Additionally, in a controlled environment,
only the small-scope mutations were able to find the known
violation.

Moreover, through manual analysis, we identified a poten-
tial violation related to hBFT’s assumption of the number of
replicas required for Byzantine Fault Tolerance. This further
extends our understanding of hBFT’s limitations and high-
lights areas for protocol improvement.

This research also contributes towards the aim of creating
a benchmarking tool for evaluating automatic testing algo-
rithms by developing ByzzBench.

To conclude, this research highlights the effectiveness of
ByzzFuzz as a structured testing tool for uncovering subtle
vulnerabilities in BFT protocols. By combining targeted fault
injection and precise mutation strategies, ByzzFuzz offers a
reliable approach to BFT protocol evaluation.

Future work
So far ByzzFuzz has been tested on two production imple-

mentations, namely Tendermint and Ripple, where it found
multiple violations. Although ByzzFuzz was successful in
finding these bugs, it is important to add further methods for
testing, as it had trouble with finding the violation in hBFT.

ByzzFuzz can be further improved within our benchmark
suite, ByzzBench. For example, the current implementation
of ByzzFuzz in ByzzBench does not check for ”bounded live-
ness” - or ”bounded termination” - which considers whether a
consensus is reached within a bounded amount of time. With
such further improvements, we could improve the testing al-
gorithm, and provide coverage for more violations.

A potential future work includes combining the strengths
of Tyr and ByzzFuzz. ByzzFuzz’s strength lies in its round-
based small-scope mutations, while Tyr profits from its Be-
haviour Divergent Model which analyses the behaviour of
nodes. Although this would not improve ByzzFuzz itself as
it would create a new testing algorithm, it would have the po-
tential to achieve better results than the two separately.

References
[1] L. Lamport, R. Shostak, and M. Pease, “The byzantine

generals problem,” ACM Trans. Program. Lang. Syst.,
vol. 4, no. 3, p. 382–401, 1982.

[2] C. Berger, H. P. Reiser, and A. Bessani, “Making reads
in bft state machine replication fast, linearizable, and
live,” 2021.

[3] M. Castro and B. Liskov, “Practical byzantine fault tol-
erance,” in Proceedings of the Third Symposium on Op-
erating Systems Design and Implementation, OSDI ’99,
(USA), p. 173–186, USENIX Association, 1999.

[4] S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li,
A. Ching, and D. Malkhi, “Twins: Bft systems made
robust,” 2022.

[5] Y. Chen, F. Ma, Y. Zhou, Y. Jiang, T. Chen, and J. Sun,
“Tyr: Finding consensus failure bugs in blockchain sys-
tem with behaviour divergent model,” in 2023 IEEE
Symposium on Security and Privacy (SP), pp. 2517–
2532, 2023.

[6] L. N. Winter, F. Buse, D. de Graaf, K. von Gleis-
senthall, and B. Kulahcioglu Ozkan, “Randomized test-
ing of byzantine fault tolerant algorithms,” vol. 7, Apr.
2023.

[7] T. D. Team, “Diembft v4: State machine replication in
the diem blockchain,” 2021.

[8] J. Kwon, “Tendermint : Consensus without mining,”
2014.

[9] D. Schwartz, N. Youngs, and A. Britto, “The ripple pro-
tocol consensus algorithm,” 2014.

[10] S. Duan, S. Peisert, and K. N. Levitt, “hBFT: Specu-
lative Byzantine Fault Tolerance with Minimum Cost,”
IEEE Transactions on Dependable and Secure Comput-
ing, vol. 12, no. 1, pp. 58–70, 2015.

[11] K. Kingsbury, “Jepsen,” 2022.
[12] C. Dragoi, C. Enea, S. Nagendra, and M. Srivas, “A do-

main specific language for testing consensus implemen-
tations,” 2023.

[13] J. Soares, R. Fernandez, M. Silva, T. Freitas, and
R. Martins, “Zermia - a fault injector framework for
testing byzantine fault tolerant protocols,” in Network
and System Security (M. Yang, C. Chen, and Y. Liu,
eds.), (Cham), pp. 38–60, Springer International Pub-
lishing, 2021.

[14] J. Wang, B. Zhang, K. Wang, Y. Wang, and W. Han,
“Bftdiagnosis: An automated security testing frame-
work with malicious behavior injection for bft proto-
cols,” Computer Networks, vol. 249, p. 110404, 2024.

[15] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduc-
tion to Reliable and Secure Distributed Programming.
Springer Publishing Company, Incorporated, 2nd ed.,
2011.

[16] J.-P. Martin and L. Alvisi, “Fast byzantine consensus,”
IEEE Transactions on Dependable and Secure Comput-
ing, vol. 3, no. 3, pp. 202–215, 2006.

[17] N. Shrestha and M. Kumar, “Revisiting hbft: Spec-
ulative byzantine fault tolerance with minimum cost,”
CoRR, vol. abs/1902.08505, 2019.

[18] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong, “Zyzzyva: Speculative byzantine fault toler-
ance,” ACM Trans. Comput. Syst., vol. 27, no. 4, 2010.

9



A Almost-MAC agreement
In the hBFT paper, the Almost-MAC agreement serves as a

protection against a faulty primary removing a correct client.
In the normal execution of the protocol, a faulty primary can
trigger a checkpoint through PANIC messages, which would
get sent by the client in case it detects the primary to be faulty
(gets more than f but less than 2f + 1 replies). If the pri-
mary is faulty and doesn’t do anything else, it will be replaced
through a view change that takes place during the checkpoint
sub-protocol. However, if the primary colludes and makes
the request committed in the checkpoint sub-protocol (sends
a reply to the client and includes the request in the CHECK-
POINT message), the execution will continue and the replicas
that called the PANIC will suspect the client to be faulty. A
possible solution to this is the Almost-MAC agreement which
includes the PREPARE message in the COMMIT messages.
This means that if a single correct replica accepts a well-
formatted PREPARE message, it can make the request exe-
cuted. This of course also increases the amount of crypto-
graphic operations in the agreement protocol as the message
will become bigger, and will generally slow down the execu-
tion.

In our testing environment, we don’t consider faulty clients
to be present, thus using the Almost-MAC agreement just for
the reason of avoiding correct clients being suspected faulty
is unreasonable. Nevertheless, we implemented the Almost-
MAC agreement as an alternative to the normal agreement
protocol. The changes in the Almost-MAC agreement proto-
col are the following:

• PREPARE messages are appended to COMMIT mes-
sages

• If a COMMIT message is accepted by a replica, and the
appended PREPARE is correct, the replica also executes
the request

• If a replica accepted a PREPARE message and receives
a correct COMMIT message but with a conflicting PRE-
PARE3 message it starts a view-change

B Additional test results

Figure 12: ByzzFuzz ”sync” results with checkpoint triggering set
to 100 requests. All violations are the new potential violation found.

C Pseudo codes
3PREPARE messages are signed by the primary, so a faulty

replica could not change the contents of the appended PREPARE
message

Figure 13: ByzzFuzz ”async” results with checkpoint triggering set
to 2 requests. All violations are the new potential violation found.

Figure 14: Random ”async” results with checkpoint triggering set to
2 requests. All violations are the new potential violation found.

Figure 15: Random ”async” results with checkpoint triggering set to
100 requests. All violations are the new potential violation found.

Figure 16: ByzzFuzz results with forcing the reproduction of the
known violation. Each configuration was run 20,000 times in
”sync” mode, and minNumOfEvents was set for 50 as the viola-
tion should happen within only 15 messages. Additionally, only the
required mutations for the violation were implemented.

10



Figure 17: ByzzFuzz results with forcing the reproduction of the
known violation. Each configuration was run 20,000 times in
”async” mode, and minNumOfEvents was set for 50 as the viola-
tion should happen within only 15 messages. Additionally, only the
required mutations for the violation were implemented.

Algorithm 2 Simple overview of Random scheduler decision
making.

timeoutWeight *= #ofTimeouts
deliverMessageWeight *= #ofMessages
deliverClientReqWeight *= #ofReqs
dropMessageWeight *= #ofMessages
mutateMessageWeight *= #ofMessages

weights =
∑

Weights
dieRoll = random(0, weights)

if dieRoll -= timeoutWeight < 0 then
deliverTimeout()

else if dieRoll -= deliverMessageWeight < 0 then
deliverMessage()

else if dieRoll -= deliverClientReqWeight < 0 then
deliverClientReq()

else if dieRoll -= dropMessageWeight < 0 then
dropMessage()

else if dieRoll -= mutateMessageWeight < 0 then
mutateMessage()

11


	Introduction
	Related work
	Testing hBFT in ByzzBench
	ByzzFuzz
	hBFT
	Methodology

	hBFT in ByzzBench
	hBFT implementation
	Structure-aware message mutations for hBFT

	Manual analysis of the protocol
	Known safety violation

	Automated testing of hBFT
	Experimental setup
	ByzzBench configurations

	Results
	Potential agreement violation due to hBFT view change
	Random scheduler
	ByzzFuzz algorithm
	Twins
	Additional tests


	Responsible Research
	Discussion of Experimental Results
	Conclusions and Future Work
	Almost-MAC agreement
	Additional test results
	Pseudo codes

