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Orchestrating Energy-Efficient vRANs: Bayesian
Learning and Experimental Results

Jose A. Ayala-Romero , Andres Garcia-Saavedra ,

Xavier Costa-Perez , Senior Member, IEEE, and George Iosifidis

Abstract—Virtualized base stations (vBS) can be implemented in diverse commodity platforms and are expected to bring unprecedented

operational flexibility and cost efficiency to the next generation of cellular networks. However, their widespread adoption is hampered by their

complex configuration options that affect in a non-traditional fashion both their performance and their power consumption. Following an in-

depth experimental analysis in a bespoke testbed, we characterize the vBSpower consumption profile and reveal previously unknown

couplings between their various control knobs. Motivated by these findings, we develop a Bayesian learning framework for the orchestration

of vBSs and design two novel algorithms: (i) BP-vRAN, which employs online learning to balance the vBS performance and energy

consumption, and (ii) SBP-vRAN, which augments our optimization approach with safe controls that maximize performance while

respecting hard power constraints. We show that our approaches are data-efficient, i.e., converge an order of magnitude faster than

state-of-the-art Deep Reinforcement Learning methods, and achieve optimal performance. We demonstrate the efficacy of these

solutions in an experimental prototype using real traffic traces.

Index Terms—Bayesian learning, gaussian processes, online learning, radio access networks, energy efficiency, green networks, network

virtualization, wireless testbeds

Ç

1 INTRODUCTION

VIRTUALIZATION is considered one of the key approaches
for bringing cellular networks up to speed with the

demanding services they aspire to offer to users [1]. The lat-
est frontier in this endeavor is the development of virtual-
ized Radio Access Networks (vRAN) where legacy base
stations (BSs) are replaced by softwarized stacks such as
those developed by srsRAN [2] and OpenAirInterface
(OAI) [3]. These novel BSs are fully-configurable and can be
deployed in different platforms ranging from commodity
servers and small embedded devices to moving nodes such
as drones [4]. This RAN transformation constitutes a para-
digm shift for cellular networks and is expected to offer the
much-needed performance flexibility, facilitate the neces-
sary network densification, and reduce significantly their
capital and operating expenses [5]. Hence, it is not surpris-
ing that we see today numerous industry efforts aiming to
build such BS software stacks [2], design fully-open RAN
architectures [6], and even conduct extensive field trials [7].

1.1 The problem

Nevertheless, the advent of vRANs raises novel technical
challenges since the virtualized base stations (vBSs) differ sig-
nificantly from their hardware-based legacy BSs. On the one
hand, Open RAN solutions (led by the O-RAN alliance)
enable vBS to change in real-time a variety of different opera-
tion parameters, such as transmission power andmodulation
schemes, in order to adapt to the volatile network conditions
and dynamic user needs. On the other hand, though this cer-
tainly provides network operators an unprecedented level of
flexibility, it comes at the cost of less predictable performance
due to the complex couplings between the high-dimensional
space of tunable control knobs and the resulting performance,
as we reveal in Section 3. The latter is crucial for economic rea-
sons, especially in light of the increasing network densifica-
tion; but also because vBSs are often expected to operate
under tight energy budgets [8] – consider for instance vBS
that are supported with batteries or Power-over-Ethernet
(PoE) lines. Therefore, existing resource control policies run
the risk of under-utilizing this new type of BSs, or rendering
vRANs economically unsustainable. It becomes, therefore,
clear that in order to unleash the full potential of vRANs we
need to answer two key questions:

(i) What is the performance and power consumption charac-
teristics of virtualized BSs?

(ii) How can we optimize their operation using an adaptive
and platform-oblivious approach?

In this paper we tackle these questions following a
detailed experimental and analytical methodology.

1.2 Our solution

We start by studying the vBSs operation using different host-
ing platforms and usage scenarios in a customized wireless

� Jose A. Ayala-Romero is with Trinity College, D02 Dublin, Ireland. E-
mail: jayalaromero@gmail.com.

� Andres Garcia-Saavedra is with NEC Labs Europe, 69115 Heidelberg,
Germany. E-mail: andres.garcia.saavedra@gmail.com.

� Xavier Costa-Perez is with i2CAT, ICREA, NEC Labs Europe, 08034
Barcelona, Spain. E-mail: xavier.costa@ieee.org.

� George Iosifidis is with the Delft University of Technology, 2628 CD
Delft, The Netherlands. E-mail: g.iosifidis@tudelft.nl.

Manuscript received 11 March 2021; revised 29 September 2021; accepted 22
October 2021. Date of publication 29 October 2021; date of current version 4 April
2023.
This work was supported in part by the European Commission through DAE-
MON project under Grants 101017109 and 856709 (5Growth), and in part by
CERCA Programme/Generalitat de Catalunya.
(Corresponding author: Jose A. Ayala-Romero.)
Digital Object Identifier no. 10.1109/TMC.2021.3123794

2910 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 5, MAY 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7402-3174
https://orcid.org/0000-0001-7402-3174
https://orcid.org/0000-0001-7402-3174
https://orcid.org/0000-0001-7402-3174
https://orcid.org/0000-0001-7402-3174
https://orcid.org/0000-0003-2005-2222
https://orcid.org/0000-0003-2005-2222
https://orcid.org/0000-0003-2005-2222
https://orcid.org/0000-0003-2005-2222
https://orcid.org/0000-0003-2005-2222
https://orcid.org/0000-0002-9654-6109
https://orcid.org/0000-0002-9654-6109
https://orcid.org/0000-0002-9654-6109
https://orcid.org/0000-0002-9654-6109
https://orcid.org/0000-0002-9654-6109
https://orcid.org/0000-0003-1001-2323
https://orcid.org/0000-0003-1001-2323
https://orcid.org/0000-0003-1001-2323
https://orcid.org/0000-0003-1001-2323
https://orcid.org/0000-0003-1001-2323
mailto:jayalaromero@gmail.com
mailto:andres.garcia.saavedra@gmail.com
mailto:xavier.costa@ieee.org
mailto:g.iosifidis@tudelft.nl


testbed. Our results shed light on the relationship between
performance (throughput), power consumption, and vBS
controls such as the modulation and coding schemes (MCS)
and spectrum allocation. For instance, we find that the base-
band unit (BBU) consumes power comparable to wireless
transmissions, and we observe the vBS power consumption
and effective throughput being affected by the configura-
tions in a non-linear and non-monotonic fashion. These
results depend heavily on the hosting platform and under-
line the difficulties in optimizing the vBS operation. More-
over, we observe that the uplink (UL)-related computations
of the vBS stack consumemore power and aremore sensitive
to MCS and SNR variations, than the respective downlink
(DL) computations; a finding attributed to the heavier UL
decoding. Besides, we measure the vBS power consumption
for concurrent UL andDL processing and find it significantly
smaller than the total consumption of these operations when
executed separately (only UL or only DL). These findings
are particularly important since uplink transmissions are
needed to support the ever-growing user traffic. Our analy-
sis is centered on energy since it is the bottleneck vBS
resource that affects both their computations and transmis-
sions, and which, if not properly controlled, will induce pro-
hibitive costs and environmental consequences as cellular
networks become evenmore pervasive [9].

The take-away message from these extensive measure-
ments (presented in Section 3) is that, unlike legacy BSs, vir-
tualized BSs have a complex, poly-parametric, and platform-
dependent performance and power consumption profile;
and this renders traditional control policies inefficient for
their management. In order to overcome this obstacle, we
propose and evaluate a novel machine learning framework
that learns on-the-fly the vBS operational profiles and selects
their optimal configuration based on the network needs and
power availability or constraints. In particular, we formulate
two energy-aware vBS control problems and design learning
algorithms to solve them in a robust fashion: (i) BP-vRAN
(Bayesian optimization for Power consumption in vRANs),
which finds a tunable trade-off between performance and
power consumption; and (ii) SBP-vRAN (Safe Bayesian opti-
mization for Power consumption in vRANs), which maxi-
mizes the vBS performance subject to hard constraints on
power consumption. The former allows operators to balance
performance and power expenses, while the latter is crucial
for vBS running on power-constrained platforms, e.g.,
Power-over-Ethernet cells.

Our algorithms are founded on Bayesian optimization the-
ory [10] and Gaussian Processes (GPs) [11]. These tools are
appropriate for our problems because, as we show in this
paper, they are remarkably data-efficient, which is an impor-
tant requirement in our case given the high-dimensional
nature of our context-action space. The GPsmodel the behav-
ior of the vBS in terms of performance and power consump-
tion, using measurements that are collected in runtime.
Accordingly, we use a contextual bandit framework to explore
the space of vBS configurations and exploit the best ones for
each context. For the latter, we use the average UL/DL traffic
load and SNR values, which we measure over certain time
windows as these are determined by the pertinent 3GPP O-
RAN specification [6]. The outcome is a non-parametric algo-
rithmic framework that makes minimal assumptions about

the system, adapts to user needs and network conditions,
and provably maximizes the throughput of the system. Fur-
thermore, drawing ideas from safe Bayesian optimization
[12], [13], the SBP-vRAN algorithm ensures the vBS power
constraints are not violated during exploration, hence enables
the vBS deployment on energy-constrained platforms. By its
design, this framework outperforms other approaches
requiring knowledge of the vBS functions [14] or offline data
to approximate them [15], and adaptive techniques that do
not offer performance guarantees or rely on strict system
modeling assumptions [16], [17] (see Section 2).

Finally, we perform an extensive evaluation in a custom-
ized testbed based on srsRAN [2], and using several tools to
measure in real time the vBS power consumption. This is an
important step in our study as it allows us to assess the prac-
tical efficacy of the proposed learning algorithms. Indeed,
we verified that both solutions converge to the optimal vBS
configuration in a variety of scenarios. To that end, we also
proposed and evaluated several practical enhancements that
expedite the algorithms’ convergence. Using real traffic
traces, we show, step-by-step, how our framework explores
the configurations, and how it refrains from violating the
power constraints when necessary. We also benchmark our
solution with a state-of-the-art Reinforcement Learning (RL)
solution. Namely, we implement a Deep Deterministic Pol-
icy Gradient (DDPG) algorithm using an actor-critic neural
network (NN) architecture [18], and adapted to our contex-
tual bandit problem. We find that our framework is more
data-efficient than such state-of-the-art RL approaches
which require orders of magnitude more measurements
(hence, also more time) to train the NNs. We believe such
experimental comparisons contribute to the ongoing discus-
sion about which AI/ML techniques can in practice solve
resource orchestration problems in cellular networks.

1.3 Contributions and paper organization

Motivated by the increasing importance and fast-paced
deployment of virtualized base stations [2], [6], [7], we
revisit the problem of energy-aware resource orchestration
in cellular networks. Using a hybrid experimental and theo-
retical approach, we make the following contributions: In
summary, the main contributions of this paper are:

� We built a bespoke wireless testbed and performed
an exhaustive experimental study of the power con-
sumption and performance of vBSs, using different
hosting platforms, configurations and use cases. Our
experiments reveal hitherto-unknown features of
this new class of base stations that depart signifi-
cantly from the energy consumption profile of legacy
base stations.

� We developed a non-parametric learning framework
to optimize the vBS operation in runtime; and we
propose two algorithms for tackling two key prob-
lems: (i) BP-vRAN, which balances performance and
costs; and (ii) SBP-vRAN, which maximizes perfor-
mance subject to hard power consumption con-
straints. Our framework is based on Bayesian
learning techniques, which remain relatively unex-
plored in communication networks (cf. Section 2),
and which we extend to account for the network
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context and also amend them with practical rules in
order to be suitable for vRANs.

� Finally, we assess the performance of our algo-
rithms using realistic contexts (network loads and
channel dynamics), and compare their performance
and data requirements with a state-of-the-art RL
solution. The findings verify that they constitute
strong candidates as the next-generation zero-touch
vBS control solution. The source code of BP-vRAN
and SBP-vRAN and the produced experimental data-
sets are publicly available, aspiring to facilitate the
evaluation of other AI/ML solutions for vRAN
orchestration.

This paper extends our preliminary conference version
[19] with the following contributions:

� We design and implement a customized version of a
state-of-the-art deep reinforcement learning algo-
rithm (DDPG) as a benchmark solution.We configure
it to efficiently solve both of the problems investi-
gated in this paper.

� We expand our evaluation section to thoroughly
compare our solutions, BP-vRAN and SBP-vRAN,
against the DDPG algorithm. We evaluate the con-
vergence rate for both cases and assess the perfor-
mance of a sudden change on the power budget for
the second one. We discuss the pros and cons of
Bayesian against reinforcement learning NN-based
solutions.

Paper Organization. Section 2 discusses the related work
and positions our contributions accordingly, and Section 3
presents experimental measurements that bring to the fore
the vBS control challenges. In Section 4 we introduce the
system model and formulate the two optimization prob-
lems. Section 5 follows with the Bayesian-based learning
algorithms for solving the problems at hand, and Section 6
presents a series of experiments that validate our approach
and compare it with deep-learning algorithms. We conclude
in Section 7.

2 RELATED WORK

2.1 Network Optimization & Automated
Configuration

The works that optimize resource management in softwar-
ized cellular networks can be classified to: (i) those requir-
ing models that relate control variables to performance
metrics; (ii) model-free approaches that rely on offline train-
ing data; and (iii) online learning techniques. Interesting
examples in (i) include [20] which performs rate control to
maximize throughput subject to computing capacity; [14]
that selects also the MCS and airtime; and [21] that addition-
ally adapts to traffic. Nonetheless, such models are in prac-
tice platform/context dependent and unknown. On the
other hand, model-free approaches employ machine learn-
ing, e.g., Neural Networks, to approximate performance
functions [22]. Such approaches are used in network slicing
[23], throughput forecasting [15], edge computing [24], etc.
Their efficacy is remarkable as long as there are enough and
representative training data. Otherwise, we need to employ
online learning that has been recently used, for instance, to

configure video analytic systems [25] and minimize the
power consumption and interference among BSs [26]. Simi-
larly, online convex optimization is used for cloud and IoT
resource orchestration [27], [28], but requires convex func-
tions; a condition not satisfied here. Another approach is
reinforcement learning (RL), used in spectrum management
[16], network diagnostics [29], interference coordination
[30], and SDN control [31], among others. In this line, [32],
[33] optimize the energy efficiency of the network as a func-
tion of some parameters such as the resource block alloca-
tion, the transmission power, or the amount of network
offloading. Compared to [32], not only we are considering
more configuration parameters, we are also considering
more relevant aspects and dimensions of the problem. Spe-
cifically, in [32], they rely on a simplified setup comprised
of some communicating blocks using GNU radio instead of
a full system, and on an over-simplistic power consumption
model given by a linear equation where the circuit power is
considered constant. In marked contrast, we do not make
any modeling assumption. We rely on real measurements
from a full-fledged 3GPP-compliant system, which more-
over show that the consumed power of our target object (a
virtualized BBU) is highly variable, shows non-linear
behavior, and depends on many aspects. In [33], the authors
address the problem of offloading and autoscaling in mobile
edge computing considering renewable energy. However,
the radio access network (RAN), which is the focus of our
work, and hence their approach cannot be applied to our
problem.

Similarly to RL, contextual bandits have been employed
to adjust video streaming rates [34]; configure BS parame-
ters (e.g., handover thresholds) [35], [36]; assign CPU time
to virtualized BSs [17]; and control mmWave networks
[37], [38]. Here, instead, we combine Gaussian Processes
[11] and contextual bandit algorithms [39] to build a data-
efficient Bayesian optimization framework [10] with conver-
gence guarantees. Our approach captures the non-trivial
multimodal correlations of configurations (revealed by our
experiments) through GPs, and use these perpetually-
updated functions to sample the decision space. Our work
draws from the seminal CGP-UCB algorithm [39] which is
extended to include vRAN-specific context, to optimize
throughput and power costs, and to satisfy hard power
constraints. This is crucial for vBS which cannot exceed at
any time their power threshold, e.g., when they are pow-
ered over Ethernet.

Despite been very successful in many problems, ranging
from the design of experiments to automated machine
learning [10], Bayesian learning algorithms to date have not
been used in communication networks, with very few
exceptions such as [40] that explores the optimal server con-
figuration for big data computing. Our approach aspires to
fill this gap by studying experimentally their efficacy on the
vRAN orchestration problem. To that end, we also compare
them with a state-of-the-art Deep RL solution: Deep deter-
ministic policy gradient (DDPG) algorithm adapted to our
contextual bandit setting. Such sophisticated neural-net-
work based solutions have only recently been used in wire-
less networks (e.g. for traffic scheduling) [17], [41], [42],
and, to the best of our knowledge have not been compared
against Bayesian optimization approaches.
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2.2 Experimental Profiling of vBS Computing &
Power Consumption

Clearly, it is imperative to explore experimentally the opera-
tion of these new BSs. The early work of [43] studied the
cost savings when pooling the processing operations of
multiple BSs, and [44] proposed a similar vRAN architec-
ture and measured 30% processing load reduction. Other
studies considered the effect of MCS, bandwidth, and SNR
on BBU computing load [45], [46]. In [47] an OAI simulator
was used to model the processing time for different configu-
rations, and [17] presented measurements with srsLTE for
the impact of traffic. Our experimental analysis builds on
these important works and further measures the impact of
new context parameters and radio schedulers on through-
put, the coupling of uplink and downlink operations, and
the vBS power consumption in different scenarios.

Existing power consumption studies for legacy BSs focus
on the effect of power amplifier, RF output, and baseband
processing. The work [48] introduced the EARTH model
which relates the RF output power with the supplied
power; and [49] considered also the effect of bandwidth.
The works [50], [51] proposed similar models for macro and
micro BSs, and [52] studied how the packet length affects
the CPU power consumption. A detailed model accounting
for the different BS components is presented in [53], [54].

To illustrate the power behavior of legacy BS, we rely on
the seminal model proposed in [48], where the consumed
power (Pin) is given by

Pin ¼ NTRX � P0 þ Dp � Pout; 0 < Pout � Pmax

NTRX � Psleep; Pout ¼ 0

�
(1)

whereNTRX is the number of transceivers, Pout is the RF out-
put power, Pmax is the maximum RF output, P0 represents
the power consumption at zero RF output power, Psleep is
the power consumption of transceivers components in sleep
mode, and Dp is the slope of the load-dependent power
consumption.

Note that the model in eq. (1) is basically focused on the
downlink, which is the predominant factor in legacy BSs.
Conversely, for the new generation of small form-factor
vBSs the uplink and the configuration parameters are
equally important1. Moreover, although the downlink trans-
mission power and airtime can be captured by Pout, other
factors such as the MCS and channel quality are not consid-
ered in eq. (1) and we have found they are relevant in the
consumed power of vBSs. We observe that the model in
eq. (1) is linear, which is a good approximation of the meas-
urements in [48]. Its slope, given by Dp, characterizes the
relation between the consumed power and Pout the total RF
output power radiated at the antenna elements. Similarly,
some previous works that focused on vBS include [56]
which proposed a theoretical model of CPU power con-
sumption as a function of the active CPU cores, clock speed,
and load. It also assumes a linear relation of traffic with
computational load, and hence with the consumed power.
This assumption is not universal, however, and our findings
agree with previous studies finding non-linear effects [45].

More importantly, the impact of hardware, software plat-
form, and context on these metrics is unknown and cannot
be captured in predefined models. Our GP-based approach
overcomes this obstacle since it essentially builds the mod-
els on-the-fly using the sampled data.

3 PRELIMINARY EXPERIMENTAL ANALYSIS

We performed experiments using a customized srsLTE-
based testbed [2], described in Section 6.1. We present here
results that motive the problem and our solution approach.
� BBU/CPU Power Cost & Impact of Platform. Our first

finding is that the power consumption associated with the
BBU processing is comparable to the RF chain’s transmission
power. This result is consistent with previous studies; for
example, [55] estimated that 40% of a femtocell’s power con-
sumption is due to its BBU. In detail, Fig. 1a dissects the
power consumption of a vBS deployed on a small factor
(SF) PC, and presents the different power components stem-
ming from the BBU’s CPUs2; the BBUÂ�s cloud platform
except the CPUs; and the actual radio unit (RU) which is
deployed over an USRP software-defined radio. In order to
have a complete picture, we measure the power consump-
tion in four different scenarios: (i) the vBS is not deployed
(baseline), (ii) the vBS is deployed with an idle user
attached (vBS idle), (iii) the vBS is transmitting 20Mbps of
downlink (DL) traffic, and (iv) the user is transmitting
20Mbps of uplink (UL) traffic to vBS.

Excluding the baseline scenario, the CPU power con-
sumption is, on average, 29% larger than the RU power con-
sumption; while the overall BBU power exceeds it by 175%
(208% with full UL load). Interestingly, these numbers
depend on the platform which hosts the BBU. Namely,
Fig. 1b shows the BBU consumption over the baseline for
various platforms.3 We compare the power consumed by
the BBU in idle state and when operating at full UL/DL
buffer, and subtract the baseline power. Indeed, the power
consumption changes significantly, and it is also affected by
the vBS bandwidth – yet another configurable parameter of
softwarized base stations.

Fig. 1. (a): Comparison of power consumption at: the BBU (Intel NUC i7-
8559U@2.70GHz), the BBU’s CPU, and the RU (an USRP SDR), with
20Mbps DL and UL traffic. (b): Consumed power over the baseline for
different radio bandwidths and hardware platforms. SF PC 1: Intel NUC
i7-8559U@2.70GHz; SF PC 2: Intel NUC i7-8650U@1.90GHz; Server
1: Dell XPS 8900 i7-6700@3.40GHz; Server 2: Dell Aurora R5 i7-
9700@3.00GHz.

1. In femtocells, the BBU consumes 40% of power [55].

2. We use Intel’s Running Average Power Limit function integrated
into the Linux kernel for the CPU power consumption.

3. The small PCs consume less power than the servers, which can
host more vBSs and thus consumes less power/user.
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� Impact of SNR & MCS. The second finding is that the
signal-to-noise ratio (SNR) of the wireless channel and the
UL modulation and coding scheme (MCS) affect the BBU
computing load – and hence its power consumption – in a
non-linear fashion. This is because the decoder needs
increasingly more iterations when the received signal
becomes noisier. Thus, the decoding time per subframe
increases, e.g., by 52% between 20 and 15 dBs forMCS 23, see
Fig. 2a; and this induces a commensurate increase in power
consumption, see Fig. 2b. Besides, Fig. 2b shows that, even
for a fixed decoding time, higher MCS values induce more
power consumption, which is attributed to their more intri-
cate demodulation (denser constellation map). Importantly,
excessive decoding delays can induce throughput loss since
they lead to violations of vBS processing deadlines [2].
Hence, maximizing throughput does not only have an
unpredictable effect on power, but it is indeed highly non-
trivial to achieve in a resource-efficient way.
� Configuration Options & Impact of Scheduler. The vBS

orchestration difficulties are exacerbated by the plenitude of
configuration options these base stations offer. Fig. 3a, for
instance, presents combinations of MCS and airtime values
(percentage of used subframes) achieving the same UL
throughput. Configurations with higher MCSs (and there-
fore lower airtime) reduce power by 38%. However, this
relation is non-monotonic, as we have also measured higher
power when the MCS increases and SNR is relatively low.
This latter effect is due to the fast increase of computing
load (see Fig. 2b). On the other hand, configurations 6 to 8
have the same power consumption, but still differ since con-
figuration 8 involves lower airtime and thus can serve more
users, while configuration 6 is more resilient to noise. These
decisions are made by the vBS radio scheduler4 that selects
the MCS and airtime based on the measured SNR (context).
For this experiment, we have properly modified the srsLTE
scheduler in order to support different airtime values.
Fig. 3b shows the power consumption as a function of MCS
and airtime for UL transmissions. We observe that both
parameters have a smooth impact on power consumption,
but it is important to stress that, in practice, this relation is
not available and needs to be learned.

� Coupling of DL & UL Processing. Finally, Fig. 4 shows
the BBUpower consumptionwhenDL andUL traffic is proc-
essed separately and concurrently (UL+DL), for high SNR
and various MCS values. We observe that the joint power is
not the total sum of the separate components. For instance,
forMCS 15, concurrent DL andUL processing consumes just
7.5%more than UL-only processing (and 26% over DL-only).
This is because there are common power consumption fac-
tors in both streams. This, in turn,makes it difficult to predict
the overall vBS power consumption, given that the DL and
UL can be configured separately. Also, note that UL power
costs are higher andmore volatile than DL, since decoding is
more computationally demanding.

Conclusions: Characterizing the vBS performance and
power consumption is intricate as it depends on exogenous
conditions such as the network traffic and SNR; and the BS
configuration, e.g., the selectedMCS and airtime parameters.
There are many DL and UL configurations and some of them
present non-linear and non-monotonic relations with power
and throughput. Moreover, the power consumption depends
on the BBU platform and the radio scheduler – which if
almost fully customizable in vBSs. This hinders the deriva-
tion of generally applicable power consumption models.
Hence, we propose the use of online learning to profile each
vBS power cost and performance, and devise accordingly
goal-driven configuration policies.

4 SYSTEM MODEL AND PROBLEM FORMULATION

Our modeling approach follows carefully the latest O-RAN
architecture proposals [6] which have provisions for (in

Fig. 2. vBS over SF PC 1 at full UL buffer. (a): UL decoding time for vari-
ous SNR and MCS values. (b): Power consumption as a function of the
decoder performance (high correlation).

Fig. 3. (a): Eight configurations of MCS and airtime that offer 2.6Mbps in
UL, and the respective power (idle mode’s power subtracted). (b): Nor-
malized BBU power consumption over baseline, for full buffer UL trans-
missions and high SNR values, as a function of MCS and airtime.

Fig. 4. MCS impact on BBU power consumption with high SNR. Results
presented for three cases: only DL traffic being processed; only UL traf-
fic; concurrent DL and UL traffic.

4. For example, our testbed’s scheduler selects the maximum MCS
for a given SNR and reduces the airtime whenever UL traffic is lower
than the link capacity; but for DL traffic it selects lower MCSs so as to
make the communication more robust, but this increases the power
consumption.
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fact, envision) learning-based orchestration of the BS opera-
tion, and as such is fully aligned with the ideas presented in
this work. We start by presenting the O-RAN elements that
are pertinent to our model and subsequently we formulate
the two optimization problems.

4.1 O-RAN Background and Model

We consider a virtualized Base Station (vBS) comprising a
Baseband Unit (BBU) that may correspond to a 4G eNB or a
5G gNB5 hosted in a cloud platform and attached to a Radio
Unit (RU), which are fed by a (possibly) constrained energy
source. This type of BSs is relevant for low-cost small cells,
Power-over-Ethernet (PoE) cells, and other similar platforms
that are increasingly common in 5G-and-Beyond networks.
Our goal is to use O-RAN’s control architecture to implement
configuration policies that are adaptive to system dynamics
while satisfying different energy-aware performance criteria.

O-RAN Architecture. Fig. 5 shows the high-level architec-
ture of our system, which is O-RAN compliant [6]. The
Learning Agent (LA) implements online learning algo-
rithms within the Non-Real-Time (Non-RT) RAN Intelligent
Controller (RIC) in the system’s orchestrator, and selects
efficient radio policies every orchestration period t ¼ 1; . . . ; T
(usually in the order of seconds). The optimal decision (i.e.,
a radio policy) in each t depends on the context information.
This is provided at the beginning of each period by the vBS
(via the O1 interface) from measurements collected at sub-
second granularity within the near-RT RIC (using the E2
interface). The computed radio policies are then configured
on the vBS via its A1-P interface as shown in Fig. 5. At the
end of each orchestration period, the Data Monitor module
in the Near-RT RIC computes a reward by aggregating the
adopted performance metrics, which are collected from the
vBS via the E2 interface; and eventually provides the results
to the LA (O1 interface). Our system model and solution
algorithms are fully compatible with this architecture.

Context Information. We define the DL context at each
period t as vdl

t :¼ ½�cdlt ; ~cdlt ; ddlt �, where �cdlt and ~cdlt are the mean

and variance of the DL channel quality indicator (CQI)
across all users in the previous period; and ddlt is the new bit
arrivals at the vBS DL aggregated across all users. Note that
the DL CQI values are sent periodically from the UEs to vBS
through Uplink Control Information (UCI) carried by 4G/
5G’s Physical Uplink Shared Channel (PUSCH) or Physical
Uplink Control Channel (PUCCH). Conversely, ddlt is mea-
sured by the vBS at the PDCP layer.

Also, we define the UL context as vul
t :¼ ½�cult ; ~cult ; dult �. The

UL CQI is measured by the vBS at MAC layer, and the new
UL bit arrivals are estimated from the periodic Buffer Status
Reports (BSRs) of the users (UEs). All these measurement
are collected by the Near-RT RIC’s Data Monitor (Fig. 5)
from the vBS using the E2 interface at sub-second granular-
ity, and are aggregated at the start of each orchestration
period t. We denote the global context vector vt :¼
½vdl

t ;v
ul
t � 2 V, where V is the context space. Note that the

contexts are related to the traffic load and channel quality
and are exogenous parameters, i.e., the configuration deci-
sions cannot affect them. This allows us to formulate the
problem as a Contextual Multi-armed Bandit or Contextual
Bandit (CB). By using this formulation we can configure the
system based on the observed contexts and learn from the
zeroth-order feedback of our system (i.e., we observe only
the outcome of the employed configuration).

vBS Controls. We define the DL control xdlt :¼½pdlt ;mdl
t ; a

dl
t �

at period t, where pdlt 2Pdl is a transmission power control
(TPC) policy for the maximum allowed vBS transmission
power,mdl

t 2 Mdl is the highest MCS eligible by the vBS (DL
MCS policy), and adlt 2 Adl is the maximum vBS transmission
airtime (DL airtime policy). We define the UL control xul

t :¼
½mul

t ; a
ul
t �, where mul

t 2Mul and ault 2Aul are the UL MCS and
airtime policies.6 We hence formalize each control at deci-
sion period t as a radio policy:

xt :¼ ½xdl
t ; x

ul
t �2X ; X ¼ Pdl�Mdl�Adl�Mul�Aul;

where X is the control space. Once computed, the LA sends
each radio control policy to the Near-RT RIC via O-RAN’s
A1-P interface, which is then applied to vBS. The UL poli-
cies are applied by configuring each UL scheduling at the
vBS MAC layer.

Rewards. We denote with Rdlðvdl
t ; x

dl
t Þ and Rulðvul

t ; x
ul
t Þ the

DL and UL data transmission rates, and define the reward
function rðvt; xtÞ :¼

log 1þRdlðvdl
t ; x

dl
t Þ

ddlt

� �
þ log 1þRulðvul

t ; x
ul
t Þ

dult

� �
; (2)

where the logarithms are used to achieve fairness between
the DL and UL flows – and to that end, one could use any
other a-fair function [57]. Note that we divide the achieved
rates with the actual load in the respective stream (uplink or
downlink) since the reward should naturally be defined in
relation to the needs of the system. Also, it is important to
stress that in practice we can only hope to observe noisy val-
ues of these functions, even when their arguments are fixed,
because naturally the system operation is stochastic and

Fig. 5. O-RAN compliant system architecture and workflow.

5. 5G decouples BBU in 2 logical functions, i.e., a central unit (CU)
and a distributed unit (DU). Our scheme controls the DU, or both when
these are co-located.

6. We do not define an UL TPC policy since the users’ transmission
power has less impact on the vBS power than the MCS and UL airtime;
but our framework can be readily extended to include this decision.
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also the power measurements are noisy – as we have indeed
seen in our experiments. Fortunately, our optimization
framework can handle such impairments. Henceforth, we
denote with Rdl

t ðvdl
t ; x

dl
t Þ, Rul

t ðvul
t ; x

ul
t Þ and rtðvt; xtÞ these

noisy samples of the functions at period t, which are consid-
ered to be stationary and return the mean (unperturbed)
respective values when averaged (i.e., on expectation).

4.2 Case 1: Balancing Performance and Cost

We start with the case where the power supply is scarce or,
equivalently, the operator wishes to reduce the power con-
sumption costs. This can be achieved with a scalarized objec-
tive function:

uðvt; xtÞ :¼ rðvt; xtÞ � d �B�P ðvt; xtÞ
�
; (3)

where P ðvt; xtÞ is the vBS power consumption associated
with the pair context-control ðvt; xtÞ, Bð�Þ is a smooth func-
tion that models the cost associated with power consump-
tion, and parameter d determines the relative importance of
the power cost and achieved throughput, and can be
selected based on the operator’s preferences. We will also
use utðvt; xtÞ to denote the realization of the objective func-
tion related to the t-period samples Ptðvt; xtÞ and rtðvt; xtÞ.
The selection of the cost function is crucial here. In the sim-
plest case, it can be a linear function that maps the actual
consumed power to a monetary value (negative reward).
But, it can also model situations where policies that exceed
a power threshold should be prevented due to regulation,
battery constraints, and so on. To capture all these cases, we
propose to use a parameterized sigmoid function with
sharpness and tipping parameters a and b:

BðxÞ :¼ 1þ eab

eab
1

1þ e�aðx�bÞ
� 1

1þ eab

� �
: (4)

When a! 0, function Bð�Þ approximates a linear function,
and when a grows [58] it approximates the step function,
without however to induce unbounded gradients – a condi-
tion that would deteriorate the learning process.

Following the standard approach in Bayesian bandit
optimization [13], [39], we use the cumulative contextual
regret to assess the performance of our algorithm. Namely,
we define the average T -period contextual regret:

RT :¼
XT
t¼1

max
x02X

uðvt; x
0Þ � uðvt; xtÞ

� �
;

where maxx02Xuðvt; x
0Þ yields the best decision for the

current period, which we cannot calculate in practice
since the objective function is unknown. Our goal, there-
fore, is to find a sequence of decisions hxtiTt¼1 from set X
which ensure asymptotically sublinear average pseudo-
regret, i.e., limT!1E½RT �=T ¼ 0, where the expectation is
taken with respect to the noisy samples and the context
arrival process.

4.3 Case 2: Hard Power Budget

A different problem arises when the vBS operates under a
hard power budget Pmax, e.g., when powered over Ethernet.
In these cases, the LA has to find the maximum-throughput

configuration that respects the available power budget.
Importantly, the LA needs to achieve this goal by emloying a
safe exploration of the configuration space X in order to sat-
isfy the Pmax threshold at any period, i.e., not only at the final
optimal-operation stage.We define the respective regret:

Rs
T :¼

XT
t¼1

max
x02StðvtÞ

rðvt; x
0Þ � rðvt; xtÞ

� �
; (5)

where in this case the decisions are selected from set

StðvtÞ ¼
n
x 2 X

��� P ðvt; xÞ � Pmax

o
: (6)

Note that we use in the definition of regret directly the
throughput reward, since the power is now considered a
hard constraint. Our goal is to find a sequence hxtiTt¼1, xt2
StðvtÞ, such that limT!1E½Rs

T �=T ¼ 0. It is important to
stress that the sets StðvtÞ; 8vt, are unknown initially, since
P ðv; xÞ is also unknown, and therefore we need learn them
using the real-time measurements Ptðvt; xtÞ. Similarly, we
only have access to rt and ut, i.e., the t-period noisy meas-
urements, instead of the actual functions r and u.

To solve the above problems, we propose a non-paramet-
ric learning approach using Gaussian Processes, Contextual
Bandits, and Bayesian learning. Our approach has the addi-
tional practical advantage that one can change Pmax in run-
time, which in fact is possible in the PoE standard (IEEE
802.3bt), at any time without having to restart the learning
process. Other parametric methods, such as Reinforcement
Learning relying on neural networks, need to be re-trained
if the constraint changes, which naturally increases substan-
tially the required training data.

5 BAYESIAN ONLINE LEARNING SOLUTIONS

Next, we propose two online algorithms for solving the
problems stated in Sections 4.2 and 4.3. Our proposals lever-
age state-of-the-art Bayesian learning techniques which are
properly configured and extended to account for the net-
work context information, and amended with practical rules
(of independent interest) that improve their performance, as
we verify experimentally.

5.1 BP-vRAN: Balancing Performance and Cost

Many algorithms for solving contextual bandit problems
assume there is a feature vector associated with each action,
and the objective function is linear in that vector [59], [60].
This assumption does not hold here for the following rea-
sons. Firstly, the objective function is not linear, see Eqs. (2)-
(4). Secondly, the function values associated with different
actions (i.e., vBS control policies) are correlated. Intuitively,
we can think that a small change in some parameter (e.g.,
airtime) will induce a small change in the vBS consumed
power. This is actually evaluated experimentally in Fig. 3b.
This means that we can obtain information about unob-
served context-control pairs by observing nearby actions,
thus reducing the exploration time.

Based on these observations, we propose a Bayesian opti-
mization method where we model the objective function as
a sample from a Gaussian Process (GP) over the joint con-
text-control space. This non-parametric estimator captures
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the aforementioned non-linearities and correlations, and
provides predictive uncertainty on the function estimation.
Hence, enable us to address effectively the exploration -
exploitation trade-off.

Function Estimator. We use a GP as a function estimator,
which is a collection of random variables following joint
Gaussian distributions [11]. Let z 2 Z ¼ V�X denote a
context-control pair. We model the unknown objective func-
tion (3) as a sample from a GP ðmðzÞ; kðz; z0ÞÞ, where mðzÞ is
its mean function and kðz; z0Þ is its covariance function or
kernel. Without loss of generality, we assume m ¼ 0 and
bounded variance kðz; zÞ < 1, which we refer to as the prior
distribution, not conditioned on data.

Given this prior and a set of observations, the mean and
covariance of the posterior distribution can be computed
using closed form formulas. Let yT ¼ ½u1; . . . ; uT � be a vector
of noisy samples (assuming i.i.d. Gaussian noise � Nð0; z2Þ)
at points ZT ¼ ½z1; . . . ; zT �. Then, the posterior distribution
of the objective function follows a GP distribution with
mean mT ðzÞ and covariance kT ðz; z0Þ:

mT ðzÞ ¼ kT ðzÞ>ðKT þ z21T Þ�1yT (7)

kT ðz; z0Þ ¼ kðz; z0Þ � kT ðzÞ>ðKT þ z21T Þ�1kT ðz0Þ; (8)

where kT ðzÞ¼½kðz1; zÞ; . . . ; kðzT ; zÞ�>, KT ðzÞ is the kernel
matrix ½kðz; z0Þ�z;z02ZT

, and 1T is the T -dimension identity
matrix. These equations allow us to estimate the distribu-
tion of unobserved values of z based on the prior distribu-
tion, the vector ZT , and the function observations yT .

Kernel Function. The kernel selection is crucial as it shapes
the prior and posterior GP distributions by encoding the
correlation between the values of the objective function of
every pair of points. Namely, kðz; z0Þ indicates the similarity
between utðzÞ and utðz0Þ. In other words, the kernel charac-
terizes the smoothness of the function [61]. The properties
of the kernel function should be carefully selected according
to the specific application and the underlying function that
will be learned. Therefore, we use the experimental data
analyzed in Section 3 to conclude that our kernel should sat-
isfy two properties: stationarity and anisotropicity. On the one
hand, the kernel kðz; z0Þ is stationary since it depends only
on the distance of z from z0, which means it is invariant to
translations in Z. On the other hand, a kernel is anisotropic
since the encoded smoothness is different among the differ-
ent dimensions of Z. That is, the kernel is not invariant to
rotations in Z. The smoothness of the different dimensions
of the function u are encoded into a length-scale vector L ¼
½l1; . . . ; lN �, where N indicates the number of dimensions of
Z. Thus, the distance between two points based on the
length-scale vector can be written as:

dðz; z0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz� z0Þ>L�2ðz� z0Þ

q
; (9)

where L ¼ diagðLÞ is a diagonal matrix of the length-scale
values. There are several kernel functions satisfying these
properties such as the squared exponential kernel, one of
the most commonly used. However, this kernel function
assumes the underlying function to be very smooth, i.e.,
infinitely differentiable. This assumption does not hold in
our framework since function Bð�Þ defined in eq. (4) is not

infinitely differentiable. Besides, recall that Bð�Þ maps the
monetary cost associated with the consumed power and
can be defined according to the operator’s needs. For that
reason, we relax this assumption and select the anisotropic
version of the Mat�ern kernel, which also satisfies the prop-
erties discussed above [11]. Furthermore, we configure it
with parameter n ¼ 3

2 , which implies that the objective func-
tion is at least once differentiable. Note that this is a mild
assumption, which yields a loose regret bound (see
Lemma 1). In fact, our experimental evaluation in Section 3
shows that our approach performs much better than our
theoretical bounds in the scenarios we tested. However, if
we had more information about the structure of the function
to learn, we could easily tighten such bound by selecting
higher values of n or by using a squared exponential kernel,
which may improve the rate of increase of information gain.
In this paper, we opt for the most conservative choice to
cover scenarios beyond the ones shown in our experimental
evaluation.The expression of the selected kernel is given by:

kðz; z0Þ ¼ ð1þ
ffiffiffi
3
p

dðz; z0ÞÞexpð�
ffiffiffi
3
p

dðz; z0ÞÞ: (10)

To improve performance, we can optimize the hyper-
parameters L and the noise variance z2, eq. (7)-(8), before
running the algorithm, by maximizing the likelihood esti-
mation over prior data and keep these values constant over
time. A different approach, namely when the hyperpara-
meters are optimized using the data acquired in runtime, it
is not guaranteed that the GP’s confidence interval will
cover the true function, and hence might induce the optimi-
zation process to stuck in poor local optima [62]. We have
also observed this in our experiments.

Acquisition Function. The acquisition function selects one
control xt at each period t based on the posterior distribu-
tion of the objective function over the context-control pairs.
To this aim, we use the Upper Confidence Bound (UCB)
method which follows the principle of optimism in the face of
uncertainty and allows us to derive theoretical guarantees
for the algorithm. Formally:

xt ¼ argmax
x2X

mt�1ðvt; xÞ þ
ffiffiffiffiffi
bt

p
st�1ðvt; xÞ; (11)

where vt is the observed context at time t, bt is a weighting
parameter and s2

t ðzÞ ¼ ktðz; zÞ. We formalize our approach,
which we refer to as BP-vRAN (Bayesian optimization for
Power consumption in vRANs), in Algorithm 1. At the
beginning of each decision period t a context vt is observed
(line 4). Based on the observed context vt and the vectors
Zt�1 and yt�1, the posterior distribution is computed using
Eqs. (7) and (8) (line 5). Note that when we have no data
(y0 ¼ ;,Z0 ¼ ;) the posterior distribution is equal to the prior
distribution. The control xt is decided based on the GP poste-
rior and the acquisition function (line 6). At the end of t, the
throughput and consumed power are observed (line 7).
Then, the reward and the monetary cost of the power are
computed using eqs. (2) and (4), respectively. With these val-
ues, the value of the objective is computed using eq. (3) (line
8). Finally, the new context-control pair zt and the value of
the objective function utðvt; xtÞ are included in the vectors Zt

and yt, respectively, to improve the posterior distribution of
the next iteration (lines 9-10).
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Algorithm 1. BP-vRAN: Performance and Cost Balancing

1: Inputs: Control Space X , kernel k, b
2: Initialize: y0 ¼ ;, Z0 ¼ ;
3: for t ¼ 1; 2; . . . do
4: Observe the context vt

5: Compute mt�1 and s2
t�1 ¼ kt�1ðzt; ztÞ, eqs. (7)-(8)

6: xt ¼ argmaxx2X mt�1ðvt; xÞ þ
ffiffiffiffiffi
bt

p
st�1ðvt; xÞ

7: Measure Rdl
t ðvdl

t ; x
dl
t Þ, Rul

t ðvul
t ; x

ul
t Þ and Ptðvt; xtÞ at the end

of the decision period t
8: Compute utðvt; xtÞ using (2), (3) and (4)
9: Update Zt  Zt�1 [ zt :¼ ½vt; xt�
10: Update yt  yt�1 [ utðvt; xtÞ
11: end for

Note that an alternative formulation of BP-vRAN with
two GPs (to approximate the reward and the consumed
power separately) instead of one is amenable to better opti-
mization of the kernels’ hyperparameters. Nevertheless, the
posterior variance of the objective function can be arbitrarily
hard to obtain since the monetary cost of the power (Bð�Þ) is
selected by the operator according to its needs. In addition,
this approach doubles the computational and memory
requirements.

Theoretical results. The choice of a value for bt in Eq. (11)
is very important since it controls the trade-off between
exploration and exploitation. Larger values of bt lead the
acquisition function to select controls with higher uncer-
tainty while, conversely, controls already known to be high-
performing (though not necessarily highest-performing) are
selected when bt takes smaller values. Following [39], we
select

bt ¼ 2B2 þ 300gt ln
3

ðt=�Þ (12)

where � 2 ð0; 1Þ, B 	 kukk is an upper bound on the Repro-
ductive Kernel Hilbert Space (RKHS) norm of u, and gt is
the maximum mutual information gain obtained from u
after t observations have been collected.

Lemma 1. The contextual regret RT of BP-vRAN satisfies

P RT �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1TbTgT

p
8T 	 1

	 

	 1� �; (13)

at stage T , where C1 ¼ 8
log ð1þz�2Þ and gt ¼ Oðt44=45log ðtÞÞ.

The proof of Lemma 1 is given in theAppendix,which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TMC.2021.3123794.
For the derivation of the bound of the information gain gt, we
consider a Mat�ern kernel with n ¼ 3

2 andN ¼ 11 dimensions
in Z, which correspond to a 6- and a 5-dimensional context
and control space, respectively, as described in Section 4. For
this setting, we particularize the expression provided in The-
orem 5 of [63] to obtain the bound gt ¼ Oðt44=45log ðtÞÞ. Note
that the regret bound obtained in this analysis considers a
worst-case scenario, while the performance of the algorithm
in practice is commonly far from these bounds as shown in
Section 6. It is worth mentioning, however, that the bound
provided in Lemma 1 indicates that BP-vRAN is a no-regret
algorithm, i.e., limT!1E½RT �=T ¼ 0.

5.2 SBP-vRAN: Safe Bayesian Optimization

Imposing hard constraints as proposed in Section 4.3, com-
pounds the problem. Prior works, e.g., in robotics and other
areas [12], [13], [64], [65], have proposed Bayesian optimi-
zation algorithms with safety constraints. Their main idea
lays upon the definition: every t we define a subset of safe
controls St
X that satisfy the constraints with certainty.
Then, it is needed to interleave an exploration process so as
to expand the safe set, while seeking a safe action with high
performance. Unfortunately, these works do not consider
contextual information, which clearly affects the safe set,
i.e., StðvtÞ
X . To the best of our knowledge, only SafeOpt
[65] proposes a contextual safe learning algorithm. How-
ever, although that algorithm provides theoretical guaran-
tees, its acquisition function selects the control with the
highest uncertainty among all candidates that can expand
the safe set and also the potential maximizers. We found in
our experiments that this approach has overly slow conver-
gence. This practical issue has been reported in other works
as well, e.g. [66]. Hence, we improve this methodology by
employing the acquisition function of CGP-UCB [39], but
constrained to the safe set.

We denote yfT ¼ ½r1; . . . ; rT � the vector of reward samples
at T and ycT ¼ ½P1; . . . ; PT � the power consumption samples.
We use one GP for the reward and one for the power con-
straint. Both GPs have the same prior distribution and kernel
but different hyperparameters. The posterior distribution
can be computed using (7)-(8), and replacing yT by yfT or ycT ,
for each GP.We denote the posterior mean and covariance of
the reward at T as mf

T ðzÞ and kfT ðz; z0Þ, and mc
T ðzÞ and kcT ðz; z0Þ

for the power, respectively. The initial safe set S0 
 X is com-
mon for all contexts, and includes low power consumption
configurations (vBS close to idle). This is worst-case S0 can
be expanded using prior data.

At each period, St is computed based on the posterior
distribution of the power consumption provided by the GP.
We assume the true value of the power consumption at
time t is within the interval ½mc

tðzÞ � bts
c
tðzÞ�, where sc

tðzÞ ¼
kctðz; zÞ. Using the posterior distribution, we define the safe
set a time t and for a given context vt as:

St ¼
n
x 2 X

��� mc
t�1ðvt; xÞ þ bts

c
t�1ðvt; xÞ � Pmax

o
: (14)

The controls are selected at each period t using the CGP-
UCB policy subject to the safe set:

xt ¼ argmax
x2St

m
f
t�1ðvt; xÞ þ

ffiffiffiffiffi
bt

p
s
f
t�1ðvt; xÞ; (15)

where ðsf
t ðzÞÞ2 ¼ kft ðz; zÞ.

We summarize our approach, named SBP-vRAN (Safe
Bayesian optimization for Power consumption in vRANs),
in Algorithm 2. It is worth mentioning that in many practi-
cal scenarios it is desirable to have a soft constraint instead
of a hard constraint. For instance, we may be interested in
violating the soft constraint (increase the power consump-
tion) to avoid poor user performance. We provide two alter-
natives to handle this scenario. First, we can use BP-vRAN
by designing Bð�Þ such that a power consumption exceeding
the constraint incurs in high monetary cost. This approach
provides soft guarantees where the power constraint will be
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met in average but not at every interval. Alternatively, we
can modify the definition of the safe set in Eq. (14). Thus,
we can add an exception such that if the expected perfor-
mance of all actions in the safe set is below a performance
threshold rmin, include at least one action whose expected
performance is higher than rmin. Using this mechanism, we
can set a minimum performance requirement for the vBS
operation.

Algorithm 2. SBP-vRAN: Safe Online Optimization

1: Inputs: Control Space X , Initial safe set S0, kernel k, b, Pmax

2: Initialize: yf0 ¼ ;, yc0 ¼ ;, Z0 ¼ ;
3: for t ¼ 1; 2; . . . do
4: Observe the context vt

5: Compute mf
t�1, s

f
t�1, m

c
t�1 and sc

t�1 using Eqs. (7) and (8)
6: St ¼ S0 [ fx 2 X jmc

t�1ðvt; xÞ þ bts
c
t�1ðvt; xÞ � Pmaxg

7: xt ¼ argmaxx2St m
f
t�1ðvt; xÞ þ

ffiffiffiffiffi
bt

p
s
f
t�1ðvt; xÞ

8: Measure Rdl
t ðvdl

t ; x
dl
t Þ, Rul

t ðvul
t ; x

ul
t Þ and Ptðvt; xtÞ at the end

of the decision period t
9: Compute rtðvt; xtÞ using (2)
10: Update Zt  Zt�1 [ ½vt; xt�
11: Update yft  yft�1 [ rtðvt; xtÞ
12: Update yct  yct�1 [ Ptðvt; xtÞ
13: end for

Convergence of SBP-vRAN. Note that SBP-vRAN does
not expand explicitly the safe set, like in other works such
as [13], [65]. In general, an explicit expansion of the safe set
is needed (e.g., by exploring the controls in the boundary)
to converge to the true safe set and therefore to reach the
optimal safe control. However, we found that our acquisi-
tion function can both maximize the performance and
expand the safe set at the same time under some conditions.

Let us assume that the objective function and the con-
strained function are smooth and positively correlated. In
this case, the maximization of the objective function also
implies the expansion of the safe set. In fact, the optimal
configuration is located at the boundary of the constraint
space. This is a reasonable assumption in practice, as we
can assess empirically: On the one hand, Fig. 6a shows the
uplink throughput of our vBS as a function of the MCS and
the airtime (two of our control actions). From this figure, we
can see that the higher the MCS and the airtime the higher
the throughput. On the other hand, Fig. 6b shows the con-
sumed power as a function of the same variables. Note that

both figures show the same trend: the higher the through-
put the higher the consumed power.

We should remark that we have only considered two vBS
controls (MCS and airtime) for this example. However,
although the power behavior becomes non-linear when
including all the dimensions of the problem, these conclu-
sions also hold in the complete problem. It is obvious that
higher airtime provides higher throughput. It is also evident
that higher MCSs provide higher throughput under feasible
conditions (appropriate SNR) as they allow to pack more
data symbols per unit of time. Similarly, higher MCSs incur
in higher power consumption because the number of com-
putations required by the decoding algorithms scale linearly
with the number of bits to decode. Moreover, higher trans-
mission power enables higher MCSs and therefore higher
throughput. Therefore, higher throughput is generally associ-
ated with higher power consumption.

The annotations in Figs. 6a and 6b exemplify how SBP-
vRAN expands the safe set. The initial safe set (S0) is a set of
configurations with the lowest power consumption, i.e., low
MCS and airtime. This conservative initial safe set avoids
violating the constraint from the beginning but also
increases the convergence time. The aim of SBP-vRAN is to
maximize the the reward function rwhich is directly related
to the throughput. Moreover, our acquisition function in
Eq. (15) will select controls with high performance but also
with high uncertainty. These conditions are met by the con-
trols in the boundary of the safe set. By exploring these con-
trols we are reducing the uncertainty of its neighborhood
and therefore expanding the safe set. After a few iterations
(t ¼ n1), the safe set Sn1 has been expanded and the algo-
rithm can now select configurations with higher through-
put. At that point, the algorithm will continue exploring the
boundary of the constraint since it contains the configura-
tions with the highest throughput and also high uncer-
tainty. After a few iterations more, the safe set will reach the
boundary of the constraint, finalizing its expansion: the
optimal configurations fall into the boundary of the con-
straint space. This is demonstrated in the following experi-
mental evaluation.

6 EXPERIMENTAL EVALUATION

We have built a customized testbed to perform a thorough
evaluation of the proposed ML resource orchestration tech-
niques under realistic conditions. Our experiments employ
the software-based eNB srsRAN, cf. [2], which we have
properly modified (e.g., implementing scheduling policies,
enabling airtime selection, etc.) so as to capture the entire
range of our controls. The testbed configuration and created
datasets are available online7 for reproducibility reasons
and, importantly, so as to facilitate further research in the
area of AI/ML-assisted RAN orchestration.

6.1 Experimental setup

The testbed, shown in Fig. 7, comprises a vBS, the user
equipment (UE),8 and a digital power meter. Both the vBS

Fig. 6. Example of safe set expansion in the uplink throughput and power
domains as a function of two decision variables: uplink MCS and uplink
airtime. As SBP-vRAN explores, the initial safe set S0 is expanded until it
reaches the boundary of the unfeasible region, where the optimum is
located.

7. https://github.com/jaayala/power_dlul_dataset
8. We use one UE emulating the load of multiple users (see in

Section 6.3).
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and UE consist of an Ettus Research USRP B210 as RU,
srseNB/srsUE (from srsRAN suite [2]) as BBU for the eNB
and UE, and two small factor general-purpose PCs (Intel
NUCs with CPU i7-8559U@2.70GHz) deploying each
respective BBU and the near-RT RIC of Fig. 5. The vBS and
UE are connected using SMA cables with 20dB attenuators
and we adjust the gain of the RU’s RF chains to attain differ-
ent SNR values. Without loss of generality, we select a 10-
MHz band that renders a maximum capacity of roughly 32
and 23 Mbps in DL and UL, respectively. We use the power
meter GW-Instek GPM-8213 to measure the power con-
sumption of BBU and RU by plugging their power supply
cable to a GW-Instek Measuring adapter GPM-001. Finally,
we have integrated E2’s interface and the ability to enforce
control policies on-the-fly (see Section 4) in srseNB.

We use three auxiliary PCs (not shown in the figure) host-
ing the non-RT RIC and the network traffic end hosts, which
use mgen9. Finally, we have implemented O1 interface
(Fig. 5) using the USB-based power meter SCPI (Standard
Commands for Programmable Instruments) interface con-
cerning power consumption measurements and a REST
interface for the remainder. A final remark is that our RU
(USRP B210) does not integrate a variable power amplifier.
Instead, it uses a fixed power amplifier consuming 3W and a
variable attenuator for power calibration (see Fig. 1). To com-
pensate for this, we post-process the powermeasurements to
include a variable RU consumption according to a linear
model based on previousworks [48], [50] and a 3W cap.

For the elaboration of the dataset used in Section 3, we
configure the vBS and UE in order to fix the conditions in the
uplink and the downlink in terms of traffic load, channel
quality, MCS, and airtime. Then, we fix each configuration
for approximately one minute while the system takes meas-
urements that later are processed to obtain its statistics. We
assess the power behavior of the vBS by measuring the
power consumption of its CPU and the whole BBU, the
achieved performance in terms of throughput and goodput,
details about the decoder at the vBS such as the subframe
decoding time and the number of turbo decoder iterations
per subframe, and some MAC and PHY indicators such as
the Buffer Status Report (BSR), Block Error Rate (BSR), and
the usedMCS and airtime. Moreover, we detect and identify

unfeasible configurations in the dataset. This mainly occurs
when an MCS value is forced but the channel quality is not
good enough to decode its data. Finally, we release our data-
set107online allowing the community to realistically emulate
the behavior of a vBS in terms of power consumption and
performance as a function of its configuration and conditions
(user traffic load and channel qualities) for future research.

For the evaluation we consider jPdlj ¼ 20, jMdlj ¼ 28,
jMulj ¼ 24, and jAdlj ¼ jAulj ¼ 11, and therefore the size of
the control set is jXj � 1:6 � 106. Note that, for a decision
period of 10 seconds, we would need up to 185 days to
explore every control policy in X once, which highlights the
need for a data-efficient learning strategy. Although
Lemma 1 guarantees convergence and sublinear regret in
general, faster convergence can be achieved with problem-
specific information. Hence, and in line with previous
works [65], [66], we select b1=2 ¼ 2:5, which shows good per-
formance in our setup. In the case of BP-vRAN, we config-
ure d ¼ 20 and set the parameters a and b in the penalty
function, Eq. (4), to severely penalize the power consump-
tion values close to b or higher. Namely, we set a ¼ 2:5 and
evaluate different values of b. Finally, we present the results
of 10 (at least) experiments, where we plot the mean values
and the 10th and 90th percentiles (shadowed areas). The
source code of the algorithms BP-vRAN10 and SBP-vRAN11

used for this evaluation can be found online.

6.2 Convergence Evaluation

We start off by evaluating the convergence of BP-vRAN and
SBP-vRAN. To this end, we consider the special case of a sin-
gle context and observe their performance over time with no
prior training up till they converge to optimal policies. We select a
context with high SNR = 35 dB (CQI = 15) in DL and UL, and
high traffic demands (relative to our testbed’s capacity)
equal to 25 and 20 Mbps for DL and UL, respectively. Figs. 8
and 9 show the temporal evolution of different metrics for
both algorithms during 150 orchestration periods.

Let us discuss first the results of BP-vRAN in Fig. 8. We
observe that the power consumption and, consequently,
throughput, are reduced for lower values of b, e.g., there is
12.5% power drop and 33.75% throughput drop between
b ¼ 25 and b ¼ 16. This is intuitive because lowering b indu-
ces more stringent power requirements. Note that b ¼ 16
only penalizes DL throughput. This is because it imposes a

Fig. 7. Customized Wireless Testbed with a vBS (srsRAN) and a node
aggregating the UE traffic. Measurements are collected in real time,
using a GW-Instek Power Meter and a Power Adapter.

Fig. 8. Convergence rate evaluation of BP-vRAN for different objective
function parameters.

9. https://www.nrl.navy.mil/itd/ncs/products/mgen.
10. https://github.com/jaayala/contextual_bayesian_optimization
11. https://github.com/jaayala/constrained_bayes_opt
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mild power requirement, and hence BP-vRAN only sacrifi-
ces transmission power, which reduces DL SNR and thus
DL throughput. Lower values of b force BP-vRAN to sacri-
fice UL throughput too.

Concerning SBP-vRAN, we evaluate different values of
Pmax up to Pmax ¼ 20, which is an upper bound for the
power consumption irrespective of the policy and the con-
text. The results, in Fig. 9, depict how SBP-vRAN learns to
use configurations within the power budget with high proba-
bility, sacrificing throughput when so required. Note that, in
all the cases, SBP-vRAN always selects policies very close to
Pmax. This is because the optimal policy, i.e., the one that
maximizes throughput, usually requires consuming all the
Pmax budget. To this end, SBP-vRAN gradually expands its
safe set close to Pmax and therefore an explicit strategy to
expand the safe set is not needed. Specifically, Fig. 10 shows
that all the controls are safe for Pmax ¼ 20, with 15.4% and
53.2% less safe policies for Pmax ¼ 14 and Pmax ¼ 12, respec-
tively. As expected, lower values of Pmax incur a smaller
safe policy set.

We conclude this evaluation with the observation that,
despite using a large set of policies X , both algorithms con-
verge within 30 orchestration periods. This highlights the
data-efficiency of our solutions, which discern optimal poli-
cies by observing only a small subset of X .

6.3 Performance in Real Network Contexts

Next, we evaluate the performance of BP-vRAN and SBP-
vRAN using a realistic one-day traffic pattern from [67]
(Fig. 11, top). Concerning channel quality, we consider a
worst-case pattern emulating UEs with high mobility
(Fig. 11, bottom), which compromises network capacity
(well below the demand). Due to the granularity of our traf-
fic dataset, we set the orchestration period length to 5
minutes in these experiments (note there is no loss in gener-
ality). We run our algorithms for two days and present

results of the second day to focus on the attained system
performance. Their convergence, evaluated in the previous
subsection, takes just a few periods. This is possible because
the selected policies for correlated contexts are also corre-
lated, i.e., knowledge acquired for one context is transferred
to other similar contexts. Hence, after few iterations, the algo-
rithms select efficient policies even for unseen contexts.

To remove the clutter introduced by the high SNR vari-
ability under evaluation, each point in Figs. 12 and 13 corre-
sponds to the average across all the points of a SNR cycle,
see Fig. 11, bottom. Fig. 12 shows the total power consump-
tion (a) and the evolution of throughput along the day (b)
using BP-vRAN and different configurations of the objective
function. We observe that the power consumption evolves
with the traffic demand and with the selected value of b. For
instance, when b ¼ 16, the achieved throughput is penalized
in favor of better power consumption during daylight but
no performance degradation is required during the night
(between 2am and 7am). Similarly, Fig. 13 shows the perfor-
mance of SBP-vRAN under the same scenarios. Specifically,
SBP-vRAN manages to satisfy the power budget constraint
with probabilities 0.99 and 0.93 when Pmax equals 14 and 12,
respectively, while maximizing throughput (which was cal-
culated through exhaustive search).

Fig. 9. Convergence rate evaluation of SBP-vRAN for different values of
the power budget Pmax.

Fig. 10. Time evolution of safe set size of SBP-vRAN for different power
budgets Pmax.

Fig. 11. One-day traffic pattern (top) and worst case channel quality pat-
tern (bottom).

Fig. 12. Performance evaluation of BP-vRAN throughout one day.

Fig. 13. Performance evaluation of SBP-vRAN throughout one day.
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6.4 Comparison With Other Approaches

We complete our evaluation comparing our solutions with a
state-of-the-art deep reinforcement learning algorithm: the
Deep Deterministic Policy Gradient (DDPG) [18]. This algo-
rithm needs to be customized since it is designed to solve
the full-RL problem while in this work we face a contextual
bandit problem. There are two main differences between
these two problems. First, the full-RL considers that selected
actions (control policies) have an impact on futures states
(contexts). This assumption does not hold in our setting
since the configuration of the vBS does not affect future con-
texts (traffic load and channel quality of the users). Second,
in the full-RL problem, the reward can be delayed over
time, while in our setting the performance is available at the
end of the decision period.

The DDPG is implemented using an actor-critic deep
neural network (NN) architecture and, in order to adapt it
to the contextual bandit problem, we configure the critic
NN to approximate the reward function instead of the Q-
value function (see [17] for more details). We consider the
same NN architecture as in [17] but we use a sigmoid as the
activation function of the output layer of the actor NN. Since
the action space of the DDPG is continuous (the output of
the actor is a continuous vector with the same dimensions
as X ), the selected actions are cast to the closer control poli-
cies that can be configured by the vBS. Moreover, we opti-
mize the hyperparameters to minimize convergence time.
Our experiments show that the DDPG converges to the
same solutions as the proposed Bayesian-based algorithms,
but lacks in convergence speed and versatility. We illustrate
these issues using both problems that we presented in Sec-
tions 4.2 and 4.3 and one context, as in Section 6.2.

For the first problem (Section 4.2), we configure the
reward function of the DDPG to be the objective function in
Eq. (3). Fig. 14 shows the time evolution of the objective
function for BP-vRAN and DDPG, for different values of b.
Notably, DDPG converges to the same optimal policy
learned by BP-vRAN but has to invest one order of magnitude
longer time. The main reason for this difference is that our
approach infers correlations in the objective function over
the context-action space more efficiently; and hence finds
optimal policies even for unseen context-action pairs. This
highlights the data-efficiency of the GP-based solution. It is
also worth reminding that, differently to our benchmark,

BP-vRAN has mathematical guarantees in performance (see
Sections 5.1).

In order to implement the constrained problem in Sec-
tion 4.3, we consider a customized reward function for the
DDPG. The reward is encoded using a step function that
takes the value of Eq. (2) when the observed power is below
Pmax, and the minimum reward value otherwise. Fig. 15
shows the evolution over time of the power consumption
and the associated throughput performance of the vBS for
SBP-vRAN and DDPG. We begin the experiment by setting
the power constraint equal to 15W, and changing it to 13W
at decision period t ¼ 2000.

Our results render three observations: (i) SBP-vRANattains
considerable convergence improvements over its benchmark
(roughly, an order of magnitude). (ii) SBP-vRAN is unaffected
by a sudden change on the power constraint; note that it only
requires the change of Pmax in line 5, Algorithm 2. Conversely,
DDPG needs to change the configuration of the step function,
which forces to restart its learning process from scratch, failing
the hard constraint until decision period 3500, approximately.
(iii) DDPG cannot perform safe exploration: it must use poli-
cies that violate the power constraint to learn so. On the other
hand, our approach computes the uncertainty of each estima-
tion,which allowsus to implement safe exploration and satisfy
the constraint with high probability. (iv) Although the DDPG
can potentially find better solutions due to its continuous
action space, our results show that both approaches converge
to the same solution due to the fine-grained discretization of
the action space of BP-vRAN and SBP-vRAN. Finally, it is
important to remark the inherent drawback of GP-based
approaches is the involved OðN3Þ computation complexity
(for Cholesky decomposition) in each orchestration period,
where N is the number of data points. We observed in our
experiments, however, that the unprecedented convergence
speed of these methods pays off in a very short time. More-
over, we found that these computations do not induce a delay
since, according to O-RAN specifications, there is a wide-
enough timewindow to update the policy.

7 CONCLUSION

The goal of this paper was threefold. First, to conduct an in-
depth experimental study of the power consumption of vir-
tualized base stations (vBSs); secondly, to propose two

Fig. 14. Comparison of BP-vRAN with the customized DDPG.

Fig. 15. Comparison of SBP-vRAN with the customized DDPG.
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Bayesian learning algorithms that optimize the vBS perfor-
mance subject to power constraints; and thirdly to evaluate
these algorithms in realistic conditions using a fully-fledged
wireless testbed, and compare themwith state-of-the-art solu-
tions that use deep neural networks.

Our findings revealed an intricate relationship between
performance, power consumption, and key vBS control
knobs, which renders impractical traditional resource control
policies and motivate machine-learning solutions. Moreover,
we saw that Bayesian learning algorithms can indeed enable
efficient vBS operation; yet they require extensions and
amendments in order to account for the network context and
other practical and problem-specific issues. Finally, we found
that these approaches are more data-efficient than state-of-
the-art deep reinforcement learning solutions, but are also
more computationally-demanding. This latter property does
not pose a problem for O-RAN systems, according to their
operation requirements, but might become a limitation for
other resource control problems running in finer time granu-
larity – yet, there are remedies that can reduce the computing
load, e.g., re-initializing the GP approximation.

The considered problems are motivated by the latest
industry developments in next generation virtualized RANs,
and are centered around power consumption which is proba-
bly theirmost prevalent design constraint. Similarly, our solu-
tions are in line with the requirements for automated, data-
driven, platform-oblivious vRAN configuration. As such, we
believe this work opens a new research direction and to that
end we also make publicly available our testbed implementa-
tions and the collected measurements. We have released the
source code of BP-vRAN and SBP-vRAN alongwith the data-
set used in thiswork to foster future research in this area.
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