$H O M E - M A D E^{\circ}$

BOTTOM-UP REDEVELOPMENT OF VACANT OFFICE SPACE IN MASS-CUSTOMIZED HOUSING SOLUTIONS UTILIZING DIGITAL WOOD PROCESSING TECHNIQUES

2 0 1 8

P5 PRESENTATION

NAME: FREEK VAN ZEIST

STUDY NR: 1517090

DATE: 17^{TH} OF DECEMBER, 2014

1ST MENTOR: JOB SCHROËN

2ND MENTOR: PIERRE JENNEN

3RD MENTOR: PIETER STOUTJESDIJK EXTERNAL EXAMINER: ANDRÉ OUWEHAND

THE CONCEPT A bottom-up redevelopment strategy of (structurally) vacant office space in mass-customized housing solutions by using the potential of digital fabrication techniques THE BASE Preparing the building for a custom fit-out THE COLLECTIVE Social cohesion enhanced by shared interest and the human scale in a high-rise THE FIT-OUT A customized dwelling, based on generic principles THE LOGIC Construction and customization features, in combination with assembly strategies and a circular business strategy

BUSINESS PERSPECTIVE

WRAP-UP

RECURRING EMBODIED ENERGY

source: Cole and Kernan, 1996

HIGH RECURRING EMBODIED ENERGY FOR ENVELOPE, SERVICES AND FINISHES

source: Hofman & Halman, 2006

INTERIOR CUSTOMIZATION

THE NEED FOR SPATIAL CUSTOMIZATION AND THE PRIVATE COMMISSIONING TREND

PROBLEM

TREND

CHANCE

COMMISSIONING IN A PROVIDED BASE BUILDING

We should not try to forecast what will happen, but try to make provision for what cannot be foreseen

Habraken in Supports (1972)

OPEN BUILDING

- ☑ Wasted quality beyond users preference or demand
- ■Unused purchasing power
- ■Level of quality determined by the developer
- Preferred level of quality of each household

□ Individual 'fit-out' at a cost and a quality determined by each household

■ High quality 'base building' of a uniform standard for a given project

Preferred level of quality of each household

POST-WAR HOUSING VS. OPEN BUILDING HOUSING

A GROWING CITY AND A LACK OF SPACE

FROM CITY EXPANSION, THEREBY USING VALUABLE SPACE

TO THE RE-USE OF EXISTING URBAN FABRIC

USING (STRUCTURALLY) VACANT OFFICE SPACE

A TOP-DOWN FRAMEWORK FACILITATING A CONSUMER-DRIVEN AND BOTTOM-UP APPROACH

DESIGN PRINCIPLES

BASE BUILDING

Developer owned.

Basic facilities & utilities.

Low durable investment.

Leasehold construction.

Individualized buildings.

Spatially, functionally & aesthetically.

Privately owned.

CONSTRUCTIONAL LOGIC

Unifying construction - modularity.

Lower building costs.

Speeds up building & designing process.

PRODUCTION & ASSEMBLY

How to build where also can be lived?

File2Factory.

Design For (Dis)Assembly.

ORGANIC GROWTH PERMANENT TRANSFORMATION

Adaptable to market conditions.

Growing project - evolution.

Blank canvas.

NETWORK OF BASE BUILDINGS

Exchangeability.

Your house moves with you.

Network of new urban typologies.

RESEARCH QUESTION

How can the mass customization potential of digital wood processing techniques be used in the bottom-up re-development of (structurally) vacant office space into custom housing solutions?

RESEARCH OVERVIEW

HOW CAN THE MASS CUSTOMIZATION POTENTIAL OF DIGITAL WOOD PROCESSING TECHNIQUES BE USED IN THE BOTTOM-UP REDEVELOPMENT OF (STRUCTURALLY) VACANT OFFICE SPACE INTO CUSTOM HOUSING SOLUTIONS?

ARCHITECT

 \geq

 \geq

 \triangle

1. IDENTIFICATION OF PROJECT BUILDING

2. A. ANALYSIS OF NEIGHBOURHOOD AND VIABILITY OF TRANSFORMATION POTENTIAL B. ANALYSIS OF POTENTIAL TARGET GROUPS

TRANSFORMATION POTENTIAL MEASUREMENT TOOL

3. BUILDING SURVEY: INSPECTION AND DETAILED STUDY OF BUILDING STRUCTURE AND ADAPTABILITY POTENTIAL

FEASIBILITY ASSESSMENT

BUILDING DEMOLISHMENT OR OTHER PURPOSE

PRINCIPAL **ARCHITECT**

- * DOCUMENTATION AND STRUCTURAL AND SPATIAL INVENTARISATION OF PRESENT STATE OF BUILDING
- * CIRCULATION AND ACCESSIBILITY ANALYSIS
- * UTILITY ANALYSIS, POSSIBLE SERVICE CORES AND COVERAGE OF HORIZONTAL SHAFTWORK
- * ZONING ANALYSIS
- * PLOT DIVISION
- * PLACEMENT OF PUBLIC AND COMMUNAL SPACES, IDENTIFICATION & URBAN EMBEDMENT
- * DETERMINATION OF INTERNAL ZONING PLAN AND BUILDING RULES

PHYSICAL SUPPORT DESIGN

DETAILED 3D MODEL USING TLS TECHNIQUES

BUILDING APPROVED

FOR SUPPORT DESIGN

INTERNAL ZONING PLAN

VACANCY RATES PER YEAR

ABSOLUTE AND RELATIVE GROWTH OF VACANCY IN '70's & '80's

modified floor plan of the Parool tower, Wibautstraat, Amsterdam

FIRE SAFETY

OUTSIDE CONDITIONS

CLIMATISED

SUFFICIENCY OF EXISTING ESCAPE ROUTES FIRE SAFETY REGULATIONS APPLIED TO HOUSING

LOGISTICS

WASTE MANAGEMENT EXTRA UTILITIES

	BENEFICIAL	OBSTRUCTIVE	SOLUTIONS
CONSTRUCTION	 Modular grid sizing of 5.4 or 7.2m, applicable to housing High ceilings, lowest net heights 2.8m Columns, free floor fields Appropriate depth 	 Locally lowered ceilings due to beams Grid structure Fire safety issues Columns oppose obstructions (acoustic, thermal and moisture) 	 Separate placement of units ensures acoustical quality and fire safety standards
FLOORS	 Designed for high floor loads, 300 kg/m². Normative for housing is 175 kg/m². 	 Post tension bars; often low flexibility for vertical shaftwork Low mass. Raised floor and lowered ceiling needed to comply to building regulations. Deflection of floors 	 Use existing elevators as utility shafts New box-in-box construction 3D scanning to map the deflections and deviations for digital fabrication input
ENVELOPE	 Modular grid sizing of 1.8m and loadbearing walls. Good connections possible. 	 Curtain walls; bad technical conditions. No connections possible for function separating walls. Cantilevered floors; applicability of balconies is difficult. New façade is expensive. 	 A new façade is needed in order to properly redevelop into housing solutions
VERTICAL ACCESSIBILITY	 Elevators are oversized for housing purposes. 	 Often not enough escape routes. Stairs and elevators account for relatively much space. 	 Possibility of adding extra stairs inside or outside the building

based on literature research

NEIGHBOURHOOD MAPPING

	ASPECT	CRITERION	\checkmark
	I OCATION		
	LOCATION Urban situation	Office on remote industrial zone Office in the middle of an office park Office in area defined as priority area for offices	
	Land property Vacancy	Land rent Vacant for more than a year	
	Character of urban situation	Vacancy of surrounding buildings Location on or near city edge, ring roads Desolated area	
FORMATION POTENT	Distance and quality of facilities	No greenery in the neighbourhood Social depreciation, vandalism Pollution; smell, noise, view Shop for daily errands > 1km	✓
		Meeting place (café, snackbar, etc.) > 500m Bank/post office > 2km Basic medical facilities (doctor, pharmacy) > 5km Sport facilities (fitness, swimming pool, sports park) > 2km Educational facilities (nursery, school, university) > 2km	
	Accessibility by public transport	Distance to station > 2km Distance to bus, metro or tram stop > 1km	
	Accessibility by car; parking	Many obstacles, limitations, poor flow Distance to parking place > 250m < 1 parking place / 100m² dwellings reasonable	
	BUILDING		
	Year of construction Character of the building	Building was built or renovated recently (three years) Unrecognisable, non-eloquent* Poor maintenance	
	Extensibility	Not extensible horizontally Not extensible vertically	✓
	Structure	Structure in technically bad condition Dense structural grid, < 3.6m	
	Dimensions Façade *	Net story height < 2.6m Façade openings not adaptable Impossible to create windows which can be opened manually Daylight entry < 10 percent of the living area	
	Entrance (building, dwelling)	Impossible to create a socially secure entrance Impossible to realise elevator in the building (if more than four floors)	
		Distance from dwelling to stairs/elevator > 50m Impossible to realise escape stairs according to escape demands	
	Installations* Environment	No or insufficient conduits realisable Noise level at the façade > 50dB Sufficient insulation between dwellings impossible Sufficient insulation of façade impossible Presence of dangerous materials in construction No or little sunlight	

VOID OPTIONS

HIGH-RISE | INDIVIDUALITY

THE MERGER OF INTEREST COLLECTIVE GROUPING

THE MERGER OF INTEREST

HIGH RISE TOWER WITH PROGRAMMATIC COLLECTIVE INTERIORS

COMMUNITY SECTION

FLOOR PLAN

THE FIT-OUT

A CUSTOMIZED DWELLING, BASED ON GENERIC PRINCIPLES

CUSTOMIZATION CATEGORISATION & ANALYSIS

CLASSIFICATION ON: DESIGN FREEDOM, USER INFLUENCE, UNIQUENESS, MASS PRODUCTION POTENTIAL AND PROCESS EFFICIENCY.

ELEMENTAL

CLOSED CLOSED

SPATIAL COLLABORATIVE SOURCE

OPEN

RESEARCH CONCLUSIONS

MODULAR LANGUAGE WITH FREEDOM

- 1. ACTIVITY LISTING
- 2. ACTIVITY DESCRIPTION
- 3. RELATIONAL DIAGRAMS
- 4. INITIAL FLOOR PLAN
- 5. FINAL DESIGN

USER-CENTERED DESIGN LOOP

DIGITAL HOUSING CONFIGURATOR

Ground floor plan, 1:50

First floor plan, 1:50

Longitudinal section, 1:50

STRUCTURAL PRINCIPLES

SUSPENDED INSULATED CEILING: FREE FLOOR FIELD (

B0X-IN-B0X

INTEGRATED ASSEMBLY

3 INTEGRATED VENTILATION & HEATING WITH HEAT RECOVERY

4 MODULAR ELECTRIC FLOOR HEATING

5 RAISED FLOOR

THELOGIC

CONSTRUCTION AND CUSTOMIZATION FEATURES, IN COMBINATION WITH ASSEMBLY STRATEGIES AND A CIRCULAR BUSINESS STRATEGY

KEY DFMA PRINCIPLES

PRECEDENTS	Minimize part count	Standardized parts & materials	Modular assemblies	Efficient joining	Minimize reorientation of parts during assembly and/or machining	Simplify & reduce number of machining operations	DFMA score
PACKAGED HOUSE SYSTEM	There are still a lot of parts present in the system, efficiency is achieved through the joining method.	Everything is factory made. Though, there are still a lot of different components present.	Every assembly is the same due to the fact that there is 1 joint.	Gropius and Wachsmann designed 1 universal connector for every joint.	Due to the fact that there are many different components, machinery and assembly is still quite labor intensive.	The prefabrication of the parts was labour intensive.	****
INSTANT CABIN	★ ☆ ☆ ☆ ☆ ☆ With approximately 970 parts (including connections), there are a lot.	Parts are not standardized. The construction consists of one material, including connections.	Each part has a specific structural function and is modular in use.	Not the amount of connectors, but the friction-fit joining makes it efficient.	During machining no reorientation. Assembly is like a small puzzle.	The only machining operation is milling in 2D, so limited to 1.	****
LIINA TRANSITIONAL SHELTER	By using SIPs as a truss structure, the amount of parts is drastically minimized.	The truss is modular and thereby standardized.	Connections are the same and occur in logical order.	Just dowels, dovetails and ratchet straps act as connectors giving an airtight building.	★★☆☆ During machining quite a lot. During assembly practically none.	★☆☆☆☆ Making SIPs in the factory requires more labor.	****
BAMBOO MICRO HOUSING	The bamboo and supporting structure account for a lot ofparts.	★★☆☆☆ Materials are all standardized from production.	The structures assembly can only be done as a whole.	Joining methods used are efficient but time intensive.	★ ☆ ☆ ☆ ☆ During machining, parts undergo heavy adjustments.	The bending of the bamboo straps makes the fabrication process unnecessarily complicated.	***
JAPANESE JOINERY	Integrating the structural frame and joinery minimizes part count.	Standardized in production, although it needs quite some processing.	★★★☆ The structures assembly is modular in its framework of joints.	The integration of structure and joinery makes for an efficient joining method, also erasing screws etc.	★★☆☆☆ The nature of the joinery requires a lot of reorientation during machinery.	A lot of reorientation also ensures that the machining is quite time and labour intensive.	****

RATCHET STRAPS

IKEA CAM-LOCKS

FOAMED-IN-PLACE CAM-LOCK FASTENERS

CUSTOMIZATION FEATURES

BUILDING & LOCATION

PLOT LOCATION

PLOT SIZE

GRID MODULE

SPATIAL FREEDOM

PANEL TYPES & MATERIALISATION

WINDOW OPENINGS

CURTAIN RAILING

WINDOWSILL / BOOKSHELF

INTEGRATED ASSEMBLY

ASSEMBLED FLOOR MODULE

EXPLODED VIEW

OPEN FLOOR VIEW

FLOOR VIEW WITH INTERIOR PARTITION

FLOOR VIEW WITH DIAGONAL PARTITIONING

RAISED FLOOR FREEDOM

STAKEHOLDERS

SUPPLY CHAIN MANAGEMENT

diagram adapted from Yashiro & Nishimoto (2002)

CIRCULAR ECONOMY

MATERIAL PERSPECTIVE

diagram adapted from Crowther (1999)

RELEVANCE

COALITION AGREEMENTS 2014

FLEXIBLE ZONING PLANS

SPACE FOR 'VRIJHAVENS', FREE ZONES FOR BOTTOM-UP EXPERIMENTATION

HIGHER PRODUCTION OF SOCIAL HOUSING

MORE OPPORTUNITIES FOR THE SMALLER HOUSING CORPORATIONS AND INITIATIVES IN REALISING SOCIAL HOUSING

GREENING OF THE CITY

source: architectenweb.nl

NEW SOLUTIONS FOR VACANCY, INCREASING POSSIBILITIES FOR NEW VACANCY APPROACHES

MORE CONTROL AND RESPONSIBILITY FOR THE CITIZEN

CONTINUATION OF THE 'KLUSWONINGEN', SELF-BUILD PROJECTS

NEW DISTRICTS IN THE CITY CENTRE FOR STUDENTS AND STARTERS

GREENING OF THE CITY

source: architectenweb.nl

THE FIT-OUT

PROBLEM

TREND

CHANCE

A CUSTOM HOME AVAILABLE FOR EVERYONE

