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Compliance checking on building models with the Gherkin language and 

Continuous Integration 

Dion Moult, Thomas Krijnen 1 
1 Delft University of Technology 

t.f.krijnen@tudelft.nl  

Abstract. In this paper we document our approach on applying Behaviour-Driven Development 

(BDD) and Continuous Integration (CI) from the software industry to the construction sector. We 

have provided a freely available open software toolset for the application of rules in the Gherkin 

syntax to an IFC building model. A prominent aspect of BDD and contrary to mvdXML, the 

formalization of rules in plain-test human-readable scenarios provides a basis for collaborative 

formalization of rules among stakeholders. At the same time our approach includes imperative 

program code that is fully extensible to incorporate for example external data sources and 

geometrical reasoning. Runnings test on every model revision (the CI concept) as opposed to, for 

example, upon model delivery ensures a proactive approach to compliance. Reusing existing open 

source frameworks allowed us to build a comprehensive solution for continuous and automated 

model checking, visualization and reporting in several hundred lines of program code. 

1. Introduction 

The Industry Foundation Classes (IFC) cover a wide variety of subdomains in the construction 

industry and offer a considerable degree of freedom to modellers and implementers. Model 

View Definitions (MVD) can be used to formulate additional requirements on top of the rules 

and specifications defined in the IFC schema. The use of MVD is intended to specify 

requirements for certification purposes within the standardization organisation as well as 

requirements that are specific to individual projects or organizations. In short, it is assumed that 

if a model is delivered that complies with an MVD, it is fit for the purpose of a defined user. 

Various MVDs are published as an international standard, four official standards for the 

IFC2X3 schema, and six standards for the IFC4 schema, four of which are still in draft form. 

Due to the limited publication, the current selection of MVDs do not account for the full variety 

of subdomains in the construction industry. Even within a published MVD standard, a recipient 

will often have different requirements compared to what is in the official standard. In addition, 

only one of these MVDs has an mvdXML available for distribution. Without a distributed 

mvdXML, it is complex to automatically validate deliverables against MVD requirements. 

Should the user wish to modify an MVD to their needs, they are required to modify the 

underlying mvdXML, or write their own. 

The language to define MVD, mvdXML, has four main issues (a) the semantics are not 

precisely defined, (b) there is a variation in schemas and versions supported by tools, as such 

there is very limited interoperability, (c) the process of authoring mvdXML files is complex 

and requires extensive knowledge of the IFC schema, and (d) since the language is invented 

from scratch it’s a large implementation effort for a vendor to implement support for mvdXML. 
Currently, the only free or open tool to compose mvdXML definitions is IfcDoc, which is not 

cross-platform. If an author wants to create their own mvdXML, this becomes problematic. 

The published MVDs are primarily concerned with whether IFC entities are within the scope 

of a domain. Although possible within the mvdXML schema (using TemplateRules and in 

newer revisions of the standard: Constraints), the published MVDs do not help match attribute 

or parameter values to project-specific information requirements, which is often the priority to 

mailto:t.f.krijnen@tudelft.nl
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a recipient of a BIM model. Therefore, the published MVDs are not sufficient to establish 

whether a model produced with an MVD is fit for purpose. 

Most of the published MVDs include a large portion of the IFC schema. As MVDs are also 

used for certification purposes, this requires vendors seeking certification to be able to support 

the import or export of a large portion of the schema. This complicates the certification process, 

and discourages the development of smaller, Unix-like, targeted tools that manipulate a specific 

subset of the IFC model, such as geometry, or asset management metadata. This requirement 

for a monolithic implementation acts as a barrier against smaller vendors attempting to enter 

the market. 

Currently, buildingSMART, the standardisation organization behind IFC and mvdXML is 

contemplating to embrace more industry-standard tools1. This paper provides an exploration of 

the application of an industry standard tool in validation and testing of software. This is the 

Gherkin language as implemented in software tools (such as Cucumber, JBehave, Lettuce, 

Behat, and Behave) for Behaviour- or Test-Driven Development (BDD/TDD). BDD principles 

include to obtain a shared understanding of how the application should behave by means of 

conversation and concrete examples. The authors believe that this practice is just as relevant to 

building codes as it is to software. 

2. State of the art 

2.1 Schema languages 

The IFC schema is published in the EXPRESS modelling language, with programmatically 

derived copies in XSD and OWL. The need for model schema subsets has been described in 

the introduction. Both the EXPRESS and the XML families of standards include parts to define 

model transformations and views. EXPRESS-X (Baily et al. 1996) defines SCHEMA_MAP 

and VIEW constructs and reuses the procedural rule language in EXPRESS to further qualify 

or derive attribute types. Within the IFC community there are infrastructure domain extensions 

developed in UML. That family of standards include QVT for transformations and OCL for 

constraint languages. The Semantic Web standards include SPARQL for querying and 

transformation using SPARQL CONSTRUCT and SWRL for rules and SHACL for constraints. 

As noted, the buildingSMART organisation put forward mvdXML2 for this purpose and 

implementations of mvdXML exist, such based on SPARQL SPIN in Zhang et al. (2015)by 

which portability of rule execution increases, but at the same time a dependency on linked data 

technology creates additional indirection due to the mapping to OWL, in particular for lists 

(Pauwels et al. 2017). An effort to simplify the MVD definition language starting from 

mvdXML semantics is given in (Liu et al. 2019). 

In this context it’s necessary to appreciate the distinction between declarative and imperative 

languages. Where the imperative focuses on how something is to be executed the declarative 

focuses on a specification of the outcomes. Examples of declarative programming languages 

include the query and rule languages above, imperative languages are most of the contemporary 

programming languages such as C++ and Python. Pichler et al. (2011) concluded in their tests 

in the field of business process modelling that the imperative modelling approach was more 

comprehensible (although notes that this observation may be skewed by familiarity of the 

subjects). Intuitively one might argue that incremental changes are easier to apply to imperative 

 
1 This is seen in initiatives such as https://github.com/buildingSMART/NextGen-IFC 
2 https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-1/mvdXML_V1-1-Final.pdf 
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statements, but declarative approaches might have a higher degree of composability, the ability 

to combine statements is less hindered by imperative considerations such as variable names. 

2.2 Bespoke IFC model validation 

The typical nature of model validation in the construction industry is well-described in literature 

(Eastman et al. 2009). There are applications that focus on (a) data completeness/correctness 

and exchange requirements, sometimes called pre-checking and (b) validation of the model 

with respect to design requirements. The process is outlined in four phases: rule interpretation, 

model preparation, rule execution and reporting. For the first part, existing legal documents can 

be annotated for example using RASE (Hjelseth and Nisbet 2011) to subdivide statements in 

requirements and applicable types. 

As MVDs main aim is to check data exchange requirements in models and the complexity of 

using mvdXML is high due to required schema knowledge, industry has mostly embraced 

bespoke and closed solutions. One example is the Solibri Model Checker (SMC)3. Part of 

SMC’s popularity arises from its ability to add its own classifications on top of IFC classes (i.e. 

the model preparation phase), which makes it very forgiving in the quality of input data, and 

allows people to test expectations on top of that. However, this leniency may be seen as 

detrimental to high quality OpenBIM adoption as it is ambiguous as to how exactly its tests 

relate to the IFC schema. In addition, its black-box nature makes it hard to guarantee that tests 

remain unchanged from version to version, or even persist in the next version, and commercial 

nature may make it impractical to require from BIM authors. As a parallel, proprietary unit 

testing frameworks are rare in the software industry. Nevertheless, its popularity demonstrates 

that there is market demand. 

Alternative open source implementations exist, such as the IfcValidator4 tool, which offers 

added transparency due to its open-source nature, and stays truer to the IFC schema, but requires 

precompiled test definitions and a dependency on BIMServer. This requirement increases the 

barrier to entry for most BIM authors, as BIMServer is not widely used, and to author a test 

requires the ability to set up a development environment, code compilation, and an 

understanding of BIMServer and the Java programming language. It is also restricted to data 

originating within a BIMServer, which can be problematic when data can some from multiple 

sources and formats from many disciplines. However, its ability to integrate into the model 

submission pipeline is beneficial for deployment and governance of BIM testing. 

It is worth mentioning that there are other types of testing, such as collision and clash testing, 

auditing paper documentation, as-built verification, and manual design intent checks, but do 

not overlap significantly with the scope of an MVD, and are not addressed in this paper. 

2.3 Software engineering 

Within software engineering, the concept of testing and test suites are well established to 

guarantee that a deliverable is fit for purpose for a particular user. These test suites form part of 

the quality control procedure, project documentation, issue management process, deployment 

process, contractual requirements, and are often automated. Unlike the AEC industry, where 

data testing is fragmented, many software engineering test suites follow the procedures set out 

by the xUnit5 framework. 

 
3 https://www.solibri.com/ 
4 https://github.com/opensourceBIM/IfcValidator 
5 https://xunit.net/ 
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One subset of test suite practices is known as Behaviour Driven Development (BDD). The 

characteristics of BDD are summarized in (Solis and Wang 2011). The first and foremost is that 

tests are written in a ubiquitous language so that customers and developers speak the same 

language and can collaboratively edit and review the body of rule definitions. 

The software engineering discipline has largely embraced the paradigm of Continuous 

Integration / Continuous Delivery, meaning that tests are ran automatically and after every 

change or on a fixed interval.  

3. Contribution 

In this paper we apply the Behaviour Driven Development practice to a real-world project and 

construction company (both kept private).  In our case, and many others, we used the Gherkin 

language which provides the benefit of expressing technical BIM concepts in real, human 

language that document project requirements for multiple stakeholders. 

It is well established that mvdXML duplicates the pre-existing standards on model 

transformations and subset declarations. Further detailing that is not the aim of this paper. What 

is interesting to conclude from the state of the art is that in the languages described in previous 

sections there is often a different language for (a) validation and (b) declaration of subsets, but 

mvdXML aims to do both. Also, in BDD test sets are written in human readable, clearly 

understandable scenarios so that engineers, managers and auditors all verbally comprehend the 

rules. The technical focus on data modelling definition and tight coupling with the IFC schema 

renders mvdXML unsuitable as a basis for discussion with less technically proficient 

stakeholders. In this paper we elaborate on and discuss our experiments with Behaviour Driven 

Development (BDD) and testing of building models using the Gherkin syntax. 

3.1 Rule translation 

In our project, requirements are translated into scenarios written in Gherkin syntax, which are 

tested against the model. The characteristics of human readability and the ability to build up a 

complex vocabulary of building requirements render it suitable for application in the 

construction sector. An example of statements produced by various parties involved in a 

construction project is outlined in Table 1. 

Table 1: Example of rule definitions from an (a) architect (b) lighting designer (c) asset manager and 

(d) the mvdXML specification. 

The project must be geolocated 

All furniture must be contained in a room 

All walls must have a material and colour 

All wall type names must follow the naming convention of “XXXYYY” 

All wall types must have a fire rating 

All spaces must have space lighting requirements 

All coverings must have a surface style 

All objects with a material with the name Glass must have an externally defined surface style 

containing BRDF data 

All maintainable assets from the COBie list of assets must have warranty properties 

All warranty properties must have a point of contact and warranty end date as a minimum 

All maintainable assets must have an associated document which links to our maintenance 

document server 

All sensors must have at least one port that submits signals 

Unlike the typical usage of the MVD standard, these statements are created on a project by 

project basis, but common ones may be re-used, similar to how design patterns are re-used in 
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software. These statements may be both internationalised and localised to account for different 

practices around the world. These statements are organised into scenarios, and parsed by a test 

runner. The Gherkin language can be parsed by a variety of test runners in a variety of 

programming languages. Once parsed, the test runner may invoke any software to validate the 

requirements of the test. It is possible, at this stage, to then generate mvdXML and use an 

mvdXML validator to check the model. However, it is proposed that writing model queries 

using a native programming language and an IFC library has benefits over mvdXML. In this 

paper, we use the IfcOpenShell library and write test implementations in Python, which is 

interpreted at runtime. 

The mvdXML documentation provides a simple example enforcing that sensors have at least 

one port that submits signals. This can be represented by the single domain specific sentence in 

Table 1d. 

The sentence is unchanged from the everyday domain language of the authors and recipients. 

The sentence may then be used in test suites and enforced contractually. The implementation 

in Python using the IfcOpenShell library is 10 lines of code (including line breaks for 

readability) and is shown below. In contrast, the corresponding implementation shown in the 

mvdXML documentation is 89 lines of code, excluding line breaks for readability. The Python 

code also has a certain natural readability, allowing non-programmers to understand what it is 

describing. 

Table 2: The 10 lines of imperative Python code required to check the sample from the mvdXML 

specification. The equivalent mvdXML requires 89 lines. 

for sensor in ifc_file.by_type("IfcSensor"): 
    if not hasattr(sensor, "IsNestedBy") or not sensor.IsNestedBy: 
        assert False 
    for relation in sensor.IsNestedBy: 
        for port in relation.RelatedObjects: 
            if port.Name == "Output" \ 
                    and port.SystemType == "SIGNAL" \ 
                    and port.FlowDirection == "SOURCE": 
                return 
    assert False 

3.2 Implementation 

The BlenderBIM Add-on6 (Figure 1) was used as an open source, visual BIM authoring and 

auditing tool. The BlenderBIM Add-on is part of the IfcOpenShell project, and uses 

IfcOpenShell, an established IFC library to read and write IFC2X3 and IFC4 schemas. Unlike 

other BIM authoring tools, which historically have emerged from fabrication and CAD 

industries, the BlenderBIM Add-on runs on Blender, a popular content creation suite in the 

creative computer graphics industry. This makes it adept at modifying and visualising mesh 

data, which is exceptionally useful for auditing, as in practice there is almost zero lag in 

displaying even the heaviest of models. It also has an interactive Python shell to query the model 

live. The internal data model is also designed specifically to mirror the IFC schema, to minimise 

data translation during import and export, and treat the IFC data as a native model. Because 

there is no rigid internal data model such as in the case of the pre-existing BIM authoring tools 

there is very little reinterpretation needed when opening an IFC file at the expense of the mesh-

based nature being unable to mimic the parametric interfaces in such tools such as a 

 
6 https://blenderbim.org 
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representation of a wall by two movable end-points and a wall thickness (although parametric 

functionality in Blender is provided by other add-ons).  

This approach to testing project and organisation specific exchange requirements by specifying 

domain specific Gherkin syntax, alongside a Python implementation in IfcOpenShell was 

implemented on real world BIM data in Australia to judge its suitability. IFC data was audited 

from architectural, MEP, landscape, and structural disciplines. The test runner implementation 

used was Behave7. An open-source tool called BIMTester was written as a thin wrapper around 

Behave. BIMTester would package Behave and the IfcOpenShell library into a single 

standalone executable, using pyinstaller, to allow users to easily run the tests cross-platform 

without needing a prior understanding of unit testing or how to install Python or its modules. 

Behave would return test results in JUnit XML, which is compatible with many available 

systems that understand xUnit testing. The BIMTester wrapper would then provide additional 

HTML formatting to the JUnit XML, presenting the test results in a colourful and friendly 

HTML report to BIM authors. BIMTester is under 150 lines of code. 

 

Figure 1: Visualization of a model in the BlenderBIM Add-on with the Blender user interface 

elements: Python console, renderings, outliner (model decomposition) and properties panel. 

The first test suite performed was to check whether an IFC file was of a particular IFC schema. 

The schema version is often specified in contracts and in digital execution plans, in identical 

domain language to the sentence used in the test. A domain specific sentence to describe this 

exchange requirement is given in Table 3a. 

Table 3: Two example Gherkin scenarios assessed in BIMTester 

Given the IFC file "foo.ifc" 

Then the file should be an IFC2X3 file 

The element {global_id} is an {ifc_class} 

The first sentence specifies to the test runner which IFC dataset subsequent tests will be 

performed on. This is stored in the test environment, which persists across subsequent tests. 

This notion of persistence allows tests to depend on one another, leading to efficient test 

execution. Loading an IFC file is a one-liner in IfcOpenShell, as is the check for the schema. 

Another fundamental test is to check whether BIM objects are assigned to the correct IFC class. 

From a contractual and BIM governance perspective, the IFC class determines portions of the 

digital strategy and execution plans, such as what LOI/LOD applies, which consultant has the 

 
7 https://behave.readthedocs.io/en/latest/ 
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scope of a particular object, and what objects are to be included in deliverables, such as for the 

COBie MVD for maintainable assets. From a technical perspective, many of the properties and 

attributes available to an object in IFC depend on the IFC class, can be used as a guide to check 

whether the right classification system reference has been applied, and a used as filtered in 

processes, such as construction sequencing, prioritising clash detection, and scheduling for 

quantity take-off. Unfortunately, a lot of BIM authoring platforms tightly couple the geometry 

modelling capabilities with the class assignment, resulting in incorrect classifications. 

Similarly, a lack of industry knowledge around OpenBIM has led to an over-reliance on default 

BIM authoring tool IFC class mappings, with little evidence seen of processes in place to ensure 

correct IFC classes. A domain specific sentence to describe this exchange requirement is given 

in Table 3b. 

In this case, the sentence contains two variables: {global_id} and {ifc_class}. Prior to the 

models being built, it is not known what IFC classes would be checked, nor what the element 

GUIDs would be. Therefore, contractually the sentence would be presented as a generic 

requirement, with an understanding that BIM authors may expect to be audited for any 

{global_id} or {ifc_class}. An implementation in IfcOpenShell is again one line of code. 

 

Figure 2: A model from the electrical discipline with objects colour coded by their IFC class value. 

Small dark blue objects are IfcBuildingElementProxy objects, which are easy to spot. 

IFC classes usually require a visual check. Although some can be determined 

programmatically, such as by testing the aspect ratios of bounding boxes for slabs, columns, 

and beams, this method is generally less reliable. It is also not sufficient to check for the correct 

type product, as not all IFC products are typed, and a single generic type may be abused to 

create multiple different products. Approaches to check correct element class associations 

based on geometrical properties and proximity to other objects is given in Krijnen and Tamke 

(2015).  

To allow efficient testing, the BlenderBIM Add-on was used with the ability to colour code a 

model by the IFC class and use drop-downs to select valid IFC classes. IFCs created by BIM 

authoring programs generally have various patterns in their export, and each firm tends to have 

their own style based off their internal BIM asset library. Together, these two characteristics 

allow one to quickly use bulk selection tools based on wildcard names and object attributes to 

quickly audit hundreds of objects at a time. The Blender modelling package has features for 

object isolation, hiding, and x-ray vision, allowing for further efficiencies in the test generation 

process. Objects could be selected in bulk and either have their current IFC class approved, or 

another IFC class specified as the correct IFC class (Figure 2). 
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3.3 Continuous Integration 

The above results in over a hundred thousand of these tests created in a typical large project 

prior to construction detailing. As IfcOpenShell builds an indexed list of element global IDs, it 

is able to very efficiently retrieve any object in the IFC file once it has loaded. Execution of a 

single one of these tests is in the range of a millisecond, allowing to test the entire project in 

seconds. The testing bottleneck lies in the disk’s capability to load the IFC file through 
IfcOpenShell, with an IFC file in the hundreds of megabytes taking between 10-20 seconds to 

load. However, once a file is loaded, the tens of thousands of tests which follow are completed 

in mere seconds. The entire process taken to spin up a new virtual testing machine with a clean 

environment, download the latest revision of all of the IFC files, download and install the testing 

dependencies, and run the tests for half a gigabyte of IFC data and hundreds of thousands of 

elements, and produce HTML reports for download is approximately 3-4 minutes on a single 

threaded, standard build server. This full set-up and tear-down process is typical of the process 

that a software company might have to perform QA. The process is fully automated and 

executed on a post-receive Git hook. 

 

Figure 3: Overview of the test reporting page (somewhat censored). The time taken to load the file 

(24s) is significantly greater than test execution. The "scenario" syntax of the "given", "when", and 

"then" prefix is used as a convention, but may be omitted. 

Once the test suite is created, it persists throughout all future model submissions. Models are 

often submitted on a regular basis, so in a week’s time a proportion of elements would have 

been added, removed, or modified. Elements that are modified are already considered by the 

test suite, and so if the element IFC class changes, the test suite will continue to recheck its 

class, preventing the possibility of regressions, just as in software engineering. If an element is 

removed, the BIMTester tool has a purge option, which detects any {global_id} variables in the 

test suite and deletes all the corresponding tests prior to running the test suite. This is done 

through simple text file manipulation, as the test suite is a plaintext file, and has a negligible 

bearing on execution time. The test suite is version controlled with Git, allowing any test 
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deletions to be undone, for example due to an errant export by a BIM author who may have 

disabled various categories of elements by mistake. Similar to detecting element removals, 

element additions are determined by identifying all elements in the model without a 

corresponding test, which is done using the BlenderBIM Add-on. This has the additional benefit 

of serving a similar purpose to a model compare, which directs the auditor's attention to new or 

changed portions of the model. This also means that subsequent audits are much faster, despite 

this being fundamentally but necessarily a manual process. An initial audit would take 

approximately 2 days to audit 30 IFC files, but subsequently would only take a few hours. 

Once a test is performed and a report produced, it is not always straightforward to correlate the 

report results (Figure 3) back to a live model to fix the results. For example, not all BIM 

authoring tools make it easy to select an element by its IFC GlobalId attribute - requiring 

multiple steps and a specific procedure to be followed. Some OpenBIM viewers do not have 

this capability at all. Some elements that are composed into an aggregation are hard to select, 

and some elements are parametrically created (such as arrays) and cannot be individually 

selected in the native authoring tool. An element may have also been deleted since the audit 

was performed, resulting in confusion. Guides and plug-ins had to be produced to ensure that 

this process was smooth. 

3.4 Summary and findings 

The project documented in this paper had a total of 21 rule sentences implemented. Bridging 

the nouns in the Gherkin syntax to imperative operations on the IfcOpenShell Python IFC parser 

took 243 lines of code, averaging 11.5 lines of code per Gherkin syntax. This shows how by 

embracing existing open source solutions we were able to build an advanced system for 

automatically and continuously assessing the state of the building model with relation to an 

evolving body of rule definitions. Executing the rules was almost instantaneous on a test set of 

35 files totalling 2.9GB, parsing the data took most time. The imperative implementation in 

Python and the “batteries-included” nature of its module ecosystem allowed for some 
interesting side effects, such as being able to cross reference data from an CSV file. This type 

of integration with external data is currently not feasible in mvdXML. Python also allowed for 

the usage of math primitives and trigonometry for the validation of latitude longitude. In 

addition, future work might make use of the fully evaluated geometry provided by IfcOpenShell 

and the validation n-ary predicates and relationships. 

From a political perspective, people were not always used to data being audited to such a 

detailed level and sometimes the information requires were underspecified to be suitable for 

automated testing. 

4. Conclusion 

In this paper we have provided a freely available open source software toolset for the 

application of rules in the Gherkin syntax to an IFC building model and reporting on the 

validation outcomes. The coupling of BIM and code opens possibilities within the AEC 

industry. Several professionals with extensive experience have participated indirectly in the 

experiments and have since changed their previously negative conceptions of IFC, now 

considering it as the foundations for seamless, non-deprecating, and lossless data exchange. 

IFC enabled to take full ownership of data, provide ruthless automation and data integration. 

Current implementations of rule checking on BIM models are hindered by the following 

limitations (a) lack of portability of rules (b) black box implementation (i.e. subject to change, 

unclear exact behaviour and (c) automatic inference (of quantities, subtypes, relationships) 
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which is forgiving to end-user on the short term, but will hurt interoperability on the long term 

due to diverging implementations. We identified that existing ecosystems and frameworks 

typically have different languages for (a) validation/certfication and (b) model subset 

declaration. With mvdXML attempting to do both there is not a clear focus, uncertainty in 

industry and evaluating alternatives is problematic. We have therefore focussed only on model 

validation by embracing Behaviour-Driven Development approaches. 

The trifecta of governance language (to be reused in contractual documents), cheap test creation 

(the majority of test sentence implementations are under 20 lines of code), and flexible pipeline 

integration (plaintext definitions and xUnit reporting) suggest that a Gherkin language based 

approach towards auditing BIM data is useful in the industry. Participants were willing to adapt 

business processes and easily understood the requirements being audited and imposed. Having 

automated testing integrated into the model submission process removed all barriers to entry, 

and the simultaneous provision of open-source test definitions, plain-text test definitions, and 

cross-platform, small utilities allowed the more curious participants to gain a deeper 

understanding of OpenBIM, without the need for prior programming experience. 

The tests performed only focused on data exchange requirements. However, it is believed that 

these tests may be extended to cover design intention through the IfcObjective entity or to query 

spatial requirements. Further research will focus on the interaction of the results of xUnit tests 

within a BIM authoring tool and connecting to initiatives such as the BCF API and OpenCDE 

specifications. 

References 

Bailey, I., Hardwick, M., Laud, A., & Spooner, D. (1996). Overview of the EXPRESS-X Language. In Proceedings 

of the Sixth EXPRESS Users Group Conference, Toronto, Canada  

Eastman, C., Lee, J. M., Jeong, Y. S., & Lee, J. K. (2009). Automatic rule-based checking of building designs. 

Automation in construction, 18(8), pp. 1011–1033. 

Hjelseth, E., & Nisbet, N. (2011). Capturing normative constraints by use of the semantic mark-up RASE 

methodology. In Proceedings of CIB W78-W102 Conference. 

Krijnen, T., & Tamke, M. (2015). Assessing implicit knowledge in BIM models with machine learning. In 

Modelling Behaviour (pp. 397–406). Springer, Cham. 

Liu, H., Gao, G., Zhang, H., Liu, Y. S., Song, Y., & Gu, M. (2019). MVDLite: A Light-weight Representation of 

Model View Definition with Fast Validation for BIM Applications. arXiv preprint arXiv:1909.06997. 

Pauwels, P., Krijnen, T., Terkaj, W., & Beetz, J. (2017). Enhancing the ifcOWL ontology with an alternative 

representation for geometric data. Automation in Construction, 80, pp.77–94. 

Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., & Reijers, H. A. (2011). Imperative versus declarative 

process modeling languages: An empirical investigation. In International Conference on Business Process 

Management. pp. 383–394. Springer, Berlin, Heidelberg. 

Solis, C. and Wang, X. (2011). A Study of the Characteristics of Behaviour Driven Development. In: 2011 37th 

EUROMICRO Conference on Software Engineering and Advanced Applications, Oulu, 2011, pp. 383–387. 

Zhang, Chi, Jakob Beetz, and Matthias Weise. "Interoperable validation for IFC building models using open 

standards." Journal of Information Technology in Construction (ITcon) 20.2 (2015), pp.24–39. 


	Compliance checking on building models with the Gherkin language and Continuous Integration
	1. Introduction
	2. State of the art
	2.1 Schema languages
	2.2 Bespoke IFC model validation
	2.3 Software engineering

	3. Contribution
	3.1 Rule translation
	3.2 Implementation
	3.3 Continuous Integration
	3.4 Summary and findings

	4. Conclusion
	References


