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Modeling the Human Operator’s Detection of a Change in
Controlled Element Dynamics

Author: M. Barragan; Supervisors: M. Mulder, M. M. van Paassen, D. M. Pool,
Control & Simulation Section, Faculty of Aerospace Engineering

Delft University of Technology, Delft, The Netherlands

While human control behavior is well-understood in continuous control tasks, little is known
about how human operators detect sudden changes in the controlled element dynamics. This
paper focuses on modeling this detection phase for pursuit tracking tasks. Potential triggers for
the human operator to detect changes in the controlled element dynamics were investigated
via a time-varying computer simulation. Based on the results, hypotheses were generated
and later tested in a single-axis pursuit tracking experiment with fifteen participants, where
good-quality data were collected. Transitions from approximate single to approximate double
integrator dynamics and vice versa were investigated, and participants indicated if they detected
the transition by pressing a button. Using the button push data, a model for each transition
was developed and validated. The models work under the assumption that human operators
use a threshold, a multiple of the steady-state standard deviation, on certain signals to detect
transitions. The models developed for the transition from single to double integrator dynamics
and vice versa are based on the tracking error and system output acceleration, respectively.
They have an accuracy of 88.9% and 99.4%, respectively. However, the estimation of the
detection lags remains a limitation of both models. Nonetheless, this research helped confirm
the tracking error can be used in a model for the transition from single to double integrator
dynamics, proposed a model for the opposite transition, and identified that the relationship
between control inputs and the system’s response is an important factor in the detection phase.

Nomenclature

𝐴𝑡 [𝑖] = Amplitude of i𝑡ℎ sine wave in forcing function (rad)
𝑒 = Error (rad)
¤𝑒 = Error rate (rad/s)
¥𝑒 = Error acceleration (rad/s2)
𝑓𝑡 = Forcing function (rad)
FN = False negative
FP = False positive
𝐺 = Maximum rate of change (s−1)
𝐻𝑐 (𝑠, 𝑡) = Controlled element transfer function (-)
𝐻𝑑𝑒𝑙 (𝑠, 𝑡) = Human operator delay transfer function (-)
𝐻𝑛 (𝑠, 𝑡) = Remnant filter transfer function (-)
𝐻𝑝 (𝑠, 𝑡) = Human operator transfer function (-)
𝑖 = Sine wave index (-)
IQR = Interquartile range (-)
𝑘𝑐 = Controlled element gain (-)
𝑘𝑛 = Remnant filter gain (rad)
𝑘 𝑝 = Human operator gain (-)
𝑘 = Multiple of base frequency (-)
𝑀 = Centered on time (s)
𝑁𝑡 = Number of sine waves used to construct forcing functions (-)
𝑁 = Number of samples (-)
𝑛 = Human operator remnant (rad)
𝑃1 = Initial parameter value (-)
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𝑃2 = Final parameter value (-)
RMSE = Root-mean-square error (deg)
𝑇𝐿 = Human operator lead time constant (s)
𝑇𝑚 = Measurement time (s)
𝑇𝑛 = Remnant filter time constant (s)
𝑡 = Time (s)
TN = True negative
TP = True positive
𝑢 = Control input (rad)
¤𝑢 = Control input rate (rad/s)
𝑤 = Gaussian white noise input (-)
𝑦 = System output (rad)
¤𝑦 = System output rate (rad/s)
¥𝑦 = System output acceleration (rad/s2)
𝜔𝑏 = Controlled element break frequency (rad/s)
𝜔𝑚 = Fundamental frequency (rad/s)
𝜔𝑛𝑚 = Neuromuscular system natural frequency (rad/s)
𝜔𝑡 [𝑖] = Frequency of i𝑡ℎ sine wave in forcing function (rad/s)
𝜙𝑡 [𝑖] = Phase shift of i𝑡ℎ sine wave in forcing function (rad)
𝜌 = Pearson correlation coefficient (-)
𝜎 = Standard deviation (-)
𝜏𝑒 = Effective time delay (s)
𝜁𝑛𝑚 = Neuromuscular system damping ratio (-)

I. Introduction
Over the past decades, the role of automation has increased significantly in society. In the context of control tasks,

this has led to human operators taking on more of a supervisory role. A situation where interventions made by the
human operator are often in moments where adaptability, accuracy, and quick-thinking are required. Adaptability, in
particular, is currently one of the main strengths humans have over automation. However, with the advancement of
technology and development in how human operators interact with systems, the models used to describe their behavior
have failed to keep up [1]. It is beneficial to understand and model the adaptive behavior of human operators for several
reasons. First, it would help improve the design of current systems, since different design choices can be tested through
simulation to identify potential problems. Additionally, adaptive models can be used to create better support systems for
human operators. In the case of failures, for example, this can help reduce the number of loss of control incidents, which
are still one of the largest worldwide contributors to fatal accidents [2]. Finally, it would allow for the development of
safer and improved vehicle designs [3].

Young et al. [4] identified that the adaptive process of a human operator consists of three phases, namely detection,
identification, and modification. In the detection phase, the human operator realizes that something has changed and
that adaptation is required. This triggers the identification phase to begin, in which the human operator identifies the
nature of the change. Finally, in the modification phase, the human operator modifies their control behavior to suit
the new situation. It can be argued that the identification and modification phases happen simultaneously, though the
detection phase is certainly distinct. A good adaptive model would be capable of approximating the human operator’s
behavior throughout all three phases. However, the scope of this paper is limited to the detection phase, specifically the
case where there is a change in the controlled element dynamics.

Significant research efforts have been dedicated to studying the adaptive nature of human operators and how they are
able to detect changes to the controlled element dynamics [5][6][7]. Several models have been proposed, especially
for compensatory tracking tasks in which the controlled element dynamics transition from more stable to less stable
dynamics, that use a threshold on either the tracking error or error rate [8][9]. The motivation behind these models is
that well-trained human operators keep track of the statistical properties of those signals and are thus able to identify
when either becomes abnormally large. Furthermore, human operators are able to predict the value of a particular signal
in the (near) future via an internal model [10][11] of the controlled element dynamics and knowledge of the control
inputs. A significant mismatch between the observed and predicted value can also lead to the human operator detecting
a change in controlled element dynamics. Building on this, Hess [12][13] proposed to model the detection phase in
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pursuit tracking tasks based on a threshold of a signal proportional to the error between the observed system output rate
and the (internally generated) desired system output rate.

Thus far the majority of research efforts have focused on the transition from more stable to less stable dynamics
(e.g., from approximate single to approximate double integrator dynamics). Modeling the human operator’s detection of
this transition based on outliers (i.e., extreme peaks) in the error or error rate has been successful [8][14]. However, the
same cannot be said for a transition the other way around, because the system does not become unstable if the current
control strategy is kept, and thus the error does not grow abnormally large [15][16]. This suggests that only part of the
detection phase is properly understood. Furthermore, the majority of research efforts thus far have studied the detection
phase for tracking using compensatory displays.

In real-life applications, compensatory displays are the exception rather than the norm. Studying the detection phase
with a pursuit display, where more information is available to the human operator, can increase the applicability of
the research. The presence of additional information also significantly impacts the control strategies available to the
human operator [17] and can therefore also impact the way changes to the controlled element dynamics are detected.
For example, the explicit knowledge of the relationship between the control inputs given by the human operator and the
system’s response can aid with the detection phase when using a pursuit display. The difference between compensatory
tracking tasks and pursuit tracking tasks is illustrated in Figure 1. The same signals appear in both Figure 1a and
Figure 1b, namely the forcing function 𝑓𝑡 (𝑡), error 𝑒(𝑡), human operator remnant 𝑛(𝑡), control input 𝑢(𝑡), and the system
output 𝑦(𝑡). However, the human operator is modeled differently in both as a result of only the error being displayed
with a compensatory display, whereas the forcing function and system output are both displayed with a pursuit display.
For any controlled element dynamics 𝐻𝑐 (𝑠, 𝑡), the human operator can only respond to the error (modeled as 𝐻𝑝,𝑒 (𝑠, 𝑡))
when using a compensatory display. With a pursuit display, however, the human operator can also respond to the forcing
function (modeled as 𝐻𝑝, 𝑓 𝑡 (𝑠, 𝑡)), and the system output (modeled as 𝐻𝑝,𝑦 (𝑠, 𝑡)) in addition to the error [17]. Thus, it
is clear that the control behavior and the way changes to the controlled element dynamics are detected can be very
different with a pursuit display compared to a compensatory display.

The goal of this paper is to investigate and provide insight into how human operators are able to detect changes in
the controlled element dynamics and consequently adapt their control behavior when using pursuit displays. Particular
attention is paid to the transition from approximate double to approximate single integrator dynamics since this is less
well understood. First, a simulation was developed to investigate what the trigger for a human operator to detect a
change in controlled element dynamics might be. This involved analyzing six candidate signals (the system output 𝑦,
the control input 𝑢, the tracking error 𝑒, and all of their derivatives), and evaluating potential models that are based on
when the respective signal exceeds a certain threshold (a multiple of the steady-state standard deviation). Afterwards, a
human-in-the-loop pursuit tracking task experiment was performed at the Faculty of Aerospace Engineering, TU Delft
in which several transitions from approximate single integrator dynamics to approximate double integrator dynamics
and vice versa were conducted. Participants indicated if and when they detected the change by pressing a button on a
joystick. The goal was then to find a connection between the subjective button push data and some property in one
or more of the signals that may have triggered participants to detect that the controlled element dynamics changed.
Ultimately, two models are proposed and validated, one for each transition.

The structure of the paper is as follows. First, the design and results from a time-varying computer simulation will
be presented in Section II. Next, the experiment design and data analysis methodology will be presented in Section III.
The results of the experiment data are presented in Section IV, followed by a discussion of the results in Section V.
Finally, the conclusions are presented in Section VI.

II. Computer Simulation

A. Simulation Design
Prior to performing the experiment, a time-varying simulation was implemented using MATLAB and Simulink to

generate hypotheses for the experiment and gain a better understanding of what might trigger a human operator (HO)
to detect a change in controlled element (CE) dynamics. To do this, two HO models were compared with each other
following a sudden change in CE dynamics. One of the HO models is of an adaptive HO that immediately adapts their
own dynamics to fit the new CE dynamics after a transition, while the other is of a constant HO that never adapts their
own dynamics and continues controlling the new CE in the same way as before the transition. The latter is representative
of a HO who has not (yet) detected that there has been a change in CE dynamics. Comparison between the signals of
the adaptive HO and constant HO can then be used to generate hypotheses on what triggers a HO to detect a transition.
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(a) Compensatory display (left) and control diagram (right).

(b) Pursuit display (left) and control diagram (right). The control diagram is adapted from Mulder et al. [17].

Fig. 1 Difference between compensatory and pursuit displays, and the accompanying control diagrams.
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Fig. 2 Block diagram for the compensatory tracking system in the simulation.

The naming convention for the CE dynamics is as follows: the numbers are the order of the system and the sequence
is the order in which the conditions occur [15]. For example, DYN12 is a trial where the CE dynamics started off as an
approximate single integrator (first order) and transitioned to an approximate double integrator (second order) during the
trial, while DYN21 has the same conditions but with the order reversed. A time-invariant trial only has one number. For
example, DYN1 is a trial where the CE dynamics remained an approximate single integrator throughout the entire trial.
The simulation was primarily used to investigate the time-varying conditions, DYN12 and DYN21. The time-invariant
trials, DYN1 and DYN2, were only used to calculate steady-state reference values to be used in the analysis, as will be
described in Subsection II.B.

Despite the fact that a pursuit display was used in the experiment, the simulation is made for compensatory tracking
because there is a universally accepted model for it, namely the simplified precision model [18]. The block diagram for
the compensatory tracking simulation is given in Figure 2. 𝐻𝑝 (𝑠, 𝑡) is the linear part of the HO dynamics (including the
neuromuscular system dynamics but excluding the time delay), 𝐻𝑑𝑒𝑙 (𝑠, 𝑡) is the effective HO time delay, 𝐻𝑛 (𝑠, 𝑡) is the
remnant filer dynamics used to model the HO remnant, and 𝐻𝑐 (𝑠, 𝑡) is the CE dynamics.

The structure of 𝐻𝑐 (𝑠, 𝑡) is given in Eq. (1), where 𝑘𝑐 is the CE gain and 𝜔𝑏 is the CE break frequency, both of
which are time-varying. The break frequency is used to change the order of the CE dynamics in the crossover region.
For the DYN1 condition, 𝜔𝑏 is set to 20 rad/s, whereas for the DYN2 condition, it is set to 0.2 rad/s. The gain 𝑘𝑐 is
varied to keep the level of control activity approximately constant for both conditions and has a value of 15 in DYN1
and 2 in DYN2.

𝐻𝑐 (𝑠, 𝑡) =
𝑘𝑐 (𝑡)

𝑠(𝑠 + 𝜔𝑏 (𝑡))
(1)

The HO dynamics are given in Eq. (2) and have the form dictated by the simplified precision model plus a term for
the neuromuscular system dynamics [18]. For the results presented here, the HO gain 𝑘 𝑝 was tuned after performing the
experiment to match the mean DYN1 and mean DYN2 crossover frequencies from the experiment. This results in a
𝑘 𝑝 of 0.233 for DYN1 and 3.73 for DYN2. The lead time constant 𝑇𝐿 is 0 s for DYN1 (since no lead generation is
required) and 5 s for DYN2, to perfectly compensate for the second integrator that has a break frequency of 0.2 rad/s.
The neuromuscular system parameters were kept constant for both conditions with a natural frequency 𝜔𝑛𝑚 of 15 rad/s
and a damping ratio 𝜁𝑛𝑚 of 0.7. 𝐻𝑑𝑒𝑙 (𝑠, 𝑡) accounts for the HO effective time delay, 𝑒−𝜏𝑒 (𝑡 )𝑠, and was modeled using
the ’variable time delay’ block in Simulink, with a delay of 0.09 s in DYN1 and 0.23 s in DYN2.

𝐻𝑝 (𝑠, 𝑡) = 𝑘 𝑝 (𝑡) [1 + 𝑇𝐿 (𝑡)𝑠] ·
𝜔2
𝑛𝑚

𝑠2 + 2𝜁𝑛𝑚𝜔𝑛𝑚 + 𝜔2
𝑛𝑚

(2)

Finally, the remnant filer dynamics have the form given in Eq. (3), which Van Grootheest et al. [19] found to be the
best structure for fitting the remnant. The time constant 𝑇𝑛 was kept constant at 0.06 s, and the gain 𝑘𝑛 was chosen such
that the ratio of the power in the control input due to the remnant to the total power in the control input was 0.2. This
resulted in a value of 𝑘𝑛 of 0.00787 for DYN1 and 0.00813 for DYN2. The signal 𝑤(𝑡) in Figure 2, which is Gaussian
white noise with zero mean and unit variance, is the input to the remnant filter, and the HO remnant 𝑛(𝑡) is the output.
All of the parameter values are summarized in Table 1.

𝐻𝑛 (𝑠, 𝑡) =
𝑘𝑛 (𝑡)

(𝑇𝑛𝑠 + 1)2 (3)
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For the time-varying conditions, the transition from one parameter value to the other is done according to the
sigmoid function defined in Eq. (4), where 𝑃1 is the initial parameter value, 𝑃2 is the final parameter value, 𝐺 is the
maximum rate of change (equal to 100 s−1), and 𝑀 is the centered on time (equal to 75 s). These values of 𝐺 and 𝑀

apply to all of the time-varying parameters in both the CE dynamics and the adaptive HO model.

𝑃(𝑡) = 𝑃1 +
𝑃2 − 𝑃1

1 + 𝑒−𝐺 (𝑡−𝑀 ) (4)

Table 1 Values for all of the parameters used in the simulation.

CE Dynamics 𝑘𝑐 (-) 𝜔𝑏 (rad/s) 𝑘 𝑝 (-) 𝑇𝐿 (s) 𝜏𝑒 (s) 𝜔𝑛𝑚 (rad/s) 𝜁𝑛𝑚 (-) 𝑘𝑛 (-) 𝑇𝑛 (s) 𝐺 (s−1) 𝑀 (s)

DYN1 15 20 0.233 0 0.09 15 0.7 0.00787 0.06 100 75
DYN2 2 0.2 3.73 5 0.23 15 0.7 0.00813 0.06 100 75

The resulting crossover frequencies and phase margins are given in Table 2. In addition to the standard DYN1 and
DYN2 conditions, two further conditions arise after the change in CE dynamics as a result of the constant HO keeping
the same control strategy. These are shown in the bottom two rows of Table 2. ’DYN1 CE with DYN2 HO’ occurs
post-transition in the DYN21 trials while ’DYN2 CE with DYN1 HO’ occurs post-transition in the DYN12 trials. As
can be seen, the system with the constant HO becomes unstable post-transition in DYN12, while the system with the
constant HO remains stable post-transition in DYN21 but with a very low crossover frequency and large phase margin.
The crossover frequencies in the standard DYN1 and DYN2 conditions are 2.77 rad/s and 2.33 rad/s, respectively, and
the phase margins are 52.8 deg and 46.7 deg, respectively.

Table 2 Crossover frequencies and phase margins for the different conditions in the simulation.

Condition 𝜔𝑐 (rad/s) Phase Margin (deg)

DYN1 2.77 52.8
DYN2 2.33 46.7

DYN1 CE with DYN2 HO 0.359 143
DYN2 CE with DYN1 HO 2.73 -24.6

B. Simulation Analysis Methodology
The goal of the analysis of the simulation data is to identify differences in the properties of different signals

throughout separate phases of the simulation, as this could be something that a HO can use to detect that there has been
a change in CE dynamics. The candidate signals that will be analyzed are the system output 𝑦, the system output rate ¤𝑦,
the control input 𝑢, the control input rate ¤𝑢, the error 𝑒, and the error rate ¤𝑒. These were chosen because they are the
signals that can either be explicitly seen or can be visually estimated by the HO during a trial.

Each trial in the simulation lasts 120 s. However, all of the forcing functions were designed to have a period of
30 s, meaning there are exactly four periods in each trial [14][15]. This is useful to compare different phases of the
simulation because, if a whole period is considered, there is no dependence on the local forcing function properties. As
such, each trial is divided into four 30 s phases, the first of which (0 s < 𝑡 < 30 s) is used as run-in time, the second (30 s
< 𝑡 < 60 s) is the pre-transition steady-state phase, the third (60 s < 𝑡 < 90 s) is the transition region, and the fourth
(90 s < 𝑡 < 120 s) is the post-transition steady-state phase [14]. The transition region is further narrowed down to a
phase called the "detection period", which is 2.2 s - 7.4 s after the transition, and represents the period of time where a
detection is expected [14]. Since the transition always occurs at 𝑡 = 75 s (hence why 𝑀 = 75 s in Table 1), the detection
period is 77.2 s < 𝑡 < 82.4 s.

A total of nine forcing functions were analyzed with the simulation to ensure the conclusions are not specific to
local forcing function properties. For each forcing function, fifteen remnant realizations were simulated, resulting in
135 trials in each condition (DYN1, DYN2, DYN12, and DYN21). The reasoning behind using specifically nine forcing
functions and fifteen remnant realizations for each will become clear in subsubsection III.A.3 and subsubsection III.A.5.
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Fig. 3 Illustration showing how the second step of the simulation data analysis is done.

The analysis of the results took place in two steps. In the first step, the standard deviation (𝜎) of the six candidate
signals was compared over the different phases of the simulation. Of particular interest is the comparison of the
pre-transition steady-state standard deviations with the standard deviations of the constant HO in the detection period,
since this is representative of a HO that has not yet detected the change in CE dynamics. Thus, the goal in this step is
to identify the signals that have the largest differences in their properties before and immediately after the transition,
because that makes it likely that they are important in the process of detecting a change in CE dynamics.

In the second step of the analysis, a model is made using the signals identified to be the most relevant in the first
step, and the accuracy of the model is evaluated. An illustration of the method used to evaluate the accuracy of the
model is given in Figure 3. The model triggers (i.e., predicts the HO would detect a change in CE dynamics) whenever
the instantaneous value of a particular signal exceeds a particular threshold, of which a whole range is evaluated [14].
The threshold is a multiple of the steady-state standard deviation of the respective signal, which is calculated from the
time-invariant trials in the simulation (this is the only point in the simulation analysis where the time-invariant trials are
used) [14]. The 135 trials in DYN12 and 135 trials in DYN21 are then evaluated. If, for a particular trial, the threshold
is exceeded before the transition, as would be the case at time 𝑡1 for a threshold of 2𝜎 in Figure 3, it counts as a false
positive (FP, "too early detection"). If the threshold is not exceeded before the transition and is exceeded in the detection
period, as would be the case at time 𝑡2 for a threshold of 3𝜎 in Figure 3, it counts as a true positive (TP). Finally, if the
threshold is never exceeded, as would be the case for a threshold of 4𝜎 in Figure 3, it counts as a false negative (FN)
[14]. The accuracy of the model can then be calculated using the equation below. Note that it is impossible to have a
true negative (TN) in the simulation since only the time-varying trials were analyzed with the model, but it is included
in Eq. (5) for completeness and because it will be needed when evaluating the experimental results in Section IV.

Accuracy =
TP+TN

TP+TN+FP+FN
(5)

C. Simulation Results

1. Sample Time Traces
To get a better feel for how the simulation results look in the time domain, sample time traces for each of the six

candidate signals in each of the four CE dynamics conditions are presented in Figure 4-6 (for one forcing function and
remnant realization). The different phases of the simulation introduced in Subsection II.B can be seen by the shaded
regions in the plots. Furthermore, a sample sigmoid function (Eq. (4)) is also shown in Figure 4a, where it can be
seen that the transition is almost instantaneous. Note that there is only one line plotted in each of the figures before
the transition because the adaptive HO and the constant HO are the same during that phase of the simulation. After
the transition, the signals are shown for both HO models. In DYN12, the constant HO signals are only shown for 5 s
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(a) 𝑦 DYN1 and DYN12. (b) 𝑦 DYN2 and DYN21.

(c) ¤𝑦 DYN1 and DYN12. (d) ¤𝑦 DYN2 and DYN21.

Fig. 4 Comparison of sample time traces for 𝑦 and ¤𝑦 in the four CE dynamics conditions, and between the
constant HO and the adaptive HO post-transition.

following the transition because they become unstable and start congesting the figures.
Several main observations can be made. First, it can be seen that the tracking performance is better in DYN1 than in

DYN2, as expected due to the more difficult nature of the DYN2 condition. Second, the adaptive HO is able to quickly
adapt to the CE dynamics post-transition and resume steady-state tracking. Finally, the constant HO post-transition
in DYN21 gives very aggressive control inputs (Figure 5b), resulting in large (and quickly oscillating) values for ¤𝑦
(Figure 4d) that lead to oscillations in 𝑦 (Figure 4b). Thus, despite the the system with the constant HO not becoming
unstable post-transition, the tracking performance is still significantly worse than that of the adaptive HO.

2. DYN12 Results
Next, the results for DYN12 will be presented. In the first step of the analysis (as described in Subsection II.B), a

significant difference between the standard deviations in the pre-transition steady-state phase and the standard deviations
of the constant HO in the detection period was found for all of the candidate signals since the system with the constant
HO becomes unstable after the transition. For this reason and due to space constraints, the figures from the first step of
the analysis are not presented here. The full results can be found in Appendix A.

Since it is impossible to tell which of the six candidate signals is the first to diverge, 𝑒 and ¤𝑒 will be used in the
second step of the analysis. This is because previous research efforts (analyzing compensatory displays) have been
successful in modeling the DYN12 transition using 𝑒 and ¤𝑒 [8][9], and large increases to either is something that a HO
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(a) 𝑢 DYN1 and DYN12. (b) 𝑢 DYN2 and DYN21.

(c) ¤𝑢 DYN1 and DYN12. (d) ¤𝑢 DYN2 and DYN21.

Fig. 5 Comparison of sample time traces for 𝑢 and ¤𝑢 in the four CE dynamics conditions, and between the
constant HO and the adaptive HO post-transition.

9



(a) 𝑒 DYN1 and DYN12. (b) 𝑒 DYN2 and DYN21.

(c) ¤𝑒 DYN1 and DYN12. (d) ¤𝑒 DYN2 and DYN21.

Fig. 6 Comparison of sample time traces for 𝑒 and ¤𝑒 in the four CE dynamics conditions, and between the
constant HO and the adaptive HO post-transition
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(a) Error (𝑒). (b) Error rate ( ¤𝑒).

Fig. 7 Number of TPs, FPs, and FNs for the constant HO over various thresholds in the DYN12 condition.

can notice and use as a trigger to detect a change in CE dynamics. This is particularly true when using a compensatory
display since they are the only two signals the HO can see (or estimate in the case of ¤𝑒). The number of TPs, FPs, and
FNs over different thresholds (i.e., different multiples of the steady-state standard deviation) are given in Figure 7. As
can be seen, the number of FPs drops to zero for thresholds larger than 3.6𝜎 for 𝑒 and 3.9𝜎 for ¤𝑒 (the same threshold on
¤𝑒 proposed by Van Ham [20]), while there is a TP in more than 99% of trials for a threshold larger than 3.5𝜎 for 𝑒 and
more than 98.5% of trials for a threshold larger than 3.9𝜎 for ¤𝑒. Thus, above the threshold of 3.5𝜎 and 3.9𝜎 for 𝑒 and ¤𝑒,
respectively, an accuracy greater than 98.5% can be achieved. This suggests that 𝑒 and ¤𝑒 could be good signals off
which to base a model for the DYN12 transition.

3. DYN21 Results
Finally, the results for DYN21 will be presented. In the first step of the analysis it was found that the biggest

difference in standard deviations between the steady-state pre-transition phase and the constant HO in the detection
period occurs for 𝑦 and ¤𝑢, as shown in Figure 8. The number of samples 𝑁 = 135 in each box plot. As can be seen, there
is a 56.2% decrease in the median standard deviation of 𝑦 (Figure 8a) and a 30.4% increase in the median standard
deviation of ¤𝑢 (Figure 8b). However, there is still overlap with the standard deviations of the pre-transition steady-state
phase in the case of ¤𝑢, which makes developing a model more difficult. It can also be seen that there is a large difference
between the constant HO in the detection period, and the adaptive HO in the detection period and post-transition
steady-state phase, suggesting that adaptation is still beneficial in the DYN21 transition, despite the system with the
constant HO not becoming unstable post-transition.

In the second step of the analysis, the accuracy of a model over a range of thresholds was evaluated (according to Eq.
(5)), with the results shown in Figure 9. As can be seen, there is no threshold for any of the six candidate signals that
results in an accuracy greater than 31%. The highest accuracy is achieved for ¤𝑢, as predicted from the first step of the
analysis, but it is very low in comparison to the model for DYN12 based on 𝑒 or ¤𝑒. As alluded to earlier, the big overlap
between the pre-transition steady-state standard deviations and the standard deviations in the detection period for the
constant HO contributes significantly to the low accuracy. Regarding 𝑦, since the magnitude of the oscillations for the
constant HO becomes smaller post-transition (Figure 4b), it is impossible to achieve an accuracy greater than 0% as there
are no TPs for any threshold. Either the threshold is too low and results in a FP, or the threshold is too high and results
in a FN. However, by introducing the error acceleration ¥𝑒 (which is related to ¤𝑢 in DYN2) into the analysis, a model with
an accuracy of 73.0% can be achieved with a threshold of 3.3𝜎. Visually estimating accelerations is difficult for humans
[21], however, especially of 𝑒 when using a pursuit display since the error itself has to be estimated. Thus, these results
suggest that detecting the DYN21 transition will be significantly harder than detecting the DYN12 transition, assuming
HOs detect the transition based on a threshold for a particular signal, which is simply an assumption at this stage.
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(a) Output (𝑦). (b) Control input rate ( ¤𝑢).

Fig. 8 Comparison of the standard deviations of 𝑦 and ¤𝑢 in the steady-state pre-transition phase with the
constant HO in the detection period, the adaptive HO in the detection period, and the adaptive HO in the
steady-state post-transition phase for the DYN21 condition.

Fig. 9 Accuracy of a model based on each of the six candidate signals and the error acceleration ¥𝑒 over various
thresholds for the DYN21 transition.
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Fig. 10 Diagram of the pursuit display used in the
experiment.

Fig. 11 Set-up during the experiment, with the ex-
ception of the joystick used for the button push.

4. Simulation Analysis Conclusions
Overall, several conclusions can be made from the simulation results. First, it can be seen that in both conditions

(DYN12 and DYN21) there are significant differences between the constant HO and the adaptive HO’s control behavior.
In DYN12, the system with the constant HO becomes unstable, while in DYN21 both HO models remain stable but the
tracking performance of the adaptive HO is significantly better. Thus, detecting the transition and adapting to the new
CE dynamics is crucial to maintaining good tracking performance. Second, for the DYN12 transition, a model based on
𝑒 or ¤𝑒 was able to achieve a high accuracy (>98.5%) suggesting these are good signals off which to base a model, which
is consistent with previous research. [9][14]. On the other hand, detecting the DYN21 transition may be more difficult
because there are no significant differences in any of the six candidate signals. Only for a model based on ¥𝑒 could a
high accuracy be achieved, but visually perceiving accelerations of a signal that has to be estimated itself is difficult for
humans [21].

III. Method

A. Experiment Data
For developing and validating the model presented in this paper, a human-in-the-loop experiment was conducted at

the Faculty of Aerospace Engineering, TU Delft. Details of the experiment will be provided here.

1. Control Task
The experiment consisted of 30 runs, excluding training runs, of a single-axis (horizontal) pursuit tracking task. A

diagram of the display can be seen in Figure 10. The forcing function value was shown by the white square and the
system output was shown by the green square, meaning participants controlled the green square and had to keep it as
close to the white square as possible. The error 𝑒(𝑡) could be visually estimated by participants as the distance between
the two squares. Participants were told that their primary goal was to keep the error as low as possible for the duration of
the trial. If, at any moment, they believed the CE dynamics had changed, they were instructed to immediately press the
trigger button on a Logitech joystick, separate from the one used to control the system. The decision to use a separate
joystick was based on a recommendation from a previous experiment [14] in which it was found that reaction times for
detecting a transition could increase if both the primary task of keeping the error as low as possible and the secondary
task of pressing a button were done with the same hand on the same side-stick.

2. Apparatus
The experiment was conducted in a fixed-base simulator in the Human-Machine-Interaction Laboratory at the

Faculty of Aerospace Engineering, TU Delft. The set-up during the experiment can be seen in Figure 11. Participants
sat in the right seat and gave control inputs using their right hand. The side-stick could only be moved left and right
during the experiment, which consequently made the CE output move to the left or to the right, respectively. The
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maximum stick deflection was ±15 deg. The center of the stick is 9 cm above the axis of rotation. It had a stiffness of
3.54 N m rad−1, a damping coefficient of 0.22 N m s rad−1, an inertia of 0.01 kg m2, and a breakout moment of 0 N m.
The joystick used to indicate they noticed a change in CE dynamics (not pictured) was positioned on their left leg and
help with their left hand.

3. Independent Variables
Two independent variables characterized each trial, namely the CE dynamics and the forcing function realization.

The CE dynamics were varied to introduce time-varying behavior and allow for the investigation into the detection lags,
and several forcing function realizations were used to investigate the effect of the forcing function properties around the
transition moment, prevent predictability in the forcing function, and improve the generalization of the model [14].

Like in the simulation, there were a total of four CE dynamics conditions tested in the experiment, namely DYN1,
DYN2, DYN12, and DYN21. The structure of the CE dynamics is the same as in the simulation and given in Eq. (1),
and the beginning and end values of the gain 𝑘𝑐 and break frequency 𝜔𝑏 are given in Table 3. Transitions between the
beginning and end values of the two time-varying parameters were done according to the same sigmoid function as used
in the simulation and given in Eq. (4). The value of 𝐺 is 100 s−1 and 𝑀 is 45 s (the middle of the measurement time).

Table 3 Parameters of the CE dynamics and sigmoid function for the four dynamics cases.

CE Dynamics 𝑘𝑐1 (-) 𝑘𝑐2 (-) 𝜔𝑏1 (rad/s) 𝜔𝑏2 (rad/s) 𝐺 (s−1) 𝑀 (s)

DYN1 15 15 20 20 - -
DYN2 2 2 0.2 0.2 - -
DYN12 15 2 20 0.2 100 45
DYN21 2 15 0.2 20 100 45

The forcing functions used in the experiment all follow the structure given in Eq. (6), where 𝑁𝑡 is the number of
sine waves used to construct the forcing function (ten in this experiment), and 𝐴𝑡 [𝑖], 𝜔𝑡 [𝑖], and 𝜙𝑡 [𝑖] are the amplitude,
frequency, and phase shift of the i𝑡ℎ sine wave, respectively. The amplitudes and frequencies used for each of the ten
sine waves were kept the same for all forcing function realizations, with the phase shifts being the only difference. The
amplitudes and frequencies are given in Table 4. It should be noted that, in order to avoid spectral leakage, the frequency
of all of the sine waves must be an integer multiple 𝑘 of the fundamental frequency, defined as 𝜔𝑚 = 2𝜋

𝑇𝑚
, where 𝑇𝑚 is

the measurement time. For this purpose, the measurement time is taken to be 30 s.

𝑓𝑡 (𝑡) =
𝑁𝑡∑︁
𝑖=1

𝐴𝑡 [𝑖] sin(𝜔𝑡 [𝑖]𝑡 + 𝜙𝑡 [𝑖]) (6)

Table 4 Parameters (excluding the phase shifts) of the ten sine waves used to construct the forcing functions.

𝑛 (-) 𝑘 (-) 𝜔𝑡 (rad/s) 𝐴𝑡 (rad)

1 2 0.419 2.905 · 10−2

2 5 1.047 1.916 · 10−2

3 9 1.885 1.020 · 10−2

4 13 2.723 6.032 · 10−3

5 19 3.979 3.356 · 10−3

6 27 5.655 1.983 · 10−3

7 39 8.168 1.230 · 10−3

8 51 10.681 9.331 · 10−4

9 67 14.032 7.541 · 10−4

10 83 17.383 6.674 · 10−4
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(a) Low power forcing functions (num-
bers 1, 2, and 3).

(b) Medium power forcing functions
(numbers 4, 5, and 6).

(c) High power forcing functions (num-
bers 7, 8, and 9).

Fig. 12 All nine forcing functions used in the experiment, grouped by power level, in the 10 s window centered
around the transition.

One of the reasons different forcing function realizations were used in the experiment is that previous experiments
have found that the gradient of the forcing function around the transition moment can have a large impact on the detection
lags [14][16]. Specifically, larger gradients are expected to lead to smaller detection lags. To quantify how large the
gradients were around the transition moment, the power of the forcing functions was calculated for the two-second
window centered around the transition. Consequently, three forcing functions were chosen that had low power, three that
had medium power, and three that had high power, for a total of nine forcing function realizations used in the experiment
(the same nine forcing functions were used in the simulation, hence the choice of specifically nine forcing functions in
Subsection II.B). What counts as "low", "medium", and "high" power was determined by looking at the distribution of
power over an arbitrary two-second window in 1,000 forcing functions that had an average crest factor (calculated from
100,000 randomly generated forcing functions). From this, it was concluded that a power between 0 rad2 and 2.5·10−5

rad2 can be considered low power, between 2.5·10−5 rad2 and 7.5·10−5 rad2 can be considered medium power, and
above 7.5·10−5 rad2 can be considered high power. The forcing functions, numbered 1-9, are ordered in terms of power
in the two-second window centered around the transition, with one being the lowest power and nine being the highest
power. Time traces of the forcing functions, grouped by power level (low, medium, or high), in the transition region can
be seen in Figure 12. The shades of the colors in each subfigure correspond to the amount of power in the two-second
window centered around the transition, with the lightest shade being the least power and the darkest shade being the
most power. Three of the nine forcing functions were used to collect data exclusively for validation, namely the middle
one in each power level (forcing function numbers 2, 5, and 8). Thus, the validation forcing function for each power
level is the line that is neither the lightest nor the darkest shade in each subfigure. The phase shifts and power in the
two-second window centered around the transition for each forcing function are given in Table 5.

4. Experiment Procedures
Each participant performed a total of 30 measurement trials (i.e., excluding training trials) in the experiment, each

with a unique combination of CE dynamics and forcing function. For each of the three validation forcing functions, one
trial was performed in each of the two time-varying conditions (DYN12 and DYN21), for a total of six trials. For the
other six forcing functions, one trial was performed in each of the four conditions (DYN1, DYN2, DYN12, and DYN21),
for a total of 24 trials. The experiment was split into two halves by combining the fifteen DYN1 and DYN12 trials into
one half and the fifteen DYN2 and DYN21 trials into the other half. Within each half, the order of the conditions was
determined via a random incomplete Latin square, so that participants could not predict whether a transition would
occur in a particular trial.

The experiment started with several training runs in which participants could get familiar with the four CE dynamics
conditions. Depending on the participant’s performance, 1-5 training runs were done in each condition, usually two or
three. If participants showed good tracking and detection performance on the first trial, only one additional training trial
would be done in that condition, provided the performance remained stable. If the performance improved or was not at
the level expected, an additional training run would be done in that condition until performance stabilized at a good
level. All training runs used forcing function number 1.

Each trial lasted between 95 s and 105 s. The measurement time was always 90 s, but a random run-in time of either
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Table 5 Phase shifts and power in the two-second window centered around the transition for the nine forcing
functions used in the experiment. The forcing function numbers with "(V)" after the number are the ones used
to collect validation data.

Forcing Function Number
1 2 (V) 3 4 5 (V) 6 7 8 (V) 9

𝜙1, rad 6.065 3.454 0.885 4.315 5.608 3.671 1.040 3.219 6.172
𝜙2, rad 0.223 3.073 1.120 3.308 6.027 2.757 1.958 5.615 2.662
𝜙3, rad 4.232 5.440 4.806 0.988 3.106 5.220 2.037 4.049 0.903
𝜙4, rad 1.880 1.296 4.251 3.925 3.109 4.162 4.768 4.820 2.290
𝜙5, rad 4.757 4.062 1.260 6.259 5.506 3.685 1.522 4.160 6.112
𝜙6, rad 1.072 3.464 4.764 6.236 5.560 5.188 2.820 0.440 2.162
𝜙7, rad 2.754 0.153 5.692 0.609 5.668 5.261 1.520 2.525 4.821
𝜙8, rad 1.593 1.678 3.003 4.782 2.511 5.699 1.577 3.368 0.101
𝜙9, rad 5.404 4.585 0.116 2.776 1.259 5.566 0.114 0.213 6.090
𝜙10, rad 4.101 0.583 1.338 4.126 2.843 0.776 0.755 1.461 1.853

Power Level Low Low Low Medium Medium Medium High High High
Power, rad2 6.2 · 10−6 1.2 · 10−5 1.6 · 10−5 4.4 · 10−5 5.8·−5 6.3 · 10−5 1.3 · 10−4 2.2 · 10−4 2.3 · 10−4

5 s, 10 s, or 15 s was used to avoid participants anticipating the moment a transition would occur (since, if it was a
time-varying condition, the transition would always occur 45 s into the measurement time) and to minimize the chance a
participant could identify which forcing function was being used based on the starting position of the target. Despite the
measurement time being 90 s, the period of all of the forcing functions was 30 s (hence why 𝑇𝑚 in subsubsection III.A.3
is 30 s), which means there are exactly three periods of the forcing function in the measurement time. The first of those
could be used to look at steady-state tracking in the first condition (e.g., DYN1 in DYN12), the second could be used to
consider the transition period, and the third could be used to look at steady-state tracking in the second condition (e.g.,
DYN2 in DYN12).

If a participant made a large control error in any of the trials (due to a lack of concentration, for example) that trial
would be re-done at the end of that half of the experiment. However, this only happened with one participant, where they
had a FP in the first trial and two FPs in the second trial. For the remainder of that half of the experiment, the participant
did not have any FPs or FNs and they stated the reason for the three FPs was a lack of concentration and sufficient
knowledge of the CE dynamics (only one training run per time-varying condition was done with that participant).

5. Participants and Instructions
A total of sixteen participants took part in the experiment. One participant (Participant 8) had particularly poor

tracking and detection performance and was thus excluded from the data presented in this paper, though that participant’s
data are given in Appendix B. Thus, the data from fifteen participants are used to generate the results presented here,
hence why fifteen remnant realizations were simulated per forcing function in Subsection II.B. Each of the fifteen
participants performed the experiment according to the order given in a different row of the Latin square to balance out
order effects. As a result of the odd number of participants, and the inability to increase the number of participants to 30
due to time constraints, eight participants performed the DYN1 and DYN12 conditions first, while seven performed the
DYN2 and DYN21 conditions first. All fifteen participants are university students or staff. They were chosen either
based on the fact that they had experience with tracking tasks and had shown good performance previously, or had
hobbies that generally translate to good performance in tracking tasks, such as playing video games that require quick
reaction times (e.g., first-person shooting games) or simulator race car drivers.

Before starting the experiment, participants were briefed on the experiment procedure. Special attention was given
to highlighting that their primary task throughout the experiment should be to keep the tracking error as low as possible,
while the button push was a secondary task. However, in the event that they detected a change in CE dynamics, the
button push could momentarily be elevated to the primary task. Participants were also told to push the button when they
"think" the CE dynamics changed. After the training runs, no feedback was given to participants on their performance
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other than the root-mean-square error (RMSE) score that was shown on the display.
This experiment was reviewed and approved by the Human Research Ethics Committee at TU Delft under application

number 3307.

6. Hypotheses
A total of four hypotheses were developed for the experiment, as listed below.
• H1: In both time-varying conditions all participants will adapt their control strategy to avoid the degradation

in tracking performance observed in the computer simulations (i.e., their behavior will be similar to that of the
adaptive HO).

• H2: In both time-varying conditions participants will be quicker to detect transitions in the CE dynamics when
the gradients in the forcing function around the moment of transition are larger (quantified by the amount of power
in the two-second window centered around the transition).

• H3: In DYN12, a potential model with a high accuracy for predicting the HO’s detection of a change in CE
dynamics can be based on significant increases in the error and error rate signals.

• H4: In DYN21, a potential model with a high accuracy for predicting the HO’s detection of a change in CE
dynamics cannot be based on any of the six candidate signals (𝑦, ¤𝑦, 𝑢, ¤𝑢, 𝑒, ¤𝑒).

H1, H3, and H4 were formulated based on the conclusions from the simulation analysis (subsubsection II.C.4),
while H2 is based on Van Ham’s findings [14].

B. Data Analysis

1. Performance Metrics
There are three primary performance metrics analyzed from the experiment data, namely the RMSE, crossover

frequencies, and detection lags. The first two relate purely to tracking performance, while the latter has to do with
detection performance.

The RMSE is useful for two reasons, one of which is to verify the quality of the experiment data and ensure it is
representative of skilled HO behavior. For this purpose, the RMSE was calculated over the entire measurement time for
all of the trials in DYN1 and DYN2. The other reason is that the RMSE in the final 30 s of the measurement time in the
time-varying trials can be used to accept or reject H1. If participants always adapt their control behavior following a
transition, the distribution of RMSE values when looking at the final 30 s of a time-varying trial (such that it covers one
period of the forcing function) should be similar to the distribution of the RMSE over the six time-invariant trials in the
same condition.

The crossover frequencies are also useful to verify the quality of the experiment data. For each trial, they were
calculated using either the first or last 30 s of the measurement time, again to cover one period of the forcing function.
Therefore, DYN12 trials were considered DYN1 trials when using the first 30 s of the measurement time, and DYN2
trials when considering the last 30 s of the measurement. The same can be said for the DYN21 trials but reversed. The
crossover frequencies were then found by calculating the crossover frequency of the HO and CE frequency response.
The HO frequency response was found by dividing the frequency response of the control input by the frequency response
of the error at the frequencies of the ten sine waves which make up the forcing function 𝜈 𝑗 , as given by Eq. (7). The
corresponding phase margins were also calculated along with the crossover frequencies.

𝑌𝑝 ( 𝑗𝜔; 𝜈 𝑗 ) =
𝑈 ( 𝑗𝜔; 𝜈 𝑗 )
𝐸 ( 𝑗𝜔; 𝜈 𝑗 )

(7)

Finally, the detection lags were calculated by looking at how long it took between the transition (45 s into the
measurement time) and the moment the button push occurred. This information is useful both to have a reference as to
where to look in the time traces to determine what may have triggered the detection, as well as to be able to compare
with the model predictions to determine the quality of the model.

2. Model with Multiple of Steady-State Standard Deviation as Threshold
The primary goal of the data analysis is to find a relationship between a certain property in one of the six candidate

signals and the moment participants pressed the button to indicate they detected the change in CE dynamics. To do this
a very similar method to what was used to develop the models for the simulation data (outlined in Subsection II.B) will
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be followed. The model for the experiment data also uses a threshold based on the steady-state standard deviation of the
respective signal and the moment it is exceeded is considered the moment the model predicts the HO would detect the
change in CE dynamics.

Referring to Figure 3 and the accompanying explanation of it in Subsection II.B, there are only a few differences
with the method that will be followed here. First, for the analysis of the experiment data, the "detection period" is no
longer considered, meaning a TP can occur at any moment after a transition and before the end of the trial. Second, it is
possible to have TNs here, since some of the experiment trials were time-invariant. For these cases, a TN occurs if the
threshold is never exceeded during the trial, and a FP occurs if the threshold is exceeded at any moment during the
trial. In the time-varying trials, TPs, FPs, and FNs are calculated in the same way as was explained in Subsection II.B
(with the exception of TPs only being able to occur in the detection period, as just described). Finally, the only other
difference with respect to the simulation data analysis is that for the experiment data, the reference steady-state standard
deviation that is used to determine the threshold is calculated per participant, as opposed to using every participant’s
data. The accuracy of the model is then calculated using Eq. (5). As a second measure of the quality of the model, the
(time) difference between the model detections (when the threshold is exceeded) and the participant detections (when
participants pressed the button) was analyzed.

IV. Results

A. RMSE
To verify the quality of the experiment data, the RMSE sorted by participant over the six time-invariant trials of

DYN1 is shown in Figure 13a, alongside the RMSE for the six time-invariant trials of DYN2 in Figure 13b. As a
reference, the right-most box plot in each subfigure is the data for all participants combined. Therefore 𝑁 = 6 for
each box plot except the right-most in each subfigure, where 𝑁 = 90. It is clear that there is a difference in tracking
performance between participants. However, different skill levels are to be expected between different people in any
task, and the differences in our dataset are not large enough to consider a specific (group of) participant(s) as outliers or
unskilled. This is supported by the fact that there are no data points considered outliers in the box plot for all of the
participant’s data (right-most box plot) in Figure 13a and only three outliers in Figure 13b. Thus, these results suggest
that the quality of the experiment data is good, and all participants can be considered skilled HOs.

With regards to using the RMSE as a metric to determine if participants always adapted their control behavior to the
new CE dynamics (as hypothesized by H1), the RMSE is sorted by participant for the last 30 s of the DYN21 trials
in Figure 13c and the last 30 s of the DYN12 trials in Figure 13d. The former can be compared to the DYN1 trials
(Figure 13a), while the latter can be compared to the DYN2 trials (Figure 13b). As can be seen, the distribution in
RMSE for each participant is very similar between the two pairs, indicating that the control behavior was similar and
thus that adaptation took place. One noticeable difference is that the spread in RMSE, quantified by the interquartile
range (IQR), is somewhat larger in Figure 13c and Figure 13d than in Figure 13a and Figure 13b, respectively. However,
this is to be expected given that the former two are calculated from only one period of the forcing function (30 s) while
the latter two are calculated from three periods of the forcing function (90 s). Thus, mistakes, or lack thereof, have a
bigger impact on the RMSE when only looking at a 30 s period.

As a final point, sorting the RMSE by forcing function and the order in which the conditions were performed was
found not to impact the RMSE, as can be seen in Appendix C.

B. Crossover Frequencies
The crossover frequencies and phase margins sorted by participant, calculated using the first 30 s of the measurement

time according to the method described in subsubsection III.B.1, are presented in Figure 14. The crossover frequencies
and phase margins from the six DYN1 trials and six DYN12 trials that did not use the validation forcing functions are
shown in Figure 14a and Figure 14c, respectively, while the equivalent results for the DYN2 and DYN21 trials are
shown in Figure 14b and Figure 14d, respectively. Therefore, 𝑁 = 12 in all of the box plots, except the right-most in
each subfigure where 𝑁 = 180 since it shows all of the participant’s data combined. The scattered points overlayed are
the results of the three DYN12 trials (or DYN21 trials for Figure 14b and Figure 14d) that used the validation forcing
functions. The mean crossover frequency in DYN1 is 2.77 rad/s, while in DYN2 it is 2.33 rad/s. The phase margins
are also good, with a mean of 55.6 deg in DYN1 and 41.1 deg in DYN2. In the context of verifying the quality of the
experiment data, these results show that all participants had good crossover frequencies and phase margins, and no

18



(a) Time-invariant DYN1 trials. (b) Time-invariant DYN2 trials.

(c) Last 30 s of the DYN21 trials, so representative of DYN1. (d) Last 30 s of the DYN12 trials, so representative of DYN2.

Fig. 13 RMSE by participant in different conditions and phases of the trials.
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(a) DYN1 crossover frequencies. (b) DYN2 crossover frequencies.

(c) DYN1 phase margins. (d) DYN2 phase margins.

Fig. 14 Crossover frequencies and phase margins by participant calculated using the first 30 s of the measurement
time in the six time-invariant trials and the six time-varying trials that did not use the validation forcing functions.
The scattered points are the results of the three time-varying trials that used the validation forcing functions.

(group of) participant(s) performed significantly worse than the others. The latter can be seen by the fact that there
is only one outlier in the box plot with all of the participant’s data in Figure 14a, two in the box plot with all of the
participant’s data in Figure 14c and Figure 14d, and none in Figure 14b. Thus, like with the RMSE in Subsection IV.A,
these results suggest the experiment data is of good quality. Given the relationship between crossover frequency and
RMSE, the results from Figure 14 are consistent with the results from Figure 13 in that participants who had low
RMSE scores generally had high crossover frequencies. For the time-invariant DYN1 trials, the correlation coefficient 𝜌
between the RMSE and crossover frequency is -0.81, and for the time-invariant DYN2 trials, 𝜌 is -0.52, both of which
can be considered high [22].

Figure 15 shows the crossover frequencies and phase margins calculated using the final 30 s of the measurement time
in the six time-varying trials that did not use the validation forcing functions. Thus, 𝑁 = 6 in each of the box plots, except
the right-most one in each subfigure where 𝑁 = 90 since it shows all of the participant’s data combined. The scattered
points overlayed are the results of the three time-varying trials that used the validation forcing functions. It should be
noted that only the time-varying trials are included in Figure 15 because the goal of this figure is to compare it with
Figure 14 to see whether adaptation to the new CE dynamics took place. As can be seen, the means and distributions
are similar. Thus it can be concluded, like with the RMSE, that participants adapted their control behavior.

In comparison to similar previous experiments [14][15], the crossover frequencies found here are significantly
higher. Possible reasons for this are that the display used in this experiment is different (not only the fact that it is a
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(a) DYN1 crossover frequencies. (b) DYN2 crossover frequencies.

(c) DYN1 phase margins. (d) DYN2 phase margins.

Fig. 15 Crossover frequencies and phase margins by participant calculated using the last 30 s of the measurement
time in the six time-varying trials that did not use the validation forcing functions. The scattered points are the
results of the three time-varying trials that used the validation forcing function.
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(a) DYN12. (b) DYN21.

Fig. 16 Detection lags by participant in the time-varying trials.

pursuit display but also the symbols on the display are different), the CE dynamics were modified, and the horizontal
axis was used in this experiment as opposed to the vertical (pitch) axis.

Like with the RMSE, the forcing function and order of conditions were found to have minimal impact on the
crossover frequencies, as can be seen in Appendix C.

C. Detection Lags and Detection Performance
The detection lags sorted by participant for the DYN12 transition are shown in Figure 16a, and the detection lags

for the DYN21 transition are shown in Figure 16b. Again, the right-most box plot shows the data for all participants
combined. Participant 2 had a FP in one of the DYN21 trials, thus 𝑁 = 5 for that box plot, and Participant 17 had one
FP and one FN in the DYN21 trials so 𝑁 = 4 for that box plot. For the remaining box plots 𝑁 = 6, except the right-most
in each subfigure where 𝑁 = 90 and 𝑁 = 87 in Figure 16a and Figure 16b, respectively. The scattered points overlayed
are the detection lags for the trials that used the validation forcing functions. Note that only TPs are shown and some
(outliers in the) detection lags in Figure 16b are outside of the y-axis range so are indicated by an upwards arrow along
with the corresponding detection lag.

Despite the results from Section II suggesting the DYN21 transition would be much harder to detect, it is interesting
to note that the detection lags for the two conditions are not vastly different. The mean for the DYN12 transition is 1.82
s compared to 3.03 s for the DYN21 transition. However, the medians are very similar, with a median detection lag of
1.73 s in DYN12 and 1.83 s in DYN21. The large difference between the mean and median in DYN21 is evident from
the box plot with all of the participant’s data (right-most box plot) in Figure 16b, where it can be seen that the median is
much lower than the mean, and it is the third quartile line that is approximately equal to the mean. This indicates that
the mean is being dragged up by a few slow detections. It can also be seen in Figure 16 that the spread per participant is
generally larger for the DYN21 transition than for the same participant in the DYN12 transition. The larger spread can
be seen by the bigger IQRs in Figure 16b compared to Figure 16a. For DYN12, the mean IQR over all participants is
0.93 s, while for DYN21 it is 1.35 s. The larger variability suggests the DYN21 transition was more difficult to detect.

In comparison to similar previous experiments, the detection lags in this experiment were much lower. Van Ham
[14] and Plaetinck [23] both performed compensatory tracking experiments investigating the detection of the DYN12
transition where participants were also instructed to press a button when they detected a transition. The median detection
lag for Van Ham’s experiment [14] was 6.6 s and for Plaetinck’s experiment [23] it was 5.2 s (both significantly higher
than the median for DYN12 and DYN21 in this experiment). Two factors likely contributed to this. The first is that the
break frequency 𝜔𝑏 of the CE dynamics in DYN1 was increased from 6 rad/s to 20 rad/s for this experiment, so the
system responded more like pure a single integrator in the crossover region and made the two conditions more distinct.
The second is the fact that a pursuit display was used in this experiment, which will be further discussed in Section V.

The detection lags sorted by (non-validation) forcing function can be seen in Figure 17a for DYN12 and in Figure 17b
for DYN21. Again, the outliers that exceed the y-axis range in Figure 17b are shown by an upwards arrow along with the
corresponding detection lag. As can be seen, there is no clear downward trend in either condition, so the impact of the
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(a) DYN12. (b) DYN21.

Fig. 17 Detection lags sorted by forcing function.

forcing function was not as large as expected by H2. For DYN21, it can be seen that the spread decreases for the latter
forcing functions, suggesting the transition is slightly easier to detect when the gradients in the forcing function are large.
However, the fact that the lower bound is similar across all forcing functions suggests that the forcing function does not
have a very big influence for a well-trained HO. For example, looking at the data for Participant 15 (the scattered crosses
in Figure 17b), who arguably had the best detection performance in DYN21 (and good tracking performance in both
DYN1 and DYN2), it is clear that increasing gradients in the forcing function did not lead to smaller detection lags.

For the DYN12 detection lags, a repeated-measures ANOVA test revealed no significant differences in the means
depending on the power in the forcing function in the transition region 𝐹(2, 58) = 1.71, 𝑝 = 0.19. For the DYN21
detection lags, Mauchly’s test indicated that the sphericity assumption had been violated 𝜒2(2) = 26.2, 𝑝 = <0.001. As a
result, the degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity (𝜖 = 0.61). Again, the
results revealed no significant difference in the means depending on the power in the forcing function in the transition
region 𝐹(1.22, 33.0), 𝑝 = 0.353. Note that the two (non-validation) forcing functions in each power level were combined
for the ANOVA test, such that the comparison was between low power, medium power, and high power.

Overall, there were a total of twelve FPs, split over six participants, and one FN. Thus, the accuracy over all of
the participants, calculated according to Eq. (5), is 97.1%. Of the twelve FPs, seven were in DYN2, two were in each
of DYN21 ("too early detections") and DYN1, and one was in DYN12 (also a "too early detection"). The FN was in
DYN21. Therefore, the participant accuracy in DYN1 and DYN12 was 98.7%, and in DYN2 and DYN21 it was 95.6%,
again suggesting the DYN21 transition was (slightly) more difficult to detect. Six of the twelve FPs occurred during one
of the first three trials in the experiment (excluding training trials), and a further three occurred in one of the first three
trials of the second half of the experiment, where the set of conditions being tested was different from the first half. This
suggests that either there was insufficient training, or the level of confidence participants used to press the button was
too low, and after realizing it resulted in too many false button pushes, they adjusted and waited a bit longer before
pressing the button. All of this information is summarized in a table in Appendix D.

D. Model for DYN12 Transition Detection
Using the data reserved for developing the model and the methodology given in subsubsection III.B.2, a model

based on each of the six candidate signals analyzed can be made and evaluated. In Figure 18a, the accuracy of a model
based on the different signals over various thresholds can be seen. As expected based on H3, 𝑒 is the signal that results
in the highest accuracy, with a maximum accuracy of 88.9% at a threshold of 3.6𝜎. For the validation data set, the
accuracy at this threshold is 84.4%. The proposed 3.6𝜎 threshold is very similar to Van Ham [14], who proposed a
threshold of 3.9𝜎 on the error. In Figure 18b, the breakdown of the number of TPs, FPs, TNs, and FNs over the same
range of thresholds can be seen. At the threshold of 3.6𝜎, there are 80 TPs (out of 90 possible), 13 FPs, 80 TNs, and 7
FNs. Since 50% of the trials considered here (i.e., excluding the trials used to collect validation data) were time-varying,
a 100% accuracy would be achieved if there was a TP in 50% of the trials and a TN in 50% of the trials.

In Figure 19, a comparison can be made between the model detections (i.e., when the threshold is exceeded), and
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(a) Accuracy of a model based on each of the signals over a
range of thresholds.

(b) Breakdown of the number of TPs, FPs, TNs, and FNs
for a model based on 𝑒.

Fig. 18 Analysis of which signal results in the best accuracy for modeling the DYN12 transition.

participant detections (i.e., when participants pressed the button). The ordering of the trials on the x-axis is arbitrary,
as the intention is merely to show a comparison of the model detections with the participant detections for each trial.
However, the trials are numbered according to the following (arbitrary) structure. First, the DYN1 trials are grouped
(trials 1-90), and the DYN12 trials are grouped (trials 91-180). Within each half, the trials are ordered first by participant
and then by forcing function number (in ascending order). Therefore, trials 1-6 are the six DYN1 trials for Participant 2
in order of ascending forcing function number, trials 7-12 are the six DYN1 trials for Participant 3 in order of ascending
forcing function number, etc. The same applies to trials 91-180 but with the DYN12 trials instead of DYN1. Therefore,
if a detection occurs in one of the areas shaded in red, it is a FP (the darker red is a FP in DYN1 and light red is a "too
early detection" in DYN12), while if a detection occurs in the area shaded in green, it is a TP.

The first observation that can be made is that the model has more FPs than the participants, which is the source of
the lower model accuracy compared to the accuracy of the participants in the DYN1 and DYN12 trials. Focusing on the
TPs, it can also be seen that there are a considerable amount of trials where the model detections are slow. The slowest
participant detection is 4.95 s, whereas there are thirteen trials where the model detections are slower than 4.95 s.

Overall, there are 80 trials (out of 90 DYN12 trials) where both the model and the participant have a TP. For these 80
trials, the mean difference between the model’s detection lags and the participant’s detection lags is 3.46 s. However, it
is interesting to consider the cases where the model detections are quicker and the cases where the participant detections
are quicker separately. Out of the 80 trials where both the model and the participant have a TP, the model detections
were quicker in 42 trials and the participant detections were quicker in the remaining 38 trials. In the 42 trials where the
model detections were quicker, the mean difference between the model detections and the participant detections is 0.61
s, which is close to a human reaction time [24]. In the 38 trials where the participant detections were quicker, the mean
difference between the model detections and participant detections is 6.62 s. This suggests that in approximately half of
the trials (the 42 trials where the model detections were quicker), the model detections are a good estimate of the actual
participant detection lags. However, in the other half of the trials (the 38 trials where the participant detections were
quicker), the model detections are not representative of the actual participant detection lags. A possible reason for this
is that there is a different, or multiple, mechanisms at play in the detection phase. For example, it could be that the
participant detections were triggered by a filtered version of 𝑒. Another possibility is that the detection was based on the
proposed threshold for 𝑒 in some cases (e.g., the 42 trials where the model detections were quicker), but on a threshold
for ¤𝑒 or the observed relationship between the control inputs and the system’s response in other cases.

All in all, it can be concluded that the model proposed based on a threshold for 𝑒 is capable of achieving a high
accuracy in detecting if a transition occurred, but not as good at estimating the participants’ detection lags.

E. Model for DYN21 Transition Detection
Following the same procedure that was just described for the DYN12 transition, a model can be made for the DYN21

transition. The accuracy for all of the signals over a range of thresholds can be seen in Figure 20a. Note that an accuracy
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Fig. 19 Comparison of the moment the threshold is exceeded in the model and when participants pressed the
button. FPs appear on the left (DYN1) and bottom half of the right (DYN12 but before the transition) while TPs
appear on the top half of the right side.

greater than 0.5 cannot be achieved using the six candidate signals, as hypothesized by H4. As a result, it was decided
to include the output acceleration ¥𝑦 in the analysis as well. Further discussion on the implications of this choice of
signal will be given in Section V. However, with a model based on ¥𝑦 it is possible to achieve an accuracy as high as
99.4% at a threshold of 4𝜎. This results in a total of 90 TPs, 1 FP, 89 TNs, and 0 FNs. The accuracy of the validation
data set at a threshold of 4𝜎 is 100%.

In Figure 21, the same comparison that was shown in Figure 19 for the DYN12 model is presented for the DYN21
model. Again, the ordering of the trials on the x-axis is arbitrary but is done in the same way as in Figure 19. Contrary
to the model for DYN12, there are more participant FPs in this case, with only one model FP.

Out of the 90 DYN21 trials, there are 87 trials in which both the model and the participant had a TP. For these 87
trials, the mean difference between the model’s detection lags and the participant’s detection lags is 3.12 s. Again, it is
interesting to consider the cases where the model detections were quicker and the cases where the participant detections
were quicker separately. Here, there is a big difference in the number of cases of each, with the model detections being
quicker in 72 of the 87 trials, and the participant detections being quicker in the remaining 15 trials. When the model
detections are quicker, the mean difference between the model’s detection lags and the participant’s detection lags is
2.59 s. Over the same trials, the mean participant detection lag is 3.08 s, which indicates that the model detections are
extremely quick in these cases. In fact, in 29 of the 72 trials where the model detections are quicker, the model detection
occurs before 𝑡 = 45.03 s, so before the transition is even complete. A discussion on the implications of this will be
provided in Section V. In the 15 trials where the participant detections were quicker, the mean difference in detection
lags between the model and the participant is 5.65 s. Thus, the model’s detection lags are not representative of the
actual participant detection lags in neither the case where the model detections were quicker nor the case where the
participant detections were quicker.

Overall, it can be concluded that the DYN21 model is able to achieve a near-perfect accuracy in detecting the
transitions, but often the model’s detection lags are extremely small and are therefore not representative of the actual
participant detection lags.

F. Relationship Between 𝑢- ¤𝑦 and 𝑢- ¥𝑦 in DYN21
To illustrate one of the benefits of using a pursuit display over a compensatory display, the relationship between 𝑢

and ¤𝑦, as well as between 𝑢 and ¥𝑦, is presented here. This represents the relationship between what participants do (i.e.,
give control inputs) and what they see on the screen in response when using a pursuit display. The relationship between
𝑢 and ¤𝑦 for the ten-second window centered around the transition in every DYN21 trial is shown in Figure 22a. The
relationship between 𝑢 and ¥𝑦 for all of the DYN21 trials over the same period is given in Figure 22b. The red crosses
are the moment participants pressed the button. Prior to the transition, the DYN2 system is being controlled which
means control inputs are proportional to ¥𝑦. Thus, it is logical that the relationship is linear, as in Figure 22b. After the
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(a) Accuracy of a model based on each of the signals over a
range of thresholds.

(b) Breakdown of the number of TPs, FPs, TNs, and FNs
for a model based on ¥𝑦.

Fig. 20 Analysis of which signal results in the best accuracy for modeling the DYN21 transition.

Fig. 21 Comparison of the moment the threshold is exceeded in the model and when participants pressed the
button. FPs appear on the left (DYN2) and bottom half of the right (DYN21 but before the transition) while TPs
appear on the top half of the right side.
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(a) 𝑢- ¤𝑦 relationship. (b) 𝑢- ¥𝑦 relationship.

Fig. 22 Relationship between 𝑢- ¤𝑦 and 𝑢- ¥𝑦 in the ten-second window centered around the DYN21 transition for
all participants. The button pushes are indicated by the red crosses.

transition, the control inputs are proportional to ¤𝑦, and thus a linear relationship emerges in Figure 22a. As a result of
this, all of the button pushes occur in the linear portion of Figure 22a (some of the button pushes towards the bottom left
of Figure 22a appear to be outside the linear portion but this is not the case as the linear portion is relatively wide in
DYN1). In Figure 22b, the button pushes do not exclusively occur in the linear portion, and when they do, the trajectory
taken to get there always goes outside of the linear portion first. Therefore, in addition to a threshold on a particular
signal (e.g., ¥𝑦 as proposed in Subsection IV.E), deviations from the expected (linear) relationship between 𝑢 and ¤𝑦 or 𝑢
and ¥𝑦 can also act as a trigger for participants to detect a transition.

V. Discussion
The goal of this research was to gain a better understanding of what triggers a HO to detect a change in CE dynamics.

A human-in-the-loop single-axis pursuit tracking experiment was performed in which the CE dynamics sometimes
transitioned from approximate single to approximate double integrator dynamics or vice versa. If and when participants
detected the change in CE dynamics, they pressed a button on a joystick to indicate that they detected it. A total of fifteen
participants took part, each performing a total of six trials in DYN1, nine trials in DYN12, six trials in DYN2, and nine
trials in DYN21. The data from all of the DYN1 and DYN2 trials, as well as six of the trials from each of DYN12 and
DYN21 were used to develop a model that predicts when participants would press the button. It was found that the error
signal 𝑒 was best for modeling the DYN12 transition, where an accuracy of 88.9% could be achieved for a threshold of
3.6𝜎. For DYN21, none of the six candidate signals (𝑦, ¤𝑦, 𝑢, ¤𝑢, 𝑒, or ¤𝑒) resulted in an accuracy greater than 50%, so
instead the model is based on the output acceleration ¥𝑦, which resulted in an accuracy of 99.4% for a threshold of 4𝜎.

The experiment was successful in collecting good-quality data for developing the models. Throughout the entire
experiment, the participant detection accuracy was 97.1%, meaning in the large majority of cases they were able to
detect when the CE dynamics changed. The median detection lags in this experiment were also small compared to
previous experiments [14][23], with a median of 1.73 s in the DYN12 transition and 1.83 s in the DYN21 transition,
again indicating that the quality of the participants was good. The mean crossover frequencies were high as well, with a
mean of 2.77 rad/s in DYN1 and 2.33 rad/s in DYN2. A similar experiment was previously conducted [15] where the
mean participant crossover frequency was 0.97 rad/s in DYN1 and 1.67 rad/s in DYN2. Such crossover frequencies
make it difficult to develop a good, representative model of HO control behavior because they do not really represent
skilled HO control behavior. Thus, it is likely that the results presented here are more generalizable to skilled HO
behavior, which is ultimately where the applications of this research lie.

The first hypothesis investigated, H1, predicted that all participants would adapt their control behavior after a
transition to approximate the behavior of the adaptive HO in the simulation (Subsection II.C). In every DYN12 trial
of the experiment, participants were able to stabilize the system after the transition and continue tracking the forcing
function with the new CE dynamics while keeping the system output symbol on the display until the end of the trial
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(even if it momentarily left the display immediately after the transition). On the other hand, it was found that the system
with the constant HO in the simulation became unstable after the transition, so this shows that the participants all adapted
their control behavior in the DYN12 trials. In DYN21, the system with the constant HO did not become unstable in the
simulation, but did suffer from worse tracking performance than the adaptive HO after the transition. It can be seen in
Figure 13c and Figure 15 that this was not the case for participants in the experiment, as the distribution of RMSE and
crossover frequencies calculated using the last 30 s of the DYN21 trials is very similar to that of steady-state tracking in
DYN1. Thus, H1 is accepted.

The second hypothesis, H2, predicted that larger gradients in the forcing function in the transition region would lead
to smaller detection lags. To quantify how large the gradients in the transition region were, the power in the forcing
functions in the two-second window centered around the transition was used. Thus, the higher the forcing function
number, the larger the gradients in the transition region. From Figure 17 and the repeated-measures ANOVA tests
(Subsection IV.C) it can be concluded that larger gradients in the transition region did not lead to smaller detection lags,
and thus H2 is rejected. Despite the fact that Van Ham’s experiment [14] had previously found that large gradients in
the forcing function did generally lead to smaller detection lags, there is one crucial difference with this experiment that
likely explains it, namely the type of display. Van Ham [14] used a compensatory display, whereas a pursuit display was
used in this experiment. With the pursuit display, participants can see the relationship between their control inputs
and the system’s response, whereas this relationship is impacted in an unknown way (to the participant) by the forcing
function when using a compensatory display.

Knowledge of this relationship is less important when the gradients in the forcing function are large because large
control inputs are required to track the large gradients. This causes the magnitude of the majority of the signals in the
control loop to increase. Therefore, if exceeding a threshold (e.g., on 𝑒 for DYN12 and on ¥𝑦 for DYN21) is a trigger
for the human operator to detect a change in CE dynamics, the large control inputs will make it more likely that this
threshold is exceeded.

On the other hand, knowledge of the relationship between the control inputs and the system’s response can be more
useful when the gradients in the forcing function are small. This is because the magnitude of the relevant signal may not
be large enough to exceed the threshold. In this case, participants can use the fact that, in DYN1, 𝑢 is proportional to ¤𝑦,
while in DYN2, 𝑢 is proportional to ¥𝑦. Thus, in DYN1, moving the side-stick to the left or right causes the system output
to immediately move in that direction. On the other hand, in DYN2, it is necessary to give a control input in the opposite
direction to the direction of ¤𝑦 to first slow it down, and only then it will start moving in the direction of the control input.
Therefore, if participants notice that the relationship between the control inputs and the output has changed, namely that
the sign of ¤𝑦 does not immediately change when the sign of 𝑢 changes for the DYN12 transition, or that the sign of ¤𝑦
does immediately change when the sign of 𝑢 changes for the DYN21 transition, that can also be used as a trigger to
detect the transition. This relationship is something that cannot be seen by the HO with a compensatory display, so it is
hypothesized here that this is why the gradients in the forcing function did not have a big impact on the detection lags.

The final two hypotheses, H3 and H4, have to do with which signal is best to base a model on. For the DYN12
transition, 𝑒 is the only one of the six candidate signals that results in a high accuracy. H3 predicted the model could
be based on 𝑒 or ¤𝑒 so is therefore rejected, but the first half of the hypothesis is accepted. This is consistent with
previous research that found that a model with a threshold based on 𝑒 performs well in detecting (specifically) the
DYN12 transition [8][9][14]. The accuracy of the model with a threshold of 3.6𝜎 on 𝑒 is high, though the estimation of
the detection lags can still be improved. In approximately half of the DYN12 trials, the model’s detection lags were
representative of the actual participant detection lags, but in the other half, there was a big difference in detection lags.

For the DYN21 transition, it can be seen in Figure 20a that none of the six candidate signals could be used to make a
model with an accuracy greater than 50%. Thus, H4 is accepted. Instead, a model based on ¥𝑦 is proposed. Despite the
fact that humans are not good at visually perceiving accelerations [21], there is still merit to the model because it is not
argued that participants need to be able to estimate the value of ¥𝑦. Rather, they only need to be aware of significant
changes to its properties, which, post-transition in DYN21, can be perceived as a system that is more aggressive, more
responsive to control inputs, and less sluggish, or in the words of some of the participants, less "oversteery". ¥𝑦 also
captures the the relationship between 𝑢 and ¤𝑦, and between 𝑢 and ¥𝑦 described just above. This is because, in order for ¤𝑦
to be proportional to 𝑢 (as is the case in DYN1), it is necessary for ¥𝑦 to be larger in DYN1 than DYN2 so that the sign of
¤𝑦 changes quicker after a change in the sign of 𝑢, and this can be used by participants to detect the transition.

A limitation of this model, however, is that the model detections (i.e., the moment the threshold is exceeded) are
extremely quick, often occurring before 𝑡 = 45.03 s for a transition at 𝑡 = 45 s. This suggests the model could be fit
to a property of the CE dynamics rather than something participants use to detect the transition, and thus may not be
generalizable to other CE dynamics. On the other hand, it can be argued that this information is what participants use to
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detect the transition, but the fact that it is an acceleration and requires more precise knowledge of the expected response
means it takes longer for the participant to notice.

The next step towards using this research in real-life applications is adjusting the models to more closely estimate
the real HO detection lags. One complication in estimating the detection lags, however, is that it is not a binary decision
to press the button, such as if someone was instructed to press the button when a picture pops up on the screen. Thus,
there is a statistical element to the data [14]. Furthermore, the button push data are subjective, and different people have
different thresholds for when they think they should press the button, in addition to cognitive decision time [24]. For
this reason, it is recommended to introduce lags into the detection process. This can be done, for example, by passing
the relevant signal through a low pass filter as done by Hess [13] or adding an explicit delay to model reaction times.

Another recommendation is to include 𝑢 in the model. For this research, an attempt was made to include 𝑢 in
the threshold though it was unsuccessful in improving the estimation of the detection lags. Nonetheless, the results
presented in this paper suggest that the relationship between 𝑢 and the system’s response is important, so additional
investigation into how to include this in the model is recommended. One possibility is to develop a model that generates
expectations of the behavior of 𝑢 given the current 𝑦, ¤𝑦, and 𝑓𝑡 . Significant mismatch between the expectation and reality
can then also be used as a trigger, or can be incorporated into the threshold (e.g., the higher the mismatch, the lower
the threshold on ¥𝑦 for the DYN21 model). This is similar to Phatak and Bekey [9] and Van Ham [14] who proposed
independent thresholds on 𝑒 and ¤𝑒 but with a (possible) difference. The recommendation here is to try and include 𝑢 in
a single model such that it uses (at least) 𝑢 and ¥𝑦 to determine a threshold, as opposed to a model that can trigger based
on individually looking at different signals. To further understand the role that the relationship between the control
inputs and system response plays, a similar experiment to the one performed for this research could be conducted but
with several disturbance signals, each with differing amounts of power. If the relationship between the control inputs
and the system’s response is indeed critical, it should be found that increasing the power in the disturbance signal leads
to larger detection lags because the relationship is lost.

Overall, however, this research provides the first steps to understanding how HOs detect a change in CE dynamics,
particularly the DYN21 transition, using pursuit displays. A model for the DYN21 transition based on ¥𝑦 is proposed and
recommendations for future improvements to the model as well as future investigations are made.

VI. Conclusion
This paper aimed to gain an understanding of what triggers a HO to detect a change in CE dynamics and see if this

can be predicted with a model. A human-in-the-loop pursuit tracking task experiment was performed to collect data to
develop and validate the models. Fifteen participants took part and had a combined accuracy of 97.1% in detecting
transitions. The mean detection lag was 1.82 s for the DYN12 transition and 3.03 s for the DYN21 transition. The
observed crossover frequencies were high, with a mean of 2.77 rad/s for DYN1 and 2.33 rad/s for DYN2, indicating
that skilled participants were selected. Two models were developed, one for DYN12 and one for DYN21. The model
for DYN12 is based on 𝑒 and has an accuracy of 88.9% at a threshold of 3.6𝜎. The model for DYN21 is based on ¥𝑦
and has an accuracy of 99.4% at a threshold of 4𝜎. The estimation of detection lags in both models remains one of
their limitations, particularly the model for DYN21 where the model’s detection lags are often extremely small, and, in
the majority of cases, well before the participants pushed the button. Overall, however, this research helped confirm
previous findings that a high-accuracy model can be developed based on 𝑒 for the DYN12 transition, proposed a model
with a high accuracy for the DYN21 transition, and identified that the relationship between the control inputs and system
response is likely key in the detection process, particularly for the DYN21 transition when using a pursuit display.

References
[1] Mulder, M., Pool, D. M., Abbink, D. A., Boer, E. R., Zaal, P. M., Drop, F. M., Van Der El, K., and Van Paassen, M. M., “Manual

Control Cybernetics: State-of-the-Art and Current Trends,” , 10 2018. https://doi.org/10.1109/THMS.2017.2761342.

[2] “Loss of Control In-flight (LOC-I),” , 2023. URL https://www.iata.org/en/programs/safety/operational-safety/loss-of-control-
inflight/#:~:text=LOC%2DI%20refers%20to%20accidents,failures%2C%20icing%2C%20or%20stalls.

[3] Drop, F., “Control-Theoretic Models of Feedforward in Manual Control,” 2016. https://doi.org/10.4233/uuid:7c1f62db-9a5a-
4e02-8f11-488d6a299500, URL https://doi.org/10.4233/uuid:7c1f62db-9a5a-4e02-8f11-488d6a299500.

[4] Young, L. R., Green, D. M., Elkind, J. I., and Kelly, J. A., “Adaptive Dynamic Response Characteristics of the Human

29



Operator in Simple Manual Control,” IEEE Transactions on Human Factors in Electronics, Vol. HFE-5, No. 1, 1964, pp. 6–13.
https://doi.org/10.1109/THFE.1964.231648.

[5] Young, L. R., and Stark, L., “Biological control system - a critical review and evaluation, developments in manual control,”
Tech. rep., In collab. with NASA, 3 1965. URL https://archive.org/details/nasa_techdoc_19650009660/page/n107/mode/2up.

[6] Young, L. R., “On Adaptive Manual Control,” Ergonomics, Vol. 12, No. 4, 1969, pp. 635–674. https://doi.org/10.1080/
00140136908931083.

[7] Niemela, R. J., and Krendel, E. S., “Detection of a Change in Plant Dynamics in a Man-Machine System,” Correspondence,
1975.

[8] Elkind, J. I., and Miller, D. C., “Process of Adaptation by the Human Controller,” Second Annual NASA University Conference
on Manual Control, 1966, pp. 47–63.

[9] Phatak, A. V., and Bekey, G. A., “Model of the Adaptive Behavior of the Human Operator in Response to a Sudden
Change in the Control Situation,” IEEE Transactions on Man-Machine Systems, Vol. 10, No. 3, 1969, pp. 72–80.
https://doi.org/10.1109/TMMS.1969.299886.

[10] Bastian, A. J., “Moving, sensing and learning with cerebellar damage,” Current Opinion in Neurobiology, Vol. 21, No. 4, 2011,
pp. 596–601. https://doi.org/10.1016/j.conb.2011.06.007.

[11] Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Pütz, B., Yoshioka, T., and Kawato, M., “Human cerebellar
activity reflecting an acquired internal model of new tool,” Nature, Vol. 403, 2000, pp. 192–195.

[12] Hess, R. A., “Modeling pilot control behavior with sudden changes in vehicle dynamics,” Journal of Aircraft, Vol. 46, No. 5,
2009, pp. 1584–1592. https://doi.org/10.2514/1.41215.

[13] Hess, R. A., “Modeling human pilot adaptation to flight control anomalies and changing task demands,” Journal of Guidance,
Control, and Dynamics, Vol. 39, No. 3, 2016, pp. 655–666. https://doi.org/10.2514/1.G001303.

[14] van Ham, J. M., Pool, D. M., and Mulder, M., “Predicting Human Control Adaptation from Statistical Variations in Tracking
Error and Error Rate,” IFAC-PapersOnLine, Vol. 55, No. 29, 2022, pp. 166–171. https://doi.org/10.1016/j.ifacol.2022.10.250.

[15] Terenzi, L., Zaal, P. M., Pool, D. M., and Mulder, M., “Adaptive Manual Control: a Predictive Coding Approach,” AIAA Science
and Technology Forum and Exposition, AIAA SciTech Forum 2022, American Institute of Aeronautics and Astronautics Inc,
AIAA, 2022. https://doi.org/10.2514/6.2022-2448.

[16] Jakimovska, N., Pool, D. M., van Paassen, M. M., and Mulder, M., “Using the Hess Adaptive Pilot Model for Modeling
Human Operator’s Control Adaptations in Pursuit Tracking,” American Institute of Aeronautics and Astronautics (AIAA),
2023. https://doi.org/10.2514/6.2023-0541.

[17] Mulder, M., Pool, D. M., van der El, K., Drop, F. M., and Van Paassen, M. M., “Manual Control with Pursuit Displays: New
Insights, New Models, New Issues,” IFAC-PapersOnLine, Vol. 52, No. 19, 2019, pp. 139–144. https://doi.org/10.1016/j.ifacol.
2019.12.125.

[18] McRuer, D. T., and Jex, H. R., “A Review of Quasi-Linear Pilot Models,” IEEE Transactions on Human Factors in Electronics,
Vol. HFE-3, No. 3, 1967, pp. 231–249. https://doi.org/10.1109/THFE.1967.234304.

[19] Van Grootheest, H. A., Pool, D. M., Van Paassen, M. M., and Mulder, M., “Identification of time-varying manual-control
adaptations with recursive ARX models,” AIAA Modeling and Simulation Technologies Conference, American Institute of
Aeronautics and Astronautics Inc, AIAA, 2018. https://doi.org/10.2514/6.2018-0118.

[20] Van Ham, J. M., Adaptive Manual Control - The Human Response to Sudden Changes in Controlled Element Dynamics (MSc
thesis), 2021. URL https://surfdrive.surf.nl/files/index.php/s/p3sY6Ur0IFjsjlX.

[21] Brenner, E., Rodriguez, I. A., Muñoz, V. E., Schootemeĳer, S., Mahieu, Y., Veerkamp, K., Zandbergen, M., Van der Zee, T.,
and Smeets, J. B., “How can people be so good at intercepting accelerating objects if they are so poor at visually judging
acceleration?” i-Perception, Vol. 7, No. 1, 2016. https://doi.org/10.1177/2041669515624317.

[22] Gignac, G. E., and Szodorai, E. T., “Effect size guidelines for individual differences researchers,” Personality and Individual
Differences, Vol. 102, 2016, pp. 74–78. https://doi.org/10.1016/j.paid.2016.06.069.

[23] Plaetinck, W., Pool, D. M., van Paassen, M. M., and Mulder, M., “Online Identification of Pilot Adaptation to Sudden Degradations
in Vehicle Stability,” IFAC-PapersOnLine, Vol. 51, No. 34, 2019, pp. 347–352. https://doi.org/10.1016/j.ifacol.2019.01.020.

[24] Thorpe, S., Fize, D., and Marlot, C., “Speed of processing in the human visual system,” Nature, Vol. 381, 1996, pp. 520–522.

30



33

N.B.: The following part has been assessed
for the course AE4020 Literature Study.





Part II

Preliminary Thesis Report

35





1
Introduction

Over the past decades, the role of automation in society has increased significantly. However, in the
context of control tasks, this does not mean the role of human operators has become any less important.
On the contrary, it can be argued that the role of human operators has become even more important
as it has shifted to a more supervisory role, in which interventions made by the human operator are
in situations where caution, precision, and adaptability may be required. The adaptability in particular
is currently one of the main strengths human operators have over automation. However, with the ad-
vancement of technology and development in how human operators interact with systems, the models
used to describe their behaviour have failed to keep up [1].

It is beneficial to understand the adaptive behaviour of human operators for several reasons. First, it
would help improve the design of current systems, since different design choices can be tested through
simulation to identify potential problems. Additionally, adaptive models can be used to create better
support systems for human operators. In the case of failures, for example, this can help reduce the
number of loss of control incidents, which are still one of the largest worldwide contributors to fatal
accidents [2]. Finally, it would allow for the development of safer and better vehicle designs [3]. For
example, the introduction of human-like automation in self-driving cars [1].

Young et al [4] identified that the adaptive process of a human operator consists of three phases, namely
detection, identification, and modification. In the detection phase, the human operator realizes that
something has changed and that adaptation is required. This triggers the identification phase to begin,
in which the human operator identifies the nature of the change. Finally, in the modification phase, the
human operator modifies their control behaviour to suit the new situation. It can be argued that the
identification and modification phases happen simultaneously, though the detection phase is certainly
distinct. A good adaptive model would be capable of approximating the human operator’s behaviour
throughout all three phases. This thesis, however, will look only at the detection phase, specifically the
case where there is a change in the controlled element dynamics. Future research can later extend
the results from this research to include the identification and modification phases.

The goal of this research is thus to develop a model that is able to predict when a human operator will
detect a change in the controlled element dynamics, and consequently help improve understanding of
what causes the detection. The main research question that will be answered is,

How can a human operator’s detection of a change in controlled element dynamics bemodeled?

To help answer the main research question, the following sub-questions have been formulated.

1. What are the signals that human operators use to detect that the controlled element dynamics
have changed, and why are they relevant?

2. What are the threshold values for the relevant signals?
3. How does the nature of the original dynamics affect the process of detecting a change?
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4. How can the experiment best be designed to help develop and validate the model?

To get a preliminary answer for the first and third sub-questions, research will be done on concepts and
theories relevant to human manual control, and on the strengths and weaknesses of existing models.
The former will be presented in Chapter 2 while the latter will be presented in Chapter 3. In Chapter 4,
results from a simulation will be presented to help answer the second sub-question, and finally, in
Chapter 5, future work (including the experiment design) will be presented to help answer the fourth
sub-question.



2
Relevant Concepts for Manual Control

Before starting with the literature review, some concepts and theories that are relevant to humanmanual
control will be introduced. Their relevance comes from the fact that they are an underlying assumption
in several models to be introduced in Chapter 3 and they help explain observations that have been
made. First, the concept of internal models will be explained in Section 2.1, followed by an introduction
to adaptive model theory in Section 2.2, and finally a brief summary of McRuer’s crossover model in
Section 2.3.

2.1. Internal Models
Internal models are believed to be internal representations stored in the cerebellum that contain infor-
mation about our own movement dynamics, and the dynamics of the systems we interact with around
us. Their role is to generate predictions about future sensory information, in turn minimizing surprise [5].
Significant evidence, some of which will be presented here, has been found to support the existence
of internal models, and their existence is commonly accepted [6] not only in humans but also in other
animals [7] [8]. With respect to control tasks, two types of internal models are hypothesized to exist,
namely forward models and inverse models [9]. A diagram showing how inverse and forward models
work is given in Figure 2.1. Inverse models invert the controlled element (CE) dynamics and estimate
the control input required to achieve a certain (desired) output. On the other hand, forward models use
the control input to estimate the output given the current states. As such, they can be used to perform
mental simulations of what would happen if various control inputs were to be given.

With regards to internal models encoding information about our own movement dynamics, the first
pieces of evidence presented here are point-to-point (arm) reaching experiments performed with exter-
nal force fields. The force fields were generated with either a robot manipulandum [10] or a spinning
room [11] [12], and they change the effective arm dynamics. In participants’ first few trials, their arm
movements were distorted (instead of straight as is usually the case) and the end point errors were
large. In subsequent trials, the movements started becoming straighter and the end point errors de-

Figure 2.1: Diagram of inverse and forward models.
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creased. When the external force field was removed, the opposite effect to what was seen in the first
few trials was observed, namely that the arm movements became distorted but in the opposite direc-
tion to the external force fields. This strongly suggests the existence of an adaptive inverse model that
quickly adapted to compensate for the external force field. Further evidence includes that patients with
cerebellar damage display inferior performance in motor tasks and increased difficulty in learning new
tasks compared to a person with a healthy cerebellum [13]. Both of these effects can be explained by
the lack of internal models. The delay in processing sensory feedback, such as visual inputs, is large,
making it inadequate for rapid movements. People with healthy cerebellums are able to overcome this
time delay through the use of internal models, but since that is not possible for people with cerebellar
damage, they have poorer performance in motor tasks and increased jittering in their movements [14].
The greater difficulty in learning new tasks is due to the belief that internal models play a more vital role
during learning, rather than in retaining learned tasks [13].

Evidence has also been found for the development of internal models of systems we interact with (i.e.
the CE). Davidson et al [15] performed an experiment to detect the presence of an adaptive inverse
internal model of the CE dynamics. Participants had to track a target signal composed of a sum of sine
waves, but at certain points during the run, the system output was blanked and they could only see the
target signal. The intention was to see whether the temporal improvements in blanked and unblanked
runs (compared to the first trial) were equal, as this would show whether an inverse model is present
at all, as well as how much it contributed to learning compared to a possible forward model. If the
improvement in blanked runs was equal to the improvement in unblanked runs, that would suggest the
existence of only an inverse model since only the inverse model can be used during blanked runs as
a result of there not being feedback of the system output. During unblanked runs, on the other hand,
both internal models could be tuned to improve performance. The results showed an improvement of
33% in unblanked trials, but only 18% in blanked trials. Since the improvement in the blanked trials
can be attributed to an improvement in an adaptive inverse internal model, the remaining improvement
is likely caused by an improvement in an adaptive forward model. Thus, this experiment provided evi-
dence for the existence of both an inverse model and a forward model. Further evidence was presented
by Imamizu et al [16] as they found increased cerebellar activity during and after visuomotor learning.
As learning plateaued, cerebellar activity decreased once again, suggesting the internal model was
already developed.

Rather than having an internal model for each activity, it is hypothesized that we store multiple internal
models that we can quickly switch between [17]. This is supported by Imamizu et al’s [16] observation
that several regions of the cerebellum showed increased activity during visuomotor learning, which
suggests different internal models use the new information for tuning. Further evidence includes the
fact that tasks requiring similar skills, such as playing tennis and ping-pong, are easier to learn when
one already has experience (and therefore a developed internal model) in one of the tasks [17]. Finally,
learning a new condition in a certain task takes considerably longer than re-adapting to a previously
learned condition, likely due to the fact that the internal model for the previously learned condition is
already in memory. For tracking tasks, this means it is likely that (for a well-trained participant) an
internal model exists for the different CE dynamics, so if and when the human operator (HO) detects
that the CE dynamics have changed, it is ’simply’ a matter of switching from one internal model to the
other.

2.2. Adaptive Model Theory
Adaptive model theory (AMT) is a theory developed by Neilson along with a team of researchers which
they describe as, ”a computational theory of the brain processes that control purposive coordinated
human movement.” [18] It is applicable to pursuit tracking tasks and outlines a biologically realistic way
in which information is processed by the brain and ultimately leads to (control) actions taken. Based on
the theory, Neilson et al [19] made a simulation to demonstrate the capabilities of AMT. The resulting
simulation is adaptive, changing its behaviour in response to changes in the statistical properties of the
forcing function or disturbance signal, or changes in the CE dynamics which, as outlined by Mulder et
al [20], is precisely what is required in future cybernetics models.
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Figure 2.2: Block diagram for the compensatory tracking system.

AMT is made up of three stages, namely sensory analysis (SA), response planning (RP), and response
execution (RE) [19]. The first stage is the SA stage, which operates continuously, and has three inputs
as well as three outputs. The inputs are the forcing function, disturbance signal, and system output,
while the outputs are estimates for the next value of the forcing function, disturbance signal, and sys-
tem output. For predicting the system output, it uses the current system output along with the planned
system output trajectory (to be discussed in the RP stage) that has not yet been executed. The second
stage is the RP stage, which introduces intermittency as it has a fixed duration of 150 ms. The inputs
to this stage are the outputs of the SA stage, and it outputs the planned system output trajectory. The
planned system output trajectory is a trajectory taking the current system output to the predicted (future)
forcing function value. Finally, the RE stage, which also operates continuously, takes the planned sys-
tem output trajectory as input and determines the required control input via an inverse internal model.
The inverse internal model is a series of three inverse models, one for the muscle control system, one
for the biomechanical system, and one for the external system (i.e. the CE), so it goes down to very
low-level motor commands.

Particularly with the first two of the inverse models, there are significant technical challenges in explain-
ing how the nervous system is able to develop those models [18]. Amongst the challenges include
the fact that the system is high dimensional, multiple-input multiple-output (MIMO), redundant, time-
varying, and nonlinear. Formulating good models for MIMO systems is not possible when the inputs
are highly correlated. Neither is it possible to formulate good inverse models when there is a lot of noise
or when there are more inputs than outputs. Somehow, however, the nervous system is able to remove
redundancy and still get high-accuracy inverse models. This is where the power of AMT lies, the ability
to propose a biologically realistic way in which this is done. Despite insufficient neurobiological data to
verify it, the ability of the simulation to accurately capture measured HO adaptive behaviour during a
change in CE dynamics is sufficient for AMT to, at a minimum, be used to suggest and check theories
on HO adaptive behaviour.

2.3. McRuer's Crossover Model
The previous two sections focused on concepts and theories more applicable to time-varying condi-
tions. In this section, a brief summary of McRuer’s crossover model [21], applicable to compensatory
tracking in steady-state conditions, will be provided. Developed in the early 1960s, it remains one of
the leading universal models for modeling HO behaviour in compensatory tracking due to its accuracy
and simplicity. Unfortunately, compensatory displays are the exception in day-to-day applications, but
since several of the models to be discussed in Chapter 3, as well as the simulation developed in Chap-
ter 4, use the crossover model, a brief summary will be presented here.

The block diagram for the system is given in Figure 2.2. Yp(jω) is the pilot/HO dynamics, Yc(jω) the
CE dynamics, ft the forcing function, e the error, u the control input, and y the system output. McRuer’s
primary finding was that the open loop dynamics, YOL(jω), approximate an integrator with a time delay
in the crossover region for a range of CE dynamics, as given by Equation (2.1).

YOL(jω) = Yp(jω)Yc(jω) =
ωc

jω
e−jωτe (2.1)

The HO is able to achieve this by altering the structure of their own dynamics depending on the CE
dynamics. The simplified precision model, Equation (2.2), is the simplest way in which the HO dynam-
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ics can be represented. kp is the gain, TL the lead time constant, TI the lag time constant, and τe the
effective time delay, which accounts for all sources of delay. The gain is used to place the crossover
frequency where desired, while the lead and lag time constants are used to equalize the dynamics and
ensure the open loop dynamics are integrator-like in the crossover region. It should be noted that one
or both of the time constants may not be required for certain CE dynamics. For example, if the CE dy-
namics are already integrator-like, neither is required, and if the CE dynamics are double integrator-like,
only the lead time constant is required. The values for all of the parameters in Equation (2.2) can be
found using the verbal adjustment rules [21]. It should be noted that McRuer’s model is a quasi-linear
model, and Equation (2.2) only accounts for the linear portion of the HO. The nonlinear part, called the
remnant, is usually added to the output of the HO (u in Figure 2.2) but its structure is not specified by
McRuer.

Yp(jω) = kp
1 + TLjω

1 + TIjω
e−jωτe (2.2)

It is interesting to note that when considering the crossover model in terms of an internal model, Equa-
tion (2.1) can be rewritten to Equation (2.3) and the inverse internal model of the CE dynamics can be
explicitly seen as the term 1

Yc(jω) . In this formulation, the integrator can then be used to reduce any
steady-state errors. As an example of how this ties back to the simplified precision model, if the CE
dynamics are second order, one of the poles cancels with the integrator thus leaving a lead term mul-
tiplied with a gain (ωc), which is exactly what is dictated by the simplified precision model in Equation
(2.2).

Yp(jω) =
1

Yc(jω)
· ωc

jω
e−jωτe (2.3)
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Review of Existing Models

Significant research efforts have been dedicated to the development and investigation of adaptive mod-
els. Different types of such models exist, including some that focus exclusively on the detection phase,
some that focus exclusively on modeling the adaptive response without investigating what triggered the
HO to detect the transition and start adapting, and some that are a mixture of the two. In this chapter,
the results from a literature review of these models will be presented. This will help answer the first
sub-research question (”What are the signals that human operators use to detect that the controlled
element dynamics have changed, and why are they relevant?”) and the third sub-research question
(”How does the nature of the original dynamics affect the process of detecting a change?”). Models
that investigate the detection phase will be presented in Section 3.1, while models that consider the
adaptation phase but do not investigate the detection phase will be presented in Section 3.2. Finally,
conclusions drawn from the literature review will be presented in Section 3.3.

3.1. Models Investigating the Detection Phase
This section will discuss models that investigate the detection phase, including some that propose
explicit boundaries for certain signals which, when exceeded, are hypothesized to trigger the HO to
detect a transition.

3.1.1. Young and Stark Model
Young and Stark [22] developed a model reference approach for compensatory tracking in 1965 to
describe the potential process through which HOs detect a change in the CE dynamics and conse-
quently adapt their control behaviour. They distinguished between two types of models, namely model
reference models, such as the one they developed, and error pattern recognition models, which will
be discussed in the coming subsections. The block diagram of their model is given in Figure 3.1. The
dotted lines represent hypothetical connections in the adaptive process, while the solid lines are a con-
ventional closed-loop control diagram. The principle on which the model is based is the idea that HOs
keep an internal model of the CE dynamics, given by the ”model of controlled element” block. With
knowledge of the current error and the current control input, a mental simulation occurs in which the
future error rate is predicted. If there is a significant mismatch, then adaptation begins. The deviation
filter determines what a ”significant” mismatch is and consequently filters out insignificant errors while
passing on important ones to the ”adaptive control operator” block to adjust the current control law until
the deviations return to a normal level. However, the model has not been developed further and is thus
only a qualitative model with no details on how to actually implement the internal model, deviation filter,
or adaptation logic.

Building on the model reference approach, Miller and Elkind [23] developed a model, also for com-
pensatory tracking, for the detection phase based on the error rate and, crucially, added the side-stick
movement (i.e. control input) as part of the detection criteria. Miller and Elkind [23] suggest that a HO
will detect a change to the CE dynamics when the difference between the predicted error rate (based
on the current error rate and control input) and the observed error rate, ∆ϵ, exceeds a certain thresh-
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Figure 3.1: Block diagram for Young and Stark’s model [22].

old. The threshold is dependent not only on the standard deviation of ∆ϵ but also on the change in the
control input, ∆C. While the exact way in which the control input is incorporated into the threshold is
not specified, some results showing the success of adding it to the detection criteria are. In Figure 3.2,
the strong correlation between∆C and∆ϵ at the moment of detection can be seen. This suggests that
when control inputs are small, a small mismatch in predicted and observed error rate can be enough
to trigger the HO to detect a transition, but when the control inputs are larger, the mismatch also needs
to be larger.

The success of including the control inputs in the detection criteria can be seen in Figure 3.3. A strong
relationship between when participants detected the transition (button release time) and the time at
which ∆ϵ exceeds the threshold (dependent on the control inputs) can be seen. This suggests that
knowledge of the control inputs is important to be able to detect a change in CE dynamics.

To further investigate this, Young [24] performed another compensatory tracking experiment. A schematic
of the experiment setup is given in Figure 3.4. Participants were divided into three groups, namely ac-
tive controllers, inactive controllers, and passive monitors. The active controllers were in control of the
system the entire run, while the inactive controllers were initially in control, but after some time their
control inputs were disconnected without their knowledge and they saw the same error as was being
shown to the active controller. The passive monitors simply watched the active controller during a run.
Thus, the active controllers had knowledge of the system (so were able to generate an internal model)
and of the control inputs, while the inactive controllers had knowledge of the system but incorrect knowl-
edge of the control inputs, and the passive monitors had neither. During the run, all three groups had
to indicate via a button press when they detected a change in the CE dynamics. The time taken to
detect the change for transitions from single to double integrator and vice versa is given in Table 3.1.

Table 3.1: Time taken (in seconds) for the three groups of participants in Young’s experiment to detect that the CE dynamics
had changed for a transition from single to double integrator and vice versa [24].

Participant group Single to Double Integrator Transition (secs) Double to Single Integrator Transition (secs)

Active controller 1.36 1.23
Inactive controller 1.56 1.45
Passive observer 5 2.48

As can be seen in Table 3.1, the active controllers took the least amount of time to detect a change.
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Figure 3.2: Experimental results from Miller and Elkind [23] showing the strong correlation between ∆C and ∆ϵ at the moment
participants detected the change in CE dynamics.

Figure 3.3: Relationship between when participants detected the change in CE dynamics and ∆ϵ at that moment [23].
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Figure 3.4: Setup of Young’s experiment [24].

Figure 3.5: Block diagram for the compensatory tracking task of Phatak and Bekey [25].

The inactive controllers had a similar, though slower time and the passive observers took significantly
longer. This suggests the existence of an internal model for participants that had experience controlling
the system, as well as it being an important factor in determining the transition moment. The quicker
detection times for the active controllers compared to the inactive controllers also suggests that knowl-
edge of the stick inputs does indeed contribute to quicker detection times, though to a lesser extent
than the internal model of the system dynamics.

3.1.2. Phatak and Bekey Model
Phatak and Bekey [25] developed an adaptive model for compensatory control tasks featuring a mul-
tistage discrete decision making process called the supervisory control algorithm. The block diagram
is given in Figure 3.5. The HO dynamics are dependent on the CE dynamics and are calculated ac-
cording to McRuer’s crossover model. For the CE dynamics, an approximate second-order system is
chosen, but in the nominal condition, it has both rate and attitude feedback to improve the stability and
decrease the order of the effective dynamics. When modeling failure, one or both of the feedback loops
fail to varying degrees. The supervisor block represents the internal model developed by the HO that
keeps track of the (maximum) error and error rate throughout the run.

It is hypothesized by Phatak and Bekey that the magnitude of the maximum value of the error or error
rate during nominal conditions is the critical piece of information that is stored by the HO which triggers
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them to detect a change in the CE dynamics. If the error or error rate exceeds twice the maximum of
the respective signal during the run, designated as decision region 1 (DR-1), the adaptation process
begins. For this, the supervisory control algorithm is introduced, as presented in Figure 3.6. To inter-
pret Figure 3.6 it should be noted that this algorithm relies on there being a finite set of post-transition
CE dynamics that the (experienced) HO can choose from once a failure is detected, which are called
augmentation level A-D. Furthermore, all of the possible post-transition dynamics were designed to be
unstable if the HO did not adapt their control strategy, and thus, the error or error rate would always
exceed the bounds of DR-1 and trigger the start of adaptation.

Referring to Figure 3.6, adaptation begins if and when the error or error rate exceeds the DR-1 bound-
ary. If this is the case, then the HO adopts the control strategy required to stabilize one of the other
three possible CE dynamics (augmentation level B in this case). If that succeeds in changing the sign
of the error rate and the error or error rate do not grow larger to the point of exceeding the bounds of the
next decision region (DR-2, which has higher bounds), then this is the control strategy adopted by the
HO. If the error or error rate do exceed the bounds of DR-2, then the process is repeated with the HO
adopting the control strategy required to stabilize one of the other two remaining possible CE dynamics
(augmentation level C in this case), and the process is repeated. As such, it is clear that the HO needs
to be familiar with all of the possible failure cases as well as which control strategy is required for each.

The decision regions (DR-1, DR-2, and DR-3) were determined based on data from a roll tracking ex-
periment that had one well-trained participant. Later, a simulation was made to check the performance
of the supervisory control algorithm developed. Different failure moments and inputs were tested in
the simulation, where it was found that the characteristics of the adaptive response, including retention
time (the length of time between when the failure occurs and when it is detected by the HO), maximum
error and error rate, and settling time, were similar to those found with the human-in-the-loop experi-
ment. Thus, it was concluded that the proposed model was feasible for modeling adaptive behaviour.
As a final check, the same input and failure times as in the experiment were used in the simulation,
and it was found that the model output closely matched the HO data for the first three seconds after
failure. Afterwards, the model predicted a better performance of the HO than what was observed in the
experiment which the authors attributed to the HO potentially reacting to disturbances or an incorrect
estimation of the error or error rate.

More recently, van Ham [26] performed a compensatory pitch tracking experiment with six participants
in an attempt to experimentally validate the model and test the robustness when exposed to different
CE dynamics. In the experiment, the CE dynamics transitioned from approximate single to approxi-
mate double integrator, and the participants could indicate they noticed a change in the CE dynamics
by pressing a button on the side-stick. To estimate which signal (the error or error rate) triggered the de-
tection, and to know what the value of that signal was at the time, van Ham looked for a local maximum
in one of the signals 0.3 seconds to 0.6 seconds before the button was pressed. This time window was
taken as it was found in previous research that it is the typical amount of time required for a HO to press
a button in response to a visual input [27]. Using this method, van Ham found that in 92.7% of cases,
the boundaries of DR-1 were not exceeded so they would be classified as ”no detection”. In the remain-
ing 7.3% of cases, the boundaries of DR-1 were exceeded at some point after 7.4 seconds following
the CE dynamics transition, which is considered a late detection [26]. In no cases was the boundary of
DR-1 exceeded in the expected interval of 2.2-7.4 seconds following the transition. Figure 3.7 shows
the phase plane along with DR-1 superimposed. As can be seen, the majority of detections came well
within its bounds, suggesting the limits proposed by Phatak and Bekey [25] are too high.

However, van Ham noticed the standard deviation of the error and error rate signals pre-transition
was extremely consistent amongst all participants, as can be seen in Table 3.2. P1-P6 are the six
participants in the experiment, e is the error, and ė is the error rate. As a result of this observation,
alternate limits were proposed that depend on the standard deviation of the error and error rate instead
of the maximum. The best compromise between detections that were too early (within 2.2 seconds
following the transition) and too late (after 7.7 seconds following the transition) was a value of 3.9σ
for both the error and error rate. This would result in 46.9% of detections coming within the expected
time interval (2.2-7.4 seconds), 9.4% would be too early, 32.3% would be too late, and 11.5% of cases
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Figure 3.6: Supervisory control algorithm as defined by Phatak and Bekey [25].
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Figure 3.7: Phase plane showing the moment the HO detected a change in the CE dynamics with DR-1 superimposed [26].

would result in ”no detection”, which is similar to the experimental results. As a point of reference, the
boundaries of DR-1 are 12σ for the error and 6σ for the error rate.

Table 3.2: Pre-failure tracking standard deviation compared to DR-1 values for all participants in van Ham’s experiment [26].

P1 P2 P3 P4 P5 P6

σe [-] 0.023 0.022 0.023 0.023 0.024 0.022
σė [-/s] 0.047 0.043 0.046 0.042 0.046 0.043
2·|ėmax| [-/s] 0.312 0.291 0.276 0.255 0.299 0.253

It is also interesting to note that the median detection lag (time taken for the participants to press the
button on the side-stick following the change in CE dynamics) was 6.6 seconds. In comparison to the
values found by Young [24] (Table 3.1), this is significantly longer. Several possibilities exist for explain-
ing this difference. First, Young used pure integrator and double integrator CE dynamics whereas van
Ham [26] used approximate single and approximate double integrator CE dynamics, which could make
it more difficult for participants to detect a transition. Additionally, it is possible that the participants
in Young’s experiment were better trained. Finally, since Young’s experiment was performed in the
late 1960s, it used an analog computer so there may have been some artefacts modeling time-varying
systems that the HO could pick up on to aid with the detection of a change in CE dynamics.

Overall, it can be concluded that the model developed by Phatak and Bekey [25] cannot be gener-
alized to different CE dynamics, at least not without some modifications, as evidenced by van Ham’s
experiment. Another critical limitation is that, since the model relies on large errors and error rates post-
transition, its performance would likely be far inferior when considering a transition from approximate
double integrator to approximate single integrator dynamics, though this was not tested in van Ham’s
experiment.
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Figure 3.8: Block diagram for Niemela and Krendel’s compensatory tracking experiment [28].

3.1.3. Niemela and Krendel Model
Niemela and Krendel [28] designed an experiment to determine the region of error vs error rate wherein
the HO’s boundary for detecting a change in the CE dynamics lies. The experiment took part in two
steps with two distinct (but similar) experiments. In the first one, five participants controlled a double
integrator CE using a compensatory display. The block diagram for this setup is given in Figure 3.8.
Partway through the run, the polarity of the CE changed and the participants had to adapt their control
strategy. From this experiment, it was concluded that the detection moment was characterized by a
peak in error rate when the error and error rate had the same sign. Thus, they postulated that the
trigger for a HO was some multiple of the steady state root mean square (rms) of the error signal and
some (possibly different) multiple of the steady state rms of the error rate signal, which led them to their
next experiment.

In the second experiment, one participant took part and controlled the same system but was given an
audio warning after the transition when certain boundaries of the error and error rate were exceeded. If
the peak error decreased significantly in magnitude, it meant the audio warning helped the participant
and thus they had not yet realized the transition had occurred. If it did not help, then it was considered
redundant information meaning the participant had already noticed that the transition occurred and
was in the process of adapting his behaviour. Consequently, the limits for detection without external
(audio) aid must lie somewhere between the points where the audio warning helped improve the peak
error and where it did not. This led to the generation of Figure 3.9. The three points labeled ”error
trajectory features: means and ±1σ” show the statistical properties of what the authors argue are the
three dominant features of the error trajectory immediately post-transition. From top to bottom, these
are the maximum positive error rate along with the error at that point, the error when the error rate is 0,
and the maximum negative error rate along with the error at that point. For the purpose of identifying
the detection boundaries, the primary area to consider is the cross-hatched region labeled ”detection
boundary location”. In the area below and to the left of the cross-hatched region (i.e. below 1σ̇e and to
the left of 1σe), the audio warning helped significantly improve the peak error, while in the region above
and to the right of the cross-hatched region, it did not. Thus, it led the authors to conclude that the
detection boundary used by the participant must lie somewhere in the cross-hatched region. The fact
that the maximum positive error rate and error at that point lie to the right of the cross-hatched region
supports the conclusion that the detection boundary must lie inside the cross-hatched region.

3.1.4. Hess Model
Most recently, Hess developed a model for adaptive control behaviour with a pursuit display [29] [30].
The model structure is given in Figure 3.10. It is composed of an inner rate loop, with gain Kr, and an
outer position loop, with gain Kp, which together make up the model of the HO. The two gains are the
only two variables that can be tuned in the model. Hess argues that the former is used as the primary
means of adapting to changes in the CE dynamics, while the latter is used to make minor adjustments
to improve the tracking performance. The block Gnm represents the neuromuscular system dynamics,
which is given by Equation (3.1). The limiter block represents the physical limitations of the device
being used and is included to make the simulation more realistic. Finally, the vehicle block contains the
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Figure 3.9: Location of the detection boundary resulting from Niemela and Krendel’s second experiment [28].

CE dynamics, which vary between several cases of approximate gain, approximate single integrator,
and approximate double integrator dynamics in Hess’ computer simulation.

Gnm(s) =
102

s2 + 2(0.707)(10)s+ 102
(3.1)

The adaptive logic is what drives the changes in the gains when there is a change in the CE dynamics.
There are two inputs to this block, namely the output rate, Ṁ , and the signal R, which when subtracted
from each other give the inner loop error. The trigger for beginning to adapt is determined based on
a signal x defined by Hess as given in Equation (3.2). Thus, the x signal is the sign and (squared)
magnitude of the inner loop error multiplied with a low pass filter for smoothing and to introduce lags
into the adaptation process. The adaptation process then begins if the value of Ktrigger, defined in
Equation (3.3), is equal to 1. Note that the rms[

√
|x|] is calculated based on a steady state condition

and the time at which the CE dynamics change, tc, is sufficiently long into the simulation that it has
reached an asymptotic value and the HO would have enough time to make an internal model for the
x signal. Also note that the square root of x is used in Equation (3.3) since the square of the error is
used to calculate the x signal.

x = sgn{|R| − |Ṁ |} · [|R| − |Ṁ |]2 · 1.52

s2 + 2(1.5)s+ 1.52
(3.2)

Ktrigger =

{
0 if instantaneous value of

√
|x| < 3· rms[

√
|x|] or t < tc

1 if instantaneous value of
√
|x| ≥ 3· rms[

√
|x|] and t > tc

(3.3)

The motivation for choosing this as the trigger for adaptation is as follows. Hess argues that the primary
signal from a HO’s internal model that triggers the detection of a change in CE dynamics is the rela-
tionship between proprioceptive feedback and the system output rate [31]. The proprioceptive signal
allows the HO to have an approximate idea of the position of their limbs and thus an expectation of
what the system output rate should be. When this relationship is no longer proportional as would be
expected for a pitch or roll tracking task, it leads the HO to begin adapting. Furthermore, Hess made
this model around four laws, two of which dictate that triggering changes to the gains Kp and Kr must
be based on signals available to the HO, and the adaptation logic must also be based on these signals.
In a pursuit tracking task, the output rate can be visually estimated by the HO, and evidence for the
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Figure 3.10: Block of diagram of Hess’ adaptive model for pursuit tracking tasks [30].

existence of the proprioceptive signal has also been found [32], thus satisfying the two laws.

Once the adaptive logic is triggered, the adjustment of the two gains are given by Equation (3.4)-(3.6)
[29]. In Equation (3.5), the rms[R2] is also calculated in a steady state condition, and once again the
low pass filters introduce smoothing and lag. N is the number of response variables being controlled
by the HO, so the factor 1

N is present due to the assumption that the HO will be less aggressive in their
adaptive response when controlling more than one axis.

∆Kr = xnKtrigger ·
1

s2 + 2s+ 1
(3.4)

xn =
x

rms[R2]
· 1

s2 + 2s+ 1
· 1

N
(3.5)

∆Kp =

{
0.35∆Kr if∆Kr > 0

0 if∆Kr ≤ 0
(3.6)

Limits on the maximum change to the gains are also introduced, as defined by Equation (3.7) and
Equation (3.8).

|Kp|max = 2|Kp−nom| (3.7)

|Kr|max = 10|Kp−nom| (3.8)

In his original model, Hess demonstrated the capabilities of the adaptive model via computer simulation
[30]. Several CE dynamics including approximate gain, approximate single integrator, and approximate
double integrator dynamics were tested. These were primarily done for single-axis tracking tasks, but
the model’s capabilities were also demonstrated for a two-axis task. In general, the model showed
good tracking performance both before and after the CE dynamics changed. However, there were
significant oscillations when transitioning to dynamics that are more difficult to control.

Later, Hess performed a human-in-the-loop pitch tracking experiment to try and validate the model [29].
The experiment was done using a compensatory display, which differs from the pursuit display for which
the model was developed, and one well-trained participant took part. The CE dynamics transitioned
to more difficult dynamics during the run to imitate a failure. Hess quantified the quality of fit using the
variance accounted for (VAF), as defined in Equation (3.9). The VAF was found to be 0.73 which Hess
described as ”quite high” [29]. Nonetheless, the tracking performance of the participant was worse than
the model prediction. Possible explanations for this are the exclusion of a HO remnant in the model
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and pulsive control behaviour which occurred after the CE dynamics transition that can be attributed to
the lead generation required [33].

VAF = 1− var(δ(ti)human)− var(δ(ti)model)

var(δ(ti)human)
(3.9)

Jakimovska et al [34] looked further into the model and attempted to validate it with a pursuit tracking
experiment using more participants (ten). In the experiment, the CE dynamics transitioned from single
to double integrator and vice versa. Several changes were made compared to the original Hess model,
but the triggering mechanism remained the same bar one change. That change is that the rms[

√
|x|] is

calculated recursively (meaning that at the current time t, the values of the x signal from time 0 until time
t are used to calculate the rms) which is argued to be more realistic since it represents the HOs internal
model that is being continuously tuned during the run. With this change and an increase in the break
frequency of the low pass filter in Equation (3.2) from 1.5 rad/sec to 3 rad/sec, the triggering mechanism
was appropriately triggered for eight of the ten participants in the transition from approximate single to
approximate double integrator (DYN12) CE dynamics. For these cases, the model was then able to
appropriately capture the adaptive behaviour of the HO. However, the triggering mechanism was not
triggered for the other two participants due to a relatively large tracking error pre-transition as a result
of them adopting a low-gain strategy and thus having a low crossover frequency, which highlights the
models sensitivity to the pre-transition tracking performance.

For the transition from approximate double to approximate single integrator (DYN21) CE dynamics,
however, the triggering mechanism could not be activated for any of the participants. In some cases,
the x signal was even seen to decrease in magnitude after the transition when keeping the same gains
used to control the double integrator dynamics. The VAF of the output also increased after the transition
(without adaptation of the gains) due to the model’s ability to model the single integrator condition better
than the double integrator condition. Thus, given that the post-transition tracking error never became
abnormally large due to the easier dynamics, it proved impossible to trigger the triggering mechanism.

Overall, Hess’ model has several advantages and also significant disadvantages. The advantages
include that it is a simple rule-based model based on signals available to the HO, and the pre- and post-
transition open loop dynamics of the pilot-vehicle system are integrator-like in the crossover region, as
dictated by the crossover model. However, the biggest disadvantage is that the triggering mechanism
cannot be activated when transitioning from more difficult dynamics to simpler dynamics. Furthermore,
the adaptive rules are based on the author’s own experience and are thus not theoretically grounded.
Finally, parameters must be tuned for specific participants in order to activate the triggering logic, which
is not known apriori.

3.2. Models Without Explicit Boundaries for Detection
Attempts have also been made to develop adaptive models in which the HO’s parameters are contin-
uously estimated (either online or offline). Thus, they can identify that the HO detected a change in
the CE dynamics and consequently changed their control behaviour by looking at the values of the
estimated parameters, but the underlying reason for the change is not investigated.

3.2.1. Recursive Autoregressive-Exogeneous Model
Plaetinck [35] used a low-order recursive autoregressive-exogeneous (ARX) model to identify online
when the HO detects a change in the CE dynamics in compensatory tracking. It is based on an experi-
ment in which participants could indicate that they noticed a change in the CE dynamics by pressing a
button on the side-stick. Data from that experiment was used by Plaetinck to test two methods of deter-
mining the moment the HO detected the transition. A block diagram of the setup is given in Figure 3.11.
Hp(s, t) is the linear part of the HO, Hn(s, t) is the noise dynamics used to model the HO remnant, and
Hc(s, t) is the CE dynamics, all of which are time-varying.

The HO dynamics, Hp(s, t), are given in Equation (3.10). Ke is the error response gain, TL is the lead
time constant, τ is the HO delay, and Hnm(s) is the neuromuscular system transfer function. Addi-
tionally, Plaetinck introduces the error rate response gain, Kė(t), defined as Ke(t) · TL(t). The error
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Figure 3.11: Block diagram for Plaetinck’s compensatory tracking experiment [35].

response gain and error rate response gain, as well as the neuromuscular system parameters, were
calculated based on the ARX coefficients estimated via recursive least squares. It was found that the
neuromuscular system parameters do not vary significantly in the DYN21 transition so the focus is on
the error response gain and the error rate response gain.

The two methods for determining the moment the HO noticed the change in CE dynamics alluded to
earlier are time-invariant condition average (TICA) andmoving average (MA), both of which were tested
onKe andKė. The TICA method involves averaging the parameter values for a steady-state condition
of the pre-transition dynamics, and the MA method looks at the average over a window of a certain
number of samples up to the current time. In both methods, if the current value of Ke or Kė exceeds
the bounds of the average plus or minus a certain margin (unique to each method) for a period of 3
seconds, that is the moment it is hypothesized the HO detected the change in CE dynamics.

Hp(s, t) = Ke(1 + TLs)e
−sτHnm(s) (3.10)

Plaetinck defined the accuracy of a method based on Equation (3.11). ’TP’ stands for true positive, ’TN’
for true negative, ’FP’ for false positive and ’FN’ for false negative. By this metric, the best performing
method was using TICA on the error rate response gainKė, which resulted in an accuracy of 57%. The
accuracy of the other options evaluated is given in Table 3.3.

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
(3.11)

Table 3.3: Accuracy and detection lags for the methods analysed by Plaetinck [35], compared with the HO performance.

Method Accuracy Median Detection Lag (secs)

TICA on Ke 22% -
TICA on Kė 57% 6.5
MA on Ke 12% -
MA on Kė 43% 4.6
Participants 88% 5.2

However, in the experiment, the accuracy of the participants was found to be 88%, so even the TICA
method on Kė does not perform as well as the HO, due to its high number of false positives. On the
other hand, when looking only at true positives, there is no statistically significant difference in the time
taken to detect a change following the CE transition between the HO and TICA method on Kė. As can
be seen in Table 3.3, the TICA method on Kė was 1.3 seconds slower in detecting the transition than
the HO. In comparison to the detection lags found by van Ham [26] (median of 6.6 seconds), both the
HO and, especially the TICA method on Kė, were very close. Given that the dynamics used in this
experiment were the same as those used in van Ham’s experiment, it further suggests that the choice
of CE dynamics could be one of the reasons for the significantly longer detection lags when compared
to Young [24].
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Overall, the similarity in detection lags between the HO and TICA method on Kė, as well as the rea-
sonable accuracy of the TICA method on Kė suggests that the model, at a minimum, captures some
elements of what the HO uses to detect a CE transition. However, only the DYN12 transition was
considered in this study, which limits the applicability to a transition the other way around.

3.2.2. Artifical Neural Networks
Jiao et al [36] extended the Hess model [29] [30] by adding a lead time constant and time delay for the
HO, and attempted to identify the three parameters (the two gains from Figure 3.10 and the lead time
constant) using an artificial neural network (ANN). The triggering mechanism and adaptive logic from
Hess’ model were therefore eliminated and replaced with the ANN’s estimates of the three parameters
identified from experimental data. For the identification procedure, the authors use a single-layer linear
ANN (SLLANN). The inputs to the SLLANN are the current error, error rate, control input, and output
rate, and the output of the SLLANN is the system output. Four experimental conditions were carried
out in which there was a control system failure, aircraft failure, or actuator failure. The experiment
used a compensatory display despite the model being developed for pursuit displays, though Jiao et al
[36] argue that well-trained participants are able to adopt behaviour typical of a pursuit display using a
compensatory display. In the ten second period following the failure, the ANN-based identification pro-
cedure was used to estimate the values of the three parameters, and the system output was compared
to the HO performance observed in the experiment. The results for the identification can be seen in
Figure 3.12. One big limitation of the method in the context of identifying when the HO detected the
failure can be observed here, namely that the identification procedure is only done for the 10 second
period following the failure. As a result, there is a discontinuity in the parameter estimates at t = 70
secs and t = 80 secs which hides the moment the HO detected the change and began adapting their
behaviour.

Overall, the adaptations observed in Figure 3.12, are consistent with the expected results based on
the specific CE transitions. The VAF of the model when compared to the experimental results for the
ten second period following the failure is 0.73, 0.89, 0.86, 0.93 for the four experimental conditions,
respectively. The accuracy is therefore concluded to be ”satisfactory” by Jiao et al [36].

3.2.3. Model Reference Adaptive Control
Terenzi [37] and Tohidi [38][39] have developed adaptive pilot models based on model reference adap-
tive control (MRAC) for adaptive control behaviour with pursuit displays. MRAC models have several
attractive features for modeling the time-varying HO, namely that they are adaptable, include an inter-
nal model, and there is a guarantee that the model will follow the chosen internal model. The block
diagram from Terenzi’s research, which has a very similar structure to Tohidi’s work, is given in Fig-
ure 3.13. The HO is modeled using the gains kr and Kx, which are constantly being adapted based
on the mismatch between the internal model and the actual output. The adaptive law, derived based
on the Lyapunov stability theorem, defines how the gains change throughout the run. The block HmCL

represents the (closed loop) internal model of the HO. Terenzi used the closed loop form (Equation
(3.13)) of McRuer’s open loop model (Equation (3.12)).

Using this model, Terenzi [37] found that the steady-state performance of the MRAC model was inferior
to a state-of-the-art time-varying parametric model [40]. However, the model was able to approximate
the DYN12 transition well, as evidenced by an increase in VAF following the transition. On the other
hand, the DYN21 transition was not well modeled, with a significant decrease in the model’s VAF
following the CE transition. Terenzi [37] argues that this could be because the gains do not change
quickly enough, and increasing their rate of change can make the controller unstable. Thus, it was
concluded that transitions to increasing orders of CE dynamics could be modeled using the proposed
MRAC model, but not transitions where the order of the CE dynamics decreased.

HmOL =
ωc

s
· e−τs (3.12)

HmOL =
HmOL

1 +HmOL
(3.13)
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Figure 3.12: Results of the ANN-based identification procedure [36].

Figure 3.13: Block diagram of Terenzi’s MRAC model [37].
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One limitation of Terenzi’s [37] research is that the internal model must be time-invariant, meaning the
crossover frequency is the same for both CE dynamics conditions, but a change in crossover frequency
is possible after both the DYN12 and DYN21 transitions. To bypass this, Tohidi [39] kept approximate
single integrator dynamics for both conditions in his experiment and instead modified the CE dynamics
by changing the location of the pole and gain by 50%. The internal model used is the same as Terenzi
[37] and the adaptive law was also derived based on the Lyapunov stability criteria. With Tohidi’s [39]
experimental setup, the model results were significantly better with the average deviation between the
model and observed behaviour in the experiment being very close to 0, and the standard deviation
of the difference also being small. The estimated frequency response for the participants also closely
matched the frequency response of the adaptive model before and after the change in CE dynamics.

3.3. Conclusions
Overall, several important conclusions can be drawn from the literature review. First, the majority of
research efforts have focused on compensatory displays. Out of all of the models described in this
chapter, only Hess’ model [29] [30] and the MRAC models just described were developed to capture
adaptive control behaviour with pursuit displays. Since compensatory style displays are an exception
in real-life applications, it would be beneficial to dedicate further efforts on analysing adaptive behaviour
with pursuit displays. Secondly, and as a consequence of the first point, the majority of research efforts
have focused on analysing the characteristics of the error and/or error rate signals, with limited inclusion
of the properties from other signals such as the control input, system output, or the forcing function.
When using pursuit displays, more information is available to the HO that can aid them in detecting
changes in the CE dynamics, so the role this additional information plays should be investigated. Finally,
using the error and error rate has shown success in modeling the DYN12 transition as a result of the
system becoming unstable if no action is taken by the HO, but the same cannot be said for the DYN21
transition. Since the system becomes more stable, there are no large peaks in the error or error rate
which can be used by the HO to detect a change in CE dynamics, or in a model to trigger the adaptive
logic. Thus, it remains beneficial to study the DYN21 transition using a pursuit display and the additional
information (such as explicit knowledge of the system output and forcing function) that comes with it
to gain a better understanding of the process that a HO goes through to detect a change in the CE
dynamics. Such understanding would be helpful in developing better adaptive models that trigger their
adaptive logic at an appropriate moment and can be used to develop better human-machine interfaces,
support systems, and human-like automation.





4
Simulation Results

In order to get an idea of what the most important aspects to investigate during the experiment are,
as well as to get a preview of what the experiment results may look like and formulate a preliminary
answer to the second sub-research question (”What are the threshold values for the relevant signals?”),
a simulation was made in which an adaptive pilot model is compared with a constant (non-adaptive)
pilot model. This allows for the comparison of different signals in the loop, such as the error, control
input, and system output (along with their rates of change), which leads to hypotheses that can be
tested in the experiment. The design of the simulation will be discussed in Section 4.1 followed by
the results and a discussion of the results in Section 4.2. Finally, conclusions from the analysis will be
presented in Section 4.3.

4.1. Simulation Design
The simulation was made in MATLAB and Simulink for a compensatory tracking task. Despite the fact
that the experiment to be performed for this research will use a pursuit display, a compensatory model
was chosen for the simulation because there is a universally accepted model for it (McRuer’s crossover
model [21]), and it still allows for the analysis of themajority of signals present with a pursuit display. The
block diagram for the compensatory tracking system is shown in Figure 4.1. As can be seen, there are
four blocks containing time-varying dynamics. They are the HO dynamics (including the neuromuscular
system), Hp(t), the HO delay, Hdel(t), the CE dynamics, Hc(t), and the noise dynamics, Hn(t). All of
the time-varying parameters can take one of two values, one of which corresponds to the approximate
single integrator condition (DYN1) and the other to the approximate double integrator condition (DYN2).
The variation from one value to the other is done according to the sigmoid function defined by Equation
(4.1).

P (t) = P1 +
P2 − P1

1 + e−G(t−M)
(4.1)

Where P1 and P2 are the beginning and end values, respectively, G defines how quickly the transition
from one value to the other takes place, and M defines the moment of the maximum rate of change.
For the simulation, G was set to 100 sec−1, which corresponds to a near instantaneous change in the
parameter value, and M was set to 60 sec.

In the following subsections, the forcing function will be described, along with the exact dynamics in
each of the four blocks from Figure 4.1.

4.1.1. Forcing Function
As is commonly used for manual tracking tasks, the forcing function, ft, is a sum of sine waves, as
defined by Equation (4.2).

ft =

10∑
n=1

At[n] sin(ωt[n]t+ ϕt[n]) (4.2)
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Figure 4.1: Block diagram for the compensatory tracking system in the simulation.

Where At[n] is the amplitude of the nth sine wave, ωt[n] is the frequency, and ϕt[n] is the phase shift.
Ten sine waves are used to construct the forcing function, which is why the summation is until ten. In
total, 100 different forcing function realizations were used in the simulation. However, for verifying the
simulation, the values for the amplitude, frequency, and phase shift given in Table 4.1 are used since
those are the ones used in Terenzi’s experiment [37]. For generating the other 99 forcing functions,
everything except the phase shift ϕt was kept constant. For the phase shifts, 100,000 random sets of
ten phases were generated, and the first 99 forcing functions that resulted in an average crest factor,
as defined by Equation (4.3), were chosen to be used in the simulation in addition to the one specified
in Table 4.1.

Table 4.1: Parameters of the ten sine waves used to construct the forcing function.

k [-] nt [-] ωt [rad/sec] At [rad] ϕt [rad]

1 2 0.419 2.905 · 10−2 2.841
2 5 1.047 1.916 · 10−2 3.319
3 9 1.885 1.020 · 10−2 0.718
4 13 2.723 6.032 · 10−3 0.768
5 19 3.979 3.356 · 10−3 2.925
6 27 5.655 1.983 · 10−3 5.145
7 39 8.168 1.230 · 10−3 2.085
8 51 10.681 9.331 · 10−4 0.383
9 67 14.032 7.541 · 10−4 0.763
10 83 17.383 6.674 · 10−4 3.247

Crest Factor = max(|ft(t)|)
rms(ft(t))

(4.3)

It should be noted that, in order to avoid spectral leakage, the frequency of all of the sine waves must be
an integer multiple nt of the fundamental frequency defined as ωm = 2π

Tm
, where Tm is the measurement

time. While the simulation lasts 90 sec, like in Terenzi’s experiment, the measurement time was taken
to be 30 sec, so the fundamental frequency is 0.209 rad/sec [37]. Thus, there are three periods of the
signal in the simulation, of which the first is used as run-in time, the second to analyze the first condition
(for example the double integrator condition in DYN21), and the third to analyze the second condition
(for example the single integrator condition in DYN21). This is whyM in Equation (4.1) is set to 60 sec.

4.1.2. Controlled Element Dynamics
The first of the dynamics blocks to be discussed is the CE dynamics. Again, to be consistent with
Terenzi’s [37] research, similar dynamics to what was used in his experiment will be implemented in
the simulation. The structure of the CE dynamics is defined by Equation (4.4).

Hc(t) =
kc

s(s+ ωb(t))
(4.4)
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Figure 4.2: Hypothetical SAS implementation.

In Terenzi’s experiment, both the gain, kc, and the break frequency, ωb, are time-varying. For this appli-
cation, however, only the break frequency will be time-varying, as will be discussed in this subsection.
The break frequency can be varied from a low value to approximate a double integrator, to a high value
to approximate a single integrator, while the gain (if it were time-varying) could be varied to keep the
required control activity approximately the same for the two conditions. The values of kc and ωb for the
single and double integrator-like conditions are shown in Table 4.2.

Compared to Terenzi’s experiment [37], there are two differences. The first is that the break frequency
in the single integrator condition is increased from 6 rad/sec to 20 rad/sec. The reason for this change
is that having a break frequency at 6 rad/sec means the effect of the second integrator will already be
felt in the crossover region, so to make the condition more closely approximate a pure single integrator,
the break frequency for the second integrator was put further away from the crossover region. The
second difference is that the gain is kept constant at 90, instead of being 90 for the DYN1 condition and
30 for the DYN2 condition. This is to make the failure case more realistic. If the gain were to change
from 90 to 30, it would not be possible to model the DYN12 transition as a single failure of the stability
augmentation system (SAS), for example, but rather it would have to be two simultaneous failures,
which is less realistic. Consider a situation where the DYN2 dynamics represent the CE dynamics
without a SAS. If a SAS is added, as shown in Figure 4.2, the break frequency can be varied by
changing the value of kθ, but the gain does not change. In this case, the block Hc(t) in Figure 4.1
can be considered the effective CE dynamics. With the SAS active and kθ = 0.22, the effective CE
dynamics become the DYN1 dynamics given in Table 4.2, but if the SAS fails (i.e. kθ = 0), the effective
CE dynamics become the DYN2 dynamics given in Table 4.2. One downside of this change, however,
is that the level of control activity is no longer approximately constant between the two conditions. In
the DYN1 condition, the standard deviation of the control inputs needs to be approximately four times
larger than in the DYN2 condition.

Table 4.2: Parameters of the CE dynamics for the two dynamics cases.

Dynamics case kc ωb [rad/sec]

DYN1 90 20
DYN2 90 0.2

The bode plots for the two conditions are shown in Figure 4.3. As can be seen, when the break fre-
quency is 20 rad/sec, the system resembles single integrator dynamics for the majority of the crossover
region. For the double integrator condition, the break frequency is 0.2 rad/sec, which is well below the
crossover frequency and thus the pilot will have to generate lead to stabilize the system. The effect of
keeping the gain constant at 90 is to shift the magnitude line for the DYN2 condition vertically upwards
compared to the case where the gain would change to 30 for the DYN2 condition.
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Figure 4.3: Bode plots for the two CE dynamics conditions.

4.1.3. Human Operator Dynamics
The remaining three blocks from Figure 4.1, all relate to the HO, though in this subsection only the
Hp(t) and Hdel(t) blocks will be discussed. The dynamics used to describe the HO are the ones used
by McRuer in the crossover model, plus the neuromuscular system dynamics [21]. They have the form
shown in Equation (4.5).

Hp(t) = kp(1 + TLs) · e−τes · ω2
nm

s2 + 2ζnmωnm + ω2
nm

(4.5)

Since the simulation will only be used to model the DYN12 and DYN21 transitions, the HO will not
need to generate lag and thus that term is omitted. The value of the parameters in the neuromuscular
system dynamics are set to ωnm = 15 rad/sec and ζnm = 0.7. These values remain constant for both
dynamics cases which is a limitation, but previous research has found that there is little variation in
these parameters for the CE dynamics considered here [41].

The values for kp, TL, and τe were determined based on the verbal adjustment rules, but with some
adjustments [21] 1. The first change is that for the single integrator condition, despite increasing the
break frequency of the CE dynamics to 20 rad/sec, some effect of the second integrator is already
felt in the crossover region so it was not possible to get the same crossover frequency and phase
margin as dictated by the verbal adjustment rules. Instead, the gain kp was tuned to get the same
phase margin resulting from the verbal adjustment rules, while decreasing the crossover frequency.
For the double integrator condition, this was not necessary. The second change accounts for the fact
that the neuromuscular dynamics, which are not included in McRuer’s model, are in the simulation.
Since the phase lag caused by the neuromuscular system increases the time delay in the system, the
effective time delay τe was decreased by the amount of delay added by the neuromuscular system

1Note the bandwidth used for the calculations is 2.722 rad/sec which corresponds to the frequency of the fourth lowest sine
wave since it was determined that beyond this point the amplitude of the sine waves drop off considerably.
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at the respective crossover frequencies. Taking into account these modifications, the values for the
parameters in the HO dynamics are summarised in Table 4.3, along with the corresponding crossover
frequency, ωc, and phase margin, φm.

Table 4.3: Parameters of the HO.

Dynamics case kp TL [sec] τe [sec] ωc [rad/sec] φm [deg]

DYN1 0.840 0 0.09 3.72 40.0
DYN2 0.008 5 0.23 3.60 23.0

A further two conditions arise post-transition in the time-varying conditions due to the constant pilot
keeping the same gain and lead time constant as it had pre-transition but with different CE dynamics.
The phase margin and crossover frequency for these two conditions are given in Table 4.4. As can
be seen, the open-loop system with the constant pilot remains stable post-transition in the DYN21
condition (the middle row in Table 4.4), but with sub-optimal performance. On the other hand, the
open-loop system with the constant pilot becomes unstable post-transition in the DYN12 condition (the
bottom row of Table 4.4) due to the lack of lead generation by the pilot.

Table 4.4: Phase margin and crossover frequency for the constant pilot model post-transition in the time-varying conditions.

Condition ωc [rad/sec] φm [deg]

DYN1 CE with DYN2 HO 0.0366 99.6
DYN2 CE with DYN1 HO 8.51 -92.0

The Hdel(t) block represents the HO delay, which is the exponential term in Equation (4.5). This was
modeled using the ’variable time delay’ block in Simulink, which simply delays outputting the signal
value by the amount of the time delay.

4.1.4. Noise Dynamics
The final dynamics which must be modelled are the noise dynamics, which serve to model the HO’s
remnant. McRuer’s model is a quasi-linear model, meaning it is the linearised equivalent of a nonlinear
system. Humans are inherently nonlinear, so to make the simulation more realistic, noise is added to
account for these nonlinearities.

While there is no clear consensus on how to model HO remnant, it was decided to use Gaussian white
noise with unit variance passed through a filter as done by van Grootheest [42]. He investigated several
filters of the form defined by Equation (4.6), and concluded that the second order filter was the best
for fitting the remnant. Thus, m is set equal to 2. The time constant Tn is kept at a constant 0.06 sec,
consistent with van Grootheest [42].

Hn(t) =
kn(t)

(Tns+ 1)m
(4.6)

The values of the gain kn were then solved analytically. The desired value for the ratio of the power
(equivalent to variance, σ2, in the time-domain) in the control input due to the noise, σ2

un
, to the power

in the control input, σ2
u, is 0.2, as defined by Equation (4.7) [43]. In Equation (4.7), σ2

ft
is the power in

the control input due to the forcing function (a deterministic value),W is the white noise intensity (equal
to 1 since the variance of the Gaussian white noise is 1), and Sftft is the power spectral density of the
forcing function.
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To facilitate solving for kn, let a equal the integral in the numerator of Equation (4.7) and let b equal the
second integral in the denominator. Then, kn can be solved for analytically as given in Equation (4.8).

k2na

k2na+ b
= 0.2 −→ k2na = 0.2k2na+ 0.2b −→ kn =

√
1

4
· b
a

(4.8)

The final expression for kn is presented in Equation (4.9). Note that the integral represented by b is the
power in the control input due to the forcing function multiplied with pi. This is a deterministic value that
could be calculated using the simulation by setting the noise equal to 0 and finding the variance of the
control input. The integral in the denominator was solved numerically.

kn =
1

2
·

√√√√ σ2
uft

π∫∞
0

| 1
1+Hp(ω)Hc(ω)Hdel(ω) |2|

1
Tn(jω)s+1)2 |2W (ω)dω

(4.9)

Solving Equation (4.9) for the DYN1 and the DYN2 conditions resulted in the kn values given in Ta-
ble 4.5.

Table 4.5: Values of the noise filter gain kn.

Dynamics case kn [-]

DYN1 0.00136
DYN2 0.000257

4.1.5. Simulink Implementation
The implementation of the entire system in Simulink is given in Figure 4.4. The top half of the figure is
the simulation for the adaptive pilot model and the bottom half (where all of the boxes have a ’1’ after
their name) is the simulation for the constant pilot model. The following blocks were used to construct
the simulation:

• From Workspace: for importing the time trace of each of the time-varying parameters, defined in
the MATLAB script

• To Workspace: for getting the outputs of the simulation (system output, control input, and error)
to the workspace for analysis

• Variable time delay: for the HO delay
• Transfer Fcn: for the time-invariant portion of the transfer functions
• Integrator
• Product
• Sum

4.1.6. Simulation Verification
To verify that the simulation is correctly implemented in Simulink, it needs to be compared with a much
simpler model, which is known to be correct. For this, an independent, time-invariant simulation was
made using the lsim command in MATLAB. The time-invariant simulation, hereafter referred to as the
verification model, is simpler than the complete time-varying simulation in Simulink since it is only nec-
essary to define the forcing function, noise input, and transfer functions for the four blocks in Figure 4.1.
Thereafter, the closed loop system could be defined using the feedback command.

First, the Simulink model was used for steady-state (time-invariant) simulations to allow for direct com-
parison with the verificationmodel. All of the possible input-output relationships were checked to ensure
they were correctly implemented and the parameter values were correctly defined. This involved check-
ing only the response to the forcing function, whereby the noise input was set to 0, checking only the
response to the noise input, whereby the forcing function was set to 0, and checking the response to
both inputs. The similarity between the verification model and the complete Simulink model was quan-
tified by looking at the rms. The results are summarised in Table 4.6. Note that for generating these
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Figure 4.4: Implementation of the compensatory tracking simulation in Simulink. The top half is the simulation for the adaptive
pilot, while the bottom half is the constant pilot.
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results, the CE gain kc was varied from 90 to 30 for the DYN1 and DYN2 conditions respectively, instead
of keeping the gain constant at 90 which is the condition that was introduced in Subsection 4.1.2 and
will be used for the analysis in Section 4.2. This is because that was the original condition implemented
in the simulation. Also note that the structure of the system does not change between the single and
double integrator conditions, so given that one is correct, the other one should also be correct. Both are
included primarily for the purpose of checking that the parameter values have been correctly defined.

As can be seen, the difference between the two models is at most 0.27%, and in most cases signif-
icantly less than that. Such small differences can partially be explained by the fact that a third order
Padé approximation was used to approximate the time delay in the verification model, while the ’Vari-
able time delay’ block was used in Simulink. Another source of differences is in the numerical solvers
used by the two models. Thus, given these two factors and the fact that the differences are very small,
the Simulink model can be considered verified for the time-invariant conditions based on the results of
Table 4.6.

Table 4.6: Comparison of the rms values in steady-state conditions for the two simulations.

Dynamics case Input Output RMS Verification Model RMS Simulink Model Difference

Single integrator ft y 0.0270 0.0270 <0.01%
Single integrator ft u 0.00755 0.00755 <0.01%
Single integrator W y 0.00336 0.00336 0.01%
Single integrator W u 0.00384 0.00384 <0.01%
Double integrator ft y 0.0286 0.0286 0.16%
Double integrator ft u 0.00528 0.00528 0.14%
Double integrator W y 0.0109 0.0109 <0.01%
Double integrator W u 0.00269 0.00269 <0.01%
Single integrator ft & W y 0.0270 0.0270 <0.01%
Single integrator ft & W u 0.00817 0.00817 0.02%
Double integrator ft & W y 0.0297 0.0297 0.17%
Double integrator ft & W u 0.00554 0.00552 0.27%

For the time-varying conditions, the only difference is that the (time-varying) parameters have a differ-
ent beginning and end value, which varies according to the sigmoid function defined in Equation (4.1).
Therefore, the first test was to visually check the time traces of all of the time-varying parameters to
make sure the beginning and end values were correct. Next, the rms values pre- and post-transition
were also checked to ensure they were similar to the values during steady-state tracking. The results
are shown in Table 4.7. Note that the rms values for the pre-transition cases are calculated based on
the signal between t = 0 secs and t = 50 secs for both of the simulations, and the rms values for the
post-transition cases are calculated based on the signal between t = 70 secs and t = 90 secs. This is
to minimize the effect that transients from the transition have on the rms since it cannot be captured by
the verification model. As can be seen, with the exception of the post-transition output y in the DYN12
condition, the maximum difference is 0.40%, which is sufficiently small to consider the Simulink model
verified given the differences between the models previously described and the fact that some tran-
sients are still present 10 seconds following the transition. For the post-transition output in the DYN12
condition, a further check was performed to see why the difference presented in Table 4.7 is so large.
By looking at the rms values for the period between t = 75 secs and t = 90 secs, the difference in rms
between the two models for y decreased to 0.11%, and for u it decreased to <0.01%. Thus, the differ-
ence can be explained by a longer transient post-transition when transitioning to less stable dynamics.

Finally, a check was done to ensure the constant pilot was also correctly implemented. The first step
was to check that its output was exactly the same as the adaptive pilot for the entire simulation in
steady-state conditions, or up until the transition for the time-varying conditions, which was the case.
The other check was to visually inspect the time traces of the HO parameters to ensure they stayed
constant throughout the simulation, which was also the case. As such, the complete time-varying in
Simulink was verified and can now be used for analysis.
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Table 4.7: Comparison of the rms values in the time-varying conditions with both inputs.

Dynamics case Pre- or Post-transition? Output RMS Verification Model RMS Simulink Model Difference

DYN12 Pre-transition y 0.0275 0.0275 <0.01%
DYN12 Pre-transition u 0.00819 0.00819 0.07%
DYN12 Post-transition y 0.0268 0.0275 2.64%
DYN12 Post-transition u 0.00586 0.00583 0.40%
DYN21 Pre-transition y 0.0303 0.0303 0.17%
DYN21 Pre-transition u 0.00534 0.00532 0.25%
DYN21 Post-transition y 0.0279 0.0279 0.02%
DYN21 Post-transition u 0.00806 0.00805 0.14%

4.2. Simulation Results
In this section, the results from the simulation will be presented and discussed. First, the methodology
used in the analysis will be presented in Subsection 4.2.1, and then the results and conclusions for the
DYN12 and DYN21 conditions will be presented in Subsection 4.2.2 and Subsection 4.2.3, respectively.

4.2.1. Methodology
As previously stated, the goal of the simulation is to get a sense of what the experiment results may
look like and develop hypotheses that can be tested in the experiment. To ensure the results were
not specific to a particular property in the chosen forcing function or to the remnant realization, 100
distinct forcing functions and 25 remnant realizations for each were simulated. Thus, the results to
be presented in this section are based on 2500 simulations. The analysis then took part in two main
steps. In the first step, the goal is to identify which signals are the most relevant for the detection phase.
This is done by comparing the rms of each of the signals during different phases of a simulation, which
allows for the identification of which signals have large differences in their statistical properties and
thus are likely the most relevant in the detection process. In the second step of the analysis, the
goal is to determine potential threshold values for those signals. This is done by calculating what
the accuracy of a model with various threshold values would be. The accuracy of a given model is
calculated according to Equation (4.10), where ’TP’ stands for ’true positive’, ’FP’ for ’false positive’,
and ’FN’ for ’false negative’. However, the way in which TPs, FPs, FNs are calculated is different for
the two conditions (DYN12 and DYN21).

Accuracy =
TP

TP + FP + FN
(4.10)

An example schematic showing how they are calculated for the DYN12 condition is given in Figure 4.5.
In this condition, whenever the instantaneous value of the signal exceeds the threshold, it counts as a
trigger. If it occurs before the CE dynamics transition (at t = 60 sec), it is therefore a FP and if it occurs
after the transition it is a TP. As an example, if the threshold is 2σ, a FP would occur at time t1 while a
TP would occur at time t3. On the other hand, if the threshold is 3σ, a FP would occur at time t2 while
a TP would occur at time t4. Note that a TP can only occur in the expected detection period, which is
2.2-7.4 seconds post-transition. If a TP is not detected in this time period, it results in a FN (therefore,
the number of FNs is 2500 minus the number of TPs). Also note that the signals from the constant pilot
are used for calculating TPs and FNs since the goal is to investigate at which point a HO would detect
that a change in CE dynamics occurred, so before that point, the HO would be acting like the constant
pilot.

For the DYN21 condition, the same analysis is not possible since the magnitude of the oscillations in
each of the signals post-transition gets smaller for the constant pilot, instead of bigger as in the DYN12
condition. As a result, it was chosen to base the triggers on when the instantaneous value of a signal
remains below the threshold for a certain amount of time, called the window size. A schematic for this
is shown in Figure 4.6. Various window sizes were experimented with in the analysis, but suppose the
window size is the time t2-t1 and the threshold is 0.5σ. If that is the case, then a FP would occur at time
t2 and a TP would occur at time t4. However, if the window size became any larger, there would be no
FP since the period t2-t1 is the longest the signal stays below the threshold in the pre-transition phase,
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Figure 4.5: Schematic showing how the second step of the analysis was done for the DYN12 condition.

but there would still be a TP since the signal stays below the threshold for longer than t4-t3. On the
other hand, if the threshold were to be 1σ, there would be both a FP and a TP regardless of the window
size since the signal always stays below that threshold. As was the case with the DYN12 condition, if
there is no TP in the expected detection period it results in a FN.

4.2.2. DYN12 Results
First, the results from the DYN12 condition will be presented. As was explained in Subsection 4.2.1,
the first step is to compare the rms of each of the six signals (control input, output, error, and their
rates) during different phases of a simulation. The results are shown in Figure 4.7. The leftmost box-
plot in each sub-figure, labeled ’Pre-transition Steady-state’, is the rms calculated from 30 sec < t < 60
sec, so from the end of the run-in time until the transition. The middle boxplot, labeled ’Adaptive Pilot
Detection Period’, is the rms calculated from 62.2 sec < t < 67.4 sec, which is the expected detection
period. Finally, the rightmost boxplot, labeled ’Post-transition Steady-state’, is the rms of the adaptive
pilot signals calculated from 70 sec < t < 90 sec, so from ten seconds after the transition until the end of
the simulation, where the adaptive pilot has already (mostly) finished adapting to the new CE dynamics.
In all three cases, one data point is generated from each simulation, so the boxplots show the spread
in the rms over all 2500 simulations. Note that the constant pilot in the expected detection period is
not shown because the system becomes unstable so the signals become multiple orders of magnitude
larger than in the pre-transition phase.

Several observations can be made from Figure 4.7. First, it can be seen that the primary difference
between the adaptive pilot during the expected detection period and in the steady-state post-transition
phase is a significant decrease in the spread of the rms values, which is to be expected given that the
transient behaviour introduces extra variability. The median also slightly decreases in all cases as any
built-up errors in the transition phase are reduced to the steady-state tracking values. The spread of
the rms values can also be seen to increase between the steady-state pre-transition phase and the
steady-state post-transition phase in the majority of cases, due to the fact that the DYN2 condition is
more difficult to control than the DYN1 condition. This leads to greater variability in y (Figure 4.7a), ẏ
(Figure 4.7b), e (Figure 4.7e), and ė (Figure 4.7f). On the contrary, the spread in the rms values for u
(Figure 4.7c) and u̇ decreases because the HO has to be less aggressive with the control inputs as a
result of the system being closer to instability.
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Figure 4.6: Schematic showing how the second step of the analysis was done for the DYN21 condition.

Finally, it can also be seen that there is a significant difference in the pre-transition steady-state rms
and post-transition steady-state rms of the adaptive pilot (although not explicitly shown here, the same
is true for the constant pilot since it becomes unstable). This is primarily visible for u (Figure 4.7c) and
u̇ (Figure 4.7d) where the median steady-state post-transition rms is 77% and 76%, respectively, lower
than the median pre-transition rms. Smaller, but still big, differences can also be seen in e (Figure 4.7e)
and ė (Figure 4.7f). This leads to the first hypothesis, which is, all participants will adapt their con-
trol strategy to avoid the same degradation in performance observed with the constant pilot,
instead tending towards the adaptive pilot behaviour.

Having identified that there is a significant difference in the rms of all six signals when comparing the
steady-state pre-transition values with the constant pilot in the detection period (since it becomes un-
stable), that concludes the first step of the analysis. Since it is impossible to tell which of the signals is
the first to diverge given that they are all in a closed loop together, the second step of the analysis will
be done using e and ė since this has been the main focus in previous work and has been successful,
as concluded in Section 3.3. The number of TPs, FPs, and FNs calculated according to the method
from Figure 4.5 can be seen in Figure 4.8.

As can be seen, no matter how high the threshold is, there is a TP in 100% of the simulations for both
e (Figure 4.8a) and ė (Figure 4.8b), and thus there are 0 FNs for both cases. Again, this is due to the
system becoming unstable and the signals growing to several orders of magnitude larger than in the
pre-transition phase. For thresholds below 2σ in e and 2.1σ in ė, a FP occurs in 100% of the simulations,
which is undesired so the threshold must be higher than that. At 4σ for e and 4.4σ for ė, the number
of FPs is reduced to 0, meaning the accuracy (defined in Equation (4.10)) is 100%. If 4σ were to be
used as the threshold for both signals, the accuracy would be 100% and 99.9% for e and ė, respectively.
This is very similar to the limit of 3.9σ proposed by van Ham [26] from her experiment results and thus
suggests that the simulation is capable of predicting actual HO control behaviour. This leads to the
second hypothesis, which is, a significant increase in the standard deviation and maximum of the
error and error rate signals will trigger the HO to detect a transition in the CE dynamics.

4.2.3. DYN21 Results
Next, the results for the DYN21 condition will be presented. Again, the first step is to look at the rms of
all six signals during different phases of a simulation. The results are presented in Figure 4.9. Note that
in comparison to the DYN12 condition (Figure 4.7), there is an additional boxplot in each sub-figure,
labeled ’Constant Pilot Detection Period’. This is the rms of the constant pilot signals calculated during
the period 62.2 sec < t < 67.4 sec, so it allows for comparison between the adaptive pilot and the con-
stant pilot immediately after the transition.
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(a) Output (y) (b) Output rate (ẏ)

(c) Control Input (u) (d) Control input rate (u̇)

(e) Error (e) (f) Error rate (ė)

Figure 4.7: Comparison of the rms of each of the signals in the steady-state pre-transition phase with the adaptive pilot in the
expected detection period, and the adaptive pilot in the steady-state post-transition phase for the DYN12 condition.
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(a) Error (e) (b) Error rate (ė)

Figure 4.8: Number of TPs, FPs, and FNs for the constant pilot with various thresholds in the DYN12 condition.

The first thing that can be seen in Figure 4.9 is that there is once again a significant difference in
the rms values between the constant pilot and the adaptive pilot in the detection region as well as
between the two steady-state phases (pre- and post-transition). This reinforces the first hypothesis in-
troduced in Subsection 4.2.2 which says, ”all participants will adapt their control strategy to avoid
the same degradation in performance observed with the constant pilot, instead tending towards
the adaptive pilot behaviour”. Comparing the two steady-state phases, the reverse effect than what
was observed in the DYN12 condition can be seen, namely that the spread in rms values decreases
post-transition for y (Figure 4.9a), ẏ (Figure 4.7b), e (Figure 4.9e), and ė (Figure 4.9f) and increases
post-transition for u (Figure 4.9c), and u̇ (Figure 4.9c). The cause of this is the nature of the CE dynam-
ics, specifically that the DYN2 condition is more difficult to control, as was explained in Subsection 4.2.2.

The most significant differences between the pre-transition steady-state rms and constant pilot in the
detection period occurs for ẏ, u, and ė. For these three signals, the median rms of the constant pi-
lot is 89%, 36%, and 39% lower than the median pre-transition steady-state rms, respectively. Thus,
these are the three signals that will be further analysed in the second step of the analysis. Before that,
however, it is worth mentioning that there is a large spread in the rms values of e (Figure 4.9e) for the
constant pilot in the detection period, and there is also some overlap with the pre-transition steady-state
rms. This observation helps to explain why previous attempts at developing a model for the detection
phase based on error for the DYN21 transition have been less successful. Figure 4.10 shows the
spread in the rms of e for the constant pilot in the detection period over all 100 forcing function real-
izations. As can be seen, there are significant differences between forcing function realizations, which
makes it very difficult to develop a model that performs well consistently. The spread in rms values for
the constant pilot in the detection period for the three signals that will be further analysed in the next
step is much lower, as seen in Figure 4.9.

For the second step of the analysis, in addition to which multiple of the steady-state standard devia-
tion to use as the threshold, the window size is introduced as an additional variable. The window size
determines how long a signal needs to stay below the threshold for it to cause a trigger and thus be
classified as either a TP or a FP, as explained in Subsection 4.2.1. Therefore, pseudocolor plots were
generated to determine which combination of threshold and window size results in the highest accuracy
model (calculated according to Equation (4.10)). The results for ẏ, u, and ė are shown in Figure 4.11.
Interestingly, despite large differences in rms values identified from Figure 4.9, no matter what com-
bination of threshold and window size is used, it is impossible to achieve an accuracy close to 1 for
u (Figure 4.11b) or ė (Figure 4.11c). This result helps support why previous models for the detection
phase in the DYN21 condition based on ė do not perform well. It also suggests that modeling the detec-
tion phase for the DYN21 condition using a compensatory display can be troublesome since only the
error, error rate, and control input are known to the HO. Given that e has already been determined not
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(a) Output (y) (b) Output rate (ẏ)

(c) Control Input (u) (d) Control input rate (u̇)

(e) Error (e) (f) Error rate (ė)

Figure 4.9: Comparison of the rms of each of the signals in the steady-state pre-transition phase with the constant pilot in the
expected detection period, the adaptive pilot in the expected detection period, and the adaptive pilot in the steady-state

post-transition phase for the DYN21 condition.
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Figure 4.10: Spread in rms for the constant pilot in the detection region over all 100 forcing function realizations.

to be a good signal to look at, now that u and ė have also been shown not to be good signals to look at,
it leaves no further signals on which to base a model or for the HO to use to determine when the CE
dynamics change. On the other hand, there are several combinations of thresholds and window sizes
towards the top left of the graph of ẏ in Figure 4.11a that result in an accuracy of 1. This means that
with explicit knowledge of the output, which is the case when using a pursuit display, it may be easier
to model the detection phase.

Choosing a threshold of 0.5σ for ẏ can be seen to result in an accuracy of 1 for many window sizes in
Figure 4.11a. Thus, a vertical slice of the pseudocolor plot at 0.5σ was taken to see how the number
of TPs, FPs, and FNs vary with different window sizes. The results are shown in Figure 4.12. As
expected, the number of FPs falls off quickly for ẏ (Figure 4.12a) and the number of TPs stays at 2500,
resulting in an accuracy of 1. If a window size of 3 seconds is taken, the accuracy would be 99.8%
which leads to the third hypothesis, the output rate staying below 0.5 standard deviations for 3
seconds is a trigger for a HO to detect a change in CE dynamics. On the contrary, it can be seen
that for u (Figure 4.12b) and ė (Figure 4.12c), the number of FPs and TPs reduce at a very similar
rate, and thus it is not possible to achieve an accuracy over 0.5. The same is true for thresholds other
than 0.5σ, which explains why the accuracy of u and ė never increases above 0.5 in Figure 4.11b and
Figure 4.11c, respectively.

4.3. Conclusions
Overall, two main conclusions can be drawn from the simulation results. First, they were able to help
develop hypotheses that could be used to optimize the experiment design. The three hypotheses
discussed in Subsection 4.2.2 and Subsection 4.2.3 are:

1. Both conditions: All participants will adapt their control strategy to avoid the same degradation
in performance observed with the constant pilot, instead tending towards the adaptive pilot be-
haviour.

2. DYN12: A significant increase in the standard deviation and maximum of the error and error rate
signals will trigger the HO to detect a transition in the CE dynamics.

3. DYN21: The output rate staying below 0.5 standard deviations for 3 seconds is a trigger for a HO
to detect a change in CE dynamics.

The first is motivated by the observation that there is a significant difference in the statistical properties
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(a) Output rate (ẏ) (b) Control Input (u)

(c) Error rate (ė)

Figure 4.11: Accuracy plotted as a function of the threshold (multiple of steady-state standard deviation) and window length for
the three signals that were identified to be most relevant for the detection phase.



4.3. Conclusions 75

(a) Output rate (ẏ) (b) Control Input (u)

(c) Error rate (ė)

Figure 4.12: Number of TPs, FPs, and FNs over varying window sizes for the constant pilot in the DYN21 condition and a
threshold of 0.5σ.
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of at least some signals between the pre-transition steady-state phase and the post-transition steady-
state phase. The second hypothesis is motivated by the fact that the constant pilot system becomes
unstable post-transition forcing the HO to detect the transition, and the fact that previous research ef-
forts have been successful in modeling the transition using the error and error rate signals. Finally, the
third hypothesis is motivated by the fact that the output rate was the only signal that showed a reliable
and significant difference in statistical properties when comparing the pre-transition steady-state phase
with the constant pilot in the detection period, and for which it was possible to find a combination of
threshold and window size for which the accuracy is close to 100%.

The second main conclusion that can be drawn is that the simulation results help explain why previous
research efforts focusing on the error and error rate signals to model the detection phase in the DYN21
condition have been less successful. It was found that the spread of rms values of the constant pilot’s
error signal during the detection period is very large, overlaps with the rms values of the steady-state
pre-transition phase, and varies significantly for different forcing function realizations. For the control
input and error rate, it was impossible to find a combination of threshold and window size for which
the accuracy was close to 1. Since these three signals are the only ones known to a HO when using
a compensatory display, it helps highlight the difficulty of making a model for the DYN21 transition.
However, when using a pursuit display, the output rate is explicitly known to the HO, which will likely
make the modeling process easier, as suggested by the third hypothesis.



5
Future Work

Having concluded the literature review and analysis of the simulation results, this chapter will outline
the future work that will be done. First, the experiment design will be introduced in Section 5.1, and
then the analysis to be done on the experiment data will be discussed in Section 5.2.

5.1. Experiment Design
In this section, an answer to the fourth sub-research question (”how can the experiment best be de-
signed to help develop and validate the model?”) will be provided by explaining and motivating the
experiment design. This includes an introduction to the control task in Subsection 5.1.1, a discussion
on the CE dynamics in Subsection 5.1.2, the choice of forcing functions in Subsection 5.1.3, the choice
of participants in Subsection 5.1.4, and the hypotheses that will be tested during the experiment in
Subsection 5.1.5.

5.1.1. Control Task
The experiment will involve participants conducting a pitch-tracking task using a pursuit display. A
sketch of this is given in Figure 5.1. Since it is a pursuit display, participants will be able to explicitly
see their own output (i.e. the controlled element output) and the forcing function, which is the target
signal. Their goal will be to minimize the error throughout the runs. Each run will last between 95 and
105 seconds. Data will be collected for exactly 90 seconds in each run, but the run length can vary
because the run-in time will be randomly chosen between 5 and 15 seconds to avoid predictability,
since the CE dynamics transition will always occur 30 seconds after the end of the run-in time. The 90
second run length allows there to be exactly three periods of the forcing function. The first period can
be used to model steady-state tracking behaviour for the first condition, the second period serves as
the transition period, and the final 30 seconds can be used to model steady-state tracking behaviour
for the second condition. If participants notice a change in the CE dynamics, they will be instructed to
immediately press a button on a different side-stick. It was chosen to use a different side-stick for the
button press because van Ham [26] concluded that having to do two tasks with the same hand (keeping
the tracking error low and pressing the button) led to decreased performance in one of the two tasks.
To avoid this, the button will be on a different side-stick which participants can press with their other
hand.

5.1.2. CE Dynamics
The two CE dynamics will be the same ones that were used in the simulation. For convenience, they
are repeated here. The DYN1 condition is given in Equation (5.1) and the DYN2 condition is given in
Equation (5.2). The break frequency (which is time-varying) will vary according to the sigmoid function
given in Equation (5.3). ωb1 is the break frequency of the first condition, ωb2 is the break frequency of the
second condition, G is the maximum rate of change andM is the moment in time where the maximum
rate of change occurs. G will be set to 100 sec−1 to simulate a step-like change, representative of a
failure of the SAS as explained in Subsection 4.1.1. M will be set to 30 sec (the run-in time counts as
negative time so this will always be 30 seconds after the end of the run-in time).

77
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Figure 5.1: Sketch of the pursuit display to be used in the experiment.

HCE1
=

90

s(s+ 20)
(5.1)

HCE2
=

90

s(s+ 0.2)
(5.2)

ωb(t) = ωb1 +
ωb2 − ωb1

1 + e−G(t−M)
(5.3)

5.1.3. Forcing Functions
The properties of the forcing function in the transition region have been shown by Jakimovska [44] and
van Ham [26] to significantly impact how long it takes HOs to detect a transition. Specifically, larger
gradients in the forcing function in the transition region generally lead to quicker detection times be-
cause they require larger control inputs, thus exciting the system more and making a change in the
CE dynamics more noticeable. To avoid biasing the results due to the choice of forcing function, a
total of nine different forcing functions will be used in the experiment. Out of the nine, six will be used
for developing the model, and three will be kept for validating the model. The nine forcing functions
were chosen such that three of them had low power in the two-second window centered around the
transition, three of them had medium power in the same window, and three of them had high power.
Further details are given in Appendix A.

For the six forcing functions that will be used to generate training data, one run will be performed in
each of DYN1, DYN12, DYN2, and DYN21 (so four runs per forcing function). For the three forcing
functions that will be used for validation, one run will be performed in both DYN12 and DYN21 (so two
runs per forcing function). Thus, there will be a total of 30 runs performed in the experiment, excluding
training runs where the participants can familiarize themselves with the tracking task and the two types
of CE dynamics.

The experiment will be split into two, whereby the fifteen runs in either DYN1 or DYN12will be performed
sequentially, and the fifteen runs in either DYN2 or DYN21 will be performed sequentially. Within the
two halves, the order of the 15 runs will be determined by an incomplete Latin square (one for the DYN1
and DYN12 conditions, and a separate one for the DYN2 and DYN21 conditions). As a result, to avoid
any order effects, a multiple of fifteen participants will be required.

5.1.4. Participants
The choice of participants is very important, as it is critical that theymaintain a high level of concentration
and attempt to keep the tracking error as low as possible for the duration of the experiment. In Terenzi’s
research [37] this was not the case, with the majority of participants having a crossover frequency lower
than 1 rad/sec. In turn, this made it difficult to draw conclusions based on the data and generalize the
findings. To avoid a repetition of this, participants who are known to be good at tracking tasks will be
invited to the experiment, and if their performance is significantly worse than the rest of the participants,
their results will be excluded and a replacement participant will be found.
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5.1.5. Hypotheses
A total of four hypotheses have been developed for the experiment, as listed below.

1. Both conditions: All participants will adapt their control strategy to avoid the same degradation
in performance observed with the constant pilot, instead tending towards the adaptive pilot be-
haviour.

2. DYN12: A significant increase in the standard deviation and maximum of the error and error rate
signals will trigger the HO to detect a transition in the CE dynamics.

3. DYN21: The output rate staying below 0.5 standard deviations for 3 seconds is a trigger for a HO
to detect a change in CE dynamics.

4. Both conditions: Participants will be quicker to detect transitions in the CE dynamics when the
gradient of the forcing function around the moment of transition is larger.

The first three have already been introduced and motivated in Chapter 4. The fourth and final one
is motivated by the findings in Jakimovska [44] and van Ham’s [26] research, as briefly discussed in
Subsection 5.1.3.

5.2. Analysis to be Done
After completing the experiment, the final two steps are developing the model and validating it. For
developing the model, a similar analysis to what was done with the simulation results in Section 4.2 will
be performed. The goal will be to find a relationship between when participants noticed a change in the
CE dynamics and a specific property in one or more of the signals, such that the model triggers for both
transitions in the CE dynamics and has similar detection lags to the participants. For this, the moment
participants pressed the button to indicate they noticed a change in the CE dynamics will be used to
help narrow down where to look for said properties in the six signals that will be analyzed. The model
with the highest accuracy will then be further investigated to ensure its robustness with a sensitivity
analysis. Finally, the model will be validated using the data collected in the experiment reserved for
validation, as explained in Subsection 5.1.3. Once this is complete, the model can be used for future
research on the adaptive behaviour of HOs.
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A
Experiment Forcing Functions

As was explained in Subsection 5.1.3, the nine forcing functions to be used in the experiment were
chosen such that three had low power in the two-second window centered around the transition, three
had medium power in the same window, and three had high power. The methodology for choosing the
forcing functions will be described below.

The first step was to determine the distribution of the power in a two-second window. For this, the
power in every two-second window of 1,000 forcing functions, each having an average crest factor
(as defined by Equation (4.3), and briefly outlined in Subsection 4.1.1), was calculated. The resulting
distribution is given in Figure A.1 1. A power below 2.5 · 10−5 rad2 (to the left of the leftmost red line in
Figure A.1) is considered low power, a power between the two red lines is considered medium power,
and a power above 7.5 · 10−5 (to the right of the rightmost red line) is considered high power.

Having determined the distribution, the next step is to choose a set of nine forcing functions out of the
1,000 that were generated. A good forcing function for the experiment, in addition to having an average
crest factor, should be roughly normally distributed (a true normal distribution is impossible to achieve
with a sum of sine waves due to the nature of a sine wave). Thus, nine forcing functions which are
roughly normally distributed were chosen from the set of 1,000. As an example of what is considered
a good distribution for the forcing function, the Q-Q plot of one of the forcing functions that will be used
in the experiment is given in Figure A.2.

Finally, the chosen forcing functions were shifted in time such that there would be three forcing func-
tions in each of the power levels (low, medium, and high) for the two-second window centered around
the transition. The forcing functions were then numbered in order of power in that two-second window
(1 being the lowest, 9 being the highest) and the middle power in each of the three power levels was
chosen as the validation forcing function (see Subsection 5.1.3), so forcing function numbers 2, 5, and 8.

The phase shifts (in radians) for the nine forcing functions to be used in the experiment are given in
Table A.1 along with the power in the two-second window centered around the transition 2 (note the
subscript on ϕ indicates the sine wave it corresponds to, with 1 being the one with the largest amplitude
and 10 being the one with the smallest amplitude).

1Note a time step of 0.01 was used to generate Figure A.1, so the two-second windows were 0-2 secs, 0.01-2.01 secs,
0.02-2.02 secs, ..., 27.99-29.99 secs, and 28-30 secs.

2Note the amplitudes of the ten sine waves are always the same and are given in Table 4.1.
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Figure A.1: Distribution of power in the forcing function over a two-second window.

Figure A.2: Q-Q plot of a forcing function that will be used in the experiment.
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Table A.1: Phase shifts and power in the two-second window centered around the transition for the nine forcing functions to be
used in the experiment.

Forcing Function Number
1 2 3 4 5 6 7 8 9

ϕ1 6.065 3.454 0.885 4.315 5.608 3.671 1.040 3.219 6.172
ϕ2 0.223 3.073 1.120 3.308 6.027 2.757 1.958 5.615 2.662
ϕ3 4.232 5.440 4.806 0.988 3.106 5.220 2.037 4.049 0.903
ϕ4 1.880 1.296 4.251 3.925 3.109 4.162 4.768 4.820 2.290
ϕ5 4.757 4.062 1.260 6.259 5.506 3.685 1.522 4.160 6.112
ϕ6 1.072 3.464 4.764 6.236 5.560 5.188 2.820 0.440 2.162
ϕ7 2.754 0.153 5.692 0.609 5.668 5.261 1.520 2.525 4.821
ϕ8 1.593 1.678 3.003 4.782 2.511 5.699 1.577 3.368 0.101
ϕ9 5.404 4.585 0.116 2.776 1.259 5.566 0.114 0.213 6.090
ϕ10 4.101 0.583 1.338 4.126 2.843 0.776 0.755 1.461 1.853
Power (rad2) 6.2 · 10−6 1.2 · 10−5 1.6 · 10−5 4.4 · 10−5 5.8·−5 6.3 · 10−5 1.3 · 10−4 2.2 · 10−4 2.3 · 10−4





B
Padé Approximation in Time-Varying

Simulation

Ultimately, the time-varying simulation used in this report was made using MATLAB and Simulink, as
described in Section 4.1. However, an earlier version of the simulation was made using only MATLAB
and had one crucial difference compared to the final simulation, namely that it used a Padé approxima-
tion for the HO time delay. A Padé approximation linearises the exponential term, the HO time delay,
and represents it as a transfer function. Using the ’Variable time delay’ block in Simulink, there is an
option to linearise it using a Padé approximation but it is not required and can also be used as a pure
time delay, which is what was ultimately done for the final simulation. The reason for this is that the
use of the Padé approximation caused significant problems in modeling the quickly time-varying CE
dynamics used in this report, as will be illustrated below.

In the steady-state conditions, the use of a third order Padé approximation led to very similar results
compared to using the ’variable time delay’ block in Simulink, as can be seen in Figure B.1-B.2. In
Figure B.1, it can be seen that the output of the two models very closely matches, to the point that the
two lines are indistinguishable. The difference between the two models is shown in Figure B.2, where
it can be seen that it is in the order of 10−6. Thus, for time-invariant simulations, a third order Padé
approximation works very well. Note that Figure B.1-B.2 show the results for the DYN1 condition, but
similar results are obtained for the DYN2 condition so will not be repeated.

However, in the time-varying simulations, particularly the DYN12 transition, the Padé approximation
introduces significant and long-lasting transients at the moment the transition occurs (t = 60 sec), as
can be seen in Figure B.3. After approximately 30-40 seconds, the transients die out, and steady-state
tracking resumes. However, during that time, the control input and output grow to extremely high num-
bers and do not correspond to each other. The control input is negative during the entire transient,
while the output remains positive the entire time, which is not possible. Keeping a constant time delay,
for example the time delay corresponding to the DYN1 condition for the DYN12 transition, significantly
reduces the magnitude of the oscillations in the control input and the output, as can be seen in Fig-
ure B.4. However, the oscillations in the control input and the length of time it takes for the transients
to die out make it impossible to perform any meaningful analysis.

In the DYN21 condition, Figure B.5, the transient is much smaller, albeit still present.

In the final model, there are still some transients at the moment the transition occurs, as can be seen in
Figure B.6. However, the oscillations in the control input are significantly less aggressive and always
die out within one second, usually less than that. Furthermore, the effect on the output is much less
noticeable as the transients primarily impact the control input. As a result of this, it was determined that
the Simulink model is good enough to use for analysis and the use of Padé approximations in quickly
time-varying systems, at least with this implementation, is not appropriate.
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Figure B.1: Comparison of the output of the MATLAB only model and the model using Simulink in the DYN1 condition.

Figure B.2: Difference between the outputs of the two models for the DYN1 condition.
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Figure B.3: Transient in the control input and output as a result of using a third order Padé approximation in the DYN12
condition.

Figure B.4: Transient in the control input and output when the time delay is kept constant in the DYN12 condition.
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Figure B.5: Transient in the control input and output in the DYN21 condition.

Figure B.6: Control input and output in the transition region for the final model used in this report.
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A
Full Simulation Analysis Results

The full results for the first step of the analysis (comparing the standard deviations over the different
phases of the simulation) in the DYN12 condition are given in Figure A.1. Note that the constant HO
in the detection period is not shown because the system with the constant HO becomes unstable. The
accuracy over a range of thresholds for a model based on each of the signals (step two of the analysis)
is given in Figure A.2. Note how it is possible to achieve an accuracy close to 100% for each signal.
This is a result of the system with the constant HO becoming unstable post-transition, thus causing all
of the signals to grow to abnormally large values.

The full results for the first step of the analysis in the DYN21 condition are given in Figure A.3.
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(a) Output (y). (b) Output rate (ẏ).

(c) Control Input (u). (d) Control input rate (u̇).

(e) Error (e). (f) Error rate (ė).

Figure A.1: Comparison of the standard deviations of each of the signals in the steady-state pre-transition phase with the
adaptive HO in the detection period and the adaptive HO in the steady-state post-transition phase for the DYN12 condition. N

= 135 in all of the box plots.
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Figure A.2: Accuracy of a model based on each of the candidate signals in the DYN12 condition.
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(a) Output (y). (b) Output rate (ẏ).

(c) Control Input (u). (d) Control input rate (u̇).

(e) Error (e). (f) Error rate (ė).

Figure A.3: Comparison of the standard deviations of each of the signals in the steady-state pre-transition phase with the
constant HO in the detection period, the adaptive HO in the detection period, and the adaptive HO in the steady-state

post-transition phase for the DYN21 condition. N = 135 in all of the box plots.



B
Participant 8 Data

The data (performance metrics) for Participant 8, whose data were not included in the results presented
in the scientific article, are presented here. In each figure, the mean from the other fifteen participants
is presented as a reference. As can be seen, the performance metrics for this participant indicate that
they were not at the level of tracking or detection performance of the other participants, particularly in
the DYN2 and DYN21 trials. Thus, the decision was made to find a replacement participant.

(a) DYN1. (b) DYN2.

Figure B.1: RMSE over the six time-invariant trials in DYN1 and DYN2.
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100 Appendix B. Participant 8 Data

(a) DYN1. (b) DYN2.

Figure B.2: Crossover frequencies calculated using the first 30 s of the measurement time for the six time-invariant trials in
DYN1 and DYN2.

(a) DYN1. (b) DYN2.

Figure B.3: Detection lags for the six DYN12 and DYN21 trials that did not use the validation forcing functions.



C
Performance Metrics Sorted by
Forcing Function and Order in

Experiment

The performance metrics sorted by forcing function (except the detection lags since they were pre-
sented in Part I) and by order in which the conditions were performed in the experiment will be pre-
sented in this chapter. In all figures except Figure C.5, there is one data point per participant in each
box plot, and thus, N = 15. Due to a FP or FN, N = 14 in the following box plots:

• Trial number 1 in Figure C.5a
• Trial number 1 in Figure C.5b
• Trial number 8 in Figure C.5b
• Trial number 9in Figure C.5b

Overall, it can be seen in all of the figures presented in this chapter that the forcing function and
the order in which the conditions were performed did not have a significant impact on the performance
metrics. For the latter, it can therefore be concluded that learning effects were kept to a minimum in
this experiment.

(a) DYN1. (b) DYN2.

Figure C.1: RMSE sorted by forcing function in the DYN1 and DYN2 trials.
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102 Appendix C. Performance Metrics Sorted by Forcing Function and Order in Experiment

(a) DYN1. (b) DYN2.

Figure C.2: RMSE sorted by the order in which the DYN1 and DYN2 trials were performed.

(a) DYN1. (b) DYN2.

Figure C.3: Crossover frequencies sorted by forcing function in the DYN1 and DYN2 trials.

(a) DYN1. (b) DYN2.

Figure C.4: Crossover frequencies sorted by the order in which the DYN1 and DYN2 trials were performed.
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(a) DYN12. (b) DYN21.

Figure C.5: Detection lags sorted by the order in which the DYN12 and DYN21 trials were performed.





D
Details of Experiment FPs and FN

Table D.1 summarizes the details of the FPs and the FN in the experiment. The column called ”Realized
Mistake?” represents whether the participant made a comment (either during the run or immediately
after the run) that they believed the button push was a mistake. However, it should be noted that
participants were not instructed to make such a comment in case they believed they made a mistake,
so it is possible that there are more cases where the participant realized they made a mistake but did
not say anything. Furthermore, it is interesting to note that Participant 3, Participant 5, and Participant
16 all made (at least) one mistake in the first three trials of the experiment, but then did not have any
further FPs or FNs for the remainder of the experiment.

Table D.1: Summary of the details surrounding the FPs and the FN in the experiment.

Participant Error Type CE Dynamics Forcing Function Trial Number Realized Mistake?

2 FP DYN2 9 18 No
2 FP DYN21 9 28 No
3 FP DYN2 9 1 Yes
3 FP DYN2 3 3 Yes
5 FP DYN2 7 1 No
5 FP DYN2 1 3 No
12 FP DYN1 1 8 No
12 FP DYN2 6 18 No
16 FP DYN12 2 1 Yes
17 FP DYN1 9 1 No
17 FP DYN21 9 16 No
17 FP DYN2 7 20 No
17 FN DYN21 6 29 No
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E
Including u in Model Threshold

For this research, an attempt was made to include the control input u in the threshold for the DYN21
model. This was done according to Eq. (E.1), where w is a weight. Thus, this approach exclusively
increases the threshold by an amount proportional to the power (equivalent to the variance) in u in
a running 0.2 s window. The 0.2 s window was chosen because Miller and Elkind [23] proposed to
include u in the threshold by looking at the magnitude of the change in u from one time step to the next.
Thus, a small time, similar to a quick reaction time, was chosen.

Threshold including u(t) = Original threshold+ w · var(u(t− 0.2s : t)) (E.1)

The goal of this approach was to improve the model’s approximation of the participant detection
lags and therefore only the TPs are considered here. Also, only the DYN21 model is considered since
the DYN21 model detections (i.e., when the threshold is exceeded) often occur extremely quickly. The
desired effect of increasing the threshold was to increase the detection lags by a few seconds such
that they are a better approximation of the participants’ detection lags. However, this was not success-
ful because, in most cases, increasing the threshold either did nothing to the model’s detection lags,
delayed them by only a few time steps (of 0.01 s), or resulted in a FN. To illustrate this, consider the
figures below.

As a reference, the TPs from the original DYN21 model (i.e., the case where w = 0 in Equation E.1)
are presented in Figure E.1. It is clear that many of the model detections occur very quickly and before
the participants pressed the button. The results forw = 50, w = 100, w = 150, andw = 200 are presented
in Figure E.2. As can be seen, increasing the weights does not help in delaying the model detections
that occur right around t = 45 s (immediately after the transition) by a few seconds. Instead, it either
delays it by too much (e.g., to the point where the model detections occur after t = 55 s) or leads to a FN.
Changing the period of time considered in the calculation of the power in u (i.e., using 0.5 s (Figure E.3)
or 1 s (Figure E.4) instead of 0.2 s as in Eq. (E.1)) results in the same problem.

Thus, it appears that there is no way to improve the estimation of the detection lags by including u
in the threshold according to Eq. (E.1).

107



108 Appendix E. Including u in Model Threshold

Figure E.1: Comparison of the model’s TPs with the participant’s TPs in the original model without u in the threshold (w = 0).

(a) w = 50. (b) w = 100.

(c) w = 150. (d) w = 200.

Figure E.2: Comparison of the model’s TPs with the participant’s TPs over various weights w when considering a 0.2 s window
for calculating the power in u.
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(a) w = 50. (b) w = 100.

(c) w = 150. (d) w = 200.

Figure E.3: Comparison of the model’s TPs with the participant’s TPs over various weights w when considering a 0.5 s window
for calculating the power in u.
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(a) w = 50. (b) w = 100.

(c) w = 150. (d) w = 200.

Figure E.4: Comparison of the model’s TPs with the participant’s TPs over various weights w when considering a 1 s window
for calculating the power in u.



F
DYN21 Transition Time Trace Analysis

The following figures were generated to investigate the role played by the relationship between the
control inputs and the system’s response (y in this case). The blue-shaded area represents the mean
±1σ averaged over all three periods of the respective forcing function in the DYN2 trials and over all
participants. Every participant’s DYN21 trial with that forcing function is then plotted on top of the blue-
shaded area. The red crosses indicate when participants pushed the button. In general, what these
figures show is that as the gradients in the forcing function become larger (i.e., the forcing function
number increases), an increasing number of button pushes occur outside the blue-shaded area in
either y or u. Therefore, as the gradients in the forcing functions increase, the difference between the
expected response (tracking the forcing function) and the observed response increases, which can
cause the participant to detect the change in CE dynamics. On the other hand, when the gradients
in the forcing function are smaller, many of the detections occur within the blue-shaded area of both y
and u. This suggests the relationship between the control inputs and the system’s response becomes
more important when the gradients in the forcing function are small.
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112 Appendix F. DYN21 Transition Time Trace Analysis

(a) Output y. (b) Control input u.

Figure F.1: Output y and control input u of all participants in the ten-second window centered around the transition for the
DYN21 condition using forcing function number 1. The shaded blue area represents the mean ±1σ of all the participants’ output
and control input over the three periods of the same ten-second window in the DYN2 condition using forcing function number 1.

(a) Output y. (b) Control input u.

Figure F.2: Output y and control input u of all participants in the ten-second window centered around the transition for the
DYN21 condition using forcing function number 3. The shaded blue area represents the mean ±1σ of all the participants’ output
and control input over the three periods of the same ten-second window in the DYN2 condition using forcing function number 3.

(a) Output y. (b) Control input u.

Figure F.3: Output y and control input u of all participants in the ten-second window centered around the transition for the
DYN21 condition using forcing function number 4. The shaded blue area represents the mean ±1σ of all the participants’ output
and control input over the three periods of the same ten-second window in the DYN2 condition using forcing function number 4.
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(a) Output y. (b) Control input u.

Figure F.4: Output y and control input u of all participants in the ten-second window centered around the transition for the
DYN21 condition using forcing function number 6. The shaded blue area represents the mean ±1σ of all the participants’ output
and control input over the three periods of the same ten-second window in the DYN2 condition using forcing function number 6.

(a) Output y. (b) Control input u.

Figure F.5: Output y and control input u of all participants in the ten-second window centered around the transition for the
DYN21 condition using forcing function number 7. The shaded blue area represents the mean ±1σ of all the participants’ output
and control input over the three periods of the same ten-second window in the DYN2 condition using forcing function number 7.

(a) Output y. (b) Control input u.

Figure F.6: Output y and control input u of all participants in the ten-second window centered around the transition for the
DYN21 condition using forcing function number 9. The shaded blue area represents the mean ±1σ of all the participants’ output
and control input over the three periods of the same ten-second window in the DYN2 condition using forcing function number 9.





G
Experiment Latin Squares

The Latin square used for the DYN1 and DYN12 conditions is given in Eq. (G.1). For brevity, the
conditions are numbered in the following way (note ’FoFu’ stands for ’Forcing Function’):

1. DYN1, FoFu 1
2. DYN12, FoFu 1
3. DYN12, FoFu 2
4. DYN1, FoFu 3
5. DYN12, FoFu 3
6. DYN1, FoFu 4
7. DYN12, FoFu 4
8. DYN12, FoFu 5
9. DYN1, FoFu 6
10. DYN12, FoFu 6
11. DYN1, FoFu 7
12. DYN12, FoFu 7
13. DYN12, FoFu 8
14. DYN1, FoFu 9
15. DYN12, FoFu 9



12 2 14 15 10 13 8 9 1 5 11 7 6 3 4
7 12 9 10 5 8 3 4 11 15 6 2 1 13 14
2 7 4 5 15 3 13 14 6 10 1 12 11 8 9
13 3 15 1 11 14 9 10 2 6 12 8 7 4 5
8 13 10 11 6 9 4 5 12 1 7 3 2 14 15
5 10 7 8 3 6 1 2 9 13 4 15 14 11 12
14 4 1 2 12 15 10 11 3 7 13 9 8 5 6
10 15 12 13 8 11 6 7 14 3 9 5 4 1 2
6 11 8 9 4 7 2 3 10 14 5 1 15 12 13
9 14 11 12 7 10 5 6 13 2 8 4 3 15 1
4 9 6 7 2 5 15 1 8 12 3 14 13 10 11
15 5 2 3 13 1 11 12 4 8 14 10 9 6 7
11 1 13 14 9 12 7 8 15 4 10 6 5 2 3
1 6 3 4 14 2 12 13 5 9 15 11 10 7 8
3 8 5 6 1 4 14 15 7 11 2 13 12 9 10



(G.1)

The Latin square used for the DYN2 and DYN21 conditions is given in Eq. (G.2). Again, the conditions
are numbered in the following way:
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1. DYN2, FoFu 1
2. DYN21, FoFu 1
3. DYN21, FoFu 2
4. DYN2, FoFu 3
5. DYN21, FoFu 3
6. DYN2, FoFu 4
7. DYN21, FoFu 4
8. DYN21, FoFu 5
9. DYN2, FoFu 6
10. DYN21, FoFu 6
11. DYN2, FoFu 7
12. DYN21, FoFu 7
13. DYN21, FoFu 8
14. DYN2, FoFu 9
15. DYN21, FoFu 9



9 8 14 1 5 12 10 2 13 7 6 3 15 4 11
14 13 4 6 10 2 15 7 3 12 11 8 5 9 1
7 6 12 14 3 10 8 15 11 5 4 1 13 2 9
11 10 1 3 7 14 12 4 15 9 8 5 2 6 13
10 9 15 2 6 13 11 3 14 8 7 4 1 5 12
1 15 6 8 12 4 2 9 5 14 13 10 7 11 3
15 14 5 7 11 3 1 8 4 13 12 9 6 10 2
2 1 7 9 13 5 3 10 6 15 14 11 8 12 4
6 5 11 13 2 9 7 14 10 4 3 15 12 1 8
3 2 8 10 14 6 4 11 7 1 15 12 9 13 5
4 3 9 11 15 7 5 12 8 2 1 13 10 14 6
12 11 2 4 8 15 13 5 1 10 9 6 3 7 14
13 12 3 5 9 1 14 6 2 11 10 7 4 8 15
5 4 10 12 1 8 6 13 9 3 2 14 11 15 7
8 7 13 15 4 11 9 1 12 6 5 2 14 3 10



(G.2)



H
Documents for Human Research

Ethics Committee

The following documents were submitted to the Human Research Ethics Committee for approval under
application number 3307. The informed consent form is presented first, followed by the experiment
briefing.
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Contact information researcher: Contact information research supervisor: 
- -  

 

Experiment Consent Form 

Modeling the Human Operator’s Detection of a Change in Controlled Element Dynamics 

 
I hereby confirm, by ticking the box, that: 

1. I volunteer to participate in the experiment conducted by the researcher (-), under 
supervision of -, from the Faculty of Aerospace Engineering of TU Delft. I understand that 
my participation in this experiment is voluntary and that I may withdraw (“opt-out”) from 
the study at any time, for any reason. 

 

2. I have read the briefing document and I understand the experiment instructions, and have 
had all remaining questions answered to my satisfaction. 

 

3. I understand that my participation involves performing manual tracking tasks in the HMI-
Lab simulator at TU Delft. I understand that only the pseudonymized recorded time traces 
of the tracking tasks are saved and used for data analysis. 

 

4. I confirm that the researcher has provided me with detailed safety and operational 
instructions for the HMI-Lab simulator (simulator setup, electro-hydraulic side stick, 
emergency procedures) used in the experiment. Furthermore, I understand the 
researcher’s instructions for guaranteeing the experiment’s compliance with current 
COVID-19 guidelines, and that this experiment shall at all times follow these guidelines. 

 

5. I understand that the researcher will not identify me by name in any reports or publications 
that will result from this experiment, and that my confidentiality as a participant in this 
study will remain secure. Specifically, I understand that any demographic information I 
provide (gender, age range, see next page) will only be used for reference and always 
presented in aggregated form in scientific publications. 

 

6. I understand that this research study has been reviewed and approved by the TU Delft 
Human Research Ethics Committee (HREC). To report any problems regarding my 
participation in the experiment, I know I can contact the researchers using the contact 
information below. 

 

 
 
 

  

My Signature  Date 
 
 
 

  

My Printed Name  Signature of researcher 
 

  



Contact information researcher: Contact information research supervisor: 
- -  

 

Participant Demographic Information 

Modeling the Human Operator’s Detection of a Change in Controlled Element Dynamics 

 
 

Age range:  

o 18 – 19 

o 20 – 24 

o 25 – 29 

o 30 – 34 

o 35 – 39 

o 40 – 44 

o 45 – 49 

o 50 – 55 

o 55+ 

 

Gender:  __________ 

 

Participant number:  __________ 
(filled out by the researcher) 

 



Experiment Briefing 
Modeling the Human Operator’s Detection of a Change in Controlled Element Dynamics 

First of all, thank you for your participation! This experiment is part of an MSc thesis research project 

that aims to understand and model how a human operator (you) detects that the controlled element 

dynamics have changed. The experiment consists of a simple tracking task and will be performed in 

the Human-Machine Interaction Laboratory (HMI-Lab) at TU Delft’s Faculty of Aerospace Engineering. 

This briefing will give an overview of the experiment and explains what is expected from you as a 

participant. Please read this document carefully. Should any questions or comments remain, always 

feel free to discuss these with the researcher conducting the experiment. 

Experiment Objective 
The goal of this experiment is to investigate how human operators detect changes in the controlled 

element dynamics. Data from this experiment will be used to develop and validate a model that can 

predict the moment a human operator detects a change in controlled element dynamics and 

consequently can be used in future models on adaptive manual control behavior.  

Experiment Set-up 
The experiment will take place in the HMI-Lab (Fig. 1), a fixed-base simulator set-up at TU Delft’s 

Faculty of Aerospace Engineering. The task you will be carrying out is a tracking task with a pursuit 

display (i.e. you can see the target signal and the controlled element output), as shown in Fig. 2. Please 

take a seat on the chair on the right and use the side-stick on your right-hand side to control the system 

by moving the side-stick to the left and right. There is another side-stick on your left-hand side. The 

purpose of this side-stick will be explained in the next section.  

 

  

Figure 1: Illustration of HMI-Lab. The participant will be sitting on the right 
(blue) seat and controls the side-stick.  

Figure 2: Sketch of the HMI Lab pursuit 
display. 

 
 

Experiment procedure 
Before starting the data collection, some training runs will be performed so that you can familiarize 

yourself with the different scenarios and controlled element dynamics. In the experiment, you will 

control dynamics that respond like a single integrator (rate control) or like a double integrator 

(acceleration control), and transitions between these different dynamics. Once your performance is 



stable, the data collection phase will begin. There is no pre-defined number of tracking runs that are 

needed for collecting the data: the experimenter will simply notify you when sufficient data has been 

collected. All individual tracking runs last 100 seconds.  

It is important that you continue to focus on keeping the error (the distance between the target signal 

and the controlled element output) as low as possible during the entire run by continuously controlling 

the system with the side-stick on your right. At the end of each run, your score will be communicated 

to you by the researcher. During the runs, the controlled element dynamics may change. If you detect 

a change in the controlled element dynamics, please immediately indicate this by pressing the button 

on the side-stick to your left. Please note that only some of the runs will contain a change in the 

controlled element dynamics, so it is possible to go through an entire run without needing to press the 

button.  

Short breaks can be taken between runs to alleviate any discomfort that might occur due to fatigue, 

controlling the side-stick, or sitting in a fixed position for a prolonged period of time. A longer break of 

approximately 10 minutes will be taken after the first hour. The experiment will last approximately 

two hours. Should more breaks be required, you can request them at any moment.  

For each subsequent trial, the following procedure will be applied: 

1. The researcher applies the settings for the next run. 

2. The researcher checks that the participant is ready to proceed and initiates the run after a 

countdown from 3 (3-2-1-go). 

3. The participant performs the tracking task. 

4. The participant will be notified of their performance in the run in terms of the error score that 

will appear on the display after completing the run. 

Your Rights & Consent 
Experiment participation is voluntary. Should you feel uncomfortable, you can decide to stop your 

participation at any time. By participating in the experiment you agree that the collected data may be 

published. Your personal data will remain confidential and anonymous, only the researcher can link 

the collected data to a specific participant. To ensure you understand and comply with the conditions 

of the experiment, you will be asked to sign an informed consent form. 

 

 

Thank you again for participating! 

Contact information researcher: 
- 

Contact information research supervisor 
- 
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