
 
 

Delft University of Technology

Modeling of Continuous Physical Vapor Deposition
From Continuum to Free Molecular Flow
Vesper, J.E.

DOI
10.4233/uuid:828cef26-6fae-4a12-80a6-b83aed3a8e90
Publication date
2022
Document Version
Final published version
Citation (APA)
Vesper, J. E. (2022). Modeling of Continuous Physical Vapor Deposition: From Continuum to Free
Molecular Flow. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:828cef26-6fae-4a12-80a6-b83aed3a8e90

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:828cef26-6fae-4a12-80a6-b83aed3a8e90
https://doi.org/10.4233/uuid:828cef26-6fae-4a12-80a6-b83aed3a8e90


MODELING OF CONTINUOUS

PHYSICAL VAPOR DEPOSITION

FROM CONTINUUM TO FREE MOLECULAR FLOW





MODELING OF CONTINUOUS

PHYSICAL VAPOR DEPOSITION

FROM CONTINUUM TO FREE MOLECULAR FLOW

Dissertation

for the purpose of obtaining the degree of doctor
at the Delft University of Technology,

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board of Doctorates,

to be defended publicly on Monday 17 October 2022 at 10.00 hrs

by

Judith Elin VESPER

Master of Science in Mechanics,
Technische Universität Darmstadt, Germany

born in Kassel, Germany.



This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chair person
Prof. dr. ir. C. R. Kleijn, Delft University of Technology, promotor
Prof. dr. S. Kenjereš, Dipl.-Ing., Delft University of Technology, promotor

Independent members:
Prof.dr. V. Ayyaswamy, University of California Merced, USA
Dr.ir. A.J.H. Frijns, Eindhoven University of Technology
Prof.dr.ir. J.T. Padding, Delft University of Technology
Prof.dr.ir. C. Vuik, Delft University of Technology

Reserve members:
Prof.dr. F. Scarano, Delft University of Technology

Other members:
Dr. R. Westerwaal, Tata Steel Europe R&D, The Netherlands

This research was carried out under project number F22.3.13512 within the framework
of the Partnership Program of the Materials innovation institute M2i (www.m2i.nl) and
the Netherlands Organization for Scientific Research (www.nwo.nl). Some computations
were carried out on the Dutch national e-infrastructure with the support of SURF Coop-
erative.

Keywords: Computational Fluid Dynamics, Rarefied Flow, Jet Interaction, Com-
pressible, DSMC

Printed by: Ridderprint | www.ridderprint.nl

Front & Back: Mach number contours of interacting sonic plumes from an inviscid
continuum solution.

Copyright © 2022 by J.E. Vesper

ISBN 978-94-6384-378-2

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


It is sometimes rather unsatisfactory to obtain results without being able to see how
things really work, so that in many respects it is often very convenient to complete a

thermodynamical result with at least a rough kinetic interpretation.

Enrico Fermi [1]
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SUMMARY

Physical Vapor Deposition (PVD) is the resublimation of a substance on a cold surface
coating it with a thin solid layer. PVD coatings are utilized in industry to modify surface
properties and appearance. Since the industrial process requires vacuum conditions, it
has been mainly conducted in a batch process. Recently, PVD is considered a promising
alternative coating technology to the hot-dip galvanization in order to apply a corrosion
protective coating on steel. However, a continuous process is missing to manufacture
protective coatings for strip steel on an industrial scale using PVD.

First approaches suggest the following process: The steel strip is pulled into a vacuum
chamber through air-tight seals to ensure a non-reactive coating atmosphere and avoid
impurities; then its surface is treated to obtain high adhesion during the coating process;
afterwards it passes a Vapor Distribution Box (VDB) from which vapor jets (or plumes)
emerge and coat the steel surface; eventually the strip leaves the vacuum chamber again
via air-tight seals, is coiled and shipped.

To make this process usable on a large scale — or even superior to galvanization — mul-
tiple challenges need to be overcome: ensuring the tightness of the seals, cleaning the
strip, preventing stray coating of the vacuum chamber, guaranteeing a uniform coating
thickness, and providing a uniform high vapor mass flow to maintain a high speed of the
production line. This thesis tackles the last challenge by modeling the vapor transport
both inside the VDB and inside the vacuum chamber.

First the flow inside the VDB is modeled using a SIMPLE-/PISO-based algorithm for
transsonic flows. To account for the evaporation at the melt surface, a boundary con-
dition for the inlet pressure is implemented based on the Hertz-Knudsen equation. The
total mass flow rate for different melt temperatures is compared to experimental values
as well as an analytical, isentropic estimation. Furthermore, the sensitivity of the model
to material properties and process conditions is studied. The total mass flow rate of the
system is found to depend on evaporation and choking. With higher melt temperatures
the total mass flow rate increases. The trend found in the simulations resembles the one
from the experiment. Both yield only 33%–54% of the mass flow rate estimated by the an-
alytical isentropic relation. This low efficiency improves with higher melt temperature.
A comparison of the pressure loss across the VDB reveals that the main losses appear
due to the viscous boundary layer in the nozzles connecting the VDB with the vacuum
chamber. The simulation overpredicts the experimental result by a factor of 1.3. This
may be due to the used assumption of an idealized value of unity for the evaporation
coefficient; a value of approximately 0.3 would produce a better match between simula-
tions and experiments. Impurities found in the experiment may cause this reduction of
the evaporation coefficient.

xv



xvi SUMMARY

When expanding from the nozzles into the vacuum chamber, the flow accelerates to su-
personic speeds and rarefies. We study the interaction of two planar sonic plumes that
causes a shock next to the interaction plane. This in turn produces peaks in deposi-
tion rate and thus in the coating. Direct Simulation Monte Carlo (DSMC) method is
applied for the flow which ranges from continuum at the nozzles to rarefied and free
molecular flow downstream. The results are compared to the analytical effusion solu-
tion and the inviscid continuum solution from a Riemann solver. The expansion and
shock regions of the DSMC simulation are visualized by the Method of Characteristics
(MOC). The mass flow distribution as a function of the degree of rarefaction, the nozzle-
separation-distance and the inclination of the nozzles is studied. The DSMC result of
plume interaction outside the VDB closely resembles the inviscid continuum solution
at low degrees of rarefaction. The flow structure with expansions and shocks coincides,
deviations are apparent in the actual number density, velocity and temperature espe-
cially in the shock region. With higher rarefaction, the shock structure diminishes and
the flow field approaches the free molecular flow field. However, the rarefied flow field
is not within the limits of the inviscid continuum and the free molecular flow field, but
may exceed them in both deposition peaks and temperature peak in the shock region.
Using the MOC for visualization reveals that with higher rarefaction the shock bends
away from the interaction plane which can be explained by the increased temperature
in the secondary expansion. While the shock location shifts with the nozzle-separation
distance, it merges to one location when scaling it with the nozzle-separation distance.
Bending the nozzle outlets towards each other produces a stronger shock starting fur-
ther upstream, which in turn causes a stronger secondary expansion and thus smoother
deposition.

In addition to studying the impact of geometry changes in the PVD setup, the effect of
adding a light, inert carrier gas on the plume interaction and the resulting deposition
uniformity is investigated. To this end, the carrier-gas mole fraction is varied at a given
Knudsen number. Species separation focuses the heavy species along the primary axes,
whereas the light inert carrier gas is scattered towards the periphery. Due to the higher
mean molecular weight, the speed of sound decreases and consequently the interaction
shock occurs farther downstream, is less bent and weaker producing a more uniform
deposition profile. Desirable side effects of the carrier-gas are less stray deposition and
a higher conductance of the coating material from the inlet nozzle.

The last part of the thesis focuses on the numerical method, since DSMC is accurate
but computationally costly. The substitution of the collision step in DSMC with a ki-
netic relaxation using the Bhatnagar-Gross-Krook (BGK) operator is implemented in or-
der to speed up the algorithm. The choice of the target distribution for the relaxation
is crucial. The Maxwellian velocity distribution produces an incorrect Prandtl number;
the Ellipsoidal-Stochastical BGK (ES-BGK) corrects for the Prandtl number by taking the
stress into account; the Shakov model (S-BGK) corrects by considering the heat flux
vector. The implemented models are verified against literature data and evaluated for
their accuracy in simulating the interacting plumes case. In addition, we evaluated a hy-
brid coupling of the various kinetic relaxation models in dense, near-continuum regions
with DSMC for rarefied and non-continuum regions. The switching criterion for the hy-
brid coupling was the gradient-length local Knudsen number. The implemented kinetic
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models compare well to literature data for rarefied Poiseuille flow. The lower resolution
criteria lower the computational cost to approximately 30% of the one of DSMC. For the
planar jet interaction, the BGK model (using the Maxwellian target distribution) over-
estimates the shock strength, the S-BGK model overpredicts the diffusion of the shock,
whereas the ES-BGK models results are in good agreement with the DSMC results. This
indicates that the velocity sorting and breakdown of temperature isotropy in the expan-
sions have a more significant influence on the flow field than the shock, which skews
the velocity distribution. Coupling the kinetic models with DSMC in the highly rarefied
regions improves the flow field for the BGK and S-BGK model, but not significantly.

In short, this thesis examines the influence of process conditions, geometry and carrier-
gas use on the mass flow rate and deposition uniformity in continuous PVD for coating
steel strips with anti-corrosive coatings. It provides modeling tools for the mass trans-
port both inside and outside the VDB which can be used for further investigation and
optimization.





SAMENVATTING

Fysisch opdampen, ’Physical Vapor Deposition’ (PVD), is de resublimatie van een stof
op een koud substraat die deze bedekt met een dunne vaste laag. PVD-coatings wor-
den in de industrie gebruikt om de eigenschappen en het uiterlijk van oppervlakken te
veranderen. Omdat het industriële proces vacuümcondities vereist, wordt het meestal
in een batchproces uitgevoerd. Sinds kort wordt PVD als een veelbelovende alternatieve
coatingtechnologie beschouwd voor het thermisch verzinken om een corrosiebescher-
mende laag op staal aan te brengen. Er ontbreekt echter een continu PVD proces om op
industriële schaal beschermende coatings voor bandstaal te vervaardigen.
De eerste benaderingswijzen suggereren het volgende proces: De staalstrip wordt door
luchtdichte afdichtingen in een vacuümkamer getrokken om een niet-reactieve coatin-
gatmosfeer te waarborgen en onzuiverheden te vermijden; vervolgens wordt het opper-
vlak behandeld om tijdens het coatingproces een hoge hechting te verkrijgen; daarna
passeert hij een dampverdeelkast, ’Vapor Distribution Box’ (VDB) waaruit dampstralen
(of pluimen) te voorschijn komen en het staaloppervlak coaten; tenslotte verlaat de strip
de vacuümkamer weer door luchtdichte afdichtingen, wordt opgerold en verzonden.
Om dit proces op grote schaal bruikbaar te maken — of zelfs beter dan verzinken — moe-
ten meerdere uitdagingen worden overwonnen: de dichtheid van de afdichtingen garan-
deren, de staalstrip reinigen, verdwaalde coating van de vacuümkamer voorkomen, een
uniforme dikte van de coatinglaag garanderen, en zorgen voor een uniforme hoge damp-
massastroom om de snelheid van de productielijn hoog te houden. Dit proefschrift gaat
de laatste uitdaging aan het damptransport zowel in de VDB als in de vacuümkamer te
modelleren.

Eerst wordt de stroming binnen de VDB gemodelleerd met behulp van een op SIM-
PLE/PISO gebaseerd algoritme voor transsonische stromingen. Om rekening te houden
met de verdamping aan het smeltoppervlak, wordt een randvoorwaarde voor de inlaat-
druk geïmplementeerd op basis van de Hertz-Knudsen-vergelijking. Het totale massade-
biet voor verschillende smelttemperaturen wordt vergeleken met zowel experimentele
waarden als met een analytische, isentropische schatting. Verder wordt de gevoeligheid
van het model voor materiaaleigenschappen en procesomstandigheden bestudeerd. Er
is gevonden dat het totale massadebiet van het systeem afhangt van verdamping en ver-
stikking. Bij hogere smelttemperaturen neemt het totale massadebiet toe. De in de simu-
laties gevonden trend komt overeen met die van het experiment. Beide leveren slechts
33%–54% van het massadebiet op als geschat door de analytische isentropische relatie.
Dit lage rendement verbetert met een hogere smelttemperatuur. Een vergelijking van
het drukverlies over de VDB laat zien dat de belangrijkste verliezen optreden als gevolg
van de viskeuze grenslaag in de spuitmondjes die de VDB verbinden met de vacuüm-
kamer. De simulatie overschat het experimentele resultaat met een factor 1,3. Dit kan
worden toegeschreven aan de gebruikte aanname van een geïdealiseerde waarde van 1

xix



xx SAMENVATTING

voor de verdampingscoëfficiënt; een waarde van ongeveer 0,3 zou een betere overeen-
komst opleveren tussen de simulaties en experimenten. In het experiment gevonden
onzuiverheden kunnen deze verlaging van de verdampingscoëfficiënt veroorzaken.

Wanneer de stroming vanuit de spuitmondjes in de vacuümkamer expandeert, versnelt
de stroming tot supersonische snelheden en wordt ijler. We bestuderen de interactie
van twee vlakke sonische pluimen die een schok veroorzaakt naast het interactievlak.
Dit veroorzaakt op zijn beurt pieken in de afzettingssnelheid en dus in de coating. De
Directe Simulatie Monte Carlo (DSMC) methode wordt toegepast voor de stroming die
varieert van continuüm bij de spuitmondjes tot een ijle en vrije moleculaire stroming
stroomafwaarts. De resultaten worden vergeleken met de analytische effusie-oplossing
en de niet-viskeuze continuümoplossing van een Riemann-oplosser. De expansie- en
schokgebieden van de DSMC-simulatie worden gevisualiseerd door de Method of Charac-
teristics (MOC). De massadebietverdeling als functie van de mate van ijlheid, de onder-
linge afstand tussen de spuitmondjes en de hellingshoek van de spuitmondjes wordt
bestudeerd. Het DSMC-resultaat van pluiminteractie buiten de VDB lijkt sterk op de
niet-viskeuze continuümoplossing bij lage graden van ijler worden. De structuur van
de stroming met expansies en schokken valt samen, er zijn duidelijk afwijkingen in de
daadwerkelijke getaldichtheid, snelheid en temperatuur, vooral in het schokgebied. Bij
hogere mate van ijlheid neemt de schokstructuur af en benadert het stromingsveld het
vrije moleculaire stromingsveld. Het ijle stromingsveld ligt echter niet binnen de gren-
zen van het niet-viskeuze continuüm en het vrije moleculaire stromingsveld, maar kan
deze in het schokgebied in zowel depositiepieken als temperatuurpieken overschrijden.

Het gebruik van de MOC voor visualisatie laat zien dat bij hogere mate van ijlheid de
schok wegbuigt van het interactievlak, wat verklaard kan worden door de verhoogde
temperatuur in de secundaire expansie. Terwijl de locatie van de shock met de on-
derlinge afstand tussen de spuitmondjes verschuift, gaat zij op in één locatie wanneer
zij met de onderlinge afstand tussen de spuitmondjes wordt geschaald. Door de spuit-
mondjes naar elkaar toe te buigen, ontstaat er een sterkere schok die verder stroomop-
waarts begint, wat op zijn beurt een sterkere secundaire expansie en dus een gelijkmati-
ger afzetting veroorzaakt.

Naast het bestuderen van de invloed van veranderingen in de geometrie van de PVD-
opstelling, wordt het effect van het toevoegen van een licht, inert draaggas op de plui-
minteractie en de resulterende uniformiteit van de afzetting onderzocht. Hiertoe wordt
de molaire fractie van het draaggas gevarieerd bij een bepaald Knudsen-getal. Soorten-
scheiding concentreert de zware soorten langs de primaire assen, terwijl het lichte, in-
erte draaggas naar het gebied aan de buitenkant wordt verstrooid. Door het hogere ge-
middelde moleculaire gewicht neemt de geluidssnelheid af en treedt de interactieschok
bij gevolg verder stroomafwaarts op, is minder krom en zwakker waardoor een gelijkma-
tiger afzettingsprofiel ontstaat. Gewenste neveneffecten van het draaggas zijn minder
verstrooiing vanafzetting en een hogere geleiding van het coatingmateriaal vanuit de in-
laatspuitmond.

Het laatste deel van het proefschrift richt zich op de numerieke methode, aangezien
DSMC nauwkeurig maar rekenkundig kostbaar is. De vervanging van de botsingsstap in
DSMC door een kinetische relaxatie met behulp van de Bhatnagar-Gross-Krook (BGK)
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operator wordt geïmplementeerd om het algoritme te versnellen. De keuze van de doel-
verdeling voor de relaxatie is cruciaal. De Maxwelliaanse snelheidsverdeling levert een
onjuist Prandtl-getal op; de Ellipsoïdaal-Stochastische BGK (ES-BGK) corrigeert voor het
Prandtl-getal door rekening te houden met de spanning; het Shakov-model (S-BGK) cor-
rigeert door rekening te houden met de warmtefluxvector. De geïmplementeerde mo-
dellen worden getoest aan data uit de literatuur en beoordeeld op hun nauwkeurig-
heid bij het simuleren van de casus van interagerende pluimen. Daarnaast evalueer-
den we een hybride koppeling van de verschillende kinetische relaxatiemodellen in ge-
bieden die bijna een continuüm vormen met DSMC voor gebieden die ijl zijn en geen
continuüm vormen. Het schakelcriterium voor de hybride koppeling was het op de
gradiënt-lengte gebaseerde lokale Knudsen-getal. De geïmplementeerde kinetische mo-
dellen komen goed overeen met data uit de literatuur voor ijle Poiseuille stroming. De
lagere resolutiecriteria verlagen de rekenkosten tot ongeveer 30% van die van DSMC.
Voor de vlakke pluiminteractie overschat het BGK-model (gebruikmakend van de Max-
welliaanse doelverdeling) de kracht van de schok, overschat het S-BGK-model de diffu-
sie van de schok, terwijl de resultaten van de ES-BGK-modellen goed overeenkomen met
de DSMC-resultaten. Dit wijst erop dat de invloed van het sorteren van de snelheden en
de afbraak van isotropie in de temperatuur in de expansies meer significant is op het
stromingsveld dan de schok, die de snelheidsverdeling scheeftrekt. Het koppelen van de
kinetische modellen met DSMC in de zeer ijle gebieden verbetert het stromingsveld voor
het BGK- en S-BGK-model, maar niet significant.

Kortom, dit proefschrift onderzoekt de invloed van de procescondities, de geometrie en
het draaggasgebruik op het massadebiet en de uniformiteit van de afzetting in continue
PVD voor het coaten van staalstrips met corrosiewerende coatings. Het biedt model-
leringstools voor het massatransport zowel binnen als buiten de VDB die voor verder
onderzoek en optimalisatie gebruikt kunnen worden.
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Physical Vapor Deposition (PVD) is the process of a gas being deposited on a cold object
and changing its phase directly to solid without passing the liquid state, i.e., being re-
sublimated. Frost for example is PVD of water vapor onto cold plants and windows, on
which it forms a thin uniform coating. This phenomenon from nature can be utilized to
apply a protective, functional or aesthetic coating on a substrate, for example to protect
steel against corrosion. For this purpose, most commonly zinc or zinc alloys are used, as
they do not only build a barrier, but also give cathodic protection [2–6]. Compared to the
deposition of frost encountered in nature, zinc coating by PVD requires well-designed
devices, since the phase transition temperatures of zinc are much higher than the ones of
water and chemical reactions have to be avoided. To exclude potential reactants, deposi-
tion processes of metals are implemented in vacuum chambers. Several PVD processes
have been designed, which are characterised by their type of evaporation source. It can
be thermal evaporation, e.g., in a crucible by induction coils [7] or by highly-energetic
electron beams [8]. Another form is sputter deposition in which a plasma is generated
in front of the source so that its ions strike the source material releasing single atoms
into the vacuum, so that it is a non-thermal evaporation process. Since the plasma also
benefits reactions, it is often used for the depositions of compounds, e.g., metal com-
pounds in the semiconductor industry [9], (besides Atomic Layer Deposition, a sequen-
tial Chemical Vapor Deposition process and also commonly used for metal compounds).
A further method is arc-PVD, in which the high kinetic energy of the electrons in an elec-
trical arc release the source atoms. The produced films are very hard, which is why it is
commonly applied for the coating of cutting tools [10].

The basic setup for thermal evaporation is the one shown in Figure 1.1. A Zinc (or other
metal) source is placed in a vacuum chamber. The coating material is evaporated by
means of an electro-beam or heating. The vapor spreads in all directions and coats both
the substrate as well as the vacuum chamber. The latter stray deposition loss contam-
inates the chamber walls which entails cleaning of the chamber and consequently reg-
ular production downtimes. This traditional form of PVD is used in batch coating and
involves long startup times, because the chamber has to be evacuated and refilled for
each batch.

To make PVD also accessible for line production, continuous PVD setups were designed
[7, 11, 12], which reduce stray deposition and can continuously operate without frequent
shutdowns for refilling and maintenance. The layout of a continuous PVD line designed
by Tata Steel is sketched in Figure 1.2. Instead of an open placement of the source in
the vacuum chamber, the coating material is evaporated in a vapor distribution box, in
which a higher pressure builds up than inside the vacuum chamber. The vapor is ac-
celerated by the immense pressure ratio (up to speed of sound) generating jets directed
towards the steel strip. The steel strip enters and leaves the vacuum chamber via vacuum
locks guaranteeing a continuous line production. This setup ensures a higher deposition
rate as well as a smaller stray deposition than in the traditional PVD setup. From the first
promising concept to an efficient, high-quality setup many aspects have to be consid-
ered: the design of tight vacuum locks without introducing too much friction, contin-
uous feed of liquid coating material, the adhesion behavior between resublimated zinc
and steel and of course the mass transport in the system.
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Figure 1.1: Principle of Physical Vapor Deposition (PVD) for steel coating as used in the traditional batch pro-
cess. Zinc is evaporated from a source by either thermal or non-thermal means; it spreads into the vacuum
chamber and coats the substrate, here steel, and as a side-effect also the chamber walls.

This thesis studies the latter, starting from the evaporation at the melt surface, the slow
transport of dense vapor to the nozzles (incompressible continuum flow), the acceler-
ation to supersonic flow inside the nozzles (compressible continuum flow) and the ex-
pansion of the flow into the vacuum chamber with a breakdown of equilibrium (rarefied
flow).
Evidently, the continuous PVD line provides a variety of flow regimes which give rise
to numerous modelling challenges justifying the curiosity-driven part of this research.
Fortunately, we can use a plethora of possible approaches and models researched in the
last centuries. The following section shortly outlines these developments in historical
order, partially in their entangled form, as especially the early researchers studied more
than one aspect of fluid mechanics. Often more than one researcher formulated a law or
found a phenomenon at the same time or without knowing of the work of others. (Due to
the language barriers of the author, the following section is biased towards texts available
in English or German. The outline is based on information from the books by Anderson
[13] and Lindley [14].)

1.1. SHORT HISTORY OF FLUID MECHANICS RELEVANT TO THE

MODELLING OF A CONTINUOUS PVD PROCESS
In the classical and medieval periods, hydrodynamic principles were described which
benefited the construction of buildings and ships such as Archimedes’ principle [15]
or explained daily life. These flows are mainly incompressible continuum flow, which
means the ratio between the velocity u and the speed of sound a, i.e. the Mach num-
ber Ma = u/a, is low, and the field variables, e.g., pressure, velocity, temperature, can be
expressed by a continuous function. Compressible flow behavior becomes first notice-
able at speed differences above Ma > 0.3 corresponding to wind speeds of ≈ 100ms−1
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Chapter 5
How to efficiently model flow
ranging from continuum to
free molecular flow?
Which breakdown parameter
to choose to switch to the ap-
plicable kinetic model?

Chapter 3
Can design mitigate jet interaction shocks?
How applicable is inviscid continuum theory to
describe jet interaction?

Chapter 4
Can a carrier gas reduce deposition non-
uniformities?
Does species separation mitigate shocks?

Chapter 2
How to obtain an efficient, high
mass flow inside the VDB?
How to model evaporation at the
flow inlet?

Figure 1.2: Sketch of continuous Physical Vapor Deposition including the research questions of this thesis (the
application-oriented research questions in blue, the curiosity-driven ones in orange). Zinc is evaporated from
a crucible, from where it passes into the Vapor Distribution Box (VDB), which is heated to avoid condensation
of the zinc, via small nozzles it flows into the vacuum chamber. Due to the choking inside the nozzles sonic
plumes or jets emerge into the vacuum chamber, which may interact with each other. The zinc deposits onto
a continuously moving steel stripe.

which exceeds the speeds of most cyclones. Hence, a human cannot experience or study
compressible flow by direct means. Its wave-like character becomes clear only above
Ma = 1, i.e., at supersonic speeds. Supersonic flow accelerates in a diverging cross sec-
tion, whereas subsonic flow slows down. Rarefied flows require either vacuum, in which
we cannot breathe and in which the boiling temperature is decreased, or very small
scales in the order of the mean free path (≈ 65nm at STP) which are only observable
using a microscope. The correct description of incompressible fluid motion deducted
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Figure 1.3: Time line of contributors to fluid mechanics theory and modelling classified by the field based on
their contributions most relevant for the underlying thesis.

from observation and physical principles requires a great effort. But the prediction of
both compressible and rarefied flow deducted from the observation of incompressible
flows and thought experiments is intriguing, since we cannot experience these flows at
first hand and their behavior often is opposite to the one known from incompressible
continuum flow. Despite this, first sophisticated guesses about the nature of compress-
ible flow and molecular movement were already made in the classical period: Vitruv
wrote that “voice [...] moves [...] like the innumerably increasing circular waves which
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appear when a stone is thrown into smooth water“ [16], which is information intended
to benefit architects of theaters. Nowadays, we know how spot-on this describes sound
waves, though at Vitruv’s time it could only be a sophisticated guess. Similar hypotheses,
impossible to prove at ancient times, but accepted to be correct in contempory times,
concern the atomistic view on the world: Democritus (and his teacher Leucippus) are
acknowledged to have first described the world to be founded on atoms and gave them
their name ’atomos’ - uncuttable. Lucretius meticulously interpreted this theory with re-
gard to all daily phenomena and fabulated how small particles fly from an object to the
eyes to make it visible or how water vaporizes from drying clothes and atoms fly into the
surrounding air due to a kind of random movement [17]. Nowadays, we acknowledge
this as coming close to truth in many (but not all) facets. However, Leukippos, Democrit
and Lucretius had no obvious reason to assume the world to be made out of little atoms
except perhaps for the incredibility of infinite sizes and continuous fields.

FLUID DYNAMICS IN MODERN TIMES

The extension of hydrostatics and -dynamics to a detailed description of fluid dynam-
ics took mainly place after 1700. Figure 1.3 shows a timeline of researchers who con-
tributed to the understanding of flow physics and / or its modelling relevant to this the-
sis. Leonardo da Vinci described the dynamics of fluid motion in sketches. Bernoulli rec-
ognized the relation between pressure and fluid velocity, nowadays known as Bernoulli’s
principle [18]. Euler undertook a first mathematical modelling of this phenomenon by
giving the partial differential equation for the momentum conservation of inviscid flu-
ids (despite that viscosity was described before by Newton) [19]. These so called Euler
equations often describe external flows accurately as we will see for the plume inter-
action in Chapter 3. However, for internal flows that are affected by the shear in the
boundary layers at the wall, viscous effects are dominant. The differential momentum
equation including viscosity were derived independently by Henri Navier and George
Gabriel Stokes [20], who gave the emerging Navier-Stokes equations their name, and
others (Poisson and de Saint-Venant). Stokes suggested that molecules constitute fluid
elements, but their fluctuational velocities are unimportant compared to the mean ve-
locity from a macroscopic view [20]. In case of the compressible flows where thermo-
dynamics affects the fluid dynamics, the continuity and momentum equation of both
the Euler and the Navier Stokes equations have to be coupled with the energy equation,
the Fourier equation. This set of equations describes the flow we can perceive with the
naked eye, i.e. continuum flow.

Gas kinetics evolved parallel to continuum mechanics. The trigger for first quantitative
kinetic models was the aim to describe gas behavior for an equation of state of gases.
Next to the description of Bernouilli’s principle, Bernoulli defined the pressure in terms
of molecular motion in his Hydrodynamica [18]. John Herpath tried and John James
Waterston managed to connect the molecular motion with heat and pressure [21]. In
spite of its correctness, Waterston’s derivation was only acknowledged after more famous
physicists established the kinetic theory.

In 1856, August Krönig [22] — who is assumed to have read Waterston’s work — pre-
sented the connection between the equation of state and molecular motion, stated that
small molecules will move faster at the same temperature and described pressure-volume
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work on a molecular level. It took Rudolf Clausius, who already built up his reputation
with work on the connection between heat and work implicitly formulating the second
law of thermodynamics, to make kinetic theory widely acceptable to the physics com-
munity. One year after Krönig’s publication, he proposed in an essay with the apt ti-
tle ’Über die Art der Bewegung, welche wir Wärme nennen’ [23] (loosely translated ’On
the kind of motion we call heat’) that heat is movement, not only translational move-
ment, but also rotational (since colliding bodies rotate) and vibrational (since he ex-
pected molecules to consist of multiple atoms with a not completely rigid connection).
He drew fine distinctions which assumptions have to be fulfilled for a kinetic theory of
gases: the volume of the molecule should be much smaller than the available space per
molecule. The time of a collision should be negligible compared to the time between col-
lisions and no intermolecular forces should play a role except for the collisions. He thus
introduced the mean free path as the distance a molecule travels between two collisions.
He connected the molecular movement to the heat and derived the specific heats.

Maxwell and Boltzmann took up kinetic theory from here and made it mathematically
more sound. While considerations of big sample sizes and averaging played a role in the
early kinetic theory, Boltzmann’s revolutionary thought was the description of physics by
statistical instead of deterministic laws. Thereby, he translated the discrete particle dy-
namics into a continuum equation, and as a consequence, brought abstract order into
the confusing chaotic world of billions of particle movements and interactions. Thus not
only trivial cases could be considered, but molecular motion of gases was comprehen-
sively described including spatial changes and evolution in time. The resulting Boltz-
mann equation has seven dimensions: three in space, three in velocity space and one in
time. When multiplying the Boltzmann equation with one or more molecular property
(such as mass or particle velocity) and integrating afterwards over velocity space assum-
ing a Maxwell velocity distribution, the known continuum conservation and transport
equations such as for continuity, momentum and energy can be derived. This provides
strong evidence for the correctness of the equation. Despite this, Ernst Mach (amongst
others) was suspicious of the successfully emerging theories and severely criticized the
change from empirical observation to thought experiments as the foundation of phys-
ical explanation, as he believed only empirically, directly measurable quantities should
be used for the construction of physical laws.

Still, the proof that the Boltzmann equation reduces to the Euler equations in equilib-
rium and explains the (nearly) monotonic increase in entropy, made the statistical de-
scription too plausible to discard it. Further justification for molecular behavior was
provided by Einstein in 1905: he described how fast a small particle would travel due to
the uneven pressure distributions from the molecules colliding with the particle surface
by statistical means [24]. Thus, he provided a quantitative method to connect molecular
motion with a macroscopic observable phenomena, the Brownian motion.

Though the governing equations were found, i.e., the Boltzmann and the Navier-Stokes
equations, their solutions for general cases were impossible. (Today the proof of the
existence and uniqueness of a solution for the Navier Stokes equations is one of the mil-
lennium problems, not even including the solution itself.) Fluid dynamics had to re-
strain itself to special cases or the description of typical flow characteristics. Especially
the latter is powerful if not to predict, but to understand flow and nowadays to evaluate
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the plausibility of a result. Important concepts regarding this thesis are superposition
in case of free molecular flow (Chapter 3,Chapter 4), hyperbolic character of supersonic
flow (Chapter 3), and perturbation theory which addresses small non-linear deviations
from linear behavior. Especially powerful was the reduction of problems by utilizing
their similitude. Dimensional analysis (Buckingham-π theorem) leads to dimension-
less numbers which sufficiently describe a flow, so that one result can be scaled to a
flow which is similar in numbers. Furthermore, the dimensionless numbers facilitated
the classification of flow regimes. This "law of similarity" and dimensionless numbers
were popularized by and named after experimentalists. Three are meaningful for the
present thesis (and will be defined in the coming sections): the Reynolds number, the
Mach number and the Knudsen number.

In addition to the similarity, another level of abstraction was introduced by the use of
moments. Reynolds — whose extensive studies of transition to turbulence in pipe flows
made the Reynolds number popular for indicating the ratio of the inertial to the vis-
cous forces, i.e., Re = uL/ν, where u is the velocity, L the characteristic length and ν the
kinematic viscosity — did not expect that it will be possible to describe the velocity fluc-
tuations. Therefore, he split the flow into a mean and a fluctuational part, a procedure
which was later called Reynolds decomposition [25]. Applying the Reynolds decompo-
sition to the Navier-Stokes equations generates the Reynolds stress, i.e. a second-order
moment of the fluctuational velocities which affects the mean velocity. It was found that
not only turbulence, but also particle behavior can be described by moments and the
lower the moment the less effort to either measure it, the easier to give a rough estimate
under neglect of higher order moments and the higher the interest for engineering pur-
poses. Consequently, in both kinetic and turbulent theory a bunch of modelling approx-
imations were proposed to close the equation cascades, i.e. neglect higher-order terms
or substitute a transport equation for a moment by an algebraic expression. A power-
ful simplification is the expression of the second-order moment, which corresponds to
viscous stress, pressure and temperature in the kinetic theory and the Reynolds stress in
turbulence, by the gradient of the first-order moment, which is velocity. This yields the
stress incorporated in the Navier-Stokes equations in kinetic theory and Boussinesq’s
eddy viscosity hypothesis, which can be derived as the first-order truncation of a pertur-
bation analysis (or by mixing length analogies). Launder and co-workers introduced the
k-ε turbulence model which is based on the Reynolds decomposition and Boussinesq’s
eddy viscosity hypothesis [26]. The k-ε model is still commonly used and one version of
it is applied in Chapter 2. While extremely useful for understanding the connection be-
tween molecular and macroscopic flows as well as simple efficient turbulence models,
the assumption breaks for rarefied non-equilibrium and anisotropic turbulent flows. In
the last decades, more accurate models were developed in both disciplines to account
for this.

The early application-oriented research in kinetic theory was pursued by Martin Knud-
sen, who conducted several flow experiments in vacuum [27, 28] and also introduced
the Knudsen cell [29], an effusion box connected to a vacuum chamber via a small ori-
fice which may be seen as the first PVD apparatus designed by humans and exhibits
a great similarity to the one depicted in Figure 1.2. The Knudsen number K n, which
was named after him, is the ratio between the mean free path λ and a characteristic
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length L, so that it reads K n = λ/L. It divides the flow regimes into the continuum
regime for K n < 0.01 (describable by Navier-Stokes equations), the slip flow regime for
0.01 < K n < 0.1 (Navier-Stokes equations in addition with slip boundary conditions), the
transitional regime for 0.1 < K n < 10 (requirement to solve the Boltzmann equation) and
the free molecular regime for K n > 10 (the collision operator of the Boltzmann equation
has negligible influence and an effusion solution is a sufficient description).
In kinetic theory, the work of Enskog [30] and Chapman [31] to approximate the Boltz-
mann equation by a perturbation series around the degree of rarefaction was ground-
breaking and let to a description of phase space behavior easier digestible for the human
mind. In 1916, Chapman detected four different forces acting on the species in a mixture
of monatomic gases [32]: (i) Molecular diffusion counteracts concentration gradients;
(ii) forced diffusion which appears only if the species react differently to a body force; (iii)
pressure diffusion forces heavy molecules to high pressure regions and light molecules
to low pressure regions and consequently enforces species separation due to molecular
mass differences (an effect which will be utilized in Chapter 4 to mitigate shocks) and (iv)
thermal diffusion (or thermophoresis), in which the thermal fluctuations of surrounding
molecules push large molecules against the temperature gradient towards low tempera-
ture regions.
The drastic simplification of the collision operator of the Boltzmann equation into a re-
laxation by Bhatnagar, Gross and Krook transformed the integro-differential equation to
a mere differential equation. Still, it did not tackle the entanglement of the movement
and collision in the Boltzmann equation. Though not analytically solvable in general,
this simplified equation allowed a solution for more special problems and was later the
foundation for several numerical methods (one of which is implemented and used in
Chapter 5).

COMPUTATIONAL FLUID DYNAMICS

The introduction of computers made the numerical solution of the equations, which
tends with higher refinement of the discretization towards the correct solution, feasi-
ble. Hence, not only simple cases and qualitative flow behavior, but also accurate quan-
titative predictions became possible. However, the linear solution procedures for the
non-linear equations came along with several obstacles: instability due to non-linear,
stiff equations, the infinite equation hierarchy for the continuum equations, and the im-
mense memory requirements for the six-dimensional Boltzmann equation.
Numerical mathematics emerged to find an approximate solution for differential equa-
tions. Bird introduced the Direct Simulation Monte Carlo (DSMC) in the sixties which
provides an approximate solution to the Boltzmann equation [33, 34] by returning to its
underlying physics, i.e., discrete particle dynamics. It splits the movement of molecules
and their collision in distinct steps, thus decoupling both of each other which allows for a
much coarser discretization than Molecular Dynamcis (MD). On the one hand, the con-
sideration of molecular movement makes it applicable not only to continuum, but also
non-equilibrium flow. On the other hand, the decoupling entails a fine discretization
requirement limiting its use to a handful (i.e., a few millions) of molecules. Hence, it is
mainly used for micro-fluidics and rarefied gases (DSMC will be used in chapters 3,4,5).
One of the most widely used algorithms for solving the Navier-Stokes equations is the
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SIMPLE algorithms (or one of its derivatives) by Spalding and Patankar [35]. It solves the
linearized governing equations in a decoupled serial algorithm with a momentum pre-
dictor and a pressure corrector step. Its derivative PISO uses two pressure corrector step
which stabilizes the solution [36]. A combination of the two algorithms is used for the
flow solution in Chapter 2. Sergei Gudonov introduced a numerical scheme to solve the
Riemann problem which consists of a hyperbolic transport equation with a step function
as initial condition [37], thus locally transforming the problem into an ordinary differen-
tial equation. This led to the development of approximate Riemann solvers, which can
accurately predict hyperbolic flows such as supersonic flow including shocks (which will
be used in Chapter 3).

Around the same time as the SIMPLE-based methods, lattice-gas automata and their
these days thriving successor the Lattice Boltzmann method (LBM) were introduced
[38]. The LBM solves the Boltzmann equation simplified by the substitution of the col-
lisional operator by a relaxation operator. The simulation of local particle dynamics
avoids an explicit pressure-momentum coupling and allows for local compressibility
which produces a stable and highly parallizable algorithm. While different relaxation
operators are possible, but the relaxation closure cannot correctly describe (large) devi-
ations from equilibrium and algorithms for compressible flows were only introduced in
the last years [39].

The vast variety of modelling approaches and the enormous extent of research provide
the researcher with a ready-to-use toolbox. However, a good overview is required to
choose the correct tool. The search for efficient accurate models and algorithms con-
tinues, especially for multi-regime flows as for example the one in the continuous PVD
process (Figure 1.2): In the VDB the Mach number is low, corresponding to incompress-
ible subsonic flow (M a < 0.3); it increases inside the nozzles, first to compressible sub-
sonic flow, then until the flow chokes (M a = 1) and finally outside the nozzles, it reaches
values above unity, corresponding to supersonic flow. At the same time, moderately high
Reynolds numbers occur inside the VDB, which make flow separation, instabilities and
low turbulence likely. The Knudsen number is low inside the VDB and at the nozzle out-
let, justifying continuum assumptions; it rises in the expansion behind the nozzle outlet
passing the transitional regime either reaching free molecular flow or — in case of jet
interaction — being suddenly reduced by a shock. To tackle this multi-regime flow, it
is split into two sections: The internal flow up to the nozzle outlet (Chapter 2) and the
external flow region downstream from the nozzle (chapters 3, 4,5).

1.2. MOTIVATION AND OUTLINE

This thesis aims to model the flow inside a continuous PVD setup using Computational
Fluid Dynamics (CFD). The goal is to predict mass flow rate and uniformity and max-
imize these for an optimal deposition. Each chapter has an application-oriented and
a curiosity-driven motivation, where the weighting shifts from the former to the latter.
Figure 1.2 depicts the region which each chapter treats as well as the corresponding
application-oriented (in blue) and a curiosity-driven research questions (in orange). The
outline is based on three main research questions.
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1. Modeling of a Continuous Physical Vapor Deposition Process:
Mass Transfer Limitations by
Evaporation Rate and Sonic Choking

2. The Interaction of Parallel and
Inclined Planar Rarefied Sonic Plumes:
From Free Molecular to Continuum Regime

3. Interaction of Rarefied Plumes of a Binary Gas Mixture:
Shock Mitigation due to Diffusive Separation

4. Dynamic Coupling of Kinetic Models
and DSMC based on the Type of Non-Equilibrium

First, Chapter 2 aims to model the mass flow rate in the VDB of a continuous PVD setup
accurately in comparison with experiments and maximize the mass flow rate. It ad-
dresses

Research question 1: What limits the mass flow rate? How to obtain an efficient,
high mass flow inside the VDB?

The mass flow is limited by two processes inside the VDB: Finite evaporation rate and
choking inside the nozzles. Hence, the internal flow of the VDB is modelled, which is
a continuum flow in the transonic regime, i.e., the flow ranges from sub- to supersonic
flow. Besides accurate material properties, the numerical implementation of the Hertz-
Knudsen boundary condition is crucial for the prediction of evaporated mass. After gain-
ing some confidence in the modelling approach, the impact of process conditions on the
flow rate and discharge efficiency are considered.

Chapters 3 and 4 both deal with the flow in the vacuum chamber after the nozzles. From
the nozzles, free expanding plumes emerge. Upon interaction with each other shocks
are induced causing an accumulation of density in the interaction plane. Subsequently,
this yields undesired peaks in the deposition profile. Both chapters intend to mitigate
the shocks and subsequent peaks in deposition. While Chapter 3 addresses geometry
changes, Chapter 4 utilizes species separation effects. Chapter 3 addresses

Research question 2 a): Can design changes mitigate jet interaction shocks? How
does the rarefaction, the nozzle-separation distance and the inclination of the
nozzles affect the flow and the deposition profile?

Chapter 3 approaches these questions first by considering the extreme cases of free molec-
ular and inviscid continuum flow for planar jet interaction. Then the characteristics and
shock region of the flow field are detected to compare the flow structure for different
degrees of rarefaction. Eventually, it is investigated how the distance between the inlets
and the tilting of the nozzles affect the deposition uniformity.
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Chapter 4 extends the research question of the previous chapter by
Research question 2 b): How does species separation affect shocks? Can a car-
rier gas reduce deposition non-uniformities?

To answer these questions, Chapter 4 evaluates how a light carrier gas affects the depo-
sition rate, deposition uniformity and stray deposition in a jet interaction problem. The
same tools as in the previous chapter are applied, again utilizing the explanatory power
of inviscid continuum theory for the trends in rarefied supersonic flows.

Chapters 3 and 4 both use the DSMC method, which is widely acknowledged to be an
accurate, but computationally costly method for rarefied flows, especially if both dense
and rarefied regions exist in the flow field. This raises the question, how to speed up the
simulation while maintaining an acceptable accuracy. Therefore, multiple new mod-
elling approaches have been springing up in recent years. Several of them include a
separation of the flow domain in a near-continuum and a rarefied region based on a
breakdown criterion. Chapter 5 presents the implementation of particle-based kinetic
relaxation models within the framework of OpenFoam to approximate the collision pro-
cess. After its verification, different relaxation models are evaluated for modelling plume
interactions. Eventually, criteria for switching between the target models for the relax-
ation are proposed. Chapter 5 discusses

Research question 3: How to efficiently model flow ranging from continuum
to free molecular flow? Can a substitution of the collision by a kinetic relaxation
speed up the simulation? Which target distribution is applicable for interacting
jets?

Conclusions and outlook are presented in Chapter 6.
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MODELING OF A CONTINUOUS

PHYSICAL VAPOR DEPOSITION

PROCESS — MASS TRANSFER

LIMITATIONS BY EVAPORATION

RATE AND SONIC CHOKING

In recent years, Physical Vapor Deposition has been advanced to a continuous process
which makes it amenable for in-line, high-quality and energy-efficient galvanization. To
achieve the high and uniform mass flow required for in-line production, a Vapor Distri-
bution Box is used, in which the zinc is evaporated. The zinc fills the Vapor Distribution
Box at a relatively high pressure and leaves into the coating chamber via nozzles. A reli-
able modeling approach that can be used in the design and optimization of Vapor Dis-
tribution Boxes is as yet not available in the literature. The present paper analyses which
phenomena play a major role and therefore have to be included in a simulation model of
continuous Physical Vapor Deposition processes, and identifies process parameters which
have a significant impact on deposition rate and uniformity.

To this end, a model for the flow and heat transfer is developed based on the numeri-
cal solution of the compressible Navier-Stokes-Fourier equations in combination with the
Launder and Sharma low-Reynolds k-ε turbulence model, using the open-source CFD-
library OpenFOAM. To account for the vapor mass flow to be limited by both evapora-
tion and sonic choking, a novel inlet boundary condition is proposed based on the Hertz-
Knudsen condition. Results from the CFD model are compared to those of analytical mod-

Published as Vesper, J. E., Obiji, C. S., Westerwaal, R., Boelsma, C., Kenjereš, S., & Kleijn, C. R. (2021). Modeling
of a Continuous Physical Vapor Deposition Process: Mass Transfer Limitations by Evaporation Rate and Sonic
Choking. Applied Thermal Engineering, 117099.
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els based on isentropic flow, the influence of various modeling parameters is evaluated
against experiments, and sensitivity of the process to various process parameters studied.

The proposed numerical model predicts mass flow rates with a much better accuracy than
analytical models previously proposed in the literature. The latter overpredict the mass
flow rate by a factor of 2.1–2.5, whereas the proposed numerical model overpredicts only
by a factor of 1.3. Next to the novel Hertz-Knudsen boundary condition, the inclusion of
viscous effects is found to be crucial to achieve this improvement, since viscous effects –
especially in the boundary layer inside the nozzles – severely reduce the mass flow. The
numerical model is shown to be only weakly sensitive to uncertainties in the evaporation
coefficients and metal vapor viscosity. For the device studied, the mass flow discharge
efficiency was found to be relatively low (≈ 40%). To increase this efficiency, viscous losses
in the nozzle boundary layers have to be reduced, for instance by employing shorter or a
bigger radius nozzles (possibly impairing nozzle-to-nozzle uniformity) or by employing a
higher melt temperature and vapor pressure.
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2.1. INTRODUCTION
Physical Vapor Deposition (PVD) is a coating technique commonly used in the automo-
tive [40–42], turbomachinery [43, 44], textile [45], electronic [46] and solar energy indus-
tries [47, 48]. The manufactured coatings may improve structural and optical properties
[49], act as thermal barriers [50] or protect steel from corrosion [51, 52]. In the last two
decades, PVD was adapted to coat steel in a continuous process [7, 53, 54]. Its advantage
over commonly used hot-dip galvanization [55, 56] and electro-galvanization processes
[57] is that the heat impact which can change the steels structure is much lower [58]. In
continuous PVD units, not only traditional zinc coatings can be applied, but also alloys
such as zinc-magnesium-based coatings which provide a better protection against cor-
rosion [2–6]. However, a reliable modeling approach that can be used in the design and
optimization of continuous PVD units is as yet not available in the literature.
Traditional PVD processes are operated in batch mode and use physical means such as
electro-beams or sputtering to evaporate coating material in a vacuum. The spreading
atoms (or molecules) deposit on any object placed inside the chamber – including the
chamber walls which consequently require regular cleaning. As a result, this diffuse dis-
tribution involves regular shut-downs of the PVD station, which is not feasible for a con-
tinuous production line. Furthermore, the evaporation rates reached by electro-beams
and sputtering are quite low. A high mass flow directed towards the coating surface is
necessary to integrate PVD in a strip production line. To achieve this, a continuous pro-
cess was proposed in recent years [11]: The coating material, here zinc, is heated in a
crucible and evaporates. The zinc vapor fills a Vapor Distribution Box (VDB), which is
connected to the coating chamber via several small nozzles. Due to the high pressure
ratio between the VDB and the coating chamber, which is under moderate vacuum, the
vapor is drawn through the nozzles into the coating chamber. The zinc spreads into the
vacuum at supersonic speed and eventually deposits onto the steel strip.
To the authors’ knowledge, companies in South Korea, Belgium and the Netherlands are
working on continuous PVD devices, but details are mostly not disclosed yet. A mo-
dification to the described setup was proposed by Banaszak et al. [12] who designed a
VDB equipment with a longitudinal slot instead of nozzles and with a filter in front of
the slot, which homogenizes flow speed and temperature before the vapor enters into
the vacuum chamber. They also suggested using an induction heated filter consisting of
a conductive material to avoid condensation. Zoestbergen et al. [7] heated the VDB wall
to avoid condensation. While these measures are reasonable, the filter may hinder the
flow and any heating inside the VDB decreases the metal vapor density which both lead
to a decreased discharge.
While multiple shortcomings (e.g., stray deposition of coating material in the coating
chamber and condensation at high mass flow rates) are yet to be remedied, this paper
focuses on optimizing the process conditions to meet the most crucial requirement for
continuous production: to obtain the required coating thickness within given tolerances
at the typical speed of production lines, the mass flow has to be both high and uniform.
It is a major challenge to assess the effects of changes in design and process conditions.
Measurements in high-temperature vacuum systems are difficult to perform and even
simple geometry changes are costly. Theoretical predictions are complicated because
the thermodynamic processes involved are highly non-linear and interwoven. Numer-
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Figure 2.1: Sketch of Physical Vapor Deposition process. The simulated part of the Vapor Distribution Box is in
gray. Brown denotes the modeling based on the Antoine vapor-pressure-equation and the isentropic relation,
red the limitation of inlet pressure by the Hertz-Knudsen-equation, italic cyan the non-isentropic effects which
require numerical modeling.

ical simulation methods, e.g., continuum Computational Fluid Dynamics (CFD) or rar-
efied gas simulation techniques such as Direct Simulation Monte Carlo (DSMC), enable
us to shed some light on the processes involved, as it allows to account for and distin-
guish between the influence of non-ideal and non-linear phenomena.
The deposition rate and uniformity of batch PVD processes have been studied by using
continuum CFD [59–62] or DSMC [8, 63–67]. Some studies also compared both methods
[68–70]. Schmitz [53] developed a theoretical model for a continuous PVD process, in
which he estimated the mass transfer from the VDB to the coated surface on the basis
of isentropic and empirical relations. He approximated the jet vapor deposition process
through a slot opening by splitting the flow into two parts: first, a continuum flow in-
side the VDB; second, a collisionless expansion outside the vacuum chamber. In the first
part, he assumed a perfect, adiabatic gas flow with friction losses at the slot entrance
and exit. Numerical simulation of a continuous PVD setup has so far been reported only
as a subsidiary support of experiments [11, 12] to show the uniform velocity profile in a
choking nozzle, but studies did not address the discharge efficiency or consider the lim-
itation to the evaporation rate at the melt surface. The mass flow rate can be estimated
by coupling the Hertz-Knudsen relation for evaporation with the isentropic relations for
compressible flow, assuming choking in the nozzles. This estimate does not account
for viscous effects. A reliable mass flow prediction to assess process modifications and
optimize the process is missing.
A comprehensive numerical model of a continuous PVD process has to deal with vari-
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ous phenomena that complicate numerical simulations, such as evaporation at the melt
surface, the rapid increase in the Mach number of the vapor flow ranging from incom-
pressible to compressible supersonic flow, the high pressure ratio between the VDB and
the vacuum chamber (up to O (106)) and the unknown thermodynamic, evaporation and
transport properties of metal vapors. Furthermore, such a model has to account for mul-
tiple viscous phenomena, i.e., (i) viscous dissipation including heat generation [71], (ii)
Fanno [72] and (iii) Rayleigh flow [73]. All of these phenomena may affect the discharge:
(i) The dramatic velocity changes from zero-slip at the wall to supersonic velocity in the
core result in high viscous dissipation, decreasing the pressure and possibly generating
heat; (ii) in compressible subsonic flow, the pressure drop lowers the density and subse-
quently increases the velocity, whereas in supersonic flow, the pressure drop increases
the density and decreases the velocity. The stagnation pressure and hence the mass flow
decrease; (iii) The heating of the nozzles itself may give rise to a Rayleigh effect in the
boundary layer which decreases the stagnation pressure and thus also the mass flow. It
is unknown in the literature, and difficult to estimate a priori which of these phenomena
significantly affect the flow and which can be neglected.
The present paper proposes important steps towards the development of such a model.
To the authors’ knowledge, it represents the first report on the development and assess-
ment of a physically comprehensive numerical simulation model for continuous PVD
coating processes that is validated against experimental data in an industrial setting.
Various aspects of the numerical model discussed in this paper may not only benefit the
emerging continuous Physical Vapor Deposition, but also other vacuum and turboma-
chinery technologies.
The present paper has two objectives: First, to evaluate which phenomena play a major
role in the continuous PVD deposition process and have to be included in a numerical
PVD model in order to capture all relevant physics. Second, to identify process modifi-
cations which have a significant impact on deposition rate and uniformity.
Gas flow and heat transfer in a pilot continuous PVD unit are modeled using the open-
source CFD-library OpenFOAM [74]. To couple the limitation by the evaporation rate
at the melt and the limitation the choking inside the nozzles, a novel boundary condi-
tion is implemented based on the Hertz-Knudsen equation and the isentropic relation.
The numerical simulation results are validated with experimental results. First, the ex-
perimental pilot case setup is described, the thermodynamics involved is summarized
and the isentropic expressions are listed which are required to estimate the mass flow
rate. Then, the numerical methods are presented with a focus on the boundary condi-
tion that we implemented to capture the evaporation process correctly. Subsequently,
the numerical method is verified and validated. In the results section, we present the
flow field, mass flow rate and viscous losses. Finally, the results section discusses the ap-
plicability of isentropic equations to estimate the mass flow rate, the significance of the
above-mentioned viscous phenomena and parameter uncertainties for numerical mass
flow rate modeling and possible design improvements for a higher discharge efficiency.

2.2. EXPERIMENT
The studied equipment, its dimensions and the known process conditions are summa-
rized in Fig. 2.1. Zinc is heated up in a crucible enclosed by induction coils to melt



2

18 2. CFD IN CONTINUOUS PHYSICAL VAPOR DEPOSITION

Table 2.1: Specifications and sensitivities of used devices.

Device Specification Sensitivity

Thermocouple Mantel Thermocouple type K 5K

Vacuum pump Pfeiffer Duo 125, oil diffusion, WKP 500 A -

Eddy current
thickness measurement

Fischer Phascope PMP10 0.5µm

temperatures between 903K – 943K. The zinc vapor flows from the melt surface via an
inlet pipe into the VDB, where a relatively high pressure builds up. The vapor leaves
the VDB via 41 nozzles with a diameter of 2mm and a length of 9.5mm (nozzle-axis-to-
nozzle-axis distance 6mm). In the nozzles, the vapor is rapidly accelerated due to the
large pressure difference between the VDB and the vacuum chamber (which is held at
a background pressure pb = 0.01Pa). Subsequently, the flow chokes (i.e., it is limited to
Mach numbers around one) at the nozzle outlet. Rarefied metal vapor jets emerge from
the nozzles directed towards the moving steel strip, where the vapor solidifies upon im-
pingement. The steel strip has a width l = 0.3m and moves at a speed of 2mmin−1 (the
speed of real line production is about 50 times higher). To avoid recondensation in the
process, the wall of the VDB is kept at a temperature of about 1273K by multiple re-
sistance heating wires. Three thermocouples are placed to monitor the process: at the
bottom of the crucible, in its center, and above the melt in the vapor. The coating thick-
ness was measured using an eddy current device. The specifications and sensitivities of
the devices are listed in Table 2.1. For each melt temperature T = 903K,923K,943K, two
separate runs were conducted. The mass flow was determined by weighing the crucible
before and after the run. A stray deposition rate between 8% and 11% was derived from
mass flow rate and deposited film thickness.

2.3. MODEL

2.3.1. ISENTROPIC APPROXIMATION
Fig. 2.1 describes the thermodynamic relations and phenomena determining the flow.
Neglecting all non-isentropic effects — such as flow separation, wall heating, viscous
boundary layers — the mass flow rate can be estimated depending only on the melt tem-
perature which is one of the few process conditions known from the experiment. Such
an estimate is reasonable, (i) if the flow stays attached to the walls, which depends on
geometry and Reynolds number, (ii) if the wall heat flux is not big enough to consid-
erably heat the flow, and (iii) if the boundary layers are small compared with the bulk
flow region. But even if this is not the case, an isentropic estimate is the best prediction
available without a numerical simulation. In this section, we develop an ideal theoreti-
cal model assuming isentropic conditions. In addition, we assume that the pressure in
the VDB is uniform, the gas inside the VDB is at stagnation conditions (i.e., the velocity
is negligible) and the flow at the nozzle outlet is choked (i.e., Ma = 1) across the entire
outlet cross section. All pressures used in this section are total pressures (i.e., static and
dynamic pressure) and thus account for the flow dynamics. Fig. 2.1 shows the steps re-
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Table 2.2: Antoine equation coefficients for Zinc [75].

A [K] B C D [K−1]
Temperature
range in K

6883 9.418 -0.0503 -0.33 473−692.5
6670 12.00 -1.126 - 692.5−1000

quired for such a modeling. First, the saturation vapor pressure pv has to be determined
using the empirical Antoine equation which describes the pressure-temperature relation
along the vapor-pressure curve as

log10

(
pv (Tm)

133.32

)
=− A

Tm
+B +C log10 Tm +10−3DTm , (2.1)

where Tm is the melt temperature in K; the coefficients for zinc are listed in Table 2.2.

In a first approximate estimate it is assumed that the gas pressure pg inside the VDB is
the same as the saturated vapor pressure pv . Isentropic relations can then be used to
determine the mass flow rate as [73]

ṁ∗
i s = pg

√
γM

RTg
A∗

n

(
γ+1

2

)−1

2

γ+1

γ−1 , (2.2)

where A∗
n is the critical or sonic cross section of the nozzles (i.e., the outlet area where

Ma = 1). As we neglect the subsonic viscous boundary layer, the sonic section corre-
sponds to the total cross section A∗

n = An .

However, as the evaporation does not occur in a closed system, the actual gas pressure
in the VDB adapts to a lower value than the vapor pressure used in Eq. (2.2). The actual
vapor pressure pg in the VDB determines both the mass flux evaporated from the melt
and the outflow mass flux at the nozzles. The actual evaporation rate is proportional to
the difference between the vapor pressure and the gas pressure pg above the melt and is
given by the Hertz-Knudsen equation [76, 77]

ṁHK = f Am
(
pv (Tm)−pg

)√ M

2πRT
, (2.3)

where Am denotes the melt surface area and the evaporation coefficient is often as-
sumed to be f = 1. However, multiple studies report values around f = 0.82 for metal
melts [78–80] and the mean value derived from zinc evaporation experiments conducted
by Clair and Spendlove [81] was f = 0.75 when neglecting negative value outliers, or
f = 0.58 when neglecting both negative values and values above unity.

By balancing the two mass flow rates from Eqs. (2.3) and (2.2), we obtain the actual value
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for pg and from this the mass flow rate limited by the Hertz-Knudsen condition

ṁ =
f Am

√
M

2πRT pv (Tm)

1+ f Am

An

√
1

2πγ

(
γ+1

2

)1

2

γ+1

γ−1

. (2.4)

For numerical modeling (as described in the next section) it is useful to rewrite this equa-
tion in a form which has the mass flow rate on both sides of the equation

ṁ =
[

pv (Tm)− ṁ

f Am

√
2πRT

M︸ ︷︷ ︸
limitation by HK

]
·
√
γM

RTg
An

(
γ+1

2

)−1

2

γ+1

γ−1 . (2.5)

While the mass flow rate can be calculated explicitly from Eq. (2.4), Eq. (2.5) clearly
illustrates the limitation of the mass flow rate due to the Hertz-Knudsen equation which
shows that the gas pressure in the VDB is not equal to the vapor pressure, but rather
reduced by the mass flow leaving the VDB, which in a steady system is the same as the
evaporated mass flow. The higher the mass flux (e.g., due to a high outlet area An), the
higher the limitation. High availability of the evaporated metal (e.g., due to a high melt
area Am or a high evaporation coefficient f ) reduces the limitation.
In compressible flows through heated ducts, such as in the VDB nozzles, Rayleigh flow
may occur which means that adding heat to the flow lowers the stagnation pressure [73].
Wall heating increases the thickness of the subsonic boundary layer and thus reduces
the performance and mass flow rate of the nozzle. For a perfect one-dimensional flow
this would reduce the stagnation pressure in the critical section, which would further
decrease the mass flow rate to

ṁRaylei g h,HK = 1

γ+1

(
γ+1

2

) γ

γ−1 ṁ (2.6)

and produce a discharge of ṁRaylei g h,HK = 0.77ṁ for monatomic gases (for which γ =
5/3). In the process under consideration, the Rayleigh effect is expected to be consid-
erably lower, as the heating only occurs at the nozzle walls and the nozzles are not long
enough to allow heat conduction to the core.
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Table 2.3: Boundary conditions.

Boundary Pressure BC Velocity BC Temperature BC

Inlet

Total pressure or
Hertz-Knudsen
condition based
on p = pv (Tm)

Zero normal
gradient

Total temperature
based on Tm = 943K

Outlet
Wave transmissive
with pb = 0.01Pa
at a distance of 0.01m

Outlet: zero
normal gradient
inlet: zero
velocity convective

Constant
temperature Tm

Wall
Zero normal
gradient

No slip
Wall temperature
Tw = 1273K

Outlet Wall
Zero normal
gradient

No slip
Zero normal
gradient

2.3.2. NUMERICAL MODELING

GOVERNING EQUATIONS

The compressible Navier-Stokes-Fourier equations describe the flow by the conserva-
tion of mass, momentum and energy

∂ρ

∂t
+ ∂(ρui )

∂xi
= 0, (2.7)

∂(ρui )

∂t
+ ∂(ρui u j )

∂x j
=

− ∂p

∂xi
+ ∂

∂x j

[
(µ+µt )

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)]
︸ ︷︷ ︸

=τi j

,

(2.8)

∂(ρe)

∂t
+ ∂(ρu j e)

∂x j
+ ∂(ρke )

∂t
+ ∂(ρu j ke )

∂x j
=

− ∂(pu j )

∂x j
+ ∂

∂x j

[(
α+ µt

Prt

)
∂e

∂x j

]
+ ∂

(
τi j ui

)
∂x j

, (2.9)

where e is the internal energy and ke = 1
2 ui ui is the kinetic energy. Viscous effects dissi-

pate momentum and generate heat. As the Brinkman number (i.e., the dimensionless ra-
tio between heat generated by viscous dissipation and heat conducted away by thermal
diffusion) was Br = O (1) in the nozzles, one simulation was run including heat genera-
tion due to viscous dissipation, which is the last term in the energy equation (Eq. (2.9)).
However, the effect on temperature and the mass flow was negligible as the affected
region was rather small. The difference in total mass flow rate was 0.3%. Therefore,
heat generation by viscous dissipation was neglected in the simulations presented here.
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Modeling of compressible flows in similar geometries revealed that it may be impor-
tant to consider turbulent losses as well [82]. After initial laminar simulations, Reynolds
number calculations indicated that turbulence may have an effect on the flow field. The
Reynolds number based on local velocity, local viscosity and VDB pipe diameter was
Re = 2000–4000 in wide regions of the inlet pipe and in the VDB pipe. Consequently, an
eddy viscosity model was added. For further simulations, the turbulent viscosity µt was
modeled by the Launder and Sharma low-Reynolds k-ε model [83] with a compression
term based on rapid distortion theory (RDT) [84] (for brevity the turbulence model and
corresponding boundary conditions are summarized in Appendix A.1). The turbulent
Prandtl number was chosen as Prt = 1. Spontaneous nucleation and condensation may
occur in the nozzle due to swift thermodynamic changes [85, 86] and was reported for
continuous PVD processes especially for high pressures inside the VDB [7, 12]. Inspec-
tion of the regions of saturation (i.e., where p > pv (T )) revealed, that supersaturation is
reached inside the nozzles only and not to an extent which makes spontaneous nucle-
ation probable [87]. Nor was condensation observed in the experiments which were run
at moderate vapor pressures.

NUMERICAL SOLVER

A pressure-based compressible solver in the open-source library OpenFOAM ®-v1806
(i.e., sonicFoam) is used to solve the governing equations [88]. For a description of a sim-
ilar solver, the reader is referred to [89]. Our verification and validation of the solver can
be found in Appendices A.2.1 and A.2.2. This solver is suitable in the transonic regime
which is central to the flow we studied. Its limitations in supersonic flows, e.g., regarding
exact shock location prediction and adiabatic expansion treatment, are not relevant for
the flow region under consideration (i.e., inside the VDB). As the flow at the nozzle outlet
is supersonic (except for a small subsonic region in the boundary layer), the flow inside
the VDB is not affected by the flow in the vacuum chamber. The Navier-Stokes-Fourier
and k-ε-equations were discretized on a hexagonal mesh of 2.3 million cells in total and
with 27 cells across the diameter of each nozzle. For a grid independence study we refer
to Appendix A.2.3. The time integration was conducted using an implicit Euler scheme.
The gradients were discretized by central differencing, the fluxes were discretized by a
second-order Total Variation Diminishing scheme (Sweby limiter [90]), only the k and ε
fluxes in the turbulence model were discretized by a first-order upwind scheme to stabi-
lize the simulation (a second-order scheme would be preferable, but turbulence did not
affect the flow significantly anyhow). The allowable maximum final residuals for the lin-
ear algebra solvers were set to 10−10 for pressure, turbulent kinetic energy and turbulent
dissipation and 10−8 for velocity and energy. The mass flow rates at inlet and outlet were
monitored; a solution was considered converged when the relative deviation of the two
mass flow rates was below 0.5% (and no oscillations over time were observed).

CLOSURE OF THERMOPHYSICAL PROPERTIES

Since only the viscosity for alkali metal vapors has been reported in the literature, other
metal vapor viscosities have to be approximated. We used the inverse-power-law-based
method described by Fan et al. [8] first to estimate the collisional variable-hard-sphere
diameter to be σV HS = 5.684 · 10−10 m at a reference temperature of Tr e f ,V HS = 2000K,
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and then we applied the inverse power law to derive the temperature-dependent viscos-
ity which we fitted with the Sutherland equation

µ(T ) = AS
p

T

1+TS /T
, (2.10)

which gives AS = 1.008 · 10−6 Pas/
p

K at a reference temperature TS = 400.9K. As tem-
perature and pressure are far below the critical point, the ideal gas equation of state can
be considered. The molecular weight of zinc is M = 65.38gmol−1, the specific heat at
constant pressure Cp = 317.901JK−1 kg−1 and the Prandtl number Pr = 0.7.

BOUNDARY CONDITIONS

The simulated domain and its boundaries are depicted in Fig. 2.2, the boundary condi-
tions applied are listed in Table 2.3. Based on the existing total pressure boundary con-
dition in OpenFOAM [74], we implemented a Hertz-Knudsen pressure inlet boundary
condition to obtain the correct mass flow. The total pressure pt above the melt is lim-
ited by the maximum evaporation rate described by the Hertz-Knudsen equation (see
Eq. (2.3)), where we set ṁ

f Am
= ρ|U | and pt = pg to obtain

pt = pv (Tm)− ρ|U |
f

√
2πRT

M
, (2.11)

where the temperature in the second term is the static gas temperature at the inlet, which
for the sake of simplicity was equated with the melt temperature (as in our simulations
the gas temperature deviated less than 2K from the melt temperature).
Furthermore, the computational domain does not start directly at the melt surface, but
further downstream to reduce computational cost. The gap is bridged by assuming
an isentropic acceleration of flow. Since it is in the incompressible flow regime (i.e.,
Ma < 0.3), the local static pressure ps,i n evaluates depending on the calculated local
inlet velocity U as

ps,i n = pt −
1

2
ρ|U |2 . (2.12)

The isentropic total temperature inlet condition is given by

Ts,i n = Tt

1+ γ−1

2γ
ψT |U |2

, (2.13)

where ψT =
(
∂ρ

∂p

)
T

is the isothermal compressibility. The pressure boundary condition

which is limited by both the Hertz-Knudsen relation and the isentropic relation was im-
plemented in OpenFOAM. 1 At the outlet, a wave-transmissive pressure boundary con-
dition was used to avoid numerically reflected shocks in front of the boundary [91].

1The implemented inlet pressure boundary condition is available at https://gitlab.tudelft.nl/
evesper/HKLbc.

https://gitlab.tudelft.nl/evesper/HKLbc
https://gitlab.tudelft.nl/evesper/HKLbc
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Figure 2.2: Boundaries of computational domain. The outlet boundary extends around the entire domain.

2.4. RESULTS AND DISCUSSION

2.4.1. FLOW FIELD INSIDE THE VDB
Fig. 2.3 shows the contours of the simulated velocity, pressure and temperature fields in
the short and long cross-sections of the VDB. The values are clipped to best visualize the
VDB part so that the drastic changes inside the nozzles are not captured (which will be
discussed in section 2.4.3). The case shown applies to a melt temperature of 943K and a
wall temperature of 1273K. In the simulation, a total pressure inlet boundary condition
was used and the turbulence was modeled by means of the Launder and Sharma RDT-
low-Reynolds k-ε model (if not mentioned otherwise, the Results section refers to this
case). The velocity at the inlet adjusts to approximately 28ms−1 (Fig. 2.3a). At the wall of
the inlet pipe, a boundary layer develops, while the core flow accelerates. After the flow
has entered the main part of the VDB, a shear layer forms between the jet and the sur-
rounding vapor. On impinging onto the VDB wall, the flow stagnates, thus causing a local
pressure rise. A wall jet emerges from the stagnation zone which is visible above the 4th
to 6th nozzles from the left. The average static pressure at the inlet patch rises to 4171Pa
(Fig. 2.3b). This value remains similar in the entire VDB except for the stagnation region,
where it is slightly higher, and the nozzle inlets where it drops dramatically (the pressure
contours are clipped to values above 4100Pa). The vapor temperature in the inlet pipe
and the emerging jet is close to the melt temperature of 943K (Fig. 2.3c). A thin thermal
boundary layer forms at the pipe walls. In the rest of the VDB pipe, wall heating and the
slow swirling motion result in a uniform temperature rise to approximately 1100K. An
additional insight in the flow dynamics can be gained from the streamlines shown in Fig.
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2.4. While the streamlines are aligned with the wall in the inlet pipe, most of them swirl
inside the VDB pipe at a lower speed, before accelerating rapidly when leaving via the
nozzles (up to supersonic velocities).

2.4.2. VALIDATION AND MODELING

TOTAL MASS FLOW RATE

The total mass flow rate and the coating thickness over the strip width are known from
the experiments and used for validating the model. Fig. 2.5 shows the mass flow rate as
a function of the melt temperature. Both experimental runs are in good agreement with
each other and show an increase in mass flow rate at higher melt temperatures. The an-
alytic isentropic relation (Eq. (2.2)) overpredicts the mass flow by a factor of 2.5–3, the
relation limited by the Hertz-Knudsen equation (Eq. (2.3)) by a factor of 2.1–2.5. The
simulation with the total pressure boundary condition overpredicts the mass flow by a
factor of 1.8, while that limited by the Hertz-Knudsen equation overestimates by a factor
of 1.4 and after adding a turbulence model by a factor of 1.3. It should be noted that sim-
ulating half the domain instead of one quarter does not affect the mass flow rate. We also
checked for the influence of applying a real gas model which, however, had no effect as
most of the gas is not near the vapor pressure curve. To check the sensitivity to a wrongly
predicted metal vapor viscosity, we ran one simulation with a viscosity increased by 50%
which reduced the mass flow by only 8%.

INFLUENCE OF EVAPORATION COEFFICIENT

As discussed above, considering the evaporation-limitation is crucial for modelling the
discharge. Limiting the possible mass flow from the melt surface by the Hertz-Knudsen
Equation (Eq.(2.3)), even when assuming an evaporation coefficient at the theoretical
upper limit f = 1, results in a considerable (≈ 25%) drop in predicted mass flow rates.
However, predicted mass flow rates are still 30–35% larger than experimental results. As-
suming an evaporation coefficient f lower than 1 would further reduce the mass flow
rate and could possibly explain the difference between experiments and simulations. In
the literature, only few measurements of the evaporation coefficient were conducted for
zinc [81] as well as for other metals [78–80]. The reported evaporation coefficients were
in the range f ∈ [0.58−0.82]. We now discuss how the discharge depends on the evapora-
tion coefficient. Before looking at the numerical results, we visualize in Fig. 2.6a, how the
evaporation coefficient affects the slope of the Hertz-Knudsen equation (Eq. (2.3)) and
its intersection with the isentropic relation (Eq. (2.2)). The intersection point is given by
Eq. (2.4). For the range of reported values of f , a small change of the mass flow rate at
the intersection point was found. Reducing the value of the evaporation coefficient from
f = 1 to the smallest reported experimental value f = 0.58 reduces the mass flow rate by
12% only, thus still not explaining the 30–35% difference to our experimental data.
In Fig. 2.6b, the simulated mass flow rates are compared with those predicted by the
theoretical relation (Eq. (2.4)). While the simulations produce a lower total mass flow
rate, the relative dependence of the mass flow rate as a function of f is very similar in the
simulations and in the theory. We may therefore use the theoretical curve to estimate the
required reduction in f to reach a 35% reduction in the mass flow rate. suggests that the
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(a) Velocity magnitude, clipped to values below 40ms−1.

(b) Static pressure, clipped to values above 4100Pa.

(c) Static temperature.

Figure 2.3: Contours of the instantaneous velocity magnitude, pressure and temperature in the short and long
cross section. Both the velocity magnitude and pressure are clipped to better visualize changes within the VDB.
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Figure 2.4: Streamlines colored by velocity magnitude, where values above 40ms−1 are clipped.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

900 910 920 930 940
Tm in K

m⋅
t[g

/s
]

Analytic expressions
isentropic relation
isentropic relation + Hertz-Knudsen (HK)
Simulations
total pressure BC (tP-BC)
tP-BC+HK
tP-BC + HK + turbulence
tP-BC + HK + turbulence + doubled
Experiments
1st measurement
2nd measurement

Figure 2.5: Mass flow rate over melt temperature: solid lines analytic expression, dashed lines simulations,
black points measurements.



2

28 2. CFD IN CONTINUOUS PHYSICAL VAPOR DEPOSITION

f ↑  
A B

C D

0
0.2
0.4
0.6
0.8

1
1.2
1.4

3000 3500 4000 4500 5000

m⋅
t [

g/
s]

pg [Pa]

Eq. (2)
Eq. (3), f=1
Eq. (3), f=0.82
Eq. (3), f=0.75
Eq. (3), f=0.58

(a) Mass flow rate over the VDB gas pressure for
the Hertz-Knudsen equation for several evapora-
tion coefficients (Eq. (2.3)) and for the isentropic
equation (Eq. (2.2)). The intersection points A, B,
C, D correspond to Eq. (2.4).

A B C D

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0.4 0.6 0.8 1
f

m⋅
t [

g/
s]

Eq. (4)
simulations

(b) Mass flow rate over evaporation coefficient f.
The solid line denotes the analytic expression for
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Figure 2.6: Influence of the evaporation coefficient on the mass flow rate modeling.

evaporation coefficient f would have to be as low as f = 0.33 in order for the numerical
simulations to predict mass flow rates in agreement with the experimental data. Such an
f = 0.33 value is much lower than reported experimental values. However, the experi-
mental measurements of f were performed under process conditions (Tm = 730−810K
and pg = 6− 266Pa) that strongly deviate from those in the current PVD experiments.
Moreover, the reported experimental values are for pure uncontaminated zinc. In the
current experiments, dross was found to accumulate at the melt surface during the heat-
up of the equipment and the run of the experiments. To further clarify this issue, an ex-
perimental evaluation under actual PVD process conditions may be required for a better
estimate of f .

UNIFORMITY OF MASS FLOW

Fig. 2.7 shows the mass flow per nozzle. When connecting this to the pressure contour
(Fig. 2.3), it is apparent that the mass flow rate is higher for the stagnation zone with a
high pressure and low temperature compared to the sides of the VDB, where the pressure
is lower and the temperature is higher (thus decreasing the density). The deviation in
mass flux for different nozzles is approximately 8% for all cases, which is roughly the
coating thickness variation in the experiments of 8−10%. However, the latter is in the
same range as the inaccuracy of the measurement device.

2.4.3. OPTIMIZATION OF PROCESS CONDITIONS

ISENTROPIC OPTIMIZATION

For weak evaporation (i.e., small mass fluxes from the melt surface), the second term of
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Figure 2.7: Mass flow rate per nozzle from simulations for different melt temperatures. The rate is given for
the entire nozzle. The percentage on the right shows how much the maximum flow rate exceeds the minimum
mass flow rate.

Table 2.4: Discharge coefficient Cdi s =
ṁactual

ṁtheor eti cal
, where the theoretical mass flow rate ṁtheor eti cal is from

Eq. (2.4).

Tm 903K 923K 943K

Cdi s,si m 0.43 0.50 0.54
Cdi s,exp 0.33 0.37 0.40

Eq. (2.5) is negligible and the mass flow rate is expected to vary proportionally to

ṁ ∝ An
ptp
Tt

, (2.14)

where the total pressure pt is approximately an exponential function of the melt temper-
ature Tm , which is almost equal to the total temperature Tt at the VDB inlet. (It should
be noted that while we used pg and pv to denote the total pressure at certain locations
in section 2.3.1, here, we use the total pressure pt to distinguish from the static pressure
p which is required for the discussion of the flow dynamics as the dynamic pressure has
to be taken into account.) Consequently, a higher melt temperature increases the term

ptp
Tt

. Considering only this isentropic approximation, this leaves two options to increase

the mass flow rate, a bigger critical nozzle outlet area An or a higher melt temperature
Tm . However, both experiments and simulations show a much lower mass flow rate
than the isentropic prediction. In the following subsection, we quantify the discharge
efficiency and determine where the non-isentropic losses occur; we then describe the
influence of the wall temperature and finally, explain why the discharge coefficient in-
creases with the melt temperature.

NON-ISENTROPIC LOSSES

The discharge coefficient of the VDB, i.e. the ratio of the actual (experimental or simu-
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Table 2.5: Total pressure and total temperature averaged across some z-planes.

Total pressure
pt in Pa

Total temperature
Tt in K

VDB inlet plane 4184 948
Nozzle inlet plane 4011 1144
Nozzle outlet plane 2796 1251

lated) discharge ṁactual to the theoretical discharge ṁtheor eti cal (calculated by Eq. (2.5))

Cdi s =
ṁactual

ṁtheor eti cal
,

is listed in table 2.4. For higher melt temperatures, the discharge coefficients increase for
both the simulations and the experiments indicating a decline of non-isentropic effects.
The total isentropic pressure pt , which is the driving force, drops in the real process due
to viscous and non-adiabatic losses, such as flow separation, turbulence or heating. This
directly reduces the mass flow rate as can be seen in Eq. (2.14). The local total pressure
(i.e., the pressure obtained by isentropically decelerating the flow to zero velocity) is cal-
culated from the flow field as

pt = p

(
1+ γ−1

2
Ma2

) γ

γ−1 . (2.15)

In addition, increases in total temperature reduce efficiency, though the total temper-
ature has much less influence than the total pressure (refer to Eq. (2.14)). The total
temperature is calculated from the flow field as

Tt = T

(
1+ γ−1

2
Ma2

)
. (2.16)

Table 2.5 shows total pressure and total temperature averaged across certain z-planes
to permit an estimation of the impact by different regions. Total pressure decreases by
4% between the VDB inlet and the nozzle inlet plane, but drops dramatically inside the
nozzles by 30%. Total temperature rises by approximately 200K between the VDB inlet
and the inlet of the nozzles, inside the nozzles it only increases by approximately 100K.
If we use the values to compare the ratio ptp

Tt
from the approximation in Eq. (2.14) at the

nozzle outlet plane with the one at the VDB inlet plane, the estimated efficiency is 0.58,
which is close to the actual simulated discharge coefficient of 0.54 (Table 2.5).
The losses — either due to a reduction in total pressure or an increase in total temper-
ature — can be broken down into different contributions: (1) flow separation or turbu-
lence in the VDB, (2) the viscous boundary layer in the nozzles and (3) the wall heating.
The first two impact on the total pressure; the wall heating impacts both the total tem-
perature and the total pressure. Since the pressure drop between the VDB inlet and noz-
zle inlet is small, we will not discuss (1) any further, but rather focus first on wall heating
and then on the boundary layer.
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Figure 2.8: Mass flow rate and wall heat flux over wall temperature.

WALL HEATING

Wall heating is applied to prevent the metal vapor from condensing at the VDB walls.
At the same time wall heating in compressible flow causes Rayleigh flow. This increases
total temperature and reduces total pressure, both of which in turn lower the discharge
coefficient.
Fig. 2.8 shows the total mass flow rate and the heat fluxes emerging from the VDB wall
and the nozzle walls for different wall temperatures as well as for adiabatic walls. The
introduced heat flux increases almost linearly with the wall temperature. The heat flux
introduced by the VDB wall is approximately twice as high as that introduced inside the
nozzles, in line with the 200K temperature increase in the VDB versus 100K in the nozzle,
as listed in Table 2.5.
An increase in wall temperature by 100K lowers the mass flow rate by approximately 4%.
For the range under consideration, the relation is linear. Even adiabatic walls produce
only a moderately higher mass flow. This indicates that other non-ideal effects, such as
the viscous boundary layer in the nozzles, are responsible for the low discharge coeffi-
cient.

NON-ISENTROPIC LOSSES IN THE NOZZLE BOUNDARY LAYER

To determine the nozzle regions, where the drastic pressure drop occurs, Fig. 2.9 plots
static pressure, total pressure, static temperature and total temperature across the nozzle
diameter at the inlet, in the middle and at the outlet of the seventh nozzle. The (static)
pressure is constant across and decreasing downwards of the nozzle, whereas the total
pressure is at a constant high level in the inner core of the nozzle, but drops significantly
next to the walls, which denotes losses due to both viscous effects and wall heating. The
temperature drops in the core along the nozzle due to the transfer of heat to kinetic en-
ergy, while it tends towards the wall temperature directly next to the wall. The total tem-
perature increases in the same near-wall region where the total pressure drops, while
it stays nearly constant in the core. The increase in total temperature is caused by the
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Figure 2.9: Pressure and temperature profiles across the nozzle diameter at the inlet, half way downstream
(mid) and outlet of the seventh nozzle.
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Rayleigh flow only, whereas the observed pressure drop in the boundary layer can be
accounted for by multiple phenomena: increased viscosity due to the high wall tem-
perature, viscous dissipation, Rayleigh and Fanno effects. In the core of the nozzle flow
these effects are negligible. It should be noted that due to the radial geometry the total
impact is weighted by the radius, so that the pressure drop in the boundary layer has a
large effect. This indicates that the easiest way to improve the mass flow discharge are
bigger nozzle radii as the nozzle outlet area increases quadratically with nozzle radius,
while the wall boundary increases only linearly. Another possibility would be shorter
nozzles to reduce the boundary layer length and thickness. Design optimization of the
nozzle shape (e.g., converging-diverging nozzles) may be another option, but the effi-
ciency increase strongly depends on process conditions [92].

MELT TEMPERATURE

Earlier, we showed that the discharge coefficient increases with melt temperature. To
analyze the influence of the melt temperature on non-isentropic losses in greater detail,
Fig. 2.10 plots the Mach number for different melt temperatures as a function of the
radius at the outlet of the seventh nozzle. As the nozzle inflow is not aligned with its axis,
the profiles are asymmetric. The Mach number shows a plug profile with values above
the speed of sound in the core region. However, the critical area (i.e., the area where
Ma > 1) is significantly decreased by a substantial boundary layer (which we defined
as the region where Ma < 1). The boundary layer for Tm = 943K matches the region of
pressure loss in Fig. 2.9. Considering the radial geometry of the nozzle, the critical area
is reduced by approximately a factor of four for a melt temperature of Tm = 943K. For
lower melt temperatures, the critical area is even smaller. A higher melt temperature
produces a higher pressure in the VDB, which reduces the boundary layer thickness (in
which the highest pressure drop appears) and expands the critical section, thus resulting
in a higher discharge efficiency.
Hence it can be concluded, that a higher melt temperature improves the mass flow rate
in two ways: The ideal isentropic mass flow rate increases and the non-isentropic losses
become smaller.

2.5. CONCLUSIONS
A simulation model was developed to predict the total mass flux and mass flux unifor-
mity in a continuous Physical Vapor Deposition apparatus. A crucial factor was the im-
plementation of a new boundary condition, which considers the evaporation rate limi-
tation by the Hertz-Knudsen relation. The simulations were validated by comparing the
results with experiments and analytical approximations. The following conclusions can
be drawn

1. For accurate modeling of continuous VDB processes:

• The mass flow limitation by the Hertz-Knudsen boundary condition is crucial
for predicting evaporating flows. However, the exact evaporation coefficient
(within the range reported in the literature) is less decisive.

• The influence of real gas models is negligible, the mass flow rate is not very
sensitive to changes in viscosity.
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Figure 2.10: Mach number across the outlet of the seventh nozzle for different melt temperatures. The thin
vertical lines mark the transition from sub- to supersonic flow.

• Despite the clear improvement in prediction quality, the computational re-
sults still overpredict the mass flow rate by approximately 30%. We suppose
that either dross at the melt surface, which was detected subsequent to run-
ning the experiments, hampers the evaporation, or the evaporation coeffi-
cient considerably differs under the process conditions studied from that in
the literature (due to different process conditions or melt contamination). To
minimize these uncertainties, more measurements of the metal properties
would be required.

2. For optimizing the continuous VDB processes:

• The total mass flow rate depends mainly on melt temperature and nozzle
geometry.

• Since the flow is fast, the mass flow decrease due to wall heating is marginal.

• For the device studied, the discharge efficiency (i.e., the ratio of actual to ideal
mass flow rate) was low (0.33–0.4 in experiments and 0.43–0.54 in simula-
tions). This is mainly due to the boundary layer within the nozzles. To in-
crease the discharge efficiency the influence of the boundary layer has to be
reduced (e.g., through shorter nozzles or a bigger nozzle radius). This, how-
ever, might impair nozzle-to-nozzle uniformity.

• Higher melt temperatures and thus higher VDB pressures reduce the bound-
ary layer thickness in the nozzles and result in a higher discharge coefficient.
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THE INTERACTION OF PARALLEL

AND INCLINED PLANAR RAREFIED

SONIC PLUMES — FROM FREE

MOLECULAR TO CONTINUUM

REGIME

“Simple,” said von Neumann. “This can be solved by using the method of characteristics.”
“I am afraid I don’t understand the method of characteristics.”

“Young man, in mathematics you don’t understand things. You just get used to them.”

John von Neumann 1

The interaction between rarefied vapor plumes can cause shocks and consequently distinct
peaks in mass flux, which produce undesirable non-uniformities. To evaluate the impact
of shock formation, we study pairs of interacting planar plumes, varying the degree of rar-
efaction and general geometric parameters, namely the nozzle-separation-distance and
the mutual plume inclination. To consider the extremes of rarefaction, we give the ana-
lytic solution for free molecular flow, and simulate the inviscid continuum solution using
an approximate Riemann solver. In the transitional flow regime, Direct Simulation Monte
Carlo (DSMC) is applied. To detect the shock location, we make use of the Method of Char-
acteristics. We conclude that, although the rarefied flow regime physically lies in between

Parts of this chapter have been published in Physics of Fluids, 33(8)[93].
1as paraphrased in Zukav, G. (2012). The dancing Wu Li masters: An overview of the new physics.[94], p.208
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the free molecular and the inviscid continuum flow regimes, the peak value of mass flux
in the transitional flow regime exceeds both the one of free molecular flow and the one
of inviscid continuum flow (the latter by ≈ 10%). Rarefied flow exhibits a broader, but
less strong secondary expansion after the shock than continuum flow. For planar jet in-
teraction, the occurrence of the shock is rather insensitive to nozzle separation distance.
Despite the intuitive expectation that inclining the plumes away from each other would
lead to shock reduction and thus give a more uniform mass flux, the opposite is the case:
Inclining the plumes towards each other leads to a stronger shock, but also to a stronger
expansion, thus producing a more uniform mass flux with less stray mass fluxes.
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3.1. INTRODUCTION
In recent years, clusters of rarefied vapor plumes (also sometimes called jets) have played
an increasing role in both space and vacuum technology: The Reaction Control Systems
of shuttle orbiters operate with multiple exhaust plumes. Micro satellites use plume
clusters as well, and the number of launches has increased rapidly over the last decade
[95]. Linear aerospike engines consisting of two planar plumes, which expand along the
two sides of a spike and merge at the spike’s end, are a promising rocket and micro-
satellite thruster technology. This design of two interacting plumes can compensate
for the decreasing atmospheric pressure and consequently suppress the increase in ex-
pansion at higher altitudes, allowing for single-stage-to-orbit space vehicles [96]. Re-
cently, clusters of sonic zinc vapor plumes have been introduced as a novel technology
to achieve a continuous Physical Vapor Deposition (PVD) apparatus for galvanizing steel
[7, 97]. For all these technologies, the fluxes from the plumes are of importance. Shuttle
orbiters operate next to space stations; the momentum flux and the heat flux from the
exhaust plumes may cause damage when impinging on any sensitive structures, such
as solar panels or optically-sensitive components [98, 99]. In coating technology, highly
uniform coating is desirable which requires a uniform mass flux from the deposition
plumes.
However, interacting plumes may cause a shock, which results in mass flow and temper-
ature peaks around the interaction plane. The subsequent high-pressure region between
the shocks leads to another expansion, called a ’secondary jet’. From the secondary jet
a backflow may emerge, which for aerospikes and thrusters gives a pressure and heat
load on the surface of the propelled space vehicle itself. In addition, recirculation in the
interaction plane introduces viscous losses and may reduce efficiency of thrusters [100].
Single plumes are thoroughly studied due to their ubiquitous use as thrusters in aerospace
[98, 101, 102]. Backflows appear for plume thrusters, especially for small Mach number,
since then the expansion angle at the nozzle exit lip is obtuse and the flow is redirected
towards the space vehicle. The resulting forces can disturb the space vehicle orienta-
tion and the heat flux and contamination may damage the vehicle’s surface. Several re-
searchers studied the backflow and suggested designs to minimize it [103–106]. Plume
interaction may increase the backflow and the subsequent contamination of the space
vehicle. Tools based on CFD, DSMC and approximations have been developed to pre-
dict the contamination, heat flux and disturbance forces due to plume impingement
[107–110]. Recently extraterrestrial plumes were simulated and compared to their ap-
pearance in space [111–113].
Plume interaction has so far been much less studied. Since measurements in moder-
ate or high vacuum conditions are difficult, only few experiments of plume interaction
are reported in the literature, mainly considering space thrusters. Depending on pro-
cess conditions, researchers found density peaks around the interaction plane [114, 115].
Some observed a small backflow [115]. To determine the occurrence of a shock and its
strength under rarefied conditions, Koppenwallner [116] (as cited by Dagum et al. [117])
introduced the penetration Knudsen number K np , as the ratio of the mean free path
in the interaction plane and the path length between the interaction plane and the axis
of the other plume. A few groups confirmed that the penetration Knudsen number is
indeed a determining parameter for the occurrence of a shock under particular circum-
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stances [118, 119]. However, Dagum and Zhu [117, 120] studied parallel plume inter-
action at different nozzle separation distances using the Direct Simulation Monte Carlo
(DSMC) method and found that the penetration Knudsen number could not predict the
shock impact on the flow field. For three interacting planar aluminium vapor plumes
(aligned in one row), Venkattraman and Alexeenko [121] found that the deposition pro-
file can be described by a superposition of the deposition of three single plumes at high
Knudsen numbers, whereas at smaller Knudsen numbers the deviation due to the in-
teraction peak is immense. Baby and Rajesh [122] studied jet interaction for two three-
dimensional jets at a moderate pressure ratio (rp ≈ 2500–9500) and a background pres-
sure of 5Pa, which yields barrel shocks which inhibited the interaction between the jets.
Although some simulations and experiments for specific designs and flow conditions
were reported in the literature [123–125], a comprehensive evaluation of the sensitivity
of the mass flux distribution to geometry and process conditions is missing. This knowl-
edge is crucial for applications in propulsion systems, but also for coating technology,
where non-uniformities caused by jet interaction deteriorate the product.

D

2L

n0

U0 = a λp lr e f

x

z

Figure 3.1: General flow setup: Plumes emerge from two inlets of length D at a nozzle separation distance
2L. The domain extends infinitely in the third direction causing a planar problem. The penetration Knudsen
number is defined as K np =λp /lr e f .

To execute such a comprehensive evaluation, we study the onset, location and strength
of the shock caused by two interacting planar sonic plumes of zinc vapor, as depicted in
Figure 3.1, depending on geometry and process conditions, to make statements about
the uniformity of mass flow at a most general level. The rarefaction ranges from the high
Knudsen number free molecular to the low Knudsen number inviscid continuum flow
limit.
In section 3.2, we introduce the solution methods, such as analytic equations for free
molecular effusion flow, an approximate Riemann solver for inviscid continuum flow
and Direct Simulation Monte Carlo (DSMC) for the transitional flow regime. The Meth-
ods section also describes the shock detection method, the far-field approximation and
a discussion on the Penetration Knudsen number. The exact geometry, boundary con-
ditions and thermophysical properties are discussed in section 3.3. In section 3.4, the
flow fields for free molecular and continuum flow are compared to those for rarefied
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flow. Afterwards, the shock location method is introduced and the effect of rarefaction
on the shock location discussed. The shock location method is validated by analyzing
the shock structure in relation to the detected shock location. To evaluate the influence
of the shock on the mass flux distribution, mass flux profiles are compared for different
degrees of rarefaction. Afterwards, shock location and line profiles are discussed for the
other varied parameters, i.e., nozzle-separation distance and plume inclination. Finally,
we compare the deposition uniformity for coating applications depending on these pa-
rameters.

3.2. METHODS
The phase density f (r,c, t ) describes the probability of finding a molecule at location r
with velocity c at time t . The evolution of the phase density f is governed by the Boltz-
mann equation which, in the absence of body forces, reads as

∂ f (r ,ξ, t )

∂t
+ξ ·∇r f (r ,ξ, t ) =

(
∂ f (r ,ξ, t )

∂t

)
col l

, (3.1)

where the left-hand side describes the convective transport and the right-hand side the
collisions between particles. In section 3.2.1, only the left-hand side of Eqn. 3.1 is consid-
ered, giving us the collisionless or free molecular flow. In section 3.2.2, the local equilib-
rium case is described, which means that f in Eqn. 3.1 is replaced by the Maxwellian dis-
tribution f0. Integrating the moments of this simplified equation over the velocity space
leads to the Euler equations shown in section 3.2.2. For the steady-state Euler equations
in the supersonic regime, the Method of Characteristics describes the flow field, which
we used for the shock detection presented and which can be seen as the basis for approx-
imate Riemann solvers. Section 3.2.3 describes how to solve Eqn. 3.1 for rarefied gases
in the transition regime — where there are too many collisions to neglect the collision
operator on the right-hand side, but too few to assume Maxwellian or Chapman-Enskog
velocity distributions (which would yield the Euler and Navier-Stokes-Fourier equations,
respectively). Section 3.2.4 sets out the far-field solution for the planar case (as the so-
lutions given in the literature apply to a three-dimensional jet), which is used for the
penetration Knudsen number described in section 3.2.5.

3.2.1. ANALYTIC COLLISIONLESS SOLUTION

The collisionless flow solution provides the extreme case of rarefaction as well as an in-
sight into the non-equilibrium resulting from velocity sorting. The first analytical so-
lution for free molecular flow from one slot was outlined by Knudsen [29] in 1909. He
based his cosine law for the so called Knudsen cell on an equilibrium assumption and
zero mean velocity at the slot outlet, which is not true for our case as the vacuum accel-
erates the flow and thus directs it along the jet axis, producing a higher density around
the jet axis and a lower density far away from it. It was only in the 2000s that Cai and Boyd
proposed an exact collisionless solution which includes both the spatial extension of the
inlet and a non-zero inlet velocity [126]. We adapted their solution for a single straight
jet to the two inclined jets by altering the integration domain and superposition, details
are given in Appendix A.3.
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Figure 3.2: Schematic of characteristics.

3.2.2. CONTINUUM FLOW
Continuum flows are most commonly described by the Navier-Stokes-Fourier equations,
which correspond to the first-order Chapman-Enskog approximation of the Boltzmann
equation and include shear stress and heat flux. Yet for free expansions of supersonic
plumes into vacuum, convective forces greatly surpass viscous forces (i.e., the Reynolds
number tends to infinity, which yields a flow field similar to the inviscid limit) and no
walls are present to form shear boundary layers. Since the velocity gradient is aligned
with the flow direction in many parts of the flow field, the impact of shear stress is ex-
pected to be low. With the Prandtl number of gases ≈ 2/3 being close to unity, also
thermal conduction is expected to play a minor role in the energy equation compared
to convection. Therefore viscous forces and conductive heat fluxes can be neglected
in a first approximation (i.e., using a Maxwellian distribution instead of the first-order
Chapman-Enskog expansion). The Navier-Stokes-Fourier equations then reduce to the
Euler equations

∂ρ

∂t
+∇· (ρu) = 0, (3.2)

∂

∂t

(
ρu

)+∇· (ρu⊗u) =−∇p̄ , (3.3)

∂

∂t

(
ρ e

)+∇· [(ρ e +p)u
]= 0, (3.4)

where the specific energy is e = ei nt +0.5u2 and the enthalpy is h = ei nt +p/ρ is used to
calculate the temperature field. We close the equations by assuming a calorically perfect
gas, i.e., h = cp T and p/ρ = RT .

METHOD OF CHARACTERISTICS

For purely supersonic flow, the Euler equations exhibit a hyperbolic behavior in space,
which implies that information propagates in a wave-like manner. In a steady-state case
as ours, the downstream solution depends only on the upstream solution and can be
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deduced from it by using the Method of Characteristics (MOC). A proper derivation can
be found in the book by Vos and Farokhi [127]; here we briefly sketch the underlying
physics. In our case, the uniform inflow is homentropic and homenergetic, which ac-
cording to Crocco’s theorem entails that the flow field is irrotational [128]. This condi-
tion breaks inside the shock where the entropy increases and, consequently, the flow
becomes rotational. The following qualitative visualization is confined to the planar, ir-
rotational MOC and, strictly speaking, is therefore not applicable after the shock. The
local velocity vector is sufficiently described by the local speed and flow direction ex-
pressed by the Mach number M and the flow angle ϕ. The local information propagates
along the flow direction with the flow speed a · M and orthogonal to it with the speed
of sound a. Therefore the domain of influence of each point is the Mach cone which
expands around the streamline with the Mach angle

µ= sin−1
(

1

M

)
. (3.5)

The left-running Γ+- and right-running Γ−-characteristics span the Mach cone around
the streamline as symmetry axis. Figure 3.2 sketches a streamline with the correspond-
ing characteristics for one point. The Prandtl-Meyer function ν(M) indicates the an-
gle, through which a sonic flow turns when it accelerates to a certain Mach number M
greater than 1. A fluid element, which accelerates isentropically from Mach number M1

to Mach number M2, turns its direction by an angle ν(M2)−ν(M1) (a compression pro-
ceeds inversely).
Along the characteristics Γ+ and Γ−, the following linear combinations of the flow angle
and the Prandtl-Meyer-function are constant:

ν−ϕ= const. along Γ+ :
d z

d x
= tan

(
ϕ+µ)

, (3.6)

ν+ϕ= const. along Γ− :
d z

d x
= tan

(
ϕ−µ)

, (3.7)

where ϕ depends on the location as well as ν and µ, which are functions of the local
Mach number.
Figure 3.3 shows the MOC solution for a sonic plume and a qualitative sketch of how the
plume interaction modifies the solution (the non-isentropic process across the shock
complicates a completely analytic solution and the presence of the subsonic region sup-
presses it entirely (see Zucrow on backward-facing step [129])). At the corners of the
inlet, expansion fans arise, depicted by the characteristics emerging from the corners
and spreading into the domain. The flow turns outward towards the vacuum and accel-
erates. It changes when crossing one of the depicted expansion fan lines, whereas within
each of the polygons depicted in Figure 3.3, the Mach number and flow direction as well
as density, pressure and temperature are approximated to be homogeneous (finer spa-
tial discretization, i.e., more expansion fan lines emerging from the inlet corners, tends
towards the correct solution). The flow direction is along the half angle between the Γ+-
and Γ−-characteristics and exemplary depicted by vectors in blue. In the core of the
plume, the interaction of the characteristics deflects them, but their expansion charac-
ter remains, i.e., the characteristics are diverging downstream. Due to the presence of an
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Figure 3.3: Qualitative sketch of plume interaction explained by Method of Characteristics. Expansion fans
emerge from the inlet corners. The interaction between the flow and the subsonic region causes compression
waves which induce a shock. The characteristics from the expansion bend when crossing the shock and get
reflected at the symmetry.

identical second plume next to the first one in our problem, the case is symmetric. At
the symmetry axis, the velocity normal to it has to be zero, and on the left side, immedi-
ately after the inlets, the velocity aligned with the symmetry axis is small, which results
in a subsonic region. The flow from the expansion fan impinges on the concave part of
the subsonic region causing compression waves which in turn induce a shock. Both the
compression waves and the shock run along Γ+-characteristics. The shock propagates
through the velocity field. While around the subsonic region, the incoming flow is nearly
orthogonal to the shock producing a (nearly) normal shock, further downstream the in-
coming flow has a significant tangential component to the shock resulting in an oblique
shock. When crossing the shock, the Γ−-characteristics slightly bend towards the sym-
metry axis, where they are reflected and hit the shock a second time from its downstream
side. Since the characteristics remain expansion waves both after crossing the shock and
after the reflection at the symmetry, they bend the shock away from the symmetry axis
[130].
Except for the subsonic region, the entire flow field is described by the Mach number M
and the flow angleϕ. The inviscid Euler solution is thus independent of the temperature
and density (which can be deduced along the streamlines using isentropic relations), so
that — except for a change in the shape of the subsonic region depending on density —
the inviscid continuum flow field depends only on the nozzle separation distance and
inclination.

DETECTION OF SHOCKS AND CHARACTERISTICS

Commonly, shocks are identified as regions with a high density of pressure isolines or
with a pressure gradient magnitude above a specified value. However, the rapid expan-
sions in the problem under consideration give rise to high pressure gradients before the
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shock and consequently strongly varying shock strength along the shock (we use the
common shock strength definition as the pre- to post-shock pressure ratio). This com-
plicates shock detection based on the pressure field. A further obstacle is finite shock
thickness, as a shock extends over several mean free paths (O (10)) and the mean free
path in rarefied flow is long [131]. Kanamori and Suzuki [132, 133] proposed to detect
the shocks as a singularity in the characteristics field given by the local unit vectors in
the direction dz/dx from Eqns. 3.6 and 3.7. As shown in Section 3.2.2, the compres-
sion waves, which are Γ+-characteristics inclined towards each other, merge forming
the shock. Anticipating the characteristics presented in Figure 3.8, we see that also other
Γ+-characteristics inciding on the shock, merge with it, producing a local sink in the Γ+-
field. Thus, a strong divergence in the Γ+-field indicates a shock. The broader shock in
the transitional flow regime make the algorithm by Kanamori and Suzuki more difficult
to apply. This is why, we base our implementation only loosely on their approach.
First, the deformation gradient tensor of the Γ+-field is calculated in all supersonic re-
gions. Then the region with negative divergence of theΓ+-field, i.e., the sink, is extracted.
From this subset, we extract regions where the deformation gradient tensor of Γ+ pro-
jected into the flow direction is negative. This second clipping is necessary, to exclude
regions in which the divergence is negative due a gradient orthogonal to the streamlines
(which occurs abundantly around the point where the sonic line cuts the symmetry)
rather than along the streamlines. From this shock region, a shock line is derived by
quartic regression weighted with the magnitude of the divergence of the Γ+-field. The
shock strength — and with it the magnitude of the divergence of the Γ+-field — varies
rapidly along the shock, since the incoming flow is highly non-homogeneous due to the
upstream expansion. To account for this variation in weights, the weights were binned
based on the x-coordinate and normalized per bin. This yields the following algorithm:

1. Calculate Γ+-characteristics vector field:

Γ+(r ) =
[

cos(φ(r )+µ(r ))
sin(φ(r )+µ(r ))

]
(3.8)

2. Calculate F =∇Γ+ for regions where M ≥ 1.

3. Extract tr(F ) =∇·Γ+ < 0.

4. Extract from this the subset û · (F û) < 0 as the shock region (where û denotes the
unit vector in flow direction).

5. Set the weight to w = | (tr(F )) | ·Vc , where Vc is the cell volume.

6. Bin data per x-coordinate and normalize in each bin i the weights by dividing by
the maximum weight, i.e.

ŵi , j =
wi , j

max
j in bin i

(wi , j )

7. Determine shock line as quartic polynomial regression of z over x weighted with
ŵi , j .

For shock detection in general, this procedure should be repeated for theΓ−-characteristics.
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RIEMANN SOLVER

The Euler equations can be solved by using a conservative method called approximate
Riemann solver, in which Eqns. 3.2, 3.3, 3.4 are locally diagonalized and split into ordi-
nary differential equations for the fluxes. At each face in a finite volume mesh, the flux
is calculated by solving local Riemann problems. An approximate Riemann solver (i.e.,
dbnsFoam of foam-extend 4.0 [134]) with the HLLC scheme [135] is used to calculate the
inviscid continuum mechanical solution of the flow field. While approximate Riemann
solvers can accurately solve supersonic regions, they possibly give rise to spurious wave
modes in the subsonic region [136], which in the considered flow is the zone between
the two jet inlets. A first-order HLLC flux construction was applied to avoid these spu-
rious waves [137]. The temporal discretization is conducted by a fourth-order Runge-
Kutta integration, which is explicit and therefore required small time steps to maintain
numerical stability. A constant time step was chosen, so that the Courant-Friedrichs-
Lewy number was below 0.3. A solver verification for a shock tube case is presented in
Appendix A.4.

3.2.3. TRANSITIONAL FLOW REGIME

In the last decade, multiscale methods have been developed which give promising re-
sults at low computational effort for simple rarefied flows, such as the unified gas kinetic
scheme [138, 139], discrete unified gas kinetic scheme (DUGKS) [140–142], kinetic re-
laxation models [143, 144] and the general synthetic iterative scheme [145]. Still, the
simultaneously ongoing improvements of its algorithm [146] and its inherent numeri-
cal stability keep Direct Simulation Monte Carlo (DSMC) [34] the method of choice for
accurate predictions of complex rarefied flows. Therefore, we applied it to study the
plume interaction in the transitional flow regime between the two extreme cases of no
collisions and local equilibrium. In DSMC, the gas is modelled by the movement and
collision of molecules, represented as purely repulsive particles. The particle movement
and collisions are decoupled — which mitigates the time step requirement as collisions
do not have to be detected during the particle movement. After the movement, the par-
ticles are sorted into cells and collide randomly with other particles from the cell. Only
the number density in the cell and relative velocity between particle pairs, but not their
exact location, determine the collision probability. To further speed up the simulation,
one simulation particle represents a large number of real molecules. To obtain accurate
results despite these simplifications, the cell size has to be below 1/3λ, the time step size
below 1/10τ and the number of particles per cell above 20 (to ensure enough collision
partners) [34]. We fulfilled the listed resolution criteria in the entire flow field, except for
the number of particles in the ’blind spot’ by which we denote a small region above the
inlet with an extremely low number density, so that collisions are improbable.
We used the dsmcFoam+ solver which is part of OpenFoam-2.4-MNF [147]. The col-
lision partners were selected using the No-Time-Counter model. The collisions were
calculated using the Variable-Hard-Sphere model.

3.2.4. FAR-FIELD SOLUTION

The far-field solution approximates the number density for continuum flow. It assumes
a point source and a decrease of density proportional to the inverse of the distance in
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Figure 3.4: Minimum penetration Knudsen number maps (clipped to values below unity); (a) over K ni n and
L, (b) over K ni n and α. Simulated cases are marked by points whose color indicates whether a shock (’shock’)
or only a region of converging Γ+-characteristics (’conv’) could be detected or whether the plumes merge
(’merge’).

radial direction for the two-dimensional case. Hence, in the far-field of a single plume,
a self-similar azimuthal density distribution can be assumed. The density distribution
can thus be split into a radial and azimuthal function

n(r,Θ)

n∗ = A
R∗

r
g (Θ) , (3.9)

where A is an integration constant and R∗ = D/2. For outlet velocities above zero —
which will occur due to the high pressure ratio between tank and vacuum — the flow
does not spread in all directions at the outlet, but is constrained by the maximum turning
angle Θmax . Boynton fitted an azimuthal function to numerical solutions for a three-
dimensional plume [148], which was afterwards commonly used. To adapt it for the
two-dimensional case, the square-root of this function is considered which reads

g (Θ) =
[

cos

(
π

2

Θ

Θmax

)] 1

γ−1 , (3.10)

where for a sonic outlet velocity, as we consider here, the two-dimensional Prandtl-
Meyer expansion (PME) defines the maximum turning angle Θmax and maximum ve-
locity Umax which read

Θmax = π

2

(√
γ+1

γ−1
−1

)
, (3.11)

Umax =
√
γ+1

γ−1
U∗ . (3.12)

To ensure the mass flux conservation, A is determined by balancing the flux from the
orifice with the mass flux integrated over the sphere of a certain radius rc :

n∗U∗2R∗ = 2
∫ Θmax

0
n∗Umax

R∗

rc
Ag (Θ)rc dΘ , (3.13)
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which gives

A = U∗/Umax∫ Θmax

0
g (Θ) dΘ

, (3.14)

which yields A = 0.572 for monatomic gas. The approximation tends to be incorrect
near the inlet. In addition, the maximum velocity is based on the maximum velocity
in a Prandtl-Meyer expansion, but considering that in a free expansion flow all thermal
energy is expected to be transferred to kinetic energy, a maximum velocity of umax =√

2cp Ts would be another reasonable estimate.

3.2.5. PENETRATION KNUDSEN NUMBER
To classify the strength of interaction, Koppenwallner [116] (as cited by Dagum et al.
[117]) introduced the penetration Knudsen number K np as

K np (x) = λp (x)

lr e f (x)
, (3.15)

where λp is the mean free path at a position on the symmetry line based on the num-
ber density of the far-field solution, and lr e f the distance a particle could theoretically
penetrate into the other jet from this symmetry line position (see also Fig.2.1). Koppen-
wallner assumed that the lowest penetration Knudsen number K np,mi n is appropriate to
classify plume interaction into four different regimes: 1. For a very high minimum pen-
etration Knudsen number, a free molecular flow occurs and consequently, penetration
of molecules from one jet into the other jet; 2. if the mean free path is of the order of the
characteristic flow length, collisions between the molecules of the two jets deflect their
paths; 3. a further decrease of the penetration Knudsen number (K np,mi n < 0.2) yields
diffuse shocks slightly before the symmetry plane; after the shock, the flow direction of
the molecules nearly aligns with the primary jet axis; 4. for very small Knudsen num-
bers (K np,mi n < 0.02), a back flow may appear, which could interact with the upstream
wall. Other research groups [117–120] used this definition to classify the interaction of
plumes: Li and Ladeinde[119] tried to improve the definition by replacing the mean free
path based on the number density only, by the one which accounts for the high relative
velocity between the two jets. Holz et al. [118] studied the plume interaction experimen-
tally and confirmed the appropriateness of penetration Knudsen number, which was,
however, the more extreme case of K np,mi n = 0.045.
Figure 3.4a depicts the minimum penetration Knudsen number K np,mi n map as a func-
tion of the inlet Knudsen number K n0 and the distance of the inlets for parallel jets.
With an increasing inlet Knudsen number the minimum penetration Knudsen num-
ber increases proportionally (the proportionality factor is greater than unity). A higher
distance between the jets increases the minimum penetration Knudsen number only
marginally, which makes sense considering the estimations λp ∝ 1/n ∝ r and lr e f ∝ r
for the two-dimensional case. Figure 3.4b depicts the minimum penetration Knudsen
number K np,mi n map as a function of the inlet Knudsen number K n0 and the inclina-
tion of the inlet streams for a constant inter-jet-distance l = D/2 (note, that lr e f does
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Figure 3.5: Geometry and boundary conditions for the DSMC simulation.

not only depend on the position of the symmetry line, but also on the jet inclination).
When inclining the plumes towards each other — such as in a linear aerospike engine
—, the penetration Knudsen number is below K np,mi n = 0.2 even for high inlet Knudsen
numbers, predicting a shock. For plumes inclined away from each other, the penetra-
tion Knudsen number rises rapidly, which makes it promising for avoiding shocks and
the involved non-uniformities, e.g., in coating deposition.

3.3. CASE SETUP
DSMC Boundary Conditions
The computational domain and boundary conditions for the DSMC simulation are shown
in Figure 3.5. To reduce the computational cost, only half of the domain is simulated
using the symmetry in the interaction plane to split the domain. The computational do-
main is of size Lx = 21mm and Lz = 12mm; the inlet of length D = 3mm is positioned at
distance L from the symmetry plane, so that 2L is the nozzle separation distance.
The assumed stagnation conditions, i.e., the conditions which are in the reservoir up-
stream the inlet in an experimental setup, are Ts = 800K and varying values for ns . The
sonic inlet conditions are calculated by applying isentropic 1-D relations [73]

n∗ = ns

(
γ+1

2

) −1
γ−1

, (3.16)

T ∗ = Ts

(
γ+1

2

)−1

, (3.17)

which —with a specific heat ratio γ = 5/3 and molecular mass m = 65.38u for zinc
— yield an inlet temperature Ti n = T ∗ = 600K and an inlet velocity of ui n = a(T ∗) =√
γkB T ∗/m = 356.56ms−1. All other boundaries (except for the symmetry) have a vac-

uum outlet condition for DSMC, i.e., particles are removed from the simulation upon
impingement. At the symmetry plane, inciding particles are specularly reflected. Like-
wise, the walls in the third homogeneous direction of our two-dimensional problem are
specularly reflecting.
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Table 3.1: Boundary conditions.

DSMC
approximate Riemann solver
velocity pressure temperature

inlet

ni n drawn from
Maxwellian
with Ti n = 600K,
ui n = 356.56ms−1

ui n = 356.56ms−1 pi n Ti n = 600K

vacuum delete particles zero gradient

wave
transmissive
po = 10−5Pa at
far distance
li n f = 0.01m

zero
gradient

back flow delete particles
if outlet:
zero gradient
if inlet: u = 0

if outlet:
po = 10−5Pa
if inlet:
zero gradient

zero
gradient

symmetry reflect particles symmetry zero gradient
zero
gradient

Riemann Solver Boundary Conditions
For the approximate Riemann solver, the outlet is split into a vacuum and a backflow
boundary. The supersonic outflow at the vacuum may give rise to numerical shocks
possibly distorting the upstream flow field. Hence, a wave-transmissive outlet bound-
ary condition is applied at the vacuum outlets [91]. To stabilize the solution process,
the backflow boundary condition was closed during the initialization. In the final so-
lution, the backflow boundary condition distinguishes between outflow and inflow: for
outflow, a pressure outlet po = 10−5Pa and zero velocity gradient are applied; for inflow,
a zero pressure gradient and a zero convective velocity. (The density field is calculated
from the ideal gas law.) An overview of the boundary conditions is given in Table 3.1. The
discretization and a mesh independence study are presented in Appendix A.5.

Zinc Vapor Properties
As the intended main application is Physical Vapor Deposition, all simulations were con-
ducted for zinc. As the viscosity of zinc vapor has not been studied yet, we applied the
inverse-power-law approximation described by Fan et al. [8] to approximate the colli-
sional properties. We chose potassium as reference metal which is in the same group as
zinc and whose viscosity is reported in the literature [149]. The approximated Variable-
Hardsphere collisional diameter of zinc is 5.684 · 10−10 m and the viscosity parameter
ω = 0.849 at a reference temperature of Tr e f = 2000K. The mass of the zinc molecule
is set to 65.38u. For the approximate Riemann solver, only the specific heat at con-
stant pressure is required (as the inviscid equations are calculated), which is for zinc
cp = 317.901Jkg−1 K−1.
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Table 3.2: Variation parameters: rarefaction K ns and corresponding inlet condictions, nozzle separation dis-
tance L, inlet inclination α. (pi n is only listed for cases which were calculated with the approximate Riemann
solver.)

K ns K ni n ni n

[
1020

m3

]
pi n [Pa] L α

K n0 = 0.0047 0.0066 232.09 192.264 D/60 −20°

2K n0 = 0.0095 0.0132 116.05 96.132 D/6 −10°

4K n0 = 0.0189 0.0263 58.02 – D/2 0°

8K n0 = 0.0378 0.0526 29.01 24.033 D 10°

16K n0 = 0.0756 0.1052 14.51 – 2D 20°

32K n0 = 0.1512 0.2105 7.26 –

64K n0 = 0.3024 0.4209 3.63 –

3.3.1. PARAMETER VARIATION
The stagnation Knudsen number, describes the rarefaction in the pressure tank upstream
of the inlet, which is required to compare to experiments, and reads K ns =λs /D , where
D is the inlet width and λs the Variable-Hard-Sphere mean free path at the inlet, which
is

λs =
(p

2πns d 2
r e f

(
Tr e f

T

)(ω−1/2))−1

. (3.18)

For easier reference, the cases are addressed as a multiple of the smallest Knudsen num-
ber K n0. For the present simulations, which start at the inlet, it makes more sense to
use the inlet Knudsen number K ni n =λi n/D . K ns can be converted into K ni n using the
isentropic relations in Eqns. 3.16, 3.17 and 3.18, which yields

K ni n = K ns

(
γ+1

2

) 1

γ−1
+ 1

2
−ω

. (3.19)

The rarefaction, distance between the jets and their inclination away from one another
were varied according to Table 3.2. In Figure 3.4, the different cases are marked by dots
to illustrate the link to the penetration Knudsen number.

3.4. RESULTS AND DISCUSSION
In the first section of the results, the flow field for collisionless flow is presented for two
parallel plumes and the analytical solution is verified (subsection 3.4.1), followed by the
flow field of the Euler equations compared with a rarefied flow field (subsection 3.4.2).
Section 3.4.3 shows the characteristics and shock detection for different degrees of rar-
efaction to visualize the impact of rarefaction on the shock location and understand the
flow from another perspective. The last part focuses on the practical application: A com-
parison of estimated deposition profiles with the DSMC solution (subsection 3.4.4), an
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analysis of the impact of nozzle separation distance and tilting on the shock location
and deposition (sections 3.4.5, 3.4.6), and eventually a discussion of the non-uniformity
of the mass flux (subsection 3.4.7).

3.4.1. COLLISIONLESS FLOW FIELD
Figure 3.6 shows the contours for various flow properties of the collisionless flow (K ns →

(a) Density (b) Velocity magnitude

(c) Temperature (d) Mach number

Figure 3.6: Flow field contours of collisionless flow (K ns → ∞) for two parallel (α = 0◦) plumes at a nozzle-
separation-distance L = D ; (a) density, (b) velocity magnitude, (c) temperature and (d) Mach number. The
upper half shows the DSMC solution and the lower half the analytic solution.

∞) for two parallel jets (α= 0◦) at a nozzle-separation-distance L = D . The collisionless
DSMC is shown in the upper half and the analytic solution in the lower. They agree well
in most regions. In the “blind spot” and far from the inlets, statistical noise begins to
show in the DSMC solution due to the small sample size in these highly rarefied regions.
The density normalized by the inlet density decreases behind the outlets (Figure 3.6a).
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Around the symmetry plane, the superposition of the plumes produces an increased
density. The velocity magnitude, shown in Figure 3.6b, increases downstream of the in-
lets due to “sorting” of the particles according to their velocity: While initially directed
in several directions, particles align with the mean velocity the farther they travel away
from the inlet. Therefore, the particles’ velocities contribute increasingly to the mean
velocity and decreasingly to the temperature. However, between the plumes the two
fluxes from the inlets are counter-directed and the mean velocity cancels out yielding a
low velocity region. The velocity sorting produces a low temperature in regions of high
alignment between the particles’ velocities and the mean velocity, e.g., in the expansions,
as shown in Figure 3.6c. Between the two plumes, where the mean velocity cancels out,
the immense relative velocities give a huge variance of particle velocities, and conse-
quently a high temperature — even higher than at the inlet. The Mach number, shown
in Figure 3.6d, depends strongly on the sorting of velocities, since both the velocity and
the speed of sound (a ∝

p
T ) are affected. The Mach number increases in the far-field

to a value around M = 1.8. In the near-field of the flow, where a low velocity and high
temperature prevail, a subsonic region occurs around the symmetry plane.

3.4.2. CONTINUUM FLOW AND TRANSITIONAL FLOW REGIME

The upper half of Figure 3.7 shows the flow field of two interacting plumes at K nS = 2K n0

(L = D , α = 0◦) solved by the approximate Riemann solver for the inviscid Euler equa-
tions. As in the collisionless case, the flow expands downstream from the inlet. Density,
temperature and pressure decrease, whereas the velocity increases with increasing dis-
tance from the inlet. The isolines form ellipses, that are symmetric about the jet axis,
which implies that the primary expansion is well protected against any influence from
the other jet. The temperature drops to a lower level than for collisionless flow, tending
towards zero; and the velocity rises higher, with values above U = 600ms−1. Both phe-
nomena are caused by an expansion which is not diffuse as in the collisionless case, but
directed by the pressure gradient which in the presence of collisions efficiently trans-
forms thermal energy into kinetic energy. Please note that thermal energy is also trans-
ferred from the homogeneous direction (i.e., here the y-direction) into kinetic energy in
the planar flow plane thus enhancing the acceleration, which is impossible in collision-
less flow. Around the symmetry plane a sharp discontinuity occurs for all flow variables.
Density and temperature rise, the velocity drops. The discontinuity traverses through
the entire flow field in a shape similar to a Laval nozzle. The flow variable extrema in the
inter-shock region are close to the “throat” (i.e., the narrowest section), and from there
they mitigate in both directions, i.e., in the back flow and the so-called secondary expan-
sion. The temperature values are highest next to the symmetry plane, which increases
the pressure; this in turn will keep the number density in the center of the inter-shock
region lower than near the shocks.

The lower half of Figure 3.7 shows the flow field of same two interacting plumes (L =
D,α = 0◦, K nS = 2K n0) solved by DSMC. The flow exhibits a higher similarity with the
continuum case in the upper half of Figure 3.7 than the collisionless case (Figure 3.6),
since its rarefaction is low. However, the shielding of the shock does not hold anymore,
and the high number density of the inter-shock region diffuses into the primary expan-
sion. The increase in velocity and decrease in temperature are mitigated, as missing
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(a) Density. (b) Velocity magnitude.

(c) Temperature. (d) Pressure.

Figure 3.7: Flow field contours of two parallel α= 0◦ interacting plumes at a nozzle-separation-distance L = D
for a stagnation Knudsen number of K ns = 2K n0; (a) density, (b) velocity magnitude, (c) temperature and (d)
pressure.

collisions imply less efficient transfer of thermal energy to macroscopic kinetic energy.
This entails a delayed expansion as can be observed in the velocity contours. In the
inter-shock region, the temperature exceeds both the collisionless and the continuum
flow. While the shock — typical of low rarefaction — accumulates the energy behind the
shock, the diffuse behavior due to rarefaction keeps more energy in the thermal than in
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the macroscopic kinetic mode. The higher temperature increases the effect of keeping
the number density around the symmetry plane lower than directly behind the shocks.
The shock location — which for continuum flow was obvious and consistent between all
contours — is not clearly determinable for the rarefied solution, which is why we use the
MOC to identify the shock location in the next section.

3.4.3. VISUALIZATION BY METHOD OF CHARACTERISTICS

(a) K ns = 2K n0. The upper half depicts the Euler so-
lution, the lower half the DSMC solution.

(b) The upper half depicts the DSMC solution for
K ns = 4K n0, the lower half the DSMC solution for
K ns = 8K n0.

Figure 3.8: Characteristics and shock detection (a) for K ns = 2K n0, in the upper half the Euler solution is
shown, in the lower half the DSMC, (b) for DSMC solutions for K ns = 4K n0 in the upper half and K ns = 8K n0
in the lower half. The gray, banded contours in the background show the Mach number, the blue, continuous
contours represent the region detected as shock region and are colored by |∇ ·Γ+|, clipped at 1000m−1. The
blue lines are streamlines, the brown lines Γ− characteristics, and the beige lines Γ+ characteristics (in the
lower part the characteristics are mirrored). The white dotted line is the shock line detected from the regression
of the shock region; the white solid line is the sonic line, i.e. M = 1.

Visualization by the Method of Characteristics shifts the view from the descriptive char-
acter of the macroscopic thermodynamic properties to the hyperbolic character, which
determines the inviscid continuum flow behavior and to a large extent still the one in the
transitional flow regime for the considered case, since a sufficient number of collisions
occurs in crucial parts such as the inlet region and the shock to approach continuum
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Figure 3.9: Shock location (dashed or dotted line) and sonic lines (solid) for different degrees of rarefaction.
The vertical gray line denotes the inlet, the red dots the sonic line for free molecular flow.

flow behavior (from a large-scale point of view). Figure 3.8 depicts the characteristics
of the flow fields as well as the detected shock region in continuous blue contours; the
gray, banded contours in the background represent the Mach number. Figure 3.8a shows
the inviscid continuum case (with an inlet density based on K ns = 2K n0) in the upper
half and the corresponding DSMC solution in the lower half. For the inviscid continuum
case, the Γ− expansion fan unfolds around the upper corner of the inlet, the Γ+ expan-
sion fan around the lower corner. When crossing each other, their interaction causes
the characteristics to bend slightly. The streamlines, depicted in blue, run along the
half angles. In the shock, the Γ+-characteristics turn sharply and merge with the shock,
while the Γ−-characteristics cross the shock with only marginal bending. The stream-
lines turn accordingly. Upon impingement on the subsonic region or the symmetry, the
Γ−-characteristics are reflected and turn into Γ+-characteristics. Initially the reflection
angle is wide and the post-shock Γ+-characteristics hit the shock from downstream and
thus bend it upwards. However, further downstream the Γ+-characteristics are parallel
to the shock or tend already away from it and so will not hit it and bend it further. (If, in a
thought experiment, we extrapolate the characteristics before the shock to the very far-
field, the streamlines will align more and more with the shock, until they do not cross it
anymore. At an infinite distance, the shock transforms into a contact discontinuity, i.e.,
the velocity is parallel to the discontinuity, but state variables such as density and tem-
perature are discontinuous across the shock.)
In the following discussion of the transitional flow regime, please keep in mind that with
rarefaction the characteristics lose their ability to exactly describe the mechanisms de-
termining the local solution. Yet the qualitatively similar flow behavior allows a mean-
ingful visualization using the characteristics. For the DSMC solution of the K ns = 2K n0

case (Figure 3.8a lower half), the Γ+-characteristics exhibit a pattern comparable to the
Euler solution, but bend earlier and more smoothly, merging gradually with the shock.
The subsonic region is bigger reaching to the corners of the inlet and, in particular, ex-
hibits a bigger concave region, from which the shock region starts. The shock region
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passes the computational domain at a rather constant, large width. However, the |∇·Γ+|
values are lower than for the continuum case and rapidly decrease when passing through
the domain. Even when considering its broad domain, the shock region distinctly bends
more outward than in the Euler solution. So the secondary expansion is wider, but the
increase in Mach number is less steep which would be a contradiction in pure inviscid
continuum flow. The underlying reason is that the secondary expansion maintains a
higher pressure, temperature and hence speed of sound in the transitional flow regime
(refer to Figure 3.7). On the one hand, the information that there is a shock travels further
upstream due to the higher speed of sound (another equivalent line of argument is that
the expansion experiences the shock, when its pressure is equal to the one behind the
shock, which happens earlier for higher pressures in the secondary expansion). On the
other hand, the high thermal fraction of energy leaves less for the macroscopic kinetic
energy which in combination with the high temperature gives a lower Mach number.
Appendix A.6 compares the shock structure with the detected shock location to validate
the applied shock detection method.
Figure 3.8b shows the DSMC solution for K ns = 4K n0 in the upper and the one for
K ns = 8K n0 in the lower half. With increasing rarefaction, the Mach number rises more
slowly in the expansions, as fewer collisions transfer thermal energy into macroscopic ki-
netic energy. For a low number density, the characteristics bend more, especially in the
“blind spot”. The Γ+-characteristics bend well before the shock region aligning gradually
with the shock. Consequently, the shock region is much broader than for K ns = 2K n0,
but the strength of the divergence |∇ ·Γ+| is lower. The shock does not pass through the
entire domain, but dissolves earlier. At K ns = 8K n0, the shock region is even smaller and
a detection of a shock line is not feasible anymore.
Figure 3.9 compares the shock location and sonic line for several degrees of rarefaction.
For higher degrees of rarefaction, the subsonic region becomes thicker (i.e., it extends
more into the primary expansion) and shorter, indicating an earlier rise of velocity due
to an earlier onset of expansion. This agrees with the shift of shock line, which moder-
ately shifts upstream for higher rarefaction. 3

3.4.4. DEPOSITION PROFILES

After the location detection of the shock, its impact on the deposition is quantified. To
this end, Figure 3.10 compares the profiles for different solutions methods. Both the
free molecular solution and the far-field approximation are superpositions of two sin-
gle plumes and exhibit two peaks in number density around the inlet positions (Fig-
ure 3.10a). The far-field approximation is in reasonable agreement with the Riemann
solution outside the interaction region. Between the inlet peaks, the far-field approxi-
mation predicts a smooth uniform plateau, whereas the inviscid Euler solution produces
symmetric profiles about the inlet axis, which means that the plumes are shielded from
each other. However, two sharp peaks occur close to the symmetry plane marking the
shock locations with high density accumulation in between. Compared to the approx-
imations, the number density of the transitional flow regime is qualitatively a blend-
ing (Figure 3.10b): At a low Knudsen number, the impact of the shock is severe and the
profile resembles the Riemann solution, but with higher peaks and a deeper trough in
between. This may be explained with the higher temperature and consequently higher
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Figure 3.10: Profiles of normalized number density, velocity in x-direction and normalized deposition rate
at x = 6mm for the inviscid continuum flow (Riemann solver, inlet density corresponds to K ns = K n0), free
molecular flow and the far-field approximation ((a),(c), (e)) and in the transitional flow regime (DSMC) at dif-
ferent degrees of rarefaction ((b),(d),(f)).

pressure at the symmetry plane (refer to Figure 3.7c and Figure 3.7d), which deters par-
ticles from the symmetry. With increasing rarefaction, the density peak due to the shock
diminishes and the rise due to the shock becomes less sharp. The spread outside the
interaction region remains similar to those of the far-field and continuum solutions, as
it is determined by the collisions right after the inlets, which still play a major role for the
degrees of rarefaction considered.
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Figure 3.11: Temperature profiles for (a) inviscid continuum flow (Riemann solver) and free molecular flow;
(b) for the transitional flow regime (DSMC) at different degrees of rarefaction.

The axial velocity outside the shock region is higher for the continuum flow than for
the free molecular one (Figure 3.10c), as in continuum the temperature is actively trans-
formed into kinetic energy, while in free molecular flow the energy transfer from thermal
to kinetic energy is caused by particle velocity sorting which is diffuse and not targeted.
In the shock region, velocity drops severely for the continuum solution. The velocity
profile in the transitional flow regime (Figure 3.10d) is as smooth as the free molecular
one, but reaches a maximum velocity as high as the continuum flow (since the collisions
after the inlet are responsible for accelerating the flow), and rather small values around
the symmetry plane (since there are still enough collisions to form a shock).
The deposition profile is estimated as the product of number density and axial mean
velocity (for perfect sticking the actual deposition could deviate marginally due to ve-
locity fluctuations, i.e., temperature). As the peak in density coincides with the trough
in velocity, the deposition profiles have a higher agreement for different methods and
degrees of rarefaction than the density profiles. When comparing the deposition profile,
it is striking that the peaks for the lowest rarefaction in Figure 3.10f exceed the ones in
the Riemann solution in Figure 3.10e by approximately 10%. The reason is that due to
the diffusive nature in the transitional flow regime the density rises in a region where the
velocity is still high, whereas the sharp discontinuity in continuum flow keeps high den-
sity and high velocity regions distinctly apart. (Consequently the peaks in deposition are
marginally shifted outside compared to the peaks in number density.)
The temperature for the continuum solution is about three times lower than the inlet
temperature outside the shock region (Figure 3.11a). The temperature peak inside the
shock region is as high as the inlet temperature. For free molecular flow, the tempera-
ture is approximately one half of the inlet temperature, except for the region around the
symmetry plane where it peaks at a modest level. The high temperature for free molecu-
lar flow is the counterpart to its low velocity, both stemming from the diffuse distribution
of translational energy in the absence of collisions. In the transitional flow regime, the
temperature profile (Figure 3.11b) has a shape between those of continuum flow and
free molecular flow, but its peak temperature surpasses theirs, because the high energy
accumulation inside the shock as seen in the continuum flow interferes with the diffuse
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movement of particles typical of transitional flow. This higher temperature is responsible
for the deeper trough in number density at the symmetry plane. Despite the described
differences between the Riemann solver solution for the Euler equations and the DSMC
solution, the Riemann solver gives an estimate of local deposition rates within engineer-
ing precision (≈ 10%) for very low Knudsen numbers such as K ns = K n0, whereas the
free molecular solution fulfils this for K ns > 8K n0. In between these Knudsen numbers,
DSMC is required to accurately predict the impact of the interaction. We hypothesize
that the validity range of the Riemann solution could be enlarged by solving the Navier-
Stokes-Fourier equations rather than the Euler equations. This would add the diffusive
character due to viscosity (which increases with temperature and independent of other
variables such as density [150]), but not the one due to rarefaction (which is expected to
be considerably higher). However, further research is needed to test this hypothesis.

3.4.5. DISTANCE

Figure 3.12 shows the subsonic region and shock location (Figure 3.12a) and number
density contours (Figs. 3.12c, 3.12d, 3.12e, 3.12f, 3.12g) for different distances between
the inlets. For higher nozzle separation distances, the shock line smoothly follows the
concave part of the subsonic region, before it turns away due to the expansion. The
smaller the nozzle separation distance, the smaller and more convex the subsonic re-
gion. The shock wave strongly bends away from the symmetry line for L = D/6. This is
caused by the high mass flow into the subsonic region and across the shock which forces
a higher pressure in the secondary plume which results in a strong expansion. For the
even smaller nozzle separation distance of L = D/60, the subsonic bubble has a maxi-
mum half height of 0.02mm or about 10 times the local mean free path. The jets merge
and no shock is detectable anymore. The shock does not disappear for high nozzle sep-
aration distances (at least in the considered range) — which is in agreement with the
discussion of the penetration Knudsen number for planar plumes in subsection 3.2.5—,
but its impact on the deposition changes. Figure 3.12b shows the shock location scaled
by half the nozzle-to-nozzle distance L. The scaling shifts the shock location to collapse
to the same line. Figure 3.12i plots the deposition profile at x = 9mm for different nozzle
separation distances. For L = D/60, only one peak is visible, which splits into two for
L = D/6. For higher distances, the peaks from the primary plumes and the interaction
shocks become distinguishable. While at a high nozzle separation distance of L = 2D ,
the peaks due to the shock are similar to the peaks from the primary expansions, the
non-uniformity is still high and the deposition per length is small. Figure 3.12i eval-
uates whether the similarity previously found for the shock location also holds for the
deposition by plotting the normalized deposition rate at x/L = 3 over z/L. Clearly the
deposition peak positions also conincide after scaling, but the deposition profiles itself
vary significantly from each other. It may play a role, that the inlet is of constant finite
size for all considered cases.

3.4.6. TILTING

Figure 3.13a shows the shock location and sonic line for several jet inclinations. Tilting
the jets more towards each other (i.e., α = −10◦ and α = −20◦) reduces the subsonic re-
gion. It does not extend that far into the primary plume, as the high density caused by
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Figure 3.12: Influence of nozzle separation distance for parallel plumes at K ns = K n0. (a) Comparison of
shock locations, (b) shock location spatially scaled by the nozzle separation distance (c)-(g) number density
contours, (h) deposition profile, (i) deposition profile spatially scaled by the nozzle separation distance.
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(a) Shock location (dashed or dotted lines) and sonic line (solid)
for different angles of tilting of the inlet velocity.
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Figure 3.13: Influence of tilting the inlet velocity (K ns = K n0 and L = D). (a) Comparison of shock location and
subsonic region, (b)–(f) number density for several degrees of inclination.

tilting it towards the symmetry plane shields the first plume from particles penetrating
from the other primary plume. On the other hand, the high number density crossing
the shock increases the pressure after the shock, which drives the secondary expansion,
thus enforcing the latter. Consequently, the expansion bends the shock line more away
from the symmetry plane and the flow expands faster, producing a smaller subsonic re-
gion. (The same phenomenon can also be explained in terms of characteristics: as the
expansion fan from the inlet is more inclined towards the symmetry plane, the reflected



3.4. RESULTS AND DISCUSSION

3

61

10 5 0 5 10
z[mm]

0.0

0.1

0.2

0.3

0.4
n/

n 0
20
10

0
10
20

(a) Normalized number density at x = 6mm

10 5 0 5 10
z[mm]

0.0

0.1

0.2

0.3

0.4

n/
n 0

(b) Normalized number density at x = 15mm

10 5 0 5 10
z[mm]

300

400

500

600

U x
[m

/s
]

(c) Mach number at x = 6mm

10 5 0 5 10
z[mm]

500

550

600

650

U x
[m

/s
]

(d) Mach number at x = 15mm

10 5 0 5 10
z[mm]

0.0

0.2

0.4

n/
n 0

(e) Normalized deposition rate at x = 6mm

10 5 0 5 10
z[mm]

0.0

0.2

0.4

n/
n 0

(f) Normalized deposition rate at x = 15mm

Figure 3.14: Normalized density, Mach number and normalized deposition profiles for several inclination an-
gles (a)–(c) at x = 6mm and (d)–(f) at x = 15mm.

Γ+-characteristics impinge onto the shock at wider angles and thus cause a stronger ex-
pansion. Consequently, the shock bends more away from the symmetry plane.) By tilting
the inlet streams away from each other (i.e., α= 10◦ and α= 20◦) the opposite effect oc-
curs. The subsonic region starts slightly further upstream, fewer particles cross the shock
producing a weaker secondary expansion. For the inclinations and Knudsen numbers
under consideration, it was decided based on the detected shock region, whether it is
feasible to draw a shock line or whether the region can be neglected as a compression
region not strong enough to cause a shock. The results are marked in Figure 3.4b. In-
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dependent of the inclination of the jets, a shock was detected for stagnation Knudsen
numbers up to 4K n0; above 8K n0 only a compression region emerged around the sub-
sonic region. However, the deposition profiles do depend on the inclination.
Figure 3.14 shows the profiles for the number density, normalized by the inlet density,
the velocity component parallel to the jet axis and the deposition rate normalized by the
inlet flow rate over the z-coordinate at x = 6mm (Figs. 3.14a, 3.14c, 3.14e) and x = 15mm
(Figs. 3.14b, 3.14d, 3.14f) at K nS = K n0 for different inclination angles. At x = 6mm the
shock is at the same position for the different inclinations (Figure 3.13a), which is re-
flected by the same location of the two peaks in the density profile. However, the height
of these peaks is negligible for α = 20◦ and immense for α = −20◦, as with the latter a
much higher number density flux already crossed the shock. The velocity profiles (Fig-
ure 3.14c) at this position approximately match for the different inclinations and exhibit
a low value in the shock region, which mitigates the impact of the shock in the deposition
profile (Figure 3.14e). Further downstream, at x = 15mm, the two broad peaks from the
shocks dominate the density profile (Figure 3.14b). They have a similar maximum value,
but the stronger expansion for cases inclined towards each other broadened the peaks
farther over the domain. In addition, the density trough around the symmetry is smaller
yielding a flatter, more uniform density profile than for plume inclinations away from
the symmetry. The velocity profiles (Figure 3.14d) resemble each other in shape with an
undisturbed accelerated flow at the edges of the domain, a small trough at the start of
the shock and a deeper one in the center. The main difference between the inclinations
being that for plumes inclined to each other the low Mach number region between the
shocks extends farther and the expansion already began which reaccelerates the flow be-
tween the shocks and mitigates the velocity trough in the center. The overall deposition
(Figure 3.14f) in the depicted segment is considerably higher for plumes tilted towards
each other, since less mass flow leaves the domain. This reduction in stray deposition
is a desirable side effect for coating technology. The non-uniformity in the deposition
rate profile is mitigated compared to the upstream profile. This applies in particular to
α = −20◦, which had (perceptibly) the highest deposition non-uniformity at x = 6mm
and the lowest at x = 15mm. To provide a more general overview of non-uniformity, we
quantify it in the next section.

3.4.7. DEPOSITION UNIFORMITY
A major objective was to determine the effect of nozzle tilting and rarefaction on the
uniformity of the deposition. While small variations in coating thickness may be toler-
able, strong deviations should be avoided. Based on this consideration, we chose the
minimum square deviation from a constant height c as a measure of non-uniformity

Adev = min
c∈R

∫ z60%

z=0

(
ṅ − c

c

)2

dx , (3.20)

where z60% is the position where 60% of the influx would be deposited. The choice of
such a cut-off coordinate is required to exclude the long thin tail of deposition (which
can also not be captured by the finite computational domain). For a perfectly uniform
deposition, Adev = 0; the stronger and more numerous the deviations, the higher Adev .
Figure 3.15 plots Adev over different degrees of rarefaction and nozzle-to-plate distances,
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(a) Parallel jets, i.e., α= 0◦.
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(b) Jets inclined by α=−20◦.

Figure 3.15: Non-uniformity Adev over different degrees of rarefaction and nozzle-to-plate distances for two
(a) parallel and (b) inclined jets at a nozzle separation distance L = D . The inlet number density for the inviscid
continuum solution at K ns = 0 is the one for K ns = K n0. The free molecular solution is kept separate. The
underlying grid of the contour plot is 20x8.

using a logarithmic scale. For very short nozzle-to-plate distances, the non-uniformity
is high and nearly independent of the rarefaction, since it captures the non-uniformity
from the two jet inlets only. Non-uniformity decreases with the distance to the inlets.
A strong mitigating effect of rarefaction sets in around x = 6mm, which corresponds to
the start of the shock. For high rarefaction equal to or greater than K ns = 16K n0 and
for free molecular flow, the minimum non-uniformity is reached around x = 12mm and
increasing again afterwards. While the two plumes superposed each other before, they
merge into one single plume further downstream, which increases non-uniformity. For
lower rarefaction (i.e., equal to and below K ns = 8K n0), non-uniformity monotonically
decreases with the distance to the inlet (for the region considered), thus exhibiting lower
non-uniformity at high distances than the higher rarefied cases. This is the result of the
interaction shock which “fills” the trough between the two primary plumes, producing
a broad plateau in the deposition profile. When the jets are tilted towards each other
(Figure 3.15b), the non-uniformity decreases faster with increasing distance from the
inlet. The minimum for free molecular flow is reached closer to the inlet than for parallel
jets, since the density peaks merge earlier to form a plateau and then a single density
peak. For long distances from the inlet, the minimum occurs for a rarefaction of K ns =
4K n0 compared to K ns = 8K n0 for the non-inclined case.

3.5. CONCLUSIONS
We have investigated the interaction of two sonic, rarefied, planar plumes — either par-
allel or inclined to each other. The extreme cases of a collisionless analytic flow solution
and an inviscid continuum solution calculated by an approximate Riemann-solver were
presented. In the transitional flow regime, multiple DSMC simulations were conducted.
To analyze the flow field, we detected the characteristics and used their divergence to
detect the shock location.
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For free molecular flow, the expansion stems purely from sorting of particles’ veloci-
ties, producing only a moderate increase in velocity and a small decrease of temperature
compared to collisional flow. The inviscid continuum solution gives strong expansions,
with rapid increases in velocity and drops of density and temperature. The interaction
causes sharp shocks passing through the flow domain, which is reflected in two severe
peaks in the deposition profile. Common to both flow regimes is a high temperature
in the symmetry plane. The behavior in the transitional flow regime is a blend of free
molecular flow and continuum flow. However, some flow variables and fluxes lie outside
the limits of these two extreme cases. In and behind the subsonic region, the tempera-
tures exceed both the free molecular and the continuum solution. On the one hand, this
results from the high particle and thus energy accumulation due to the shock which is
typical of continuum/collisional flow, on the other hand, a lack of collisions compared to
the continuum case enables diffuse particle movement and hinders the energy transfer
from temperature to macroscopic kinetic energy. The latter phenomenon yields a wider,
but less strong secondary expansion bending the interaction shocks apart. The mass flux
peak values in the transitional flow regime exceed the ones of continuum flow.
A shock can be perceived up to very small nozzle separation distances. Only when the
distance is of the order of O (10) mean free paths or less, a shock region cannot be de-
tected anymore and the two plumes merge into one single plume. Tilting the plumes
towards each other shifts the onset of the shock further upstream and as a result of
the higher flux crossing the shock enhances the secondary expansion compared with
parallel plumes. This causes steep density peaks at small distances from the inlet. On
the other side, the increased pressure enhances the expansion, resulting further down-
stream in a more homogeneous density and mass flux, while decreasing stray deposi-
tion. The non-uniformity in the deposition decreases with distance from the inlets for
high rarefaction, and minimizes approximately at the coordinate, where the subsonic
region ends. When inclining the plumes towards each other, the distance, at which the
minimum non-uniformity is reached, decreases.
Our findings can support the design of vacuum technology such as Physical Vapor De-
position to obtain homogeneous mass, momentum and energy fluxes. In addition, they
may help in analyzing backflows of multithrusters and their potential structural damage
on space vehicles such as micro satellites.
We studied the planar case of interacting plumes, which in the broadest sense is repre-
sentative of linear aerospike nozzles. Especially in aerospace applications, three-dimen-
sional clusters are common, the simulation of which involves significantly higher com-
putational costs for a well-resolved DSMC. For three-dimensional plume clusters, a mit-
igation of shock effects is expected, as the gas can escape the shock region in another
direction, while for three-dimensional toroidal aerospikes [151] an increase of the shock
effect is expected, since a higher mass flux enters the interaction region.
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RAREFIED PLUME INTERACTION

In the present study, we propose the use of a light, inert carrier gas to support deposition
uniformity and rate in continuous Physical Vapor Deposition, in which closely spaced
slots or nozzles are required to achieve a sufficiently high deposition rate. Interaction
shocks between the emerging rarefied plumes cause undesired non-uniformities in the
deposited coating. The present work evaluates the effect of adding a carrier gas on the
interaction shock. We study the interaction between two sonic plumes consisting of a bi-
nary mixture, i.e., silver as coating material and helium as light inert carrier gas, by Direct
Simulation Monte Carlo. While the inlet Mach and Knudsen numbers were kept constant,
the fraction of carrier gas was varied to single out the effect of species separation. The in-
fluence of rarefaction on species separation was also studied. Species separation produces
a high carrier-gas fraction in the periphery and an accumulation of the heavier species in
the jet core. The resulting change in speed of sound alters the local expansion characteris-
tics and thus shifts the shock location and weakens the shock. These phenomena intensify
with degree of rarefaction. It is shown that adding a light carrier gas increases deposition
rate, may enhance uniformity, and reduces stray deposition.

This chapter has been accepted for publication in the Journal of Vacuum Science & Technology B.
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4.1. INTRODUCTION
In thin-film deposition processes from the gas phase, such as Physical Vapor Deposi-
tion (PVD), varying the inert and reactive gas mixture composition is used to influence
the layer growth mode [152], enhance uniformity [153], or to produce compounds such
as titanium nitride which requires a nitrogen atmosphere [154]. Several experimental
and numerical studies analyzed the effect of adding an inert background or carrier gas
onto the film thickness and distribution in batch deposition processes, mainly finding
a smoothing of the deposition profile and a decrease of deposition rate due to an en-
hanced number of collisions [65, 68, 153, 155, 156]. Directed vapor deposition processes
[157, 158] were developed which utilize light carrier gases to enhance the deposition rate
and reduce deposition loss (i.e., fraction of evaporated material not being deposited on
the substrate). The latter diminishes production down times due to cleaning and main-
tenance in continuous lines. Inert carrier gases were used to foster the transport of coat-
ing material to undercuts, since otherwise PVD is a line-in-sight technology [159–161].
In chemical deposition processes, carrier gases are utilized to suppress early reactions
and control the reactant ratio to achieve the desired morphology of the deposited film
[152]. It was shown that light carrier gases benefit the conductance of material through
pipes and orifices and thus the possible deposition rate [162, 163]. In summary, the use
of background and carrier gases decisively influences the film growth in thin-film and
coating technology.
Recently, continuous PVD lines were introduced which overcome the disadvantages of
batch processes, i.e., a low deposition rate and production down times due to mainte-
nance. A sufficient evaporation rate for coatings is typically reached via a thermal source
[7], whereas maintenance is reduced by avoiding stray deposition using plumes (or jets)
directed towards the substrate emerging from multiple closely spaced nozzles or slots
[12, 97]. In these plume clusters, the initially free expansion interacts with neighboring
plumes producing shocks [121]. This causes mass flow non-uniformities, which are es-
pecially undesirable in thin film deposition [93, 164]. The higher the mass flow rate and
the smaller the nozzle-to-nozzle distance the higher the peaks in deposition. However,
a high and uniform deposition is required in continuous coating technology to keep the
coating process step at the general line speed and to obtain a high-quality coating.
The successful use of adding light carrier gases to heavy reactant gases in batch PVD and
other coating processes indicates a good chance that this may also improve continuous
PVD processes.
An important effect to be taken into account when utilizing mixtures of heavy and light
gases is the spatial separation of the various species. This may be caused by various
physical mechanisms, such as differences in body forces in centrifugal flows [165–167],
thermodiffusion effects in non-isothermal flows [168, 169] and pressure gradients in
confined microflows [170, 171]. Gas species separation occurs in microelectromechani-
cal systems (MEMS) [172, 173], radiometric pumps [174, 175], Knudsen pumps [176, 177]
and aerospace applications [101, 178, 179]. For the latter, pressure-driven species sep-
aration has a severe influence, since both high pressure gradients and long mean free
paths occur, and the separation increases with both.
Because of its relevance to aerospace applications in for instance (micro)thrusters, free
expansions of rarefied plumes or jets have been comprehensively studied. Several ana-
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lytic [180], experimental [178, 181, 182] and numerical [162, 183, 184] studies on multi-
species gas plumes found that the heavier species accumulates around the jet axis. In
contrast, the fraction of the lighter species is high in the backflow region and regions
farther away from the jet axis. Simulations of species separation of an argon-helium
mixture at small Knudsen numbers were performed by Riabov [183]. He found that the
decoupling of the streamwise and the circumferential temperatures, the so called “freez-
ing” which is an indication for continuum breakdown, takes place further upstream for
the heavier species. Wu et al. studied experimentally and numerically the interaction of
two three-dimensional hydrogen-oxygen thrusters at small separation distances with a
focus on the interaction shock and its possible effect on a backflow[185]. The latter may
damage the spacecraft using multiple thrusters. The effect of species separation on the
flow field was not in the focus of the study.

Species separation effects are also reported for flows involving shocks, but it is difficult to
establish the same generality as for free expansion flows due to the multitude of possible
geometries and shock types. Rothe [186] experimentally studied the species separation
effect in bow shocks. He found an earlier number density increase for the lighter species
than the heavier one, which implies a staggered onset of the shock. Ramos et al. [182]
analyzed this separation of species for a nitrogen-hydrogen mixture in supersonic jets
with and without a shock-wave structure. In the former case, the authors found a steep
increase of the heavier species in the jet core right after the nozzle where the pressure
gradient is highest. In the shock-wave structure, Ramos et al. [187] found separation
across the shocks (yielding an accumulation of lighter species slightly before and inside
the Mach and Barrel shock). Additionally, background gas penetrated into the jet core
after the first Mach disk, which was increased for light background gas. The authors
also addressed the rotational-translational energy transfer as well as the energy transfer
between species.

In summary, there exists a good understanding in literature of species separation in free
expansions of a single rarefied plume. However, the knowledge of the influence of shocks
on species separation as available in literature is limited to some specific, generally non-
rarefied, gas flow configurations. To the authors’ best knowledge, species separation in
interacting free expansion rarefied gas plumes with downstream interaction shocks, as it
appears in plume clusters of a continuous PVD line, has not been described in literature.

The present paper studies the species separation in planar plume interaction of a binary
mixture of silver and helium and its impact on the location and strength of the shock.
We aim to answer the question how the mutual influence between shocks and species
separation have an impact on mass flux magnitude and uniformity. We show how the ad-
dition of a light carrier gas influences this mutuial interaction and consequently the de-
position rate, deposition uniformity, and deposition loss. The involved phenomena are
unravelled on the one hand by considering the free molecular flow to evaluate species
separation effects and on the other hand by visualizing the flow field plotting the char-
acteristic curves. With the latter also the downstream shift of the shock location and the
weakening of the shock with helium fraction and degree of rarefaction is presented.
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Figure 4.1: Geometry and boundary conditions for the DSMC simulation.

4.2. METHODS
We simulate the interaction between two parallel, planar sonic plumes by Direct Sim-
ulation Monte Carlo (DSMC) method [34]. The plumes emerge from two inlet slots of
width D = 3mm at a separation distance 2L = 6mm (the distance between the edges of
the nozzles). Due to the symmetry, we simulate only the upper half of the geometry. The
computational domain (Figure 4.1) is planar and spans 21mm×12mm. Except for the
inlet and the symmetry plane, all other boundaries are vacuum boundary conditions.
The inlet mixture composition at the orifice is assumed to be uniform. The mass ratio of
silver and helium is mAg /mHe = 26.94. At the inlet, a free stream boundary condition is
applied with a mixture of silver and helium at a temperature of Ti n = 2000K at a velocity
corresponding to M = 1, which corresponds to a stagnation temperature of Ts = 2600K.
The inlet density depends on the Knudsen number, which was chosen as a multiplicity
of K n0 = 0.0125, i.e., K n ∈ [K n0,2K n0], and the carrier-gas fraction, i.e., the mole frac-
tion of helium, which takes the following values yHe ∈ [0,0.1,0.3,0.5,0.7,0.9,1]. The inlet
velocity is the speed of sound, which depends on the mixture composition. To deter-
mine the inlet number density from the inlet Knudsen number K ni n = λ/D , the mean
free path of the binary mixture needs to be evaluated as [34]

λ= 1

nπ

 yHep
2d 2

He yHe +
√

1+ mHe
mAg

d 2
He,Ag y Ag

+ 1− yHe√
1+ mAg

mHe
d 2

He,Ag yHe +
p

2d 2
Ag y Ag

 , (4.1)

where the collisional diameter for each species varies with temperature according to the
Variable Hard Sphere model [34] as follows

d = dr e f

(
Tr e f

Ti n

)(ω
2
− 1

4

)
, (4.2)
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Table 4.1: Modeling parameters for Variable Soft Sphere [188] model for helium [34] and silver (approximated
by inverse-power law [8]).

m
[
10−27 kg

]
dr e f

[
10−10 m

]
ω α Tr e f [K]

He 6.65 2.3 0.66 1.26 273
Ag 179.12 8.31 0.853 1.92 273
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Figure 4.2: Inlet number density fluxes depending on carrier-gas fraction.

where the energy exponent ω and reference diameter dr e f are given in Table 4.1. The
collisional diameter between atoms of different species is given as

dHe,Ag = 1

2

(
dHe +dAg

)
. (4.3)

The inlet speed, i.e., the speed of sound of the mixture, is given by

a =
√
γ

kB Ti n(
yHe mHe + (1− yHe )mAg

) . (4.4)

DSMC requires a thermodynamic closure for the collisions to match the macroscopic
transport properties. For this, the Variable Soft Sphere model [34] is applied, since the
viscosity and binary diffusivity can not be correctly modelled by simpler models. The
properties of helium and silver are listed in Table 4.1. The reference diameter and viscos-
ity parameter of silver are estimated by the inverse-power-law approximation described
by Fan et al. [8]. The reference metal for the inverse-power law was rubidium which is
in the same group as silver and whose viscosity is reported in the literature [149]. The
data for helium are the ones reported by Bird [34]. To obtain accurate results despite the
decoupling applied in DSMC, a time step smaller than one tenth of the mean collisional
time has to be maintained, i.e., d t < τ/10, and a cell size smaller than one third of the lo-
cal mean free path is required. Since we use eight sub-cells per cell this requirement can
be loosened to (d x < 2λ/3). To have enough unbiased collision partners, at least 20 rep-
resentative particles are required per cell. All these requirements were fulfilled, except
for the highly rarefied region (i.e., in the “blind spot" of the plume where the collision
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(a) Deviation from uniformity for K n = K n0.
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(b) Deviation from uniformity for K n = 2K n0.

Figure 4.3: Non-uniformity Adev depending on carrier-gas fraction and nozzle-to-plate distances for two
plumes at a nozzle separation distance L = D .

probability is low anyway), which justifies our approach. To fulfill the spatial resolution
criteria, first a simulation on a coarse grid was performed and based on the local mean
free path refined before starting the actual simulation. The time step was also adapted
and kept constant throughout the simulation. This procedure was conducted for each
case, as the resolution requirements differ depending on both Knudsen number and
carrier-gas fraction. Exemplary a time step, mesh and particle number independence
study was conducted for the case K ni n = 2K n0 and yHe = 0.5, the results show that the
resolution is (more than) sufficient (refer to Appendix A.7). The dsmcFoamPlus solver
was used, which was implemented in OpenFoam 2.4 and extensively verified by White et
al.[147].

4.3. RESULTS

Three main criteria regarding mass flow are desirable in coating technology: (i) a high
total deposition rate, (ii) a uniform deposition and (iii) an avoidance of stray deposi-
tion. We use the deposition profiles of silver, i.e., ṅAg , to comprehensively quantify these
criteria depending on the mixture composition. First we evaluate (i) the total deposi-
tion rate by plotting the inlet number density fluxes over the carrier-gas fraction yHe for
K ni n = K n0 and K ni n = 2K n0 as shown in Figure 4.2. With increasing carrier-gas frac-
tion, the silver mass flux — which we are eventually interested in — rises up to its maxi-
mum at yHe = 0.755. This increase may seem counter intuitive, since the silver fraction
decreases with higher helium fraction. Nevertheless, the silver inlet velocity increases,
since the speed of sound is inversely proportional to the square root of molecular mass,
i.e., a ∝ 1/

p
m. It should be noted that the addition of a lighter carrier gas increases vis-

cosity with 1/
p

m, which may increase the boundary layer in the slot or nozzle and thus
reduce the outflow. The present study does not consider this effect. Comprehensive
studies on the conductance and species separation from orifices and through pipes of
finite lengths were published in recent years [162, 163, 189]. However, as the higher vis-
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(a) Stray deposition loss for K n = K n0.

5 10 15 20
x[mm]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

y H
e

0

5

10

15

20

25

30

35

p l
os

s
[%

]

(b) Stray deposition loss for K n = 2K n0.

Figure 4.4: Stray deposition loss ploss depending on carrier-gas fraction and nozzle-to-plate distances for two
plumes at a nozzle separation distance L = D .

cosity affects only the boundary and not the bulk flow, the effect is assumed to be small.
To quantify (ii) the uniformity of the deposition, the minimum squared deviation of sil-
ver deposition (i.e., minimized with respect to c, a number from the set of real numbers)
is calculated, which reads

Adev = min
c∈R+

∫ z=12mm

z=0

(
˙nAg − c

c

)2

dz . (4.5)

Adev = 0 corresponds to perfect uniformity, whereas higher Adev indicates non-uniformity.
Figure 4.3a (for K n = K n0) and Figure 4.3b (for K n = 2K n0) show the non-uniformity
measure Adev over the nozzle-to-plate distance and molar fraction of helium yHe . The
non-uniformity is highest directly after the inlet, where the spreading of species starts,
and decreases rapidly with increasing distance. The non-uniformity starts to differ for
different molar fractions of helium at a nozzle-to-plate distance of x ≈ 5mm. For K n =
K n0, adding more carrier gas monotonically enhances uniformity, whereas for K n =
2K n0 the non-uniformity decreases up to a minimum approximately at yHe = 0.7 be-
fore increasing again. While the exact minimum value can be expected to depend on the
geometry and process conditions, it indicates that high fractions of carrier gas may miti-
gate shock-induced non-uniformities. Figure 4.4a and Figure 4.4b show (iii) the stray de-
position which is the coating material fraction ploss which does not reach the substrate
(assumed to stretch over the range z = ±12mm), but leaves the computational domain
(i.e., coats the vacuum chamber). With higher nozzle-to-plate distance the loss depo-
sition increases. The stray deposition loss is slightly higher for K n = K n0 (Figure 4.4a)
than for K n = 2K n0 (Figure 4.4b). The higher the carrier-gas fraction, the smaller the
deposition loss, e.g., at x = 10mm only 10% are lost for yHe = 0.9 compared to 15% for
no carrier gas for the case of K n = 2K n0 (Figure 4.4b). Thus, adding a light carrier gas
improves the coating deposition regarding all three evaluated criteria.
To explain these results, Figure 4.5 shows the line profiles of the normalized silver num-
ber density, silver velocity and normalized silver deposition along z-direction for differ-
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Figure 4.5: Line profiles of the flow of two interacting plumes for K n = 2K n0 and for several carrier-gas frac-
tions along z-direction. (a), (d) show the silver number density normalized by the silver inlet number density,
(b), (e) the silver velocity in x-direction, (c), (f) the silver number density flux normalized by the silver inlet
number density flux. (a), (b), (c) are at a nozzle-to-plate distance of x = 8mm and (d), (e), (f) at a nozzle-to-
plate distance of x = 15mm.

ent mole fractions of carrier gas yHe for K n = 2K n0. At x = 8mm, the normalized number
density profile for the pure silver mixture, i.e., yH e = 0, (Figure 4.5a) linearly increases to-
wards the symmetry and shows two elevated peaks on each side of the symmetry plane.
With increasing carrier-gas fraction, the two distinct peaks merge into one and the rest
of the profile is more curved. All velocity profiles depict two broad peaks and a trough
at the symmetry, but with higher carrier-gas fraction yHe the velocity magnitude signif-
icantly increases (Figure 4.5c). The normalized silver number deposition profile, which
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is the product of the normalized number density and the velocity (divided by the silver
inlet velocity), i.e., ṅAg /ṅAg ,i n = (nAg uAg )/(nAg ,i nuAg ,i n), is shown in Figure 4.5e. It in-
creases nearly linearly from the outer side towards its peaks and shows a considerable
trough in between for the pure silver mixture. With increasing helium mole fraction, the
profile becomes curved and broad peaks are visible around the inlet positions and one
or two peaks occur at or next to the symmetry plane. The velocity trough at the symme-
try trenches a deposition trough for the low carrier-gas fractions and compensates for
the number density peak for high carrier-gas fractions, thus smoothing the deposition
profile. This illustrates the smaller non-uniformity when adding carrier-gas in moderate
amounts (in this case yHe ∈ (0.4,0.8)). At higher nozzle-to-plate distance of x = 15mm,
the number density is plug-like for small carrier-gas fractions yHe and forms a triangle
profile with a high peak for high yHe (Figure 4.5b). The velocity profiles (Figure 4.5d)
flatten out producing a deposition profile which strongly resembles the number density
profile. With higher helium fraction, the peaks merge into one narrow high peak. This
explains the increase of non-uniformity with carrier-gas fraction above yHe = 0.7 previ-
ously observed in Figure 4.3b.
The underlying flow behavior can be split into two phenomena to understand the effect
of the carrier gas, namely

1. species separation due to rarefaction, and subsequent change of speed of sound
with molecular weight,

2. subsequent change of Γ+- and Γ−-characteristics.

While the species separation requires rarefied flow conditions, since it is proportional to
the mean free path, the definition of speed of sound and the characteristics make sense
only in (near) continuum flows — as observed in the shock and at the beginning of the
expansions.

4.3.1. FREE MOLECULAR FLOW
To visualize phenomenon 1, we consider the extreme case of free molecular flow (K n →
∞) where species separation is purely based on the difference of the velocity standard
deviations. Figure 4.6 plots free molecular flow of two parallel plumes, each of them
has a carrier-gas fraction of yHe = 0.5. At the inlet, silver and helium are in equilibrium,
i.e., TAg = THe . The variance of the velocity distributions is kB T /m, so that silver has a
narrower velocity distribution than helium, which affects the spreading of the species.
Figure 4.6a shows the emerging number density field for silver in the upper and helium
in the lower half, respectively. The silver number density decreases with distance from
the inlet, mildly along the jet axis and more rapidly in the offside, producing isocontours
in the form of ellipses. In contrast, for the lighter helium, the number density decreases
rapidly in all directions causing nearly circular isocontours. The mean velocity of the
mixture in x-direction (in the upper half of Figure 4.6b) increases with distance to the
inlet and takes values around 900ms−1, whereas the one in z-direction is highest in the
peripheral regions (shown in the lower half of Figure 4.6b). Figure 4.6c shows the slip
velocity of helium ∆u = uHe −u, which qualitatively resembles the mean velocity field,
but helium exceeds the mean velocities of the mixture by two to three times in both x-
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(a) Number density. (b) Mean velocity.

(c) Slip velocity of helium. (d) Species separation.

Figure 4.6: Contours of free molecular flow of two interacting plumes of a homogeneous binary gas mixture
with a carrier-gas fraction of y = 0.5. (a) shows number density of silver in the upper and the one of helium in
the lower half; (b) depicts the mean velocity of the mixture and (c) the slip velocity of helium, in the upper half
is the x-component, in the lower half the z-component; (d) presents the species separation ratio χ calculated
by DSMC in the upper half and calculated from an analytic solution in the lower half.

and z-direction. Figure 4.6d plots the resulting species separation ratio, i.e., the species
ratio compared to the species ratio at the inlet

χ= nAg /nHe

nAg ,i n/nHe,i n
.
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The upper half shows the DSMC solution for the mixture; the lower half shows the an-
alytic solution given by Cai et al. [108, 126], which describes the entire flow field for a
planar plume as a function of the speed ratio at the inlet Si n = Ui n/

√
2kB T /m. It can

be seen that the DSMC results are in good agreement with the analytical solution. The
species separation ratio is above unity in most regions indicating the predominance of
silver especially around the jet axes, whereas helium prevails only in the peripheral re-
gion. Silver, the heavy species, which exhibits moderate speeds, has a higher number
density fraction along the jet axis, whereas the light helium swiftly leaves the compu-
tational domain. Farther downstream, the superposition of the two plumes produces
an even higher fraction of silver around the symmetry plane. On the one hand, this be-
haviour explains the small stray deposition of silver in Figure 4.4a and Figure 4.4b. On
the other hand, the prevalence of silver and its high molecular weight lets it dominate
other flow fields such as the temperature (and consequently the local speed of sound).

4.3.2. RAREFIED FLOW FIELD

When considering collisions, the high slip velocities between silver and helium diminish.
The contours in Figure 4.7 compare the flow fields for the case for yHe = 0.1 in the upper
half with the case for yHe = 0.9 in the lower half, both for K n = 2K n0. The normalized
number density (Figure 4.7a) decreases in the primary expansion, but increases around
the symmetry plane further downstream before expanding again. The interaction shock
is expected to lie between the primary and secondary expansion. For the higher carrier-
gas fraction, the entire structure is elongated which indicates that the helium focuses the
heavy silver first around the primary jet axis — producing a shock further downstream
— and then around the secondary jet axis, i.e., symmetry plane. Figure 4.7b shows the
slip velocity of helium in x-direction. Please note, that high gradients at some edges of
the computational domain can be accounted to the vacuum boundary condition and
the higher scattering for yHe = 0.1 comes from the lower number of helium particles.
The slip velocity is an order of magnitude smaller than in the case of free flow (upper
half of Figure 4.6c), but still positive in the majority of the flow field. In the shock region,
the slip velocity is smaller and for yHe = 0.9 even partially negative which indicates an
earlier shock of the lighter species. Figure 4.7c plots the slip velocity of helium in z-
direction. The helium escapes in both direction away from the jet axis downstream of
the inlet as for the free molecular flow. The z-velocity slip increases in the shock region
and is everywhere directed away from the symmetry plane in the secondary expansion.
An especially high local slip ∆wHe can be found in the shock region for yHe = 0.9, which
coincidences with the negative streamwise slip velocity ∆uHe . Both indicate that the
light helium is ejected out of the shock region by the collisions with the heavy silver.

The resulting species separation ratio (Figure 4.7d) is in most regions above unity as was
already the case for free molecular flow. However, in the shock region the smaller or even
reversed helium slip velocities compared to the free molecular case cause a dip in species
separation. For higher carrier-gas fraction, the species separation is stronger in the ex-
pansions, but also the zone of less species separation around the shock is larger which
is in agreement with the higher impact of the shock region on the slip velocities. The
prevalence of silver comes along with a higher local mass, thus (given a certain temper-
ature) a smaller standard deviation of fluctuational velocities and hence a lower speed
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(a) Normalized silver density. (b) Helium slip velocity in x-
direction.

(c) Helium slip velocity in z-
direction.

(d) Species separation ratio. (e) Square root of the inverse of the
molecular mass scaled by the inlet
molecular mass.

(f) Square root of the temperature
scaled by the inlet temperature.

Figure 4.7: Contour plots of two interacting jets of a binary gas mixture for K n = 2K n0, in the upper half for
a carrier-gas fraction of yHe = 0.1, in the lower half for a carrier-gas fraction of yHe = 0.9. (a) shows the silver
number density normalized by the inlet silver number density, (b) the helium slip velocity in x-direction, (c)
the helium slip velocity in z-direction, (d) the species separation ratio χ where the gray line marks χ = 1, (e)
the contribution factor of molecular weight to the change of speed of sound, (f) the contribution factor of
temperature to the change of speed of sound. The contour plots are clipped to the range of the corresponding
color bar.

of sound, which varies with a ∝
p

T /m. The factors with which local weight and tem-
perature alter the speed of sound can be separated. Figure 4.7e plots the factor due to
change of local weight which is the square root of the inverse of the molecular mass nor-
malized by the inlet molecular mass, i.e.,

p
mi n/m. This factor is close to unity for the

majority of the flow field for yHe = 0.1 implying negligible impact of species separation
on the speed of sound, except for the peripheral highly rarefied regions where the factor



4.3. RESULTS

4

77

reaches high values. For yHe = 0.9, the molecular mass factor is up to 14% lower in the
primary expansion than at the inlet, and up to 18% lower in the secondary expansion. In
the shock region, the molecular mass factor ratio rises to values close to unity. The cor-
responding temperature factor

p
T /Ti n is shown in Figure 4.7f. While species separation

is directly reflected in a molecular mass factor which deviates from unity, the temper-
ature factor mainly drops due to the expansion and rises due to the interaction at the
symmetry plane (which also occur in a pure mixture case). Differences due to species
separation are noticeable when comparing the cases of different carrier-gas fractions.
However, these mainly occur in the highly rarefied regions, e.g. the peripheral region
above the inlet and the early interaction region with high temperatures. In these almost
free molecular flow regions, the definition of the speed of sound is pointless. In the core
of the expansions and in the shock region, the temperature factor exhibits symmetrical
behavior for yHe = 0.1 and yHe = 0.9. Hence, it can be concluded that the speed of sound
changes because of the change in local molecular mass due to species separation (and
changes in temperature are not relevant).

4.3.3. CHANGE OF Γ+ AND Γ− CHARACTERISTICS
Due to the previously decribed reduction of speed of sound by the species separation, a
fluid element has a narrower domain of influence which is the Mach cone whose half-
cone aperture is the Mach angle µ= arcsin

( 1
M

)
that decreases for lower speeds of sound.

The corresponding envelopes are the Γ+- and Γ−-characteristics, so that the impact of
local species separation on the flow field can be visualized by these characteristics. The
course of the characteristics Γ+ and Γ− can be expressed by the local flow angle ϕ and
the Mach angle µ and reads

Γ+ :
d z

d x
= tan

(
ϕ+µ)

, (4.6)

Γ− :
d z

d x
= tan

(
ϕ−µ)

. (4.7)

(Please note, that the description by characteristics is only strictly applicable for invis-
cid continuum flow and in the here considered rarefied flow, it aids the understanding
since the deviation from equilibrium is small. For more details on the characteristics of
supersonic inviscid continuum flows refer to the literature [127].)
Figure 4.8 plots the Mach number field as banded grayscale contours, streamlines in blue
and characteristics in brown and beige. The case for a carrier-gas fraction of yHe = 0.1
is shown in the upper half and the one for yHe = 0.9 in the lower half. In both cases, the
Mach number increases in the primary expansion, decreases when crossing the shock
and again increases in the secondary expansion. For the high carrier-gas fraction, the
Mach number increases faster — since the stronger species separation cumulates the
heavy silver as was shown in Figure 4.7 — and therefore the characteristics form a more
acute angle with the streamline. This narrower expansion affects the shock location.
The shock region is detected based on the divergence field of the Γ+-characteristics and
marked by the blue continuous contours. While the shock region traverses nearly the
entire computational domain for yHe = 0.1, it fades early for yHe = 0.9 and bends away
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Figure 4.8: Characteristics and shock detection for yHe = 0.1 in the upper half and yHe = 0.9 in the lower half at
inlet Knudsen number K n = 2K n0. The gray, banded contours in the background show the Mach number, the
blue, continuous contours represent the region detected as shock region and are colored by |∇ ·Γ+|, clipped at
1000m−1. The blue lines are streamlines, the brown lines Γ− characteristics, and the beige lines Γ+ character-
istics (in the lower part the characteristics are mirrored). The white dotted line is the shock line detected from
the regression of the shock region; the white solid line is the sonic line, i.e. M = 1.
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Figure 4.9: Shock location (dashed or dotted) and sonic line (solid) depending on the carrier-gas fraction for
(a) K n = K n0 and (b) K n = 2K n0.
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less from the symmetry plane. (Details of the shock detection method were described in
a previous publication [93]. Its benefit over the commonly used isobars [190] or pseudo-
Schlieren [191] is that it does not loose its validity when the pre-shock condition is highly
inhomogeneous in pressure and density along the shock, which is the case in the present
study due to the expansion flow.)
Figure 4.9 plots the shock location and sonic line for different carrier-gas fractions for
K n = K n0 and K n = 2K n0. The subsonic region (marked by solid lines) changes only
insignificantly with carrier-gas fraction. For pure helium and pure silver the shock lo-
cation matches — which is expected due to similarity which depends only on the Mach
number and marginally on the Knudsen number [93], which were kept the same for all
cases. A small carrier-gas fraction of yHe = 0.1 has only a negligible impact on the shock
location. However, the shock location shifts downstream for higher carrier-gas fractions
and the divergence region becomes shorter so that the shock does not traverse through
the entire domain but diffuses before. This greater deviation corresponds to the higher
change of local mean molecular mass due to species separation. Hence, the information
that an interaction takes place can not travel as far upstream, producing a later shock.
In addition, the shock region is broader and weaker for the higher carrier-gas fraction,
which can be accounted to a more oblique shock due to the shift. The shift of the shock
and its weakening is more prominent for a higher degree of rarefaction, i.e. K n = 2K n0

in Figure 4.9a, since for longer mean free paths atoms can move a longer distance with-
out collisions thus enhancing species separation [32]. The narrower shock region and
weaker shock explain the smaller distance between peaks and smaller peak height ob-
served in the deposition profiles for high carrier-gas fractions. The fading of the shocks
reveals why at high carrier-gas fractions and rarefaction the deposition profile seems
to resemble the merging of the two plumes (Figure 4.5f) and consequently produces a
higher non-uniformity than at lower carrier-gas fractions (Figure 4.3b).

4.4. CONCLUSIONS
We investigated the use of a light carrier gas to support continuous Physical Vapor De-
position processes of a heavier species, in which plume interactions (otherwise) would
cause shocks. To evaluate the effect of species separation, we kept the Mach number and
the Knudsen number constant, while varying the carrier-gas fraction.
At the inlet, the addition of a carrier gas increases the speed of sound and consequently
the mass flow of the coating material from a sonic inlet. In the expansion flow, a higher
carrier-gas fraction produces a stronger separation of species that pushes the light species
to the offside and focuses the heavy species along the axis. Consequently, stray deposi-
tion reduces monotonically with carrier-gas fraction. In the region with a high fraction of
heavy species, the Mach number increases more compared to cases with lower carrier-
gas fractions. This shifts the transformation of information into a smaller Mach cone
which in turn produces a less bent and more oblique, weaker shock. Therefore, the im-
pact of the shock on the deposition profile is reduced. This improves deposition uni-
formity up to the point at which adding more carrier gas causes a merging of the two
plumes into one and uniformity decreases. A higher rarefaction enhances the merging
of the plumes.
Thus, the three main requirements concerning the mass flow — high mass flow rates,
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low stray deposition and high uniformity — are all facilitated by adding a lighter carrier
gas (up to a certain carrier-gas fraction). While we showed these beneficial outcomes
only for planar plume interaction with a very specific geometry, the same effects can
be expected for other nozzle geometries and three-dimensional interacting plumes. A
simplification made in the current study is that the influence of the actual substrate is
not considered. The applied vacuum condition removes the gases and does not allow
backflow. For the applied metal, i.e., silver, this is may be an appropriate assumption,
since the majority of it is expected to stick on the substrate surface. The carrier-gas, i.e.,
helium, rebounds from the substrate and may affect the upstream flow. Further stud-
ies (with the precise geometry) would be necessary to evaluate this affect. The carrier
gases will not only impact the transport to the substrate, but also the growth of the film.
The exact effect depends on the deposited material, process conditions and desired film
morphology. Experiments would be required for a comprehensive evaluation of carrier
gas use in continuous PVD.



5
HYBRID COUPLING OF KINETIC

MODELS AND DSMC

Jedes Gasmolekül fliegt mit der Geschwindigkeit einer Kanonenkugel und stößt
innerhalb einer Zeitsekunde viele millionen mal auf ein anderes. Wer könnte sich da nur
ein angenähertes Bild von dem wirren Treiben der Elemente der Körper machen, aber die

durchschnittlichen Resultate kann man mit derselben Einfachheit durch
kombinatorische Analysis finden, wie die des Lottospiels.

Ludwig Boltzmann [192]

The modelling of interacting gas jets emitted into vacuum is a challenge due to the flow ex-
panding from a continuum state to rarefied flow and dropping back to a continuum state
at the interaction shock. The classical approach of coupling a Navier-Stokes-Fourier solver
with the particle-based Direct Simulation Monte Carlo technique suffers from stochastical
noise at the coupling interface, especially when the flow direction is from the rarefied to the
continuum regime. Alternatively, particle-based approximations of the Boltzmann equa-
tion such as mimicking the collision process by relaxation models can be used to avoid ac-
curacy loss at the interface. The corresponding models using the Bhatnagar-Gross-Krook
(BGK), Ellipsoidal-Stochastical Bhatnagar-Gross-Krook (ES-BGK), Shakov (S-BGK) and
Unified-BGK (U-BGK) distributions as target of the relaxation were implemented in the
open-source library OpenFOAM. The models were tested on a Poiseuille flow, a thermally-
driven cavity flow and Couette flow in the rarefied regime. At the same time, the connec-
tion between the local type of equilibrium breakdown, i.e., a high anisotropy of standard
deviation or a high skewness in the velocity distribution, and the performance of the mod-
els were discussed. To classify the type of equilibrium breakdown, the real and imaginary
part of the Fourier-transformed deviation of the local velocity distribution from equilib-
rium were considered. They were tested for free-molecular and rarefied Couette-Fourier

81



5

82 5. COUPLING KINETIC MODELS AND DSMC

flow and applied to two interacting jets. However, no clear picture has been found of what
type of equilibrium breakdown predominates. For the interacting jet problem, the ES-BGK
model performed best giving a perfect match with DSMC for all considered degrees of rar-
efaction. The BGK predicted a stronger shock, the S-BGK model a more diffuse shock. A
hybrid coupling between DSMC and the kinetic model based on a gradient-length local
Knudsen number breakdown criterion brought only little improvement.
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5.1. INTRODUCTION
Modeling of rarefied flows is a necessity for analyzing gas emitted from comets [193, 194],
for sophisticated design of space vehicles [179, 195] and vacuum technology processes
[121, 196]. The Boltzmann equation describes the transport of moving and colliding par-
ticles in the phase space. The numerical solution of the Boltzmann equation comes at a
high computational cost, since it requires a discretization in seven dimensions. To over-
come this obstacle Bird introduced the Direct Simulation Monte Carlo (DSMC) method
[34], a particle-based method in which the movement and collision of the Boltzmann
equation are decoupled. The particles representing the molecules are initially allocated
a position and a velocity according to the initial density and velocity conditions. In each
iteration of the algorithm, first, the particles move with their current velocity. Second, the
particles are binned based on a superposed grid and particles within each bin may (or
may not) collide depending on the local collision probability. DSMC is nowadays gener-
ally accepted to accurately predict rarefied flows when two conditions are fulfilled. First,
a correct closure for the collision probability and the scattering angle has to be applied
which ensures the correct macroscopic transport as coefficients empirically perceived
and is species dependent. Second, the decoupling of the movement and collision neces-
sitates sufficiently fine spatial and temporal resolutions, and the collision partner selec-
tion via the binning requires enough collision partners per bin (or cell) to avoid biased
collision processes [34]. These high resolution requirements make DSMC still costly and
restrain it to small problems, i.e., at relatively high Knudsen numbers.

Several research groups aim to reduce its computational effort by either improving the
computational implementation and underlying computational architecture, e.g., using
GPUs, or by altering the model itself. The latter often involves the identification of near-
equilibrium regions in which a phenomenological closure at a higher level is possible,
e.g., solving the Navier-Stokes-Fourier equations in these regions and coupling with a
particle-based solver for rarefied regions [197, 198]. However, the coupling between a
continuum and a particle-based method always suffers from difficulties transferring the
information from one into the other [198]. This approach works quite well, when the
transfer is one-directional from the continuum domain to the particle-based solver. For
example in expansion flows in which the initial high density allows for a Navier-Stokes-
Fourier solution and the velocity at the coupling interface is directed into the DSMC
domain and well above the speed of sound, so that particle crossings from DSMC to
continuum domain are unlikely. However, if further downstream the number density
rises, e.g., due to shocks, a transfer of the particle information back to Navier-Stokes-
Fourier variables suffers from statistical noise.

The loss of information at the model interface can be avoided by restricting the flow
solution to particle-based methods in the entire field. Since a sufficient description of
a (near-)equilibrium physical state requires considerably more particles than the same
description by macroscopic variables, the memory requirement is high as well as the
processing of the particle behavior in each time step. To not fall back on DSMC in con-
tinuum regions, but to compensate for the higher computational cost, the collision pro-
cedure can be replaced by a kinetic relaxation as described by Bhatnagar, Gross and
Krook (BGK) [199] with the so called BGK operator. Instead of resolving the collision
kinetics to determine the velocity distribution of the next time step, the current velocity
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distribution is relaxed towards a target distribution to a degree which depends on the
local collision probability. Since it is known that in near-equilibrium regions a sufficient
number of collisions relax the velocity distribution towards a target (near-) equilibrium
distribution, a kinetic relaxation is a short-cut to model the collision process. This al-
lows for less strict resolution requirements and hence reduces the computational effort
in near-equilibrium regions. In highly rarefied regions the DSMC collision step still has
to be conducted, as the velocity distribution is too far from a target distribution. These
fully particle-based approaches avoid the trouble of transferring information between
different descriptions.

The pivotal point for kinetic relaxation is the choice of the target distribution, since it
determines the thermodynamic closure and hence the macroscopic transport proper-
ties. The classical BGK operator relaxes towards equilibrium, i.e., towards a Maxwellian
velocity distribution [199]. This yields a Prandtl number of unity, whereas the correct
Prandtl number of gases is approximately 2/3. To obtain the correct Prandtl number dif-
ferent alternative target distributions where introduced, of which two are promising: (i)
the Ellipsoidal statistical BGK distribution (ES-BGK) [200], which takes into account the
pressure tensor and relaxes towards a velocity distribution which is a Maxwellian trans-
formed by a symmetric positive-definite tensor, (ii) the Shakov distribution (in combina-
tion with the BGk operator denoted as S-BGK in this Chapter) [201], which considers the
heat flux and thus introduces skewness into the target distribution. Multiple researchers
applied these models as relaxation to several problems. Roughly speaking, thermally
driven and expansion flows — whose velocity distributions exhibit a high anisotropy in
standard deviation — are accurately represented by the ES-BGK relaxation model [202–
204], while flows with a high skewness in their velocity distribution such as shocks and
shear-driven flows can be adequately modeled using the Shakov BGK model (S-BGK)
[143, 205]. It can be concluded that it is problem dependent which of the target distri-
butions is well-suited. To obtain more generality, Chen et al. [143] proposed a blending
of the two models, the so called Unified BGK model (U-BGK). Its drawback is that for
each problem a blending parameter has to be determined, and even small changes of
the problem necessitate readjustment. In addition, if the flow is more complicated than
rather homogeneous test cases such as Couette-Fourier-Flows, a single global parameter
underfits the problem.

Broadly speaking, the ES-BGK model considers non-isotropy of the standard deviation,
that is reflected in an even moment, and the Shakov model considers skewness, which is
an odd moment. We calculate the real and imaginary part of the local Fourier transform
of the particle velocities and compare it with the one for the Maxwellian velocity dis-
tribution. Our hypothesis is that, if the real part of Fourier transform deviation is high,
the ES-BGK model is more applicable, whereas, if the imaginary part is high, the Shakov
model should be used. In free expansion flows, for example, the velocities sort when par-
ticles scatter away from each other and stop colliding: the particle velocity component
parallel is maintained producing a standard deviation in parallel direction similar to the
one initially assigned, whereas the orthogonal component decreases, since non-aligned
particles switch their "ray“ until alignment. Thus, a non-isotropy of the standard devi-
ation arises making the ES-BGK model a suitable candidate. On the other hand, inside
a shock in a continuum flow, fast particles at a comparatively low temperature from the
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pre-shock state mingle with slow particles at a higher temperature from the post-shock
state. This causes a bi-modal velocity distribution with a skewness, which indicates that
the S-BGK model may be a suitable candidate for modelling. These considerations work
well as long as the problems are isolated. However, in the interacting jet problem stud-
ied in Chapters 3 and 4 both expansions and shocks occur making the choice of a target
distribution for the relaxation more difficult.
This chapter aims at finding a suitable target distribution for modelling the interacting
jet problem with a kinetic relaxation model. To this end, we present our implementa-
tion of the BGK, ES-BGK, S-BGK and U-BGK model within the dsmcFoamPlus solver of
OpenFoam [147]. Then we show the verification of the models for a rarefied Poiseuille
flow and a Couette flow. Afterwards we aim at a better understanding of the ’type’ of
non-equilibrium by considering a free-molecular and rarefied Couette-Fourier flow and
a thermally driven flow in a cavity. We use this to analyse the non-equilibrium of the jet
interaction. Eventually the BGK, ES-BGK and S-BGK models are applied to the interact-
ing jet problem, once in their pure form and once coupled with DSMC in the rarefied
regions.

5.2. NUMERICAL METHOD
Gas flow can be modelled by the Boltzmann equation

∂ f (r ,ξ, t )

∂t
+ξ ·∇r f (r ,ξ, t ) =

(
∂ f (r ,ξ, t )

∂t

)
col l

, (5.1)

where f (r ,ξ, t ) describes the probability density to find at time t a particle at location
r with a velocity ξ = u + c , which can be split in the local mean particle velocity u and
the fluctuational part c . The equation describes the temporal and convective change of
phase density on its left-hand side and the change due to collisions on its right-hand
side. Standard finite difference solution methods suffer from to the high memory re-
quirement for discretizing the six-dimensional phase space. Approaches drastically re-
ducing the space in their discretization such as Lattice-Boltzmann Method (LBM) [206]
may sufficiently cope with continuum flows at low Mach number, but are not applica-
ble for high-speed, rarefied flows. Bird [34] utilized the principles underlying the Boltz-
mann equation — particle movement and collision — to develop the nowadays most
common method for rarefied flow, Direct Simulation Monte-Carlo (DSMC). In DSMC,
gas molecules are represented by a high number of particles, whose movement and col-
lision are decoupled. While the movement is clearly described, the collision modeling
requires a collision probability and scattering to close the equation, which are normally
phenomenologically determined, i.e., they are chosen to match empirically available
data on viscosity and diffusivity. To obtain an accurate result despite the decoupling
and the boxing in parcels, three criteria have to be fulfilled:

1. the cell size d x should be considerably lower than the mean free path λ: d x < λ

3
,

2. the time step size d t should be much smaller than the time between collisions τ:

d t < τ

10
,
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3. the number of particles Ncel l per cell should be sufficiently large: Ncel l > 20.

These high resolution requirements make DSMC costly particularly at low Knudsen num-
bers. This is why Gallis and Torczynski [207] and Macrossan [208] replaced the collision
operator of the method by a relaxation towards a target distribution following an ap-
proach first described by Bhatnagar, Gross and Krook described in the next section.

5.2.1. KINETIC RELAXATION MODELS
The Bhatnagar-Gross-Krook (BGK) collision operator [199] mimics the behavior of the
actual collision operator in the Boltzmann equation by relaxing the current velocity dis-
tribution f towards a target distribution f0 at a frequency ν according to(

∂ f (x,v, t )

∂t

)
col l

=−ν(
f − f0

)︸ ︷︷ ︸
S:=

. (5.2)

The relaxation frequency ν is related to the viscosity. To ensure ’physical’ results, the
following basic physical laws and properties should be fulfilled by the collision term S
[150]:

1. Mass, momentum and energy shall be conserved

m
∫

Sdc = 0 (5.3a)

m
∫

cSdc = 0 (5.3b)

m

2

∫
c2Sdc = 0 (5.3c)

2. The second law of thermodynamics has to hold, i.e., entropy increases.

3. In equilibrium, the velocity distribution is the Maxwellian distribution fM .

4. The Prandtl number is close to 2/3.

It depends on the target distribution f0 whether these criteria are met.

Bhatnagar-Gross-Krook Model (BGK)
The natural choice is to relax towards perfect equilibrium yielding the classical Bhatnagar-
Gross-Krook (BGK) relaxation model [199], with the Maxwellian as target distribution

f BGK
0 = fM =

(
m

2πkB T

) 3
2

exp

(
− mc2

2kB T

)
, (5.4)

and the relaxation frequency ν is determined from the dynamic viscosity as

µ= nkB T

ν
. (5.5)
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However, the BGK model suffers from over-predicting the Prandtl number to be always
unity meaning that the heat transport is underpredicted. To overcome this major draw-
back in the modeling of rarefied compressible flows, some common modifications of the
Maxwellian distribution exist.

Ellipsoidal Statistical BGK Model (ES-BGK)
The Ellipsoidal Statistical BGK-Model [200] (ES-BGK) is applying a stress-dependent dis-
tortion tensor to the velocity distribution

f ES
0 = 1p

detA

(
m

2πkB T

)3/2

exp

(
− m

2kB T
cT A−1c

)
with (5.6a)

A = I+ 1−Pr

Pr

(
3p

tr (p)
− I

)
, (5.6b)

where p = 〈mc⊗ c〉 is the pressure tensor and I the identity matrix. The relaxation fre-
quency νES is determined from

µ= Pr
nkB T

νES
. (5.7)

With the transformation of the target distribution the correct Prandtl number can be
achieved. The ES-BGK target distribution fulfills all requirements for a well-posed ki-
netic distribution, but does not perform well in non-equilibrium flows in which the dis-
tribution is skewed such as in shocks [205].

(Since A is symmetric positive-definite, it can be split into A = BB, where B = Q
p
ΛQT

with the Q as the orthogonal basis consisting of the eigenvectors of A andΛ the diagonal
matrix of eigenvalues. This is a useful property in the latter implementation.)

Shakov BGK Model (S-BGK)
The Shakov distribution is modifying the velocity distribution based on the heat flux
vector q [201]

f S
0 = fM

(
1+ (1−Pr )

2
(
c ·q

)
5(kB T )2p

(
mc2

kB T
−5

))
, (5.8)

where p = tr (p)/3 and q = 〈(m/2c ·c)c〉. The relaxation frequency is determined by
Equation 5.5. The S-BGK model achieves the correct Prandtl number by scaling the re-
sulting heat flux. The S-BGK model considers the skewness of the velocity distribution
and hence is suitable for shocks and shear driven flows, but fails to accurately predict
thermally driven or expansion flows. Furthermore, it may assume negative values and
does not fulfill the second law of thermodynamics.

Unified BGK-Model (U-BGK)
Chen et al. [143] proposed a blending of the ES-BGK and the Shakov model resulting in
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Table 5.1: Fulfillment of basic criteria for kinetic models.

Mass, momentum and

energy conservation

2. Law of

Thermodynamics

feq = fM Pr ≈ 2
3

BGK X X X 7

ES-BGK X X X X

S-BGK X 7 X X

U-BGK X 7 X X

the Unified BGK model (U-BGK), which reads

f U
0 = f ES∗

0 + f S∗
0 where Pr = CS

1−CES
and (5.9a)

f ES∗
0 = np

detA

(
m

2πkB T

)3/2

exp

(
− m

2kB T
cT A∗−1c

)
with (5.9b)

A∗ = I+CES

(
3p

tr p
− I

)
, and (5.9c)

f S∗
0 = fM (1−CS )

2
(
c ·q

)
5(kB T )2p

(
c2m

kB T
−5

)
. (5.9d)

The relaxation frequency νU BGK is determined from

µ= nkB T

(1−CES )νU BGK
. (5.10)

CES and CS are the parameters known from the ES-BGK and S-BGK distribution, the
achieved Prandtl number depends on them as follows: Pr = CS

1−CES
. To obtain Pr = 2/3,

only one of the parameters can be chosen , e.g., CES , which consequently results in
CS = 2/3(1−CES ). The U-BGK inherits the properties of the ES-BGK and S-BGK, ful-
filling most criteria for kinetic models except for the second one. Chen et al. claim that
it is able to predict all kind of flows in the transition regime fairly accurately — assuming
a fitting of the model constant for the studied problem.

The extent to which the kinetic models meet the criteria defined before is listed in Table
5.1. Table 5.2 lists in the first two columns how the collision operator of a certain model
modifies the resulting shear stress and/or heat flux to obtain the correct Prandtl number.
Afterwards an overview is given for which kind of flows the model is suitable. The last
column describes the possible sampling methods, which will be discussed later.
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Table 5.2: Properties of kinetic models in respect to the flow. The first two columns are based on information
from Chen et al. [143].

τ q Good at Sampling

BGK τBGK qBGK Equilibrium Box-Muller transform

ES-BGK Pr ·τBGK qBGK Thermally driven,

expansion flows [202–204]

Box-Muller transform /

Metropolis-Hastings

S-BGK τBGK
1

Pr qBGK Shear driven flow,

shocks [143, 205]
Metropolis-Hastings

U-BGK 1
1−CES

τBGK
1

CS
qBGK K n < 0.1 [143] Metropolis-Hastings

Figure 5.1: The mole fractions and model parameters of the substitute model for the U-BGK distribution (Eqn.
5.15) as a function of the ES-BGK parameter CES .
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PHYSICAL INTERPRETATION OF U-BGK
The U-BGK model promises an elegant blending of ES-BGK and S-BGK model to adapt
the relaxation to different types of non-equilibria while maintaining most criteria for
kinetic models, especially the Prandtl number criterion. To obtain a rough physical in-
terpretation beyond its mathematical soundness, we rewrite the U-BGK distribution as
an allocation of particles either to the ES-BGK or the S-BGK model. First, we use an ap-
proximation, proposed by Chen et al. [143] in a different context, to split the ES-BGK
distribution in its Maxwellian part and its anisotropic part

f̃ ES
0 = f M

0

(
1+ 1

2

(
m

kB T

)2

cT AD c
)

, (5.11)

where AD denotes the deviatoric part of Eqn. 5.9c. This approximation exhibits the same
standard deviation as the ES-BGK distribution. Replacing the first terms of the U-BGK
distribution with Equation 5.11 yields

f̃ U
0 = f M

0

[
1+ 1

2

(
m

kB T

)2

cT AD c (5.12)

+ (1−CS )
2
(
c ·q

)
5(kB T )2p

(
c2m

kB T
−5

)]
, (5.13)

which can be split again in the original parts (we set Pr = 2/3, so that CS = 2/3(1−CES ))

f̃ U
0 = f M

0

·

 3CES

1+5CES︸ ︷︷ ︸
yES

1+ 1+5CES

3︸ ︷︷ ︸
CU

1

2

(
m

kB T

)2

cT AD c



+ 1+2CES

1+5CES︸ ︷︷ ︸
yS

1+ 1+5CES

3︸ ︷︷ ︸
CU

2
(
c ·q

)
5(kB T )2p

(
c2m

kB T
−5

)
 , (5.14)

where yi denotes number fractions of particles. By changing the approximation back to
the approximate ES-BGK and the S-BGK distributions we obtain

f̃ U
0 = yES f̃ ES

0 (CES =CU )+ yS f S
0 (CS =CU ) . (5.15)

We plot the number fractions yi and the model parameters Ci over CES in Figure 5.1. In
the range CES ∈ (−0.5,−0.2), the number fraction yES is above unity and correspondingly,
yS is negative in this range. Approximately at CES ≈ −0.2 a singularity occurs. Between
CES ∈ (−0.2,0), the number fraction yS is above unity and correspondingly, yES is nega-
tive. Above CES = 0 the fractions are within bounds, but one should note that this region
is rather an over-relaxation towards the Shakov distribution for which the ES-BGK com-
pensates by inverting its target distribution. Despite these dubious properties, Chen et
al. showed that the U-BGK model produces in certain flows a better agreement with
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DSMC than the ES-BGK or the S-BGK models [143]. Namely, the authors found that for
both Poiseuille flow and shock flows a model parameter of CES ≈ 0.25 produces good re-
sults — which does not lie between the ES-BGK (CES =−0.5) and S-BGK model (CES = 0),
but over-tunes towards giving a heat flux higher than for any of the pure models.

5.2.2. EQUILIBRIUM BREAKDOWN CRITERION
From a macroscopic view point, non-equilibrium occurs for a high degree of rarefaction,
i.e., either low density, and/or steep gradients. In a microscopic sense, this corresponds
to the prevalence of the left-hand side of the Boltzmann equation, i.e., the phase den-
sity transport, over its right-hand side, which would force the phase density distribution
back to equilibrium. The criteria proposed to detect equilibrium breakdown are based
either on macroscopic quantities or the phase density distribution.

The former has the advantage that it can be applied to continuum solvers without un-
derlying information on the velocity distribution. Hence, multiple breakdown parame-
ters were suggested related to the development of Navier-Stokes-DSMC-coupled solvers
[209–214]. Garcia proposed that the deviation between the local Maxwellian and lo-
cal first-order Chapman-Enskog approximation may be used as breakdown criterion
[211]. The Chapman-Enskog factor, which multiplied with the Maxwellian, gives the
Chapman-Enskog distribution reads

Γ(c) = 1+ (
q∗ ·c

)(2

5
|c|2 −1

)
−c ·τ∗ ·c , (5.16)

where q∗ is the normalised heat flux and τ∗ the normalised stress from the Navier-
Stokes-Fourier equations, e.g., the heat flux is calculated according to Fourier’s law from
the temperature gradient and not from the local particle velocity distribution. An evalua-
tion therefore requires the calculation of the gradients of velocity and temperature [210].
Garcia [211] chose the breakdown criterion as B = max

(
maxi , j (τi j ),maxi (qi )

) > 0.1. It
should be noted, that this criterion is not Galilean invariant.
Most commonly used is the Gradient-Length Local Knudsen number KnGLL , which was
introduced by Boyd et al. [215] and reads

KnGLL = max
φ ∈ {ρ,T, |u|}

(
λ

φ

∣∣∇φ∣∣) . (5.17)

The equilibrium breaks for K nGLL > 0.05 [215]. The velocity and temperature gradient
are directly related to the Navier-Stokes-Fourier stress and heat flux like for the crite-
rion by Garcia, but the decisive difference is to relate the gradient to the mean free path.
These kind of gradient-based criteria work quite well with continuum methods, since the
fields are sufficiently smooth, whereas in statistical methods such as DSMC, the macro-
scopic field suffers in each cell from statistical fluctuations which are (almost) indepen-
dent of that in the next cell, which may cause significant gradients just due to statistical
fluctuations. For both continuum and particle-based modelling approaches, the gradi-
ent of the variables needs to be evaluated, making it a non-local procedure and conse-
quently introducing an idle time for most threads in a parallelized algorithm.
Hence, for particle-based methods the deviation of the local velocity distribution from
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equilibrium seems to be a natural choice. Kumar et al. [212] proposed the local Kolmo-
gorov-Smirnov parameter as a measure for this deviation, i.e., the maximum of the de-
viation between the actual and the equilibrium cumulative density function. Their work
suggested that for a Kolmogorov-Smirnov parameter above 1%, the near-equilibrium
breaks down. The method suffers from the uncertainty how to best choose bins for cal-
culating the cumulative density function and a high requirement for the sample size (one
million velocity samples still gave significant statistical scatter).
Alamatsaz and Venkattraman used the Fourier transform to characterize the deviation of
the actual velocity distribution from the corresponding Chapman-Enskog distribution
[213]. One beauty of this algorithm is that neither a sampling of macroscopic variables
nor a gradient calculation is necessary. Therefore, we investigate this parameter for our
case. Instead of considering the deviation from the Chapman-Enskog equation as in the
original formulation, we consider the deviation from the Maxwellian and split the devi-
ation in its real and imaginary part. This is motivated by the different applicability of the
kinetic models as described in Section 5.2.1. A high real part of the Fourier-transformed
deviation from the Maxwellian indicates a good performance of the ES-BGK model, a
high imaginary one of the S-BGK model.
The general trivariate normal distribution with a zero mean and a covariance matrix Σ
reads

f (c) = 1√
(2π)3

p|Σ|
e

(− 1
2 cTΣ−1c

)
(5.18)

and its Fourier transform is

c f̂ (ω) =
∞∫

−∞

∞∫
−∞

∞∫
−∞

f (c)e−i c ·ωdc1dc2dc3 = e−
1
2ω

TΣω . (5.19)

The covariance matrix for the Maxwellian distribution reads

Σ=


kB T

m 0 0

0 kB T
m 0

0 0 kB T
m

 , (5.20)

which eventually yields for the Fourier-transformed Maxwellian

f̂M (ω) = e−
1
2

kB T
m ω2 = e−

1
2 ω̃

2
, (5.21)

where the normalized frequency is ω̃=ω/
√

m/kB T . The Fourier transform of the Max-
wellian is entirely in real space and has no imaginary component.
The Fourier transform of a general velocity distribution reads

c f̂ (ω) =
∞∫

−∞

∞∫
−∞

∞∫
−∞

f (c)e−i c ·ωdc1dc2dc3 (5.22)

≈
N∑

k=1
cos(ck ·ω)︸ ︷︷ ︸
ℜ(

f̂ (ω)
)

− i sin(ck ·ω)︸ ︷︷ ︸
ℑ(

f̂ (ω)
) , (5.23)
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where ℜ(
f̂ (ω)

)
denotes the real part of the Fourier transform and ℑ(

f̂ (ω)
)

the imaginary
one.
Then, the real and imaginary component of the deviation from the Maxwellian are

∆Φℜ =
∫ ∞

−∞

∣∣ℜ(
f̂ (ω)

)− f̂M (ω)
∣∣ dω (5.24)

∆Φℑ =
∫ ∞

−∞

∣∣ℑ(
f̂ (ω)

)∣∣ dω . (5.25)

The numerical integration is conducted using a Gauss-Hermite integration of second

order, with sample points ω1,2 =± 1p
2

and weights W =
p
π

2 , so that

∆Φℜ ≈W 3
2∑

k=1

2∑
l=1

2∑
m=1

∣∣ℜ(
f̂ (ωk ,ωl ,ωm)

)− f̂M (ωk ,ωl ,ωm)
∣∣ (5.26)

∆Φℑ ≈W 3
2∑

k=1

2∑
l=1

2∑
m=1

∣∣ℑ(
f̂ (ωk ,ωl ,ωm)

)∣∣ . (5.27)

The sampling of these data is time consuming, especially since they do not coincide with
data which are commonly sampled from a DSMC simulation anyway.

5.2.3. IMPLEMENTATION
The collision step in the dsmcFoamPlus solver of OpenFoam-2.4.0-MNF was substituted
by a relaxation step, keeping the remaining algorithm the same as shown in Figure 5.2a.
This enables us to use the kinetic models in the high density and DSMC in the rarefied
regions. The details of the relaxation step for the particles in one cell can be found in
Figure 5.2b: First the algorithm loops over all particles to sum up their pre-collision mo-
menta and kinetic energies. In case of using the Metroplis-Hastings-algorithm (used for
ES-BGK, Shakov and U-BGK) a burn-in for the cell velocity distribution is conducted,
sampling a certain number of velocities from the distribution without using them. Af-
terwards it is looped over the particles again deciding whether a relaxation takes place
or not based on the cell density and the collisional diameter (which is temperature de-
pendent). If a collision takes place, a new velocity is sampled (in case of the Metropolis-
Hastings algorithm again ten samples are not used to decorrelate the samples) and as-
signed to the particle. The post-collisional momenta and kinetic energies are summed
up. Eventually the velocities are shifted and scaled based on the ratio of the pre- to post-
collisional momenta and kinetic energies to conserve momentum and energy.
The speed-up of the kinetic models comes on one side from the higher accuracy when
loosening the resolution criteria for cell and time step size by a factor two theoretically
leading to a speed-up by a factor 4 in two-dimensional cases and by a factor 8 in three-
dimensional cases, on the other side from limiting the number of operations to the num-
ber of particles in the cell, which may have especially in dense regions a major effect.
Kumar et al. reports a speed-up of factor two for a two-dimensional rarefied case [216]
and Pfeiffer a speed-up about 17 for a three-dimensional case [217]. This model is feasi-
ble for near-continuum regions of the flow which in the studied case is the region after
the nozzle, in rarefied regions DSMC will be used. To switch between the regions the
gradient length local Knudsen number is used.
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Initialise parcels

Update boundaries

Move parcel

Relaxation

Calculate macroscopic fields

endTime?

End

Yes

No

(a) Kinetic Model.

Calculate instantaneus momentum
ppre and temperature Tpr e

Burn-in phase: Sample 35
times from distribution function

Loop over particles

Collision probability >
random number

r ∈ [0,1]?

Sample 10 times and impose last
sample as new particle velocity

calculate instantaneus momentum
ppost and temperature Tpost

Shift and rescale velocity distribution
to recover ppre and Tpr e

Yes

No

(b) Metropolis-Hastings algorithm.

Figure 5.2: Flow charts of (a) DSMC algorithm adapted to use kinetic relaxations instead of collisions and (b)
Metropolis-Hastings algorithm to sample velocities from a target distribution.

5.3. RESULTS

VERIFICATION BY A POISEUILLE FLOW

To verify the setup we use Poiseuille flow as described by Chen et al. [143]. The case is
dimensionless. We set the channel height L = 1, the initial conditions at T0 = 1, p0 = 1,
ρ0 = 1, S0 =

√
2kB T /m = 1. The considered monatomic gas was modelled by the Hard-

Sphere model, i.e., ω= 0.5. The Knudsen number reads

K n =
√
π

2

µ0
√

kB T /M

p0L

and was set to K n = 1.
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Figure 5.3: Line profiles for a Poiseuille flow at K n = 1 and G = 1. The results from the implemented U-BGK
model is denoted by solid lines, results by Chen et al. [143] are denoted by symbols.

With the viscosity of the Hard-Sphere model, i.e.,

µ= 5

16

√
kB T /m

π

m

d 2 , (5.28)

the molecular diameter is

d =
√

5kB

16
p

2
(5.29)

The mass of the species is set in a manner that the speed ratio S =
√

2kB T /m equals
unity.
The dimensionless gravity is set to 1. For the non-dimensionalization:

g = g∗2kB T0d = g∗2kB

√
5kB

16
p

2
(5.30)

Figure 5.3 shows the velocity and temperature over the channel height obtained by DSMC
and the U-BGK model with several values for CES compared to results by Chen et al. [143]
for validating of the implementation. The velocity (Figure 5.3a) exhibits a parabolic pro-
file and a high slip at the walls. The ES-BGK model (i.e., CES =−0.5) gives the highest ve-
locity. With higher CES the velocity marginally decreases. The temperature (Figure 5.3b)
is approximately 1.3 of the wall temperature with a dip in the region of low shear, i.e.,
in the center, and a temperature jump at the walls. The results of the code are in good
agreement with the solution by Chen et al. [143]. The profile best matching with DSMC is
the one for CES = 0.25 which does not lie between the ES-BGK and the S-BGK model, but
beyond the Shakov limit, meaning that the heat flux appears to be considerably higher
than the one predicted by a BGK model.
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Figure 5.4: Geometry and temperature boundary condition of the thermal cavity flow, with adiabatic vertical
walls and a sinusoidal temperature profile at the horizontal walls. The dashed blue lines denote symmetries,
so that is it sufficient to simulate one quarter of the domain.

5.3.1. THERMAL CREEP FLOW IN A CAVITY
In 1879, Maxwell predicted thermal creep flow for rarefied gases, which is caused “by
inequalities of temperature at the surface of the solid, which give rise to a force tending
to make the gas slide along the surface from colder to hotter places" [218]. It is highest
for λ≈∇T /T . We consider a standard thermal creep flow case in a cavity as depicted in
Figure 5.4, whose lower and upper wall are kept at a spatially varying temperature profile

T (x) = T0

(
1−εcos

(
2πx

L

))
,

where T0 = 300K and ε = 0.5. The side walls are isothermally at 1− εT0. The Knudsen
number is K n = 1 and the medium is argon. Owing to vertical and horizontal symme-
tries, the case can be reduced to one quarter, which is chosen to be the lower left one.
Figure 5.5 shows scaled temperature contours Tε = 1/ε(T /T0−1) in the left, lower quarter
of the cavity for different models. In Figure 5.5b, the DSMC solution predicts a low tem-
perature in the left corner and a high temperature on the right, which induces a strong
flow along the lower wall marked by velocity vectors. A large counter-clockwise circula-
tion occurs with an overall transport of hotter gas from the hot wall region towards the
cold wall region. The scaled temperature varies rapidly along the wall, where the par-
ticles assume the wall temperature after wall collisions. The temperature variations are
also high where the recirculation leaves or arrives at the heated wall. In the upper half,
the temperature changes are more moderate. For the kinetic models, the scaled temper-
ature contours are shown with the isotherms in black and the corresponding isotherms
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(a) DSMC. (b) BGK.

(c) ES-BGK. (d) S-BGK.

Figure 5.5: Scaled temperature contours in a temperature-driven cavity flow for (a) DSMC, (b) BGK, (c) ES-BGK
and (d) S-BGK. The black arrows depict the velocity field (the reference vector is plotted next to the legend).
The green solid lines denote the isotherms of the DSMC solution and indicate thus the deviation from the
isotherms of the different relaxation models shown by black solid lines.
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for the DSMC in green. The BGK model, presented in Figure 5.5b, gives qualitatively the
same picture, but the isotherms are shifted downstream compared with the DSMC so-
lution, which is in agreement with the higher velocities. The ES-BGK model’s thermal
isocontours (Figure 5.5c) as well as the velocity field match the ones of the DSMC. The
S-BGK model (Figure 5.5d) produces a temperature and velocity field similar to the BGK
overpredicting the downstream transport of temperature.
The velocity distribution of this simple looking flow field is more complex than the pre-
vious one of the Poiseuille flow. The velocity distributions (for the DSMC) were sam-
pled for points along a streamline starting at the top of the computational domain and
once cycling through the flow domain (Figure 5.6a). A typical velocity distribution at the
marked red point is shown in Figure 5.6b. It is clear that it deviates from the equilibrium
function and that the standard deviation is non isotropic and the skewness is non zero.
The normalized temperature per direction

Θi =
1

ε

(
Ti

T0
−1

)
(Figure 5.6c) and the skewness of the velocity distribution µi (Figure 5.6d) are plotted
over the streamline coordinate s. At the top (s = 0), the temperatures have the same
value and the skewnesses are zero. The normalized temperatures decline on the path
along the adiabatic wall, with the one in x-direction having a higher value and the one
in y-direction a lower value than the mean temperature. At the same time, the skewness
in y-direction becomes negative, whereas the one in x-direction stays at zero. Along the
bottom wall, the normalized temperatures coincide with each other and steeply climb
from a value near Θ = −0.5 to Θ = 0.3. Also the skewness in y-direction rises from neg-
ative to positive values, whereas the skewness in x-direction is negative. Afterwards the
temperatures separate again, where the normalized temperature in y-direction this time
exceeds the one in x-direction. The skewness is positive and falls to zero at the top of
the computational domain. The temperature deviations at the beginning and end of
the streamline can be explained with the direction the high velocity particles have in
a certain region: particles which collided with the hot region of the bottom wall, i.e.,
close to x = 0.5mm exhibit a higher standard deviation than the ones which collided
with the cold region. If they move to the adiabatic wall, they travel horizontally and their
high standard deviation introduces a higher temperature in x-direction than y-direction,
whereas if they move up vertically they contribute to the high temperature in y-direction
in the center of the cavity. All particles colliding with the bottom wall adopt a velocity
according to the temperature of the wall which explains the good agreement of all tem-
peratures and their rise along the wall. Particles which collide with a symmetric wall,
i.e., either the one at the symmetry line or the adiabatic wall, will switch only their sign
of wall normal velocity, thus suppressing any skewness in x-direction. The particles col-
liding with the bottom wall have a wide range of velocities when approaching the wall,
either a very low standard deviation of velocity when leaving the cold wall and a high one
when leaving the hot wall, thus introducing a negative skewness in y-direction upstream
the bottom wall and a positive one downstream the bottom wall. At the bottom wall,
the temperature gradient drives the flow by accelerating the slower incoming particles
to high velocities. This consideration illustrates how complicated the velocity distribu-
tion can become even in small test cases and how fast the kind of non-equilibrium can
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(a) Streamline. (b) Velocity distribution.

(c) Temperature. (d) Skewness.

Figure 5.6: Velocity distribution along the circulation in the thermally-driven cavity flow. (a) Considered
streamline in the lower left quarter of the cavity; (b) Scatterplot of the velocity distribution at a point marked
in red in (a); (c) temperatures along streamline; (d) skewness of the velocity distribution along streamline.
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Figure 5.7: Sketch of physical phenomena appearing in rarefied Couette flow.
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Figure 5.8: Line profiles for a Couette flow of argon at a Knudsen number of K n = 0.14, wall temperatures
at Tw = 273K and a wall velocity difference of ∆Uw = 1500ms−1; (a) shows the temperature profile, (b) the
velocity profile along the channel width.

change — owing the good match of the ES-BGK model more to a serendipity than a so-
phisticated choice.

5.3.2. SHEAR-DRIVEN FLOW — COUETTE FLOW

Another simple test case to explore the behavior of the kinetic models is a rarefied Cou-
ette flow as sketched in Figure 5.7. Two infinitely extended isothermal plates force a
shear flow on the confined Argon gas by moving in opposite direction. The rarefaction
yields an incomplete transfer of momentum and temperature from the walls to the fluid
resulting in a velocity slip and a temperature jump. The heat generation due to the vis-
cous dissipation and the limited transfer of heat to the walls due to the rarefaction give
rise to a parabolic temperature profile along the wall normal direction. The amplifi-
cation of the temperature profile depends on the Prandtl number, the ratio of viscous
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(a) Velocity distribution. (b) Temperatures. (c) Skewness of velocity distribution.

Figure 5.9: Velocity distribution for a Couette flow of argon at a Knudsen number of K n = 0.14, wall tempera-
tures at Tw = 273K and a wall velocity difference of∆Uw = 1500ms−1; (a) shows a typical velocity distribution
at y/H ≈ 0.2; (b) the temperatures in different directions along the channel width; (c) the skewness along the
channel width.

diffusion to thermal diffusion. The effects of velocity slip, temperature jump and tem-
perature overshoot increase for higher Knudsen numbers and are a good indicator in
which regions the models are applicable.

A Couette flow of argon at a Knudsen number K n = 0.14 (based on the channel height)
was simulated using the BGK, ES-BGK, S-BGK models as well as DSMC. The wall temper-
ature was isothermally kept at Tw = 273K and the difference between the wall velocities
was ∆Uw = 1500ms−1. For the temperature DSMC predicts a jump of 0.6 of the wall
temperature and a temperature build-up at the channel centre of 3.4 times the wall tem-
perature. The velocity profile is linear with a small wall velocity slip of 0.1 of the applied
wall velocity difference. As expected, the BGK model overpredicts the temperature over-
shoot. The ES-BGK model slightly underpredicts the temperature around the channel
centre. The S-BGK model matches the DSMC perfectly. This is in agreement with the
properties of the models as described in Section 5.2.1, since rarefied shear-driven flows
produce a skewed velocity distribution. This can be exemplary seen in Figure 5.9a where
a typical distribution of the fluctuational particle velocities at y/H ≈ 0.2 is depicted. A
broad, wide tail of high velocities in negative x- and positive y-direction occurs giving
rise to a positive skewness in x-direction and a negative one in y-direction. Also the tem-
peratures equilibrium is broken, which is better visible in Figure 5.9c which shows the
temperatures per direction accros the channel height. The temperature in x-direction
Tx rises to T /Tw ≈ 3.9, since the high shear introduces large velocity differences in this
direction and particles mingle between layers due to the rarefaction. Whereas particles
with a high y velocity component quickly collide with the wall leveling off the tempera-
ture Ty . The skewness linearly changes across the channel being positive in x-direction
and negative in y-direction at the bottom, to the opposite at the top. These measures
may seem arbitrary as they depend on the choice of directions and multiple measures
have to be considered to gain an understanding of the non-equilibrium. Therefore, in
the next section we explore an alternative way to classify equilibrium breakdown.

The speed-up of the rarefied Couette flow simulations for the kinetic model compared to
the DSMC is shown in table 5.3 for the BGK, ES-BGK and S-BGK model. The BGK speeds
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comp.
cost
(scaled
by DSMC)

time frac.
spent
in move

time frac.
spent in
collide
or relax

Total
No. of
particles

No. of
cells
along
x-axis

No. of
cells
along
y-axis

time
step
size in
10−5 s

DSMC 1 93.74% 2.19% 192843 10 200 3.5
BGK 0.167 79.26% 7.21% 92289 5 100 7
ES-BGK 0.224 64.13% 18.32% 92289 5 100 7
S-BGK 0.225 70.08% 13.77% 92289 5 100 7

Table 5.3: Computational cost (scaled by the one of the DSMC), fraction of time spend in move and collide or
relax functions and the resolution for the DSMC and the kinetic models for Couette flow at K n = 0.14.

up the simulation by a factor of ≈ 6 and the ES-BGK and S-BGK model by a factor of
≈ 4.5. The latter matches the speed-up stated by Kumar et al. [216], who contributed the
main effect to the loosened resolution criteria. Since the cell length is twice as long as for
DSMC, but the required number of particles per cell is 40, the total number of particles
halves (in a planar flow). In addition, the allowed time step size doubles. This produces
an expected speed-up of 4.
Approximately 94% of the computational time is spent on the movement of particles for
the DSMC, and only approximately 2% in the collision step. Note that in less rarefied
flow, the proportions would shift to the collisions. For the kinetic models, the time spent
in the relaxation step is between 7% for the BGK and 18% for the ES-BGK model. The
higher overhead for the ES-BGK can be explained on the one hand by the requirement
to sample the stress tensor and on the other by the use of the Metropolis-Hastings al-
gorithm compared to the Box-Muller transform for the BGK model. While the S-BGK
model needs to use a sampling algorithm, the decomposition stated in Section 5.2.1
could transform the BGK distribution to an ES-BGK distribution eliminating the effi-
ciency loss due to rejected velocities occurring in a Metropolis-Hastings algorithm.
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Figure 5.10: Free molecular Couette flow at a ∆u = 500ms−1 and T = 300K. The flow domain and boundary
conditions are shown on the left together with a qualtitative sketch of the particle velocities of the particles
after collision with the wall (black) and in the bulk region of the channel (gray). The quantitative particle
distributions after colliding with the wall are shown in the center, their superposition, which it the total velocity
distribution in the free molecular Couette flow, is shown on the right.

5.3.3. COUETTE-FOURIER FLOW
The previous section showed the applicability of the Shakov distribution in shear-driven
rarefied flows with the comment that the occuring velocity distributions are skewed. To
understand the produced velocity distributions better we consider free molecular and
rarefied Couette-Fourier flows. Couette-Fourier flows occur between two infinitely ex-
tended plates, that move with differing velocities, producing a Couette flow, and / or are
kept at differing temperatures, producing Fourier Flow. Without collisions the distribu-
tion of fluctuational velocity does not depend on the location and is the superposition of
the two half normal distributions from the wall collisions, weighted with the particle flux
colliding with the wall. This simplicity in combination with the vast variety of producible
velocity distributions makes it an ideal candidate for evaluating the breakdown (without
considering the use of the kinetic models as neither collision nor relaxation is applied).

COUETTE FLOW

The setup and velocity distribution of a free molecular Couette flow case is depicted
in Figure 5.10. Both walls are kept at 300K and move with a velocity of 250ms−1 in
opposing directions. When a particle collides with the upper (lower) wall, it will get a
x-velocity assigned from a Maxwellian distribution, whose mean is shifted to 250ms−1

(−250ms−1), and a y-velocity from a half Maxwellian distribution. The y-velocities de-
termine how fast particles cross the channel and collide with the the other wall. Since
both half Maxwellian distributions are for the same temperature, i.e., they have the same
standard deviation, the exchange between velocity distribution is at the same speed, so
that the total velocity distribution is Maxwellian in y-component.The x-velocity distribu-
tion has a higher standard deviation and the kurtosis is lower than that of a Maxwellian.
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Figure 5.11: Free molecular Fourier flow at ∆T = 700K. The flow domain and boundary conditions are shown
on the left together with a qualtitative sketch of the particle velocities of the particles after collision with the
wall (black) and in the bulk region of the channel (gray). The quantitative particle distributions after colliding
with the wall are shown in the center, their superposition (weighted with the number of wall collisions per
time), which it the total velocity distribution in the free molecular Couette flow, is shown on the right.

FOURIER FLOW

For the considered Fourier flow in Figure 5.11, both walls are kept still, but the upper
wall has a higher temperature of 1000K, whereas the lower wall has a temperature of
300K. Both velocity distribution for the populations from a wall are Maxwellian, but
the standard deviation is much higher for the warmer wall. The on average higher y-
velocities from the upper wall feed the population of the lower wall much faster than the
other way round. In the total velocity distribution, the y-velocity distribution is therefore
skewed, with more particles moving up. In addition, the kurtosis of the x-component
changes, but less significantly than the skewness of the y-velocity.

COUETTE-FOURIER MAP

The real, the imaginary and total Fourier transform deviation from equilibrium is shown
in Figure 5.12 for a range of Couette-Fourier flows. The equilibrium case is at T0 = 300K
and zero wall velocity, so that both the real and imaginary part are zero. For a higher
difference in wall velocities, the real deviation (Figure 5.12a) increases, which denotes a
change in the even moments, for example a higher kurtosis or different standard devia-
tions in different directions. This change also depends on the wall temperature, with a
slower smaller of the real deviation for moderately high wall temperatures and a faster
increase for moderately low all temperatures )compared to 300K, for wall temperatues
close to zero high valus of real deviations are reached (the lowest included wall temper-
ature is Tw = 10K, since the time until reaching a steady state otherwise takes to long).
However, the dependence on the wall velocity difference prevails over a significant range
the one on the wall temperature difference. With deviating wall temperatures, the imag-
inary deviation increases (Figure 5.12b). It is worth noting that the increase of the imag-
inary part is symmetric around the equilibrium temperature, when scaling the temper-
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(a) Real deviationΦℜ (b) Imaginary deviationΦℑ (c) Total deviation |Φ| (L2-
norm)

(d) Real deviationΦℜ (e) Imaginary deviationΦℑ (f) Total deviation |Φ| (L2-
norm)

Figure 5.12: Fourier maps for the deviation of the velocity distribution from a Maxwellian for a Couette-Fourier
flow. (a)–(c) for free molecular flow, (d)–(e) for K n = 0.5; (a), (d) real part of deviation, (b), (f) imaginary part of
deviation, (c), (g) L2-norm deviation.
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(a) Real deviationΦℜ (b) Imaginary deviationΦℑ

Figure 5.13: Fourier transform maps for the deviation of the velocity distribution from a Maxwellian for inter-
acting jets with inlet stagnation Knudsen number K n0 = 0.13.

ature as
p

(Tw /T0). Also the real deviation marginally increases. The L2-norm depicted
in Figure 5.12c shows a smooth increase when moving away from the equilibrium con-
ditions.

Figures 5.12e–5.12f show the same measures for a rarefied flow at K n = 0.5. The qualti-
tative behavior corresponds to the free molecular case, but the values are significantly
lower. With a further decrease in Knudsen number, the flow field becomes less homo-
geneous — e.g., the shear-driven Couette flow at K n = 0.14 (Section 5.3.2) showed an
extreme increase in temperature around the center plane producing a heat flux from the
bulk towards the walls. In such a case, an average value of Φℜ and Φℑ for the entire flow
field does not make sense. In summary, the kind of equilibrium may be determined at a
local level, but global statements for a flow are difficult to make.

5.3.4. INTERACTING JETS

DEVIATION FROM EQUILIBRIUM

Our eventual aim in developing rarefied gas dynamics solvers is to be able to solve more
complex cases, in which different kinds from deviations of equilibrium occur such as
the interaction of jets previously discussed in Chapter 3. Two effects introduce non-
equilibrium in this kind of flow: (1.) the breakdown of thermal isotropy due to the ve-
locity sorting in the expansion, (2.) the bimodal velocity distribution in the shock region
due to the steep gradient in temperature in combination with a long mean free path.
In (1.) the free expansion, the particles align their path to the direction of the veloc-
ity they attained in their last collision. Assuming several beams emerging from a point
source, a particle whose velocity is not aligned with the beam will leave this beam and
cross the other beams until it ends on the beam which is aligned to the particle veloc-
ity. Thus, the orthogonal temperature T⊥ will decline rapidly when leaving the source,
whereas the parallel temperature T∥ after an initial decline will retain its value. Hence,
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(a) K n0 = 0.013 (b) 2K n0 (c) 4K n0

Figure 5.14: Normalized number density contours of two interacting jets calculated with the hybrid ES-BGK-
relaxation-DSMC coupled in the upper half and the regions in which the ES-BGK relaxation was applied (blue)
or the collisions were resolved by DSMC (gray) in the lower half at an inlet stagnation Knudsen number of (a)
K n0 = 0.013, (b) 2K n0 and (c) 4K n0. The applied breakdown criterion was K n∗

GLL = 0.1.

the standard deviation of the velocity distribution will not be isotropic corresponding to
a non-spherical pressure tensor or a high Φℜ. The high alignment leads to high mean
velocities, which in the (2.) shock will be confronted with the high temperature, small
mean velocity particles from behind the shock. This leads to a bimodal velocity distri-
bution with a skewness, corresponding to a non-zero heat flux or a highΦℑ. The Fourier
transform of the deviation from the Maxwellian is shown in Figure 5.13. The real part
(Figure 5.13a) assumes high values exceeding Φℜ = 0.5 in the offsides of the inlet with a
large region above Φℜ = 0.1. While the deviation is higher in the subsonic region, with
values above Φℜ = 0.5, the deviation diminishes when entering the shock. At the shock
itself, a small stripe of Φℜ > 0.1 occurs; downstream from the shock the deviation fades.
The imaginary part of the deviation (Figure 5.13b) is small in the offside and only com-
prises a small region in the extreme offside. The imaginary part of the deviation is high
at the sonic line, but not inside the subsonic region. At the shock, the imaginary part of
the deviation isΦℜ > 0.1 in a broader stripe, which transverses the entire computational
domain.
Therefore both the even and odd moments will deviate in this flow from the equilibrium
distribution, which makes it a good candidate for testing the capabilities of the target
distributions for the relaxation.

KINETIC MODELS AND HYBRID COUPLING

Figure 5.14 shows the interacting planar jets solved by a hybrid ES-BGK-DSMC solver at
different degrees of rarefaction. The number density contours are plotted in the upper
half with thin white lines depicting isolines from a DSMC simulation and thin beige lines
for the same isolines for the hybrid ES-BGK-DSMC solution. Since the results are in very
good agreement the white DSMC lines are rarely visible. This is true for all three consid-
ered degrees of rarefaction, which range from a clear shock interaction (Figure 5.14a) to
an almost diffuse superposition of plumes (Figure 5.14c). The lower half depicts regions
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(a) BGK (b) ES-BGK (c) S-BGK

Figure 5.15: Normalized number density contours of two interacting planar jets at K ni n = K n0 calculated with
the (a) BGK, (b) ES-BGK and (c) S-BGK distribution for the relaxation.

in which the ES-BGK relaxation was applied in blue, and those in which the DSMC solu-
tion was applied in gray based on a breakdown criterion of K n∗

GLL = 0.1. For the lowest
Knudsen number of K ni n = K n0 = 0.013, the ES-BGK solver is applied in most regions
except for the shock region and the ’blind spot’ in the periphery. For K ni n = 4K n0, on
the other hand, DSMC is required in the majority of the flow field. (Please note that a
few cells at the vacuum boundary are unexpectedly not recognized to be out of the equi-
librium range, since zero normal gradient boundary conditions diminish the calculated
total gradients.)
The excellent agreement (in combination with the audaciously high breakdown limit)
raises the question how well the pure kinetic model without hybrid coupling compares
to the hybrid-coupled models. The performance of the BGK, ES-BGK and S-BGK model
is assessed in Figure 5.15 for K ni n = K n0, where the number density contours of the
pure model are presented in the upper and the one of the corresponding hybrid solvers
in the lower half. Isolines are marked in white for DSMC, in brown for the pure kinetic
model and in beige for the hybrid model. The BGK model slightly overpredicts the shock
intensity (Figure 5.15), i.e., the shock shields the primary expansion more and the num-
ber density level behind the shock is higher, whereas the S-BGK model underpredicts it,
i.e. the number density distribution is more diffuse both in the primary and secondary
expansion. This is in so far surprising as it implies that incorporating the heat flux de-
creases the accuracy compared to solely using the Maxwellian as target distribution.
Figure 5.16 compares line profiles of normalized number density, velocity and temper-
ature at x = 5mm for the different kinetic models with the DSMC solution. The BGK
model overpredicts the secondary peaks in the number density which are caused by the
shock and the temperature peak in the center plane. Except for these deviations, which
indicate an underprediction of diffuse behavior, the BGK model is in good agreement
with the DSMC solution. The ES-BGK exhibits no significant deviations from the DSMC
solution. The S-BGK model predicts lower secondary peaks in number density, higher
primary peaks and a smooth transition without the deep troughs predicted by the other
models and the DSMC method. Also the velocity trough and temperature peak at the
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Figure 5.16: Profiles of (a) normalized number density, (b) velocity and (c) temperature at x = 5mm for inter-
acting jets with inlet stagnation Knudsen number K ns = 2K n0.

center plane extend farther outwards indicating a more diffusive character of the S-BGK
model.

Table 5.4: Computational cost for the simulation of two interacting planar jets for different kinetic models,
compared to the costs of DSMC, accompanied by the number of used particles and the number of grid cells.

computational cost
(normalized by DSMC)

time step
size in s

particle
number in 106

grid
cells

DSMC 1 8 ·10−9 14 23744
BGK 0.274

16 ·10−9 7 6527ES-BGK 0.298
S-BGK 0.279

Table 5.4 compares the computational cost, i.e. the CPU time, normalized by the one of
the DSMC simulation for the pure relaxation simulations. The use of the solver saves for
all target distributions approximately 70% of the CPU time. This can be explained by the
decreased resolution criteria, which allow a twice higher temporal and spatial resolution,
but demand a twice as high number of particles per cell. Ideally, this would speed up the
simulations by a factor of four. Further improvements in the relaxation may accelerate
the solver further. In a three-dimensional flow, the (ideal) speed up of the relaxation
compared to the resolved collisions would be even increased by a factor of eight.

5.4. CONCLUSION
We implemented the BGK, ES-BGK, S-BGK and U-BGK kinetic relaxation models in the
OpenFoam dsmcFoamPlus solver.
The physical meaning of the U-BGK model was illustrated by splitting the distribution in
an approximate manner into a subset of velocities obeying an ES-BGK and another obey-
ing the S-BGK distribution. This indicated that the blending procedure in accordance
with the two-third Prandtl number criterion yields an inversion of the distributions for
large ranges of the model parameter CES .
The implementation of the kinetic relaxation models was verified for a rarefied Poiseuille
flow showing good agreement with results in the literature. We studied the behavior of
the models and the velocity distributions of a rarefied thermally-driven cavity flow and a
rarefied Couette flow showing that even simple problems exhibit a broad variety of how
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equilibrium is violated.
We analysed the types of non-equilibrium by splitting the Fourier-transformed deviation
of the velocity distribution from the Maxwellian distribution in its even and odd part
using the real and imaginary part of the velocity distribution’s Fourier transform. We
explored these measures for several free-molecular and highly rarefied Couette-Fourier
flows which indicated that the parameters were able to clearly separate between the even
part of the deviation due the applied velocity difference and the odd part due to temper-
ature differences. With less rarefaction, the amplitude of the measures decreased, but
the qualitative behavior remained the same.
Applying the Fourier transform deviation measures to interacting jets showed a high de-
viation in the real part at the peripheries of the inlets which indicates a significant ve-
locity sorting in these regions. In addition, a deviation of the real part was visible in the
shock region. An odd deviation appeared mainly in the shock region. As the regions
of real and imaginary part of the deviation overlapped to a great extent, a sophisticated
guess for which target distribution would perform best was difficult.
When applying the kinetic relaxation using different target distributions, it turned out,
that the BGK performed well, but overpredicted the effect of the shock, whereas the
ES-BGK model showed perfect agreement with DSMC, and the S-BGK model underpre-
dicted the effect of the shock producing a more diffuse number density field. A hybrid
coupling between the relaxation to a target distribution and DSMC with the gradient-
length local Knudsen number as switching criterion, brought only small accuracy im-
provements. It can be concluded that for the studied case of interacting planar plumes
the ES-BGK yields good and sufficient results. However, this statement is restricted to
this special case. First ideas were outlined for a breakdown criterion which selects the
applicable target distribution that need a broader consideration to make it work.
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6.1. CONCLUDING REMARKS
This thesis addresses the modelling of the transport processes in a continuous Physical
Vapor Deposition (PVD) process and recommended design approaches with a focus on
deposition uniformity as well as efficient energy and material use.
The simulation of the Vapor Distribution Box (VDB) in Chapter 2 demonstrated the po-
tential of CFD for modeling and optimizing industrial gas flow applications by address-
ing

Research question 1: What limits the mass flow rate? How to obtain an efficient,
high mass flow inside the VDB?

The simulated Navier-Stokes-Fourier equations together with the empirical laws such
as the Antoine equation and the Hertz-Knudsen equation predicted the same trends
as the experiments for the mass flow rate. Both simulation and experiments were in
good agreement with a theoretical approximation considering the Hertz-Knudsen lim-
ited evaporation and the choking in the nozzles as limiting factors. The quantitative
results were off, e.g. the mass flow rate was overpredicted by 30%, most likely due to: (1)
a lack of accurate information on the material properties, namely the evaporation co-
efficient of zinc at a high melt temperature and a high pressure above the melt; (2) the
expectation that the zinc in the VDB contains impurities which may further affect the
coefficient. This illustrates that the prediction quality of the well-known thermo- and
fluid dynamic laws, often validated for water or air experiments, highly depends on the
availability and use of correct material properties, which are partially lacking for other
materials (or their non-pure form). Still — while an accurate quantitative prediction is
desirable — for the engineering design, trends as a function of system and process pa-
rameters as well as the localization of the dissipation losses are the crucial knowledge.
The studied VDB system can be summarized as “following the Hertz-Knudsen and isen-
tropic relation, but with a discharge efficiency of only 40–50%”. This first and most im-
portant result may not be surprising, since the underlying equations and involved phe-
nomena have been known for a long time. In addition, experiments already revealed the
low efficiency. However, the present computer aided engineering reveals opportunities
for energy saving and efficiency increase which we are otherwise ignorant of, as we can-
not pinpoint the exact location of the loss based on engineering rules and experiments
and are uncertain whether it is avoidable at all. This study provided first hints for opti-
mized process conditions and geometry: the efficiency rises with higher pressures inside
the VDB and a tremendous efficiency gain is expected for larger and shorter holes, as the
main loss occurs in the boundary layers of the holes. These recommendations may seem
to be of secondary priority when aiming for a process to work in the first place. But in
face of climate change, energy (and material) efficient processes are crucial, especially if
planned for continuous lines. The developed CFD model can be applied to assess these
design options and spare the cost of producing and testing multiple VDB geometries
experimentally.
Zooming in on the vapor plumes emitted from the VDB, Chapter 3 studied the interac-
tion of two sonic, planar jets with a focus on the emerging deposition peaks, as they are
undesirable for coatings. It addressed
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Research question 2 a: Can design changes mitigate jet interaction shocks? How
does the rarefaction, the nozzle-separation distance and the inclination of the
nozzles affect the flow and the deposition profile?

First, the chapter demonstrated how different theoretical frameworks can explain flow
behavior in terms of elementary phenomena. The free molecular flow framework is
based on a simple concept, still the arising expressions are difficult to comprehend. The
results depict the breakdown of equilibrium and velocity sorting typical in rarefied flow
in its purest form. On the other hand, the framework of the inviscid continuum flow
reduces the flow problem to a system of hyperbolic equations, which allows for a first
qualitative solution with pen, paper and ruler. Furthermore, applying the concept of the
Method of Characteristics proved to be powerful in the visualization of the plume inter-
action in the transitional regime (which was simulated by DSMC). This is all the more
important since the staggered change of flow variables within the shock as well as the
high pressure gradients in both the expansions and the shock make it difficult to local-
ize flow features based on conventional methods. Not only could the shock position be
detected, but also similarity could be analyzed to scale the position of the shock based
on the distance between the plume inlets. Thus, the location of the deposition peaks
caused by the shocks can be predicted for different scales. However, the overall deposi-
tion profile and the location of highest peaks clearly depends on the ratio between inlet
width and distance between the inlets highlighting the limits of simple scaling laws. The
transitional flow is based on a combination of phenomena found in the free molecular
and the inviscid continuum flow. However, the resulting flow fields do not lie in between
the bounds of those two limiting flow solutions. Rather, the temperature and deposition
peaks exceed both solutions. With higher degrees of rarefaction the shocks tended to be
bent away form the symmetry plane.

A question was how geometry changes may benefit the deposition uniformity. Two first
hypotheses came up: (1) A closer nozzle spacing should prevent the expansions from a
high speed-up before the shock and the plumes could merge, (2) when tilting the jets
away from each other less mass would reach the interaction plane and thus cause less
mass to enter the shock region. Both hypotheses turned out to be partially true, but
still do not hold the expectations placed in them: (1) The merging of the plumes only
occurred when the spacing of the plumes was in the order of a few mean free paths,
which is not feasible for the manufacturing of the required tools. (2) The tilting of the
plumes away form each other caused a weaker shock, but also meant that two peaks
from the primary expansions caused a severe non-uniformity in deposition (when the
nozzle-to-plate distance was reasonable long). Unexpectedly, a tilting of the plumes to-
wards each other turned out to actually improve the deposition uniformity. While the
shocks initially are indeed stronger and cause higher peaks in the mass flux, further
downstream the high mass in the interaction plane in combination with the stronger
expansions smoothens the deposition profile. In addition, the tilting towards each other
reduced the stray deposition, which is highly desirable in the continuous PVD process,
as it reduces maintenance time.

Chapter 4 extends the previous chapter by evaluating whether the use of a light inert
carrier gas benefits the deposition, in particular answering
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Research question 2 b): How does species separation affect shocks? Can a carrier
gas reduce deposition non-uniformities?

To answer the question, several simulations of interacting sonic, planar silver vapor plumes
with varying helium carrier-gas mole fractions were conducted. Due to the similarity of
the flow field for same inlet Mach numbers, the same flow field is predicted for pure sil-
ver and pure helium plumes respectively (at same inlet Knudsen numbers). However,
if instead a binary mixture is used, species separation occurs and the heavier species
focuses at the axis of the primary plume, whereas the lighter species is pushed to the
periphery. The speed of sound increases in regions, in which the lighter species prevails.
Unsurprisingly, the Mach angle decreases and consequently the interaction shocks are
mitigated. Furthermore, adding a light carrier gas enhances the conductance at the inlet
and reduces stray deposition. All these effects are beneficial for deposition processes.
Adding a carrier gas has a higher flexibility than geometry changes, since the carrier gas
flow rate could be adjusted during the run. However, there are additional costs for the
carrier gas. Helium, which is the obvious choice for a carrier gas, is in high demand in
other sectors, and its price on the world market varies. Recycling of the used helium (or
another carrier gas) could make it feasible one day to use carrier gas for an improved
deposition and a better process control.

Chapter 3 and Chapter 4 used the Direct Simulation Monte Carlo method for solving the
rarefied flow problem, which is computationally very costly, especially in the dense va-
por regimes, as they occur in the inlet region and downstream from the shock. Chapter 5
therefore addressed

Research question 3: How to efficiently model flow ranging from continuum
to free molecular flow? Can a substitution of the collision by a kinetic relaxation
speed up the simulation? Which target distribution is applicable for interacting
jets?

A relaxation method based on the Bhatnagar-Gross-Krook operator was implemented
in the open-source library OpenFOAM to replace the collision step in DSMC. Since the
equilibrium target distribution, viz. the Maxwellian velocity distribution, does not ac-
curately model the relation between the shear forces and heat flux, other distributions
that do so were implemented as well, one which scales the shear stress tensor and one
which scales the heat flux. Three different target functions were thus evaluated: the
Maxwellian velocity distribution as in the original Bhatnagar-Gross-Krook model (BGK),
the Ellipsoidal-Stochastical BGK distribution (ES-BGK) and the Shakov distribution (S-
BGK). The ES-BGK considers the local shear stress (an even deviation from equilibrium)
in the target distribution, whereas the S-BGK model considers the local heat flux (an odd
deviation from equilibrium). Hence, the ES-BGK model performed well for thermally-
driven flows and expansion problems, whereas the S-BGK performed better in the pre-
diction of shear-driven flows or shocks. The ES-BGK also performed best in the simula-
tion of interacting vapor jets, where the primary and secondary expansion extend over
the majority of the computational domain, whereas the shock is confined to a small re-
gion.
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Figure 6.1: Critical nucleation pressure ratio over temperature for Zinc vapor.

6.1.1. IMPLICATIONS FOR CONTINUOUS PHYSICAL VAPOR DEPOSITION OP-
TIMIZATION

The application-oriented part of this thesis aimed for a high, uniform deposition rate
while maintaining a high efficiency. To achieve this, the pressure inside the VDB should
be high to reduce the viscous boundary layer thickness inside the nozzles. A reduction of
the viscous boundary layer, e.g., by reducing the nozzle length or increasing the nozzle
diameter, benefits the efficiency. If multiple nozzle rows are used, a tilting of the nozzles
towards each other benefits uniformity and reduces stray deposition. To control the de-
position and smoothen deposition peaks due to plume interaction, the use of a carrier
gas is beneficial.

For the model based design and optimization of continuous PVD, one modelling method
alone will not suffice (at the present time). A pressure-based solver is most suited for the
internal flow up to choking. In the vacuum chamber, the flow is rarefied and a DSMC
simulation is most appropriate. However, for first estimates of shock locations at low or
moderate Knudsen numbers, the Riemann solver solution, which approximately solves
the Navier-Stokes-Fourier equations, is sufficient. The reason is that the overall dom-
inating flow effects, i.e., the expansions and the interaction shocks, take place near-
continuum regions. This also explains the good approximation of the flow field when
using kinetic models which relax the velocity distribution towards a target instead of re-
solving the collisions. Especially, the ES-BGK model showed good results, as it is able to
represent the typical velocity sorting occurring in rarefied expansion flows.

6.2. RESEARCH OPPORTUNITIES

6.2.1. CONDENSATION IN THE EXPANSION FLOW

Experiments revealed shiny spots on the PVD coating for certain process conditions,
which indicate a not perfect resublimation, but a liquid phase. One possible source of
liquid droplets would be condensation inside the nozzle or the downstream expansion
flow[219]. This effect can be used to produce metal nano particles [220]. However, in
a PVD coating it is undesirable. For condensation to occur, nuclei have to be present,
which may either be particulates from a different material or droplets which form spon-
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(a)

(b)

Figure 6.2: Contours of saturation ratio s = p
pv (T ) for (a) the short and long cross section of the VDB, and (b) a

detail for the inner seven nozzles. Note the different scales. The isoline s = 1 is marked red in (a), the isolines
s = 1,10,1000 are marked by a light color in (b).

taneously from the vapor phase. For the former, saturation is required, for the latter, a
highly supersaturated state of the liquid has to be reached, which can be achieved by
rapid cooling as it appears in nozzle flows [87]. In a high-pressure-ratio nozzle flow, heat
is transformed into kinetic energy at a high rate and consequently pressure and tem-
perature drop rapidly yielding a high supersaturation. For condensation of zinc vapor
in converging nozzles, Bayazitoglu et al. [85] found that higher melt temperatures and
consequently higher inlet pressures result in more and bigger particles; shorter nozzles
yield less and smaller particles. In addition, they observed that a smaller convergence
angle of the nozzle yields a less rapid change in thermodynamic properties and thus a
later onset of nucleation and thus less particles.

The supersaturation pressure is the ratio between the static pressure p divided by the
vapor pressure from Eqn. 2.1:

s = p

pv (T )
.
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The nucleation rate, J , is given by [85]

J = n2
vΩ

√
2σ(T )

πm
s2 exp

(
−16πσ(T )3Ω2

3(kB T )3

1

(ln s)2

)
, (6.1)

whereΩ is the molecular volume, σ(T ) the surface tension, which is a linear function of

temperature, and n the number density in a saturated gas calculated by nv = pv (T )
kB T . The

critical supersaturation pressure (i.e., the pressure above which we expect an onset of
nucleation), is defined as the one for which the nucleation rate is equal to 1cm−3 s−1 [85].
Figure 6.1 shows the the critical saturation pressure ratio over the temperature range
typical for flows in continuous VDB devices.
Figure 6.2 shows the regions of saturation (i.e., where the actual pressure exceeds the va-
por pressure calculated from the local temperature) in the VDB. A few regions inside the
VDB show saturation, mainly in regions with a small flow velocity. In and behind the noz-
zles, the gas is saturated. The supersaturation, as can be seen in Figure 6.2b, reaches the
critical state (s∗ = O

(
10–103

)
) at the end of the nozzles or in the free expansion. (Please

note that the coarse resolution of the mesh behind the nozzles was justified, because we
considered this as a supersonic outflow region not of interest for the mass flow calcula-
tions. The mesh would need to be refined for a proper investigation of the condensation
in this region.)
It should be noted that the presence of supersaturation and also critical supersaturation
does not necessarily imply immediate condensation, since it is a kinetic process [221].
The high velocities inside the nozzle and the expansion flow could transport a supersat-
urated fluid element reaching the supersaturated state fast enough to a rarefied region
and thus avoid the onset of condensation. It is worth mentioning that the presence of a
carrier gas as proposed in Chapter 4 affects condensation in a complex manner. On the
one hand, a carrier gas removes heat generated during the condensation, on the other
hand, pressure volume work is conducted against the carrier gas hindering the conden-
sation process [222].
Further research could address whether the source of the shiny spots are indeed droplets,
whether these form in the nozzles or the expansion and how to avoid them. This cer-
tainly includes continuum simulations to obtain the exact thermodynamic state, but
may be extended to molecular dynamic simulations to obtain a more accurate predic-
tion of nucleation, growth and aggregation of droplets, since the above mentioned nu-
cleation rate method showed significant deviations from experiments [223].

6.2.2. DYNAMIC COUPLING OF KINETIC MODELS
For a more general hybrid kinetic-relaxation-DSMC model, it would be preferable if the
switching criterion would (i) indicate which model to use in which region based on the
type of deviation found and (ii) be based on the local particle velocity distribution rather
than on the macroscopic variables (which need to be sampled and whose gradient has
to be calculated in a non-local manner, both of which slow down the algorithm). While
the splitting in the real and imaginary part of the Fourier transform may be a first at-
tempt to achieve this, this also requires a time-consuming sampling step which except
for the switching criterion brings no benefit. A more sophisticated switching criterion
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Figure 6.3: Maps of (a) the second invariant of the stress tensor and (b) the invariant of the heat flux vector, i.e.,
its magnitude, for Couette-Fourier flow at K n = 0.5 as a function of the applied wall temperature Tw at the top
wall and the wall velocity difference ∆Uw . The temperature of the bottom wall is 300K

could be based on the stress tensor and the heat flux vector as those can be reused in
the target distributions for the kinetic relaxation models. Chen et al. [143] derived for a
one-dimensional bi-modal distribution consisting of two delta functions, that

Ces =− (q/ρ)2

(P11/ρ)3 . (6.2)

Despite its unboundedness, this function yielded a significant improvement compared
to constant Ces for a shock calculation. In addition, they state that for a thermally-driven
flow with two distinct peaks, Ces should recover the ES-BGK model.
To reach a physically meaningful switching criterion it should be Galilean invariant. The
invariants of the pressure tensor and the heat flux vector would be the natural choice.
The total pressure tensor is the correlation matrix between momentum and velocity

p = 〈mc⊗c〉 , (6.3)

which can be normalized by division with its own trace, i.e., p̃ = p/tr(p). p̃ can be split
into its isotropic contribution p̃ = tr(p̃)/3 = 1/3 and deviatoric part τ̃= p̃− (1/3)1. Since
the isotropic part of the pressure tensor is taken care of by the temperature (T ∝ p), the
distribution is described up to the second order by the deviatoric part of the pressure
tensor, i.e., the stress. The first invariant is I = tr(τ) = 0 for any deviatoric (i.e., traceless)
tensor. The second and third invariant read

I2 =
1

2

[
(

=I1=0︷︸︸︷
tr(τ) )2 − tr

(
τ2)]=λ1λ2 +λ2λ3 +λ3λ1 , (6.4)

I3 = det(τ) =λ1λ2λ3 , (6.5)

where I2 is a measure for the anisotropy of the tensor and I3 measures the change of
volume, if the tensor would be applied to a unit sphere. Therefore, especially I2 shall
be considered to be most relevant for describing the anisotropy of the pressure. To ex-
plore the invariants we reconsider the rarefied Couette-Fourier flow at K n = 0.5 covered
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in Section 5.3.3. The second invariant of the stress tensor is shown as a function of the
top wall temperature Tw and the applied velocity difference ∆Uw in Figure 6.3a. For
pure Fourier flows, the second invariant vanishes. With increasing velocity difference
it rises. As for the real part of the deviation of the Fourier-transformed velocity distri-
bution from the Maxwellian distribution, the second invariant also increases higher for
higher temperatures. In opposite to the former, the second invariant does not show the
sharp increase for extreme wall temperature ratio. Figure 6.3b shows the magnitude of
the heat flux vector. Its sensitivity to the applied velocity difference is small. In contrast,
it increases rapidly for changes of the top wall temperature. The qualitative behavior of
these two invariants compare quite well to the real and imaginary part of the deviation
of the Fourier-transformed velocity distribution from the Maxwellian. Compared to the
latter, these invariants have the advantage that the pressure tensor needs to be sampled
for the ES-BGK and the heat flux vector for the Shakov model. Thus the expected over-
head due to sampling for the switching criterion is expected to decrease significantly.
Generalizing the one-dimensional function given by Chen (Equation 6.2) to multiple di-
mensions it seems to be natural to chose

Ces =−

( |q|
ρ

)2

f

((
I2
ρ

)3/2
, I3
ρ

) bounded by Ces ∈ [−0.5,1) , (6.6)

where f (·) is a function to be determined. Its exact form may be explored by systematic
parametrization and machine learning.

6.2.3. ALTERNATIVE TARGET DISTRIBUTIONS IN KINETIC MODELS
Alternatively the relaxation function could be replaced with the first-order Chapman-
Enskog expansion which considers both stress and heat flux producing results as accu-
rate as the Navier-Stokes-Fourier equations. This reduces the requirement of switching
mechanism to the choice between a kinetic relaxation model and resolved DSMC col-
lisions. A drawback is that the easy Box-Muller transform, which can generate typical
velocities for BGK and ES-BGK, would need to be replaced by a sampling algorithm, e.g.,
Acceptance-Rejection or Metropolis algorithms [211], which often have a small yield of
accepted sampled velocities. As the acceptance rate depends on the local velocity distri-
bution, no sound statements on the computational cost can be made beforehand.

6.3. FUTURE OUTLOOK
The governing equations for fluid dynamics are well known. The validity or viability
of solution methods are often confined to certain flow regimes, which makes it neces-
sary to chose the method based on the problem at hand. In multiscale problems or
problems with varying qualitative behavior (i.e., elliptic, parabolic, hyperbolic), a cou-
pling is required. Generally applicable solution methods such as DSMC, which are able
to solve problems independent of the qualitative behavior, are not fast enough to use
them in this wide range. This makes it necessary to manually chose the method for
the problem at hand and to further develop the used models and algorithms. On the
horizon, a transition is becoming apparent from classic solution methods based on con-



120 6. CONCLUSION

tinuum equations, i.e., Finite-Volume-Method (FVM), Finite-Difference-Method (FDM),
towards particle-based methods, such as Lattice-Boltzmann-Method (LBM), Spherical
Particle Hydrodynamics (SPH) or DSMC. A driving force for this transition is the local
nature of these methods, which allows them to utilize the massive parallelization ca-
pacities of Graphics Processing Units (GPUs) and thus speed up the solution process.
Moreover, the local nature diminishes numerical instabilities and consequently facili-
tates conducting simulations.
Even after a suitable modelling is found, the lack of accurate material data often ham-
pers a quantitatively correct solution. This may either be lacking information on a pure
substance, or missing information on the amount of impurities and their effect on the
material properties. Therefore, computational fluid dynamics remains a field, where ei-
ther a validation with an experiment is required, or one has to confine oneself to state-
ments on trends and extreme outcomes rather than accurate quantitative results. De-
spite its shortcomings and still-ongoing developments, CFD is a powerful tool for better
understanding of flows in nature and industry, from understanding climate change to
optimizing production processes.
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A.1. TURBULENCE MODEL
The turbulent viscosity µt is modeled by the Launder and Sharma low-Reynolds k-ε
model [83] with a compression term based on rapid distortion theory (RDT) [84], which

is available in OpenFOAM ®-v1806, as µt = ρCµ
k2

ε where the turbulent kinetic energy k
and the dissipation rate ε are described by the following transport equations:

∂(ρk)
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where the turbulence generation term is

G = νt
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the near-wall source terms and the near-wall damping functions are
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Figure A.1: Pressure, temperature and velocity in the shock tube at t = 0.0005s. Comparison of analytic and
sonicFoam solutions. The thin vertical gray lines mark from left to right: the expansion head, the expansion
tail, the slip surface and the shock.

The coefficients are Cµ = 0.09, Cε,1 = 1.44, Cε,2 = 1.92, C3 = 0, σk = 1 and σε = 1.3. Based
on the Reynolds number of a laminar test simulation Re = 2000, the inlet turbulent in-
tensity was estimated to be I = 0.085 [224], which corresponds to an inlet turbulent ki-
netic energy k ≈ 9.75m2 s−2 and an inlet turbulent dissipation rate of ε ≈ 1880m2 s−3

[225].

A.2. VERIFICATION, VALIDATION AND MESH INDEPENDENCE

A.2.1. SHOCK TUBE VERIFICATION

The used solver, i.e., sonicFoam, is verified with a shock tube, which is a one-dimensional
pipe that is initially split into a driver section at a high uniform pressure and a driven sec-
tion at a low uniform pressure. When starting the simulation (or in an experiment when
destroying the separating membrane), a shock is induced and travels into the driven sec-
tion. Shock tubes are meaningful verification cases for compressible flow solvers, since
on one hand, important compressible flow phenomena occur, such as shock, contact
discontinuity and expansion. On the other hand, the simplicity allows for an analytic
solution [73]. To stay close to the nozzle flow inside the VDB, the thermodynamic prop-
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Table A.1: Boundary conditions for the Sajben transonic diffuser.

pressure velocity temperature
kinetic
energy

turbulent
dissipation

inlet
static pressure
pi n = 116.77kPa

152.45ms−1

(Ma = 0.46)

static
temperature
Ti n = 273.3K

54.4m2 s−2 21966m2 s−3

outlet
static pressure
110.66kPa

zero
gradient

zero gradient
zero
gradient

zero
gradient

walls zero gradient no slip adiabatic
wall
function

wall
function

erties of zinc were used. No initial velocity or inlet velocity was applied. To verify the
solver for the immense pressure drop across the domain, the pressure ratio was set to
rp = 1000. The initial conditions at t = 0 are:

• driver section: p = 5000Pa,T = 1000K for x < 0

• driven section: p = 5Pa,T = 500K for x > 0

The grid has 20000 equidistant cells. Figure A.8 compares analytic and flow solver solu-
tions at t = 5·10−4 s. The vertical gray lines mark from left to right the start and end of the
expansion region, the contact discontinuity, across which temperature and density are
discontinuous, but velocity and pressure are constant, and the shock. The shock speed
is marginally overpredicted by sonicFoam, which results in a very small shift of the dis-
continuity in the profiles to the right. The numerical solver is in good agreement with
the analytical solution.

A.2.2. SAJBEN TRANSONIC DIFFUSER VALIDATION
The solver sonicFoam and the turbulence model were validated with a transonic conver-
ging-diverging diffuser flow, which was experimentally studied by the group around Saj-
ben [227] for multiple pressure ratios. The steady-state cases have been widely used
for validation of compressible CFD codes [226, 228–230] and are part of the NASA ver-
ification and validation archive [231]. Since we apply the solver later to flows without
shocks, we chose the ’no-shock’ case with a pressure ratio of rp = 0.862 for the valida-
tion. The two-dimensional diffuser geometry is visible in Figure A.2a; its throat height
is hth = 44mm and other details were described by Bogar et al. [227]. We used a grid
of 94 cells in wall-normal direction with a strong vertical refinement towards both walls
and 380 cells in streamwise direction with a progressive horizontal refinement towards
the throat region with a grid-expansion ratio of 1.002−1.003. The cell centers in direct
neighborhood to the wall had a distance less than y+

1 = 0.9 to the wall. A total pressure of
ps = 135000Pa and total temperature of 285K is assumed. For the simulations, the isen-
tropic relations were applied to obtain pressure, temperature and velocity for Ma = 0.46.
The inlet turbulence intensity was set to I = 0.04. At the outlet, the pressure was set
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Figure A.2: Sajben transonic diffuser validation case. Contours and pressure profiles along the walls from
sonicFoam compared to experimental results (data from [226])and simulations by Georgiades et al. [226].

to po = 116770Pa. The boundary conditions are listed in Table A.1. The fluid was air
with a specific heat ratio γ = 1.4, a molecular mass of M = 28.9gmol−1, specific heat at
constant pressure cp = 1005Jkg−1 K−1 and Prandtl number Pr = 0.72. The Sutherland
law was applied in the form of Eq. 2.10 with a coefficient AS = 1.7219 · 10−6 at a refer-
ence temperature of T0 = 288.167K. The solver, discretization schemes and turbulence
model were the same as described in Section 2.3.2. The previously described Launder
and Sharma low-Reynolds k-ε model with RDT term was applied.

The Mach number contours are shown in Figure A.2a. The subsonic, turbulent inflow
accelerates in the nozzle and reaches a maximum Mach number of Ma = 0.85 close to
the throat and afterwards decelerates. Figure A.2b and Figure A.2c compare pressure
normalized by the inlet stagnation pressure along the bottom and top wall from the
experiments, the simulations by Georgiades [226] using the Speziale k-ε and Chien k-
ε turbulence models and the solver used in the present study, called sonicFoam. At the
top wall (Figure A.2b), the pressure normalized by the inlet stagnation pressure drops
to p/p0 = 0.85 at the inlet, reaches its maximum where the converging section starts,
drops in the throat to its minimum and rises afterwards to the outlet pressure. The sim-
ulation by Georgiades using the Chien k-ε turbulence model matches the experimental
data well, the one using the Speziale k-ε turbulence model reports a higher pressure in
the trough, sonicFoam predicts here a marginally lower pressure. The profile at the bot-
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Figure A.3: Mach number and temperature profile at the outlet of the second nozzle for different grids (see
Table A.2).

Table A.2: Grids, number of cells and mesh quality criteria.

total no.
of cells
in Mio

no. of cells
along one
nozzle
diameter

max. non-
orthogo-
nality

mean non-
orthogo-
nality

max.
aspect
ratio

max.
skewness

coarse 0.75 13 62.01 12.90 12.06 2.03
medium 2.32 27 67.10 12.50 13.02 2.26
fine 4.47 36 70.5921 14.69 52.64 2.52

tom wall is similar to the one at the top wall except for the first small rise in pressure and
the fact that the pressure drop is smaller. These differences occur, since the geometry
changes only at the top wall and thus affects the pressure at the bottom wall less. son-
icFoam again matches the experimental data well except for a small underprediction in
the throat. Overall, a reasonable agreement is reached between experiment and sonic-
Foam.

A.2.3. GRID INDEPENDENCE STUDY
In compressible flows, adequate meshing is important for both the numerical stability
and the accuracy of the result. The grid dependence of the solution was studied (for
the standard case at a melt temperature of 943K) on three meshes listed in Table A.2.
As the gradients are expected to be highest within the nozzles, the resolution inside the
nozzles is crucial. Fig. A.3 shows the Mach number and temperature profile at the outlet
of the second nozzle. While for the coarse mesh both Mach number and temperature
deviate from the results of the finer meshes, the medium and fine mesh results are in
good agreement. This is why we chose the medium mesh for further calculations.
To speed up the simulations, two symmetry planes were used and only a quarter of the
VDB was simulated. This particularly constrains the swirling motion along the long ex-
tension of the VDB. To study the influence on the viscous losses, half of the VDB was also
simulated for the standard case. Neither the total nor the local mass flow rate changed
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Figure A.4: Single straight jet. On the left, there is a sketch of the jet geometry in real space, on the right the
velocity domain as introduced by Cai and Boyd [126]. To obtain the solution at point r the velocity space is
integrated over the region bounded by vectors a and b which connect the outlet with point r.

notably, which justifies the use of the quarter geometry.

A.3. EQUATIONS FOR COLLISIONLESS FLOW SOLUTION
The velocity ξ of each particle is split into a local mean velocity u and a fluctuational
velocity c, i.e., ξ= u+c. Equilibrium and a non-zero mean velocity are assumed to pre-
vail at the outlets of the nozzles, so that the particle velocity distribution results from a
Maxwellian distribution f0(c) shifted by the mean inlet velocity U0. For each point in the
flow domain, Cai and Boyd [126] integrated the moments over a region in velocity space
bounded by the velocity vectors, for which particles leaving from the two utmost points
of the inlet reach the studied point (the corresponding bounding vectors are a and b in
Figure A.4). For a planar, sonic, non-inclined jet, the moment MΨ ∈ [n, vx , vz ,e] of an
invariantΨ ∈ [1,ξx ,ξz ,1/2c2] can be obtained by integrating over the invariant weighted
with the phase density, which gives

MΨ(r) =
Ñ

Ω
Ψ f0(c)dc , (A.3)

where the kinematic relation

Ω :
z − D

2

x
< cz

cx +U0
<

z + D
2

x
(A.4)

bounds the integration over velocity space to those velocities which may reach the point
r. The corresponding domain is shown in Figure A.4 on the right. Cai and Boyd trans-
formed the integration domain over the velocity space to polar coordinates with the ve-

locity magnitude |V | =
√

(U0 + cx )2 + c2
z as the radial component and the angle Θ which

is formed by the jet axis and the vector connecting the studied point with a point on the
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Figure A.5: Coordinate transformation for jets inclined at angle α.
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Figure A.6: Single jet. On the left, there is a sketch of the jet geometry in real space, on the right, there are the
two velocity domains compared to Figure A.4. To obtain the solution at point r the integration domain is split
into a part where the mean inlet velocity is directed towards r (uniform green area) and one where the mean
inlet velocity is directed away from r (hatched in blue area).
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inlet boundary, as the angular component. The corresponding integration element is
dξ= |V|d|V|dΘ. The transformed integration reads as

MΨ(r) =
Ñ

Ω
Ψ f0(ξ) |V|d|V|dΘ , (A.5)

whereΩ :
z − D

2

x
< tan(Θ) <

z + D
2

x
, (A.6)

and 0 < |V| <∞ . (A.7)

This integration produces the solution for a single, straight jet with the mean inlet veloc-
ity U0. The final expressions for density, velocity and temperature can be found in the
work of Cai and Boyd [126].
Similar effusion problems can be solved by altering the integration domain Ω. As de-
scribed below, we adapt the solution for a single straight jet to (i) a single inclined jet and
then (ii) two inclined jets next to each other.
(i) Single Inclined Jet
To evaluate the number density of an inclined jet, the coordinate system needs to be
rotated to align the jet axis with the direction of the inlet velocity (Fig. A.5) using the
rotation matrix

R =
(
cos(α) −sin(α)
sin(α) cos(α)

)
, (A.8)

where α is the inclination angle of the jet. The local coordinate transformation for in-
tegration for the upper jet is r′ = Rr and for the lower jet r′′ = RT r. (For brevity, we
give only the solution for the upper jet when α< 0, as shown in Figure A.6, the solution
for α > 0can be obtained by switching Θ1 and Θ2.) The integration domain at the inlet
boundary has to be split into two different sections as shown on the left in Figure A.6:
the inlet region where x ′ < rx so that the mean inlet velocity U0 is directed towards rx

(colored in green, Ω1 in velocity space) and that where x ′ > rx so that the flow will not
pass rx after leaving the inlet (hatched in blue, Ω2 in velocity space). The correspond-
ing domains in velocity space are shown in Figure A.6 on the right, where Ω1 is limited
by the direction vector between the upper boundary A and the studied point X shifted
from the origin by −U0 and a right angle, while Ω1 is limited by the direction vector be-
tween the upper boundary B and the studied point X shifted from the origin by +U0 and
a right angle. In the other directions, the integration domain is unbounded. This can be
transformed to polar coordinates, producing the limiting angles

Θ1 = arctan

(
z ′−cos(α)D/2

x ′+ sin(α)D/2

)
, (A.9)

Θ2 = arctan

(
z ′+cos(α)D/2

x ′− sin(α)D/2

)
. (A.10)

The green integration domainΩ1 is then given by

Ω1 :Θ1 <Θ< min
(π

2
,Θ2

)
, (A.11)

|V1| =
√

(cx +U0)2 + c2
z . (A.12)
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and the blue hatched integration domainΩ2 by

Ω2 :
π

2
<Θ<Θ2 , (A.13)

|V2| =
√

(cx −U0)2 + c2
z . (A.14)

All solution can be written as a function of the inlet speed ratio S0 =U0/
√

2kB T /m and
the angles Θ1,Θ2. To switch between regions where only the green depicted integration
domainΩ1 and the one where alsoΩ2 has to be considered, the Heaviside step function
H() is applied. The expressions for number density n(x, z), velocities u(x, z), w(x, z) and
total energy Etot (x, z) of a single inclined plume then read

n(x, z)

n0
= exp(−S2

0)

2π
(Θ2 −Θ1)

+ 1

4

[
erf(S0 sinΘ2)− sign(Θ1)erf(S0 sinΘ1)

]
+H

(
Θ2 −

π

2

) 1

2
[erf(S0)−erf(S0 sinΘ2)]

+ S0

2π

∫ Θ2

Θ1

exp(−S2
0 sin2Θ)cosΘerf(S0 cosΘ)dΘ , (A.15)

u(x, z)√
2kB T0/m

=exp(−S2
0)

πn(x, z)
·[

S0

2

(
Θ2 −Θ1 +H

(
Θ2 −

π

2

)
(π−2Θ2)

)
+ S0

4

(
sin(2Θ2)− sin(2Θ1)−H

(
Θ2 −

π

2

)
2sin(2Θ2)

)
+S2

0

p
π

(∫ Θ2

Θ1

cos3Θ (1+erf(S0 cosΘ))exp(S2
0 cos2Θ)dΘ

−H
(
Θ2 −

π

2

)
2
∫ Θ2

π
2

cos3Θerf(S0 cosΘ)exp(S2
0 cos2Θ)dΘ

)

+
p
π

2

(∫ Θ2

Θ1

exp(S2
0 cos2Θ)cosΘ (1+erf(S0 cosΘ)) dΘ

−H
(
Θ2 −

π

2

)
2
∫ Θ2

π
2

exp(S2
0 cos2Θ)cosΘerf(S0 cosΘ) dΘ

)]
(A.16)

w(x, z)√
2kB T0/m

= 1

4
p
πn(x, z)

·
[

exp
(−S2

0 sin2Θ1
)

cosΘ1 (1+erf(S0 cosΘ1))

−exp
(−S2

0 sin2Θ2
)

cosΘ2 (1+erf(S0 cosΘ2))

+ H
(
Θ2 −

π

2

)
2exp

(−S2
0 sin2Θ2

)
cosΘ2 erf(S0 cosΘ2)

]
(A.17)
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Etot (x, z) =T0 exp(−S2
0)

6n(x, z)π
·[(

3+S2
0

)
(Θ2 −Θ1)+S2

0

(
1

2
(sin2Θ2 − sin2Θ1)

)
+2S0

p
π

∫ Θ2

Θ1

(
2cosΘ+S2

0 cos3Θ
)

exp(S2
0 cos2Θ) (1+erf(S0 cosΘ)) dΘ

−H
(
Θ2 −

π

2

)
4S0

p
π

∫ π
2

Θ2

(
2cosΘ+S2

0 cos3Θ
)

exp(S2
0 cos2Θ)dΘ

]
(A.18)

(ii) Superposition of Two Inclined Jets
The number density of the interacting case is the superposition of number densities of
two single jets given by

n(r) = nU (r)+nL(r) , (A.19)

where the subscript U denotes the upper jet and L the lower one. The velocity vectors
have to be rotated back into the original coordinate system by

uU = RT u′
U and uL = R u′′

L , (A.20)

before applying their density-weighted average to obtain the velocity of the jet interac-
tion

u(r) = nU (r)uU(r)+nL(r)uL(r)

n(r)
. (A.21)

To obtain the temperature field, the thermal energy is calculated as the difference of the
total energy of both jets Etot and the macroscopic kinetic energy Eki n derived from the
velocity and number density field:

Etot (r) = m
Ñ

ΩU∪ΩL

ξ2 f0(ξ)dξ , (A.22)

Eki n(r) = m n(r)u(r)2 . (A.23)

The temperature field is then determined by

T = 1

3kB n(r)
(Etot (r)−Eki n(r)) . (A.24)

The same steps can be conducted to adapt the effusion solution for three-dimensional
single plumes [232] to interacting three-dimensional plumes.

A.4. VERIFICATION RIEMANN SOLVER, SHOCK TUBE
We verified the approximate Riemann solver using a shock tube case, which is 1D do-
main initially split in a high and a low pressure section by a membrane. The sudden
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Figure A.7: Sketch of the shock tube. Driver section on the left; driven section on the right.

Table A.3: Overview of tested solvers.

cells
temporal
integration

CFL

sonicFoam
(foam-extend 4.0)

50000 Euler 0.1

dbnsFoam
(foam-extend 4.0)

150 Runge-Kutta 4 flux based

dbnsFoam hllc
150,
10000,
100000

Runge-Kutta 4 flux based

rhoCentralFoam
(OpenFoam v18.06)

1000 Euler 0.1

destruction of the membrane yields an expansion wave travelling into the high pressure
section (driver section) and a shock wave travelling into the low pressure region (driven
section) until they reach their respective boundaries. The shock tube setup is often used
to test compressible solvers and schemes, as it is simple, but still covers all fundamental
phenomena in compressible flow, i.e., expansion wave, contact discontinuity and shock.

We tested multiple compressible solvers and schemes available in OpenFoam, as listed
in Table A.3 and Table A.4. The classical Sod’s shock tube test is driven by a pressure ratio
of 10, for which most of the compressible solvers mentioned hereafter produced reason-
able to accurate results [233, 234]. However, the tremendous pressure ratio due to the
vacuum exacerbates the problem so that the shock is not captured accurately anymore.
To verify the solver for the case of interacting jets, we adapted the shock tube test case to
a pressure ratio of 5 ·105, which is an extreme version of the simulated cases. The com-
putational domain and initial conditions are depicted in Figure A.7. No initial or inlet
velocity is assumed. The high pressure ratio in the driven section may give rise to nu-
merical instabilities,i.e., either oscillations or over-/undershoots. In addition, it should
be noted that the smaller the sound speed ratio between the driver and driven section
a1/a4 (below unity), the stronger the shock and the higher the minimum temperature
in the expansion wave, which may yield negative temperatures for an insufficient dis-
cretization.
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analytical
dbnsFoam Rusanov
dbnsFoam HLLC
dbnsFoam HLLC 10000 cells
dbnsFoam HLLC 100000 cells
sonicFoam
rhoCentralFoam
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Figure A.8: Pressure, temperature, velocity and density profiles in the shock tube at t = 0.0003s from the an-
alytical solution and different solvers. The thin gray lines mark from left to right: the expansion head, the
expansion tail, the slip surface and the shock.
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Table A.4: Overview schemes used in tested solvers.

convective
scheme

advective
schemes

grad
scheme

sonicFoam
(foam-extend 4.0)

cellLimited linear 1 van Leer
cellLimited
linear 1

dbnsFoam
(foam-extend 4.0)

flux: rusanov,
limiter: Barth-Jespersen

- -

dbnsFoam hllc
flux: HLLC,
limiter: Barth-Jespersen

- -

rhoCentralFoam
(OpenFoam v18.06)

flux: Tadmor -
cellLimited
leastSquares 1

Table A.5: Mesh parameters for mesh independence study for the approximate Riemann solver.

cells cells in x-direction cells in z-direction

coarse 288000 1200 240
medium 1152000 2400 480
fine 1792000 3200 560

Figure A.8 shows the pressure, temperature, velocity and density profiles for the analyt-
ical solution [73] and different solvers at t = 0.0003s. The result of sonicFoam, which is
a pressure-based solver, is far from the solution and does not capture the shock features
even in qualitative terms (please note that this is the version in foam-extend 4.0, which
differs from the in ESI OpenFoam versions). rhoCentralFoam, a solver based on Tadmor
flux splitting, qualitatively captures the expansion and shock, but overpredicts shock
speed. Further grid refinement produces oscillations around the discontinuities, which
results in the divergence of the solver. dbnsFoam, an approximate Riemann solver, pro-
duces a result similar to rhoCentralFoam, when a Rusanov flux scheme is applied. When
a HLLC flux is applied, the shock speed is reduced. Grid refinement further improves the
prediction. However, to obtain a reasonably accurate solution, 100k cells are required,
which is immense for a 1D problem and illustrates the difficulties in using CFD for high
pressure ratios.

A.5. MESH INDEPENDENCE STUDY
The independence of the solution from the mesh was studied. The computational do-
main was chosen a bit longer than for the DSMC solution and was 0.012m×0.03m. All
tested meshes had a completely orthogonal and equidistant meshing to ensure perfect
orthogonality and a fine resolution along the entire shock at the same time. The resolu-
tion for the studied meshes is listed in Table A.5. Figure A.9 shows the normalized density
and deposition rate predicted on the three different meshes at x = 15mm. To highlight
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Figure A.9: Profiles of (a) normalized density and (b) normalized deposition rate for different mesh refinements
at x = 15mm for the inviscid continuum flow (Riemann solver, inlet density corresponds to the case K ns =
8K n0).

the small differences, only the region above the symmetry line is considered. The coarse
mesh predicts the height of the two plateaus before and after the shock correctly, but
calculates a lower steepness across the shock and a larger density drop around the sym-
metry compared with the medium and fine mesh. The solution on the medium and fine
mesh match quite well. For the normalized deposition rate, the parameter which was of
foremost importance in this study, the small deviations in density rate are mitigated pro-
ducing a good match between all meshes and an excellent match between the medium
and fine mesh. Hence, the medium mesh was chosen for all calculations.

A.6. SHOCK STRUCTURE
To validate the shock detection method and to gain a better understanding of the shock
region, we analyze the changes the flow undergoes when passing through the shock. Fig-
ure A.10 compares the inviscid continuum solution and one rarefied solution for K ns =
2K n0. Figure A.10a and Figure A.10b show the subsonic region (red dots), the detected
shock (blue solid line) and multiple streamlines crossing the shock. The changes the
flow undergoes within the shock are shown for streamline No. 0 in Figure A.10c for the
inviscid continuum solution and in Figs. A.10d for the transitional flow regime. The fig-
ures show the profiles of several flow variables Φ ∈ [n,T, M , ...] in the immediate vicinity
of the shock, normalized by their local maximum and minimum values before (Φ1) and
after the shock (Φ2), which reads

Φ̃= Φ−Φ1

Φ2 −Φ1
.

First, we focus on the number density profile, as it is commonly used to define the shock
position and shock thickness [131]. Before the shock, the number density declines due
to expansion — which is more clearly visible in the transitional flow regime as the shown
section covers a longer streamline length — and rises sharply in the shock. Its cross-
ing of ñ = 0.5 is commonly picked as shock location and here marked by gray dashed
lines. The blue vertical line marks the location where the shock was detected by our pro-
posed approach using the MOC. The detected location varied between ñ ≈ 0.3−0.8 for
the streamlines shown, with the exception of streamline No. 0 for the continuum flow
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(a) Streamlines for K ns = 2K n0. Inviscid continuum
solution. The gray solid line marks the inlet position,
the light blue solid lines mark streamlines, the blue
solid line denotes the detected shock position and the
red dots represent the sonic line.
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(b) Streamlines for K ns = 2K n0. DSMC solution. The
gray solid line marks the inlet position, the light blue
solid lines mark streamlines, the blue solid line de-
notes the detected shock position and the red dots
represent the sonic line.
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(c) Flow variables plotted over streamline No. 0 in sub-
figure (a) around the shock position for K ns = 2K n0
(Euler solution).
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Figure A.10: (a),(b) streamline positions. (c),(d) Profiles along the streamlines across the shock. The vertical
blue line marks the detected shock location, the gray dashed lines mark the actual shock location, i.e., ñ = 0.5.

with ñ ≈ 0, for which the broad region of converging characteristics around the subsonic
region hampers localization.
The shock thickness δs is the distance it takes to go from pre-shock density to post-shock
density when applying the highest slope of the density profile inside the shock, i.e.,

δs =
[

max

(
dñ

ds

)]−1

.

Since the change from pre-shock to post-shock state depends on the number of colli-
sions undergone, the shock thickness is commonly expressed in terms of mean free path
lengths from the pre-shock state, λ1. (For inviscid continuum flow, the shock thickness
vanishes, the continuity of the shown profiles is due to discretization.) Streamline No. 0
is near the subsonic region for both the continuum and the transitional flow regime. It
enters the shock at a wide angle and bends more than the other depicted streamlines. For
the case in the transitional flow regime, the shock thickness is δS = 1.5mm, which cor-
responds to 11λ1. Considering that the shock is a weak oblique shock with a pre-shock
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Mach M1 = 2.4 and post-shock Mach M2 = 1.3, the thickness compares reasonably well
with typical thicknesses for weak normal shocks [235].
The Mach number drops and the temperature rises before the number density rise oc-
curs. The shift between the temperature and density profile is about 5λ1 for the tansi-
tional flow regime. While in a continuum only one equilibrium temperature is defined,
the different temperature modes are shifted as well for transitional flow. We split the
temperature in a temperature which is parallel to the local mean velocity, denoted as T∥,
one orthogonal to it (but in the solution plane), denoted as T⊥, and one in the quasi-
homogeneous out-of-plane direction, denoted as Ty . First the parallel temperature T∥
rises, as the decrease in mean velocity due to the mixing of pre-shock and post-shock
particles is reflected in a transfer from macroscopic kinetic energy to thermal energy.
The orthogonal temperature follows closely, one reason being that the streamline bend-
ing breaks the alignment of particle velocities with the mean velocity. (If collisions played
the dominant role in this initial rise of parallel and orthogonal temperatures, the equidis-
tribution between modes would transfer the energy to the homogeneous direction im-
mediately.) Only then does the temperature in homogeneous direction rise due to colli-
sions, which transfer the energy from the parallel and orthogonal temperature mode into
the homogeneous direction. This temperature-density separation of 2− 3λ1 between
temperatures is maintained across the shock, which indicates that the free movement
of particles between two collisions introduces non-equilibrium, which can not be over-
come by the redistribution due to collisions. (no comprehensive experimental measure-
ments are available). The temperature-density separation in oblique shocks is expected
to increase with the velocity component tangential to the shock.)

A.7. TIME STEP, MESH AND PARTICLE NUMBER INDEPENDENCE

STUDY

The independence of the solution was tested exemplary for the case K n = 2K n0 = 0.025
and yH e = 0.5. The results in the manuscript were drawn from a simulation containging
a number of particles of Np = 3.27M , a time step of d t0 = 2.5·10−9 s and a number of cells
of Noc = 56784. This corresponds to fulfilling the resolution criteria for time step d t <
τ/10, grid size d x < 2λ/3 everywhere and particle number per cell being at least 20 as de-
scribed in ??. The resolution was varied to study the independence of the solution on the
discretization. The silver number density flux normalized by the silver inlet number den-
sity flux at a nozzle-to-plate distance of x = 8mm is plotted for the different resolutions
in Figure A.11. The time step was varied with d t ∈ [0.5d t0,d t0,2d t0,10d t0,40d t0,100d t0].
For a time step size of d t = 40d t0 and d t = 100d t0, the predicted normalized number
density flux varies from the one at smaller time step sizes, whereas the deviations for
d t ∈ [0.5d t0,d t0,2d t0,10d t0 are small to negligible (Figure A.11a). The grid cell size was
refined by a factor of 2 (increasing the number of cells by a factor 4, so that the mesh
globally fulfilled d x < 1λ/3. The particle number was adapted to keep the number of
particles per cell constant. The resulting number density fluxes match for the different
grid refinements (Figure A.11b). The particle number was varied to be 0.25, and 0.5 of
the standard particle number. The results for the different particle numbers match each
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(a) (b)

(c)

Figure A.11: Independence study for interacting plumes at K n = 2K n0 = 0.025 and yH e = 0.5. Line plot of the
silver number density flux normalized by the silver inlet number density flux at a nozzle-to-plate distance of
x = 8mm for (a) varying time step sizes, (b) varying mesh size and (c) varying particle number.

other (Figure A.11c). Based on these good results for the chosen resolution, we expect
the fulfillment of the previously discussed and widely referenced resolution criteria to
be sufficient for a discretization refinement independent solution. The actual time step
size, grid and number of particles was adapted for each case individually to ensure the
fulfillment of the criteria.
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