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Summary
Sequentially linear analysis (SLA), an event-by-event procedure for finite ele-
ment (FE) simulation of quasi-brittle materials, is based on sequentially iden-
tifying a critical integration point in the FE model, to reduce its strength and
stiffness, and the corresponding critical load multiplier (𝜆crit), to scale the linear
analysis results. In this article, two strategies are proposed to efficiently reuse
previous stiffness matrix factorisations and their corresponding solutions in sub-
sequent linear analyses, since the global system of linear equations representing
the FE model changes only locally. The first is based on a direct solution method
in combination with the Woodbury matrix identity, to compute the inverse of a
low-rank corrected stiffness matrix relatively cheaply. The second is a variation
of the traditional incomplete LU preconditioned conjugate gradient method,
wherein the preconditioner is the complete factorisation of a previous analy-
sis step's stiffness matrix. For both the approaches, optimal points at which the
factorisation is recomputed are determined such that the total analysis time
is minimised. Comparison and validation against a traditional parallel direct
sparse solver, with regard to a two-dimensional (2D) and three-dimensional (3D)
benchmark study, illustrates the improved performance of the Woodbury-based
direct solver over its counterparts, especially for large 3D problems.

K E Y W O R D S

direct linear solver, iterative linear solver, low-rank matrix correction, nonlinear finite element
analysis, sequentially linear analysis

1 INTRODUCTION

Sequentially linear analysis (SLA), wherein the nonlinear response of a structure in a displacement-based finite ele-
ment (FE) framework is approximated as a series of linear analyses*, has in the past few years been improved to enable

*Unlike NLFEA which is considered as one analysis containing several steps, SLA comprises several linear analysis which are referred herein
interchangeably as ‘analysis steps’ or ‘steps’ as such.
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structural-level applications in the civil engineering field. The procedure involves discretising the softening constitutive
law with negative tangent stiffness into stepwise decreasing positive secant stiffness branches, and performing one lin-
ear analysis at a time to identify the critical stress point in the FE model and the corresponding load multiplier (𝜆crit).
Subsequently, the strength and stiffness of the critical point are reduced, and the stresses and strains of the FE model are
scaled with the critical load multiplier.1-3 The procedure is robust due to the combined use of positive secant stiffnesses
and the event-by-event approach, thereby avoiding typical ill-conditioning problems encountered in Nonlinear FE anal-
ysis (NLFEA) wherein multiple integration points enter into softening simultaneously. It has been a proven alternative
to traditional incremental-iterative methods for NLFEA of quasi-brittle structures. SLA, thus far, has had contributions
in the contexts of mesh-objectivity,3,4 saw-tooth laws for extremely brittle materials with snap-back at constitutive level
like glass,5 extension to non-proportional loading situations,6-10 stepwise secant Coulomb friction laws,4 creep-induced
cracking,11 combined incremental-total approaches like Non-Iterative Energy-based Method (NIEM) and the automatic
method,8 combining SLA with a crack tracking technique12 and non-proportional loading strategies for three-dimensional
(3D) stress states. 13

Despite active contributions to this topic, the computational performance of SLA remains not very conducive to practi-
cal applications as has been pointed out previously.4,14-16 It is the event-by-event nature of the SLA approach, which on the
one hand instills robustness, contrarily makes the procedure computationally intensive. However, since only one element
is effectively damaged at a time, the system of linear equations to be solved only changes locally between these analyses.
Traditional direct solution techniques do not exploit this property and calculate a rather expensive stiffness matrix fac-
torisation every linear analysis, resulting in high computational times per analysis step. Additionally, the need for a high
number of linear analyses, to bring about an equivalent nonlinear response as in the traditional approaches, compounds
the total analysis time. Inspired by remarks made in, for example17,18 this motivated the need for a tailor-made solver for
SLA. To address this issue, and efficiently make use of previous stiffness matrix factorisations and solutions, two solution
strategies are proposed in this article. Alternative methods combining a traditional incremental-iterative technique and
the total approach of SLA are also available in the literature addressing the need for a practical alternative,8 but the focus
of this work is to solely improve the performance of SLA with regards to solving the system of linear equations.

To begin with, the constitutive framework and work flow of SLA are briefed upon in Section 2. In Section 3,
the aforementioned solution strategies are explained alongside the corresponding restarting ideas. Firstly, an adapted
direct solution technique based on the Woodbury matrix identity is proposed. This identity, the generalisation of the
Sherman-Morrison formula (to find the inverse of a rank-1 corrected matrix) to a rank-r correction, allows for cheaper
numerical computation of the inverse of a low-rank corrected matrix by avoiding the matrix factorisation every analysis
step. The old factorisation can be reused with some additional matrix and vector manipulations in order to solve a sig-
nificantly smaller linear system of equations relatively efficiently. The optimal point of restarting, to start off again with
a new factorisation is also deduced. Secondly, an improved preconditioner for the conjugate gradient (CG) method19 is
proposed. Instead of an incomplete LU factorisation (ILU) as a preconditioner, which is more commonly used for solving
large systems of equations pertaining to structural applications, the complete factorisation (LU) of a previous analysis step
is used as a preconditioner which reduces the number of required CG iterations significantly. The point at which too many
CG iterations are required and a new factorisation is necessary, is determined using a restarting strategy similar to that of
the first method. Subsequently, in Section 4 the proposed solution strategies are compared against a widely used parallel
direct sparse solver (PARDISO),19 from a performance perspective, using two real-life benchmarks. The first benchmark
is that of a masonry wall tested for a quasi-static lateral load in combination with an overburden load20 and the second is
a reinforced concrete (RC) slab tested for a concentrated shear load, along with axial loads at the lateral faces.21 From the
numerical studies, it follows that both the proposed methods perform significantly better than the direct solution method,
especially for large 3D problems. Results from the sensitivity studies performed for problem sizes and for the number of
steps used to discretise the constitutive model, are also detailed in this section. Finally, Section 5 summarises the main
findings of the presented work, ongoing investigations and the directions to future work.

2 SLA: AN OVERVIEW

2.1 Discretisation of the softening constitutive model

The crux of the method is in discretising the uniaxial softening constitutive relation into an equivalent stepwise secant
material law, also known as the saw-tooth law. In principle, the material law is described as a series of successively
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reducing secant stiffnesses, starting from the initial elastic branch with the original Young's modulus of the material (E0).
Whenever there is breach of the stress limit in an integration point and it becomes the most critical in the FE model,
the next secant relation with reduced strength and stiffness properties takes over from its previous secant branch. This
process of reducing the stiffness upon attaining a stress limit is repeated until the stiffness of the structure has vanished,
which corresponds to a state of complete damage. Constant stiffness/strength decrements, the ripple band method, and
the improved ripple band methods are some of the approaches in use for saw-tooth approximations of typical tension and
compression softening curves.4 Figure 1A depicts the ripple bandwidth type saw-tooth law for a linear tension softening
relation.

These uniaxial saw-tooth laws are used in the orthotropic fixed smeared crack framework, wherein as soon as the
principal stress violates the allowable strength at an integration point, the isotropic stress strain relation 𝝈 = D𝜺 trans-
forms into an orthotropic relation as 𝝈nst = Dnst𝜺nst with the nst cracked coordinate system. The primary principal stress
direction's Young's modulus and strength are damaged according to the uniaxial saw-tooth law. In the event that normal
stresses in the tangential directions (secondary or tertiary) violate the corresponding allowable strengths, caused by stress
rotations or redistribution of stresses or application of another load non-proportionaly, damage is introduced in those
directions similarly. So every integration point essentially requires two uniaxial saw-tooth laws each for tension and com-
pression in the two-dimensional (2D) stress state and three in the case of a 3D stress state. This aside, the shear behaviour
in the fixed cracking model is represented using a variable shear retention function that reduces with increasing damage
in normal directions of the cracked plane.22 Also, the Poisson's ratio is reduced at the same rate as the associated Young's
modulus. For further information on the constitutive model used in SLA, the reader is referred to References 3,4,13,23.

2.2 Work flow

Defining the saw-tooth laws is the first step in SLA's workflow, as shown in Figure 1B. Thereafter, the FE model is loaded
by a unit value of the load to be actually applied and a linear analysis is performed. A load factor can be calculated for each
integration point as the ratio of the allowable strength to that of the governing stress (considering the principal stresses
for damage initiation in a smeared fixed crack approach) as shown in the following.

𝜆
j
crit,i =

f j
i

𝜎
j
gov,i

, (1)

where i and j denote an integration point number† and the analysis step, respectively, 𝜎j
gov,i is the governing stress com-

ponent for integration point i, f j
i is the peak stress limit as defined by the current secant branch of the saw-tooth law

and 𝜆
j
crit,i the associated load multiplier. To ensure that only one integration point reaches its peak stress limit, the linear

analysis is scaled with the minimum of all load factors which is referred to as the critical load factor and is defined as

𝜆
j
crit = min

i

(
𝜆

j
crit,i

)
∀ 𝜆

j
crit,i > 0. (2)

The strength ft and stiffness E0 of this critical integration point is then reduced based on the saw-tooth laws, with
the discretisation factor p, as shown in Figure 1A. Eventually, the results of the linear analysis: the stresses, strains and
displacements, are scaled using the critical load multiplier.

The workflow of SLA under non-proportional loading conditions is not as straightforward as elaborated above.
Real-life loading conditions are rather complex, where the rate of change of all loads in not the same. The simplest and the
most common situation is when there are constant loads like dead loads, precompression, overburden etc. on the struc-
ture, and subsequently variable loads like earthquake or wind loads act. In such situations, each global stress component
is expressed as a superposition of the stresses due to the constant loads and the scaled variable loads. The load multiplier
is then deduced for undamaged integration points by limiting the principal stresses to the allowable strength. Already
damaged integration points yield load multipliers per direction of the orthogonal cracked system. The critical load mul-
tiplier is then identified based on a constrained maximisation approach in combination with a double-load multiplier

†i denotes an integration point for an undamaged situation and alternatively upon damage, denotes events corresponding to tension / compression
failure criteria along the two or three fixed damage directions. depending on the stress state
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(A) (B)

F I G U R E 1 (A) Saw tooth constitutive laws—linear tension softening; (B) the work flow for proportional loading conditions

strategy.4 Damage initiation involves solving quadratic (2D) or cubic equations (3D) of the load multiplier, as the stress
state may be, while damage propagation involves solving linear equations. However, the subsequent process of applying
damage and scaling results is analogous to that in the proportional loading case. For further information on the workflow
for non-proportional loading situations, the reader is referred to References 4,6,13.

3 METHODOLOGIES

3.1 Motivation

The traditional direct solution method to solve the system of linear equations involves an expensive matrix factorisation
of the stiffness matrix K and calculates the displacements u by forward and backward substitution.

𝐾u = f , (3)

Common factorisation techniques like the LU and Cholesky decomposition methods, become expensive if they have to
be computed in every analysis step. As a result, for increasing problem sizes, solving the system of equations becomes the
bottleneck for SLA and is illustrated by the CPU-time measurements for a 2D shear wall case-study reported in Reference
24, see Figure 2 for the results. The system of equations undergoes a low-rank correction of the global stiffness matrix per
analysis step in SLA and therefore, there is a need for efficient solution strategies that exploit this feature, two of which
are outlined in the following sections.

3.2 Direct solver using Woodbury matrix identity

The inverse of a rank-1 corrected matrix (A + uvT), subject to the inverse A−1 being known a priori, can be computed
relatively easily using the well-known Sherman-Morrison formula19 as against having to perform the inverse operation
altogether anew. The rank correction for practical applications in FE analysis using the SLA, however, is generally of a
higher order.

To this end, the Woodbury matrix identity,19 which is a generalisation of the Sherman-Morrison formula for a
rank-r correction of a matrix, is more suitable. The identity states that for matrices A ∈ RN×N ,U ∈ RN×r,C ∈ Rr×r,V ∈
Rr×N , assuming A and C are invertible, the inverse of a low-rank corrected matrix is defined as : (A + UCV)−1 =
A−1 − A−1U

(
C−1 + VA−1U

)−1VA−1. Substituting r = 1, it follows directly that the Woodbury identity reduces to the
Sherman-Morrison formula. In SLA, additionally, the low-rank correction is symmetric and therefore UCV can be written
as UCUT with C as a symmetric matrix. In this case, the expression simplifies to the following:(

A + UCUT)−1 = A−1 − A−1U
(

C−1 + UTA−1U
)−1UTA−1. (4)



2132 PARI et al.

F I G U R E 2 Total central processing unit (CPU) time (in
seconds) of the most dominant processes of sequentially linear
analysis in relation to the problem size (number of degrees of
freedom (DOFs)) of a 2D shear wall case-study24

Assuming an element ei is damaged in the nth analysis step, the low-rank corrected system stiffness matrix K(n+1), for
the subsequent analysis step can be written as

K(n+1) = K(n) + Tei

(
K(n+1)

ei
− K(n)

ei

)
TT

ei

∶= K(n) + Tei D
(n)
ei

TT
ei
, (5)

where D(n)
ei

is the update to the stiffness matrix of element ei and Tei is the transformation matrix which maps the local
numbering of the element to the global numbering of the FE model. It is to be noted that the subscripts and superscripts
refer to element numbers and the analysis step, respectively. Constructing the eigendecomposition of D(n)

ei
and substituting

it in Equation (5) we obtain

K(n+1) = K(n) + Tei Q
(n)
ei
Λ(n)

ei

(
Q(n)

ei

)T
TT

ei
(6)

= K(n) +
(

Tei Q
(n)
ei

)
Λ(n)

ei

(
Tei Q

(n)
ei

)T

∶= K(n) + U (n)C(n)U (n)T (7)

wherein the matrix C(n) = Λ(n)
ei

is a diagonal matrix whose elements are the eigenvalues of D(n)
ei

, Q(n)
ei

contains the cor-
responding eigenvectors and U (n) = Tei Q

(n)
ei

. The aforementioned eigendecomposition only considers sufficiently large
eigenvalues corresponding to dominant features of the applied damage increment in an SLA step. The basis for this choice
and its effect on the convergence of the solution is elaborated upon in Section 3.4. It is clear that the rank in every analysis
step increases by the number of sufficiently large eigenvalues of the eigendecomposition of D(n)

ei
, which regardless of the

type of analysis (2D or 3D) is at most d, where d is the number of degrees of freedom (DOF) of the element ei. Rewriting
in a suitable form for Woodbury identity, Equation (7) is defined recursively in terms of the initial stiffness matrix K(0)

which yields

K(n+1) = K(0) +
n∑

j=1
U (j)C(j)U (j)T

= K(0) +
[
U (1) … U (n)] [C(1)

⋱
C(n)

]⎡⎢⎢⎣
U (1)T

⋮
U (n)T

⎤⎥⎥⎦
∶= K(0) + UnCnUT

n . (8)

Now, Equation (8) is of the form as required by Equation (4). Once the factorisation of K(0) is known and the above
setup is performed, the solution to the system of equations K(n+1)u = f of the (n + 1)th linear analysis step can be calculated
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by performing the steps in Algorithm 1. In summary, Woodbury identity helps achieve a cheaper computation of the
inverse of a low-rank corrected matrix, by avoiding the calculation of an expensive new factorisation every analysis step.
Thus, it enables the reuse of an old factorisation and subsequently the solution is obtained with additional matrix and
vector multiplications. A significantly smaller system of equations is solved for effectively in step 5 of Algorithm 1, as
opposed to the direct solution method.

Algorithm 1. Direct solution using the Woodbury matrix identity

1: Solve the system K(0)x = f , for x by using the known factorisation of K(0)

2: Solve the system K(0)Z = Un, for Z by using the known factorisation of K(0)

3: Calculate E = C−1
n + UT

n Z
4: Calculate y = UT

n x
5: Solve the system Ez = y, for z by calculating a factorisation of E and applying subsequent forward and backward

substitutions.
6: Solution to the system of equations: u = x − Zz

3.3 Preconditioned conjugate-gradient iterative solver

Krylov subspace methods, which belong to an iterative class of solution methods, in contrast to direct solution methods
generate a sequence of approximate solutions ui to Equation (3). This is done by solving a minimisation problem over the
subspace k which contains the solution and is called the Krylov subspace as defined below in Equation (9), where r is
the residual vector and r0 = f − Ku0 with u0 as the initial guess, and k is the number of iterations.

k (K, r0) = span
{

r0,Kr0,… ,Kk−1r0
}

(9)

The stiffness matrix is symmetric and positive definite (SPD) for the problems solved using SLA and for such cases, the
CG method is the Krylov subspace method of choice. After N iterations the Krylov subspace spans RN and therefore, CG
terminates (in exact arithmetic) at the exact solution after at most N iterations. A stricter error bound using eigenvalues
is also well known, which states that if K (or P−1K for a preconditioned problem) has 𝜌 distinct eigenvalues, convergence
is guaranteed in at most 𝜌 iterations.19 The extreme eigenvalues of K influence the convergence speed of CG, which in
turn can be improved using preconditioning to obtain more favourable eigenvalues.

In the preconditioned CG (PCG) method, for a matrix P which is assumed to be non-singular, P−1Ku = P−1f is solved
for, and is shown in Algorithm 2. Since in every iteration the linear system Pzk+1 = rk+1 is solved for, P should be chosen
such that operations with P−1 are cheap to perform. Furthermore, the choice of the preconditioner must ensure that the
eigenvalues of P−1K are clustered for a faster rate of convergence. Several choices for the preconditioner P exist such as
the extremes P = I and P = K, or the intermediate ILU factorisation.

Algorithm 2. PCG algorithm

1: Set r0 = f − Ku0, z0 = P−1r0, p0 = z0.
2: for k = 0, 1,… until convergence do
3: 𝛼k = rT

k zk∕pT
k Kpk

4: uk+1 = uk + 𝛼kpk
5: rk+1 = rk − 𝛼kKpk
6: zk+1 = P−1rk+1
7: 𝛽k = rT

k+1zk+1∕rT
k zk

8: pk+1 = zk+1 + 𝛽kpk
9: end for

Due to the event-by-event strategy of SLA, the choice P = K(0) would be appropriate especially when the factorisation
is not performed every analysis, in order to have a balance between a cheap computation of P and a reasonable rate of
convergence. This suggests the use of the complete factorisation of K(0) as a preconditioner. Taking P = K(0), it follows
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that in the first analysis step P−1K(0) = I, and the solution method basically becomes a direct solution method. However,
subsequent analysis steps require considerably lesser iterations due to the event-by-event nature of SLA. That is, the first
subsequent system needs at most (r1 + 1) iterations, with r1 equal to the rank of the first update. The second system needs
at most (r1 + r2 + 1) iterations, since K(2) differs form K(0) by at most a rank r1 + r2 update. This argument can be repeated,
which implies that after n SLA steps, at most

(∑n
i=1 ri + 1

)
CG-iterations are needed. The iterative scheme is repeated

until the approximate solution is sufficiently converged, determined by a stopping criterion, one of which is shown below
for some 𝜀, where r is the residual vector.

‖rk‖‖f‖ ≤ 𝜀 (10)

Therefore, the optimal point at which a new factorisation is calculated should be determined such that the total
computing time is minimised. In such an iterative approach, instead of factorisation, the matrix K is only involved
in matrix-vector multiplications and the solution to Equation (3) is determined using inner-products, vector updates,
scalar-vector and matrix-vector products, and back- and forward substitutions with the factors of K(0) (the most expen-
sive operations). Krylov subspace methods, in general, require a relatively small amount of memory to solve the problem
compared to direct solution methods, however, in SLA's context, more memory is required because of the factorisation
being used as preconditioner.

3.4 Restarting strategies for both approaches

The solution strategies presented in Sections 3.2 & 3.3 are similar to the end that both require an expensive factorisa-
tion step followed by a series of significantly faster steps. While solving large linear systems using these strategies, two
parameters can be tuned. Firstly, the number of sufficiently large eigenvalues to be considered for the eigendecompo-
sition of the update to the critical element stiffness matrix in Equation (6) has to be chosen, that is, a decision has to
be made to find a balance between performance and accuracy. Secondly, it is also possible to restart which implies that
a new factorisation of the stiffness matrix has to be computed resulting in the rank being set back to 0. The penalty
in restarting is in having to recompute a costly matrix decomposition, while, on the other hand, the following analysis
steps would be considerably cheaper. The restarting point, therefore, has be to be determined such that these effects are
balanced.

Eigenvalue ratio. Numerically calculated eigenvalues of the update to critical element's stiffness matrix, using some
iterative scheme, could contain rounding errors which may result in non-zero values and therefore influence the
eventual results. To address this, the absolute value of all eigenvalues during every analysis step was compared to
the largest eigenvalue as a ratio, the eigenvalue threshold 𝜖 = 𝜆i ∕𝜆max, which in turn helped control the choice of
dominant eigenvalues differing from the largest value by a certain order of magnitude. Parametric studies were per-
formed on several test problems, without restarting as proposed in Section 3.2, to solely analyse the influence of the
choice of an eigenvalue ratio on the accuracy of the solution. Thus, isolating the effect of only the eigenvalue thresh-
old, a choice of 𝜀 > 10−10 was made.24 In general, the solution residuals were observed to increase faster with the
Woodbury-based solution (without restarting) than those of the direct solution method, which is due to the rounding
errors resulting from the numerous intermediate matrix and vector manipulations involved in the former approach.
Nevertheless, the residuals of the Woodbury solution were in reasonable agreement to the direct solution method
in terms of accuracy (one order of magnitude difference), especially considering the fact that restarting was not
yet used.

Restarting strategy. After deciding on an eigenvalue threshold based on the performance of the method without loss of
any accuracy (residuals differing by one order of magnitude), the next step of determining a restarting strategy was carried
out. The optimal point when a new factorisation has to be recalculated for both Woodbury-based and PCG methods, such
that the total analysis time is minimised, could possibly be determined using two approaches. Owing to the inherent
similarity in the proposed Woodbury-based and PCG methods, the restarting ideas are presented using the Woodbury
method as reference.

Firstly, a rank-correction-based approach was considered. Herein, the theoretical cost estimates for both the direct
solution method and the Woodbury identity-based approach are derived using the theoretical flop counts for all nec-
essary substeps within a linear analysis, which depends on the rank correction r, the lower and upper bandwidths of
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the stiffness matrix p, q and also its size N × N. This rank-based optimal restarting strategy determines the point of
restarting by minimising the cost function with respect to the rank r. However, since the approach relies heavily on the
estimated bandwidths, which cannot be efficiently deduced for complex geometries, and the fact that the direct solu-
tion method (PARDISO) being considered here has a fill-in minimising reordering scheme (which does not necessarily
minimise the bandwidth), it is highly unlikely that the prediction for the restarting point would be optimal indeed.
Detailed information on the rank-based restarting strategy and the associated cost functions can be found in Reference.24

Secondly, a time-estimation-based approach was deduced. The computing times of the analysis steps are measured
and an estimate is made for the expected total analysis time. The measured time for a direct solution analysis step (td)
includes those for factorisation, back- and forward substitutions. The subsequent nr analysis steps, where nr denotes the
next restarting analysis step, yield the solution using Woodbury method in time tw(i) where i = 1,… ,nr. There are two
key assumptions to this restarting strategy:

• The maximum number of analysis steps m is known a priori.
• The total computing time is composed of a sequence of repeating measured patterns (times) after every restart.

Restarting after the nth
r analysis step and assuming that the measured sequence of times {td, tw(1),… , tw(nr)} repeats

until the end of the analysis, the total computing time of the analysis can be computed as shown below, where the second
term is premultiplied by a typical indicator function (to adjust for the remaining analysis steps after the last of several
restarts):

t(nr) =
⌊

m
nr + 1

⌋
⋅

(
td +

nr∑
i=1

tw(i)

)
+ 1{

m−
⌊

m
nr+1

⌋
⋅(nr+1)≠0

}(nr) ⋅
⎛⎜⎜⎜⎝td +

m−
⌊

m
nr+1

⌋
⋅(nr+1)−1∑

j=1
tw(j)

⎞⎟⎟⎟⎠ (11)

In order to corroborate the assumptions to be realistic, simple performance studies were carried out for a coarse mesh
of a 3D RC slab problem, reported.24 This RC slab subject to concentrated shear load was previously simulated using SLA4

under proportional loading conditions. Figure 3A shows the patterns of elapsed time per linear analysis step/event for the
standard PARDISO and, Woodbury Identity-based direct solvers (with and without the restarts) for 80 steps. Figure 3B
shows the total time taken for these three cases up to 80 steps and emphasises the need for restarting. The maximum
number of analysis steps m does not have any significant effect on the restarting point derived by optimising Equation (11)
and this was also observed as closely spaced restarting points for varying values of m, as shown in Figure 4A. This is
because m just appears as a multiplicative constant in Equation (11) and for very large cases, one could ignore the second
term in Equation (11).

Furthermore, the problem was solved with restarting points a few steps before and after the optimal ones, for a finer
mesh of the aforementioned case study. Figure 4B shows the total analysis times (for 10000 steps in all) for these three
cases referred to as Earlier, Later, and Optimal. This study confirmed that continuing longer without restarting results in
a performance penalty in the last analysis steps (total analysis time = 1289 mins) while restarting earlier results in too

(A) (B)

F I G U R E 3 (A) Elapsed times per analysis step up to 80 steps of a three-dimensional RC-Slab simulation using the parallel direct sparse
solver and Woodbury identity-based direct solution methods, with and without restarting at the optimal point; (B) Total elapsed time for the
three cases up to 80 events
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(A) (B)

F I G U R E 4 (A) Total elapsed times for different values of m, that is, the maximum number of analysis steps illustrating the proximity
of restarting points and (B) the total elapsed times until the 10000th analysis step, for the three-dimensional reinforced concrete-slab
simulation with a finer mesh, comparing the effect of earlier or delayed restarting with respect to the optimal point

many expensive factorisations (total analysis time = 1247 mins) as against the optimal one (total analysis time = 1166
mins). These simple studies validate the aforementioned assumptions and the restarting strategy by itself. In conclusion,
the time-estimation-based restarting strategy seems a more reasonable option for the presented solution methods and is
therefore used as reference for the validation and parametric studies presented in Section 4. Further information on the
time-estimation-based restarting strategy can be found in Reference.24

4 RESULTS AND DISCUSSION

In order to validate the proposed solution strategies, two experimental benchmarks are considered. Firstly, the structural
response of both the benchmarks, as simulated using SLA, are briefly touched upon. Thereafter, the computational per-
formance of these reference models (solved with the PARDISO) are compared against those solved with the Woodbury
identity-based method and the PCG. Subsequently, parametric studies are presented in Section 4.2.

4.1 Case studies

4.1.1 Pushover analysis of a Shear Wall (2D)

The first benchmark considered is that of an unreinforced brick masonry wall, 1.35m x 1.1m in size and clamped along
the top and bottom edges, firstly subject to an overburden/precompression of 0.6 MPa followed by a quasi-static lateral
load. Although the test is cyclic in nature, the test can be used under monotonic loading as a benchmark for 2D (plane
stress) SLA simulations by making qualitative comparisons between the response and the envelope of the experimental
curve. Diagonal shear failure was observed in the experiment subsequent to reaching the peak force. Further details about
the experiment can be found in Reference 20. The experimental setup and the results of the SLA simulations are shown
in Figure 5. Modeling and material parameters are given in Table 1. Good agreement with the force-displacement curves
are observed, however, since the focus of this study is more on the performance of the solver, further information on the
simulation in terms of the 2D FE model, the agreement between the experimental crack patterns and those from SLA etc,
can be found in Reference 25.

4.1.2 Shear testing of a RC slab (3D)

The second benchmark is that of a RC slab (excluding shear reinforcements), 4 m× 2.6 m× 0.3 m in size and simply sup-
ported on all four sides, firstly subject to an in-plane compressive axial load of 1.5 MPa followed by an out-of-plane
concentrated load near one of the line supports. The axial loads were applied by means of 12 in-plane hydraulic jacks,
while the concentrated load was applied at a distance of 560 mm from the line support using an out-of-plane hydraulic
jack over a loading plate. The failure mechanism begins with flexural cracks that appeared at the bottom face along the
transverse and longitudinal reinforcements, followed by cracks due to the two-way shear slab mechanism (punching shear
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(A) (B)

F I G U R E 5 (A) Experimental setup of the quasi-static cyclic pushover test20 and (B) the comparison of the two-dimensional monotonic
sequentially linear analysis results to those of the backbone of the cyclic response25

T A B L E 1 Modeling and material parameters

Material Parameters Shear Wall Reinforced Concrete Slab
Masonry/concrete Young's Modulus Eo (GPa) 1.491 15.375

Poison's ratio vo 0.15 0.15
Tensile strength ftb (MPa) 0.17 3.63
Mode I fracture energy G1

f (N/mm) 0.1a 0.177

Saw-teeth discretisation factor 0.1 0.15
Tension softening relation Linear Linear
Number of saw-teeth 32 9
Compressive strength ftb (N∕mm2) 6.2 33.3
Compressive fracture energy Gc (N/mm) 40 44.25
Compressive softening relation parabolic parabolic
Number of saw-teeth 24 12
Crack bandwidth h (mm) Element size Element size
Shear retention factor 𝛽 10−2 10−4

Reinforcements Young's Modulus Eo (GPa) — 210
& steel plates Poison's ratio vo — 0.3

aFor the shear wall case, the bottom and top row of elements of the FEM model in Figure 5 has Mode I fracture energy of G1
f 0.1 [N/mm] to

simulate rocking failure. The rest of the elements are provided G1
f = 0.15 [N/mm] to mimic the larger dissipation of energy observed in a

diagonal shear crack.

failure) with a perimeter crack surrounding the loading area, and eventually the pure shear failure along the line support
which was quite brittle. Further information about the experiments pertaining to the experimental setup, material prop-
erties, crack patterns etc, can be found in Reference.21 The experimental setup and the results of the 3D SLA simulations
are shown in Figure 6. Reasonable agreement with the force-displacement curves and also the qualitative brittle behavior
in terms of the simulated failure mechanism are observed. The experimental peak load is predicted quite well by the SLA
simulation but the ductility is underestimated. However, this is not just a feature of SLA but the smeared crack approach
in general as has been previously observed in another NLFEA simulation26 and also using a plasticity-based approach
in an explicit ABAQUS simulation.27 Considering the scope of the study, further information on the simulation in terms
of the FE model (3D), the agreement between the experimental crack patterns and those from SLA etc., can be found in
Reference.13

4.1.3 Discussion on performance of the solution methods

The central processing unit (CPU) used for this study is an AMD EPYC 7351 processor with 16 cores / 32 threads, with a
base clock speed of 2.4 GHz and an all core boost speed of 2.9 GHz. All studies are run on single-threading, unless specified
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(A) (B)

F I G U R E 6 (A) Experimental setup of the shear test on reinforced concrete slab: Loading plate, reinforcement layout, and axial load
application setup21 and (B) comparison of the sequentially linear analysis and experimental force displacement curves13 [Colour figure can
be viewed at wileyonlinelibrary.com]

T A B L E 2 Contributions of dominant processes to total elapsed analysis times on a single thread—Shear wall and reinforced concrete
(RC) slab

Description Parallel Direct Sparse Solver Woodbury
Preconditioned

Conjugate Gradient

Shear Wall RC Slab Shear Wall RC Slab Shear Wall RC Slab

SOLVE - Solve system of linear
equations

43.57 % 65.69 % 13.70 % 26.86 % 29.56 % 49.08 %

(10.07 minutes) (282.24 minutes) (2.15 minutes) (54.15 minutes) (5.52 minutes) (145.57 minutes)

STREAC - Calculate strains and
stresses from displacement
fields

20.15 % 11.49 % 30.42 % 24.67 % 24.95 % 17.12 %

(4.66 minutes) (49.39 minutes) (4.77 minutes) (49.32 minutes) (4.69 minutes) (50.76 minutes)

SLSCAL - Determine critical int.
point (IP) and 𝜆crit, update
stiffness of IP and scale results

32.54 % 22.01 % 50.06 % 46.98 % 39.98 % 32.49 %

(7.52 minutes) (94.58 minutes) (7.85 minutes) (94.72 minutes) (7.51 minutes) (96.35 minutes)

Total elapsed time 23.12 minutes 429.65 minutes 15.69 minutes 201.63 minutes 18.78 minutes 296.557 minutes

otherwise. CPU time is the exact amount of time spent in processing data by the CPU for a specific process, while the
elapsed time refers to the total time taken for the completion of a process, which is the sum of the CPU and I/O times.

Total analysis times in each SLA step are composed of those for several operations like setting up the element stiffness
matrices and assembling the global stiffness matrix (referred to as ELMATR hereon); solving the system of equations for
unknown displacements (referred to as SOLVE hereon); calculation of stresses and strains from the displacement field
(referred to as STREAC hereon); and determining the critical integration point and the load multiplier, scaling stresses
and strains and finally updating the stiffness and strength of the critical integration point (referred to as SLSCAL hereon).
Times per analysis step for all the aforementioned operations, except SOLVE, would approximately be the same for a
simulation run using either the reference PARDISO or the proposed solutions methods presented in Sections 3.2 and 3.3.
This is clear from the elapsed times of the Shear wall and RC Slab case studies run on a single-thread of a processor, as
shown in Table 2.

Thus, the CPU time per analysis step to solve the system of equations (SOLVE) is chosen as the yardstick to compare
the performance of the PARDISO, Woodbury and PCG solvers. The pattern of CPU times for the first 1000 analysis steps

http://wileyonlinelibrary.com
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(A) (B)

F I G U R E 7 Comparison of CPU time taken per analysis step by the SOLVE block of the parallel direct sparse solver, preconditioned
conjugate-gradient, and Woodbury solvers: for the Shear wall (A) and RC Slab (B) cases, shown for the first 1000 steps

is illustrated in Figure 7 for the shear wall and RC slab studies. On the one hand, the PARDISO cost as expected is roughly
constant throughout the analysis since the stiffness matrix factorisation and the backward and forward eliminations to
obtain the solution are repeated every analysis step. On the other hand, Woodbury and PCG gain speed by reusing the
factorisation repeatedly until the optimal point of restart is reached. This pattern of an expensive analysis step followed
by relatively cheaper steps is clearly seen in Figure 7B.

In the time patterns for the 2D shear wall example shown in Figure 7A, two types of fluctuations are observed regard-
less of the solver type. One, when there are other jobs simultaneously running on the same processor (higher anomalous
peaks) while the other is when the measured time is so small, of the order of 0.01 seconds, that minor variations seem
accentuated thereby giving an impression of rather unstable patterns. However, qualitatively, PARDISO gives a con-
stant response at an average of 0.03 seconds per analysis step while PCG and Woodbury-based solvers take lower times.
Whenever the Woodbury's identity is restarted (six times up-to 1000th analysis step - brown peaks), the time tends to be
equivalent to that of PARDISO. After restarting, the times for the Woodbury approach are reduced to an average of 0.005
seconds. However, in comparison, the performance of PCG is poorer. This is attributed to the fact that the bandwidth of the
stiffness matrix is relatively small for 2D problems. Consequently, backward and forward substitutions are relatively more
expensive than a matrix factorisation. Since PCG uses these backward and forward substitutions every analysis step to
apply the preconditioner, costs for the PCG-based method increase quicker in the intermediate steps thereby demanding
more frequent restarts in comparison to the Woodbury-based solver.

In case of the 3D RC slab, a similar trend is observed in the time patterns of the three solver types, see Figure 7B. The
fluctuations are not that apparent since each analysis step takes times in the order of 0.1 seconds. The only interesting
point is that the performance of PCG is a little different compared to the 2D shear wall problem. The times for the inter-
mediate steps do not increase as sharply as for the 2D problem because of the larger bandwidth of the stiffness matrix for
3D problems. This results in the back- and forward substitutions becoming relatively cheap compared to the matrix fac-
torisation. However, over both cases, Woodbury outperforms PCG on a single-threading, because of the relatively lower
rate of increase of time in the intermediate steps.

In summary, the total elapsed time to solve the system of equations (SOLVE) decreases by a factor of ∼ 5 using the
Woodbury solver as against PARDISO for both the shear wall and RC slab cases, whose model sizes are roughly 3400 DOFs
and 11100 DOFs, respectively. These problem sizes are extremely small in reference to the range illustrated in Figure 2
and therefore, for bigger problem sizes, the gains would be significantly higher. A parametric study on problem sizes for
the 3D RC slab is presented in Section 4.2.2. However, the improvement of PCG solver over PARDISO is only by a factor
of ∼ 2 for both case studies due to the aforementioned reason of PCG using back- and forward substitutions every analysis
step to apply the preconditioner. An interesting point of observation, with regards to the Woodbury solution, is that when
the rank-update is very high owing to complete loss of stiffness, the solution time exceeds the direct solution time step.
To address this, restarts were prescribed for such unforeseen steps, wherein the rank update in one analysis step is large,
that is, close to the rank of the critical element matrix, in addition to the time-estimation based restarting steps as detailed
in Section 3.4.
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F I G U R E 8 Performance of the parallel direct sparse solver, preconditioned conjugate-gradient-, and Woodbury-based direct solution
methods, with and without parallelisation, in terms of total elapsed time for the two case studies: (A) Shear wall and (B) RC Slab (right)

Parallel computing. The performance of both the proposed methods have been illustrated, thus far, using 2D and 3D
simulations run on a single-thread of a processor. Table 2, summarising the times for major operations in the work flow of
SLA, indicates that with improved times for solving the system of equations (SOLVE), the SLSCAL and STREAC building
blocks become the bottleneck. To address this and further improve the computational performance of SLA, the opera-
tions in SOLVE and SLSCAL have been parallelised. Furthermore, the calculation of stresses and strains in STREAC can
also be computed in parallel but this is not taken into account in this study. The result of multi-threading on the per-
formance of the PARDISO, PCG, and Woodbury solvers for the two case studies, using 4 threads of the AMD processor
(Section 4.1.3), is shown in Figure 8. Firstly, for the 2D shear wall simulation, the SOLVE blocks of the Woodbury and
PCG methods (with multi-threading) improve over PARDISO by the same factors of ∼ 5 and ∼ 2, respectively, as observed
in single-threading. Additionally, PARDISO's performance with multi-threading is similar to its single-threaded coun-
terpart since the problem is 2-dimensional and is small in size. While in the case of SLSCAL, times are reduced with
multi-threading owing to the fact that many operations in this block are otherwise carried out sequentially for each inte-
gration point. Secondly, with regard to the 3D RC slab simulation, the SOLVE blocks of the Woodbury and PCG methods
(with multi-threading) again improve over PARDISO by factors of∼ 5 and∼ 2 respectively, as observed in single-threading.
The effective gains made in SOLVE due to multi-threading is greater for PCG in comparison to the Woodbury solver.
This is because in PCG's case the number of restarts is greater and with multi-threading, the factorisation and repeated
back- and forward substitutions become cheaper. Additionally, PARDISO's performance with multi-threading shows an
improvement over its single-threaded counterpart as it is highly optimised for parallel computing. The improvement is
more apparent compared to the 2D case because the problem is 3D and is a larger problem size. Furthermore, the effect
of parallel computing on PARDISO is expected to increase with increasing problem sizes. In case of the SLSCAL block,
all three solvers gain by a factor ∼ 2 since the number of integration points in this case is higher than the 2D case and
therefore the positive effect of multi-threading is greater. In summary, upon multi-threading, all four possible combina-
tions (of Woodbury and PCG—with or without multi-threading) are an improvement over the traditional direct solution
method (PARDISO) in terms of the total elapsed times.

4.2 Parametric studies

4.2.1 Effect of number of saw-teeth on solution methods

In order to understand the effect of refinement of the saw-tooth law (p-factor) (as shown in Figure 1A), on the performance
of the presented solution strategies in Sections 3.2 and 3.3 and their corresponding restarting approaches, a parametric
study is carried out. Only the 3D RC slab is considered for this study since the total computation time is higher than the 2D
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F I G U R E 9 (A) Force-displacement curves of four finite element models with different number of saw-teeth for the tensile softening
relation and their corresponding onsets of brittle failure and (B) the total and SOLVE-block elapsed times for these cases with regard to the
three types of considered solvers

(A) (B)

F I G U R E 10 Saw-teeth parametric study using the parallel direct sparse solver, preconditioned conjugate-gradient, and Woodbury
solvers showing (A) total and (B) SOLVE block elapsed times

example and is therefore more interesting. The single-threaded response elaborated in Sections 4.1.2 and 4.1.3 is treated
as reference. By adjusting the saw-teeth discretisation parameter (p) for the number of saw-teeth in the tensile softening
relation, four cases are considered: 5, 9 (reference), 11, and 13 saw-teeth, while the compressive softening relation is kept
unchanged with respect to the reference case (since the compressive failure doesn't influence the failure mechanism).

Figure 9A shows the force displacement relation for the four considered cases, all run on single-threading. It is quite
evident that with increase of the number of saw-teeth (or decrease in p-factor), the peak loads decrease by a small amount.
This is attributed to the corresponding shift in strength properties based on the ripple band approach (Figure 1A). The tail
part of the post-failure response, as seen in Figure 6B, is not shown here for the four cases because of the small differences
between them. However, qualitatively, the onset of brittle failure begins approximately around the same displacement,
and a similar ultimate load and failure mechanism are obtained in all the cases. Therefore, in order to objectively compare
the computation times of the responses, the onset of brittle failure for each response is treated as the reference point. The
number of analysis steps (events) to reach the reference points are 11233, 26202, 38000, and 43051 for the 5, 9 (reference),
11, and 13 tensile saw-teeth cases, respectively.

The total and SOLVE block elapsed times for all four responses, to reach their respective onsets of brittle failure, are
illustrated in Figure 9B and additionally in Figure 10. When the saw-tooth model is rather coarse, the number of events
required to reach the onset of brittle failure is lower as against a finer one. That is, regardless of the solver type, the total
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F I G U R E 11 (A) Performance of preconditioned conjugate-gradient and (B) Woodbury solvers, with respect to parallel direct sparse
solver for the four cases in the saw-teeth parametric study

number of SLA steps required is anyway lower for a coarser saw-tooth model and therefore the total analysis time also
drops. This is reflected in the trends of Figure 10A,B and as expected, both PCG and Woodbury outperform PARDISO.
However, the point of interest lies in the amount of gain that Woodbury or PCG make over PARDISO which increases with
increasing number of saw-teeth and this is evident in both Figures 9B and 10. This is attributed to the inherent increase in
the number of events required and also to the fact that the time-estimation based restarting strategy is indirectly related to
the rank-update per analysis step in SLA. With increasing number of saw-teeth in the constitutive model, the rank update
per analysis step decreases. In other words, the jump in rank is more abrupt for a coarser saw-tooth law as against a finer
saw-tooth law. Therefore, the rate of increase of the times for intermediate steps and the proximity of the restarting steps
is influenced by the saw-tooth discretisation which in turn affects the amount of gain.

The typical pattern of expensive steps followed by cheaper steps for all four cases, with Woodbury- and PCG-based
solvers, is illustrated in Figure 11 and these patterns are identical to those presented in Figure 7B. Only the first few
analysis steps are shown herein and the variations in the number of restarts needed for the different cases is evident in
the performances of PCG- and the Woodbury-based solver (Figure 11) which in turn affects the aforementioned gain.
The performance can be further improved using parallel computing, as detailed in Section 4.1.3, to reduce the total time
shown in Figure 10A, but is not presented here owing to triviality.

4.2.2 Effect of problem size on solution methods

In order to understand the effect of mesh refinement on the performance of the Woodbury and PCG solvers, another
sensitivity study is carried out. Once again, only the 3D RC slab is considered for this study because of the higher compu-
tation times involved. The response elaborated in Sections 4.1.2 and 4.1.3 is treated as reference, wherein the average size
of the 20-noded isoparametric solid brick element is approximately 150 mm. Three other cases with average element sizes
of 100, 75, and 50 mm are considered. In terms of the total number of DOFs, the four cases translate to 11175 (reference),
31443, 56910, and 181182 DOFs. The three new simulations are run with the same parameters as in Table 1 except that
the saw-teeth discretisation factor (p) is increased to 0.25 to reduce the total number of events, in order to avoid extremely
higher computation times. The FE models of the four cases are shown in Figure 13A.

Figure 12A shows the force displacement relation for the four considered cases, all run on multithreading (four cores).
It is observed that results are closer to the experimental peak load upon mesh refinement but the finest mesh overshoots
the experimental peak load by 150 kN. A similar failure mechanism is observed for the finer meshes but the reference
case clearly suffers from mesh objectivity problems, see Figure 13B. However, this is not a feature just of SLA and is also
observed in NLFEA, since the brittle shear failure when simulated using 150 mm elements (two elements over the depth
of the slab) instead of 100, 75, or 50 mm elements (three, four, and six elements over depth of slab, respectively) could be
affected by mesh-directional bias, although the smeared cracking approach based on the traditional crack band theory
limits element size dependency. The one way shear failure mechanism is captured better by the finer meshes as shown in
Figure 13B. Therefore, in order to objectively compare the computation times of the responses considering the structural
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F I G U R E 12 (A) Force-displacement curves of four finite element models with different mesh sizes and the corresponding reference
points for comparison and (B) the total and SOLVE block elapsed times for these cases with regard to the three types of considered solvers

(A) (B)

F I G U R E 13 (A) Finite element models (halves—using symmetry along global X) for the four cases with average element sizes of 150,
100, 75, and 50 mm: showing the axial loads (along global Y), concentrated shear loads (along global negative Z), and the boundary
conditions (simple supports along blue steel plates and for symmetry along the mid-face) and (B) the corresponding crack pattern plots
(Eknn denotes the normal crack strain) at the ends of the respective collapses

response, the peak load reached in each response (which is followed by the brittle collapse) is treated as the reference
points (denoted in Figure 12A).

It is well known that for a band solver, the calculation of a matrix factorisation scales ((Nb2)) and back- and forward
substitutions scale ((Nb)) with respect to the problem size N and bandwidth b (given by ((N

(d−1)
d )), wherein d is the

dimension of the problem).19 Therefore, for 3D problems, factorisation and back/forward substitution scale ((N
7
3 )) &

((N
5
3 )) respectively. The reinforced slab problem is 3D and therefore, the bandwidth of the stiffness matrix increases

significantly faster for increasing problem sizes. Consequently, the number of non-zeros within the bandwidth increases
faster and the number of calculations to be performed on these non-zero elements increase. This manifests as the
nonlinear trend observed in Figure 12B for all three solution methods. For smaller problems, the costs of factorisation
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T A B L E 3 Factors of improvement of Woodbury and preconditioned conjugate gradient (PCG) methods over parallel direct sparse
solver's (PARDISO) performance treated as unity

SOLVE TOTAL

Problem Size (DOFs) Analysis Steps (Events) PARDISO PCG Woodbury PARDISO PCG Woodbury

11175 3999 1.0 1.80 4.38 1.0 1.29 1.58

31443 8049 1.0 1.98 5.08 1.0 1.54 2.30

56910 23 708 1.0 2.34 6.42 1.0 1.77 2.87

181182 93 328 1.0 3.66 7.72 1.0 2.58 3.65

T A B L E 4 Contribution of the three dominant processes— Solving the system of linear equations (SOLVE); calculation of stresses and
strains from the displacement field (STREAC); and Determination of the critical integration point (IP), updating its stiffness and strength,
and scaling results (SLSCAL), in percentages, for the four cases of Section 4.2.2 run with the parallel direct sparse solver (PARDISO),
preconditioned conjugate gradient (PCG) and Woodbury solvers.

SOLVE STREAC SLSCALProblem Size
(degrees of
freedom,
DOFs) PARDISO PCG Woodbury PARDISO PCG Woodbury PARDISO PCG Woodbury

11175 63.08 40.9 22.73 17.79 30.21 37.59 16.73 24.84 34.69

31443 73.33 57.15 33.23 14.08 21.47 34.61 11.20 18.28 27.30

56910 77.68 58.72 34.76 12.00 20.86 34.21 9.25 17.41 26.26

181182 84.70 59.71 40.08 7.59 19.02 28.08 7.02 18.52 27.72

and back- and forward substitutions are low. However, most of the performance that is gained with the solution methods
is compensated by relatively expensive overhead costs for setting up Woodbury's identity and PCG which include allocat-
ing memory, creating arrays and initialising the PARDISO interface for the back- and forward substitutions. Since these
costs do not depend on the problem size, with increasing problem sizes the influence of the overhead costs on the overall
performance drops.

The gains made by the proposed solution methods compared to the PARDISO, all run with four threads of the AMD
processor (Section 4.1.3), are summarised in Table 3 in terms of factors of improvement. The PARDISO performance is
treated as unity. SOLVE improves by a factor of ∼ 8 with Woodbury and ∼ 4 with PCG for the largest case of 181182
DOFs. All simulations are run fully except the PARDISO ones, because of the enormous run-times, and the total times
for PARDISO necessary to calculate the factors depicted in Table 3, are extrapolated based on the average of the first 3000
steps of the simulations for each of the cases.

In case of 2D problems, the factorisation scales ((N2)) and back/forward substitutions scale ((N
3
2 )) for band solvers.

Although the influence of problem sizes on the 2D case study is not illustrated here, previous studies24 show an almost
linear scaling of the direct solution, contrary to that of the 3D case. This can be attributed to the relatively small growth in
bandwidth due to the problem being 2D. For 3D problems, the bandwidth of the matrix generally grows significantly faster
due to the inherent numbering of the DOFs. Furthermore, as previously pointed out in Section 4.1.3, for 2D problems
the back- and forward substitutions are relatively expensive and therefore, for increasing problem sizes, the performance
of PCG was observed to remain largely equal to that of the direct solution method, while the Woodbury method gained.
Detailed information on the performance of the methods for the 2D case with regard to problem sizes can be found in
Reference.24

5 CONCLUSIONS & FUTURE WORK

This article addresses the high computational intensity of SLA, an alternative to NLFEA for civil engineering applica-
tions, through two solutions methods that use the favorable event-by-event strategy of the method. Since numerous linear
analyses have to be solved, each requiring an expensive stiffness matrix factorisation that only changes locally, the pro-
posed methods reuse the factorisation of a certain analysis step followed by steps involving small matrix and vector
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manipulations to solve a significantly smaller system of equations. The first method is that of direct solution method,
wherein Woodbury's matrix identity is applied which allows for a numerically efficient computation of the inverse of a
low-rank corrected matrix. The second method is a PCG, wherein instead of using an ILU preconditioner, the complete
LU factorisation of the stiffness matrix is used as preconditioner for the CG. Due to the quality of this preconditioner, few
iterations are required every analysis step. Furthermore, an optimal time-estimation-based restarting strategy is derived,
for both the approaches, to determine the point at which a new factorisation should be calculated. The restarting strategy
is additionally forced to have restarts when there are unforeseen high rank updates, resulting in times higher than that of
the PARDISO, contrary to the assumed repeating patterns of time. Additionally, parallel computing is introduced for cer-
tain sections of SLA's algorithm (including those of the proposed solution methods), where there is need for calculations
at integration point level, to further improve the computational performance.

Two benchmark cases, involving non-proportional loading (which further increases the computational intensity of
SLA due to the additional need for solving quadratic and cubic equations for undamaged integration points), are chosen
to elucidate the performance of the proposed solution methods compared against a traditional direct linear solver like
PARDISO. The first one is of a masonry wall subject to overburden followed by a lateral load and the second, a prestressed
RC slab subject to axial loads followed by a concentrated shear load, simulated using 2D-plane stress and 3D models,
respectively. Both the proposed solution methods perform significantly better than PARDISO, especially for 3D problems,
and the Woodbury identity-based solver seems the better choice of the two proposed methods. Furthermore, numerical
experiments on the sensitivity of the proposed methods were performed for the 3D RC slab case. Firstly, the number
of tensile saw-teeth in the constitutive model was varied and as the saw-teeth became finer, the gains made by both
the proposed methods over the direct linear solver (PARDISO) increased. The finer the saw-tooth model, the larger the
number of events that are required to bring about a similar mechanism as the response using a coarser saw-teeth model.
The proposed time-based restarting strategy used by both methods relies indirectly on the rank update per linear analysis
which in turn depended on the fineness of the saw-tooth model. Since the rank update per analysis step is smaller for
finer cases, which results in a lower rate of increase in time for the intermediate steps, the effective number of restarts are
lower and therefore the gains are significant. Secondly, the effect of problem size on solution methods was studied and
both methods gained significantly over PARDISO for increasing problem sizes. SOLVE, the bottleneck as illustrated in
Figure 2, for large problem sizes is not the constraint anymore as is shown in the drop of contribution to total times from
about 85 % to about 40 % in the 181 182 DOFs case, see Table 4. However, the remaining two blocks now become equally
intensive. There is further scope for improvement as multithreading is yet to be introduced in STREAC.

In conclusion, to achieve higher speeds for typical FE models used in SLA, the use of Woodbury identity-based solver
is recommended, in combination with parallel processing. Furthermore, coarser saw-teeth are recommended for faster
simulations and further research is required to find an optimum number of saw-teeth for the best performance with
regard to both computational and mechanics aspects. Besides the major gains made within the scope of the linear solver
and parallel processing, the computational performance of SLA could be further improved using strategies to allow for
multiple failure events, such that the response does not deviate much from the equilibrium path, and these are currently
being investigated.
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