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Abstract
Clustering is a well-studied problem and several algorithms have been developed to

find these clusterings under certain constraints. This work will show the applicability
of propositional logic (MaxSAT) based approaches to a specific version of correlation
clustering called cluster editing. This is the problem of finding the minimum number
of edits to turn a given graph into a disjoint union of cliques. This work proposes
a combination of modelling, preprocessing and solving techniques to solve the cluster
editing problem via propositional logic. This approach’s performance is experimen-
tally evaluated and compared to another search algorithm based on merging vertices
and adding/deleting edges. The results show that for certain instances propositional
logic based approaches have a satisfactory performance while for other instances the
theoretical approach provides a more guided search of the solution space.

1 Introduction
Cluster editing is the problem of provided with an undirected graph G, what is the mini-
mum number of edge modifications (additions or deletions) to transform G into a disjoint
union of cliques (cluster graph)? Cluster editing is a NP-Hard problem but is fixed pa-
rameter tractable for the minimum solution size k [1]. There are several reasons as to
why it is worthwhile solving cluster editing in an efficient manner. First of all, clustering
can determine specific patterns and structures of the input data, this can provide insights
into sociological aspects. Furthermore, cluster editing has been applied to the clustering of
proteins [2] and other biological systems [3] in bioinformatics.

In this work the cluster editing problem will be related to the (unweighted partial) max-
imum satisfiability (MaxSAT) problem. That is, provided with a set of hard clauses (which
are required to be satisfied) and a set of soft clauses (which are not required to be satisfied)
what is the truth assignment that minimizes the number of falsified soft clauses? This is a
well-studied problem within computer science with a solid theoretical foundation. Recently,
the PACE 2021 challenge[1] has been introduced, a challenge to find efficient approaches
for solving cluster editing. In this work state-of-the-art techniques in the MaxSAT field are
applied to solve the cluster editing problem.

The work of Berg and Järvisalo [4][5] proposes three encodings to model an instance of
correlation clustering as a MaxSAT instance. In this work, the applicability of the encod-
ings for transforming a cluster editing problem instance into a MaxSAT problem instance is
discussed. These encodings can be preprocessed using several preprocessing techniques de-
veloped for satisfiability problem instances, as described in [6][7][8][9][10]. These techniques
are applied to the afforementioned encodings to increase the performance when solving. The
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(preprocessed) encoding can then be given to a publicly available state-of-the-art MaxSAT
solver such as MaxHS [11] [12] [13] [14] [15], EvalMaxSAT [16] or UWrMaxSat [17]. These
solvers make use of a variety of techniques, e.g. linear algorithms, core-guided and hitting-set
based approaches. The output of the solver for the encoding can then be used to construct
a solution to the original cluster editing instance. However, while these components are
well-studied, the aforementioned approach has not specifically been applied to the cluster
editing problem. These techniques can potentially be leveraged to efficiently solve cluster
editing instances.

This work proposes a combination of encodings, preprocessing techniques and MaxSAT
solvers to solve cluster editing instances. An overview of the pipeline is shown in Figure 1.

Figure 1: Proposed Pipeline Overview

The main research question is: Can state-of-the-art MaxSAT-based techniques be used to
efficiently solve cluster editing? This question can be subdivided into several sub-questions:

1. How can the cluster editing problem be modelled as a MaxSAT problem instance?
This modelling needs to take into account the different aspects of existing algorithms
and preprocessing techniques to ensure compatibility.

2. What preprocessing steps will increase the performance of the cluster editing algo-
rithm? It can occur that certain preprocessing steps are useful in the context of
MaxSAT problems but are not applicable to the specific problem instances of the
Cluster Editing problem thus introducing unnecessary overhead.

3. What MaxSAT solvers can be used to efficiently solve the instances created by the en-
coding? Does preprocessing increase the performance of the solver or is this dependent
on the solver used? What solver performs the best on the selected encoding?

4. Under which circumstances do MaxSAT-based approaches outperform other Cluster
Editing approaches? Is the performance of these approaches based on a specific struc-
ture of the Cluster Editing problem instance or are there other factors which contribute
to a performance disparity between approaches?

The structure of this paper consists of firstly, a formal definition of the Cluster Editing
problem and the MaxSAT problem. Secondly, existing work with regards to cluster edit-
ing approaches, encodings and pertinent preprocessing techniques are described. Thirdly,
improvements to the encodings based on domain-specific knowledge and the reconstruction
component of the pipeline are discussed. Finally, experimentation is performed to deter-
mine what encoding, preprocessing techniques and solvers perform most suitably. Followed
by conclusions drawn based on the comparative performance between the optimal pipeline
structure and a theoretical cluster editing approach.
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2 Problem Description
In this section the notation is introduced and observations about the problem(s) are made.
First, the notation for Cluster editing is provided. The input is provided as a graph
G = (V, E) where V is a set of vertices and E is a set of edges. An edge between node i
and node j (where i < j) is signified by e(i, j). The aim of a cluster editing algorithm is
to generate a set of edges which when modified in the original input graph, will result in a
cluster graph. Let us call this set of edges S, for an arbitrary edge e(i, j) ∈ S there are two
cases: If e(i, j) ∈ E then applying S to G means the edge will be removed in the output
graph, conversely, if e(i, j) /∈ E then applying S to G means the edge will be added to the
output graph. In the unweighted variant of the problem, all edge additions or deletions
will incur a cost of one signifying that there is no distinction between edges in terms of
cost. In the weighted variant of cluster editing it is possible for edges to be associated with
weights other than one, given by the function w(e(i, j)). The aim is then to minimize the
sum of the weights of the edges contained in the solution S, more formally, the aim is to
minimize

∑
e(i,j)∈S

w(e(i, j)). An example of a cluster editing instance can be seen in Figure 2a.

Subsequently, the notation of the partial Maximum Satisfiability (MaxSAT) problem
is formalized. An input instance to the partial MaxSAT problem consists of two sets,
F = (H,SC) where H are the so-called hard clauses and SC are the so-called soft clauses.
The clauses are made up of a set of literals where each clause represents a disjunction of
said literals. These literals take on a boolean value (either a zero or a one). The output of
a MaxSAT solver is a truth assignment (commonly denoted by τ) which maps each literal
to one of the aforementioned values. Any truth assignment τ is required to satisfy all hard
clauses, more formally, (∀C ∈ H)(∃x ∈ C) such that τ(x) = 1. If a clause is satisfied then
τ(C) = 1 and τ(C) = 0 otherwise. The unweighted variant of partial MaxSAT aims to
find the minimum number of falsified soft clauses, more formally, the aim is to minimize
|{C ∈ SC | τ(C) = 0}|. In the weighted variant of partial MaxSAT, each soft clause
C is associated with a weight w and the aim is to minimize the sum of weights of the
falsified clauses, more formally, the aim is to minimize

∑
(C,w)∈SC
τ(C)=0

w. Since MaxSAT is a NP-

Hard problem, it is possible to reduce other problems to MaxSAT. A simple example of an
unweighted partial MaxSAT problem instance can be seen in Figure 2b

(a) Example of Cluster Editing Instance
Source: Taken from [1]

Hard Clauses: {(x ∨ y ∨ z), (¬x ∨ z), (¬y ∨ z)}
Soft Clauses: {(¬y ∨ ¬z), (¬x ∨ ¬y), (¬z)}

Solution: τ(x) = τ(y) = 0 and τ(z) = 1 inducing a cost of 1

(b) Example of MaxSAT Instance

Figure 2: Problem Examples
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3 Existing Work
In this section existing work relevant to the research topic is discussed. This includes a
survey of existing approaches, a description of the different encodings and a short definition
of the preprocessing techniques pertinent to increasing performance.

3.1 Cluster Editing Approaches
This subsection briefly discusses other approaches developed for solving cluster editing. The
most basic strategy is a naive branching strategy based on conflict triples which consists of
splitting into three branches as seen in Figure 3. This approach results in a large search
tree and does not account for structures found in the graph. Parameterized algorithms
oftentimes make use of such search tree algorithms while utilizing the knowledge of the
amount of edge modifications k. An example of such a strategy is [18] which provides a
running time of O(1.62k +m + n). This strategy includes merging vertices under certain
conditions, potentially transforming the graph into a weighted graph. Another approach is
to formulate the problem as an Integer Linear Programming (ILP) problem based on [19].
An evaluation of a variety of strategies including parameterized and ILP approaches, can be
found in [20]. This paper relies on the work of [21] which is based on [18]. This approach
employs a heuristic to select which edge to branch on and a Branch and Bound approach is
utilized to incrementally update a lower bound.

3.2 Encoding
In this subsection the first component of the pipeline is outlined: converting a cluster editing
problem instance to a MaxSAT problem instance. Two different encodings are considered,
the transitive encoding and the binary encoding as described in [5].

3.2.1 Transitive Encoding

The transitive encoding (section 6 of [5]) uses the concept of a conflict triple to ensure well-
defined clusters. For a triplet of vertices (i, j, k), if exactly two edges exist between the three
vertices then the triplet is called a conflict triple. If there are no conflict triples in a graph
then the graph is a cluster graph. An example of a conflict triple and how to resolve it can
be found in Figure 3. The transitive encoding introduces a variable xij for every pair of

Figure 3: How to resolve a conflict triple
Source: Adapted from [1]
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vertices where i < j. If τ(xij) = 1 then i and j are assigned to the same cluster. Based on
these variables and the aforementioned observation the following encoding is produced:

- Hard clauses:
Based on the concept of conflict triples three clauses are generated for all (i, j, k) where
1 ≤ i < j < k ≤ |V |:

• ((xik ∧ xjk)→ xij) which is equal to (¬xik ∨ ¬xjk ∨ xij)
• ((xij ∧ xjk)→ xik) which is equal to (¬xij ∨ ¬xjk ∨ xik)
• ((xij ∧ xik)→ xjk) which is equal to (¬xij ∨ ¬xik ∨ xjk)

This encodes the fact that if there are two edges between the three vertices then it is
required that the missing edge is added thus eliminating the conflict triple.

- Soft clauses:
For all (i, j) where i < j a singular clause is generated:{

xij if e(i, j) ∈ G
¬xij otherwise

This encodes the fact that a cost of one is induced if two vertices are connected in the
output graph while not being connected in the input graph or if two vertices are not
connected in the output graph while they are connected in the input graph.

This results in 3×
(|V |

3

)
hard clauses and

(|V |
2

)
soft clauses with a total of

(|V |
2

)
variables.

3.2.2 Binary Encoding

The binary encoding (section 8 of [5]) is based on the observation that each vertex is required
to be assigned to a cluster. What is essential to this encoding is that the cost function is
faithfully represented. To this end, three types of variables are introduced to ensure these
properties. First of all, the value of k is defined as the smallest number such that 2k ≥ |V |.
A variable bai where 1 ≤ i ≤ |V | and 1 ≤ a ≤ k is then created. This represents the ath bit
of the cluster assignment of vertex i, where bki ...b1i describes the binary number indicating
the cluster assignment of vertex i. Subsequently, a variable indicateing that two vertices i
and j have the same bit at position a is created, EQaij where 1 ≤ i < j ≤ |V | and 1 ≤ a ≤ k.
Lastly, a variable is created (similarly to the transitive encoding) for every pair of vertices
Sij , indicating whether vertex i and j are assigned to the same cluster. This variable will also
be used to represent the cost of clustering two vertices together. Based on these variables,
the following encoding is produced:

- Hard clauses:
The meaning of EQaij is encoded. This variable is true iff the bits of vertices i and
j are the same at position a. Four clauses are created for all values of (i, j, a) where
1 ≤ i < j ≤ |V | and 1 ≤ a ≤ k:

• (¬EQaij ∧ ¬bai )→ baj which is equal to (EQaij ∨ bai ∨ baj )
• (¬EQaij ∧ bai )→ ¬baj which is equal to (EQaij ∨ ¬bai ∨ ¬baj )
• (EQaij ∧ bai )→ baj which is equal to (¬EQaij ∨ ¬bai ∨ baj )
• (EQaij ∧ ¬bai )→ ¬baj which is equal to (¬EQaij ∨ bai ∨ ¬bai )
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Subsequently, the meaning of the variable Sij is encoded. This variable is true iff all of
the bits of i and j are equal or false if a single bit is unequal. This can be represented
with the following clauses for all values of (i, j) where 1 ≤ i < j ≤ |V |:

• For all values of a where 1 ≤ a ≤ k: Sij → EQaij which is equal to (¬Sij ∨EQaij)

• ¬Sij → (¬EQ1
ij ∨ ... ∨ ¬EQkij) which is equal to (Sij ∨ ¬EQ1

ij ∨ ... ∨ ¬EQkij)

- Soft clauses:
For all (i, j) where i < j a singular clauses is generated:{

Sij if e(i, j) ∈ G
¬Sij otherwise

This encoding results in a total of (4×
(|V |

2

)
×dlog2 |V |e)+(

(|V |
2

)
×dlog2 |V |e+1) hard clauses

and
(|V |

2

)
soft clauses with a total of ((|V |×dlog2 |V |e)+(

(|V |
2

)
×dlog2 |V |e)+

(|V |
2

)
) variables.

Reducing the amount of variables by encoding Sij directly into the soft clauses is possible (at
the "cost" of going from unweighted to weighted MaxSAT) but was experimentally evaluated
to perform significantly worse.

3.2.3 Symmetry Breaking

As specified in [5], the binary encoding suffers from the issue of symmetry. For example,
given a cluster assignment, shifting all of the cluster indices by one modulo the amount of
clusters will result in a new assignment while the clustering remains the same. The following
symmetry breaks are applicable:

- The first symmetry break is straightforward and involves dlog2 |V |e clauses with no
extra variables: assigning the first vertex to cluster zero. Hence, for all a where
1 ≤ a ≤ k the hard clause (¬ba1) is included.

- The second symmetry break is more involved and is especially applicable when there
is a significant discrepancy between 2k and |V |. If |V | is not a power of two then it is
possible for a cluster to be assigned to a number bigger than |V | which is not desirable.
Limiting the amount of clusters to |V | rather than 2k results in fewer symmetries. The
derivation of the clauses can be found in appendix A.

3.3 Preprocessing Techniques
In this subsection the preprocessing techniques pertinent to the aforementioned encodings
are discussed. This work utilizes the open-source preprocessor MaxPre [6]. MaxPre im-
plements a variety of SAT and MaxSAT-specific techniques. For the sake of brevity, solely
the applicable SAT techniques are discussed. To ensure applicability of these techniques to
MaxSAT instances special precautions need to be taken, oftentimes involving labels.

- Resolvent: For two clauses C1 = (x∨A) and C2 = (¬x∨B) the resolvent of the two
clauses with regard to x is as follows: C1 ⊗x C2 = (A ∨B)

- Blocked Clause Elimination [22]: A literal x will block a clause C if the resolvent
with all other clauses containing ¬x is a tautology, it can then be shown that removing
such a clause will result in an equi-satisfiable formula.
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- Bounded Variable Elimination [8]: Fx is the set of all clauses containing the literal
x and F¬x is the set of all clauses containing the literal ¬x. Variable elimination
of a literal x consists of replacing Fx and F¬x with {C1 ⊗x C2 | C1 ∈ Fx, C2 ∈
F¬x, C1⊗xC2 is not a tautology}. Variable Elimination is bounded if it only considers
eliminating x when |Fx ⊗x F¬x| ≤ |Fx|+ |F¬x|.

- Unit Propagation: If there is a unit clause (meaning |C| = 1) then this clause can be
propagated resulting in a simpler formula. As an example, consider the set of clauses
{(x), (¬x ∨ y ∨ ¬z), (x ∨ ¬y), (y ∨ z)} since the first clause is a unit clause it can be
propagated resulting in the set of clauses {(x), (y ∨ ¬z), (y ∨ z)}.

4 Algorithmic Ideas
This section will introduce certain improvements based on domain-specific knowledge, specif-
ically reduction rules for cluster editing. Furthermore, this section describes the process of
reconstructing a cluster editing solution from the output of a MaxSAT solver.

4.1 Improvements to the Encodings
In this subsection, the application of domain-specific knowledge to enhance the encodings
of section 3.2 is discussed. There are specific rules regarding the clustering of two vertices
which can be used to further improve the encoding. One of these rules is based on the
neighbourhood of a vertex which states: If two vertices share at most a single neighbour
and e(i, j) /∈ E then the two vertices are assigned to different clusters as proven in [23]. By
adding a hard clause (¬xij) (or (¬Sij) in the case of the binary encoding) for all vertices i
and j for which this rule holds, it can be ensured that these vertices are not co-clustered.
Moreover, this rule introduces the possibility to not only remove the soft clause associated
with the forbidden pair but also to decrease the complexity of the hard clauses which contain
this pair as described in the following paragraphs. A similar argument can be made for rules
which force two vertices to be co-clustered. More reduction rules can be found in [24].

4.1.1 Simplifying Transitive Encoding

Simplifying the Transitive encoding results in less soft clauses, hard clauses and potentially
reduces the size of the remaining hard clauses. For a triplet of vertices (i, j, k) where 1 ≤
i < j < k ≤ |V |, the following simplification is then derived:

- In case of forbidden pairs:
• If more than a single pair is forbidden then all of the clauses are satisfied.
• If a single pair is forbidden then a single clause is created specifying that one of

the remaining pairs also cannot be co-clustered. For example, if the pair xij is
forbidden then this results in the clause (¬xik ∨ ¬xjk)

- In case of forced pairs:
• If a single pair is forced then two clauses are generated ensuring that either all of

the edges in the triplet are added or none of the non-forced edges are added. For
example, if xij is forced then this results in the clauses {(xik∨¬xjk), (¬xik∨xjk)}
• If two pairs are forced then a single clause is generated containing the non-forced

pair. For example, if xij and xjk are forced then this results in the clause (xik)
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4.1.2 Simplifying Binary Encoding

Similarly, simplifying the binary encoding results in a smaller number of soft clauses, hard
clauses and the size of the remaining hard clause associated with a forbidden or forced pair
is reduced:

- In case of forbidden pairs:
• If the pair is forbidden to be co-clustered then clauses of the form (¬Sij ∨EQaij)

are removed since these clauses are satisfied. Furthermore, the clause of the form
(Sij ∨ ¬EQ1

ij ∨ ... ∨ ¬EQkij) can be transformed into (¬EQ1
ij ∨ ... ∨ ¬EQkij), this

signifies that since the vertices are not co-clustered, it must be the case that
(∃a) s.t. bai 6= baj .

- In the case of forced pairs:
• If the pair is forced to be co-clustered then the clauses of the form (¬Sij ∨EQaij)

are transformed into the clause (EQaij) signifying that i and j are required to be
assigned the same cluster. Furthermore, the clause of the form (Sij ∨ ¬EQ1

ij ∨
... ∨ ¬EQkij) is automatically satisfied.

4.2 Reconstruction
The aim of cluster editing is to find the edges which need to be modified. To this end,
what clause represents the connection between a pair of vertices is recorded. Then, given an
assignment for such a variable: If the variable is assigned true and e(i, j) /∈ E then the edge
is added, similarly, if the variable is assigned false and e(i, j) ∈ E then the edge is removed.
In the case that neither of these two cases apply, no edge modification is necessary. The
solution is then a set containing all of the aforementioned edges.

5 Experimental Study

5.1 Experimentation Setup
The experiments were performed under a Windows 10 environment using Ubuntu on an
Intel Core i7-3770 3.4GHz CPU with 16GB of RAM. The memory limits used are the
default limits imposed by the solvers (no issues were encountered in this regard). The time
limit is specified in each Figure but was commonly set to 600 seconds.

The solver used for the final experimentation is MaxHS1 Version 3.2 with CPLEX version
20.1.0.0. The preprocessor used is MaxPre2, last updated on the 23rd of August 2019. For
the experimentation in section 5.3, the solvers EvalMaxSAT and UWrMaxSat were taken
from the MaxSAT Evaluation of 20203. The source code of [21] is available on GitHub4,
last updated on the 18th of June 2021.

The benchmarks5 that are used to evaluate the performance are part of released bench-
marks for the PACE challenge. These benchmarks consist of a variety of structures, some
are densely connected and others are loosely connected. If a graph consists of multiple
connected components then these components can be solved separately.

1https://github.com/fbacchus/MaxHS
2https://github.com/Laakeri/maxpre
3https://maxsat-evaluations.github.io/2020/descriptions.html
4https://github.com/LHolten/Cluster-Editing
5https://fpt.akt.tu-berlin.de/pace2021/exact.tar.gz
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As for the settings/flags that are used during the experimentation, the default settings
of the preprocessor were maintained. The settings used for MaxHS were "-no-printOptions
-printSoln -verb=0" while for the other solvers, the provided configurations were used. Ex-
perimentation with different settings was performed in an attempt to enhance the perfor-
mance, however, preliminary parameter tuning did not exhibit a significant difference.

The experiments do not include the time necessary to generate the model nor the re-
construction. This is due to the fact that the current structure of the pipeline introduces a
significant amount of overhead for writing the model to a file (on instance exact099, it takes
∼3s to generate the model and ∼40s to write to file). By integrating the model generation
directly into the preprocessor and solver, this overhead would be eliminated.

5.2 Evaluation of Preprocessing
In this subsection the applicability of preprocessing techniques to the encodings defined
in section 3.2.1 and section 3.2.2 is discussed. There is a vast difference between the two
encodings hence techniques which are applicable to one of the encodings are not necessarily
applicable to the other. When preprocessing the aforementioned encodings, it becomes
apparent that there are non-obvious interactions between components.

5.2.1 Preprocessing Transitive Encoding

Applying preprocessing on the original transitive encoding without improvements increases
the performance of the solver used on this encoding but does not remove any clauses nor
variables. This is the case when using the preprocessor with the default techniques, the
number of variables and clauses is slightly increased due to the fact that MaxPre adds
labels and performs certain operations on said labels. However, an increase in the number
of clauses/variables does not directly correlate to a worse performance of the solver when
compared to the performance on an unprocessed instance as can be seen in Figure 4a.
This Figure shows that the processed transitive encoding performs better than when an
unprocessed encoding is used. This is especially apparent for instance 19 on which the
unprocessed encoding reaches the time limit while the processed encoding is solved within
100 seconds. For the smaller instances, the unprocessed variant performs slightly better due
to the fact that there is less overhead involved than when using the preprocessor.

When applying the improvements based on section 4.1.1, the applicability of particular
techniques changes. Due to the fact that certain hard clauses and soft clauses are removed,
it is possible to apply blocked clause elimination as described in section 3.3. Applying
this techniques results in a lower number of clauses. The performance gain depends on
the number of hard clauses removed as a result of the simplification. The difference in
performance between the processed and unprocessed encoding can be seen in Figure 4a.
Once again, it can be observed that the processed variant of the encoding performs better
than the unprocessed instance while containing more clauses/variables.

Furthermore, the processed transitive encoding with improvements performs better than
the encoding without improvements. A comparison can be seen in Figure 4a and Figure 4b
which show the time necessary to solve a certain instance by MaxHS. While the encoding
without improvements has a marginally better performance on instance 19, this trend does
not appear to continue. For all following instances, the encoding with improvements per-
forms at an equal or better level than the encoding without improvements. This indicates
that the improvements cause less strain for the MaxSAT solver due to the reduction in the
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number of soft and hard clauses. In conclusion, the improvements generally ameliorate the
performance but this is not the case for all instances.
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Figure 4: Transitive Encoding Comparison between Processed and Unprocessed

5.2.2 Preprocessing Binary Encoding

Different preprocessing techniques are applicable to the binary encoding dependent on
whether the similarity breaking constraints of section 3.2.3 have been supplied and whether
the improvements based on section 4.1.2 have been applied. First, the applicability without
the improvements is discussed. In the case in which no symmetry breaking has been im-
plemented, two techniques remove clauses namely blocked clause elimination and bounded
variable elimination (as specified in section 3.3). Moreover, bounded variable elimination
also removes certain variables rather than only clauses. If symmetry breaking has been
implemented then the aforementioned techniques are similarly applicable, however, unit
propagation becomes applicable and is able to remove both clauses and variables. While the
formula with symmetry breaking includes more variables and clauses before preprocessing
than the formula without symmetry breaking, after preprocessing the formula with sym-
metry breaking has less variables and (hard) clauses than its counterpart. The difference
in performance can be seen in Figure 5a. This Figure shows that the processed encodings
perform at an equal or better level than the unprocessed encodings from instance 7 onward.
However, it can be observed that the processed encodings do not perform well on instance
3 and/or 5 for reasons which are unclear.

The effects of preprocessing if the improvements based on section 4.1.2 have been ap-
plied are similar to the effects discussed in the previous paragraph, the same techniques
are applicable and the same observation about the number of clauses and variables when
comparing the formula with and without symmetry breaking can be made. However, there
is a minute difference between the amount of variables and clauses when comparing the
formulas with and without improvements. The formulas with the improvements have less
variables and clauses than their counterparts without the improvements. The difference in
performance between the encodings can be seen in Figure 5b. The same observation can
be made on the effect on performance of processing for instances 3 and/or 5 as in the prior
paragraph. Additionally, the processed encodings perform at an equal or better level than
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the unprocessed encodings. When comparing Figure 5a and Figure 5b it can be noted that
the processed variant with symmetry breaking with improvements performs the best.

Furthermore, when comparing the results for the processed binary encoding with and
without improvements there seems to be a difference in performance for certain instances.
Based on Figures 5a, 5b and 5c on instances 13, 27, 29 and 39 the encoding with improve-
ments outperforms the encoding without improvements. This indicates that the performance
gain facilitated by the domain-specific knowledge is dependent on the instance but can po-
tentially provide faster solving times. The conclusions about the comparative different are
similar to the conclusions based on the transitive encoding.
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5.3 Evaluation of MaxSAT Solvers
The main criterion for evaluating a solver is based on the solving time of the formulas pro-
duced by the encodings (potentially preprocessed). To this end, the results of the MaxSAT
Evaluation of 2020 are used as a point of reference [25]. Since the problem of unweighted
cluster editing is being addressed, the assessment of the unweighted complete track is of

11



most importance. The top three solvers in this category are MaxHS [11] [12] [13] [14] [15],
EvalMaxSAT [16] and UWrMaxSat [17].

As can be seen in Figure 6, MaxHS performs the best in terms of solving time hence this
particular solver has been chosen for the evaluation. Due to the structure of the pipeline, the
solver can be substituted with ease allowing for different solvers depending on the problem
instance. Please note that, while not part of this work, it is possible that due to kernelization
the unweighted graph is transformed into a weighted instance which could potentially cause
other solvers to outperform the currently chosen solver.
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Figure 6: Comparison solvers, Preprocessed Transitive Encoding
with Improvements, 600 second timeout

5.4 Comparison to Another Approach
In this subsection the performance of the MaxSAT-based approach for cluster editing is
described. The results of the experimentation are shown and observations about these
results are made. The transitive encoding with preprocessing and improvements solved by
MaxHS is used as this pipeline has been shown to provide the best performance in prior
sections.

5.4.1 Results

First, observations are made about the results of the experimentation (as seen in Figure
7) after which the underlying reasons for these results are discussed. Figure 7 shows the
time it takes to solve a specific benchmark for the MaxSAT-based approach compared to
the branching strategy implemented in [21].

- Observation: For certain instances the MaxSAT-based approach outperforms the
branching strategy (e.g. instances 17, 19, 27 and 29)
Reason: This is likely due to the fact that the graph structure cannot be exploited
within the branching strategy. It is also possible that the heuristic which the branching
strategy utilizes to select an edge to branch on leads to a sub-optimal path.

- Observation: For small instances, the branching techniques oftentimes achieve faster
solving times (e.g. 1, 3, 5 and 7)
Reason: The preprocessor (MaxPre) and solver (MaxHS) contain a certain amount of
overhead associated with file reading/writing and the initialization of CPLEX. While
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using another solver remedies this particular issue, it would be detrimental to the
solving time on larger instances (as discussed in section 5.3).

- Observation: For certain instances, the solving time is significantly longer for the
MaxSAT-based approach (e.g. instance 13)
Reason: This is presumed to be due to the fact that MaxSAT can be seen as a
"generalized" approach to cluster editing. The graph structure is not explicitly utilized
which can lead the solver to explore more of the solution space than necessary. In
addition to the aforementioned issue, the MaxSAT-based approach can (currently)
not make use of reduction techniques/kernelization more than once while this is not
necessarily the case when using a branching strategy. After merging a vertex/solving a
conflict triple, the structure of the graph is changed (potentially into a weighted graph)
which allows certain reduction rules/kernelization techniques to be used once more.
Since the MaxSAT-based approach can not make use of this fact, certain instances
will cause this approach to spend more time traversing a complex search space.
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Figure 7: Comparison Strategies, MaxSAT (Processed Transitive
Encoding) vs Branching 600 second timeout

5.5 Comparison to Existing Results
In this section the results gathered in this work will be compared to similar works (specifically
[5]). Due to the limitations with regards to running time (1800s timeout for the PACE
challenge), the results are similar but not entirely identical. For small/medium instances
the transitive encoding outperforms the binary encoding which is similar to the results found
in [5]. On larger instances it is likely that the binary encoding will outperform the transitive
encoding. However, due to the fact that the solver oftentimes reaches the time limit for larger
instances, this difference will not be visible. Furthermore, it is possible that on industrial
instances the performance will differ.

6 Conclusions
In conclusion, it can be observed that it is possible to apply MaxSAT-based techniques to
the cluster editing problem with certain caveats.
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1. Question: How can the cluster editing problem be modelled as a MaxSAT instance?
Answer: There are two known approaches to model cluster editing as a MaxSAT
instance: Ensuring well-defined clusters through conflict triples (Transitive Encod-
ing) and ensuring well-defined clusters by assigning each vertex to a cluster (Binary
Encoding). The transitive Encoding was shown to be the most effective.

2. Question: What preprocessing steps will increase the performance of cluster editing
algorithms?
Answer: What preprocessing techniques are applicable is dependent on the encoding.
The transitive encoding benefits from the addition of labels and similar techniques,
while this does not reduce the amount of clauses nor variables applying these techniques
has been shown to increase performance. Applying improvements based on cluster
editing rules causes blocked clause elimination to become applicable. The binary
encoding benefits from blocked clause elimination and bounded variable elimination.
Unit propagation is applicable if symmetry breaking has been applied. However, in
contrast to the transitive encoding, applying preprocessing to clauses created by the
binary encoding can result in a worse performance dependent on the instance.

3. Question: What MaxSAT-solvers can be used to efficiently solve the instances created
by the encoding?
Answer: MaxHS was shown to be the most efficient on the given instances. For
smaller instances, the other solvers oftentimes outperformed MaxHS due to the fact
that MaxHS introduces overhead for (among other things) initializing CPLEX. If cer-
tain kernelization/reduction rules are applied which transform the instances into a
weighted instance then other solvers are potentially applicable.

4. Question: Under which circumstances do MaxSAT-based approaches outperform other
Cluster Editing approaches?
Answer: MaxSAT-based techniques provide a "general" approach to solving cluster
editing. These techniques do not exploit the structure of the graph in contrast to
branching strategies. This can cause the search of the solution space by MaxSAT
to be inefficient on certain instances. However, in the case that the graph structure
does not provide accurate guidance, MaxSAT techniques can outperform the branch-
ing strategy. Conversely, a graph structure for which the MaxSAT-based techniques
are likely to be outperformed by the branching strategy is when a graph has a large
number of vertices but the solution contains a small number of edits. In this case, to
ensure well-defined clusterings, the MaxSAT approach will generate a large number of
triplets/pairs introducing overhead and decreasing performance.

7 Future Work
In future work, additional rules can be supplemented to further simplify the formula pro-
vided to the solver. Kernelization techniques can serve as a guide in this process. The
MaxSAT-based approach suffers from a certain drawback as specified in section 5.4.1, in
branching strategies in which vertices are merged and connected in subsequent iterations
it is possible to make use of these techniques more than once while this is not necessarily
the case for MaxSAT-based approaches. Integrating this concept into a MaxSAT-based ap-
proach could potentially significantly improve performance. Furthermore, in future works,
new preprocessing and/or solving techniques might enhance the capabilities of a MaxSAT-
based approach which would alter the applicability of this approach.
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8 Responsible Research
In this section we will discuss the ethical aspects of the research and the reproducibility of
the experiments. First of all, we would like to note that there are no surface level ethical
implications of the research. This is partially due to the fact that our research does not
harm others nor does it use user data in a malevolent fashion. User data is not collected nor
required further decreasing the potential ethical implications of the research. Furthermore,
while certain algorithms rely on datasets (e.g for training) which potentially introduce bias
to the algorithm, this is not the case for this work. Due to these reasons, we will focus
mainly on the reproducibility of the experimentation.

To ensure that the experiments are reproducible, the setup has been discussed in section
5.1. Furthermore, we have appended the different settings used for the solver/preprocessor
to further ensure that the research can be reproduced. When using the same specifications
and theory as described previously, similar results should be gathered. This allows others
to verify the results in an accurate manner, which provides more credibility to the results.
Additionally, the benchmarks are publicly available allowing others to attempt applying the
techniques as specified in this work.

Appendix A Derivation of Clustering |V| or Less
As specified in section 3.2.3, the binary encoding can assign a vertex to more clauses than
necessary resulting in symmetries. This issue can be solved by introducing the clauses
specified in section 8.5 of [5]. In this appendix, a derivation of the clauses in CNF is
provided:

- Base Case:
DefB(i, 1) = B1

i ↔ (¬b1i ∧ (K1 = 1))

If K1 = 1:

B1
i ↔ ¬b1i which leads to the following two cases:
1. B1

i → ¬b1i
¬B1

i ∨ ¬b1i
2. ¬b1i → B1

i

b1i ∨B1
i

Else:

¬B1
i

- Recursive Case:
DefB(i, j) = Bji ↔ ((¬bji ∧ (Kj = 1)) ∨ ((bji ↔ Kj) ∧Bj−1i ))

If Kj = 1:

Bji ↔ (¬bji ∨ (bji ∧B
j−1
i )) which leads to the following two cases:

1. Bji ∨ ¬(¬b
j
i ∨ (bji ∧B

j−1
i ))

Bji ∨ ¬(¬b
j
i ∨B

j−1
i )

Bji ∨ (bji ∧ ¬B
j−1
i )

(Bji ∨ b
j
i ) ∧ (Bji ∨ ¬B

j−1
i )

2. ¬Bji ∨ (¬bji ∨ (bji ∧B
j−1
i ))

¬Bji ∨ ¬b
j
i ∨B

j−1
i

Else:

Bji ↔ (¬bji ∧B
j−1
i ) which leads to the following two cases:
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1. ¬Bji ∨ (¬bji ∧B
j−1
i )

(¬Bji ∨ ¬b
j
i ) ∧ (¬Bji ∨B

j−1
i )

2. Bji ∨ ¬(¬b
j
i ∧B

j−1
i )

Bji ∨ b
j
i ∨ ¬B

j−1
i
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