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Independent Scaling of a Delay in
Frequency-Domain System Identification

Jeroen Strompf,Member, IEEE, István Kollár, Fellow, IEEE, and Yves Rolain

Abstract—In frequency-domain identification of systems with
delay, the delay can be scaled independently of the transfer
function to which it is associated. Practical examples show that in
most situations, the delay is properly scaled with the commonly
used scaling. Examples have been provided where independent
scaling can be useful to improve numerical conditioning and
to enhance identifiability. Algorithms are proposed for these
purposes and for system analysis.

Index Terms— Delay estimation, delay systems, frequency-
domain analysis, identification, numerical stability, parameter
estimation, transfer functions.

I. INTRODUCTION

T HIS paper proposesindependent scaling of a delayas
a new method to avoid numerical and identifiability

problems in frequency-domain system identification of linear
time-invariant (LTI) single-input single-output (SISO) systems
with delay. The identification uses a maximum likelihood
estimator [1]. The systems under estimation are represented as
rational transfer functions, extended with a delay [1]–[4], using
either powers ofs, or descriptions with orthogonal polynomials
in the Laplace plane [5]. The algorithm implemented in
the estimator solves these system equations iteratively as a
nonlinear least-squares problem.

Numerical problemsoccur when the numerical conditioning
of the equations is worse than what the finite machine preci-
sion can handle. They occur as significant rounding errors,
discontinuities in functions, and mathematical inconsistencies
in equations. Conditioning is expressed here by the 2-norm
condition number of the system equations [6, pp. 79–80]. In
principle, numerical problems can be avoided with the use of
proper algorithms and data.

Identifiability problemsoccur when the algorithm is unable
to estimate an accurate model. They give rise to poor results
during verification and simulation of the model, as well as
being the cause of numerical instabilities. Identifiability prob-
lems need a careful reconsideration of the whole identification
procedure.

After establishing the properties of independent scaling, we
will discuss practical applications and proposed algorithms.
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All experiments have been done using theFrequency-Domain
System Identification Toolboxfor MATLAB [4] with some
extensions.

II. PRELIMINARIES

We briefly discuss the cost function and related quantities.

A. Cost Function

In frequency-domain system identification, we usually as-
sume that the input and output observation noises are all
independent at different frequencies, and input noises are all
independent of output noises. These noises have circularly
symmetric Gaussian distributions. The cost function can be
written for uncorrelated inputs and outputs as [1], [4]

(1)
where and are the numerator and the
denominator of the transfer function. Measurements are made
at angular frequencies , . and
are corresponding input and output spectra, contaminated with
noise. and are corresponding “real” variances—halves
of the complex variances—defined by

var and var (2)

where and are the complex input and output noises
(errors-in-variables model). The unknown parameters are the
coefficients of the transfer function, given by the vector.
is a delay and can be included in for estimation, or not.

B. Error Vector

The error vector is linked to the cost function by

ESm (3)

with

ESm

(4)

The delay term is split into two parts for the sake of numerical
stability. This does not affect the value of . We will treat

0018–9456/98$10.00 1998 IEEE



328 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 47, NO. 1, FEBRUARY 1998

the Jacobian of this error vector

(5)

since most iteration schemes directly operate onto minimize
the cost function, and numerical conditioning of the overall
system depends on.

C. Singular Values of

The system equations determine the transfer function coef-
ficients up to a common multiplying factor only; an additional
equation has to be introduced to arrive at a set of equations
of full rank. Two commonly used possibilities are: fixing a
nonzero coefficient, or fixing the norm of the parameter vector,
excluding the delay, to 1. Fixing a nonzero coefficient is only
appropriate in the few situations when ana priori coefficient
is known, e.g., from the physical background of the system.
However, in the general situation, sucha priori information is
not at hand, and therefore, we only deal with systems where
the norm is fixed to 1.

The number of singular values (SV’s) of equals the
number of parameters under estimation. The smallest SV, as-
sociated to the normalizing equation has no physical meaning
and its value is only determined by rounding errors. We will
disregard this SV in the remainder of this discussion.

The magnitude of a SV approximately corresponds to the
reciprocal of the precision with which an underlying parameter
combination is estimated. However, there are situations in
which the correspondence between SV’s and their physical
meaning becomes questionable:

• when the magnitude of a SV is not significantly above
its variance;

• when small SV’s have the same order of magnitude as
the rounding error of large SV’s.

Algorithmically, reciprocals of small SV’s are set to zero and
thus disregarded during estimation, whenis conditioned
badly according to

(6)

where and are the smallest and the largest
SV of , respectively, is the number of parameters
under estimation, and is the computer precision, roughly

on machines with IEEE double floating point
arithmetic. When SV’s are disregarded, this may indicate a
numerical or identifiability problem, and the experimenter is
warned about this.

D. Global Scaling

One way to improve numerical conditioning and thereby
to enlarge the range of identifiability, is by scaling every
frequency-related quantity by the scaling frequency [1],

[4]. This means that models are represented internally as

(7)

with and the coefficients of the numerator and the
denominator, and and the orders of the numerator and
the denominator.

However, at the start of the identification process, no usable
information is at hand about poles and zeros. This is why
usually a simple rule of thumb is used: the center angular
frequency of the excitation band, which usually coincides with
the band of interest

(8)

where and are the lowest and highest angular
frequencies present in the excitation band. Global scaling is
applied in all models studied here.

III. I NDEPENDENT SCALING OF A DELAY

Independent scaling of a delay transforms the internal
representation of a model to

(9)

with the delay scaling factor.
The trajectories of the SV’s have been studied as functions

of the scaling of the delay. These SV’s are obtained from
at the solution; at the last iteration of an identification.

A. Idealized Behavior

The idealized behavior of the SV’s is illustrated in Fig. 1
for an artificially generated first order lowpass filter with a
corner frequency at 0.8 Hz. This model is excited in the range
from 0 Hz to 1000 Hz at 1001 equally spaced frequencies.
Variances of the input and output noises are 10. The left
plot corresponds to ordinarys-domain descriptions and the
right plot to descriptions with orthogonal polynomials [5].
Note that in the latter case, SV’s are closer to each other.
Therefore, these descriptions usually yield inherently better
conditioned systems. The dominating feature of these plots is
a number of horizontal lines, crossed by a slanted one. Only
one SV changes as function of the delay scaling factor, with
a slope of 20 dB/decade (proportionality).
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Fig. 1. Singular values ofJ for a first order lowpass filter.

Fig. 2. Singular values ofJ for a 4/6 robot arm model.

Formally it cannot be stated that there exists something as a
SV corresponding to the delay. SV’s correspond to combina-
tions of parameters, not to individual ones. Nevertheless, the
dominating feature of the figures is that the delay only interacts
with one SV at a time. Therefore, we will loosely state these
two entities to be usually corresponding to each other.

B. Distortions in the Trajectories

The behavior of the SV’s as stated before occurs inexactly in
practice. Usually, distortions appear due to reduced accuracy
in the estimation of one or more parameters. Reduced accuracy
is exhibited by “bandgaps” in the figures. The slanted line does
not cross such bands, but branches off into a horizontal line.
This is illustrated in Figs. 2 and 3 for two models, based on
measurements: a 4/6 model of a robot arm, and a 4/6 model
of an octave bandpass filter.

This reduced accuracy mostly happens to identification of
the delay. A delay introduces an accumulating phase shift in
response to excitation and therefore, proper estimation requires
a very broad band. The idealized behavior of the model in
Fig. 1 could only be obtained by using such a broad band.
Identifiability problems with the delay seem to coincide with
the phenomenon that the slanted line branches off into the
lowest horizontal line.

We cannot fully explain why reduced accuracy is exhibited
by bandgaps. Our guess is that probably the structure of

Fig. 3. Singular values ofJ for a 4/6 bandpass filter.

changes at these places sometimes, due to slight variations of
the scaled elements, but we don’t have sufficient proof as yet.

IV. A PPLICATION OF INDEPENDENT SCALING

Independent scaling of a delay can be applied as an ana-
lytical tool and as a tool for dealing with certain numerical
and identifiability problems. Its purpose in the latter case is,
to bring the SV corresponding to the delay to among the other
SV’s, thereby reducing conditioning problems.

A. Numerical Conditioning

Experiments show that scaling of a delay is often capable
of improving numerical conditioning for arbitrary models, as
it does for the models in the left plots in Figs. 2 and 3. By
means of this, independent scaling can enlarge the region in
which estimates are numerically acceptable, and reduces the
number of cases in which the experimenter should consider to
change his experimental setup more fundamentally.

An application may be in calibration of measurement sys-
tems. Modern calibration procedures need the best available
accuracy from the measured data, and sophisticated identifi-
cation schemes may break down when numerical stability is
in stake. This can be especially important when digital signal
processors (DSP’s) are used, e.g., with single precision floating
point, or fixed point arithmetic.

B. Identifiability

The algorithm may fail to identify all parameters when
there is a wide spread in precision among the parameter
combinations under estimation, as it can occur between a delay
and the transfer function parameters.

Fig. 4 gives examples of models which can only be properly
identified when independent scaling is applied. Both models
are artificial in the sense that they have been excited in very
broad bands with low frequency resolutions, in combination
with very low variances of the noise levels. More realistic
examples can probably be found when models of higher order
are examined.

The left plot corresponds to the discussed lowpass filter. It is
excited in the band from 0 Hz to 10Hz at 11 equally spaced
frequencies. Variances of the input and output noises are
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Fig. 4. Two models for which independent scaling is necessary.

Fig. 5. Two unidentifiable lowpass filter models.

10 . The right plot corresponds to a second order highpass
filter with two poles close to 1. It is excited in the band from
0 Hz to 10 Hz at 11 equally spaced frequencies. Variances of
the input and output noises are 10.

Two cases in which the estimator fails, with or without
scaling of the delay, are depicted in Fig. 5. Both models are
based on the discussed lowpass filter. The left plot is generated
by exciting the system in a too narrow frequency band from
0 Hz to 0.01 Hz as compared to the corner frequency of 0.8
Hz. The transfer function parameters are estimated accurately
while the delay is not.

The right plot corresponds to identification in a proper
frequency band from 0 Hz to 1 Hz, but as an overmodeled
4/3 system. The SV’s are distributed in two distinct bands.
The estimation is poor. It may give a hint why scaling of the
delay does not improve in this situation: if parameters cannot
be identified at all, or some parameters appear as a delay due
to poor experiment design, scaling makes no difference.

C. Independent Scaling As an Analytical Tool

When independent scaling is included in identification pro-
cedures, it can provide some insight about the system under
estimation and serve as a check for consistency: the exper-
imenter can compare the suggested scaling factor with his
expectation from the physical background of the experiment.

V. HOW TO APPLY INDEPENDENT SCALING

We propose two estimators to determine an optimal delay
scaling factor. The first is developed foron-line estimation
during system identification sessions, as it is for the rule of
thumb suggested for global scaling. The second is developed
for off-lineestimation. Somewhere, both estimators suffer from
the same drawback: in order to make a prediction about an
optimal scaling factor, some assumptions are made concerning
the general behavior of the SV’s.

A. Pairing Estimator

The name of this estimator stems from thepairing routine
which it exploits: starting with , a matrix is formed by
removing the last column which corresponds to the delay. The
SV’s of and are paired and only the SV associated with
the delay remains alone. Based on this value, the algorithm
proposes a scaling factor to bring this SV to among the others.
Pairing of SV’s of and is done with the so-called
Hungarian method. It is based on looking for alternating paths
in bipartite graphs [4, pp. 2-69–2-70].

B. Iterative Estimator

A proper scaling factor yields the minimal ratio between
the largest and smallest SV, present in. There is a global
minimum in all systems which have been studied and it
decreases monotonically at both sides of this minimum, toward
it. Based on this observation, robust algorithms can be used to
approach this minimum iteratively, likehunt andbisectioning
algorithms [7, pp. 89–92]. At least three estimation sessions
under different scaling factors have to be performed, in order
to collect matrices. An initial value can be supplied by the
previous discussed estimator.

VI. CONCLUSIONS

This paper shows that in frequency-domain models, a delay
can be scaled independently of the transfer function to which
it is associated, both for ordinarys-domain descriptions and
for descriptions with orthogonal polynomials. Only one SV
associated to the system equations is significantly affected by
scaling of the delay.

The predominantly proportional relation between the scaling
factor and the apparently uniquely associated SV makes inde-
pendent scaling of the delay a transparent tool. Algorithms are
proposed to device independent scaling. Independent scaling
can serve a number of purposes:

1) to improve numerical conditioning during estimation of
arbitrary models;

2) to enhance identifiability for some models with an
extreme spread in accuracy among the estimated param-
eters;

3) as an analytical tool to provide the experimenter with
some insight about the model under estimation.
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