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Summary

The growing wold population gaining affluence is driving the extraction of raw materials. Resource
availability is finite and concerns about future supply shortages rise. An approach to tackle this problem
is circular economy which entails multiple strategies to reduce the demand of virgin materials. The
implementation of those strategies require knowledge about material stocks and flows in a society.
Material Flow Analysis can provide those insights. This fast developing field brought about MaTrace
models which allow to trace the fate of materials in an open-loop recycling system. Recycling is only one
of multiple circular strategies, thus the purpose of this research is to integrate an elaborate reuse model
into a MaTrace model to build the foundation of a model which considers multiple circular strategies in
sufficient ways.

Two existing models were combined to achieve this: Consumer goods present in the MaTrace model
were redirected into a reuse model and the end of life products of the reuse model were fed back into
the MaTrace model. The impacts of this model extension were investigated by comparing the total
in-use stock when considering one, two, and three consumer products’ use cycles. Furthermore, Monte
Carlo simulations were conducted to gain an understanding of the model behaviour.

The results show that the total in-use stock increases in the peak by 8 % when reuse is considered.
However, the gross stock dynamics do not change significantly in comparison to the original model. The
evaluation of the Monte Carlo simulations revealed that the input which contributes the most uncertainty
to the total in-use stock is the split of the initial material inflow. Furthermore, the results of the Monte
Carlo simulations appear to be strongly connected to the initial input data. On the basis of this research it
can be recommended to further extend MaTrace models to obtain a more comprehensive representation
of a circular economy. Furthermore, MaTrace models using time series data for inflows and model
parameter have to be created, this way MaTrace models can follow the evolution of MFA from static to
dynamic models.
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1
Introduction

Throughout the current century raw material extraction constantly increases. A commonly known driver
is a growing, more affluent world population which rises concerns about future resource availability
(Calvo et al., 2017). Moreover critical raw materials (CRM) as lithium or cobalt are subject to other
drivers. The accelerating energy transition from a fossil fuel based system towards renewable energy
sources requires enormous amounts of CRMs for production and storage. Although, there is currently
no shortage in supply, the demand due to global climate ambition may exceed possible supply volumes
(Pommeret et al., 2022). Additionally, the private use of portable electronics accelerates because of
technological developments as internet of things (IOT) or 5G appliances (Desai, 2020) all adding to the
demand of CRMs.

These mingled construct of demand and supply holds complex implications regarding sustainability.
Looking at the ecological aspect of sustainability one finds that those materials are required to minimize
the carbon emissions of the energy system on the one hand. On the other hand, the mining of some
materials leads to environmental pollution (Sovacool, 2019). Regarding the social component of
sustainability it is apparent that the implications of CRM mining are severe for some materials. Cobalt for
example is mainly mined in the Democratic Republic of Congo (DRC) where insecure mining conditions
lead to reoccurring human rights violations such as child labor (Sovacool, 2019). For those reasons it is
highly relevant for the field of industrial ecology (IE) to study material demand, usage, and supply.

Since the usage of CRMs appears to be unavoidable, losses in production and waste management
have to be minimized and resource efficiency has to be optimised. Resource efficiency is broadly
defined as the value created by a resource input while also considering environmental impacts. The
term resources as it is used in this research covers amongst others raw materials, energy, or water
(Hirschnitz-Garbers et al., 2013). In the context of this thesis resources must be understood as the
length and intensity of material usage in a system.

An elaborate concept on how to increase resource efficiency is circular economy. The concept
entails a model of production and consumption with the target to reduce material waste by moving from
a linear economy (take-make-consume-throw away) towards a circular economy (“Circular economy”,
2015). Multiple strategies can contribute to the transition into a circular economy. The 9R framework
classifies those strategies.

1
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Circular
economy Strategies Description

Smarter
product
use and

manufacture

R0 Refuse
Make product redundant by abandoning its function
or by offering the same function with
a radically different product

R1 Rethink Make a product use more intensive
(e.g. by sharing product)

R2 Reduce
Increase efficiency in product manufacture or use
by consuming Fewer natural resources and
materials

Extend
lifespan of

product
and its
parts

R3 Reuse
Reuse by another consumer of discarded product
which is still in good condition and
fulfils its original function

R4 Repair Repair and maintenance of defective product so
it can be used with its original function

R5 Refurbish Restore an old product and bring it up to date

R6 Remanufacture Use parts of discarded product in a new product
with the same function

R7 Repurpose Use discarded product or its parts in a new product
with different function

Useful
application
of materials

R8 Recycle Process materials to obtain the same (high grade)
or lower (low grade) quality

R9 Recover Incineration of material with energy recovery

Linear
economy

Table 1.1: 9R circular economy framework by Kirchherr et al. (2017). Strategies become less circular from top to bottom.

The Table 1.1 shows, that the framework lists strategies by their circularity. Refuse within the strategy
cluster "Smarter product use and manufacture" is claimed to be the most effective one. Reuse makes
the fourth place in the ranking within the cluster "Expend lifespan of product and its parts".

But rather than applying those strategies blindly it is important to gain an understanding about
society’s metabolism first. In this context, the method Material Flow Analysis (MFA) offers important
insights since it aims to study and quantify material stocks and flows in defined regions and temporal
scopes. The evolution of the method gained momentum in recent decades. MFA started out with
static models which consider only the stocks and flows of one year. On this basis, dynamic MFA was
developed which allows to model past material flows and stocks based on historical data but also future
flows and stocks based on scenarios (Müller et al., 2014). Hence, the tool can offer insights on where to
apply which strategy to reach a maximum improvement in resource efficiency.

A model variant which gained popularity over the last years is the MaTrace model. The models
specialty is the ability to showcase losses in an open-loop recycling system. It shows the fate of the
material by tracking the inflow of one specific year over the coming years (Nakamura et al., 2014, also
see Section 1.1.2). But according to the 9R framework recycling is not the most effective strategy to
increase resource efficiency. Multiple scholars integrated other strategies as reuse into the original
MaTrace model (Klose & Pauliuk, 2021; Pauliuk et al., 2017; Zhang et al., 2021, also see Section 1.1.2).
However, the integration or reuse in those models is rather simplistic and does not necessarily match
the state of the art in reuse modeling in MFA (see Section 1.1.3).

Therefore, the main target of this master thesis is to integrate reuse in a more elaborate fashion into a
MaTrace model and to evaluate its impact and uncertainties. The following chapter of this thesis provides
a state of the art about the MaTrace modelling approach, the modelling of reuse, and a description of
modeling uncertainties on the example of survival curves in dynamic Material Flow Analysis (MFA).
Research gaps and research questions are derived based on this state of the art. This is followed
by a brief introduction to the case study. The second chapter provides the methodology describing
how existing models were used and how modelling approaches are simplified, followed by a chapter
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describing the used data. The results of the research are provided in the fourth chapter, followed by a
discussion and a conclusion.

1.1. State of the art
1.1.1. Dynamic MFA and MaTrace models
Primary material production affects economy, society, and environment in various ways. Some metals
are scarce (Godoy León et al., 2020) causing dependencies on suppliers who cannot ensure safe
working condition and involve child labour as it is the case for cobalt (Sovacool, 2019). Moreover,
primary material production leads to GHG emission and other negative environmental impacts (Pauliuk
et al., 2017). Because of the economic and environmental relevance, it is important to gain more
knowledge about anthropogenic material flows and cycles (Jarrín Jácome et al., 2021).

A commonly used tool which serves this purpose is Material Flow Analysis (MFA). The original
model as introduced by Baccini and Brunner (1991) describes material stocks and flows in a region with
the temporal scale of one year. Hence, those models represent a snapshot in time without considering
any past or future developments. Therefore, one speaks about static MFA when referring to these
models.

As described, knowing stock and flow dynamics is important since it provides insights to future
resource use, production and waste management planning, and potential environmental problems
(B. Müller, 2006). Motivated by these reasons B. Müller (2006) introduced dynamic stock modelling
(Sartori et al., 2016) which builds the foundation of dynamic MFA. This method of stock and flow
quantification allows for evaluation of model inputs present as time series by calculating the respective
stocks and flows. A static MFA model always complies with the law of mass conservation. There are
multiple characteristics to differentiate dynamic MFA models. A key characteristic describes whether
the model is inflow- or stock-driven. The following figure shows, that there are three elements to be
determined; the inflow I, the stock S, and the outflow O.

Figure 1.1: Single dynamic stock S with one inflow I and one outflow O

Stock driven models calculate I and O based on the stock S itself and a survival curve s(t) (see
Section 1.1.5 for more explanation on survival curves). In contrast, inflow driven models calculate the
S and O based on the inflow I and the survival curve s(t) (Müller et al., 2014). In the following, the
calculations for an inflow-driven model as depicted in Figure 1.1 are presented. This concept will be
used throughout this thesis. Assuming there is a data set consisting of an input series covering three
years and a survival curve (see following table):

Time t and t′ Inflow I(t) Survival curve s(t′)
0 3 1
1 5 0.8
2 4 0.5

Table 1.2: Example data for inflow driven model

Then the inflow and the survival curve are exogenous model variables since they do not depend
on any other variable in this case. The stock and the outflow are endogenous model variables since
they depend on the model inputs (Müller et al., 2014). The stock can be calculated using the following
formula (inspired by B. Müller, 2006):
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S(t) =

t∑
τ=t0

I(τ) · s(t− τ) (1.1)

The outflow is then calculated via the net flow N :

N(t) = S(t)− S(t− 1) (1.2)

O(t) = I(t)−N(t) (1.3)

When applied in a model, those calculations are executed via a cohort matrix. The following cohort
matrix belongs to the data as presented in Table 1.2:

0 1 2
0 3 0 0
1 2.4 5 0
2 1.5 4 4

Table 1.3: Example cohort matrix

Each column of the cohort matrix shows the depreciation of the inflow of one year (cohort) over time
(rows). Since there is no stock depletion in the first year (see Table 1.2, survival curve s(0) = 1) the
diagonal axis holds the inflow. With the help of those matrices the total stock S can be calculated by
summing up the rows (for more information regarding the basic calculations see Lauinger et al. (2021)).

Besides the modeled system itself, and depending on whether a model is inflow- or stock-driven,
models vary in their temporal scope (retrospective or prospective) and their regional scope (e.g.,
regional, national or global). Furthermore, some models consider hibernating stocks (also see Section
1.1.3).

Although dynamic MFA modelling might appear as straight forward, diverse approaches in extrapolat-
ing input data can be found as well. This is done to model the future or to test different scenarios which
often rely on drivers. An example for this is the intensity-of-use hypothesis which assumes a relation
between the demand of a material and the gross domestic product (GDP) of the region in focus. The
review on dynamic MFA of Müller et al. (2014) found that extrapolation methods are often prone to over
simplification, for example by not accounting for the scarcity of the material. Hence, interdisciplinarity
is required in order to analyse society’s metabolism (Lauinger et al., 2021). Dynamic MFA together
with dynamic stock modelling forms the basis for MaTrace models. Its purposes and function will be
described in the following section.

1.1.2. MaTrace model
Motivation and Purpose
The original MaTrace model of Nakamura et al. (2014) provides an elaborate model to track the fate
of materials in an open-loop recycling system. This development is relevant since recycling is a key
strategy to reduce the dependency on virgin materials. Therefore, it is essential to understand the
basics about it.

Recycling has the potential to bring about closed material cycles requiring only little primary material
input. If recycling is in place, the virgin material input depends on the following three factors: The growth
rate of the in-use stocks, the ability of waste management facilities to recover a scrap and the ability
of recycling companies to produce high quality secondary material while maintaining a high material
efficiency (Pauliuk et al., 2017). Besides those factors, recycling can be functional or non functional.
Materials recovered in functional recycling are fit to be reused for the same high quality products while
materials recovered in non functional recycling end up in low-end products or as contaminants in
materials (Godoy León et al., 2020).

There are, furthermore, factors concerning the actors participating in the use phase which determine
the amount of material entering recycling. This depends on the lifetime of products on the one hand (see
Section 1.1.3) and on the other hand on the waste separation performance of actors. How well actors
separate waste is determined by their knowledge and perception of waste management (Uhunamure
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et al., 2021). Minimizing the described losses in recycling is the target of sustainable management
and circular economy strategies. To do so, knowledge about the pathway of materials in an open-loop
recycling system are required. The original MaTrace model by Nakamura et al. (2014) aims to fill
this knowledge gap. It is able to trace the fate of materials which entered the system at beginning of
the regarded period. This way the quantity of losses, functional and non functional recycling become
apparent (Nakamura et al., 2014). It is important to understand that the model only considers one
cohort, the virgin material input of only one year. It then traces the whereabouts of this single input over
time.

How it works
The precise structure of a MaTrace model varies insignificantly depending on application and scope.
Therefore, the fundamental functionalities are explained based on a generic model as displayed in
Figure 1.2 clustering the elements into Use, End-of-Life, and Production following Godoy León et al.
(2020).

Figure 1.2: Simplified MaTrace system diagram inspired by Nakamura et al. (2014) and Godoy León et al. (2020)

MaTrace models allow to track the whereabouts of a specific material entering the system at the
beginning of the regarded period (one cohort, see Figure 1.2; initial products) across products and
time. Hence, only one inflow, the initial product distribution, has to be provided. The initial products
vector is summed up to 1 (or 100%) since MaTrace models trace the whereabouts of material in percent
(Godoy León et al., 2020; Nakamura et al., 2014; Pauliuk et al., 2017; Zhang et al., 2021). The depletion
of the initial stock is defined by distributions. Each product category has its own survival curve defined
by multiple parameters depending on the distribution. This stock depletion defines the yearly outflow of
End-of-Life products (Godoy León et al., 2020; Nakamura et al., 2014).

The processes in the End-of-Life and Production cluster are defined by process yields (efficiencies).
Applying the principle of mass conservation, all flows are found. Outflows can also be exports or
more specific losses than those presented in Figure 1.2. Furthermore, two allocation matrices were
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used. One allocating the shares of the products to different recycling processes and one allocating the
secondary material to production processes (here manufacturing and processing) (Godoy León et al.,
2020).

Other challenges posed in solving this system are the closed loops between Manufacturing, Scrap,
and Processing. Once these loops are mathematically formalized, one finds an infinite geometric
series. The following equation shows the series for the total outflow of produced products of the node
Manufacturing xk in the year t, where k is the index referring to the different product categories. pMl,k

is the product outflow of one round of recycling where l indexes the round (Godoy León et al., 2020):

xk(t) = pM1,k + pM2,k + pM3,k + · · · (1.4)

To solve this, an expression for the share of recovered scrap in recycling round one needs to
be found first. Here ξP,k indicates the processing scrap recovery, ξM,k indicates the manufacturing
scrap recovery, λP,k represents the yield of the processing node, and λM,k represents the yield of the
manufacturing node (Godoy León et al., 2020):

Nk = ξP,k · (1− λP,k) + ξM,k · (1− λM,k) · λP,k (1.5)

Using Nk, λk = λP,k · λM,k, and mk(t) which is the amount of refined materials being available for
manufacturing one finds the following infinite geometrical series (Godoy León et al., 2020):

xk(t) = λk · (1 +Nk +N2
k + · · · ) ·mk(t) (1.6)

This series can be solved analytically (Weisstein, 2022) resulting in (Godoy León et al., 2020):

xk(t) = λk · (1−Nk)
−1 ·mk(t) (1.7)

This solution makes the system computable. A full derivation of the expression can be found in
either the supporting information of Nakamura et al. (2014) or Godoy León et al. (2020).

Once the whole cycle is computed, the produced goods (equation above) flow back into the use
stock and the cycle has to be repeated for each year in the considered time frame (also see Section
2.2). In every iteration the stock depletion of each previous cohort must be considered. This way the
fate of the virgin material input of one year is tracked over multiple life- or recycling cycles. Hence,
MaTrace does not evaluate the whole material present in the system but only the share which entered
the system in one specific year.

Versions
Since the publication of the MaTrace model by Godoy León et al. (2020) of Nakamura et al. (2014),
multiple further publications applied or extended the model (Scopus search with search term "MaTrace").
Only Takeyama et al. (2016) left the original model untouched while Godoy León et al. (2020) and
Jarrín Jácome et al. (2021) adopted the model to suit the regarded material. Larger changes were
implemented by Pauliuk et al. (2017) who developed a global MaTrace model, by Helbig et al. (2022)
who traced multiple materials, and by Nakamura et al. (2017) who extended the model to trace the fate
of substances in alloys.

Moreover, multiple publications implement circular practices as re-manufacturing (Zhang et al., 2021)
and reuse (Klose & Pauliuk, 2021; Pauliuk et al., 2017; Zhang et al., 2019). Pauliuk et al. (2017) treat
reuse as a byproduct of the global MaTrace model. A share of the end-of-life products of one region may
enter the use phase of another region via trade. An altered lifetime of reused products is not considered.

Klose and Pauliuk (2021) explicitly treat reuse in their model by considering shares of end-of-life
products which are reused. However, the considered lifetimes originate from durability standards or
product warranty laws. It is explicitly stated that the lifetime of products entering the use phase does not
change for reused products and throughout time.

Zhang et al. (2021) investigate the impact of the reuse of automotive engines. As for the examples
above, they do not consider a decay in lifetime if an engine is reused but assume that a reused engine
has the same lifetime as a new one.

Hence, the models considering reuse do so, by redirecting product flows without considering decays
in lifetime, hoarding times, or the impact of consumer behaviour. This can pose an oversimplification
which emphasizes the need for models representing circular strategies more realistically. However,
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Godoy León et al. (2020) first introduced hibernating stocks in their MaTrace model shifting the perspec-
tive on material efficiency towards the user.

What can be understood as MaTrace model
Based on the large variety of present MaTrace models it appears to be legitimate to extend existing
once without loosing the label. All present models have in common that they consist of three major
clusters: Use, End-of-life, and production. The consideration and calculation of the closed loop in the
production cluster is the aspect which clearly distinguishes MaTrace from former dynamic MFA models.
Furthermore, they all trace the whereabouts of only one initial material input. In this context, dynamic
stock modelling is used to consider multiple life-cycles of one inflow (one cohort) (also see Section 2.2)
and not a time series input as commonly used in dynamic MFA.

I deem the way reuse is considered in MaTrace models as insufficient. Thus, the current state or the
art in modeling reuse will be explained in the following section.

1.1.3. Modeling reuse
Although reuse is not the leading strategy according to the 9R framework, it is highly relevant to
investigate its impact since the markets for second-hand an refurbished goods have been growing
steadily in recent years (Kwarteng et al., 2018). It is a valid strategy because service lifetime and
resource efficiency are closely connected. A longer lifetime increases the usage of a spent resource
which increases the resource efficiency of this very item. Therefore, it is highly relevant to understand
when a service life ends. Quantifying lifetimes is especially difficult for consumer goods because
consumers have individual motivations to discard products. This decision can be either driven by
diminished product integrity or by obsolescence (den Hollander et al., 2017). In general, a use cycle
ends with the obsolescence of a product, meaning the product lost its perceived value to its owner (Box,
1983).

It is crucial to understand that there are multiple ways a product can become obsolete to its owner.
The most intuitive one is functional obsolescence, meaning the product lost its functionality (Glöser-
Chahoud et al., 2019). In this context it needs to considered that a loss of functionality/performance did
not necessarily occur but might be perceived by the user for other reasons (Makov & Fitzpatrick, 2021).
Furthermore, the actual time span within which a product stays functional can depend on the users
behaviour. Batteries for example have an expected lifetime of three to five years, their actual lifetime
depends on the charging habits of the user (Beaulieu, 2021).

Planned obsolescence is closely connected to functional obsolescence. Planed obsolescence is a
loss of functionality by design caused for example by software updates (Glöser-Chahoud et al., 2019).
Besides its functionality, it is possible that a product stops to fulfill the requirements of the owner. In
this case aesthetic obsolescence describes products which are perceived outmoded, psychological
obsolescence covers products which are out of fashion (Burns, 2010), and technological obsolescence
describes technologies which are supplanted by superior technology (Glöser-Chahoud et al., 2019).
Besides individual particularities the social environment can have an impact on the decision to discard
a product. Social obsolescence describes products becoming obsolete due to laws, regulations, or
stigmatization (Burns, 2010).

On this basis it can be concluded that obsolescence and service lifetimes are highly user dependent.
As a consequence, it was discovered that a product may be perceived as obsolete by one user but not
by another which forms the basis for reuse. Hence, a product can go through multiple use cycles which
would improve the resource efficiency of this particular item.

A phenomena preventing products from entering another use cycle or waste treatment is called
hibernation, meaning the storage of obsolete but functional items by the consumer (Oswald & Reller,
2011). Hibernating stocks impair resource efficiency in two ways. Firstly, items appear to be stored for a
long time. Wilson et al. (2017) found that the hibernation phase of mobile phones in the UK is almost
three times longer than the use phase. Hence, resources in those item are not used during this time.
Secondly, due to long storage periods products are more likely to become obsolete to other potential
users. This diminishes the probability for product to enter another use cycle (Glöser-Chahoud et al.,
2019).

Considering the inconsistent behaviour of consumer regarding obsolescence and hoarding times it
becomes obvious that service lifetimes, hibernating stocks and reuse are hard to quantify and conse-
quently hard to model. Obtaining needed data requires conducting surveys and interviews. Modeling
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reuse poses an interface from classical MFA to social science and showcases the interdisciplinarity
which is required to quantify material flows in societies metabolism.

1.1.4. The reuse model
Material flows are usually modeled based on stock data, sales and estimated product lifetime. Due to
the described phenomena of obsolescence, hibernating stocks and reuse create a discrepancy between
high sales and low collection flows could be found.

Thiébaud et al. (2017) pointed out, that the following publications treated aspects of this issue.
Williams et al. (2005) investigated the hoarding times of computers, Polák and Drápalová (2012) found
hoarding times for mobile phone and Milovantseva and Saphores (2012) and Saphores et al. (2009)
estimated the hoarded e-waste in households in the USA. Chung et al. (2011) estimated the storage
time and amounts of among others computers, televisions, and washing machines in Hong Kong. Reuse
and hibernation was also considered in multiple MFA studies (Parajuly et al., 2017; Steubing et al.,
2009; Yoshida et al., 2009). However, Thiébaud et al. (2017) claim (to the best of their knowledge) that
their model is the first dynamic MFA to distinguish between in-use, reuse, and hibernating stocks for
electronic equipment (EE) while considering reuse and storage times.

The model itself (see Figure 1.3, in the following referred to as reuse model) is a cascading model
considering three use and three hibernating stages where the third use and hibernating stage represent
all further uses beyond (Thiébaud et al., 2017).

Figure 1.3: Reuse model system diagram by Thiébaud et al. (2017)

The original model as created by Thiébaud et al. (2017) is an inflow driven model considering
multiple electronic devices. While the regional scope is clearly mentioned (Switzerland), a time frame
to which the data is applicable is not provided. The model itself is a combination of multiple dynamic
stocks which makes it a dynamic MFA model. Each of the stocks receives an inflow, a survival curve
defines the stock decay and the outflow is distributed via transfer coefficients. Hence, the model requires
extensive amount of data. Each product requires six survival curves (three for the use stocks and three
for hibernating stocks) and 27 transfer coefficients to determine the fate of each outflow.

The required data is hard find thus the data was gathered in a separate publication. Thiébaud (-
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Müller) et al. (2017) investigated the service lifetime, storage times, and disposal paths for ten electronic
device types in Switzerland by conducting interviews and surveys. Their discussion of the results reflect
the aforementioned factors contributing to uncertainty. Furthermore, it is mentioned that the data on
reuse and disposal pathways might be object to subjective estimates. This limitation is in line with
the results of another publication which investigated the difference in desired, expected, and actual
measured lifetime. The study found that the actual measured lifetime is substantially smaller than the
expected lifetime (Wieser & Tröger, 2015), this adds the dimension of consumer self perception and
expectations.

Although, the model and the required data are subjected to deep uncertainty the introduced reuse
model was found useful to understand alternations in consumer behaviour and use patterns (Glöser-
Chahoud et al., 2019).

Since uncertainty will continue to be an important aspect of this work, the following section will clarify
the uncertainties in dynamic MFA models inherent to survival curves.

1.1.5. Survival curves as example for uncertainties
Section 1.1.3 explained the underlying mechanisms causing consumer to discard product are extremely
complex and non homogeneous. No matter the uncertainties, the end of life has to be represented in
dynamic MFA modelling. To do so, the end of life of a whole basic population (e.g., a product group)
is defined by the survival curve of a distribution. Miatto et al. (2017) showcased the difficulties and
importance to select the right distribution by the example of buildings. The following explanation shall
serve as an representative example for uncertainties in data and modeling choices in MFA modeling.
Figure 1.4 displays the survival curves (A) and hazard rates (B) of the most commonly used distributions
in MFA modelling. Survival curves represent the reliability of a product or a product group. In the context
of MFA it represents the stock depletion of one single cohort (inflow into the stock at one point in time).
Its value (y-axis) represents the share of material being in stock over time. The hazard rate represents
the likelihood of an item failing (reaching its end of life) at a certain point in time.
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Figure 1.4: Survival curves (a) and hazard rate (b) of multiple distributions. All displayed distributions have the same median
value (50 % in t = 30) and the same standard deviation (σ = 20). The figure is inspired by Miatto et al. (2017).

It is important to notice that following descriptions and observations of the distributions are not all
generalizable since shape and location may vary based on the parameters defining the distribution.
The displayed distributions in Figure 1.4 can be categorized in right-skewed distributions (Weibull,
Lod-normal, and Gamma), left-skewed distributions (Gompertz), and the normal distributions. The
individual properties of the distributions need to be considered when a distribution is selected to model
a stock decay. Looking at the displayed right skewed distributions it is apparent that the first value of the
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survival curve is 1, meaning that the whole basic population survived till that point. This is not the case
for the displayed normal distribution since its value in the survival curve is below 1. Hence, by using
the normal distribution with these settings to model a survival curve it must be assume that the stock
depletion starts right at the moment of material input. Regarding buildings this implies demolition of
some buildings right after construction (Miatto et al., 2017) and for consumer electronics it assumes
that part of the stock is discarded within a year. Also the Gompertz distribution has specific implications
since it is normally used to model lifetimes of living beings. Because living beings cannot exceed a
certain age (humans currently day latest around 120 years of age (“List of the verified oldest people”,
2022)) the hazard function of the Gompertz distribution (see Figure 1.4 B) grows exponentially once
stabilized (Miatto et al., 2017). If the Gompertz function would be applied to to buildings it had to be
assumed that no building exceeds a certain maximum lifetime.

Using this knowledge, one can pick a distribution based on assumptions. Those could be the
following for buildings:

• Recently build infrastructure is unlikely to get demolished in the year of construction.
• There will be a peak at in stock depletion depending on external factors as location and typology.
• Buildings surviving this peak are probably deemed to be worth preserving resulting in a lifetime

far beyond average.

On this basis, it can be assumed that the log-normal distribution may be the best to model the stock
decay of buildings. Miatto et al. (2017) test this assumption by fitting multiple distributions on historical
data of three locations. It turned out that right skewed distributions describe stock dynamics indeed
well. However, only when the underlying assumptions can be preserved throughout the lifetime. The
example of the city of Salford in the United Kingdom proves the point. During the 20th century Salford
went through an economic boom, followed by an economic crisis which led to the construction of inferior
houses. A large share of those were demolished within a short period. As a consequence of this
dynamic, the Gompertz distribution (left skewed) is most suitable in this case.

Since survival curves in dynamic MFAs are used to model an uncertain future, it may not be possible
to foresee events as described. Therefore, the selection of a distribution can only be based on the
knowledge available in the very moment of modelling. For those reasons assumptions on distribution
shapes can turn out wrong when modelling results are compared with reality (Ianchenko et al., 2020).
Furthermore, data on survival curves can rarely be applied to another local or temporal context since
the systems scope really matters (Ianchenko et al., 2020; Yu et al., 2020).

In conclusion, it is possible to make an educated selection regarding the distribution of a survival.
However, it is possible that made assumptions will turn out wrong due to unforeseen events. Furthermore,
as demonstrated in Section 1.1.3 it is often difficult to obtain valid data on lifetimes. Therefore, lifetimes
and their distribution pose a major source of uncertainty in dynamic MFA modelling.

1.2. Research gap and research questions
Section 1.1.3 shows that modelling reuse is complex. The data is obtained through conducting surveys
and interviews, and the derived survival curves are objected to uncertainties. Presumably because
of the high effort required, detailed reuse modeling as suggested by Thiébaud et al. (2017) has not
been integrated into any MaTrace model yet. Therefore, the first objective of this research is to integrate
Thiébaud et al. (2017) reuse model into an existing MaTrace model. This objective dictates the main
research question:

How to introduce reuse into a MaTrace model and how to evaluate it?

The chosen model is the MaTrace model on cobalt in the European Union of Godoy León et al.
(2020) (for more information see Section 1.3 and Section 2.1). The model created out of Thiébaud et al.
(2017) reuse model and Godoy León et al. (2020) MaTrace model will be referred to as the Reuse-
MaTrace model in the following. Once the Reuse-MaTrace model is created, the first research objective
is to understand if this integration has a substantial impact. This leads to the first sub-research question:

To what extent is the outcome of the MaTrace model as described by Godoy León et al. (2020)
altered, when the reuse of consumer electronics is modelled following the approach of Thiébaud et al.
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(2017)?

The combination of those two models is possible since Glöser-Chahoud et al. (2019) applied
Thiébaud et al. (2017) reuse model on electronics in Europe in a similar temporal scope. This endeavour
requires only a minimal data gathering effort. The data present is, however, subject to uncertainty as
described in Section 1.1.4. Furthermore, the lifetime of each product is represented by a survival curve
and as described in Section 1.1.5 it is hard to pick the correct distribution and to find the right parameter
settings. Also the data used in the MaTrace model of Godoy León et al. (2020) is not fully certain and the
data quality varies depending on the parameter as they show in their previous publication (Godoy León
& Dewulf, 2020). These circumstances lead to the second sub-research question:

Which input parameters introduce the most uncertainty into the Reuse-MaTrace model and what
insights can be derived from analysing uncertainties?

The following section gives an introduction to cobalt as chosen material to conduct this research.

1.3. A case study on cobalt
The chosen material for this research is cobalt. Cobalt is a core material of rechargeable batteries
due to its unique properties. Two current trends drive the demand for rechargeable batteries. On the
one hand, the need to transition from fossil fuels to renewable energies kicked off. Electrification in
the automotive industry makes electric vehicles (EV) the current, and future, main driver for demand
of cobalt (Sun et al., 2019). The energy transition will require energy storage capacities (e.g., home
battery storage) which will also drive the demand in the future. This leads to cobalt being considered as
an energy transition metal (ETM) (Rachidi et al., 2021). On the other hand, the ongoing digitalization
of industry and private life also considering trends as internet of things (IOT) and 5G technology will
drive the demand for portable batteries (Desai, 2020). Certainly, this will increase the demand in the
foreseeable future.

Although, the above listed driver suggest an increase in demand advancements in battery develop-
ment may counteract in the future. A large electronic vehicle producer already uses cobalt-free batteries
(McFarland, n.d.) while researchers use scenarios in which the cobalt demand declines in 2030 due to
changes in battery technology (Tang et al., 2021). Hence, the future cobalt demand is uncertain.

The above outlined development concerns the main source of virgin cobalt. More than two thirds
of the global cobalt supply is sourced in the Democratic Republic of Congo (DRC) (Farchy & Warren,
2018) where insecure mining conditions and reoccurring human rights violations such as child labor
occur (Sovacool, 2019). Due to its relevance for the energy transition and the problematic origin of the
virgin material I consider cobalt a material worth studying.

Looking at the publications treating cobalt using dynamic MFA (search on Scopus using the terms
"cobalt AND dynamic "material flow analysis"" and "cobalt AND dynamic MFA") it is striking that the
overwhelming majority has been published during the last three years. Accordingly, the publications of
Pehlken et al. (2017), Bobba et al. (2019), Kamran et al. (2021), and Tang et al. (2021) entail prospective
dynamic MFAs treating CRMs in EV batteries which cover cobalt as well. The regional and temporal
scope vary. Furthermore, those publications also treat circular strategies as reuse, recycling and shared
ownership to varying extends. In contrast Kastanaki and Giannis (2022) focuses on the future global
CRM demand caused by smartphones. More broadly, Dunn et al. (2021) investigates the global CRM
demand caused by batteries and considers circular scenarios.

Additionally, three publications were found conducting retrospective dynamic MFAs. Liu et al. (2021)
investigates lithium and cobalt flows in China while Wang and Ge (2020) solely focus on cobalt flows in
China. Godoy León et al. (2022) quantify long term cobalt stocks and flows in the European Union.

The only MaTrace model found which treats cobalt is the one of Godoy León et al. (2020) which
traces the cobalt inflow of 2015 within the European Union.

On the basis of this review it can be concluded that the energy transition, especially regarding
vehicles motivated a large share of the presented studies. As a consequence only few publications
solely treat cobalt. Furthermore, many studies investigate the impact of circular strategies as it will be
done in this research. The novelty of the Reuse-MaTrace model is the integration of an elaborate reuse
model into a MaTrace model. The creation of the model and whether the integration of reuse has a
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meaningful impact will be discussed in the following chapters.



2
Methodology

This chapter describes the actions taken in order to answer the research questions. The modelling
approach will be described first. The MaTrace model was extended to consider the potential reuse of
consumer goods (see Section 2.1). Because the model is far from trivial, the actual implementation of
the model is explained (see Section 2.2). Apart from the modelling itself, the impact of the suggested
changes and the model behaviour are relevant. An impact analysis to gain knowledge on this will be
performed (see Section 2.3). The MaTrace model itself requires a lot of data and the model input will be
inflated due to the proposed extension (also see Section 2.4.1 where the inputs are mapped out). For
this reason, Monte Carlo simulations are conducted to gain knowledge about the relevance of all inputs
(see Section 2.4).

2.1. Modelling approach
The foundation of the research project is a MaTrace model which considers reuse as described in
Section 1.1.3. Since such a model does not exist yet, two models needed to be combined. I deemed the
MaTrace model developed by Godoy León et al. (2020) to be suitable. As displayed in Figure 2.1, the
model follows the generic MaTrace approach by incorporating a use, EOL and a production phase (also
see Section 1.2). Exports and different losses are considered. Besides the pretreatment and recycling
losses, which occur due to process efficiencies, the model considers downcycling and non-selective
collection. Here downcycling refers to material which ends up in low tech products. In the context of
cobalt this mainly applies to alloys containing cobalt which are then downcycled into stainless steel. In
this case the material is dissipated into the technosphere (Godoy León et al., 2020) from where it is in
general not recoverable (Godoy León et al., 2020). Non-selective collection refers to the misplacement
of EOL products into the wrong waste bin (Godoy León & Dewulf, 2020). In contrast to the original
MaTrace model, this model considers hibernating stocks (Godoy León et al., 2020).

13
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Figure 2.1: MaTrace model system diagram by Godoy León et al. (2020)

The model is suitable due to the distribution of initial inflow as well as its consideration of cobalt,
which makes it highly relevant. It considers eleven product categories: Portable batteries, mobility
batteries, three types of catalysts, dissipative uses, hard metals, magnets, other metallic uses, and
superalloys. 41.2 % of the whole in-flowing cobalt is allocated to portable batteries (Godoy León et al.,
2020). The category portable batteries covers rechargeable batteries in consumer electronics such as
laptops, cell phones, and cameras (Godoy León & Dewulf, 2020). Chapter 1 describes that the total
demand for portable batteries will increase while the demand relative to the total cobalt demand may
decrease. It is predicted that 30% of the cobalt used in batteries today will be used in portable batteries
in 2025 (Desai, 2020).

In order to model the reuse of this portable batteries category I will extend the MaTrace model by
Godoy León et al. (2020) with the reuse model of Thiébaud et al. (2017) (see Figure 2.2).
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Figure 2.2: Reuse-MaTrace model system diagram

Besides the data as used by Godoy León et al. (2020) in the MaTrace model, the extended reuse
part relies on data as presented by Glöser-Chahoud et al. (2019) who applied the reuse model by
Thiébaud et al. (2017) on Europe. This data already shows strong tendencies towards reuse. According
to Glöser-Chahoud et al. (2019) 60% of smart phones in Europe are reused, and 14 % have more than
two owners. In addition to this already high reuse rate it can be assumed that the second hand market
will grow in the future. Also because of the growing popularity of second hand e-commerce platforms
Glöser-Chahoud et al. (2019). Figure 1.3 shows that the original reuse model also considers the fate of
the disposed products. In the combined model, the outflow will be summed up and passed back to the
MaTrace model which handles the fate of the disposed products.

The following section explains the functionalities of the combined model.

2.2. Model implementation
Figure 2.2 displays, the start of model, the use phase has two inputs; the initial products and products
produced from secondary materials in the production phase. Thus, there is only one inflow from outside
the system boundaries. In order to determine the inputs to the use phase of the second year, the whole
model has to be executed for the initial year first. The material leaving the use phase has to pass
through the end-of-life phase. Retrieved secondary material will be used in the production phase to
produce new products. A share of those products become the inflow into the use phase of the second
year. Therefore, the model has to be run iteratively.

In the first iteration, the initial inputs enter the system and get split up. Portable batteries enter the
cascaded reuse model, all other categories are treated as in the MaTrace model: they enter a use stage
and one hibernating stage afterwards. Within the reuse model the inflow is split into seven products
with individual data on service lifetime, hibernating time (represented by survival curves), and reuse
(represented by transfer coefficients) (Also see Chapter 3).

All stocks, in-use and hibernating, are represented by one cohort matrix per product (in reuse model)
or per product category (as in MaTrace model by Godoy León et al. (2020)). A cohort matrix represents
the net-inflow, the stock itself, and the depletion of a stock. It is created by the inflow and the survival
curve.
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0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 0.005779 0 0 0 0 0 0
2 0 0.004155 0.009849 0 0 0 0 0
3 0 0.002126 0.007081 0 0 0 0 0
4 0 0.000853 0.003623 0 0 0 0 0
5 0 0.000279 0.001454 0 0 0 0 0
6 0 7.59E-05 0.000475 0 0 0 0 0
7 0 1.75E-05 0.000129 0 0 0 0 0

Table 2.1: Cohort matrix representing the 2nd in-use stock of smart phones until the third iteration

Table 2.1 displays the cohort matrix of the second in-use stock (first reuse stock) of smartphones
after the third iteration. The diagonal of the matrix holds the stock addition in each year, which is not
necessarily equal to the inflow, since inflow may already partly decay during the first year. This depends
on the distribution used for the survival curve (also see Section 1.1.5). The inflow multiplied with the
survival curve defines one column. Hence, one column provides the knowledge, how much was added
to a stock in one year (entry on the diagonal) and how much of this addition is in stock in the following
years. Due to this circumstance, one finds the total material in stock of a year by summing a row
(derived from B. Müller (2006)). Because of the iterative nature of the model, the matrix is not fully filled
after two iterations. Furthermore, since the stock outflow is put into the MaTrace model, it might be
that a former outflow flows back into the stock at some point. Table 2.2 shows the cohort matrix of the
second in-use stock of smart phones when the model is run for eight iterations.

0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 0.005779 0 0 0 0 0 0
2 0 0.004155 0.009849 0 0 0 0 0
3 0 0.002126 0.007081 0.009332 0 0 0 0
4 0 0.000853 0.003623 0.00671 0.007348 0 0 0
5 0 0.000279 0.001454 0.003433 0.005283 0.005278 0 0
6 0 7.59E-05 0.000475 0.001378 0.002703 0.003795 0.003532 0
7 0 1.75E-05 0.000129 0.00045 0.001085 0.001942 0.00254 0.002184

Table 2.2: Cohort matrix representing the 2nd in-use stock of smart phones until the eighth iteration

The first column of the matrix only holds zeros. This suggests that there is no inflow to the second
use-stock in the first year. Only in the second iteration the first in-use stock starts to deplete and part of
the phones leaving the first in-use stock enter the second.

Within the reuse model in the use phase transfer coefficients define which share of a stock outflow
goes to either the next use-stock, the hibernating stock, or to disposal. Since the MaTrace model
incorporates the waste treatment process including losses and exports, the reuse model considers
only one disposal way resulting in the EOL products. In order to suit the MaTrace model, the individual
product outflows of the reuse model are summed up into the category portable batteries again.

The clusters End-of-Life and Production are equivalent to the MaTrace model by Godoy León et al.
(2020). Both clusters are defined by transfer coefficients and allocation matrices. Furthermore, a
infinite geometrical series emerges due to the close loop in the production cluster. This series is solved
analytically (see Section 1.1.2).

2.3. Impact analysis
The impact analysis serves the purpose to investigate how the output of the MaTrace model is altered
due to the modification. I chose the total in-use stock as the measure of comparison since this model
output is closely related to resource efficiency (see Section 1.1.2). The impact analysis consist of the
following two steps: Comparison to the MaTrace model by Godoy León et al. (2020) and the impact of
reuse.
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2.3.1. Comparison to the MaTrace model created by Godoy León et al. (2020)
Firstly, it will be investigated how the in-use stock changes once the reuse model is added. In a second
step the impact of the usage of an altered data set (see Section 3) will be examined. Based on this
analysis it will be possible to answer, whether the consideration or reuse is of relevance at all regarding
this specific case study.

2.3.2. Impact of reuse
Secondly, the impact of the consideration of reuse is evaluated in greater detail. To do so, the part of
the model considering reuse (see marked area Figure 2.3 A) is altered. In order to create a baseline,
the reuse model is reduced to showcase single use only (see Figure 2.3 B). Then the model is run with
two use stages (see Figure 2.3 C) and then with three (see Figure 2.3 D).

Figure 2.3: Scenarios for the reuse impact analysis; (b) considering single use, (c) considering one reuse phase, and (d)
considering the whole reuse model. The red dotted line in (a) marks the location of the use phase in the whole system.

The results of this analysis will allow to draw conclusions on the impact of the consideration of reuse
on the in-use stock.

2.4. Monte Carlo simulations
Monte Carlo methods are used in different scientific fields for various purposes (Dimov, 2008) and
are formally defined as: "methods of approximation of the solution to problems of computational
mathematics, by using random processes for each such problem, with the parameters of the process
equal to the solution of the problem." (Dimov, 2008, p.1)

In summary, the inputs of a model which have an effect on the solution (or model output) are varied
in a random fashion. When applied on MFA models, selected or all inputs are defined by a probability
distribution. Random inputs are generated on the basis of those distributions which are then fed into the
model. This process is repeated multiple times. As a result, one obtains probability distributions of the
output data (Sonnemann et al., 2003). It is important to understand, that inputs are not varied arbitrarily
randomly but that the inputs are generated on the basis of the assigned probability distribution). This
also entails to set limits of the number generator to a plausible range. Furthermore, not all values have
the same probability to be generated.

Besides the more obvious result of the probability distributions of outputs, one can derive further
conclusions by analyzing the results. In the context of MFA, Monte Carlo simulations are used to analyze
the uncertainty and sensitivity of models (Fishman et al., 2018). In this case that is also the purpose.
The presented combined model is unique and unproven. Although, the data was mainly collected from
previous peer reviewed publications, the authors of these publications recognize the weaknesses of the
data quality themselves. Godoy León and Dewulf (2020) evaluated the data quality of each input used
in the MaTrace model by Godoy León et al. (2020) while Thiébaud et al. (2017) stressed that the data
for the reuse model has to be obtained by interviews and surveys. Hence, knowing which inputs have
the largest impact on relevant outputs is important information in case practitioners consider to use the
model in the future. This way, users can know which inputs require a high certainty (i.e. data quality)
and which inputs require less attention.

Even though, the method appears to be established in MFA modelling, approaches on how to assign
probability distributions to inputs vary among publications. It seems common to assign distributions on
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the basis of the known uncertainty of the inputs (Cai et al., 2022; Cao et al., 2018; Fishman et al., 2018;
Glöser et al., 2013; Gottschalk et al., 2010; Montangero & Belevi, 2008; Thiébaud et al., 2018). But
the derived distributions vary immensely. Fishman et al. (2018) used exclusively normal distributions,
while Thiébaud et al. (2018) use triangular and normal distributions for inputs with higher certainty.
Montangero and Belevi (2008) derives most input distributions including parameters from existing
literature, and Gottschalk et al. (2010) uses log-normal, triangular or uniform distributions depending on
input characteristics.

On the one hand this poses the challenge to execute Monte Carlo simulations without clear guidelines.
On the other hand, it allows to develop a framework according to the needs of the model and researcher.
In order to develop this framework, the following section maps out all inputs of the model. On the basis
of this knowledge a framework to assign distributions will be developed.

2.4.1. Model input mapping
The data inputs to the model need to be mapped to create an overview. Furthermore, the total number
of inputs is calculated in this section.

Figure 2.4: Reuse-MaTrace model and required data (adopted from Godoy León et al. (2020))

Figure 2.4 displays the system and data required to run the model, which are represented by boxes
holding mathematical symbols. Each symbol has one or more indices (small letters) indicating whether
this data is required for each product (index i, consumer electronics as e.g., laptops), product group
(index k, e.g., hard metals), use cycle (index l, referring to use- and reuse- cycles not recycling),
recycling process (index r, recycling processes as present in MaTrace model), or secondary materials
(index m, material created by recycling processes). If multiple indices are given, the data is required for
every combination (e.g. SU,i,l represents the in-use survival curve and it is required for every product in
every use-cycle). I calculated the number of individual inputs on the basis of Figure 2.4. Therefore, a
norm must be defined which gives the number of elements in a vector or matrix of the dimensions Rp×q:

||A||R =

p∑
j=1

q∑
h=1

1 (2.1)

Considering the seven products (index i), 11 product groups (index k), three use cycles (index l),
two recycling processes (index r), and two secondary materials (index m) one finds the following table
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by applying the ||A||R norm:

Vector or Matrix Dimension Number of elements
ε k × 1 11
δ i× 1 7
α i× l − 1 14
β i× l 21
γ i× l − 1 14
ψEOL k × 1 11
σ k × 1 11
λPT k × 1 11
B k × r 22
λR r × 1 2
ψR m× 1 2
D k ×m 22
λP k × 1 11
λM k × 1 11
ξP k × 1 11
ξM k × 1 11
ωP k × 1 11
ωM k × 1 11
ψP k × 1 11

Table 2.3: Dimensions and number of input parameters

The sum of all elements is 225, while the part of the model which treats the reuse of consumer
electronics requires 56 inputs. However, Table 2.3 does not consider the number of the required survival
curves which is displayed in the following table:

Survival curve Number of survival curves
SU i · l + k − 1 = 31
SH i · l + k − 1 = 31

Table 2.4: Number of required survival curves

In the combined model, all survival curves are defined by Weibull distributions, described by two
parameters. Thus, the original model has 62 · 2 + 225 = 347 input parameters. If the distribution
describing the survival curves is changed during the course of the experiments, this number can vary.

Hence, the part of the model which treats the reuse of consumer electronics requires 56 inputs and
42 survival curves (82 additional inputs).

2.4.2. Framework
The number of input parameters is too large to define a specific distribution for each, which means that
an alternative, feasible approach needs to be applied. This approach consists of two steps. Firstly, each
input is going to receive a score mainly based on uncertainty and where known by sensitivity. Secondly,
these scores will be used to assign a distribution to each input.

Input scoring
Scoring is a commonly used practise in the field of IE to compare things as the impacts of multiple envi-
ronmental interventions. Often multiple categories are scored on the basis of qualitative or quantitative
information and one main score is aggregated (Duc et al., 2022; van Berkel et al., 1997). The main
drawback is the low repeatability of the score assignment (Powell et al., 1997). Therefore, I explain how
scores were assigned in the following.

The model contains five different input data types: the initial inflow, transfer coefficients, efficiencies,
the Weibull scale, and the Weibull shape. The first four types can receive an uncertainty score from
0 to 5. Here, 0 represents absolute certainty and 5 stands for very high uncertainty. An example for
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an absolute certain input is the recycling efficiency of dissipative uses. In MaTrace models dissipative
uses are the use of material in e.g., medicine or pesticides or regarding cobalt, the use of the material
as pigment. So, the material cannot be recovered by definition. Therefore, the recycling efficiency for
cobalt recovery from dissipative uses is 0 with absolute certainty. The score of 5 was assigned for inputs
which are based on my own assumptions.

The Weibull shape parameter β can only receive scores from 0 to 2. The reason for this is its known
sensitivity. The shape of the Weibull distribution can change severely when the parameter varies. Figure
2.5 A displays the survival curves of smartphones in the first service phase considering multiple shape
parameters. When β > 1 as for the original shape (β = 1.7) the failure rate increases over time (see
Figure 2.5). As a result, few smartphones fail during the fist two years and most of them drop out of
service between the second and the third year. This behaviour changes for β ≈ 1 which leads to a more
constant failure rate. For β < 1 the failure rate is high at the beginning and decreases over time. As it
can be seen in Figure 2.5, this leads to an early failure behaviour. Less than half of the smart phones
survive the first two years (Kızılersü et al., 2018). For this known sensitivity of the Weibull shape, the
uncertainty scores are limited to the mentioned range.
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Figure 2.5: Survival curve (a) and probability density function/failure rate (b) of Weibull distribution for multiple shape parameter β

The inputs which come from the MaTrace model by Godoy León et al. (2020) are scored on the basis
of a previous publication of the same authors. Godoy León and Dewulf (2020) developed a framework
to asses the quality of CRM related data. This framework was applied to the MaTrace model which
is used in this thesis. Hence, the data quality of each input to the MaTrace model was scored from
"Very high data quality" over "High data quality", "Low data quality", and "Very low data quality" to "No
data reported" (Godoy León & Dewulf, 2020, Table 3). This data quality stands in direct relation to data
uncertainty. High quality data is more reliable and therefore more certain. The data quality evaluation of
Godoy León and Dewulf (2020) is translated as follows:

• Uncertainty score 1: "Very high data quality"
• Uncertainty score 2: "High data quality"
• Uncertainty score 3: "Low data quality"
• Uncertainty score 4: "No data reported"

The category "Very low data quality" does not refer to an uncertainty score, since this category
was not assigned to any input. Furthermore, the category "No data reported" was matched with the
uncertainty score 4, since Godoy León et al. (2020) filled in missing data based on their research,



2.4. Monte Carlo simulations 21

assumptions, and expertise. Because I assume that the validity of their data assumptions is more valid
than the data which bases on my own assumption, this kind of data did not receive the lowest score.

The uncertainty of the data which originates from Glöser-Chahoud et al. (2019) application of
Thiébaud et al. (2017) reuse model is scored by my own judgement. Regarding the first use and
storage phase it is assumed that the survival curves defined by Glöser-Chahoud et al. (2019) have
a high certainty as they are based on multiple empirical studies. Accordingly, the shapes receive a
uncertainty score of 1 and the scales receive an uncertainty score of 2. Since the survival curves of
the products e-bikes, power tools, and others base on own research, they are scored lower. Weibull
scales received a score of 4 and Weibull shapes a score of 2. The transfer coefficients as suggested by
Glöser-Chahoud et al. (2019) are derived from previous research (survey and interview studies) thus
they are assumed to be less certain and receive an uncertainty score of 3. The transfer coefficients
for e-bikes, power-tools, and other products are scored with 4 since they are based on literature and
derived assumptions (see Chapter 3).

For the second re-use and storage stage I assumed that the data is less certain than the data of the
first stage. The data of the reuse model largely depends on surveys and interviews (Thiébaud et al.,
2017). I assumed that the information gathered becomes vague in the second stage since part of the
information provided is less certain. It is for example less likely that owners of second hand articles
know the exact purchase date because they may not have a receipt. Furthermore, they might not be
aware of all previous owners and may mistake a third hand product for a second hand product. In order
to account for those kind of added uncertainty, I lowered all all uncertainty scores by one.

Regarding the third re-use and storage stage I assumed that the data is not certain at all. The
aforementioned uncertainties are present as well. Furthermore, owning a third hand product is less likely
than owning a second hand product. Therefore, the pool of possible survey and interview participants
must have been smaller. All inputs on this stage are thus rated with the highest uncertainty possible,
which is 2 for Weibull shapes and 5 for all other parameters.

Appendix B shows assigned uncertainty scores of all inputs.

Distributions
As explained above, the uncertainty scores are used to assign distributions to the inputs. How this
is done will be explained in the following. The fundamental idea is to assign broader distributions to
uncertain inputs and narrow distributions to inputs with a high certainty. This results in the following
pairing for this Monte Carlo simulation:

• Uncertainty score 0: The input value is not changed at all
• Uncertainty score 1: The input value is altered by a normal distribution
• Uncertainty score 2: The input value is altered by a broader normal distribution
• Uncertainty score 3: The input value is altered by a triangular distribution
• Uncertainty score 4: The input value is altered by a broader triangular distribution
• Uncertainty score 5: The input is very uncertain and therefore altered by a uniform distribution

(Gottschalk et al., 2010)

The specific parameters of the distribution depend on the type of input data. The initial inflow,
transfer coefficients, and efficiencies can take values from 0 to 1 while the Weibull scale and shape can
take theoretically arbitrary values larger than 0. Therefore, those groups of input are treated differently.

Regarding the Weibull scale and shape, the distribution does not alter the input value directly but the
distributions generate a multiplier for the input. The multiplier can take values from 0.5 to 1.5. So, the
input value can be 50% larger or smaller than the initial value. The distributions for uncertainty scores 3
to 5 are limited to this range. If a normal distribution for the uncertainty scores 1 and 2 generates a
value out of this range, a new value will be generated until it is within this range. Figure 2.6 A displays
the distributions for this case:

• Distribution for uncertainty score 1: Normal distribution with µ = 1 and σ = 0.05

• Distribution for uncertainty score 2: Normal distribution with µ = 1 and σ = 0.1

• Distribution for uncertainty score 3: Triangular distribution limited from 0.6 to 1.4 with the peak at 1
• Distribution for uncertainty score 4: Triangular distribution limited from 0.5 to 1.5 with the peak at 1
• Distribution for uncertainty score 5: Uniform distribution limited from 0.5 to 1.5
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Figure 2.6: Distributions of survival curve multiplier for Monte Carlo simulations. (a) shows the distribution without limitations. (b)
shows the distributions when the smallest possible multiplier is limited to 0.7.

As explained above, the Weibull scale β changes the shape of the survival curve severely when it
changes from β > 1 to β < 1. Therefore, it was decided that Weibull scales which are initially larger
than 1 cannot take values smaller than 1. To ensure this, the smallest possible multiplier for which
β ≤ 1 is calculated and used as the lower limit for all distributions (see Figure 2.6 B, here the smallest
possible multiplier is 0.7). The normal distributions generate values below this threshold, new values
are generated until all values are within the allowed range.

The same applies for the Weibull shapes: A shape below 1 would suggest that most of the stock
depletes during the first year which is, looking at the data, for most products and cases an unreasonable
assumption. Furthermore, the Weibull survival curve always has a value of 1 for the input year. Hence it
cannot project stock depletion in the first year. Furthermore, transfer coefficients define in most cases
the inflow to the stocks. Therefore, there is no need for the survival curve to represent inflows that
immediately exit.

In contrast to the Weibull parameters the distributions for initial inflow, transfer coefficients, and
efficiencies take the actual input value as a mean for the normal distributions and as peak for the
triangular distributions. The general settings are as follows:

• Distribution for uncertainty score 1: Skewed or folded normal distribution with µ = 1 and σ = 0.05

• Distribution for uncertainty score 2: Skewed or folded normal distribution with µ = 1 and σ = 0.1

• Distribution for uncertainty score 3: Triangular distribution limited from 0.6 to 1.4 with the peak at 1
• Distribution for uncertainty score 4: Triangular distribution limited from 0.5 to 1.5 with the peak at 1
• Distribution for uncertainty score 5: Uniform distribution limited from 0.5 to 1.5

Figure 2.7 A displays the distributions when the input value is 0.5, the distributions for other values
change. Figure 2.7 B shows the distributions for an input value of 0.2. It shows that the distribution
for uncertainty score 1 changes to a right skewed normal distribution. The reasoning behind this
implementation is that it might be interesting for small values to test how the model behaves for larger
values rather even smaller inputs.
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Figure 2.7: Distribution of initial inflow, transfer coefficients, and efficiencies for (a) an input value of 0.5 and (b) an input value of
0.2

The skew factor a of these two distributions was determined empirically. The target was, to keep the
value of the probability density function of the skewed normal distribution (S for x = 0 smaller or equal
to the value or the original normal distribution for µ = 0.5 at x = 0, which is a value very close to 0 1:

S(x = 0|µ, σ2 = 0.052, a) ≤ N (x = 0|µ = 0, σ2 = 0.052) (2.2)

In order to avoid a numerical approximation of a for each input, it was approximated by a linear
function once the boundary values were determined. The boundary for the location of the skewed
normal distribution (see SciPy, 2022) for the uncertainty score 1 are 0.05 and 0.95, and 0.1 and 0.9
for the uncertainty score 2. It was found that the skew factor a becomes extremely large beyond those
boundaries. Therefore, the skewed normal distribution is replaced by a folded normal distribution which
avoids this unwanted behavior. This can be seen in Figure 2.7 B for the uncertainty score 2 (green line).
Although, the peak of the folded distribution changes, it needs to be disclaimed that the mean of the
distribution does not necessarily match the actual input.

The behavior of the triangular distributions is less complicated. The distribution for the uncertainty
score 4 moves symmetrically along the x-axis until its corner reaches either 0 or 1 (see Figure 2.8).

1Equation 2.2 holds true for the distribution for the uncertainty score 1, for uncertainty score 2 σ has to be changed to
σ2 = 0.12
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Figure 2.8: Distribution of initial inflow, transfer coefficients, and efficiencies for an input value of 0.4

Once this happens, the peak of the triangular distribution is set to the location of the original input
value. This is also the general behaviour of the triangular distribution assigned to inputs with the
uncertainty score 4 (see Figure 2.7 B and 2.8)

Examplary histograms of the resulting input distributions are shown in Appendix C. As those
examples show, not all histograms follow the defined distribution. This is due to the fact that transfer
coefficients which define the forking of one flow have to sum up to 1. This way, mass conversation is
insured. This is done after the random numbers are generated. It is necessary to generate a numbers
for all transfer coefficients to see the contribution to uncertainty of each single input.

2.4.3. Evaluation of Monte Carlo Simulations
The results of the Monte Carlo simulations which are going to consist of the results of n = 10, 000
individual runs are going to be used to attribute the uncertainty in the model to the inputs and to perform
a sensitivity analysis following the example of Fishman et al. (2018). The first step in the evaluation is to
find the correlation between all inputs and one or several selected outputs (e.g. the total use stock).
Although, the Pearson correlation obtains more precise results, it cannot be used because not all of the
inputs are normally distributed (see above) which is a necessary condition. Therefore, the Spearman
rank correlation is used (Gauthier, 2001). Therefore, the inputs have to be ranked as presented in the
following table:

Input Result
Year 0 ... Year 35

Value Rank Value Rank d ... Value Rank d
run 1 0.89 2 0.65 3 1 0.69 1 -1
run 2 0.85 3 0.66 2 -1 0.68 2 -1
...

...
...

...
...

...
...

...
...

run 1000 0.91 1 0.72 1 0 0.63 3 2

Table 2.5: Example Monte Carlo inputs and results including value and rank

The highest value receives the rank 1, the next largest value receives the rank 2, and so on. In the
following equations, inputs are represented by a and results by b, and the index i represents inputs,
the index r represents runs, and the index j represents years. To obtain the correlation, the difference
between the ranks of the input and the results have to be calculated (Cao et al., 2018):
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dirj = birj − air (2.3)

It is important to recognize, that the results change with each year while the input of the model stays
constant. Using d, the Spearman’s rank-correlation coefficient can be calculated where n is the number
of runs (Cao et al., 2018):

ρij =
1− 6

∑n
r=1 d

2
irj

n3 − n
(2.4)

On this basis, the uncertainty contribution of each input regarding the selected output can be
calculated. This is expressed by the normalized squares of the Spearman’s rank-correlation coefficients
(Cao et al., 2018):

Ci =
ρ2j∑n

i=1 ρ
2
ij

(2.5)

So, Ci represents the relative contribution of an input to the variance of the considered result
(uncertainty) (Cao et al., 2018).



3
Data

This chapter describes the origin of the used data. Assumptions were made since existing data sets
were extended and data on reuse is scarce. In the attempt to explicitly point out all assumptions, they
were highlighted in italic.

3.1. Data as present in the models
The used MaTrace model of Godoy León et al. (2020) takes the year 2015 as initial input year. Consid-
ering the eventful history of recent years and the mentioned drivers influenced by climate mitigation
policies, it is fair to assume that the situation has changed drastically (in the year 2022). However, the
choice of the initial input year is based on the previous work of the researchers.

Godoy León and Dewulf (2020) developed a framework to assess the quality of collected data and
applied the framework on cobalt. Therefore, they consulted over 330 sources and withdraw data from
76. Each obtained value received a Data Quality Rating (DQR) which is based on four to five criteria.
Based on this research, the most reliable data was selected to conduct the MaTrace model (Godoy León
et al., 2020).

The data used for the reuse model is withdrawn from the work of Glöser-Chahoud et al. (2019) who
applied the model of Thiébaud et al. (2017) on Europe. Since they use the year 2015 as the initial
year as well, the data of both models is compatible regarding temporal and regional scope. The data
set which combines the data from Godoy León et al. (2020) and Glöser-Chahoud et al. (2019) will be
referred to as Combined Data Set in the following.

3.2. Extending reuse data
The reuse model of Glöser-Chahoud et al. (2019) tries to cover consumer electronics in Europe by
considering smartphone, mobile phones, tablets and laptops. Although these devices cover the largest
share, they do not cover the whole landscape of devices requiring portable batteries. Furthermore, it
poses a rather homogeneous group regarding their lifetime distributions. In order to add diversity, I
decided to extend the data by three additional categories: cordless power tools, E-bikes and others.
This extended data set will be referred to as Extended Data Set in the following. The distribution of
the initial inflow will base on Pillot (2012) who provides the market share of different devices in MWh
battery capacity. It is assumed that the proportional capacity reflects the relative cobalt content.

Cordless power tools are used by professionals and consumers this includes tools such as drills
and saws, as well as gardening tools such as mowers and hedge trimmers (Union, 2006). Cordless
household tools will be considered in the same category.

The category Others will entail less significant electronics such as MP3 players, cameras and toys.

3.3. Data on E-bikes
Currently, data on E-bikes is scarce, contemporary studies focus on customers who recently bought an
E-bike and not on long term ownership patterns (Fyhri & Beate Sundfør, 2020). Additionally it needs to

26
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be considered, that data regarding the use and reuse of E-bike batteries needs to be derived and not
necessarily data on E-bikes themselves.

The only hard data available is the average ownership time of a bicycle, 8.3 years (Balton, 2022)
and the average lifetime of an E-bike battery which is 4.12 years (with an Weibull shape of 4.34) (Guo
et al., 2021). This means, that an E-bike owner will most likely use multiple batteries throughout the
lifetime of a bike. I assumed that this circumstance leads to a decreased probability for E-Bike batteries
to be reused. Therefore it is assumed that a total of 10% of firstly used batteries will be reused.

Regarding the share of devices entering the hibernating stock, it is considered, that size plays an
important role. Small items are more likely to be stored than large items (Thiébaud (-Müller) et al.,
2018). Since there is data on TV hibernation (Thiébaud et al., 2017) and since a TV is the device which
comes closest in size of all available ones to an E-bike battery, I assumed that E-bike batteries are
hoarded to the same extent as TVs.

Those assumptions inspired the transfer coefficients as presented in Table 3.1.

From To Coefficient

First service life
Secondary use 0.07
First storage 0.22
Disposal 0.71

Second service life
Tertiary use 0.03
Second storage 0.26
Disposal 0.71

Third service life Third storage 0.29
Disposal 0.71

First storage Secondary use 0.14
Disposal 0.86

Second storage Tertiary use 0.7
Disposal 0.93

Table 3.1: E-Bike transfer coefficients

The estimated lifetime of E-bike batteries are known and the assumption is established that only few
batteries are going to be reused. Therefore, the given average lifetime is assumed for the first use. The
Weibull scale is diminished to account for batteries leaving the stock and which are reused.

The lifetime for the second use is the same since it is assumed that customers buying E-bike
batteries second hand have a higher tolerance towards a diminished capacity. The third average service
lifetime is set to 2 years. This is based on the underlying assumption that batteries may not be fit for
purpose very long once they enter their third service life.

The hibernating times are made up based on the assumption that storage times of perishable
products should not be longer than their service time. The Weibull shapes are assumed to be the same
ones as for TVs.

Mean lifetime Weibull shape
First service life 4.12 3
Second service life 4.12 2.5
Third service life 2 1.5
First storage 2 1.7
Second storage 1.5 1.59
Third storage 1.5 1.59

Table 3.2: E-Bike lifespans

3.4. Data on cordless power tools
The estimated lifetime of batteries used in cordless power tools was found to be 10 year (Mudgal et al.,
2011). Therefore, i assumed that in private ownership the lifetime of the tool exceeds the lifetime of the
battery. Based on this I assumed that most batteries go to disposal, few to storage and only little to
reuse.
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The following transfer coefficient table is based on those assumptions.

From To Coefficient

First service life
Secondary use 0.05
First storage 0.15
Disposal 0.8

Second service life
Tertiary use 0.02
Second storage 0.2
Disposal 0.78

Third service life Third storage 0.3
Disposal 0.7

First storage Secondary use 0.1
Disposal 0.9

Second storage Tertiary use 0.05
Disposal 0.95

Table 3.3: Cordless power tools transfer coefficients

Regarding the Weibull shape of the lifetime it is set to be 1.5 for the first service life while it is smaller
for the followings based on assumptions hereafter. There are high frequency equipment users and
others who use it only rarely. Hence there is a discrepancy in lifetime among users. To model this, the
Weibull scale was reduced considering earlier failures. The storage periods are assumed to be longer
than for E-bikes, since it is assumed that tool owners have more space to store EOL products.

Mean lifetime Weibull shape
First service life 9 1.5
Second service life 5 1.2
Third service life 2 1.1
First storage 3 1.7
Second storage 2 1.59
Third storage 2 1.59

Table 3.4: Cordless power tools lifespans

3.5. Data on other cordless electronics
The category Others includes e.g., cameras, mp3 players, and similar devices. I assumed that those
devices are rather small and easy to store when they reached their EOL. Following this, I assumed that
they follow the use and storage behaviour of mobile phones as described by Thiébaud et al. (2017).

Transfer coefficients

From To Coefficient

First service life
Secondary use 0.05
First storage 0.15
Disposal 0.8

Second service life
Tertiary use 0.02
Second storage 0.2
Disposal 0.78

Third service life Third storage 0.3
Disposal 0.7

First storage Secondary use 0.1
Disposal 0.9

Second storage Tertiary use 0.05
Disposal 0.95

Table 3.5: Others electronics transfer coefficients
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The same assumption is applied to the lifetimes.

Weibull scale Weibull shape
First service life 3.27 2.13
Second service life 3.59 2.17
Third service life 3.59 2.17
First storage 2.16 1.17
Second storage 3.9 1.46
Third storage 3.9 1.46

Table 3.6: Others electronics lifespans



4
Results

In this chapter the results of the research will be presented following the order outlined in the method-
ology chapter (see Chapter 2 Methodology). First, the general model output will be described (see
Section 4.1). As the model is largely based on the work of other authors, this is followed by the results of
the impact analysis. I will present how the model and data extension alter the most important measure -
the total in-use stock (see Section 4.2.1). After this, the altered model (the Reuse-MaTrace mode) and
data set (the Extended Data Set) will be used for all further experiments. Also for the second part of
the impact analysis displaying the impact of adding a second and a third use cycle to the system (see
Section 4.2.2). The last part of this chapter covers the results of the Monte Carlo Simulations which
give insight into the uncertainties of the model inputs (see Section 4.3).

4.1. General model output
In this section, the general model output is described which refers to the model as it was presented in
Section 2.1 and Section 2.2 using Extended Data Set as it was described in Chapter 3. The general
model output is best described by the following figure because it represents the stocks and accumulated
outflows. This means that it displays the fate of the in-flowing cobalt in 2015 over the course of the next
35 years.
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Figure 4.1: Distribution of stocks and and accumulated outflows based on the cobalt inflow in 2015. The black dashed line marks
the total in-use stock. Areas in red with white stripes mark losses. First, second and third use of portable batteries is represented

by different shades of blue.
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The figure is an area chart in which stocks and accumulated outflows are stacked on top of each
other. The top layer always reaches 100 % which indicates that the graph covers all outflows considered
in the model. The red dashed line illustrates the percentage of the material which can be found in the
in-use stock. All areas below this line represent the in-use stock of the different product categories. The
product category Portable batteries is broken down into first, second, and third use since this is the
product category on which the reuse model was applied (see Figure 4.2 for breakdown into products).

The black areas with white stripes represent losses. Downcycling refers to the conversion of metals
and alloys to stainless steel (also see Section 2.1 and Godoy León et al. (2020)) and is considered to
be a loss. The two areas in between are hibernating stocks and exports. Those are not part of the
in-use stock nor the losses since exported materials and goods have the potential to be reused within
another geographical scope. The same holds true for hibernating stocks.

Figure 4.1 allows to draw conclusions regarding the overall dynamic of the model in combination
with the used data. Looking at the losses, it is apparent that non-selective collection makes up by
far the largest share of the losses (about 43 % of the former inflow in 2050) while recycling losses
(pre-treatment and recycling itself) account for only about 13 % of the former inflow in 2050. Production
losses appear to be very small in comparison.

Looking at exports and hibernating stocks it can be seen that hibernating stocks build up in the
beginning and slowly vanish towards the year 2050. The area of exports is constantly increasing until it
becomes, with about 30 %, the second largest in 2050.

Regarding the stocks of in-use product categories, it can be seen that most stocks deplete constantly.
Dissipative uses are the only exception from that behaviour, they make up 9 % of the inflowing material
in the year 2015 and the stock increases until it peaks with 9.8 % in the year 2021. It depletes from
there onwards and it can be observed that the stock of portable batteries depletes comparatively quick
until it is almost vanished in the year 2030. Although, the secondary in-use stock of portable batteries
covers a clearly visible area it is important to recognize that the stock of portable batteries experiencing
a third use-cycle can barely be seen.

Figure 4.2 was created in order to investigate the dynamic of the portable batteries stock. It is an
area chart displaying the in-use stock of the portable batteries split up in products and use cycles.
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Figure 4.2: Distribution of the in-use stock of portable batteries among products of the Reuse-MaTrace model using the
Extended Data Set which consists of the data of Godoy León et al. (2020), Glöser-Chahoud et al. (2019), and other collected data

(see Chapter 3). The individual use cycles are separated by texture and saturation.
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Besides the general stock distribution over products, several observations can be made. Firstly,
it can be seen that the second use phase holds significant shares for some product groups such as
smartphones and tablets. For other product groups such as power tool and e-bike batteries, the share
of the second use-phase is barely visible which is in line with the assumptions made in Chapter 3.
Furthermore, the share of the products in their third use phase can only be seen when zoomed in. This
observation gave the impulse to closer investigate the impact of the consideration of multiple use cycles
(for results see Section 4.2.2).

4.2. Impact analysis
In the following, I will investigate what impact it has to incorporate the reuse model into the existing
MaTrace model as created by (Godoy León et al., 2020). I explained in Section 2.3, that I will investigate
how the total in-use stock changes. First I will focus at the changes when the reuse model is integrated
into the MaTrace model (considering Combined Data Set and Extended Data Set), and secondly, on
how much the second and third use cycle add to the total in-use stock.

In order to put the deviation into perspective I decided to compare the points in time when the total
in-use stock hold 75%, 50%, and 25% of the inflow in 2015.

4.2.1. Model extension
As outlined above, the first impact to investigate is the extension of the MaTrace model by Godoy León
et al. (2020) by the reuse model. Figure 4.3 displays (a) the total in-use stock and (b) the in-use stock of
portable batteries of the MaTrace model by Godoy León et al. (2020) and the Reuse-MaTrace model
using Combined Data Set and Extended Data Set. The vertical lines mark the instances in time when
the in use-stock holds 75 %, 50 %, and 25 % of the in-use stock.
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Figure 4.3: Comparison of the total in-use stock (a) and the portable batteries in-use stock (b) of the MaTrace model by
Godoy León et al. (2020), the Reuse-MaTrace model using the Combined Data Set (green line, consisting of data of Godoy León
et al. (2020) and Glöser-Chahoud et al. (2019)), and the Reuse-MaTrace model using the Extended Data Set (red line, the data
set includes additional products for the product category portable batteries, see Chapter 3). The vertical lines marks the time

when the representative stock holds only 75 %, 50 %, and 25 % of the initial inflow.

Table 4.1 holds the stock depletion instances regarding the total in-use stock (as in Figure 4.3 A).
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Instant when the
in-use stock is depleted to:

75 % 50% 25 %
Year Deviation Year Deviation Year Deviation

MaTrace model by
Godoy León et al. (2020) 2018.0 0.0 2020.9 0.0 2029.4 0.0

Reuse-MaTrace model
(Combined Data Set) 2018.0 0.0 2022.2 1.3 2029.4 0.0

Reuse-MaTrace model
(Extended Data Set) 2018.4 0.4 2022.4 1.5 2029.6 0.2

Table 4.1: Comparison of instant of total in use-stock depletion by models and data sets. The decimal digits represent fractions of
years (not months). The deviations are based on the instances when the MaTrace model by Godoy León et al. (2020) is

considered. The Combined Data Set consists of data of Godoy León et al. (2020) and Glöser-Chahoud et al. (2019). The
Extended Data Set includes additional products for the product category portable batteries (see Chapter 3).

The figure and the table above display, that the deviation of stock-depletion instances regarding
the total in-use stock are very small at 75 % and 25 % (less than 0.5 years in both cases). At 50 %
the deviation from the MaTrace model by Godoy León et al. (2020) to the Reuse-MaTrace model using
Combined Data Set is 1.3 years and to the Reuse-MaTrace model using Extended Data Set 1.5 years.

These findings lead to the conclusion that the modeling changes do not impact the total use-stock in
all instances to the same extent. Figure 4.4 A displays the relative stock deviation of the Reuse-MaTrace
model using Combined Data Set and Extended Data Set in comparison to the MaTrace model by
Godoy León et al. (2020). The orange lines represent the instances when the total in-use stock of the
MaTrace model by Godoy León et al. (2020) holds 75 %, 50 %, and 25 %.
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Figure 4.4: Relative comparison of the total in-use stock (a) and the portable batteries in-use stock (b) of the MaTrace model by
Godoy León et al. (2020) (orange line), the Reuse-MaTrace model using the Combined Data Set (green line, consisting of data of
Godoy León et al. (2020) and Glöser-Chahoud et al. (2019)), and the Reuse-MaTrace model using the Extended Data Set (red
line, the data set includes additional products for the product category portable batteries, see Chapter 3). The vertical, orange

lines mark the instances in time when the stock of the MaTrace model by Godoy León et al. (2020) holds only 75 %, 50 %, and 25
% of the initial inflow (see Figure 4.3).

It can be seen, that both lines peak in the year 2021, which is the instance when the total in-use
stock of the MaTrace model by Godoy León et al. (2020) is depleted to 50 %. At this instance, the total
in-use stock of the Reuse-MaTrace model using the Combined Data Set is about 13 % larger and when
the Extended Data Set is applied it is about 11.5 % larger. Additionally, it can be seen that the total
in-use stock of the Reuse-MaTrace model using the Extended Data Set is constantly above 0, while the
line for the Combined Data Set goes goes below 0 in the very beginning. Therefore, I concluded that
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the total in-use stock over all increased for all instances when the MaTrace model by Godoy León et al.
(2020) is extended (the following section will discuss the actual impact of the consideration of multiple
use cycles).

Looking at Figure 4.3 B it can be seen that the stock behaviour of the different models is different
when only the in-use stock of portable batteries is considered. In contrast to the total in-use stock,
all lines are distinguishable from the very beginning and their deviation becomes larger till the point
when the in-use stock of portable batteries of the MaTrace model by Godoy León et al. (2020) is almost
depleted. Table 4.2 gives the instances when the potable batteries in-use stock of each model has
decayed to 75 %, 50 %, and 25 %.

Instant when the
in-use stock is depleted to:

75 % 50% 25 %
Year Deviation Year Deviation Year Deviation

MaTrace model by
Godoy León et al. (2020) 2017.2 0.0 2018.4 0.0 2019.8 0.0

Reuse-MaTrace model
(Combined Data Set) 2016.9 -0.3 2018.4 0.0 2020.5 0.7

Reuse-MaTrace model
(Extended Data Set) 2017.4 0.2 2019.0 0.6 2021.1 1.3

Table 4.2: Comparison of instants of portable batteries in-use stock depletion by models and data sets. The decimal digits
represent fractions of years (not months). The deviations are based on the instances when the MaTrace model by Godoy León

et al. (2020) is considered. The Combined Data Set consists of data of Godoy León et al. (2020) and Glöser-Chahoud et al.
(2019). The Extended Data Set includes additional products for the product category portable batteries (see Chapter 3).

The stock of all models reaches 75 % within a instant deviation of 0.5 years. When the stock decays
to 25 % it is already at 1.3 years. This difference is also reflected in Figure 4.4 B. It can be observed,
that the relative portable batteries in-use stock deviation for both data sets is increasing steeply, after
the line considering the Reuse-MaTrace model using the Combined Data Set reaches its minimum in
2017. Although, I am tempted to say, that the portable batteries stock increases almost exponentially
when reuse is considered in the model, the underlying reason for this behaviour needs to be understood.
After the year 2024 the portable batteries in-use stock of the MaTrace model by Godoy León et al.
(2020) is almost 0. Therefore, the values of the other models are many times larger which is why a
relative comparison is misleading in this case.

In conclusion I found that the total in-use stock as well as the portable battery in-use stock becomes
larger when reuse is considered in the modeling process. The following section illustrates the impact of
considering a second and a third use cycle.

4.2.2. Use cycle impact
This subsection presents the results of the impact analysis regarding the consideration of multiple use
cycles. As explained in Section 4.2.2, this analysis is based on the Reuse-MaTrace model applying the
Extended Data Set. The model was run, once considering only one use-cycle of portable batteries. The
results of this run were then used as a benchmark in the following. Then the model run considering two
use cycles and finally three use cycles. Those consecutive runs created the results represented here.

Figure 4.5 A displays the total in-use stock and B the in-use stock of portable batteries of the
Reuse-MaTrace model using the Extended Data Set considering one, two, and three use-cycles of for
products within the portable batteriers product category. The vertical lines mark the instances in time
when the in use-stock holds 75 %, 50 %, and 25 % of the in-use stock.
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Figure 4.5: Comparison of the total in-use stock (a) and the portable batteries in-use stock (b) of the Reuse-MaTrace model
when one use cycle (blue line), two use cycles (magenta line), or three use cycles (golden line) are considered. The vertical lines

mark the instances in time when the representative stock holds only 75 %, 50 %, and 25 % of the initial inflow.

Focusing on the total in-use stock (Figure 4.5 A) shows, that only the lines for one and three use
cycles are clearly distinguishable, since the line representing three use cycles appears to cover the line
representing two use cycles. This is also reflected in Table 4.3 which displays the instances when the
total in-use stock holds 75 %, 50 %, and 25 %. The instances when three use-cycles are considered
are always 0.1 years larger.

Instant when the
in-use stock is depleted to:

75 % 50% 25 %
Year Deviation Year Deviation Year Deviation

One use cycle 2018.5 0.0 2021.5 0.0 2029.4 0.0
Two use cycles 2018.9 0.4 2022.2 0.7 2029.5 0.1
Three use cycles 2019.0 0.5 2022.3 0.8 2029.6 0.2

Table 4.3: Comparison of instant of total in use-stock depletion by number of use cycles. The decimal digits represent fractions of
years (not months). The deviations are based on the instances when only one use cycle was considered.

The deviation of instances is the largest in the column presenting the instances for 50 % stock
depletion. So, it can be assumed that the impact of considering additional use-cycles for portable
batteries is the largest between the instant when the in-use stock holds 75 % and the instant when it
holds 25 %. This assumption gets confirmed by analysing Figure 4.6. The figure displays the relative
stock deviation of the results considering two and three use-cycle in comparison to the results when
only one use-cycle was considered. Figure 4.6 A displays the deviation of the total in-use stock where
the orange lines represent the instances when the total in-use stock holds 75 %, 50 %, and 25 % when
only one use cycle is considered.
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Figure 4.6: Relative comparison of the total in-use stock (a) and the portable batteries in-use stock (b) when one use cycle (blue
line), two use cycles (magenta line), or three use cycles (golden line) are considered. The vertical, blue lines mark the instances
in time when the stock of the Reuse-MaTrace model which considers only one use cycle holds only 75 %, 50 %, and 25 % of the

initial inflow (see Figure 4.5).

As it can be seen, both lines peak around the instance when the in-use stock is depleted by 50 %.
In this peak, the total in-use stock is about 8.5 % larger when three use-cycles are considered and
about 7.5 % larger when only two use-cycles are considered. Hence, considering the additional third
use-cycle results in an stock increase of 1 % which proofs that it does make a difference even though
this was not visible in Figure 4.5.

Focusing on the in-use stock behaviour of the portable batteries product category I found an overall
similar behaviour as for the previous impact analysis (see Section 4.2.1). Looking at Figure 4.5 B one
finds that the lines representing two and three use-cycles deviate early on from the line which represents
one use cycle. This deviation increases until the line representing one use-cycle starts to approach 0
% around the year 2022. This behaviour is also reflected in Table 4.4. The table gives the instances
when the potable batteries in-use stock of each considered case has decayed to 75 %, 50 %, and 25
%. The deviation between the portable battery stock for the case when one use-cycle and when three
use-cycles are considered is the smallest when 75 % of the initial stock is still in use and the largest
when only 25 % are left in use.

Instant when the
in-use stock is depleted to:

75 % 50% 25 %
Year Deviation Year Deviation Year Deviation

One use cycle 2017.2 0.0 2018.3 0.0 2019.9 0.0
Two use cycles 2017.7 0.5 2019.0 0.7 2021.1 1.2
Three use cycles 2017.8 0.6 2019.0 0.7 2021.3 1.4

Table 4.4: Comparison of instant of portable batteries in-use stock depletion by number of use cycles. The decimal digits
represent fractions of years (not months). The deviations are based on the instances when only one use cycle was considered.

When looking at Figure 4.6 B, the relative deviation of the portable batteries in-use stock behaves
similarly to the previous impact analysis (see Section 4.2.1, Figure 4.6). The steep growth in deviation
can be explained by the fact, that the in-use stock when one use cycle is considered converges earlier
to 0 the in the two other cases.
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4.3. Monte Carlo simulations
Section 2.4 discussed that the purpose of the Monte Carlo simulations and the analysis of the results is
to find the inputs which insert the greatest uncertainty into the model. This is measured with C (see
equation 2.5), the relative contribution of an input to the variance of the considered results. The variance
of the results is introduced by the randomization of the inputs before each run. Therefore, it is important
to be aware of the variance of the regarded result at each time since the relevance of a high C-value
vanishes when the variance in the model is very small. The result I deemed to be the most relevant
is the total in-use stock, since this is the most relevant measure regarding the resource efficiency of
materials, in this case cobalt.

Figure 4.7 displays the variance of the total in-use stock represented by several confidence bands.
Those bands base on quantiles. A quantile is calculated by arranging the results in ascending order
(e.g. the in-use stock of all runs in the year 2025). Considering that the Monte Carlo simulations
contain 10,000 runs, the 1 % quantile would be the 100th value of those ordered result. Hence, a
confidence band covers 98 % of all values between the 1 % quantile and the 99 % quantile. The wider
the confidence bands, the larger the variation in the results.
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Figure 4.7: Confidence bands of the total in-use stock derived from Monte Carlo simulations (a) and the absolute deviation of the
confidence bands from the median of the total in-use stock (b)

As the figure shows, there is no variation in 2015 because all models start with an inflow of 100
%. The confidence bands are especially wide between the years 2018 and 2020 (see Figure 4.7)
and become constantly narrower until the variance is very small in the year 2050. This alternation in
variance is important to consider in the following course. Besides the variation, the actual in-use stock
size is important to consider, if the stock is almost depleted in the year 2050, it is not expediently to
discuss which input inserts the most uncertainty into the model at this point in time. For this reason, the
following graphs contain a line indicating the total in-use stock (dashed red line) and a line indicating the
1 % to 99 % quantile uncertainty bandwidth (solid purple line). Here the bandwidth is defined as the
absolute difference between the 1 % quantile and the 99 % quantile per instance.

Figure 4.8 displays the relative contribution of the inputs to the variance (in the following uncertainty)
of the total in-use stock. The uncertainties of the inputs are summed by input vector (e.g. the sum of
the contribution of all recycling efficiencies instead of the contribution of recycling efficiency for portable
batteries, mobility batteries etc.).
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regarded instances.

The year 2015 is not represented since no uncertainty is present as explained, which can also be
seen in Figure 4.7 B. From 2016 onward, the most important contributor is η the distribution of the initial
inflow. Despite its decline it is deemed the most important one since it is especially strong, when the
total in-use stock is still high (consider the vertical lines in the graph) and when the variation (solid
purple line) in the total in-use stock is largest.

The second most important contributor is the Weibull scale of the in-use stock for all product
categories except portable batteries (all product categories where reuse is not considered). The lifetimes
of the larger share of the material is determined by this input, thus it is intuitive that it contributes to
the uncertainty in the system which also explains its increased importance. Most Weibull shapes β
are larger than 1 which means that the survival rate in the first few years is high (also see Figure 2.5).
The Weibull scale affects the point in time when the failure rate increases. Therefore, the contribution
to the uncertainty of these Weibull scales increase over time. Far less relevant are the next largest
contributors, Weibull shapes connected to the mentioned Weibull scales and the split of the material in
portable batteries over product δ. The contribution of the Weibull shape only becomes considerably
large after 2040, therefore, I will not discussed or considered it any further. At this point in time the
largest share of the stock is already depleted and the variation in the results is small in this period
(see Figure 4.7). Looking at the data (see Appendix A) it is explainable why δ holds some uncertainty.
Products have different lifetimes and transfer coefficients from a use phase to the next use phase and
from hibernating stocks to the next use phase. Some products have configurations which contribute
more to resource efficiency than others, to me it makes sense to see this reflected in the mapping of
uncertainties.

Since the main contributor η is significantly more impact full than all other inputs, it will be investigated
more closely. Figure 4.9 displays the uncertainties of the components of the vector η (material share
allocated to product category) ignoring all other sources of uncertainty.
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Figure 4.9: Share of uncertainty in total in-use stock by the split of the initial input over product categories. The dashed red line
represents the total in-use stock and the solid purple line represents the 1 % to 99 % quantile uncertainty bandwidth as measure

for the uncertainty present at the regarded instances.

Looking at the graph, some observations can be explained by consulting the input data while some
cannot. The most obvious detection is the increasing contribution of the initial share of superalloys to
the uncertainty of the total in-use stock. This is the product category with the longest expected lifetime.
Therefore, it is understandable that its share introduces uncertainty in the long run when all other stocks
are almost depleted. The same applies for the category pet precursors catalysts, the category with
the shortest lifetime. Hence, its share of the initial inflow determines the size of the total in-use stock
especially in the beginning. Other phenomena cannot be explained. For example the two occurrences
of dissipative uses. At this point I have to admit that the model might be too complex to fully comprehend
its dynamics and that I cannot fully explored them within the scope of this thesis.

In order to learn more about inputs having a smaller but considerable impact on the total in-use stock,
new C-values were calculated factoring out the three largest contributes. The results are presented in
Figure 4.10.
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Figure 4.10: Share of uncertainty in total in use-stock by input vectors excluding the three major uncertainty contributor.
Transparent contributors are not listed in the legend since their contribution was deemed too small. The dashed red line

represents the total in-use stock and the solid purple line represents the 1 % to 99 % quantile uncertainty bandwidth as measure
for the uncertainty present at the regarded instances.

The legend presents the six input vectors which hold the largest uncertainty on average. The split of
portable battery material to products was already discussed. The Weibull scale for the first use cycle of
portable batteries is the next largest contributor. This is in line with the findings above. The parameters
defining the lifetime are important. It is also reflected in the third largest parameter in Figure 4.10,
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the share of products containing portable batteries going directly to a second use cycle. This input is
important regarding the total lifetime of a product.



5
Discussion

Driven by future resource scarcity and the implications of raw material extraction this research was
conducted to extend and to improve an existing MaTrace model by adding a state of the art representation
of a circular strategy (see Table 1.1). Reuse was chosen as the strategy which lead to the following
main research question.

How to introduce reuse into a MaTrace model and how to evaluate it?

The first sub-research questions concerns the impact of this venture,:

To what extent is the outcome of the MaTrace model as described by Godoy León et al. (2020)
altered, when the reuse of consumer electronics is modelled following the approach of Thiébaud et al.
(2017)?

The second sub-research question is concerned with the uncertainties to gain an even better
understanding about the model behaviour:

Which input parameters introduce the most uncertainty into the Reuse-MaTrace model and what insights
can be derived from analysing uncertainties?

The following will discuss to what extent this research can answer those questions. In order to
answer the first part of the main research question, the modelling approach and its limitations will
be discussed. The used data, assumptions and uncertainties will be reviewed before diving into the
model output and impact answering the first sub-research question. In order to answer the second
sub-research question, the outcomes of the Monte Carlo simulations will be interpreted. On this basis
the second part of the main research question shall be answered.

The final section of this chapter entails recommendations and suggestions for further research.

5.1. Modeling approach and limitations of the model
The presented Reuse-MaTrace model combines two existing models. The novelty of this work is the
application of the two models in interrelation to each other. The MaTrace model by Godoy León et al.
(2020) describes the effects of the recycling of cobalt in the EU while the reuse model by Thiébaud et al.
(2017) adds another circular strategy to the model.

Although, reuse was considered in previous MaTrace models (Klose & Pauliuk, 2021; Pauliuk et al.,
2017; Zhang et al., 2019) this is the first model which follows the approach of Thiébaud et al. (2017)
considering individual use, reuse and hibernating times for different products and multiple use cycles.
Previous MaTrace implementations modeled reuse in a more simplistic way redirecting end-of-life
products back to the in-use stock without considering changes in lifetime.

41
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The two used models are very different in nature. The MaTrace model appears to be very technical
on first glance. It relies to a large extend on economic and technical input. The data origin of the
reuse model is based on the outcome of social scientific research while the model itself follows a
typical MFA approach. Therefore, the newly created model builds an important interface between
social science (e.g., lifetimes and reuse), economics (e.g., sales numbers and exports), and natural
science/engineering (e.g., recycling efficiencies).

As it was discussed in Section 5.3 the inputs originating from social science research namely the
lifetime of products containing portable batteries and the share of products being lost due to non-
selective collection determine to a large extend the resource efficiency of cobalt. The model has those
numbers as inputs but the underlying concepts and mechanisms are not reflected. Chapter 1 describes
that a product can become obsolete to the user for many reasons which determines at least the time
of a use-cycle if not the entire lifetime. Furthermore, the knowledge and perception towards waste
management determines (alongside with other factors) how well households are separating their waste.
Those concepts are not reflected in the model.

This critical property limits the usefulness of the Reuse-MaTrace model for decision and policy
makers. The necessary model input regarding those crucial factors can be gathered by conducting
interviews and surveys. So, it is possible to model a current state. Furthermore, it is possible to develop
desired states by applying scenarios with e.g., longer lifetimes or lower non-selective collection rates.
The model can present the current state and what needs to be achieved but not how to do so.

Another limitation of the model is its incompleteness assuming the target is to implement all possible
strategies as presented in the 9R-framework (see Table 1.1). The first cluster of suggested strategies
"Smarter product use and manufacture" holds strategies which impacts can be reflected via the input
data (e.g., R2: Reduce - lowering the inflow of new products). However, the strategies in the second
cluster "Extend lifespan of product and its parts" concern the fate of a product at its end of life. Thus,
those strategies can be integrated into the Reuse-MaTrace model. Figure 5.1 shows a simplified
conceptual integration of those strategies into the model.

Figure 5.1: Simplified conceptual integration of 9R strategies (in blue) into the Reuse-MaTrace model

Looking at this depiction it must be kept in mind that the representation is highly simplified and
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that integration of each strategy deserves as much or more thought than the integration of reuse.
Considering for example refurbishment, it has to be figure out to which use-cycle the refurbished product
can be matched. Is it a as good as new product, or may it become obsolete sooner due to one of the
various kinds of obsolescence (see Section 1.1.3)? It might also be that a separate in-use stock for
refurbished products has to be introduced since feeding the products back to any use-cycle may not
be an adequate modeling choice at all. Those kind of considerations have to be discussed in future
research.

The following section treats the used data and its inherent uncertainties since the results of the case
study and the Monte Carlos simulation depend to a large extend on this.

5.2. Used data and uncertainties
The data of the model originates from three different main sources. The data for the use phase of
non-consumer products, the end of life phase and the production phase are taken from Godoy León
et al. (2020) who gathered and assessed their data in their previous publication (Godoy León & Dewulf,
2020). The data for the use phase of portable batteries originates from Glöser-Chahoud et al. (2019)). I
extended this data set in order to introduce more diversity in product lifetimes (see Chapter 3).

The data quality and uncertainties were already discussed extensively in Section 2.4.2. As it can be
derived from the uncertainty scores (see Appendix B) the bigger share of the received scores are larger
than 2 which leads to the conclusion that the data quality is overall low. This has important implications
for multiple potential stakeholders as modelers who might have an interest to further develop the model
or who get inspired. It is important to recognize that this low availability of high quality data is a source
of uncertainty beyond the made assumptions and implications of the model itself. Although one might
intuitively think that expanding models might bring more precise results this does not necessarily hold
true when the additionally required data is as uncertain. Therefore, it is important to critically assess
data availability before taking the decision to apply parts of the model or to extend this model.

The knowledge and consideration of the data quality is equally important for model users who might
be in the position to communicate the results or who might base decision on the model output. It has
to be understood that the output can only be as good as the model itself in interrelation with the data
quality. When the model is applied on another use case it appears to be sensible to execute Monte
Carlo simulation as it was done in this research. This helps to gain an understanding about the possible
magnitude of the divergence between results and reality.

Although, other interested industrial ecologist may not plan to use the model or its results it is
important to realize how hard it is to find valid data to describe societies metabolism. Besides the
modeling of material flow, research regarding the accounting and quantification is still urgently needed.

5.3. Impact and model output
Looking at the impact of considering multiple use-cycles, it was found that the total in-use stock
increases by 8 % when three use cycles are considered instead of one. Even though, this result is only
representative for this specific case study, it shows the clear potential of reuse regarding the in resource
efficiency.

The general stock dynamics were described in Section 4.1 and several conclusions can be derived
from those and from Figure 4.1. There are four stocks which mainly define the total in-use stock:
portable batteries, dissipative uses, hard metals, and super alloys. The case of disspative uses was
discussed in Section 4.1. Looking at hard metals and super alloys, it became obvious that those stocks
deplete the slowest. The underlying reason for this is most likely their long lifetime. Furthermore, it
can be seen that the portable battery stock depletes the quickest, even though reuse is considered.
This dynamic has sever consequences regarding the total in-use stock and therefore for the resource
efficiency. Portable batteries make up the largest share of the original inflow.

Although, the consideration of reuse changes the magnitude of the total in-use stock significantly in
a relevant time frame of the considered period, it does not change the overall stock and flow dynamics.
The dynamics as described above are inline with the findings of Godoy León et al. (2020).

But the possibility of reusing products is also a symptom of another threat regarding resource
efficiency. Consumers discard functioning products due to various kinds of obsolescence as described
in Section 1.1.3. Makov and Fitzpatrick (2021) pointed out, that perceived obsolescence is normally
driven by non-technical aspects and consumers tent to underestimate the performance of products they
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perceive as obsolete.
Since this specific case study treats the reuse of portable batteries, it needs to be considered

that portable batteries are components with a rather short lifetime in comparison to other parts of the
products. Their expected lifetime lies within three to five years (Beaulieu, 2021). This means that some
batteries may have an actual potential to reach their technical end of life while the functional lifetime of
batteries also depends on the charging habits of the users.

Another outstanding finding reflected in Figure 4.1 is the distribution of losses and the fact that the
largest share of lost material is due to non-selective collection (this finding is as well in line with the
findings of Godoy León et al. (2020)). This misplacement of products into the wrong waste collection
stream is present for consumer products (portable batteries) but as well for catalysts and hard metals.
Hence, the largest loss in the system is not caused by technical limitations but by human error.

The next largest losses are pre-treatment, recycling, and production losses. This is the order in which
the processes (pre-treatment, recycling, and production) occur within the system. This circumstance
can explain the order of largest losses. By the time the material reaches the production, a large
share of it was already lost in the steps before. Therefore the share of production waste is small by
default. Therefore, one has to look at the actual efficiencies of the processes since Figure 4.1 might
be misleading in that regard. It can be said though, that an increase in recycling and production
efficiency can only lead to a relevant gain in overall resource efficiency once less material is lost due to
non-selective collection. The overall efficiency of a process chain is calculated via the product of all
efficiencies. Hence, all efficiencies have to be high to achieve an overall high efficiency.

Another large share is the accumulated share of exported material. It consist of EOL products,
secondary materials, and produced products. The whereabouts of that outflow are not treated by this
model.

In summary it can be said, that the consideration of reuse has a significant impact on the total in-use
stock. Furthermore, regarding this case study it can be said that further improvements of lifetimes and
the recycling performance could be achieved through a change in user behaviour.

5.4. Monte Carlo Simulations
Looking at the outcome of the Monte Carlos simulations regarding the total in-use stock, the main
contributor to uncertainty is easily identifiable. Figure 4.8 shows clearly that the split of the initial inflow
δ is the input vector which carries the most uncertainty by a large margin. The second most uncertain
input vector is the one defining the Weibull scales T for the product categories where products are not
reused (all except portable batteries). The Weibull scale defines the point in time when 63.2 % of the
stock is depleted. Therefore, it determines the survival curve of a product category to a large extent.
Considering the article of Miatto et al. (2017) as discussed in Section 1.1.5, it is surprising that Weibull
shapes do not contribute much uncertainty in this case study. The shapes of used survival curves are
commonly considered to be a source of uncertainty in MFA modelling. The low impact of the shape
(in this case) might be due to the variation mechanism used for Weibull shapes. If the initial Weibull
shape was larger then 1, the variations considered in the Monte Carlo simulations were limited to values
larger then 1. This was done to avoid too large variations in shapes. Hence, this finding may not be
generalizable.

Focusing on what can be said based on the results, it became clear by looking at Figure 4.9 that the
initial inflow distribution is so important because the lifetimes among the product categories differentiate
extremely. The product category with the longest lifetime is super alloys (T = 17.3) and the one with the
shortest is pet precursors catalyst (T = 0.57) (see Appendix A). The Weibull scales were varied by ±50
% which means that the longest lifetime could have never become the smallest and vise versa. Hence,
the split of the initial inflow δ contributes more to the variance of the result since this has a larger impact
on the survival of the total in-use stock then the variation of the survival curves itself.

Comparing the outcome of the Monte Carlo simulations with the results as presented in Section
4.1 and as discussed in Section 5.3 one might expect to see the largest loss due to non-selective
collection reflected. This is not the case. The collection-to-recycling rate σ is not even relevant in Figure
4.10 which displays minor contributors to the uncertainty in the in-use stock. There are two possible
explanations for this inconsistency in results. Firstly, its possible that the magnitude in variation of the
collection-to-recycling rate σ was too low. Looking at Table B.10 in Appendix B one finds that σ is rated
with an uncertainty score of 2 for many product categories including portable batteries (holding the
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largest share of the initial stock). σ is not varied very strongly due to this low uncertainty. Therefore, it
is possible that other inputs had a larger impact on the total in-use stock which is why no correlation
was found. Secondly, it could be that there is indeed no strong correlation. As explained in Section
5.3 it might be that a significant share of material is lost in the recycling process once a better waste
separation is achieved. Hence, it is possible that a local improvement does not advance the overall
performance of the system significantly.

The target of the Monte Carlo simulations was to learn more about the uncertainties of the model
itself. The approach taken was only successful to a limited extend since the largest reveled uncertainties
are still connected to the initial input data. This insight is not surprising considering the used approach.
The inputs were varied based on the estimated uncertainty in the input data. An variation mechanism
independent from the data quality might have revealed phenomena closer connected to the model itself
instead of the data. Furthermore, the consideration of other distributions to model survival curves may
have given interesting insights.

Furthermore, it would have been interesting to see the extension of the MaTrace model reflected in
the results. However, it is not necessarily bad that input parameters to the reuse part of the model were
not contributing much uncertainty. It could be prove that the extension by the reuse model changes
the results significantly (see Section above and Section 4.2.2). Therefore, it can be concluded that the
model extension adds detail without increasing the uncertainty significantly.

Another very important learning can be derived from the results of the Monte Carlo simulations:
The distribution of the material over the different product categories is more sensitive than the survival
curves of these categories. This has implications for different stakeholders. If modelers extend this
model they have to be aware that this input needs a lot of attention to determine the shares as accurate
as possible. Same holds true for model users applying the model to another context. In both cases it is
recommended to execute Monte Carlo simulations because as described, the uncertainties revealed
depend to an extend on the input data. Focusing on this specific case study one realizes that an
effective way to improve resource efficiency is to decrease the material inflow into product categories
with short lifetimes (e.g. pet precursors catalyst or portable batteries).

5.5. Recommendations
On the basis of the created model, the results, and the discussion multiple recommendations for further
research can be derived. To begin with, the model behaviour is not sufficiently explored yet although
Monte Carlo simulations were conducted. Therefore, I recommend to apply this model on other materials
and other geographic regions to test the model with diverse data sets.

Throughout this work, data and data quality played an important role. By scoring the data it became
clear that a large share of the inputs are rather uncertain. Therefore, more research and more data
collection has to be conducted to obtain high quality data.

Looking at the model itself, there are multiple possibilities to further extend the model. As suggested
in Section 5.1, the integration of the 9R framework into the model could be pushed by implementing
the strategies repair, refurbish, remanufacturing, or repurpose. A possible starting point to integrate
remanufacturing could be the work of Zhang et al. (2021) which integrated the reuse of old vehicle
engines in new vehicles into their MaTrace model.

The integration of reuse adds a dimension of consumer behaviour to the model. Although, this work
may be a step in the right direction it does not consider consumer behaviour sufficiently. Regarding
the results of the case study, a reoccurring finding is the potential influence of consumer behaviour.
Consumer behaviour influences the distribution of the initial inflow, lifetimes, hording times, reuse rates,
and waste separation - all key aspects regarding resource efficiency. Therefore, more research on how
to represent consumer behaviour in MFA models needs to be conducted.

Looking at the overall model output as presented in Figure 4.1, I found that exports make up a large
share in the long run. The whereabouts of the exports are admittedly a blind spot of this model. A model
solving this problem is MaTrace Global by Pauliuk et al. (2017). Therefore, combining the concepts
of Reuse-MaTrace and MaTrace Global might offer insights when investigating the impact of circular
strategies on a global scale.

The fact that MaTrace models generally only consider the inflow of one cohort is an obvious
weakness. Although, MaTrace models depend on dynamic stock modelling they only consider the inflow
of this single year while leaving other parameters as transfer coefficients and efficiencies static. This
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applies to this thesis as well. As MFA evolved from static to dynamic models, this process has to be
repeated for MaTrace models. Therefore, I recommend to create MaTrace models using time series
data, both for inflows and other model parameters.



6
Conclusion

The conviction that circular strategies have a positive impact on resource efficiency led to the research
objective; integrating a compelling reuse model into a MaTrace model. Reuse has been integrated into
MaTrace models before, but as described only in simplistic ways. Therefore, the research question asks:
How to introduce reuse into a MaTrace model and how to evaluate it?

The first part of this research question was answered methodologically: A state of the art reuse
model was found and integrated into the MaTrace model. Consumer goods present in the original
MaTrace model are portable batteries. The inflow into this product category was redirected into the
reuse model. There the inflow was split into a diverse group of consumer electronics which passed
through the reuse model. The outflow, the end of life products, of the reuse model were then fed back
into the original MaTrace model which represents the end of life treatment, recycling, and production.
The first sub-research question asked about the impact of the consideration of reuse. It was found that
the total in-use stock increases by 8 % in the peak when reuse is considered. Hence, it was concluded
that the consideration of reuse can have a significant impact on the modeled in-use stock. Beside this,
the gross stock dynamics remained intact. The overall findings are in line with the results of Godoy León
et al. (2020), the creator of the used MaTrace model.

The second part of the main research question on the evaluation of the model also inspired the
second sub-research question. It asked which inputs introduce the most uncertainty into the created
Reuse-MaTrace model. On this basis Monte Carlo simulations were conducted in order to gain insights
regarding the model behaviour. It was evaluated which model inputs have the largest impact on the total
in-use stock, since this was deemed the relevant measure regarding resource efficiency. An assigned
input uncertainty score defined how the inputs were varied. The results showed that the by far most
influential input parameter is the split of the inflow. This is due to the strongly diverging lifetimes among
product categories. This was followed by the lifetimes themselves.

The results of the conducted Monte Carlo simulations gave valuable insights since it identified the
most sensitive model inputs. However, the results appear to be strongly connected to the input data
and can be hardly generalized to describe the pure model behaviour. A more rigorous randomization
mechanism detached from data uncertainty may have served this purpose better.

On the basis of this work multiple ideas for further research came to mind. To start with, this work
added only one circular strategy to the MaTrace model. Other circular strategies can be implemented to
obtain a more complete representation of a circular economy.

Drawing a parallel of between the evolution of MaTrace models and the development of MFA in
recent decades, MaTrace models have to become dynamic. Therefore, I suggest the development of
MaTrace models using time series data for inflows and other model parameters.

Lastly, the integration of the reuse model added a dimension of consumer behaviour to MaTrace.
The results of the case study revealed that consumer behaviour also influences other parts of the model
as the waste treatment process. I recommend to find better ways to consider and represent consumer
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behaviour in MaTrace models. That way the interface between MFA modelling and social science can
grow and strengthen the interdisciplinarity in modelling society’s metabolism.
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A
Model input data

A.1. Use phase

Product categories Initial inflow split ε Weibull shape β Weibull scale T
portable batteries 0.412
mobility batteries 0.012 2.2 10.63150071
hydroprocessing catalysts coke 0.020 2.5 2.894741746
hydroprocessing catalysts poisoning 0.000 2.5 1.505265708
hydroformylation catalysts 0.003 2.5 2.315793397
pet precursors catalysts 0.017 2.5 0.578948349
dissipative uses 0.090 3.5 14.43516632
hard metals 0.230 1.16 8.915234823
magnets 0.006 1.93 13.90502246
other metallic uses 0.002 1.47 14.62806396
superalloys 0.208 1.74 17.28254338

Table A.1: Inputs initial flow split and Weibull parameters for all product categories except for portable batteries

Products Hoarding rate Hoarding time (years)
portable batteries 0.520 4
mobility batteries 0.000 0
hydroprocessing catalysts coke 0.000 0
hydroprocessing catalysts poisoning 0.000 0
hydroformylation catalysts 0.000 0
pet precursors catalysts 0.000 0
dissipative uses 0.000 0
hard metals 0.670 1
magnets 0.500 5
other metallic uses 0.500 5
superalloys 1.000 5

Table A.2: Inputs for hibernating stock of all product categories except for portable batteries

I



A.1. Use phase II

Products Split portable batteries to products δ
smartphones 0.185
mobile phones 0.018
tablets 0.173
laptops 0.350
e-bikes 0.063
power tools 0.041
others 0.170

Table A.3: Inputs split portable batteries to products

Products Weibull scale T Weibull shape β to use α to storage β
smartphones 2.500 1.700 0.400 0.400
mobile phones 2.000 1.600 0.400 0.500
tablets 4.000 2.000 0.300 0.400
laptops 5.000 2.000 0.200 0.400
e-bikes 4.614 3.000 0.070 0.220
power tools 9.970 1.500 0.050 0.150
others 3.270 2.130 0.210 0.460

Table A.4: Inputs reuse first life-cycle

Products Weibull scale T Weibull shape β to use γ
smartphones 2.500 1.700 0.500
mobile phones 3.500 1.900 0.500
tablets 3.000 1.800 0.300
laptops 3.000 1.800 0.300
e-bikes 2.242 1.700 0.140
power tools 3.362 1.700 0.100
others 2.160 1.170 0.060

Table A.5: Inputs hibernating stock after first use-cycle

Products Weibull scale T Weibull shape β to use α to storage β
smartphones 2.000 1.600 0.200 0.200
mobile phones 2.000 1.600 0.200 0.200
tablets 2.000 1.600 0.100 0.300
laptops 2.000 1.600 0.100 0.300
e-bikes 4.643 2.500 0.030 0.260
power tools 5.315 1.200 0.020 0.200
others 3.590 2.170 0.080 0.650

Table A.6: Inputs reuse second life-cycle



A.2. End-of-life phase III

Products Weibull scale T Weibull shape β to use γ
smartphones 2.000 1.600 0.200
mobile phones 2.000 1.600 0.200
tablets 2.000 1.600 0.300
laptops 2.000 1.600 0.300
e-bikes 1.672 1.590 0.700
power tools 2.229 1.590 0.050
others 3.900 1.460 0.190

Table A.7: Inputs hibernating stock after second use-cycle

Products Weibull scale T Weibull shape β to storage β
smartphones 1.5 1.6 0.3
mobile phones 1.5 1.6 0.3
tablets 2 1.6 0.4
laptops 2 1.6 0.4
e-bikes 2.215464335 1.5 0.29
power tools 2.072726825 1.1 0.3
others 3.59 2.17 0.7

Table A.8: Inputs reuse third life-cycle

Products Weibull scale T Weibull shape β
smartphones 2.000 1.600
mobile phones 2.000 1.600
tablets 1.000 1.500
laptops 1.000 1.500
e-bikes 1.672 1.590
power tools 2.229 1.590
others 3.900 1.460

Table A.9: Inputs hibernating stock after third use-cycle

A.2. End-of-life phase

Product categories
Fraction of collected EOL
products exported ψEOL

Collection to
recycling rate σ

Pre-treatment
efficiency λPT

portable batteries 0.200 0.640 0.950
mobility batteries 0.000 1.000 0.850
hydroprocessing catalysts coke 0.000 1.000 0.850
hydroprocessing catalysts poisoning 0.000 0.000 0.000
hydroformylation catalysts 0.000 0.900 0.850
pet precursors catalysts 0.000 0.500 0.850
dissipative uses 0.000 0.000 0.000
hard metals 0.000 0.470 0.770
magnets 0.000 0.990 0.650
other metallic uses 0.000 0.840 0.650
superalloys 0.300 0.810 0.650

Table A.10: Inputs collection and pre-treatment



A.3. Production IV

Product categories Chemical Zn Downcycling
portable batteries 1.000 0.000 0.000
mobility batteries 1.000 0.000 0.000
hydroprocessing catalysts coke 0.500 0.000 0.500
hydroprocessing catalysts poisoning 0.000 0.000 1.000
hydroformylation catalysts 1.000 0.000 0.000
pet precursors catalysts 0.000 0.000 1.000
dissipative uses 0.000 0.000 0.000
hard metals 0.630 0.370 0.000
magnets 0.000 0.000 1.000
other metallic uses 0.000 0.000 1.000
superalloys 0.610 0.000 0.390
Recycling efficiency 0.897 0.950

Table A.11: Inputs distribution to recycling processes B and recycling efficiency

Product categories Co metal or compound W-Co powder
portable batteries 0.000 0.000
mobility batteries 0.021 0.000
hydroprocessing catalysts coke 0.014 0.000
hydroprocessing catalysts poisoning 0.014 0.000
hydroformylation catalysts 0.005 0.000
pet precursors catalysts 0.024 0.000
dissipative uses 0.167 0.000
hard metals 0.313 1.000
magnets 0.017 0.000
other metallic uses 0.003 0.000
superalloys 0.423 0.000
Fraction of exported secondary material $\psi_{R} 0.133 0.000

Table A.12: Inputs distribution of secondary material and fraction of exported secondary material

A.3. Production



A.3. Production V
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B
Uncertainty scoring of Input uncertainty

scoring

Scores marked with a star (*) base on the evaluation of assessment of Godoy León and Dewulf (2020)
as follows:

• Uncertainty score 1: "Very high data quality"
• Uncertainty score 2: "High data quality"
• Uncertainty score 3: "Low data quality"
• Uncertainty score 4: "No data reported"

All other scores base on the perception of the author. The reasoning is explained in Section 2.4.2
and in the captions of the tables.

B.1. Use phase

Product categories Initial inflow split ε Weibull shape β Weibull scale T
portable batteries 2* 0* 0*
mobility batteries 2* 1* 4*
hydroprocessing catalysts coke 2* 2* 4*
hydroprocessing catalysts poisoning 2* 2* 4*
hydroformylation catalysts 2* 2* 4*
pet precursors catalysts 2* 1* 4*
dissipative uses 2* 2* 3*
hard metals 2* 1* 2*
magnets 2* 1* 2*
other metallic uses 2* 1* 2*
superalloys 2* 1* 2*

Table B.1: Input uncertainty scoring initial flow split and Weibull parameters for all product categories except for portable batteries

VI



B.1. Use phase VII

Products Hoarding rate Hoarding time (years)
portable batteries 0 0
mobility batteries 2* 2*
hydroprocessing catalysts coke 4* 4*
hydroprocessing catalysts poisoning 4* 4*
hydroformylation catalysts 4* 4*
pet precursors catalysts 4* 4*
dissipative uses 2* 2*
hard metals 3* 2*
magnets 4* 4*
other metallic uses 4* 4*
superalloys 3* 3*

Table B.2: Input uncertainty scoring for hibernating stock of all product categories except for portable batteries

Products Split portable batteries to products δ
smartphones 4
mobile phones 4
tablets 4
laptops 4
e-bikes 4
power tools 4
others 4

Table B.3: Input uncertainty scoring split portable batteries to products. The uncertainty is high. The split bases on a single
source and was adapted to fit the considered products. The split of portable batteries to products bases on one non-scientific

source and is therefore scored with 4.

Products Weibull scale T Weibull shape β to use α to storage β
smartphones 2 (a) 1 (a) 3 (b) 3 (b)
mobile phones 2 (a) 1 (a) 3 (b) 3 (b)
tablets 2 (a) 1 (a) 3 (b) 3 (b)
laptops 2 (a) 1 (a) 3 (b) 3 (b)
e-bikes 4 2 4 4
power tools 4 2 4 4
others 4 2 4 4

Table B.4: Input uncertainty scoring reuse first life-cycle. (a) the data bases on empirical studies, (b) the data bases on the
literature review and assumptions of Glöser-Chahoud et al. (2019), and the rest of the data bases on own assumptions.

Products Weibull scale T Weibull shape β to use γ
smartphones 2 (a) 1 (a) 3 (b)
mobile phones 2 (a) 1 (a) 3 (b)
tablets 2 (a) 1 (a) 3 (b)
laptops 2 (a) 1 (a) 3 (b)
e-bikes 4 2 4
power tools 4 2 4
others 4 2 4

Table B.5: Input uncertainty scoring hibernating stock after first use-cycle. (a) the data bases on empirical studies, (b) the data
bases on the literature review and assumptions of Glöser-Chahoud et al. (2019), and the rest of the data bases on own

assumptions.



B.1. Use phase VIII

Products Weibull scale T Weibull shape β to use α to storage β
smartphones 3 2 4 4
mobile phones 3 2 4 4
tablets 3 2 4 4
laptops 3 2 4 4
e-bikes 5 2 5 5
power tools 5 2 5 5
others 5 2 5 5

Table B.6: Input uncertainty scoring reuse second life-cycle. The data sources are the same as in Table B.4. It is assumed that
the certainty of the data gets worse in the second use cycle (also see Section 2.4.2).

Products Weibull scale T Weibull shape β to use γ
smartphones 3 2 4
mobile phones 3 2 4
tablets 3 2 4
laptops 3 2 4
e-bikes 5 2 5
power tools 5 2 5
others 5 2 5

Table B.7: Input uncertainty scoring hibernating stock after second use-cycle. The data sources are the same as in Table B.5. It
is assumed that the certainty of the data gets worse in the second use cycle (also see Section 2.4.2).

Products Weibull scale T Weibull shape β to storage β
smartphones 5 2 5
mobile phones 5 2 5
tablets 5 2 5
laptops 5 2 5
e-bikes 5 2 5
power tools 5 2 5
others 5 2 5

Table B.8: Input uncertainty scoring reuse third life-cycle. All inputs have the worst score possible. It is assumed that the base of
knowledge of the previous whereabouts of the product is very low.

Products Weibull scale T Weibull shape β
smartphones 5 2
mobile phones 5 2
tablets 5 2
laptops 5 2
e-bikes 5 2
power tools 5 2
others 5 2

Table B.9: Input uncertainty scoring hibernating stock after third use-cycle. It is assumed that the base of knowledge of the
previous whereabouts of the product is very low.



B.2. End-of-life phase IX

B.2. End-of-life phase

Product categories
Fraction of collected EOL
products exported ψEOL

Collection to
recycling rate σ

Pre-treatment
efficiency λPT

portable batteries 4* 2* 2*
mobility batteries 4* 4* 4*
hydroprocessing catalysts coke 4* 4* 4*
hydroprocessing catalysts poisoning 4* 4* 4*
hydroformylation catalysts 4* 4* 4*
pet precursors catalysts 4* 4* 4*
dissipative uses 4* 0* 0*
hard metals 4* 3* 1*
magnets 4* 2* 3*
other metallic uses 4* 2* 4*
superalloys 4* 2* 4*

Table B.10: Input uncertainty scoring collection and pre-treatment

Product categories Chemical Zn Downcycling
portable batteries 4* 4* 4*
mobility batteries 4* 4* 4*
hydroprocessing catalysts coke 3* 3* 3*
hydroprocessing catalysts poisoning 3* 3* 3*
hydroformylation catalysts 4* 4* 4*
pet precursors catalysts 4* 4* 4*
dissipative uses 0* 0* 0*
hard metals 3* 3* 3*
magnets 0* 0* 0*
other metallic uses 0* 0* 0*
superalloys 2* 2* 2*
Recycling efficiency 2* 2* 0*

Table B.11: Input uncertainty scoring distribution to recycling processes B and recycling efficiency

Product categories Co metal or compound W-Co powder
portable batteries 0* 0*
mobility batteries 4* 4*
hydroprocessing catalysts coke 4* 4*
hydroprocessing catalysts poisoning 4* 4*
hydroformylation catalysts 4* 4*
pet precursors catalysts 4* 4*
dissipative uses 4* 4*
hard metals 4* 4*
magnets 4* 4*
other metallic uses 4* 4*
superalloys 4* 4*
Fraction of exported secondary material $\psi_{R} 3* 4*

Table B.12: Input uncertainty scoring distribution of secondary material and fraction of exported secondary material

B.3. Production
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C
Monte Carlo simulations input

distributions

This appendix entails three graphs showing how those selected inputs were varied for the Monte Carlo
simulations.
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Figure C.1: Histogram (a) and defined distribution (b) of the transfer coefficient to use in the first use cycle for e-bikes. The actual
input value is 0.07 and the assigned uncertainty score is 4. As it can be seen, the histogram does not really match the defined
distribution. This is because the created value was normalized with other transfer coefficients to ensure that they sum up to 1.

This is done to insure mass conservation.
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Figure C.2: Histogram of the Weibull shape for the in-use time of hard metals. The actual input value is 1.16 and the uncertainty
score is 1. As it can be seen, there are no values below 1 (for explanation see Section 2.4.2).
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Figure C.3: Histogram (a) and defined distribution (b) of the efficiency of the production process for dissipative uses. The actual
input value is 0.97 and the assigned uncertainty score is 3. As it can be seen, the histogram follows the defined distribution (in

contrast to Figure C.1). This is because efficiencies do not have to be normalized with any other values.



D
Model application manual and description

of digital appendix

The model application manual can be found from the next page onwards. It consist out of a Jupyter
Notebook explaining how to use the model and how to use the provided scripts to execute Monte Carlo
simulations. The notebook is also provided as html file which can be opened in the browser. The names
of those files are:

• model_application_manual.ipynb
• model_application_manual.html

The digital appendix consists of multiple files and folders. The model itself is defined by the following
files:

• base_matrace_model.py
• base_reuse_model.py
• combined_reuse_matrace_model.py

The following files are needed to execute and evaluate the Monte Carlo simulations:

• functions.py
• monte_carlo_simulations.py
• monte_carlo_evaluation.py
• monte_carlo_uncertainty.py

Furthermore, there is a notebook (also as html) with all graphs used throughout this thesis:

• used_graphs.ipynb
• used_graphs.html

There are three folders in the digital appendix. The folder "data_cobalt_case_study" holds the data
used for the case study as well as the results of the Monte Carlo simulations. The folder "data_model"
holds exemplary data used in the model manual. The folder "monte_carlo_results" is necessary in order
to execute the Jupyter Notebook containing the model application manual.

XIII



Model application manual
This notebook describes how to apply the model on different data as presented in the thesis. It
will be explained:

How to create a data set readable by the model
How to execute the model itself
And how to conduct Monte Carlo Simulations with the provided code

How to create a readable data set

Creation of a readable data set
The created model requires an excel file in a specific format. A function was created to create a
plain excel file in the right format. The function requires a list entailing the product categories
which are treated by the model, a string naming the product category which flows into the
reuse part of the model, a list indication the products treated in the reuse part of the model,
and the number of considered use cycles in the reuse part. Furthermore, a file name has to be
provided. The created file will appear in the "data_model" folder.

All sheets of the file are empty and to be filled by the user.

Product categories share

0 electronics NaN

1 cars NaN

2 industrial applications NaN

To showcase how to input data, an example file will be considered.

Things to consider populating the data frame
A few sheets are presented as examples. In general, common-sense mistakes need to be
avoided.

In [ ]: from functions import input_file_creator 
 
input_file_creator( 
    product_categories=['electronics', 'cars', 'industrial applications'],  
    category_for_reuse='electronics', products=['shaver', 'phone', 'TV'], 
    considered_use_cycles=2, file_name = 'example_file_creator') 

In [ ]: import pandas as pd 
pd.read_excel('data_model/example_file_creator.xlsx') 

Out[ ]:

In [ ]: import os 
os.remove('data_model/example_file_creator.xlsx') 



Ensuring mass conservation when splitting the material flow

The following output shows the first sheet, the split of the initial inflow.

Product categories share

0 electronics 0.412

1 mobility batteries 0.012

2 hydroprocessing catalysts coke 0.020

3 hydroprocessing catalysts poisoning 0.000

4 hydroformylation catalysts 0.003

5 pet precursors catalysts 0.017

6 dissipative uses 0.090

7 hard metals 0.230

8 magnets 0.006

9 other metallic uses 0.210

The sum of this column has to equal 1.

1.0

The same holds true for the sheet "Reuse_inflow_split".

Product categories share

0 electronics 0.412

1 mobility batteries 0.012

2 hydroprocessing catalysts coke 0.020

3 hydroprocessing catalysts poisoning 0.000

4 hydroformylation catalysts 0.003

5 pet precursors catalysts 0.017

6 dissipative uses 0.090

7 hard metals 0.230

8 magnets 0.006

9 other metallic uses 0.210

And as well for the sheet "MaTrace_D_secondary_material". In this case, the last two rows need
to be excluded since the indicate the export and to production rate.

In [ ]: pd.read_excel('data_model/data_example.xlsx', sheet_name='MaTrace_initial_inflow') 

Out[ ]:

In [ ]: pd.read_excel('data_model/data_example.xlsx',  
    sheet_name='MaTrace_initial_inflow')['share'].sum(axis = 0) 

Out[ ]:

In [ ]: pd.read_excel('data_model/data_example.xlsx', sheet_name='MaTrace_initial_inflow') 

Out[ ]:



Product categories Co metal or compound W-Co powder

0 electronics 0.0000 0

1 mobility batteries 0.0210 0

2 hydroprocessing catalysts coke 0.0135 0

3 hydroprocessing catalysts poisoning 0.0135 0

4 hydroformylation catalysts 0.0050 0

5 pet precursors catalysts 0.0240 0

6 dissipative uses 0.1670 0

7 hard metals 0.3130 1

8 magnets 0.0170 0

9 other metallic uses 0.4260 0

10 export rate 0.1330 0

11 to production rate 0.8670 1

                    Product categories  Co metal or compound  W-Co powder 
0                          electronics                0.0000            0 
1                   mobility batteries                0.0210            0 
2       hydroprocessing catalysts coke                0.0135            0 
3  hydroprocessing catalysts poisoning                0.0135            0 
4           hydroformylation catalysts                0.0050            0 
5             pet precursors catalysts                0.0240            0 
6                     dissipative uses                0.1670            0 
7                          hard metals                0.3130            1 
8                              magnets                0.0170            0 
9                  other metallic uses                0.4260            0 

Sum of columns without export rate and to production rate: 
Product categories      electronicsmobility batterieshydroprocessing c... 
Co metal or compound                                                  1.0 
W-Co powder                                                             1 
dtype: object 

Furthermore, some transfer coefficients must sum up to 1. In the model one transfer coefficient
is sufficient to define a flow which splits into two. However, for the Monte Carlo simulations
both are needed.

The following cell shows the example of the sheet "MaTrace_end_of_life":

In [ ]: pd.read_excel('data_model/data_example.xlsx', 
    sheet_name='MaTrace_D_secondary_material') 

Out[ ]:

In [ ]: print(pd.read_excel('data_model/data_example.xlsx',  
    sheet_name='MaTrace_D_secondary_material').iloc[:-2, :]) 
print() 
print('Sum of columns without export rate and to production rate:') 
print(pd.read_excel('data_model/data_example.xlsx',  
    sheet_name='MaTrace_D_secondary_material').iloc[:-2, :].sum(axis=0)) 

In [ ]: pd.read_excel('data_model/data_example.xlsx', sheet_name='MaTrace_end_of_life') 

Out[ ]:



Product
categories

fraction
export eol

products

fraction
collected eol

products

collection to
recycling

rate

postconsumer
disposal rate

pre-
treatment
efficiency

Product
categories

fraction
export eol

products

fraction
collected eol

products

collection to
recycling

rate

postconsumer
disposal rate

pre-
treatment
efficiency

0 electronics 0.2 0.8 0.64 0.36 0.95

1 mobility batteries 0.0 1.0 1.00 0.00 0.85

2 hydroprocessing
catalysts coke 0.0 1.0 1.00 0.00 0.85

3
hydroprocessing

catalysts
poisoning

0.0 1.0 0.00 1.00 0.00

4 hydroformylation
catalysts 0.0 1.0 0.90 0.10 0.85

5 pet precursors
catalysts 0.0 1.0 0.50 0.50 0.85

6 dissipative uses 0.0 1.0 0.00 1.00 0.00

7 hard metals 0.0 1.0 0.47 0.53 0.77

8 magnets 0.0 1.0 0.99 0.01 0.65

9 other metallic
uses 0.0 1.0 0.84 0.16 0.65

The column "fraction export eol products" and "fraction collected eol products" as well as the
columns "collection to recycling rate" and "postconsumer disposal" have to sum up to 1 for
every product category.

Please also consult the system diagram or the excel file data_example.xlsx to find the respective
transfer coefficients.

Defining survival curves

The sheet "MaTrace_in_use_stock" show examples on how to define survival curves in the
model implementation:

Product categories distribution location scale shape

0 electronics normal 1 4.051716 2.09

1 mobility batteries weibull 0 10.631501 2.20

2 hydroprocessing catalysts coke gamma 0 2.894742 2.50

3 hydroprocessing catalysts
poisoning defined_distribution_example_dist 0 0.000000 0.00

4 hydroformylation catalysts lognormal 1 2.315793 2.50

5 pet precursors catalysts normal 0 0.578948 2.50

6 dissipative uses weibull 0 14.435166 3.50

7 hard metals gamma 0 8.915235 1.16

8 magnets gompertz 2 13.905022 1.93

In [ ]: pd.read_excel('data_model/data_example.xlsx', sheet_name='MaTrace_in_use_stock') 

Out[ ]:



Product categories distribution location scale shape

9 other metallic uses lognormal 0 14.628064 1.47

One can select a distribution via the column "distribution". The normal, lognormal, weibull,
gamma, and gompertz distribution are preimplemented. The location, scale and shape factors
can be set via the corresponding columns. It is also possible to define own distributions.

An example for this is the distribution for the product category "hydroprocessing catalysts
poisoning". The string says "defined_distribution_example_dist". This works in the following
way. A distribution is defined in the file "defined_distributions.xlsx" (see next cell).

example_dist example_dist_2

0 1.00 1.00

1 0.60 0.70

2 0.55 0.55

3 0.50 0.50

4 0.45 0.45

5 0.40 0.40

6 0.35 0.35

7 0.30 0.30

8 0.25 0.20

9 0.20 0.20

The file holds survival curves defined by the user. Only the first 10 lines are shown. It is
important that the distribution is defined for a sufficient number of years, meaning at least the
number of considered years.

To use this distribution in the model, one has to fill the column "distribution" with
"defined_distribution_column_name". Hence, when the entry in the column "distribution" says
"defined_distribution_example_dist", the defined distribution "example_dist" will be used for
this product category. If it says "defined_distribution_exmaple_dist_2" the distribution
"example_dist_2" will be used for the product category.

How to execute the model iteself
The first step to execute the model is to load the required data. The model receives a
dictionary as input which contains the sheets of the mentioned excel file as pandas data
frames. The following code cell creates this dictionary.

In [ ]: pd.read_excel('data_model/defined_distributions.xlsx').iloc[:10] 

Out[ ]:

In [ ]: file_path = 'data_model/data_example.xlsx' 
 
data_sheets = pd.ExcelFile(file_path).sheet_names 
 
 



Furthermore, the number of years and the start year have to be defined. A pandas dataframe
containing the "defined_distributions.xlsx" file has to be passed as well.

Optionally, one can decide to print the state to have an indication whether the model is stuck
or how long it will still run. One can also define whether the simplified model output shall
differentiate between use cycles. Lastly, one can select the number of considered use cycles
(default is 3).

The following code shows the execution of the model:

Year 1 of 25 
Year 2 of 25 
Year 3 of 25 
Year 4 of 25 
Year 5 of 25 
Year 6 of 25 
Year 7 of 25 
Year 8 of 25 
Year 9 of 25 
Year 10 of 25 
Year 11 of 25 
Year 12 of 25 
Year 13 of 25 
Year 14 of 25 
Year 15 of 25 
Year 16 of 25 
Year 17 of 25 
Year 18 of 25 
Year 19 of 25 
Year 20 of 25 
Year 21 of 25 
Year 22 of 25 
Year 23 of 25 
Year 24 of 25 
Year 25 of 25 

 
data_dic = {} 
 
for data_sheet in data_sheets: 
 
    try: 
        data_dic[data_sheet] = pd.read_excel(file_path,  
            sheet_name=data_sheet).set_index('Product categories') 
    except: 
        data_dic[data_sheet] = pd.read_excel(file_path,  
            sheet_name=data_sheet).set_index('Products') 

In [ ]: number_of_years = 25 
start_year = 2022 
defined_distributions_pd = pd.read_excel('data_model/defined_distributions.xlsx') 

In [ ]: from combined_reuse_matrace_model import evaluate_cohort_combined_model 
 
matrace_data_dic, reuse_data_dic, graph_data_pd = \ 
    evaluate_cohort_combined_model(data_dic=data_dic,  
        n_years=number_of_years, start_year=start_year, 
        defined_distributions_pd= defined_distributions_pd, 
        print_state=True, separate_reuse_graph=True, considered_use_cycles=3) 



The returned dictionaries "matrace_data_dic" and "reuse_data_dic" are structured in the same
way. The first key takes a string containing the considered year. The second key takes a string
indicating a stock or a flow in the year. This will then return a pandas containing the values
over product categories or products.

The following code cell shows the second keys of "matrace_data_dic".

Index(['U.A use stock', 'U.2 use outflow', 'U.3 hoarding inflow', 
       'U.4 no hoarding flow', 'U.B hoarding stock', 'U.5 hoarding outflow', 
       'U.6 eol products', 'E.2 exported eol products', 
       'E.1 to waste treatment', 'E.3 to pretreatment', 
       'E.4 E.5 non-selective collection', 'E.6 to recycling', 
       'E.7 pretreatment waste', 'E.12 downcycling', 'recycled w-co powder', 
       'co metal compound', 'E.8 recycling waste', 
       'E.11 exported recycled materials', 'P.1 total recycled products', 
       'P.8 export recycled products', 'U.1 product inflow', 
       'P.7 processing waste', 'P.5p downcycled scrap', 'P.4p disposed scrap', 
       'P.2 manufacturing waste', 'P.5m downcycled scrap', 
       'P.4m disposed scrap', 'P.4 disposed scrap', 'P.5 downcycled scrap'], 
      dtype='object')

And the following code cell shows the second keys of "reuse_data_dic".

Index(['total_use_stock', 'total_hoarding_stock', 'to_disposal_flow', 
       'use_stock_1', 'storage_stock_1', 'use_1_to_storage_1_flow', 
       'use_1_to_disposal_flow', 'storage_1_to_disposal_flow', 
       'use_1_to_use_2_flow', 'storage_1_to_use_2_flow', 'use_stock_2', 
       'storage_stock_2', 'use_2_to_storage_2_flow', 'use_2_to_disposal_flow', 
       'storage_2_to_disposal_flow', 'use_2_to_use_3_flow', 
       'storage_2_to_use_3_flow', 'use_stock_3', 'storage_stock_3', 
       'use_3_to_storage_3_flow', 'use_3_to_disposal_flow', 
       'storage_3_to_disposal_flow'], 
      dtype='object')

The following code cell shows the content.

Products 
computer       0.026567 
phone          0.045320 
fan            0.082400 
dish washer    0.185400 
e-bikes        0.024720 
power tools    0.019502 
Name: total_use_stock, dtype: float64

Products 
electronics                            0.38391 
mobility batteries                       0.012 
hydroprocessing catalysts coke            0.02 
hydroprocessing catalysts poisoning        0.0 
hydroformylation catalysts               0.003 
pet precursors catalysts                0.0085 

In [ ]: matrace_data_dic['0'].keys() 

Out[ ]:

In [ ]: reuse_data_dic['0'].keys() 

Out[ ]:

In [ ]: reuse_data_dic['0']['total_use_stock'] 

Out[ ]:

In [ ]: matrace_data_dic['0']['U.A use stock'] 

Out[ ]:



dissipative uses                          0.09 
hard metals                               0.23 
magnets                                  0.006 
other metallic uses                       0.21 
Name: U.A use stock, dtype: object

The retuned pandas dataframe "graph_data_pd" contains the stocks and the accumulated
outflows.

Electronics
1st use

Electronics
2nd use

Electronics
3rd use

Mobility
batteries

Hydroprocessing
catalysts coke

Hydroprocessing
catalysts

poisoning

Hydroform
ca

Year

2022 0.377540 0.005548 0.000821 0.012176 0.020113 0.000113 0

2023 0.281169 0.017890 0.001593 0.012589 0.020090 0.000421 0

2024 0.199773 0.026279 0.002235 0.012901 0.019297 0.000728 0

2025 0.142881 0.031148 0.002443 0.012958 0.017849 0.000909 0

2026 0.106036 0.032665 0.002545 0.012749 0.016026 0.001010 0

2027 0.083086 0.031205 0.002917 0.012286 0.014056 0.001063 0

2028 0.068224 0.028201 0.003453 0.011605 0.012104 0.001080 0

2029 0.057489 0.024919 0.003829 0.010758 0.010275 0.001073 0

2030 0.047519 0.021968 0.003884 0.009806 0.008634 0.001056 0

2031 0.041138 0.019131 0.003691 0.008783 0.007190 0.001019 0

2032 0.034343 0.016645 0.003386 0.007755 0.005957 0.000974 0

2033 0.028269 0.014450 0.003054 0.006757 0.004920 0.000924 0

2034 0.022851 0.012621 0.002727 0.005817 0.004056 0.000861 0

2035 0.018026 0.011123 0.002423 0.004960 0.003344 0.000788 0

2036 0.014967 0.009819 0.002153 0.004191 0.002755 0.000703 0

2037 0.012373 0.008728 0.001925 0.003523 0.002274 0.000615 0

2038 0.010187 0.007783 0.001740 0.002954 0.001882 0.000538 0

2039 0.008353 0.006950 0.001594 0.002477 0.001563 0.000472 0

2040 0.006823 0.006196 0.001475 0.002081 0.001302 0.000416 0

2041 0.005552 0.005507 0.001374 0.001758 0.001089 0.000368 0

2042 0.004501 0.004883 0.001281 0.001493 0.000916 0.000327 0

2043 0.003637 0.004319 0.001191 0.001278 0.000773 0.000291 0

2044 0.002928 0.003814 0.001101 0.001101 0.000656 0.000258 0

2045 0.002350 0.003365 0.001011 0.000955 0.000559 0.000230 0

2046 0.001880 0.002968 0.000923 0.000834 0.000479 0.000204 0

In [ ]: graph_data_pd 

Out[ ]:



It is easily possible to create a stacked area chart out of it.

How to conduct Monte Carlo simulations with the
provided code
The code to conduct Monte Carlo simulations consists of three files which need to be executed
one after another:

monte_carlo_simulations.py
monte_carlo_evaluation.py
monte_carlo_uncertainty.py

In the following it will be discussed what each file does and how to use it. To do so, files and
the data used in the cobalt case study will be used. Each of the files has the variable
"proof_of_concept" in the very top. If this is "True", an exemplary Monte Carlo simulation and
evaluation considering 10 runs will be conducted. If it is set to "False" the results as presented
in the thesis will be reproduced.

In [ ]: import matplotlib.pyplot as plt 
 
plt.rcParams["figure.figsize"] = [10, 7] 
graph_data_pd.plot.area() 
 
plt.legend(reversed(plt.legend().legendHandles), reversed( 
    graph_data_pd.columns), bbox_to_anchor=(1.05, 1)) 
 
plt.ylabel('Stock distribution by product categories and losses in %') 
plt.tight_layout() 
plt.show() 



Executing "monte_carlo_simulations.py"
At the start of the file, the user can adjust the settings. Those are the number of runs ("n_runs"),
the number of the considered years ("n_years"), the start year ("start_year"), and the number of
the considered use cycles ("considered_use_cycles").

Then, the data to be loaded needs to be specified. Firstly, the file entailing the survival curves
designed by the user has to be loaded (see above). Secondly, the path to the input data
(format as described above) has to be specified. Lastly, the excel file containing the uncertainty
rating has to be set.

This file must entail the same sheet names as the input file. Instead of the data, the colums
must hold the uncertainty score (0 to 5, as explained in the main body of the thesis).

If an input shall not be varied, the column can be either deleted from the file holding the
uncertainty scores, or all values can be set to 0. Only numerical inputs can be considered.

The following cell shows one sheet of the excel holding the input data. The next one shows the
uncertainty ratings of those inputs.

Product categories distribution location scale shape

0 portable batteries weibull 0 4.051716 2.09

1 mobility batteries weibull 0 10.631501 2.20

2 hydroprocessing catalysts coke weibull 0 2.894742 2.50

3 hydroprocessing catalysts poisoning weibull 0 1.505266 2.50

4 hydroformylation catalysts weibull 0 2.315793 2.50

5 pet precursors catalysts weibull 0 0.578948 2.50

6 dissipative uses weibull 0 14.435166 3.50

7 hard metals weibull 0 8.915235 1.16

8 magnets weibull 0 13.905022 1.93

9 other metallic uses weibull 0 14.628064 1.47

10 superalloys weibull 0 17.282543 1.74

In [ ]: # The folder holding the results of the following demonstration 
# needs to be deleted in order to be created and populated. 
# This is a necessary step but not relevant in the context of  
# the explenation. 
import shutil 
try: 
    shutil.rmtree('monte_carlo_results/proof_of_concept/') 
except: 
    print('Dictionary does not excist.') 

In [ ]: pd.read_excel('data_cobalt_case_study/data_input_cobalt_extended_data_set.xlsx', sh

Out[ ]:

In [ ]: pd.read_excel( 
    'data_cobalt_case_study/data_uncertainty_rating_cobalt_case_study.xlsx', 
    sheet_name='MaTrace_in_use_stock') 



Product categories shape scale

0 portable batteries 0 0

1 mobility batteries 1 4

2 hydroprocessing catalysts coke 2 4

3 hydroprocessing catalysts poisoning 2 4

4 hydroformylation catalysts 2 4

5 pet precursors catalysts 1 4

6 dissipative uses 2 3

7 hard metals 1 2

8 magnets 1 2

9 other metallic uses 1 2

10 superalloys 1 2

As it can be seen, only the uncertainty scores for the columns "shape" and "scale" appear. This
is intended since only numerical values can be varied by this implementation and the location
of the Weibull distribution is a factor which was not considered.

Once the paths and the settings are defined, the script can be run. The next cell executes the
script for 10 runs.

Creating dictionary for results. Path: monte_carlo_results/proof_of_concept 
Importing data 
Creating inputs for Monte Carlo simulations based on uncertainty score 
Normalize inputs 

c:\Users\rapha\Desktop\master_thesis_hand_in\monte_carlo_simulations.py:154: Perfor
manceWarning: indexing past lexsort depth may impact performance. 
  for column in input_pd.loc[:, ("MaTrace_initial_inflow", "share")].columns: 
Starting runs 
Run 1 of 10 
Mass balance run 0: True 
Run 2 of 10 
Mass balance run 1: True 
Run 3 of 10 
Mass balance run 2: True 
Run 4 of 10 
Mass balance run 3: True 
Run 5 of 10 
Mass balance run 4: True 
Run 6 of 10 
Mass balance run 5: True 
Run 7 of 10 
Mass balance run 6: True 
Run 8 of 10 
Mass balance run 7: True 
Run 9 of 10 
Mass balance run 8: True 
Run 10 of 10 
Mass balance run 9: True 
Total time - seconds: 21,  hours: 0.005833333333333334 

Out[ ]:

In [ ]: %run monte_carlo_simulations.py 



Time per run: 2.1 
Inputs and results are stored. 

The printed output reflects the steps of the code. After the data is imported, random numbers
following the defined distributions are created. Since some split vectors and transfer
coefficients will not sum up to 1 anymore (see above) they have to be normalized. Afterwards,
the experiments are run. The data is collected in a dictionary. If several thousand runs are
executed, the dictionary is dumped in splits to decrease the runtime.

The results and a file containing the used model inputs can be found in the folder
"monte_carlo_results/proof_of_concept".

The following cell shows part of the saved inputs. The rows represent runs.

sheet

column

item portable
batteries

mobility
batteries

hydroprocessing
catalysts coke

hydroprocessing
catalysts

poisoning

hydroformylation
catalysts

pet
precursors

catalysts

diss

0 0.195626 0.069050 0.049883 0.023999 0.059167 0.004703 0.0

1 0.221689 0.031145 0.057574 0.063652 0.049747 0.142862 0.0

2 0.203971 0.067055 0.028344 0.034823 0.238051 0.132933 0.0

3 0.411710 0.092229 0.039897 0.041033 0.107387 0.019387 0.0

4 0.279781 0.026076 0.036750 0.036071 0.015810 0.016235 0.0

5 0.282791 0.069646 0.045512 0.080305 0.017813 0.049054 0.0

6 0.321172 0.040106 0.077813 0.053932 0.036862 0.058657 0.0

7 0.252250 0.032541 0.046556 0.083294 0.096109 0.016466 0.0

8 0.267555 0.034854 0.015555 0.001666 0.069714 0.074432 0.0

9 0.326831 0.035760 0.133187 0.041984 0.067035 0.004005 0.0

10 rows × 541 columns

The results are saved in the form of nested dictionaries:

The fist key represents runs:

dict_keys(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'])

In [ ]: import pickle 
with open('monte_carlo_results/proof_of_concept/inputs.pkl', 'rb') as f: 
    input_pd = pickle.load(f) 
input_pd 

Out[ ]:

In [ ]: with open('monte_carlo_results/proof_of_concept/results.pkl', 'rb') as f: 
    results_dic = pickle.load(f) 

In [ ]: results_dic.keys() 

Out[ ]:



The second part specifies from which part of the model the data is coming from:

dict_keys(['matrace_data_dic', 'reuse_data_dic'])

Since this data structure is hard to handle, the script "monte_carlo_evaluation.py" serves the
purpose to transfer the data into multidimensional pandas data frames.

Executing "monte_carlo_evaluation.py"
In order to execute this script, one has to adjust the settings in the beginning of the file so they
are the same as the used ones in "mone_carlo_simulations.py". The path to the results has to
be defined. Then the file is ready to be executed.

Loading file: 
Create dictionary: 
Start treating data 
run 1 of 10 
run 2 of 10 
run 3 of 10 
run 4 of 10 
run 5 of 10 
run 6 of 10 
run 7 of 10 
run 8 of 10 
run 9 of 10 
run 10 of 10 
Compact results are stored. 

This script creates the multidimensional pandas data frame 'compact_results'. The first key
entails the runs, the second the stock or flow, and the third one the product or the product
category.

run

stock_flow total_use_stock t

item sum smartphones mobile
phones tablets laptops e-bikes power

tools others

2015 0.195626 0.057242 0.047268 0.02614 0.048304 0.001794 0.006937 0.007942

2016 0.177952 0.053884 0.036155 0.02468 0.047307 0.001774 0.006729 0.007423 0.01

2017 0.1475 0.046705 0.021888 0.020836 0.044188 0.001634 0.006348 0.005901 0.02

2018 0.116835 0.037369 0.012804 0.015898 0.039273 0.001304 0.005903 0.004284 0.04

2019 0.090162 0.027998 0.008145 0.011246 0.033273 0.000864 0.005448 0.003187 0.04

In [ ]: results_dic['0'].keys() 

Out[ ]:

In [ ]: %run monte_carlo_evaluation.py 

In [ ]: with open('monte_carlo_results/proof_of_concept/compact_results.pkl',  
    'rb') as f: 
    compact_results = pickle.load(f) 
compact_results 

Out[ ]:



run

stock_flow total_use_stock t

item sum smartphones mobile
phones tablets laptops e-bikes power

tools others

2020 0.069089 0.020143 0.006213 0.007728 0.027022 0.000502 0.005007 0.002473 0.04

2021 0.053197 0.01421 0.00547 0.005481 0.021222 0.000322 0.00459 0.001902 0.04

2022 0.041158 0.009933 0.004847 0.004179 0.016291 0.000263 0.004195 0.00145 0.03

2023 0.031819 0.006883 0.003998 0.003389 0.012354 0.000232 0.003823 0.001141 0.03

2024 0.024471 0.004703 0.003038 0.002799 0.009323 0.000194 0.003472 0.000942 0.02

2025 0.01869 0.003151 0.002168 0.002264 0.007016 0.00015 0.003139 0.000802 0.02

2026 0.014169 0.002059 0.001487 0.001757 0.005248 0.000108 0.002824 0.000686 0.01

2027 0.010659 0.00131 0.000997 0.001299 0.003875 0.000073 0.002528 0.000577 0.01

2028 0.007954 0.000811 0.000655 0.000915 0.002804 0.000046 0.00225 0.000472 0.00

2029 0.005892 0.000489 0.00042 0.000614 0.001976 0.000027 0.001991 0.000375 0.00

2030 0.004344 0.000287 0.00026 0.000393 0.001349 0.000015 0.001752 0.000288 0.00

2031 0.003204 0.000165 0.000153 0.00024 0.000891 0.000008 0.001532 0.000213 0.00

2032 0.002377 0.000092 0.000086 0.00014 0.000569 0.000004 0.001332 0.000153 0.00

2033 0.001785 0.00005 0.000046 0.000078 0.000351 0.000002 0.001152 0.000106 0.00

2034 0.001363 0.000027 0.000023 0.000042 0.00021 0.000001 0.00099 0.000071 0.00

2035 0.001061 0.000014 0.000011 0.000021 0.000121 0.0 0.000847 0.000046 0.00

2036 0.00084 0.000007 0.000005 0.00001 0.000068 0.0 0.000721 0.000029 0.00

2037 0.000675 0.000004 0.000002 0.000005 0.000037 0.0 0.00061 0.000018 0.00

2038 0.000549 0.000002 0.000001 0.000002 0.000019 0.0 0.000515 0.00001 0.00

2039 0.00045 0.000001 0.0 0.000001 0.00001 0.0 0.000432 0.000006 0.00

2040 0.000371 0.0 0.0 0.0 0.000005 0.0 0.000361 0.000003 0.00

2041 0.000306 0.0 0.0 0.0 0.000002 0.0 0.000301 0.000002 0.00

2042 0.000252 0.0 0.0 0.0 0.000001 0.0 0.00025 0.000001 0.00

2043 0.000208 0.0 0.0 0.0 0.000001 0.0 0.000207 0.000001 0.00

2044 0.000171 0.0 0.0 0.0 0.0 0.0 0.000171 0.0 0.00

2045 0.000141 0.0 0.0 0.0 0.0 0.0 0.00014 0.0 0.00

2046 0.000115 0.0 0.0 0.0 0.0 0.0 0.000115 0.0 0.00

2047 0.000094 0.0 0.0 0.0 0.0 0.0 0.000094 0.0 0.00

2048 0.000077 0.0 0.0 0.0 0.0 0.0 0.000077 0.0 0.00

2049 0.000063 0.0 0.0 0.0 0.0 0.0 0.000063 0.0 0.00

2050 0.000051 0.0 0.0 0.0 0.0 0.0 0.000051 0.0 0.00

36 rows × 5240 columns



Executing "monte_carlo_uncertainty.py"
In order to execute this script, one has to adjust the settings in the beginning of the file so they
are the same as the used ones in "mone_carlo_simulations.py" and
"monte_carlo_evaluation.py". The path to the results has to be defined. Then the file is ready to
be executed.

The file calculates for all considered years the spearman correlation and the normalized
spearman square correlation between all inputs and the total in-use stock, the total hibernating
stock, the total disposal flow, and the total export flow.

The results are written into the files "monte_carlo_results" (results of mentioned stocks and
flows over years and runs), "speaman_results_abs" (spearman correlation between inputs and
outputs over years) and "spearman_results_normalized" (normalized spareman square
correlation between inputs and outputs over years).

Calculate spearman correlation between inputs and: 
['total_use_stock', 'total_hoarding_stock', 'to_disposal_flow', 'U.B hoarding stoc
k', 'U.A use stock', 'total_export', 'total_disposal'] 
Year 1 of 36 

c:\Users\rapha\.conda\envs\master_thesis\lib\site-packages\scipy\stats\stats.py:448
4: SpearmanRConstantInputWarning: An input array is constant; the correlation coeff
icient is not defined. 
  warnings.warn(SpearmanRConstantInputWarning()) 
Year 2 of 36 
Year 3 of 36 
Year 4 of 36 
Year 5 of 36 
Year 6 of 36 
Year 7 of 36 
Year 8 of 36 
Year 9 of 36 
Year 10 of 36 
Year 11 of 36 
Year 12 of 36 
Year 13 of 36 
Year 14 of 36 
Year 15 of 36 
Year 16 of 36 
Year 17 of 36 
Year 18 of 36 
Year 19 of 36 
Year 20 of 36 
Year 21 of 36 
Year 22 of 36 
Year 23 of 36 
Year 24 of 36 
Year 25 of 36 
Year 26 of 36 
Year 27 of 36 
Year 28 of 36 
Year 29 of 36 
Year 30 of 36 
Year 31 of 36 
Year 32 of 36 

In [ ]: %run monte_carlo_uncertainty.py 



Year 33 of 36 
Year 34 of 36 
Year 35 of 36 
Year 36 of 36 
Export Monte Carlo results 
Export spearman absolute results 
Export spearman normalized results

The following cell shows a part of the table displaying the normalized square spearmen
correlation.

result_item

sheet

column

item portable
batteries

mobility
batteries

hydroprocessing
catalysts coke

hydroprocessing
catalysts

poisoning

hydroformylation
catalysts

pet
precursors

catalysts

d

0 2.045029 0.114251 0.081801 0.138889 0.033126 0.138889

1 1.986973 0.039561 0.062895 0.081441 0.039561 0.179560

2 1.887136 0.012615 0.032919 0.021573 0.012615 0.151159

3 1.887136 0.012615 0.032919 0.021573 0.012615 0.151159

4 1.887136 0.012615 0.032919 0.021573 0.012615 0.151159

5 1.949861 0.081918 0.021740 0.039793 0.009102 0.195656

6 1.949861 0.081918 0.021740 0.039793 0.009102 0.195656

7 1.956062 0.228274 0.021809 0.055012 0.000679 0.092442

8 1.812508 0.063447 0.001886 0.000075 0.009129 0.103281

9 1.887136 0.012615 0.032919 0.021573 0.012615 0.151159

10 1.769097 0.000663 0.005964 0.008910 0.021281 0.206843

11 1.643312 0.001850 0.001850 0.003627 0.053960 0.177721

12 1.331594 0.053264 0.038651 0.003580 0.089504 0.190040

13 1.331594 0.053264 0.038651 0.003580 0.089504 0.190040

14 1.305751 0.021333 0.090426 0.021333 0.039049 0.207352

15 1.049711 0.001853 0.352918 0.101480 0.026760 0.071236

16 1.049711 0.001853 0.352918 0.101480 0.026760 0.071236

17 1.049711 0.001853 0.352918 0.101480 0.026760 0.071236

18 1.200942 0.012583 0.334245 0.091212 0.000670 0.054280

19 0.971130 0.033540 0.549488 0.182605 0.040232 0.012853

20 1.022361 0.209790 0.442806 0.062810 0.054445 0.000075

In [ ]: with open( 
    'monte_carlo_results/proof_of_concept/spearman_results_normalized.pkl', 
     'rb') as f: 
    spearman_results_normalized_pd= pickle.load(f) 
spearman_results_normalized_pd 

Out[ ]:



result_item

sheet

column

item portable
batteries

mobility
batteries

hydroprocessing
catalysts coke

hydroprocessing
catalysts

poisoning

hydroformylation
catalysts

pet
precursors

catalysts

d

21 1.079578 0.292661 0.351060 0.012461 0.021310 0.001843

22 1.079578 0.292661 0.351060 0.012461 0.021310 0.001843

23 0.962534 0.424015 0.379993 0.016961 0.092341 0.003694

24 0.893307 0.569097 0.400676 0.054812 0.102932 0.006090

25 0.893307 0.569097 0.400676 0.054812 0.102932 0.006090

26 0.752894 0.666098 0.274632 0.000664 0.311830 0.001845

27 0.752894 0.666098 0.274632 0.000664 0.311830 0.001845

28 0.880273 0.697121 0.136994 0.003630 0.294067 0.026747

29 0.880273 0.697121 0.136994 0.003630 0.294067 0.026747

30 0.880273 0.697121 0.136994 0.003630 0.294067 0.026747

31 0.880273 0.697121 0.136994 0.003630 0.294067 0.026747

32 0.779623 0.663220 0.123532 0.016535 0.176442 0.021238

33 0.779623 0.663220 0.123532 0.016535 0.176442 0.021238

34 0.779623 0.663220 0.123532 0.016535 0.176442 0.021238

35 0.779623 0.663220 0.123532 0.016535 0.176442 0.021238

36 rows × 3787 columns

Using this data, one can create plots displaying the contribution of an input to the uncertainty
of an output. The following graph is not representative since only 10 runs were conducted.

In [ ]: graph_pd = spearman_results_normalized_pd.groupby(level=[0,1,2], axis = 1).sum() 
 
graph_pd = graph_pd['U.A use stock'].copy() 
graph_pd.columns = ['_'.join(col) for col in graph_pd.columns] 
graph_pd 
 
 
dic_legend = {'n_initial_products_Share': r'$\eta$: Initial inflow distribution', 
'n_use_1_in_use_Weibull scale': r'$S_{Uk}$: Weibull scale', 
'n_use_1_in_use_Weibull shape': r'$S_{Uk}$: Weibull shape', 
'reuse_split_split': r'$\delta$: Split portable batteries to products' 
} 
handles_names_list = [] 
 
fig, ax = plt.subplots() 
stacks = ax.stackplot(graph_pd.index, graph_pd.transpose().to_numpy()) 
 
plt.ylabel('Normalized square of Spearman\'s rank correlation in %') 
plt.xlabel('Year') 



Text(0.5, 0, 'Year')Out[ ]:


