$H O M E - M A D E^{\circ}$ # BOTTOM-UP REDEVELOPMENT OF VACANT OFFICE SPACE IN MASS-CUSTOMIZED HOUSING SOLUTIONS UTILIZING DIGITAL WOOD PROCESSING TECHNIQUES 2 0 1 8 P5 PRESENTATION NAME: FREEK VAN ZEIST STUDY NR: 1517090 DATE: 17^{TH} OF DECEMBER, 2014 1ST MENTOR: JOB SCHROËN 2ND MENTOR: PIERRE JENNEN 3RD MENTOR: PIETER STOUTJESDIJK EXTERNAL EXAMINER: ANDRÉ OUWEHAND # THE CONCEPT A bottom-up redevelopment strategy of (structurally) vacant office space in mass-customized housing solutions by using the potential of digital fabrication techniques THE BASE Preparing the building for a custom fit-out THE COLLECTIVE Social cohesion enhanced by shared interest and the human scale in a high-rise THE FIT-OUT A customized dwelling, based on generic principles THE LOGIC Construction and customization features, in combination with assembly strategies and a circular business strategy **BUSINESS PERSPECTIVE** WRAP-UP RECURRING EMBODIED ENERGY source: Cole and Kernan, 1996 HIGH RECURRING EMBODIED ENERGY FOR ENVELOPE, SERVICES AND FINISHES source: Hofman & Halman, 2006 ### INTERIOR CUSTOMIZATION # THE NEED FOR SPATIAL CUSTOMIZATION AND THE PRIVATE COMMISSIONING TREND PROBLEM TREND CHANCE COMMISSIONING IN A PROVIDED BASE BUILDING We should not try to forecast what will happen, but try to make provision for what cannot be foreseen Habraken in Supports (1972) ### OPEN BUILDING - ☑ Wasted quality beyond users preference or demand - ■Unused purchasing power - ■Level of quality determined by the developer - Preferred level of quality of each household □ Individual 'fit-out' at a cost and a quality determined by each household ■ High quality 'base building' of a uniform standard for a given project Preferred level of quality of each household POST-WAR HOUSING VS. OPEN BUILDING HOUSING ### A GROWING CITY AND A LACK OF SPACE FROM CITY EXPANSION, THEREBY USING VALUABLE SPACE TO THE RE-USE OF EXISTING URBAN FABRIC USING (STRUCTURALLY) VACANT OFFICE SPACE A TOP-DOWN FRAMEWORK FACILITATING A CONSUMER-DRIVEN AND BOTTOM-UP APPROACH ### DESIGN PRINCIPLES ### BASE BUILDING Developer owned. Basic facilities & utilities. Low durable investment. Leasehold construction. Individualized buildings. Spatially, functionally & aesthetically. Privately owned. ### CONSTRUCTIONAL LOGIC Unifying construction - modularity. Lower building costs. Speeds up building & designing process. ### PRODUCTION & ASSEMBLY How to build where also can be lived? File2Factory. Design For (Dis)Assembly. ### ORGANIC GROWTH PERMANENT TRANSFORMATION Adaptable to market conditions. Growing project - evolution. Blank canvas. ### NETWORK OF BASE BUILDINGS Exchangeability. Your house moves with you. Network of new urban typologies. ### RESEARCH QUESTION How can the mass customization potential of digital wood processing techniques be used in the bottom-up re-development of (structurally) vacant office space into custom housing solutions? ### RESEARCH OVERVIEW HOW CAN THE MASS CUSTOMIZATION POTENTIAL OF DIGITAL WOOD PROCESSING TECHNIQUES BE USED IN THE BOTTOM-UP REDEVELOPMENT OF (STRUCTURALLY) VACANT OFFICE SPACE INTO CUSTOM HOUSING SOLUTIONS? ARCHITECT \geq \geq \triangle 1. IDENTIFICATION OF PROJECT BUILDING 2. A. ANALYSIS OF NEIGHBOURHOOD AND VIABILITY OF TRANSFORMATION POTENTIAL B. ANALYSIS OF POTENTIAL TARGET GROUPS TRANSFORMATION POTENTIAL MEASUREMENT TOOL 3. BUILDING SURVEY: INSPECTION AND DETAILED STUDY OF BUILDING STRUCTURE AND ADAPTABILITY POTENTIAL FEASIBILITY ASSESSMENT BUILDING DEMOLISHMENT OR OTHER PURPOSE PRINCIPAL **ARCHITECT** - * DOCUMENTATION AND STRUCTURAL AND SPATIAL INVENTARISATION OF PRESENT STATE OF BUILDING - * CIRCULATION AND ACCESSIBILITY ANALYSIS - * UTILITY ANALYSIS, POSSIBLE SERVICE CORES AND COVERAGE OF HORIZONTAL SHAFTWORK - * ZONING ANALYSIS - * PLOT DIVISION - * PLACEMENT OF PUBLIC AND COMMUNAL SPACES, IDENTIFICATION & URBAN EMBEDMENT - * DETERMINATION OF INTERNAL ZONING PLAN AND BUILDING RULES PHYSICAL SUPPORT DESIGN DETAILED 3D MODEL USING TLS TECHNIQUES BUILDING APPROVED FOR SUPPORT DESIGN INTERNAL ZONING PLAN VACANCY RATES PER YEAR # ABSOLUTE AND RELATIVE GROWTH OF VACANCY IN '70's & '80's modified floor plan of the Parool tower, Wibautstraat, Amsterdam #### FIRE SAFETY OUTSIDE CONDITIONS CLIMATISED SUFFICIENCY OF EXISTING ESCAPE ROUTES FIRE SAFETY REGULATIONS APPLIED TO HOUSING #### LOGISTICS WASTE MANAGEMENT EXTRA UTILITIES | | BENEFICIAL | OBSTRUCTIVE | SOLUTIONS | |------------------------|--|--|--| | CONSTRUCTION | Modular grid sizing of 5.4 or 7.2m, applicable to housing High ceilings, lowest net heights 2.8m Columns, free floor fields Appropriate depth | Locally lowered ceilings due to beams Grid structure Fire safety issues Columns oppose obstructions (acoustic, thermal and moisture) | Separate placement of units
ensures acoustical quality and
fire safety standards | | FLOORS | Designed for high floor loads, 300 kg/m². Normative for housing is 175 kg/m². | Post tension bars; often low flexibility for vertical shaftwork Low mass. Raised floor and lowered ceiling needed to comply to building regulations. Deflection of floors | Use existing elevators as utility shafts New box-in-box construction 3D scanning to map the deflections and deviations for digital fabrication input | | ENVELOPE | Modular grid sizing of 1.8m
and loadbearing walls. Good
connections possible. | Curtain walls; bad technical conditions. No connections possible for function separating walls. Cantilevered floors; applicability of balconies is difficult. New façade is expensive. | A new façade is needed in order
to properly redevelop into
housing solutions | | VERTICAL ACCESSIBILITY | Elevators are oversized for housing purposes. | Often not enough escape routes. Stairs and elevators account for relatively much space. | Possibility of adding extra stairs inside or outside the building | based on literature research ### NEIGHBOURHOOD MAPPING | | ASPECT | CRITERION | \checkmark | |------------------|---|--|--------------| | | I OCATION | | | | | LOCATION
Urban situation | Office on remote industrial zone Office in the middle of an office park Office in area defined as priority area for offices | | | | Land property
Vacancy | Land rent
Vacant for more than a year | | | | Character of urban situation | Vacancy of surrounding buildings
Location on or near city edge, ring roads
Desolated area | | | FORMATION POTENT | Distance and quality of facilities | No greenery in the neighbourhood
Social depreciation, vandalism
Pollution; smell, noise, view
Shop for daily errands > 1km | ✓ | | | | Meeting place (café, snackbar, etc.) > 500m Bank/post office > 2km Basic medical facilities (doctor, pharmacy) > 5km Sport facilities (fitness, swimming pool, sports park) > 2km Educational facilities (nursery, school, university) > 2km | | | | Accessibility by public transport | Distance to station > 2km
Distance to bus, metro or tram stop > 1km | | | | Accessibility by car; parking | Many obstacles, limitations, poor flow Distance to parking place > 250m < 1 parking place / 100m² dwellings reasonable | | | | BUILDING | | | | | Year of construction
Character of the building | Building was built or renovated recently (three years) Unrecognisable, non-eloquent* Poor maintenance | | | | Extensibility | Not extensible horizontally Not extensible vertically | ✓ | | | Structure | Structure in technically bad condition Dense structural grid, < 3.6m | | | | Dimensions
Façade * | Net story height < 2.6m Façade openings not adaptable Impossible to create windows which can be opened manually Daylight entry < 10 percent of the living area | | | | Entrance (building, dwelling) | Impossible to create a socially secure entrance Impossible to realise elevator in the building (if more than four floors) | | | | | Distance from dwelling to stairs/elevator > 50m
Impossible to realise escape stairs according to escape demands | | | | Installations*
Environment | No or insufficient conduits realisable Noise level at the façade > 50dB Sufficient insulation between dwellings impossible Sufficient insulation of façade impossible Presence of dangerous materials in construction No or little sunlight | | ### VOID OPTIONS HIGH-RISE | INDIVIDUALITY ### THE MERGER OF INTEREST COLLECTIVE GROUPING THE MERGER OF INTEREST HIGH RISE TOWER WITH PROGRAMMATIC COLLECTIVE INTERIORS ### COMMUNITY SECTION #### FLOOR PLAN THE FIT-OUT A CUSTOMIZED DWELLING, BASED ON GENERIC PRINCIPLES ### CUSTOMIZATION CATEGORISATION & ANALYSIS CLASSIFICATION ON: DESIGN FREEDOM, USER INFLUENCE, UNIQUENESS, MASS PRODUCTION POTENTIAL AND PROCESS EFFICIENCY. ### ELEMENTAL CLOSED CLOSED SPATIAL COLLABORATIVE SOURCE ## OPEN #### RESEARCH CONCLUSIONS MODULAR LANGUAGE WITH FREEDOM - 1. ACTIVITY LISTING - 2. ACTIVITY DESCRIPTION - 3. RELATIONAL DIAGRAMS - 4. INITIAL FLOOR PLAN - 5. FINAL DESIGN USER-CENTERED DESIGN LOOP DIGITAL HOUSING CONFIGURATOR Ground floor plan, 1:50 First floor plan, 1:50 Longitudinal section, 1:50 STRUCTURAL PRINCIPLES SUSPENDED INSULATED CEILING: FREE FLOOR FIELD (B0X-IN-B0X INTEGRATED ASSEMBLY #### 3 INTEGRATED VENTILATION & HEATING WITH HEAT RECOVERY 4 MODULAR ELECTRIC FLOOR HEATING 5 RAISED FLOOR # THELOGIC CONSTRUCTION AND CUSTOMIZATION FEATURES, IN COMBINATION WITH ASSEMBLY STRATEGIES AND A CIRCULAR BUSINESS STRATEGY #### KEY DFMA PRINCIPLES | PRECEDENTS | Minimize part
count | Standardized parts
& materials | Modular
assemblies | Efficient
joining | Minimize reorientation
of parts during assembly
and/or machining | Simplify & reduce
number of machining
operations | DFMA
score | |----------------------------|--|---|--|--|--|--|---------------| | PACKAGED HOUSE SYSTEM | There are still a lot of parts present in the system, efficiency is achieved through the joining method. | Everything is factory made. Though, there are still a lot of different components present. | Every assembly is the same due to the fact that there is 1 joint. | Gropius and Wachsmann designed 1 universal connector for every joint. | Due to the fact that there are many different components, machinery and assembly is still quite labor intensive. | The prefabrication of the parts was labour intensive. | **** | | INSTANT CABIN | ★ ☆ ☆ ☆ ☆ ☆ With approximately 970 parts (including connections), there are a lot. | Parts are not standardized. The construction consists of one material, including connections. | Each part has a specific structural function and is modular in use. | Not the amount of connectors, but the friction-fit joining makes it efficient. | During machining no reorientation. Assembly is like a small puzzle. | The only machining operation is milling in 2D, so limited to 1. | **** | | LIINA TRANSITIONAL SHELTER | By using SIPs as a truss structure, the amount of parts is drastically minimized. | The truss is modular and thereby standardized. | Connections are the same and occur in logical order. | Just dowels, dovetails and ratchet straps act as connectors giving an airtight building. | ★★☆☆ During machining quite a lot. During assembly practically none. | ★☆☆☆☆ Making SIPs in the factory requires more labor. | **** | | BAMBOO MICRO HOUSING | The bamboo and supporting structure account for a lot ofparts. | ★★☆☆☆ Materials are all standardized from production. | The structures assembly can only be done as a whole. | Joining methods used are efficient but time intensive. | ★ ☆ ☆ ☆ ☆ During machining, parts undergo heavy adjustments. | The bending of the bamboo straps makes the fabrication process unnecessarily complicated. | *** | | JAPANESE JOINERY | Integrating the structural frame and joinery minimizes part count. | Standardized in production, although it needs quite some processing. | ★★★☆ The structures assembly is modular in its framework of joints. | The integration of structure and joinery makes for an efficient joining method, also erasing screws etc. | ★★☆☆☆ The nature of the joinery requires a lot of reorientation during machinery. | A lot of reorientation also ensures that the machining is quite time and labour intensive. | **** | RATCHET STRAPS IKEA CAM-LOCKS FOAMED-IN-PLACE CAM-LOCK FASTENERS CUSTOMIZATION FEATURES BUILDING & LOCATION PLOT LOCATION PLOT SIZE ## GRID MODULE SPATIAL FREEDOM PANEL TYPES & MATERIALISATION WINDOW OPENINGS CURTAIN RAILING WINDOWSILL / BOOKSHELF INTEGRATED ASSEMBLY ASSEMBLED FLOOR MODULE EXPLODED VIEW #### OPEN FLOOR VIEW ### FLOOR VIEW WITH INTERIOR PARTITION #### FLOOR VIEW WITH DIAGONAL PARTITIONING ## RAISED FLOOR FREEDOM #### STAKEHOLDERS #### SUPPLY CHAIN MANAGEMENT diagram adapted from Yashiro & Nishimoto (2002) CIRCULAR ECONOMY #### MATERIAL PERSPECTIVE diagram adapted from Crowther (1999) # RELEVANCE ## COALITION AGREEMENTS 2014 FLEXIBLE ZONING PLANS SPACE FOR 'VRIJHAVENS', FREE ZONES FOR BOTTOM-UP EXPERIMENTATION HIGHER PRODUCTION OF SOCIAL HOUSING MORE OPPORTUNITIES FOR THE SMALLER HOUSING CORPORATIONS AND INITIATIVES IN REALISING SOCIAL HOUSING GREENING OF THE CITY source: architectenweb.nl NEW SOLUTIONS FOR VACANCY, INCREASING POSSIBILITIES FOR NEW VACANCY APPROACHES MORE CONTROL AND RESPONSIBILITY FOR THE CITIZEN CONTINUATION OF THE 'KLUSWONINGEN', SELF-BUILD PROJECTS NEW DISTRICTS IN THE CITY CENTRE FOR STUDENTS AND STARTERS GREENING OF THE CITY source: architectenweb.nl THE FIT-OUT PROBLEM TREND CHANCE A CUSTOM HOME AVAILABLE FOR EVERYONE