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ABSTRACT 

Worldwide yearly 800.000-1.000.000 people receive a total artificial hip. 8-9% Of all patients requires a second 

surgery to correct the primary arthroplasty. In more than 70% of cases, aseptic loosening is the cause for 

implant failure. Possible pathways leading to aseptic loosening are stress shielding and micro-motions. Stress 

shielding can be reduced by less stiff implant material in the susceptible areas and micro-motions can be 

minimized by a stable fixation in the bone, e.g. due to bone ingrowth into the implant. Three dimensional (3D) 

printing techniques provide the possibility to combine solid metal with metal foam in one implant. The 

apparent density (AD) of the foam is in direct relation with the Young’s modulus, so the stiffness of the foam 

can be tailored with the AD. The printing does entail imperfections in the foam, such as irregular cross-sections 

of the struts and porosity within the struts. Analytical models are based on the perfectly regular situation and 

therefore do not satisfy in the prediction of the foam stiffness. A custom-made finite element (FE) modeling 

tool was developed to generate models of metal foams that do include these irregularities. The struts were all 

composed of several beam elements to which different cross-section sizes were assigned based on a Gaussian 

distribution. In addition, porosity within the struts was modelled by assigning a void percentage to the matrix 

material, which was also Gaussian distributed. In this study, the predicted bulk mechanical properties of 

models generated with the modeling tool were compared to analytical models and to experimental results in 

order to validate the FE results. It was shown that FE modeling is a promising method to predict the stiffness of 

3D printed metal foams. Especially the stiffness of foams with a low AD was properly predicted by the FE 

model. Further development is required to optimize the accuracy of the outcome. It is recommended to 

include non axial alignment of the beam elements. In the future, FE modeling can be used to optimize the 

geometrical and mechanical properties of patient specific implants. 
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LIST OF ABBIRVATIONS 

THA - total hip arthroplasty 

AM - additive manufacturing 

3D - three dimensional 

SEBM - selective electron beam melting 

SLM - selective laser melting 

CAD - computer aided design 

FE - finite element 

GUI - graphical user interface 

FEM - finite element method 

AD - apparent density 

CB - cube 

DM - diamond 

TO - truncated octahedron 

RD - rhombic dodecahedron 

SD - standard deviation 

SEM - scanning electron microscope 

CS - cross-section 
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1. INTRODUCTION 

1.1. BACKGROUND 

Total hip arthroplasty (THA) is a widely used surgical procedure. In patients suffering from osteoarthritis, 

traumatic fracture, or other problems with their hip joint, it is one of the most developed and successful 

surgical interventions, resulting in immediate pain relief and reinstatement of the patient’s mobility [1, 2]. In 

general, the acetabular part consists of a shell and liner and the femoral part is formed by a stem and head.  

Since 1979, Sweden has a national total hip arthroplasty register, recording all primary THA, THA revisions and 

the corresponding surgical techniques and environmental aspects [3, 4]. Register data show that annually 

13.000 total hip arthroplasties are performed in Sweden [5]. Worldwide this number is estimated at 800.000-

1.000.000 [1, 6, 7], with a predicted growth of 200% in the next 20 years, due to increasing age and lifestyle 

changes of the population [1, 8]. According to the Swedish Hip Register during 1995-2000, in 8-9% of cases 

second surgery to correct the primary THA was needed [5, 9]. These include all revisions, regardless of the time 

after initial implantation. Worldwide this results in an estimated 64.000-72.000 revision surgeries annually. 

These numbers stress the importance to improve THA.  

In more than 70% of cases, aseptic loosening is the cause for implant failure, often occurring relatively late 

after implantation [5, 10]. Important causes of aseptic loosening are micro-motions and stress shielding. Micro-

motions occur when the implant is free to slide in the modullary canal. It can be a result of too little bone 

ingrowth or malpositioning of the implant [11]. In general, instability of the implant often causes early revision 

[10]. Stress shielding occurs when the implant is too stiff compared to the original bone. The implant carries 

part of the loading that is no longer experienced by the surrounding bone. This changes and reduces the stress 

sustained by the bone and results in remodeling of the surrounding bone. According to Wolff’s law, which 

explains the adaptation of bone to the loads it experiences, bone resorption occurs as a result of stress 

shielding. Resorption leads to a lower bone density and eventually loosening of the implant [12].  

Titanium and its alloys are the most commonly used metals for the femoral stem [13]. The advantages of 

metals are their overall good mechanical properties, leading to a relatively low wear rate [14]. Besides solid 

titanium, porous titanium/titanium foam is used in biomedical applications. The porosity of the titanium is 

related to the Young’s modulus of the structure [15]. A higher porosity results in a lower Young’s modulus, so 

less stiff material.  
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With the current possibilities of additive manufacturing (AM), a titanium implant can be printed three 

dimensional (3D) with a previously prescribed geometry, microstructure and consequently, mechanical 

properties. In some areas titanium foam can be applied, and in others solid titanium. It is even possible to print 

foam with a negative Poisson’s ratio, causing compressive stress to be experienced by the surrounding bone, 

even when tensile loading occurs [16]. The foam variables (e.g. type of unit cell, strut length and radius of the 

strut cross-section) and resulting apparent density can vary throughout the implant. A custom-made implant 

can be created based on the specific requirements of the patient. An implant with optimal mechanical and 

geometrical properties in each location will reduce stress shielding and micro-motions.  

1.2. PRINTING PROCESS OF TITANIUM FOAM  

Open-cell titanium structures can be produced by AM techniques, the two most common ones being selective 

electron beam melting (SEBM) and selective laser melting (SLM). As stated by Van Bael et al. [17], additive 

manufacturing techniques provide, due to the layer-wise building method and their direct link with a computer 

aided design (CAD) model, the ability to produce porous structures with controlled pore and strut dimensions. 

The procedure of the product generation by SEBM is described in Figure 1. SEBM is a technique, using an 

electron beam to selectively melt metal powder layer by layer. Each layer is formed by a powder bed, in which 

selective areas are solidified due to the melting and create a cross-section of the eventual product. After a layer 

is melted, the process platform moves vertically downwards, a new layer of powder is applied, and a new layer 

can be melted. When the generation of the product is completed, all unmelted powder is recycled. The 

resolution in the first two directions is determined by the size of the powder particles. For titanium alloy (Ti-

6Al-4V) powder, the particles are spherical and have sizes between 25 and 80 μm [17-19]. In SEBM the 

resolution of the table is reported to be 70 μm [19] or 100 μm [18]. The main difference between SLM and 

SEBM is the energy source. In SLM, a laser beam is guided through an optical fibre and is focussed on selective 

areas in the powder bed to solidify these by melting.  

Currently, analytical models are used to predict the stiffness of 3D printed metal foams. These models are 

based on the flawless situation and do not include irregularities, such as varying radius of the cross-section of 

the struts. However, regularity cannot be guaranteed in AM techniques.  

1.3. THE AIM OF THE STUDY 

The purpose of the current study is to use finite element modeling for prediction of bulk mechanical properties 

of metal foams based on the geometrical properties of the foam. The models were generated with a special 
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developed tool for Abaqus (SIMULIA, Providence, RI), in which effects of manufacturing imperfections can be 

included that are not included in the stiffness prediction by analytical models.  

2. MATERIALS AND METHODS 

In order to fulfill the objective of the study, convergence, parametric and comparative studies were performed 

on finite element models of titanium foam. The current chapter describes the used materials and methods.  

2.1. FE MODEL 

All finite element (FE) models were generated using a custom-made graphical user interface (GUI), which is 

depicted in Figure 2. The models represented titanium foam microstructures, composed of regularly stacked 

unit cells. The struts of the foam were modelled as beams. The number of elements per strut could be defined 

through number of edge divisions. All elements were 2-node linear beam elements (B31). This element is the 

standard Timoshenko beam element and allows for transverse shear deformation [20]. Displacement boundary 

conditions in three orthogonal planes were applied to model uniaxial compression tests and stabilize the 

structures. In all models, the strain was applied in direction [1,0,0]. An input- and par-file were automatically 

generated; those served as the input for the post-processing script. The par-file contains the dimensions and 

deformation of the model, while the input-file contains all other finite element method (FEM) data such as 

boundary conditions and loading.  

After the post-processing script had run, a text file was created with the resulting bulk mechanical properties 

Young’s modulus (E) and Poisson’s ratio (ν), and the apparent density (AD) of the foam. The Young’s modulus 

and Poisson’s ratio indicate the stiffness of a structure. The Young’s modulus is the initial slope of the linear 

part of the stress-strain curve. The Poisson’s ratio is defined by the negative ratio of transverse contraction 

strain to axial extension strain. A material with a Poisson’s ratio of 0.5 is considered incompressible. The 

Young’s modulus and Poisson’s ratio of the matrix material were based on the material properties of Ti-6Al-4V 

and were standard set at 110 GPa and 0.3, respectively. The shear modulus (G) and bulk modulus (K) of an 

isotropic material can be derived when the Young’s modulus and Poisson’s ratio are known [21]. Together 

these four properties define the mechanical behaviour of an isotropic material.  

  
 

 
    

      
      

   
 

      
   

 

       
 

The Young’s modulus and Poisson’s ratio of the foam were obtained by compressing the foam with 0.2% strain. 

The post-processing script computed the effective Young’s modulus and Poisson’s ratio as proposed by Li et al. 
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(2006) [22]. In the presented formulas the stain is applied in direction [1,0,0] and X,Y,Z are the dimensions of 

the foam model. F1 is the total reaction force along direction [1,0,0] and ui
j is the lateral displacement in the xj 

direction perpendicular to the loading direction xi. The apparent density is calculated by dividing the volume of 

all beams over the volume of the total structure. 

   
   
    

      
  
 

   
      

  
 

   
    

      
      

 

In the GUI, several foam parameters can be defined. The main parameters are the unit cell geometry (cube 

(CB), diamond (DM), truncated octahedron (TO) or rhombic dodecahedron (RD), represented in Figure 3), beam 

length, radius/edge length of the beam cross-section (depends if the cross-section is a circle or square), void 

percentage within the beams and dimensions of the complete foam. Models that are composed of diamond, 

truncated octahedron or rhombic dodecahedron unit cells all contain beams with a circular cross-section, so 

cylindrical beams. Only for models composed of cube unit cells, prismatic beams are an option as well, so with 

a square cross-section.  

The truncated octahedron, diamond and clearly the cube have cubic symmetries. As a result the mechanical 

properties of these models are equal in three principal directions [23]. The rhombic dodecahedron has three 

orthogonal planes of symmetry [20]. Therefore, the mechanical properties in [0,1,0] and [0,0,1] direction are 

the same, but differ from the mechanical properties in [1,0,0] direction. Since the strain was standard in [1,0,0] 

direction, the Young’s modulus is also computed for this direction. Unless explicitly mentioned otherwise, the 

values in Table 1 were the standard input.  

In analytical models of foams, the cross-section of the struts of the unit cells is considered equal throughout 

the structure. In the GUI, this corresponds to a fixed radius/edge length of the beams. However, these models 

with fixed strut radius appear to be too stiff compared to experimental results of foam samples [18]. As 

observed by Parthasarthy et al., increased structural variations in small strut sizes might result in thin 

structures that result in failure at lesser loads [18]. As a consequence of the manufacturing process, the 

diameter of the beams varies throughout the foam. Figure 5 shows several images of the microstructure of 

titanium foam where the irregularity of the beam cross-section can be seen. In order to model the varying 

cross-sections of the struts, the GUI includes an option for a Gaussian distribution of the radius or edge length 

of the cross-section. Figure 6 visualizes the meaning of a Gaussian or normal distribution of the cross-section 

size. A cross-section size is assigned to each different element and is picked from a limited range that is defined 
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by the mean section size, standard deviation (SD) of the size and a Gaussian filter. The filter guarantees that the 

section size stays within a sensible, printable range. Due to the Gaussian distribution, sizes close to the mean 

occur more frequent than away from the mean. A total number of variations can be set by the user, called 

number of sections. The SD defines the width of the variations. When the threshold is reached, the radius is 

recalculated.  

Another effect of the manufacturing technique that may occur is porosity within the struts. This was observed 

in foam samples with cube unitcells with prismatic struts [18]. Figure 5a shows an image of such a sample 

where the dark spots represent void. Porosity within the struts can be modelled by assigning a void percentage 

with SD to the matrix material, leading to a lower Young’s modulus.  

2.1.1. Fixed radius/edge length 

First, FE models with fixed radius were studied on the structural level. These models indicated the relation 

between the variables of the microstructure and its mechanical properties Young’s modulus and Poisson’s 

ratio. The apparent density according to the FEM data was first validated in this section. Formulas were derived 

to calculate the AD of the cube (1) and truncated octahedron (2) models. The variables that defined the AD 

were the length (L), beam radius (r) and number of unit cells (n).  

  
  

  
                

    
                          

     
               

    
                      

       
 
 
    

                             

The validation of the AD was followed by a convergence study on the size of the model, to obtain the number 

of unit cells required for a predictable, stable stiffness of the foam. A parametric study was performed by 

analyzing the influence of the parameters size and radius on the mechanical properties. Models of each type of 

unit cell were created with an increasing number of unit cells in each dimension. The beam length and radius 

were fixed, length at 1.2 mm and radius once at 0.01 mm to generate slender models, and once at 0.25 mm to 

generate models with a standard beam radius. For the rest of the report, when a model contained 10 unit cells, 

it means the models contained 10 unit cells in each dimension. To study the parameter radius, models with 

varying beam radius were generated with the other parameters fixed according to the standard input (Table 1) 
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and the size fixed at 10 unit cells. In case of the cube models with a square cross-section of the beams, the 

edge length had the same value as the radius of the beam in the other geometries.  

The outcome of the FE models with a fixed cross-section size was compared to analytical models in order to 

validate the predicted stiffness. 

2.1.2. Gaussian distribution of the radius 

Second, FE models with a Gaussian distribution of the cross-section radius were analyzed. The influence of the 

number of unit cells and SD of the mean radius on the predicted stiffness was evaluated. FE models were 

created with an increasing number of unit cells (2, 5 and 10). The other parameters were fixed. Each model was 

regenerated ten times. Similar to the models with fixed radius, the standard input parameters were used (Table 

1). Furthermore, the beam radius was defined as follows: 

                                                   

The influence of the SD of the mean radius was analyzed by generating models with an increasing SD and 

keeping the other variables fixed. The maximum SD in the parametric study was based on the assumption that 

0.1 mm was the minimal printable radius. Since the mean radius was set at 0.25 mm and the filter on 2, this 

minimum led to a maximum SD of 0.75 mm. The smallest SD was chosen 0.05 mm and the SD increased with 

0.1 mm per model. Each model was regenerated ten times.  

                    

                                                                

                                  

Models with a Gaussian distributed strut radius were expected to represent experimental samples, because 

these include irregularities which occur in reality. In order to analyze the accuracy of the stiffness prediction 

with FE modeling, experimental results of Ti-6Al-4V foam samples were compared to results of corresponding 

FE models with a Gaussian distribution of the radius and a possible porosity within the struts. Throughout the 

study, the GUI was optimized and the steps were iterated. The method that was used in this study is visualized 

in Figure 4. 

2.2. ANALYTICAL MODELS 

Now the generation method of the FE models is explained, the data that was used from literature to validate 

the FEM data shall be discussed. The stiffness predication of FE models with a fixed strut radius was validated 

with the aid of analytical models. No analytical model could be found for diamond as a unit cell. Analytical 
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models are generally developed for infinitely large structures, so the analytical solutions were not influenced by 

the number of unit cells. The following analytical models were used. More information about them can be 

found in Appendix 8.1.  

Cube (cylindrical beams): Gent and Thomas (1963) [24] 

                                   
   

 

   
 

                                  
      

      
 

                                        

 

Cube (prismatic beams): Gent and Thomas (1963) [24] 

                                   
   

 

   
   

 

 
                               

                                        

 

Truncated Octahedron: Roberts and Garboczi (2002) [25] 

                                  
 

 
     

        
   

                                        
 

 
 
     

     
  

                                                

 

Rhombic Dodecahedron: Babaee et al. (2012) [20] 

                                     
  

      
     

   

   
 
    

   

          

                                                         

        

        
 

                                                 

                                                              

2.3. EXPERIMENTAL DATA FROM THE LITERATURE 

In order to evaluate the outcome of FE models with a Gaussian distribution of the radius, their outcomes were 

compared to experimental data from literature on Ti-6Al-4V foam samples. No experimental data could be 
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found for truncated octahedron as a unit cell. The relation between the Young’s modulus and AD was 

evaluated for the experimental data and for the FEM data. In order to simulate the experimental samples with 

the FE models, the input parameters for the FE models were the same as the parameters of the experimental 

samples (Table 2). According to the supplier of the matrix material, the Young’s modulus of Ti-6Al-4V was 120 

GPa [26]. The displacement boundary conditions in XY-plane and XZ-plane were removed, so only the plane 

opposite to the applied strain was constrained and the real geometry of the samples was used in the FE 

models. The samples with diamond and rhombic dodecahedron unit cells had cylindrical struts and a printing 

layer thickness of 70 μm. The samples with cube unit cells had prismatic struts and a printing layer thickness of 

100 μm. The minimum and maximum radius of the cross-section of the strut was measured in a sample with 

rhombic dodecahedron unit cells produced by SLM. The measurements were done by Saber Amin Yavari with 

the scanning electron microscope (SEM) at the TU Delft. From these measurements, a ratio of the SD over the 

mean radius of 1:6 could be determined. This ratio was used to determine the SD of the radius in the FE models 

with diamond and rhombic dodecahedron unit cells. The chosen SD of the edge length in the models with cube 

unit cells was based on the best fit. Porosity within the struts was only observed in the struts of the samples 

with cube unit cells (Figure 5). In the FE models, the total material volume is determined by summing the 

volume of each beam. However, in reality beams are overlapping at the intersections. This double-counted 

volume becomes more significant as the AD increases. FE models of the intersecting beams with corresponding 

radii were created to determine the double-counted volume and recalculate the correct AD. The correction of 

the AD can be found in Appendix 8.2. The stiffness of the different FE models was compared to the 

corresponding experimental results to analyze the accuracy of the prediction and whether the FE prediction is 

an improvement compared to the analytical prediction. 

Cube: Parthasarathy et al. (2010) [18] 

Parthasarathy et al. produced four different samples sets by SEBM, with seven cubic samples each (15x15x15 

mm3) which were all composed of cube unit cells with a square cross-section of the struts [18]. All FE models 

had mean edge lengths corresponding to the experimental data and 10-20% (SD 0.025) porosity within the 

beams. Models with a maximum SD of the edge length were generated, and with an SD as reported by 

Parthasarathy et al. [18]. The maximum SD was based on a minimal printable edge length of 0.1 mm. This SD 

was 20 times larger than the reported SD.  
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Diamond: Heinl et al. (2008) [19] 

Heinl et al. investigated cellular titanium that was manufactured by SEBM as developed by Arcam AB and was 

built from diamond unit cells [26]. An important difference between Heinl’s experimental data and our FEM 

data is the fact that Heinl has determined the dynamic elastic modulus and in the FE models the static elastic 

modulus is computed. Both moduli are determined by the slope of the linear part of the stress-strain curve, but 

the dynamic elastic modulus is the slope from data obtained under vibratory conditions, while the static elastic 

modulus is obtained under static conditions. Heinl had determined the dynamic elastic modulus by the impulse 

excitation technique, wherefore rectangular bars were used (62.5x11.0x14.5 mm3). The numerical difference 

between the dynamic and static moduli of Ti-6Al-4V has been studied by Lee et al. (1991) [27]. They 

investigated the influence of the process temperature on both moduli. The specimens in Heinl’s study were 

manufactured at 970°C [26]. At this temperature, the static elastic modulus was found to be 2% lower than the 

dynamic elastic modulus.  

Rhombic Dodecahedron: LayerWise (tests performed August 2012) 

The company LayerWise produced cylindrical titanium foam samples by SLM with rhombic dodecahedron unit 

cells. LayerWise performed compression tests and shared their data with us. Four different sample sets were 

produced and tested, with five cylindrical samples each. They all had the same dimensions (height 15 μm and 

diameter 10 μm), but varied in beam length and beam radius, and consequently in AD. The reported Young’s 

modulus was assumed to be the modulus in the first direction, so determined by compression in [1,0,0]. 

3. RESULTS 

In this chapter the results of the study will be presented. First, the results are reported of the convergence 

study and parametric studies on the FE models with a fixed strut radius and with a Gaussian distribution of the 

strut radius. Second, the comparisons between FEM data and analytical data, and FEM data and experimental 

data are reported.  

3.1. CONVERGENCE STUDY AND PARAMETRIC STUDY 

3.1.1. Fixed radius 

The hand calculations of the AD and the output of the FE models led to the exact same numbers (Table 3). This 

comparison provided a validation of the AD as given in the FE results. 

Figure 7a and b show plots with the Young’s modulus as a function of the number of unit cells for each type of 

unit cell and with beam radius 0.25 mm. The influence of the size on the Young’s modulus in slender models 
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(radius 0.01 mm) can be found in the Appendix 8.3 (Figure 13). Figure 14 in Appendix 8.3 illustrates the 

Poisson’s ratio as a function of the number of unit cells for each geometry and a strut radius of 0.25 mm. As 

expected from the hand calculations, an increasing number of unit cells resulted in a decreasing AD. For each 

geometry, the Young’s modulus converged to the modulus that the foam had if it was infinitely large. However, 

the truncated octahedron was stiffer with fewer cells and the diamond and rhombic dodecahedron were stiffer 

with more cells. This is caused by the structural instability of the diamond and rhombic dodecahedron unit 

cells. For example, the single diamond unit cell has loose ends, which require connection to another unit cell to 

attain stability. The Young’s modulus of the rhombic dodecahedron jumped up and down as a result of the 

shape of the unit cell and how the unit cells are stacked. If a line would connect the centres of the rhombic 

dodecahedron unit cells in a two dimensional plane, it resulted in a zigzag pattern instead of a straight line. The 

number of unit cells did not influence the stiffness of the models with cube unit cells. On this scale, the 

deformation purely led to compression of the perfectly aligned struts and no detectable cell edge bending. In 

the other three types of unit cells, bending of the cell edges dominated the mechanical properties.  

For the diamond and the rhombic dodecahedron (ν13), the influence of the number of unit cells on Poisson’s 

ratios is comparable to its influence on the Young’s modulus: the ratios converge to a certain number. 

However, the Poisson’s ratios of the truncated octahedron and rhombic dodecahedron (ν12) are quite messy. 

No transverse strain could be detected in the cube models due to the perfectly aligned struts; this resulted in 

Poisson’s ratios of zero.  

Concluding, the number of unit cells that is required for a predictable and stable stiffness is displayed in Table 

4. The displayed quantities are based on the fact that an extra unit cell changes the predicted property by less 

than 1, 5 or 10%. Assuming less than 1% change defines a stable Young’s modulus, the cube requires at least 2 

unit cells, diamond 10, truncated octahedron 6 and rhombic dodecahedron 18. For a stable Poisson’s ratio, 2 

cube unit cells are required and 20 diamond unit cells. It should be taken into account that these numbers are 

for structures with strut length 1.2 mm and strut radius 0.25 mm. 

Figure 7e depicts the Young’s modulus as a function of the radius for each geometry and Figure 7c and d the 

Poisson’s ratio as a function of the radius. An increasing radius resulted in an increasing Young’s modulus for 

each type of unit cell. This was a predictable result, since a higher radius (when keeping strut length constant), 

means stronger material and thus, higher stiffness. When the structure gets bulkier, there is more resistant to 

deformation and the connections between the unit cells are more solid.  
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The Poisson’s ratios actually decreased with an increasing radius. This corresponds to the increasing Young’s 

modulus. A stiffer structure can deform less, leading to smaller transverse strains in relation to the axial strain, 

resulting in a lower Poisson’s ratio. As mentioned before, a material with a Poisson’s ratio of 0.5 is considered 

incompressible. When the ratio is less than 0.5 (e.g. in models with truncated octahedron unit cells and a high 

AD), it means the transverse strain is smaller than half the axial strain, so less transverse deformation is 

allowed.  

3.1.2. Gaussian distribution of the radius 

In the next paragraph, the parametric study is reported that evaluated the influence of the number of unit cells 

and SD of the mean radius on the predicted stiffness of models with a Gaussian distributed strut radius. The 

influence of the number of unit cells on the Young’s modulus in models with a Gaussian distribution of the 

cross-section radius was similar to models with a fixed radius. The plots for the different geometries increased 

or decreased initially to converge to a certain modulus. Due to the irregularities in the microstructure, the 

models with a Gaussian distribution of the cross-section radius were less stiff than the models with a fixed 

radius and as a consequence all data slightly shifted downwards in the plots. When the number of unit cells 

increases, more displacement modes are possible; this leads to a higher SD of the Young’s modulus. In contrast, 

the structures become more stable as the size increases, resulting in a lower SD of the mechanical property. 

These effects seem to compensate each other, because no trend in the SD of the property could be observed.  

The Poisson’s ratios of the models with a Gaussian distribution of the cross-section radius varied negligible with 

the ratios of the models with fixed radius. The SD of the Poisson’s ratio was very small and no trend could be 

observed as an effect of the increment of the number of unit cells. Plots of the mechanical properties against 

the size can be found in the Appendix 8.3.1 (Figure 15 and Figure 16), the corresponding data in Appendix 8.3.2 

(Table 6). 

Increasing the SD of the beam radius resulted in a lower Young’s modulus. When the SD is large, very small and 

large radii can occur in the model. The small radii dominated the Young’s modulus and were not cancelled out 

by the large radii. The increasing SD of the Young’s modulus is due to the rising possibilities of radius 

combinations. When different radii are randomly distributed over the cross-sections of the struts, weaker spots 

with thin struts and stiffer struts with thick struts will be created. At the weaker spots, failure will occur at 

lesser loads, resulting in reduced bulk mechanical properties. The rising possible combinations of the strut 

thicknesses lead to a higher variety of moduli.  
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For each type of unit cell, the Poisson’s ratio slowly increased when increasing the SD of the beam radius. More 

deformation is allowed when the structures are less stiff, leading to higher Poisson’s ratios. Also the SD of the 

Poisson’s ratio increased, caused by the rising possible displacement modes. Plots of the relation between the 

SD and the mechanical properties are shown in Figure 8, the corresponding data can be found in Appendix 8.3 

(Table 7). The error bars indicate the SD of the property on the Y-axis. 

3.2. COMPARISON WITH ANALYTICAL SOLUTIONS 

All analytical models were based on an infinitely large structure, so the analytical solutions were not influenced 

by the number of unit cells and were therefore represented by a line. The comparison is depicted in Figure 7. 

Tables of the datasets can be found in the Appendix 8.3 (Table 6, Table 7, Table 8, Table 9, Table 10, Table 11 

and Table 12). All compared analytical models especially fitted the slender FE models, so models with low 

apparent densities. This can be explained by the fact that the analytical models are based on the most 

simplified situation. When the beams are slender, shear stress and torsion can be ignored and Timoshenko’s 

theory can be applied. The variation between the analytical solution and the FE solution indeed increased as 

the strut radius of the beams increased, while the strut length was kept constant. 

Since the analytical solution for the stiffness of models with cube unit cells was not influenced by the size of the 

model and neither was the FE outcome, the difference between the predicted Young’s moduli according to the 

analytical model and the FE model was fixed. The FEM solution was 2% lower than the analytical result for 

models with cube unit cells and a fixed radius of 0.01 mm and was 60% lower for models with a fixed radius of 

0.25 mm. When the cube models had prismatic struts, the FEM solution was 1% higher than the analytical 

result for fixed edge length 0.01 mm and 21% higher when the fixed edge length was 0.25 mm. The Poisson’s 

ratio in both types of cube models was zero, as expected from the parametric study and as predicted with the 

analytical model. 

The stiffness of the other unit cell geometries was influenced by the size of the model. The difference between 

the FEM solution and the analytical solution of the Young’s modulus in models with truncated octahedron unit 

cells was less than 5% for when the fixed radius was 0.01 mm and the model size was between 7 and 20 unit 

cells. When the size was fixed and the radius varied, the difference between the analytical predicated Young’s 

modulus and the FE result was less than 4% when the radius was 0.1 mm or less. The Poisson’s ratio fluctuated 

slightly, but the difference stayed under 15% for all models.  
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The Young’s modulus in two orthogonal directions was obtained for the FE models with rhombic dodecahedron 

unit cells. In the first direction, the FEM solution of the largest model (12 unit cells) with a strut radius of 0.01 

mm was 7% higher than the analytical solution. In the third direction, the FEM solution of the largest model (12 

unit cells) with a strut radius of 0.01 mm was 2% higher than the analytical solution. The Young’s moduli in both 

directions converged to a value below the analytical solutions in models with a strut radius of 0.25 mm. This 

was also observed for the Poisson’s ratios. When the number of unit cells was fixed and the radius varied, the 

FE prediction of the Young’s moduli differed less than 9% with the analytical solutions for models with a strut 

radius of 0.1 mm or less. 

3.3. COMPARISON WITH EXPERIMENTAL RESULTS 

Although the input parameters for the FE models were the same as for the experimental samples, they resulted 

into different apparent densities for each geometry. The relation between the AD and the Young’s modulus 

was compared within the FEM data and within the experimental data. Therefore, a trendline was plotted 

through the experimental data and the offset of the FEM data from this line was evaluated. Each FE model was 

regenerated ten times. The error bars in the plots indicate the SD of the mechanical property of the Y-axis. 

Cube 

Based on the experimental data from Parthasarathy et al. [18] on cube unit cells with prismatic struts, it was 

shown that the corresponding FEM data predicted the stiffness of the structure better than the analytical 

model of Gent and Thomas [24]. However, the SD of the edge length of the struts was higher in the FE models 

than the SD according to the experimental data. In Figure 9, the Young’s modulus as a function of the AD is 

displayed for four different datasets: Experimental, analytical (with 15% void in the struts), FEM data with the 

maximum SD of the edge length (based on a minimal printable edge of 0.1 mm) and FEM data with the SD as 

reported in the experiments. As seen in Figure 7a, the FE models with fixed edge length were stiffer than the 

corresponding analytical solutions. Since the experimental SD was much smaller than the maximum SD, the 

resulting stiffness of these models is closer to the stiffness of models with fixed edge length, and like the 

models with fixed edge length, stiffer than the analytical solution. Trendlines are plotted through the different 

datasets. The trendline that was used for the analysis of the offset, had the following linear equation:  

                                 

The comparison of the datasets can be found in Table 5.1. The main reason that caused the FE models to be 

stiffer than the experimental samples is the perfectly axial alignment of the cylindrical sections of the beams. In 
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reality, the sections are not axially aligned, which makes the beams weaker. Neither are the unit cells perfectly 

cubic shaped. In addition, the sections are in reality not cylindrical, but spherical due to shape of the particles. 

These differences are visualized in Figure 10.  

Diamond 

The FE models with diamond unit cells and a Gaussian distribution of the strut radius have proven to especially 

predict experimental results for small apparent densities. Figure 11 shows the Young’s modulus for both 

datasets as a function of the AD. The trendline through the experimental data of Heinl et al. had the following 

exponential equation:  

                               

The comparison of both datasets is presented in Table 5.2. Because no analytical model of diamond unit cells 

was available, no comparison could be made between the predication of mechanical properties by FE models 

or analytical models. However, it can be stated that the FE model predicted the Young’s modulus of the 

titanium foam samples presented by Heinl et al. [19] up to 33% accurate for low apparent densities 

(0.11<AD<0.27). 

Rhombic Dodecahedron 

In Figure 12, the different datasets of models with rhombic dodecahedron unit cells are plotted. The following 

trendline through the experimental data of LayerWise was used for the comparison between the FEM data and 

the analytical data based on the model of Babaee et al. [20]:  

                                  

The comparison is listed in Table 5.3. When the AD of the models was smaller than 0.28, the experimental 

results were closer to the FEM results than to the analytical solution. The FE model predicts the Young’s 

modulus of the experimental samples of LayerWise up to 27% accurate for low apparent densities 

(0.15<AD<0.24). The experimental samples with an AD larger than 0.23 were stiffer than the corresponding FE 

models. 

4. DISCUSSION 

In the last paragraph, the focus was on the relation between the AD and the Young’s modulus. And although 

the geometric properties of the FE models were similar to those of the experimental samples, the apparent 

densities were significantly different. The main manufacturing imperfection that was taken into account was 

the variation of the radius of the cross-section of the struts. However, the different sections of the struts with 
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varying radius are modelled as perfectly axial aligned cylindrical segments. In reality, the segments are not 

cylindrical, but spherical, neither are they perfectly aligned. These differences cause the area between attached 

strut segments to be smaller in the specimens. As a result the foams are weaker than the FE models. The fact 

that strut segments are modelled as cylinders with the cross-section radius equal to the radius of the spheres 

will cause the FE models to contain more material, leading to a higher AD and stiffer models. 

Another aspect that can influence the difference in stiffness between the experimental results and FE models is 

the fact that the bulk structure of the FE models is limited to a cubic shape and can only contain complete unit 

cells. The models with rhombic dodecahedron unit cells were compared to data from LayerWise that was from 

cylindrical foam samples. The unit cells in the foam samples with diamond and rhombic dodecahedron cells 

were cut at the boundaries in order to keep constant sample dimensions, while varying microstructure 

parameters. The stiffness predication of models from the rhombic dodecahedron unit cell was the least 

accurate. Therefore, the effects of the sample shape and complete versus cut unit cells on the stiffness of the 

structure should be studied. The weak mechanical response of the FE models with rhombic dodecahedron unit 

cells might also be explained by the fact that some of the dimensions of the models were smaller than the size 

required for a stable stiffness prediction according to the convergence study. However, the corresponding 

experimental samples had similar dimensions, which were also smaller than the required size and should 

therefore have a reduced stiffness as well. Furthermore, the effect of the boundary conditions on the 

mechanical properties should be investigated more thoroughly. As stated by Li et al., displacement boundary 

conditions that only restrain normal displacements may underestimate foam properties [22, 28].  

The results of Parthasarthy et al. showed that the mechanical properties are not only dependant on the AD, but 

also on the cross-section of the struts, its length and the ratio between these two parameters. The fourth 

sample set of Parthasarathy had a larger offset compared to the other three sets, because the models in the 

fourth set had short, thin beams as opposed to long, thick beams. In the analytical model of Gent and Thomas, 

the ratio of edge length to beam length (β) was the input for the Young’s modulus calculation [24]. The 

parameter β is the same in the fourth sample set as in the second sample set, resulting in equal Young’s moduli 

predictions. However, the fact that the beams are short and thin versus long and thick, does result in different 

apparent densities.  

The current study has shown that finite element modeling is a suitable method to predict the stiffness of metal 

foams. However, the prediction was especially accurate for foams with a low AD. In order to improve the 
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prediction, more manufacturing effects have to be taken into account. For SEBM, the variations in beam 

current, scan rate and process temperature can influence the microstructure and mechanical properties of the 

end product [29]. Simone and Gibson found the melting of the particles and subsequently cooling to cause local 

heterogeneities and stress concentrations [18, 30]. These effects result into early failure of the thinner struts 

and therefore, a lower stiffness of the entire structure [18]. However, as mentioned by Parthasarathy et al., 

studies on SEBM show no differentiation between the printing layers, indicating complete melting of the 

powder and metallurgical bonding between the layers [18]. Another effect of the manufacturing process is the 

possible porosity within the struts. In the literature that was used in the current study, this was only observed 

in the samples with cube unit cells and prismatic struts. Determination of the void percentage in Figure 5a 

reached a minimum of 9% and maximum of 25%, depending on the grey value set as void. The porosity was 

assumed to be caused by the square cross-section of the beams.  

With FE modeling, metal foams can be designed with the required mechanical and geometric properties. For 

hip implants, the stiffness optimization will lead to reduced stress shielding and the geometric optimization to 

reduced micro-motions. Koudelka reported that an open-pore structure with mean pore dimensions of 200-

500 μm is susceptible of transport of body fluids and also of ingrowth of new bone tissue [31]. Such pore sizes 

can be realized with 3D printing. Kuiper and Huiskes modelled a nonhomogeneous stem and optimized its 

material properties, based on the interface stress distribution and bone resorption [32]. The optimization 

resulted in a wide ranged Young’s modulus that decreased in the distal area, so moving away from the joint. 

The modulus varied from 16.7 to 100 GPa, with 100 GPa set as upper bound and 20 GPa as modulus of bone. As 

an example, based on the continuation of the trendline through the experimental data of the samples with 

diamond unit cells, a Young’s modulus of 16.7 GPa can be realized by generating titanium foam with diamond 

unit cells and an AD of 0.54. 

5. FUTURE WORK AND RECOMMENDATIONS 

The main recommendation for the FE modeling tool is to include the option to randomly align the beam 

segments. This will most likely improve the accuracy of the stiffness prediction of 3D printed metal foams. 

Future applications of the modeling tool and FEM in general can be within the design process of a wide 

variation of products. By formulating objective functions, mechanical and geometrical properties can be 

optimized (e.g. for an artificial hip such functions can be minimizing interface shear stresses or minimizing 

resorbed bone). Before the metal foams are used for biomedical applications, they should be tested on fatigue 
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behaviour, reaction to a humid environment and influence of temperature on their mechanical properties. In 

addition, the surface response of the surrounding tissue at the foam/tissue interface needs to be tested.  

6. CONCLUSION 

The main conclusion of this study is that finite element modeling can be used for prediction of bulk mechanical 

properties of 3D printed titanium foams. The irregular geometry of the foam’s microstructure can be 

approached in FE models with a Gaussian distribution of the radius or edge length of the cross-section of the 

struts. By assigning a void percentage to the matrix material, porosity within the struts caused by 

manufacturing imperfections can be modelled. It was shown that models generated with a specially developed 

modeling tool approached the mechanical response of foam samples with similar geometrical properties. In 

order to improve the accuracy of the stiffness prediction, especially for foams with higher apparent densities, 

more imperfections in the microstructure as a consequence of the manufacturing technique have to be 

included. Further development is required, but FE modeling has shown to be a promising method to predict the 

bulk mechanical properties of 3D printed metal foams.  
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8. APPENDIX  

8.1. ANALYTICAL MODELS 

Gent and Thomas [24] formulated an analytical model for the stiffness of open cellular solids with cubic unit 

cells and prismatic struts. The parameter β was defined by the ratio of the square side and the strut length, but 

could also be derived through the AD. The cube models generated with the GUI can have cylindrical beams or 

prismatic beams. The model of Gent and Thomas suited both geometries, but for the prismatic beams an even 

simpler version of the model satisfied. This model fitted an infinite tessellated cellular structure. Therefore, β 

was determined for an infinite structure and consequently, the analytical solution of the Young’s modulus was 

as well.  
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Roberts and Garboczi [25] derived an analytical model for the stiffness of the truncated octahedron that also 

fitted an infinite tessellated structure. They referred for their analytical expressions to previously formulated 

models by Zhu et al. (1997) and Warren and Kraynik (1997) [25, 33, 34]. 

Babaee et al. [20] derived analytical expressions for the Young’s modulus and Poisson’s ratio of a single 

rhombic dodecahedron and infinitely tessellated rhombic dodecahedrons. The analytical model was based on 

low apparent densities, where bending of the edges is the dominant deformation mechanism. Because of the 

shape of the unit cell, the structure has orthotropic mechanical properties. The coordinate system that was 

used in the paper of Babaee, was different from our coordinate system (their 1st = our 3rd direction, their 2nd = 

our 2nd and their 3rd = our 1st), but that is already adjusted in the formulas presented. The mechanical 

properties in the second and third direction were equal due to symmetry. Furthermore, the unit cells in 

Babaee’s model were composed of prismatic beams instead of cylindrical beams. Therefore, based on their 

derivations, the analytical expressions for cylindrical beams were derived. The Young’s moduli found in FE 

models with fixed radius should eventually converge to the analytically derived moduli. By increasing the size of 

the FE model, the variation was expected to decrease, because the definition of the strain energy function was 

based on an infinite tessellated structure.  

The starting point of the analytical model was the strain energy held by the struts in the direction of the 

loading. In the first direction, the loading is divided over six strut segments, each containing two struts. In the 

second or third direction, the loading is experienced by a strut segment that contains four struts. Figure 17 

shows the loading in both directions. 

Young’s modulus in 1st direction 
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Young’s modulus in 3rd direction 

To calculate the Young’s modulus in the third direction, again the strain energy in the strut segment was the 

basis.  

                                    
  
 

 

     
   

    
   

 

 

   
   

    
   

 

 

 

  
  
 

 
    

 
                                                                       

      
     

   
     

 

  
 

                                                 

     

   
  

  
     

 
 
    

 

    
   

 

 

   
   

    
   

 

 

 

   

  
   

   
  

  
   

    
   

 

 

 

   

  
         

     

   
 

                                             
   

   
     

     
  
   

 

     
   

 

 

   
  
 

     
   

 

 

 

                                                                        

   

   
   

     
 

     
   

 

 

 

      
     

 

      
 
 

 

 

 
   

 

     
 

 
   

    
 

   
  
   

     
   

      
     

   

    
   

  
 

 
    

 
                   



25 
 

  

  
 

       

       
 

                       
  
  

 

      
     

   

   
 
    

   

 
  

  
 

        

        
          

8.2. CORRECTION APPARENT DENSITY IN FE MODELS 

In the FEM data, the AD was overestimated because intersecting beam-ends were double-counted. This 

needed to be corrected when comparing the FEM data of models with a Gaussian distributed strut radius to 

experimental data. In this comparison, the relation between the Young’s modulus and the AD was analyzed. 

The correct AD was required to properly compare these two relations. Therefore, FE models of the 

intersections were generated and the double-counted volume was obtained. Different models were made of 

different type of intersections for each geometry. First the foam volume according to the FEM data (Vfoam FEM) 

was attained by dividing the volume of the total structure (X·Y·Z) by the AD according to the FEM data (AD 

FEM). The models of the intersections told us the double-counted volume (DC Vjoint). Hand calculations or FE 

modeling was used to determine the number of joints per geometry and per type of intersection (Jn, with n the 

number of struts intersecting). Multiplication of the number of joints by the double-counted volume per joint 

resulted in the total double-counted volume (DC Vtot). Wherefrom the correct volume of the foam (Vfoam Real) 

could be calculated, leading to the real apparent density (AD Real). 
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Diamond & Rhombic Dodecahedron 

For models with diamond and rhombic dodecahedron unit cells, the number of intersections was determined 

through FE models. Models were generated with only one 2-node element per strut. Within the part a set was 

created which included all nodes. The following command computed the number of nodes which was shared 

by n elements. 

x=mdb.models['X_model'].rootAssembly.instances['X_PART-FOAM-1'].sets['All'].nodes 

nodes=range(len(x)) 

node_data= {} 

l=[0]*len(x) 

for i in nodes: 

 l[i]=len(x[i].getElements()) 

 if l[i]==n: 

  node_data[x[i].label]=x[i].getElements() 

len(node_data.keys() 

8.3. ADDITIONAL FIGURES AND TABLES 

See Figures captions and Tables captions. 
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FIGURE CAPTIONS 

Figure 1. Component generation layer by layer with SEBM, adopted from Heinl et al. [19] 

Figure 2. The developed graphical user interface (three different tabs) to generate metal foams in Abaqus 

Figure 3. The geometries of the different unit cells 

Figure 4. Flow chart of the method 

Figure 5. SEM images of the cross-section of different struts: (a) prismatic strut of a cubic unit cell, adopted 

from Parthasarathy et al. [18], (b) cylindrical strut of a diamond unit cell, adopted from Heinl et al. [19] and (c) 

cylindrical strut of a rhombic dodecahedron unit cell, taken with the scanning electron microscope at TU Delft 

Figure 6. Gaussian distribution of the cross-section size of the strut 

Figure 7. Comparison FEM data with analytical data: Young’s modulus as a function of the number of unit cells 

in models with strut radius 0.25 mm for geometries (a) cube, (b) diamond, truncated octahedron and rhombic 

dodecahedron; Poisson’s ratio as a function of the strut radius in models with 10 unit cells for geometries (c) 

cube and truncated octahedron, (d) diamond and rhombic dodecahedron; Young’s modulus as a function of the 

strut radius in models with 10 unit cells for (e) all four geometries;  

Figure 8. Young’s modulus as a function of the standard deviation of the mean radius in models with 10 unit 

cells and mean strut radius 0.25 mm for geometries (a) cube and rhombic dodecahedron, (b) diamond and 

truncated octahedron (n=10); Poisson’s ratio as a function of the standard deviation of the mean radius in 

models with 10 unit cells and mean strut radius 0.25 mm for geometries (c) cube and diamond, (d) truncated 

octahedron and rhombic dodecahedron (n=10) 

Figure 9. Comparison Young’s modulus as a function of the apparent density between cubic models with 

prismatic beams: Parthasarathy’s data (Experimental), analytical data based on Gent and Thomas’ model with 

15% fixed porosity (Analytical) and FEM data of models with 10-20% porosity within the beams (SD 0.025) and 

a Gaussian distributed edge length with two different standard deviations, maximum SD based on minimum 

printable edge length 0.1 mm (FEM SD Max.) and SD as reported by Parthasarathy (FEM SD Exp.) 

Figure 10. Axial alignment beam segments, (a) FEM and (b) Additive manufactured 

Figure 11. Comparison Young’s modulus as a function of the apparent density between Heinl’s data 

(Experimental) and FEM data (FEM) of diamond unit cells with a Gaussian distribution of the cross-section 

radius (ratio SD to mean radius is 1:6, based on the measured ratio in Figure 5c) 
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Figure 12. Comparison Young’s modulus as a function of the apparent density between data from LayerWise 

(Experimental), analytical data based on Babaee’s model (Analytical) and FEM data (FEM) of rhombic 

dodecahedron unit cells with a Gaussian distribution of the cross-section radius (SD based on the measured 

ratio between SD and mean radius in Figure 5c) 

APPENDIX 8.3.1. 

Figure 13. Comparison FEM data with analytical data: Young’s modulus as a function of the number of unit cells 

in models with strut radius 0.01 mm for (a) cube, (b) truncated octahedron and rhombic dodecahedron 

Figure 14. Poisson's ratio as a function of the number of unit cells in models with fixed radius/edge 0.25 mm for 

(a) cube and truncated octahedron, (b) diamond and rhombic dodecahedron 

Figure 15. Young’s modulus as a function of the number of unit cells in models with a Gaussian distribution of 

the radius, mean radius 0.25 mm with SD 0.02 mm for (a) cube, (b) diamond, truncated octahedron and 

rhombic dodecahedron (n=10) 

Figure 16. Poisson's ratio as a function of the number of unit cells in models with a Gaussian distribution of the 

radius, mean radius 0.25 mm with SD 0.02 mm for (a) cube, (b) diamond, (c) truncated octahedron and (d) 

rhombic dodecahedron (n=10) 

Figure 17. Loading of rhombic dodecahedron in first (a) and second direction (b) with adjusted coordinate 

system to our coordinate system, adopted from Babaee et al. [20] 
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TABLE CAPTIONS 

Table 1. Standard input parameters FEM 

Table 2. Input parameters and experimental results on 3D printed Ti-6Al-4V foams, (a) cube samples from 

Parthasarathy et al. (2010) [18], (b) diamond samples from Heinl et al. (2008) [19] and (c) rhombic 

dodecahedron samples from LayerWise 

Table 3. Comparison apparent density according to FEM and according to hand calculations 

Table 4. Number of unit cells required for a stable, predictable stiffness; Based on the assumption that the 

structure is considered stable when an extra unit cell (UC+1) changes the predicted property by less than 1, 5 

or 10% 

Table 5. Comparison (c) experimental results from Table 2 with FEM data (a) and analytical data (b), 1) cube, 2) 

diamond, 3) rhombic dodecahedron 

APPENDIX 8.3.2. 

Table 6. Young’s modulus as a function of the number of unit cells in models with a Gaussian distribution of the 

radius, mean radius 0.25 mm and SD 0.02 mm, (a) cube, (b) diamond, (c) truncated octahedron and (d) rhombic 

dodecahedron, standard deviation in parentheses (n=10) 

Table 7. Young’s modulus as a function of the standard deviation of the mean radius in models with 10 unit 

cells and mean strut radius 0.25 mm, (a) cube, (b) diamond, (c) truncated octahedron and (d) rhombic 

dodecahedron, standard deviation in parentheses (n=10) 

Table 8. Comparison FEM data with analytical model of Gent and Thomas [24] for cube unit cells with prismatic 

struts, (a) increasing unit cells with fixed edge length 0.01 mm, (b) increasing unit cells with fixed edge length 

0.25 mm, (c) increasing edge length for models with fixed size 10 unit cells 

Table 9. Comparison FEM data with analytical model of Gent and Thomas [24] for cube unit cells with 

cylindrical struts, (a) increasing unit cells with fixed radius 0.01 mm, (b) increasing unit cells with fixed radius 

0.25 mm, (c) increasing radius for models with fixed size 10 unit cells 

Table 10. FEM data on models with diamond unit cells, (a) increasing unit cells with fixed radius 0.01 mm, (b) 

increasing unit cells with fixed radius 0.25 mm, (c) increasing radius for models with fixed size 10 unit cells 

Table 11. Comparison FEM data with analytical model of Roberts and Garboczi [25] for truncated octahedron 

unit cells, (a) increasing unit cells with fixed radius 0.01 mm, (b) increasing unit cells with fixed radius 0.25 mm, 

(c) increasing radius for models with fixed size 10 unit cells 
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Table 12. Comparison FEM data with analytical model of Babaee et al. [20] for rhombic dodecahedron unit 

cells, (a) increasing unit cells with fixed radius 0.01 mm and compression in direction [1,0,0], (b) increasing unit 

cells with fixed radius 0.25 mm and compression in direction [1,0,0], (c) increasing unit cells with fixed radius 

0.01 mm and compression in direction [0,0,1], (d) increasing unit cells with fixed radius 0.25 mm and 

compression in direction [0,0,1], (e) increasing radius for models with fixed size 10 unit cells and compression in 

direction [1,0,0], (f) increasing radius for models with fixed size 10 unit cells and compression in direction 

[0,0,1] 
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Figure 2 
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Figure 9 
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Figure 10 
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Figure 11 

 

 

 

 

 

 

 

 

 

  

0,5 

1,0 

1,5 

2,0 

2,5 

3,0 

3,5 

0,05 0,10 0,15 0,20 0,25 0,30 

E 
(G

P
a)

 

AD 

Diamond 

FEM (n=10) 

Experimental (n=3) 

Trendline FEM 

Trendline Experimental 



43 
 

Figure 12 
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Figure 17 
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Table 1 

Parameter Fixed radius Gaussian distributed radius 

Young’s modulus matrix material E (GPa) 110 110 

Poisson’s ratio matrix material ν 0.3 0.3 

Beam length L (mm) 1.2 1.2 

Boundary condition, direction compression [1,0,0] [1,0,0] 

No. of divisions  
elements per beam 

5  

No. of edge divisions 
70 μm is the printing layer thickness in SEBM [19] 

 L / 70 μm 

Filter SD  
mean radius ± filter · SD is allowed 

 2 

No. of sections  
variations Gaussian radius 

 50 
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Table 2 

a) Experimental data cube 

Set no. Unit cells Pore size (μm) 
Experimental 
strut size (μm) 

AD E (GPa) SD E (GPa) 

1 7 1020 (±45) 941 (±17.1) 0.49 (±0.69) 2.92 ±0.17 

2 6 1424 (±42.1) 905 (±16.9) 0.40 (±0.81) 2.68 ±0.12 

3 5 1960 (±49.4) 882 (±13.2) 0.30 (±0.63) 2.13 ±0.21 

4 10 765 (±29.7) 466 (±39.7) 0.50 (±1.00) 0.57 ±0.05 

 

b) Experimental data diamond 

Length (mm) Radius (mm) AD Dynamic E (GPa) Static E (GPa) SD E (GPa) 

0.9 0.21 0.29 3.0 2.9 ±0.06 

0.9 0.24 0.36 5.1 5.0 ±0.02 

0.9 0.255 0.40 6.5 6.4 ±0.09 

1.2 0.215 0.18 1.0 1.0 ±0.02 

1.2 0.255 0.23 1.8 1.8 ±0.08 

1.2 0.265 0.25 2.3 2.3 ±0.03 

1.5 0.22 0.13 0.4 0.4 ±0.01 

1.5 0.255 0.16 0.8 0.8 ±0.02 

1.5 0.27 0.18 0.9 0.9 ±0.03 

 

c) Experimental data rhombic dodecahedron 

Set no. Length (mm) Radius (mm) AD E (GPa) SD E (GPa) 

1 0.749 0.067 0.16 0.549 ±0.076 

2 0.744 0.095 0.30 2.619 ±0.064 

3 0.805 0.095 0.22 1.397 ±0.115 

4 0.873 0.129 0.33 3.488 ±0.137 
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Table 3 

 
Cube Truncated Octahedron 

Radius (mm) FEM AD Hand calculation AD Var. AD FEM AD Hand calculation AD Var. AD 

0.005 0.0001980 0.0001980 0.0% 0.0000607 0.0000607 0.0% 

0.01 0.0007919 0.0007919 0.0% 0.0002430 0.0002430 0.0% 

0.025 0.0049496 0.0049496 0.0% 0.0015186 0.0015186 0.0% 

0.05 0.0197986 0.0197986 0.0% 0.0060743 0.0060743 0.0% 

0.1 0.0791943 0.0791943 0.0% 0.0242970 0.0242970 0.0% 

0.25 0.4949645 0.4949645 0.0% 0.1518564 0.1518564 0.0% 

 

Table 4 

Difference with UC+1 
Required unit cells for stable  
Young’s modulus 

Required unit cells for stable  
Poisson’s ratio 

Shape < 1% < 5% < 10% < 1% < 5% < 10% 

Cube 2 2 2 2 2 2 

Diamond 10 4 3 20 9 7 

Truncated Octahedron 6 2 2 - 7 2 

Rhombic Dodecahedron 18 16 10 - 16 14 
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Table 5 

1a) FEM data cube (SD edge maximum, 10-20 % Vp) 

Set no. Unit cells L (mm) 
Edge 
(mm) 

SD Edge 
(mm) 

Min. Edge  
(mm) 

Max. Edge 
(mm) 

AD E (GPa) 

1 7x7x7 2.095 0.941 0.42 0.1 1.78 0.71 9.87 (±2.01) 

2 6x6x6 2.480 0.905 0.40 0.1 1.71 0.44 4.83 (±1.51) 

3 5x5x5 3.018 0.882 0.39 0.1 1.66 0.36 3.47 (±1.02) 

4 10x10x10 1.278 0.466 0.18 0.1 0.83 0.45 8.27 (±2.09) 

 

1b) Analytical data cube (15% Vp) 

Set no. Unit cells L (mm) Fixed Edge (mm) AD Analytical E (GPa) 

1 7x7x7 2.095 0.941 0.79 12.34 

2 6x6x6 2.480 0.905 0.54 8.65 

3 5x5x5 3.018 0.882 0.37 5.86 

4 10x10x10 1.278 0.466 0.48 8.64 

 

1c) Comparison datasets cube 

AD FEM FEM E (GPa) SD E (GPa) 
Trendline  
Experimental  
E (GPa) 

Offset  
FEM (%) 

0.36 3.47 ±1.02 1.67 107% 

0.44 4.83 ±1.51 2.04 137% 

0.45 8.27 ±2.09 2.06 300% 

0.71 9.87 ±2.01 3.30 199% 

 

AD Analytical 
Analytical  
E (GPa) 

Trendline  
Experimental  
E (GPa) 

Offset  
Analytical (%) 

0.37 5.86 1.70 244% 

0.48 8.64 2.23 287% 

0.54 8.65 2.51 244% 

0.79 12.34 3.65 238% 
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2a) FEM data diamond (ratio SD to mean radius 1:6) 

Set no. Unit cells Length (mm) Radius (mm) 
SD r 
(mm) 

Min. r 
(mm) 

Max. r 
(mm) 

AD E (GPa) 

1.1 31x6x7 0.9 0.21 0.035 0.14 0.28 0.19 1.08 (±0.07) 

1.2 31x6x7 0.9 0.24 0.040 0.16 0.32 0.24 1.73 (±0.16) 

1.3 31x6x7 0.9 0.255 0.043 0.17 0.34 0.26 2.01 (±0.09) 

2.1 23x4x6 1.2 0.215 0.036 0.14 0.29 0.12 0.40 (±0.04) 

2.2 23x4x6 1.2 0.255 0.043 0.17 0.34 0.16 0.77 (±0.06) 

2.3 23x4x6 1.2 0.265 0.044 0.18 0.35 0.17 0.84 (±0.08) 

3.1 19x4x5 1.5 0.22 0.037 0.15 0.29 0.08 0.20 (±0.03) 

3.2 19x4x5 1.5 0.255 0.043 0.17 0.34 0.11 0.34 (±0.03) 

3.3 19x4x5 1.5 0.27 0.045 0.18 0.36 0.12 0.41 (±0.02) 

 

2c) Comparison datasets diamond  

AD FEM E (GPa) 
Trendline Experimental 
E (GPa) 

Offset 

0.08 0.20 0.12 62% 

0.11 0.34 0.25 39% 

0.12 0.40 0.30 32% 

0.12 0.41 0.31 33% 

0.16 0.77 0.74 4% 

0.17 0.84 0.80 4% 

0.19 1.08 1.08 1% 

0.24 1.73 2.07 -16% 

0.26 2.01 2.59 -23% 
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3a) FEM data rhombic dodecahedron (ratio SD to mean radius 1:6) 

Set no. Unit cells L (mm) Radius (mm) 
SD r  
(mm) 

Min. r 
(mm) 

Max. r 
(mm) 

AD FEM E (GPa) 

1 12x8x10 0.749 0.067 0.012 0.044 0.090 0.08 0.16 (±0.01) 

2 12x8x10 0.744 0.095 0.016 0.063 0.128 0.14 0.59 (±0.05) 

3 12x6x10 0.805 0.095 0.016 0.063 0.128 0.13 0.45 (±0.05) 

4 10x6x10 0.873 0.129 0.022 0.085 0.173 0.20 1.00 (±0.10) 

5 12x6x10 0.805 0.129 0.022 0.085 0.173 0.22 1.36 (±0.11) 

6 10x6x10 0.873 0.145 0.025 0.095 0.195 0.24 1.46 (±0.16) 

 

3b) Analytical data rhombic dodecahedron 

Set no. Unit cells L (mm) Fixed radius (mm) AD Analytical E (GPa) 

1 15x15x15 0.749 0.067 0.071 0.182 

2 15x15x15 0.744 0.095 0.145 0.720 

3 15x15x15 0.805 0.095 0.124 0.531 

4 15x15x15 0.873 0.129 0.194 1.238 

5 15x15x15 0.805 0.129 0.229 1.678 

6 15x15x15 0.873 0.145 0.246 1.918 

 

3c) Comparison datasets rhombic dodecahedron 

AD FEM FEM E (GPa) SD E (GPa) 
Trendline  
Experimental  
E (GPa) 

Offset  
FEM (%) 

0.08 0.16 ±0.01 0.09 80% 

0.13 0.45 ±0.05 0.32 40% 

0.14 0.59 ±0.05 0.43 37% 

0.20 1.00 ±0.10 0.93 7% 

0.22 1.36 ±0.11 1.32 3% 

0.24 1.46 ±0.16 1.52 -4% 

 

AD Analytical 
Analytical  
E (GPa) 

Trendline  
Experimental  
E (GPa) 

Offset  
Analytical (%) 

0.07 0.18 0.07 145% 

0.12 0.53 0.30 78% 

0.15 0.72 0.44 63% 

0.19 1.24 0.92 34% 

0.23 1.68 1.39 21% 

0.25 1.92 1.66 15% 
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APPENDIX 8.3.2. Additional Tables 

Table 6 

a) Cube 

Unitcells E (GPa) ν12 ν13 

2 14.8 (±0.41) 0.00070 (±5.4E-7) 0.00063 (±4.0E-7) 

5 14.9 (±0.28) 0.00046 (±3.6E-7) 0.00057 (±6.1E-7) 

10 14.8 (±0.16) 0.00023 (±1.7E-7) 0.00031 (±1.9E-7) 

 

b) Diamond 

Unitcells E (GPa) ν12 ν13 

2 0.569 (±0.02) 0.473 (±1.0E-5) 0.462 (±8.3E-6) 

5 0.728 (±0.02) 0.453 (±2.6 E-6) 0.455 (±3.7E-6) 

10 0.800 (±0.03) 0.446 (±1.8 E-6) 0.446 (±1.9E-6) 

 

c) Truncated Octahedron 

Unitcells E (GPa) ν12 ν13 

2 0.989 (±0.03) 0.444 (±2.3E-06) 0.445 (±6.9E-06) 

5 0.953 (±0.02) 0.425 (±2.1E-06) 0.424 (±2.0E-06) 

10 0.890 (±0.03) 0.421 (±1.8E-06) 0.419 (±2.0E-06) 

 

d) Rhombic Dodecahedron 

Unitcells E (GPa) ν12 ν13 

2 2.14 (±0.08) 0.226 (±2.8E-06) 1.15 (±3.5E-06) 

5 2.53 (±0.10) 0.044 (±1.1E-06) 0.79 (±6.3E-06) 

10 3.08 (±0.19) 0.022 (±8.2E-07) 0.84 (±6.5E-06) 
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Table 7 

a) Cube 

SD strut  
radius (mm) 

Min. radius  
(mm) 

Max. radius 
(mm) 

E (GPa) ν12 ν13 

0.005 0.24 0.26 15.0 (±0.07) 4.4E-05 (±2.5E-05) 5.6E-05 (±3.5E-05) 

0.015 0.22 0.28 14.9 (±0.23) 2.3E-04 (±1.5E-04) 2.1E-04 (±2.0E-04) 

0.025 0.20 0.30 14.4 (±0.53) 1.8E-04 (±1.7E-04) 2.5E-04 (±1.2E-04) 

0.035 0.18 0.32 14.3 (±0.66) 4.2E-04 (±4.1E-04) 9.3E-04 (±4.9E-04) 

0.045 0.16 0.34 13.9 (±0.48) 5.7E-04 (±4.2E-04) 5.7E-04 (±2.0E-04) 

0.055 0.14 0.36 13.5 (±0.87) 6.5E-04 (±3.2E-04) 9.9E-04 (±7.9E-04) 

0.065 0.12 0.38 12.8 (±0.90) 8.2E-04 (±5.9E-04) 1.4E-03 (±1.3E-03) 

0.075 0.10 0.40 12.4 (±0.91) 1.0E-03 (±6.1E-04) 7.9E-04 (±6.3E-04) 

 

b) Diamond 

SD strut  
radius (mm) 

Min. radius 
(mm) 

Max. radius 
(mm) 

E (GPa) ν12 ν13 

0.005 0.24 0.26 0.813 (±7.1E-03) 0.445 (±3.7E-04) 0.446 (±4.0E-04) 

0.015 0.22 0.28 0.808 (±2.0E-02) 0.446 (±1.9E-03) 0.445 (±1.1E-03) 

0.025 0.20 0.30 0.779 (±4.9E-02) 0.448 (±4.2E-03) 0.447 (±3.3E-03)  

0.035 0.18 0.32 0.722 (±4.9E-02) 0.448 (±3.4E-03) 0.450 (±4.3E-03) 

0.045 0.16 0.34 0.673 (±5.3E-02) 0.455 (±4.2E-03) 0.451 (±6.9E-03) 

0.055 0.14 0.36 0.613 (±7.4E-02) 0.456 (±5.2E-03) 0.455 (±6.1E-03) 

0.065 0.12 0.38 0.520 (±3.8E-02) 0.457 (±5.1E-03) 0.462 (±3.7E-03) 

0.075 0.10 0.40 0.462 (±7.8E-02) 0.468 (±1.3E-02) 0.462 (±1.2E-02) 

 

c) Truncated Octahedron 

SD strut  
radius (mm) 

Min. radius 
(mm) 

Max. radius 
(mm) 

E (GPa) ν12 ν13 

0.005 0.24 0.26 0.418 (±6.4E-03) 0.418 (±1.0E-03) 0.417 (±4.2E-04) 

0.015 0.22 0.28 0.419 (±2.5E-02) 0.419 (±1.6E-03) 0.418 (±1.3E-03) 

0.025 0.20 0.30 0.421 (±3.6E-02) 0.421 (±2.7E-03) 0.420 (±2.3E-03) 

0.035 0.18 0.32 0.423 (±3.6E-02) 0.423 (±2.7E-03) 0.422 (±3.1E-03) 

0.045 0.16 0.34 0.423 (±5.8E-02) 0.423 (±3.9E-03) 0.423 (±3.5E-03) 

0.055 0.14 0.36 0.431 (±5.0E-02) 0.431 (±4.3E-03) 0.431 (±5.2E-03) 

0.065 0.12 0.38 0.431 (±5.1E-02) 0.431 (±3.9E-03) 0.433 (±6.5E-03) 

0.075 0.10 0.40 0.436 (±5.9E-02) 0.436 (±5.2E-03) 0.437 (±7.1E-03) 
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d) Rhombic Dodecahedron 

SD strut  
radius (mm) 

Min. radius 
(mm) 

Max. radius 
(mm) 

E (GPa) ν12 ν13 

0.005 0.24 0.26 3.23 (±0.03) 0.022 (±2.2E-04) 0.833 (±7.3E-04) 

0.015 0.22 0.28 3.17 (±0.06) 0.022 (±6.7E-04) 0.835 (±2.2E-03) 

0.025 0.20 0.30 3.07 (±0.13) 0.021 (±8.7E-04) 0.841 (±3.9E-03) 

0.035 0.18 0.32 3.03 (±0.13) 0.022 (±1.0E-03) 0.840 (±6.1E-03) 

0.045 0.16 0.34 2.74 (±0.23) 0.021 (±2.5E-03) 0.853 (±8.8E-03) 

0.055 0.14 0.36 2.40 (±0.36) 0.022 (±3.5E-03) 0.867 (±1.5E-02) 

0.065 0.12 0.38 2.19 (±0.31) 0.023 (±4.2E-03) 0.877 (±1.4E-02) 

0.075 0.10 0.40 2.24 (±0.40) 0.020 (±3.0E-03) 0.877 (±1.9E-02) 
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Table 8 

a) 

Edge (mm) 0.01   FEM Gent & Thomas   

Unit cells AD E (MPa) E (MPa) Variation 

2 0.000469 7.64 7.58 1% 

3 0.000370 7.64 7.58 1% 

4 0.000326 7.64 7.58 1% 

5 0.000300 7.64 7.58 1% 

6 0.000284 7.64 7.58 1% 

7 0.000272 7.64 7.58 1% 

8 0.000264 7.64 7.58 1% 

9 0.000257 7.64 7.58 1% 

10 0.000252 7.64 7.58 1% 

 

b) 

Edge (mm) 0.25   FEM Gent & Thomas 
 

Unit cells AD E (GPa) E (GPa) Variation 

2 0.293 4.77 3.95 21% 

3 0.231 4.77 3.95 21% 

4 0.203 4.77 3.95 21% 

5 0.188 4.77 3.95 21% 

6 0.177 4.77 3.95 21% 

7 0.170 4.77 3.95 21% 

8 0.165 4.77 3.95 21% 

9 0.161 4.77 3.95 21% 

10 0.158 4.77 3.95 21% 

 

c)  

Unit cells 10 FEM Gent & Thomas Variation 

Edge (mm) E (MPa) E (MPa) E 

0.005 1.91 1.90 0% 

0.01 7.64 7.58 1% 

0.025 47.74 46.77 2% 

0.05 190.97 183.33 4% 

0.1 763.89 705.13 8% 

0.25 4774.31 3951.15 21% 
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Table 9 

a) 

Radius (mm) 0.01    FEM Gent & Thomas   

Unit cells AD FEM AD INF. E (MPa) ν Beta  E (MPa) Variation 

2 0.001473 0.000654 24.00 0.0 0.015062 24.58 -2.4% 

3 0.001164 0.000654 24.00 0.0 0.015062 24.58 -2.4% 

4 0.001023 0.000654 24.00 0.0 0.015062 24.58 -2.4% 

5 0.000942 0.000654 24.00 0.0 0.015062 24.58 -2.4% 

6 0.000891 0.000654 24.00 0.0 0.015062 24.58 -2.4% 

7 0.000855 0.000654 24.00 0.0 0.015062 24.58 -2.4% 

8 0.000828 0.000654 24.00 0.0 0.015062 24.58 -2.4% 

9 0.000808 0.000654 24.00 0.0 0.015062 24.58 -2.4% 

10 0.000792 0.000654 24.00 0.0 0.015062 24.58 -2.4% 

 
b) 

Radius (mm) 0.25    FEM Gent & Thomas 
 

Unit cells AD FEM AD INF. E (GPa) ν Beta  E (GPa) Variation 

2 0.9204 0.4091 15.00 0.0 0.782845 37.81 -60.3% 

3 0.7272 0.4091 15.00 0.0 0.782845 37.81 -60.3% 

4 0.6392 0.4091 15.00 0.0 0.782845 37.81 -60.3% 

5 0.5890 0.4091 15.00 0.0 0.782845 37.81 -60.3% 

6 0.5568 0.4091 15.00 0.0 0.782845 37.81 -60.3% 

7 0.5343 0.4091 15.00 0.0 0.782845 37.81 -60.3% 

8 0.5177 0.4091 15.00 0.0 0.782845 37.81 -60.3% 

9 0.5050 0.4091 15.00 0.0 0.782845 37.81 -60.3% 

10 0.4950 0.4091 15.00 0.0 0.782845 37.81 -60.3% 
 

c) 

Unit cells 10x10x10  
 

FEM Gent & Thomas Variation 

Radius (mm) AD FEM AD INF. E (MPa) ν Beta E (MPa) E 

0.005 0.0001980 0.0001636 6 0.0 0.007467 6.09 -1.5% 

0.01 0.0007919 0.0006545 24 0.0 0.015062 24.58 -2.4% 

0.025 0.0049496 0.0040906 150 0.0 0.038850 159.82 -6.1% 

0.05 0.0197986 0.0163625 600 0.0 0.082006 683.68 -12.2% 

0.1 0.0791943 0.0654498 2400 0.0 0.184896 3173.71 -24.4% 

0.25 0.4949645 0.4090615 14999 0.0 0.782764 37805.95 -60.3% 
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Table 10 

a) 

Radius (mm) 0.01 FEM 

Unit cells E (kPa) v12 v13 

2   2.64 0.52 0.52 

3   2.76 0.51 0.50 

4   2.85 0.51 0.51 

5   2.91 0.51 0.50 

6   2.95 0.51 0.51 

7   2.99 0.51 0.51 

8   3.02 0.51 0.51 

9   3.04 0.51 0.51 

10   3.06 0.51 0.51 

11   3.08 0.51 0.51 

12   3.09 0.51 0.51 

13   3.11 0.51 0.50 

14   3.12 0.51 0.51 

15   3.13 0.51 0.51 

16   2.08 0.52 0.52 

17   2.44 0.52 0.50 

20   3.15 0.51 0.51 

 

b) 

Radius (mm) 0.25 FEM 

Unit cells E (GPa) v12 v13 

2   0.59 0.31 0.31 

3   0.68 0.36 0.36 

4   0.73 0.38 0.39 

5   0.76 0.44 0.40 

6   0.78 0.40 0.40 

7   0.79 0.45 0.43 

8   0.80 0.44 0.43 

9   0.81 0.42 0.43 

10   0.82 0.43 0.42 

11   0.83 0.42 0.43 

12   0.83 0.44 0.44 

13   0.83 0.44 0.43 

14   0.84 0.44 0.43 

15   0.84 0.43 0.43 

16   0.84 0.44 0.43 

17   0.85 0.43 0.43 

20   0.85 0.44 0.43 

c) 

Unit cells 10x10x10 FEM 

Radius (mm) E (MPa) v12 v13 

0.005   0.00 0.50 0.48 

0.01 
 

0.00 0.50 0.48 

0.025 
 

0.12 0.50 0.48 

0.05 
 

1.85 0.49 0.48 

0.1 
 

28.22 0.48 0.47 

0.25   819.93 0.43 0.42 
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Table 11 

a) 

Radius (mm) 0.01    FEM Roberts & Garboczi Variation 

Unit cells AD FEM AD INF. E (kPa) ν12 v13 E (kPa) v12/v13 E  v12  v13 

2 0.000289 0.000231 4.07 0.492 0.507 3.54 0.50 15% -2% 2% 

3 0.000270 0.000231 3.89 0.464 0.499 3.54 0.50 10% -7% 0% 

4 0.000260 0.000231 3.80 0.504 0.495 3.54 0.50 7% 1% -1% 

5 0.000255 0.000231 3.75 0.500 0.498 3.54 0.50 6% 0% 0% 

6 0.000251 0.000231 3.72 0.516 0.488 3.54 0.50 5% 3% -2% 

7 0.000248 0.000231 3.70 0.491 0.495 3.54 0.50 4% -2% -1% 

8 0.000246 0.000231 3.68 0.511 0.495 3.54 0.50 4% 2% -1% 

9 0.000244 0.000231 3.67 0.513 0.497 3.54 0.50 3% 3% -1% 

10 0.000243 0.000231 3.66 0.504 0.495 3.54 0.50 3% 1% -1% 

11 0.000242 0.000231 3.65 0.498 0.509 3.54 0.50 3% 0% 2% 

12 0.000241 0.000231 3.65 0.503 0.503 3.54 0.50 3% 1% 1% 

13 0.000240 0.000231 3.64 0.498 0.506 3.54 0.50 3% 0% 1% 

14 0.000240 0.000231 3.63 0.505 0.509 3.54 0.50 3% 1% 2% 

17 0.000238 0.000231 3.62 0.491 0.503 3.54 0.50 2% -2% 1% 

20 0.000237 0.000231 3.62 0.492 0.506 3.54 0.50 2% -2% 1% 

 

b) 

Radius (mm) 0.25    FEM  Roberts & Garboczi Variation 

Unit cells AD FEM AD INF. E (GPa) v12 v13 E (GPa) v12/v13 E  v12  v13 

2 0.1808 0.1446 1.02 0.42 0.41 1.22 0.38 -17% 10% 7% 

3 0.1687 0.1446 0.98 0.39 0.41 1.22 0.38 -20% 0% 6% 

4 0.1627 0.1446 0.97 0.42 0.41 1.22 0.38 -21% 8% 6% 

5 0.1591 0.1446 0.96 0.41 0.42 1.22 0.38 -22% 7% 8% 

6 0.1567 0.1446 0.95 0.44 0.40 1.22 0.38 -22% 14% 4% 

7 0.1550 0.1446 0.95 0.42 0.41 1.22 0.38 -23% 8% 6% 

8 0.1537 0.1446 0.94 0.43 0.41 1.22 0.38 -23% 11% 6% 

9 0.1527 0.1446 0.94 0.43 0.41 1.22 0.38 -23% 12% 7% 

10 0.1519 0.1446 0.94 0.42 0.41 1.22 0.38 -23% 8% 6% 

11 0.1512 0.1446 0.94 0.41 0.43 1.22 0.38 -23% 8% 11% 

12 0.1507 0.1446 0.94 0.42 0.42 1.22 0.38 -23% 8% 8% 

13 0.1502 0.1446 0.93 0.41 0.42 1.22 0.38 -24% 8% 10% 

14 0.1498 0.1446 0.93 0.42 0.43 1.22 0.38 -24% 10% 11% 

17 0.1489 0.1446 0.93 0.41 0.42 1.22 0.38 -24% 6% 9% 

20 0.1482 0.1446 0.93 0.41 0.42 1.22 0.38 -24% 6% 10% 

 

  



60 
 

c) 

Unit cells 10    FEM Roberts & Garboczi Variation 

Radius (mm) AD FEM AD INF. E (MPa) v12 v13 E (MPa) v12/v13 E  v12 v13 

0.005 0.000061 0.000058 0.0002 0.50 0.49 0.0002 0.50 4% 1% -1% 

0.01 0.000243 0.000231 0.0037 0.50 0.49 0.0035 0.50 3% 1% -1% 

0.025 0.001519 0.001446 0.1424 0.50 0.49 0.1379 0.50 3% 1% -1% 

0.05 0.006074 0.005785 2.2420 0.50 0.49 2.1973 0.49 2% 1% -1% 

0.1 0.024297 0.023140 33.7658 0.48 0.47 34.6196 0.48 -3% 1% -1% 

0.25 0.151856 0.144625 938.7419 0.42 0.41 1221.50 0.38 -23% 8% 6% 
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Table 12 

a) 

Radius (mm) 0.01   FEM (1st direction) Babaee (2nd /3rd dir.) Variation 

Unit cells AD E (kPa) v12 v13 E (kPa) v12 v13 E  v12  v13 

2 0.001204 10.25 0.13 0.86 12.98 0 1 -21% - -14% 

3 0.000724 8.78 0.10 1.05 12.98 0 1 -32% - 5% 

4 0.000903 13.77 0.05 0.89 12.98 0 1 6% - -11% 

5 0.000692 11.49 0.09 0.82 12.98 0 1 -11% - -18% 

6 0.000795 14.11 0.07 0.95 12.98 0 1 9% - -5% 

7 0.000665 12.26 0.00 0.98 12.98 0 1 -6% - -2% 

8 0.000740 14.08 0.00 1.09 12.98 0 1 8% - 9% 

9 0.000647 12.59 0.01 0.96 12.98 0 1 -3% - -4% 

10 0.000706 13.99 0.03 1.07 12.98 0 1 8% - 7% 

11 0.000635 12.76 0.02 0.97 12.98 0 1 -2% - -3% 

12 0.000683 13.90 0.01 1.06 12.98 0 1 7% - 6% 

 

b) 

Radius (mm) 0.25   FEM (1st direction) Babaee (2nd /3rd dir.) Variation 

Unit cells AD E (GPa) v12 v13 E (GPa) v12 v13 E  v12  v13 

2 0.753 2.21 0.21 1.15 4.02 0 1 -45% - 15% 

3 0.453 1.94 0.12 0.86 4.02 0 1 -52% - -14% 

4 0.565 3.08 0.04 0.95 4.02 0 1 -23% - -5% 

5 0.432 2.60 0.04 0.78 4.02 0 1 -35% - -22% 

6 0.497 3.23 0.03 0.88 4.02 0 1 -20% - -12% 

7 0.416 2.82 0.02 0.77 4.02 0 1 -30% - -23% 

8 0.462 3.26 0.02 0.85 4.02 0 1 -19% - -15% 

9 0.405 2.92 0.02 0.76 4.02 0 1 -27% - -24% 

10 0.441 3.26 0.02 0.83 4.02 0 1 -19% - -17% 

11 0.397 2.98 0.02 0.76 4.02 0 1 -26% - -24% 

12 0.427 3.25 0.02 0.82 4.02 0 1 -19% - -18% 
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c) 

Radius (mm) 0.01   FEM (3rd direction) Babaee (1st dir.) Variation 

Unit cells AD E (MPa) v31 v32 E (MPa) v12 v13 E  v31  v32 

2 0.001204 0.0046 0.41 0.41 0.0065 0.5 0.5 -30% -18% -17% 

3 0.000724 0.0073 0.56 0.55 0.0065 0.5 0.5 13% 12% 10% 

4 0.000903 0.0062 0.44 0.43 0.0065 0.5 0.5 -4% -11% -15% 

5 0.000692 0.0076 0.54 0.51 0.0065 0.5 0.5 17% 8% 2% 

6 0.000795 0.0065 0.45 0.43 0.0065 0.5 0.5 17% -10% -14% 

7 0.000665 0.0075 0.53 0.52 0.0065 0.5 0.5 15% 5% 3% 

8 0.000740 0.0066 0.47 0.45 0.0065 0.5 0.5 2% -6% -10% 

9 0.000647 0.0073 0.52 0.50 0.0065 0.5 0.5 13% 5% 0% 

10 0.000706 0.0066 0.47 0.45 0.0065 0.5 0.5 2% -5% -9% 

11 0.000635 0.0072 0.52 0.50 0.0065 0.5 0.5 11% 4% 0% 

12 0.000683 0.0067 0.47 0.46 0.0065 0.5 0.5 2% -6% -8% 

 

d) 

Radius (mm) 0.25   FEM (3rd direction) Babaee (1st dir.) Variation 

Unit cells AD E (GPa) v31 v32 E (GPa) v31 v32 E  v31  v32 

2 0.753 1.177 0.38 0.38 2.54 0.5 0.5 -54% -25% -25% 

3 0.453 1.860 0.48 0.48 2.54 0.5 0.5 -27% -4% -4% 

4 0.565 1.618 0.39 0.36 2.54 0.5 0.5 -36% -21% -28% 

5 0.432 1.982 0.47 0.44 2.54 0.5 0.5 -22% -7% -12% 

6 0.497 1.717 0.39 0.37 2.54 0.5 0.5 -22% -22% -26% 

7 0.416 1.972 0.45 0.44 2.54 0.5 0.5 -22% -9% -11% 

8 0.462 1.751 0.40 0.38 2.54 0.5 0.5 -31% -19% -23% 

9 0.405 1.949 0.45 0.43 2.54 0.5 0.5 -23% -10% -14% 

10 0.441 1.766 0.40 0.39 2.54 0.5 0.5 -30% -20% -22% 

11 0.397 1.928 0.45 0.43 2.54 0.5 0.5 -24% -11% -14% 

12 0.427 1.774 0.40 0.40 2.54 0.5 0.5 -30% -19% -20% 
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e) 

Unit cells 10   FEM (1st direction) Babaee (2nd/3rd dir.) Variation 

Radius (mm) AD E (MPa) v12 v13 E (MPa) v32 v31 E v12 v13 

0.005 0.00018 0.00088 0.009 1.073 0.00081 0.0 1.0 8% - 7% 

0.01 0.00071 0.01399 0.010 1.072 0.01298 0.0 1.0 8% - 7% 

0.025 0.00441 0.54203 0.011 1.067 0.50586 0.0 1.0 7% - 7% 

0.05 0.01764 8.47949 0.014 1.054 8.03111 0.0 1.0 6% - 5% 

0.1 0.07057 125.469 0.017 1.014 124.643 0.0 1.0 1% - 1% 

0.25 0.44105 3260.58 0.024 0.831 4023.85 0.0 1.0 -19% - -17% 

 
f) 

Unit cells 10   FEM (3rd direction) Babaee (1st dir.) Variation 

Radius (mm) AD E (MPa) v12 v13 E (MPa) v32 v31 E v12 v13 

0.005 0.00018 0.00042 0.47 0.45 0.00041 0.5 0.5 3% -5% -9% 

0.01 0.00071 0.00664 0.47 0.45 0.00650 0.5 0.5 2% -5% -9% 

0.025 0.00441 0.25808 0.47 0.45 0.25393 0.5 0.5 2% -5% -10% 

0.05 0.01764 4.06829 0.47 0.45 4.06284 0.5 0.5 0% -6% -10% 

0.1 0.07057 61.6188 0.46 0.44 65.0054 0.5 0.5 -5% -8% -12% 

0.25 0.44105 1766.37 0.41 0.39 2539.27 0.5 0.5 -30% -18% -22% 

 
 


