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Abstract
Schur multipliers are a concept from functional analysis that have various uses in mathematics. In this
thesis we provide an introduction of the aforementioned Schur multipliers and the associated Schatten
p-classes. We prove a number of results and introduce some concepts of functional analysis in order to
get to the central topic: a conjecture by Pisier regarding Schur multipliers. For p ∈ {1, 2,∞} all Schur
bounded multipliers are completely bounded, and the completely bounded norm of a Schur multiplier is
in fact equal to its operator norm. On the other hand, for p 6∈ {1, 2,∞} Pisier conjectures that there
exist bounded, but not completely bounded Schur multipliers.
Whereas the first part of the thesis is spent on studying the theoretical nature of the problem, in the
second part we perform a number of numerical computations yielding insight into the problem. For a
number of random finite-dimensional Schur multipliers and various p we approximated the operator norm
using the BFGS minimization algorithm. This resulted in us posing a new conjecture that the completely
bounded norm is equal to the norm for any Schur multiplier for any 1 ≤ p ≤ ∞, i.e. we suggest Pisier’s
conjecture is false. Finally, we suggest further studies that can be done.
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1
Introduction

The classical spaces `p and Lp have widely been used in Fourier analysis and harmonic analysis. Given
a Hilbert space, using the linear operators on H we can construct a non-commutative analogue to the `p
spaces. We call these the Schatten p-classes, denoted by Sp(H), which will play an important role in this
thesis. In the preliminaries chapter we introduce the necessary concepts from functional analysis, before
we define and study Schatten classes in Chapter 3.

Following this, we define the Schur multiplier, which is a linear map on a Schatten p-class that “mul-
tiplies” an element from Sp(H), i.e. a linear map from H to H, by a matrix. These Schur multipliers
have applications in Fourier analysis for instance, and can be linked to Fourier multipliers, see [2], [4],
[7], and [10]. Schur multipliers can be used in Quantum Information Theory as well, see [12]. In Chapter
3 we look at finite-dimensional Schur multipliers, in addition to infinite-dimensional Schur multipliers,
and show that we can approximate infinite-dimensional Schur multipliers using finite-dimensional Schur
multipliers.

Next, we introduce the concept of complete boundedness for Schur multipliers, a property that is rel-
evant in the previously mentioned applications. Strongly related to the complete boundedness of Schur
multipliers is the following conjecture posed by Pisier in [10]:

Conjecture. Let 1 ≤ p ≤ ∞ and H be a Hilbert space. Pisier conjectures the following in [10]:

For 1 < p <∞ and p 6= 2 there exists a Schur multiplier on Sp(H) that is bounded but not completely
bounded.

In Chapter 4 we give a number of equalities and inequalities pertaining to the completely bounded norm
and Pisier’s conjecture, in the effort to simplify the problem. Moreover, we look at how unitary operators
are of use here.

Finally, in Chapter 5 we numerically compute the operator norm of various random Schur multipliers,
aided by theoretical results from the previous chapters. We utilize the BFGS minimization algorithm to
approximate the operator norm of (amplified) Schur multipliers, with the hope that these results give us
more insight. These insights will in turn hopefully allow us to strengthen (or weaken) the aforementioned
conjecture, or possibly pose a new conjecture.
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2
Preliminaries

In order to study Schur multipliers and Schatten classes, we need to create the necessary foundation in
functional analysis, which is the purpose of this chapter. To facilitate this, the reader is assumed to
be familiar with the concepts of Hilbert spaces and dual spaces, orthonormal bases, and the underlying
notions of these. Throughout this thesis we will assume that any vector space is over C, unless explicitly
stated otherwise.

Notation
Below we list some notation commonly used within this thesis.

1. R(f) denotes the range of a function f .

2. Mn×m(C) denotes the n×m matrices with complex entries. If n = m we write Mn(C).

3. In is the n× n identity matrix in Mn(C).

4. For matrices we use capital letters, i.e. A ∈Mn×m(C). For the entry at position (i, j) we use lower
case letters, i.e. ai,j .

5. If A ∈ Mnk×mk(C), we can partition A into k × k blocks. We indicate a block at position (i, j)
(where 1 ≤ i ≤ n, 1 ≤ j ≤ m) with Ai,j .

6. We denote the adjoint of a bounded linear operator or matrix with ∗, i.e. T ∗ and A∗.

Definition 2.1. Let X,Y be normed vector spaces, and T : X → Y be a linear transformation. We say
that T is bounded if there exists some M ≥ 0 such that for all x ∈ X : ‖T (x)‖ ≤ K‖x‖. We denote the
space of all such functions by B(X,Y ). If X = Y then we use B(X) instead.

Intuitively, this means that growth of ‖T (x)‖ is bounded by the growth of ‖x‖. Furthermore, we shall
introduce the notation T (x) = Tx.

Example. Let X be any normed vector space, and I : X → X be the identity. Then for any α ∈ C the
linear transformation αI : X → X is bounded, as for all x ∈ X : ‖(αI)x‖ = |α|‖Ix‖ = |α|‖x‖.

Definition 2.2. Let X,Y be normed vector spaces, and T ∈ B(X,Y ). We define the operator norm of
T as follows:

‖T‖op = inf{M ≥ 0 : for all x ∈ X : ‖T (x)‖ ≤M‖x‖}.

Should it be clear that we are taking the operator norm, we may choose to simply write ‖T‖ to indicate
the operator norm of T . Furthermore, as unitary operators are surjective isometries, one finds that the
operator norms is invariant under unitary operators, i.e. ‖UT‖ = ‖TU‖ = ‖T‖. Lastly, if Y is a Banach
space and we equip B(X,Y ) with the operator norm, then B(X,Y ) is a Banach space as well.

Remark 2.3. If X 6= 0, then ‖T‖ = supx 6=0
‖Tx‖
‖x‖ = sup‖x‖≤1‖Tx‖ = sup‖x‖=1‖Tx‖.
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12 2. Preliminaries

Generally we will use this last equality if applicable. In the previous example, we have that ‖αI‖ = |α|
which is found easily using ‖T‖ = sup‖x‖=1‖Tx‖. However, in the finite dimensional case, this supremum
is a maximum as well, which will be a result of following lemma.

Lemma 2.4. Let X be a finite-dimensional normed vector space. Then the unit sphere is compact.

Proof. We prove it for a normed vector space over R first. Let n = dimX. By identifying bases of X and
Rn respectively, we find X and Rn to be isomorphic, where Rn is equipped with some norm. Consider
the unit sphere S in Rn under said norm. By definition S is bounded, and by the continuity of the norm
it follows that it is closed as well. However, as Rn is finite-dimensional, all norms are equivalent, and
thus the open and closed sets are equal for all norms. In particular, S is therefore closed and bounded
in Rn equipped with the standard Euclidian metric, and by the Heine-Borel Theorem we find that S is
compact. Consequently, we find that the unit sphere in X is compact as well.

Lastly, if X is a normed vector space over C, we can identify X with Cn ∼= R2n, and conclude that
the unit sphere is compact similarly.

The following theorem gives a useful relation between the continuity of linear operators and their bound-
edness:

Theorem 2.5. Let X,Y be normed vector spaces, and T : X → Y be a linear transformation. Then T
is (uniformly) continuous if and only if T is bounded.

Proof. If X = 0, the result is trivial, so we can assume this not to be the case. First, assume that T is
continuous. In particular, this means T is continuous in 0. Then, by definition, for every ε > 0 there
exists a δ > 0 such that if ‖x‖ < δ then ‖Tx‖ < ε. Choose ε = 1, and set M = 2

δ . Now let x ∈ X
arbitrarily. In the case that x = 0, we have that Tx = 0 by linearity, and thus ‖Tx‖ = 0 ≤ M‖x‖. Now
if x 6= 0, we can consider the element y = x

M‖x‖ . Since ‖y‖ < δ, by continuity we have that ‖Ty‖ < 1.
But using the linearity of T we find:

‖Ty‖ < 1 ⇔ ‖T x

M‖x‖
‖ < 1 ⇔ ‖T‖ < M‖x‖.

Thus, we see that T is bounded.
Conversely, assume that T is bounded. If T = 0 then the result is trivial, so assume T 6= 0. Let x ∈ X
and ε > 0, and set δ = ε

‖T‖ , where ‖T‖ > 0. Now if for y ∈ X : ‖x − y‖ < δ = ε
‖T‖ , since T is bounded

and linear we obtain:

‖Tx− Ty‖ = ‖T (x− y)‖ ≤ ‖T‖‖x− y‖ < ‖T‖ ε

‖T‖
= ε.

That is, T is (uniformly) continuous.

Theorem 2.6. Let X,Y are normed vector spaces, where X is finite-dimensional. Now suppose T : X →
Y is a linear transformation. Then T is continuous.

Proof. By Theorem 2.5 is suffices to show that T is bounded. Since on a finite-dimensional space all
norms are equivalent, we only need to show that it holds for a single norm. Let {b1, . . . , bn} be a basis
for X. If we now write x = λ1b1 + · · ·+ λnbn, consider the norm given by

‖x‖1 =
n∑
i=1
|λi|

It is easily checked that this is well-defined, and indeed a norm. Now applying T , using the linearity of
T and the triangle inequality, we find:

‖Tx‖1 =

∥∥∥∥∥T
(

n∑
i=1

λibi

)∥∥∥∥∥
1

=

∥∥∥∥∥
n∑
i=1

λiTbi

∥∥∥∥∥
1

≤
n∑
i=1
|λi|‖Tbi‖1.

If we now set M = max1≤i≤n‖T (bi)‖1, we find that ‖Tx‖1 ≤
∑n
i=1|λi| ·M = M‖x‖1.
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Definition 2.7. Let X,Y be normed vector spaces, and T a linear operator. T is called a compact
operator if for any bounded subset V ⊂ X the closure of the image, T [V ], is compact.

During this thesis we will often look at compact operators because they have numerous useful properties
that will become apparent later. We shall denote the space of compact operators from X to Y by
K(X,Y ) and similarly as for the bounded linear operators we write K(X) := K(X,X). One may note
that a compact operator is necessarily bounded (since the image of the unit sphere is bounded), and thus
K(X,Y ) ⊆ B(X,Y ). Moreover, Rynne [11] proves that K(X,Y ) is in fact a closed subspace B(X,Y ),
and that an operator is compact if and only if its adjoint is. Lastly, compositions of compact operators
are compact as well.

Example 2.8. Let T ∈ B(X,Y ) be such that T is of finite rank, and V ⊂ X be a bounded subset. Then
since T ∈ B(X,Y ), T [V ] is bounded. Hence, T [V ] is bounded and closed. Thus, by Bolzano-Weierstrass,
we find that T is a compact operator.

Now for matrices we have one last definition:

Definition 2.9. Let A ∈Mn(C) and consider A∗A. As the latter is self-adjoint, by the Spectral Theorem
it can be written as A∗A = UDU∗, for U a unitary matrix and D a diagonal matrix with real elements.
We now define:

|A| :=
√
A∗A := UD1/2U∗, where (d1/2)i,i =

√
di,i.

We note that |A|2 = UDU∗ = A∗A, which justifies the notation
√
A∗A. However, we should check if we

can indeed take the (non-complex) square root of the of the diagonal elements of D, i.e. the eigenvalues
of A∗A. Let λ be an eigenvalue of A∗A and v an associated eigenvector. The following computation show
that λ is indeed non-negative:

λ‖v‖2
H = 〈λv, v〉H = 〈A∗Av, v〉H = 〈Av,Av〉H = ‖Av‖2

H , (2.1)

where it remains to divide by ‖v‖2
H .

Remark 2.10. |A| is self-adjoint, which follows directly from the definition |A| := UD1/2U∗.

Theorem 2.11. (Spectral Theorem for compact operators) Let H be a separable Hilbert space and T be
a self-adjoint compact operator on H. Then the eigenvectors (en)∞n=1 form an orthonormal basis, and we
can write:

T =
∞∑
n=1

λn〈·, en〉en,

where λn are the (non-zero) eigenvalues and the eigenvalues are real. Moreover, λn → 0 as n→∞.

Proof. See Conway [3].

Remark 2.12. For any compact operator T on a Hilbert space H we can define |T | :=
√
T ∗T analogously

to how we defined |A|. First, we consider T ∗T . As (T ∗T )∗ = T ∗T we find that it is self-adjoint, and
as a composition of compact operators it is a compact operator too. We can now diagonalize T ∗T by
Theorem 2.11, i.e. T ∗T =

∑∞
n=1 λn〈en, ·〉en. As equation (2.1) holds for T as well, we can define√

T ∗T :=
∑∞
n=1
√
λn〈en, ·〉en, and from this diagonalization we can see that |T | is self-adjoint. Lastly, we

claim that it is a compact operator as well. Indeed, for any bounded sequence (xn)n∈N in H, using that√
λn → 0 when n→∞ one checks that (|T |xn)n∈N has a convergent sequence, which in turns implies the

definition of a compact operator.
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We have one more important proposition to state, namely the polar decomposition of bounded linear
operators.

Proposition 2.13. (Polar decomposition) Let H be a separable Hilbert space and T ∈ B(H). Then we
can decompose T as T = US, with U a linear isometry, and S a self-adjoint operator. Moreover, if H is
finite-dimensional, then H is unitary.

Proof. First of all, set S := |T |. We now construct U such that T = U |T |. If T is invertible, so will |T |
be, and in that case we can simply take U = T |T |−1, which proves sufficient. However, in general we
cannot assume that T is invertible, and instead we start with creating a map Ũ1 : R(|T |)→ R(T ).

Let v ∈ R(|T |). Then we can write v = |T |w for some w ∈ H. Now define the well-defined linear
map:

Ũ1v := Aw.

We validate that this map is isometric. Let v, v′ ∈ R(|T |) where v = |T |w, v′ = |T |w′. It suffices to show
that Ũ1 preserves the inner product. Using the definition of Ũ1 and that of the adjoint operator, and
that |T | is self-adjoint, we have:

〈Ũ1v, Ũ1v
′〉 = 〈Aw,Aw′〉 = 〈T ∗Aw,w′〉

= 〈|A|2w,w′〉 = 〈|T |w, |T |w′〉 = 〈v, v′〉. (2.2)

Thus, we see that Ũ1 preserves the inner product and is thus an isometry. Furthermore, it follows that
dim R(|T |) = dim R(T ).

The question now becomes, how can we extend Ũ1 to all of H? First of all, by continuity we can
extend Ũ1 to a map Ũ ′1 : R(|T |) → R(T ). As R(T ) is a closed linear subspace of H, we can now write
H = R(T )⊕R(T )

⊥
, where R(T )

⊥
is the orthogonal complement of R(T ). Similarly, H = R(|T |)⊕R(|T |)

⊥
.

We would now like to construct an linear isometry Ũ ′2 : R(|T |)
⊥
→ R(T )

⊥
. Since dim R(|T |) = dim R(T )

the same holds for the orthogonal complements. Let k = dim R(|T |)⊥ = dim R(T )⊥ (which is possibly
infinite). Now let {bi}ki=1 and {b′i}ki=1 be orthonormal bases for R(|T |)

⊥
and R(T )

⊥
respectively. If

we now identify the bases by Ũ ′2, i.e. Ũ2bi = b′i, by the orthonormality of the bases we have that Ũ ′2
preserves the inner product. Subsequently, we define U : H → H. Any v ∈ H we can uniquely write as
v = w1 ⊕ w2, with w1 ∈ R(|T |) and w2 ∈ R(|T |)

⊥
. We now define Uv := Ũ ′1w1 ⊕ Ũ ′2w2, which is again

again preserves the inner product. Although U need not be surjective for infinite-dimensional H, should
H be finite-dimensional it follows from the rank–nullity theorem that U is in fact surjective, and hence
unitary. Lastly, note that by definition of Ũ ′1 we have that T = US = U |T |.



3
Schatten classes and Schur

multipliers

3.1. The Schatten p-norm
In this section we define the so-called Schatten p-classes, a subspace of the compact linear operators on
a Hilbert space H, equipped with Schatten p-norm. However, before we can give this norm explicitly we
must define the singular values:

Definition 3.1. Let H,H ′ be Hilbert spaces, and T : H → H ′ a compact bounded linear operator. We
define the singular values of T for n ∈ N as follows:

sn(T ) := inf{‖T − S‖ | S ∈ K(H,H ′) and rank(S) < n}.

In the case that n = 1 then s1(T ) = ‖T‖, and if n > rank(T ) then sn(T ) = 0. Furthermore, since
{‖T −S‖ | rank(S) < n} ⊂ {‖T −S‖ | rank(S) < n+1}, we have that sn(T ) ≥ sn+1(T ), i.e. (sn(T ))∞n=1
is a (non-negative) decreasing sequence. Before we define our Schatten-p-norm, we take a look at the
following lemma, which will proven useful later:

Lemma 3.2. Let H be a non-trivial finite-dimensional Hilbert space and let T : H → H be a (compact)
bounded linear operator. Then if we represent T by the matrix A ∈ Mn(C) we have that the singular
values of T coincide with the eigenvalues of |A|.

Proof. Let n = dimH. After choosing a basis we can represent T with a matrix A, which we from now
on shall identify with T . By the polar decomposition we can decompose it as follows: A = U |A|, for
U some unitary matrix. With U a unitary matrix, it is easily validated that it does not change the
singular values, and so the singular values of A and |A| are equal. However, since |A| = V DV ∗ for V
a unitary matrix the singular values of |A| are in turn equal to the (non-negative) diagonal elements of
D (the square roots of the eigenvalues of A∗A). Lastly, the singular values of D are simply the diagonal
elements.

We are now ready to define the Schatten classes.

Definition 3.3. Let p ∈ [1,∞] and H be a separable Hilbert space. For p < ∞ we define the Schatten
class Sp(H) as follows:

Sp(H) := {T ∈ K(H) |
∞∑
k=1

sk(T )p <∞}.

Lastly, S∞(H) := K(H).

Remark 3.4. For any finite-dimensional H we have that Sp(H) = K(H) = B(H), where the first
equality follow from the sum in the definition of Sp(H) being finite, and the second equality follows from
Example 2.8.

15



16 3. Schatten classes and Schur multipliers

Remark 3.5. Whenever p <∞ from the definition of Sp(H) it follows that for T ∈ Sp(H) : sn(T )→ 0
as n→∞. In fact, as Rynne [11] proves, this is true in general for any T ∈ K(H), and thus for S∞(H)
as well.

Definition 3.6. Let p ∈ [1,∞] and H be a separable Hilbert space. For T ∈ Sp(H) and p <∞ we define
the Schatten p-norm as

‖T‖p :=
( ∞∑
k=1

sk(T )p
)1/p

.

Analogously to the `p norm, if p = ∞ then we define ‖A‖∞ = sup
k
sk(T ) = s1(T ) = ‖T‖, whereas the

second equality holds as (sk(T ))∞k=1 is a decreasing sequence.

Remark 3.7. If we see it as the `p norm of (sn(T ))∞n=1 ∈ `p we see that for any p′ ≥ p : T ∈ Sp′(H)
and that ‖T‖p′ ≤ ‖T‖p.

Furthermore, any linear operator on Sp(H) we call a Schatten class operator. We are interested in showing
that the above defined ‖·‖p is indeed a norm on Sp(H) (simultaneously showing that Sp(H) is a vector
space). If p = ∞ then ‖·‖p is simply the operator norm and we are done. In the case that 1 ≤ p < ∞,
whilst some properties of the norm are easily validated it takes a considerable amount of work to show
that it satisfies the triangle inequality. Before we do so, we take a look at another way of computing the
Schatten p-norm, and how ‖·‖2 is derived from an inner product for finite-dimensional H.

Proposition 3.8. Let H be a finite-dimensional Hilbert space, p ∈ N be even and T ∈ Sp(H). If we
represent T by the matrix A ∈Mn(C) with respect to some basis, then ‖T‖pp = tr(|A|p). In particular, if
p is even then ‖T‖pp = tr((A∗A)p/2) and we have a significantly easier way to compute ‖T‖p.

Proof. As we have seen earlier, we can decompose |A| into UDU∗ with U unitary and D diagonal, whereas
the diagonal elements of D are the eigenvalues of |A|.

By Lemma 3.2 we know these to be the singular values of A as well. We now define the p-th power of
|A| as |A|p := UDpU∗, where Dp in turn is simply the non-negative diagonal elements exponentiated to
the power p (where p may not be an integer). We note that since U∗U = I, should p be a natural number
then this definition coincides with the natural exponentiation. Now, by this definition the eigenvalues of
|A|p are the singular values of A to the power p, and thus:

tr(|A|p) = tr(UDpU∗) = tr(Dp) =
n∑
k=1

sk(T )p = ‖T‖pp.

Here we use that the trace is independent of the chosen basis. However, should p be an even number,
then (UD2U∗)p/2 = UDpU∗, which yields tr((A∗A)p/2) = tr((UD2U)p/2) = tr(UDpU∗) = ‖T‖pp.

Whenever H is finite-dimensional (say of dimension n), by Remark 3.4 we have that Sp(H) = B(H). If
we now choose a basis for H, we can uniquely identify each element from B(H) with a matrix Mn(C)
and vice versa. Subsequently, for a finite-dimensional H we can consider the Schatten p-norm as a norm
on the (complex) n × n matrices. Keeping this in mind we now look at ‖·‖2 as a norm on Mn(C). For
A ∈ Mn(C) by the previous proposition we have that ‖A‖2

2 = tr(A∗A). In this case it is called the
Frobenius norm as well, and is induced by an inner product, namely the Frobenius inner product:

Definition 3.9. We define the Frobenius inner product 〈·, ·〉F : Mn(C)×Mn(C)→ C as follows:

〈A,B〉F = tr(B∗A),

where B∗ is the adjoint matrix, i.e. the conjugate transpose. Here we use the usual matrix multiplication.
We verify that it is an inner product:

Proof. Let A,B,C ∈Mn(C) and α, β ∈ C. Now:

(i) For i = 1, . . . , n we have that (A∗A)i,i =
∑n
j=1 A

∗
i,jAj,i =

∑n
j=1 Aj,iAj,i =

∑n
j=1|Aj,i|2. As a sum

of non-negative real numbers, we find that 〈A,A〉F = tr(A∗A) is real and non-negative as well.
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(ii) If A = 0 then clearly 〈A,A〉F = 0. Now if 〈A,A〉F = 0, and since all diagonal elements of A∗A are
positive, by (i) we must have that |Ai,j |2 = 0 for all i, j, and thus for all i, j : Ai,j = 0 ⇒ A = 0.

(iii) We have: 〈αA+ βB,C〉F = tr(C∗(αA+ βB)) = αtr(C∗A) + βtr(C∗B) = α〈A,C〉F + β〈B,C〉F.

(iv) 〈A,B〉F = tr(B∗A) = tr(BᵀA) = tr((BᵀA)ᵀ) = tr(AᵀB) = tr(AᵀB) = 〈B,A〉F since tr(Aᵀ) =
Tr(A) for any matrix.

Thus, this proves that in the case p = 2 and finite-dimensional H that ‖·‖p is a norm. In particular, we
have that (Mn(C), 〈·, ·〉F) is a Hilbert space, as any finite dimensional inner product space is complete,
see [11].

At last, we will now show for any 1 ≤ p < ∞ that ‖·‖p satisfies the triangle inequality on Sp(H) for
any Hilbert space H. Within this proof we shall assume H is a separable infinite-dimensional
Hilbert space, as for a finite-dimensional H the intermediate results follow similarly (and usually eas-
ier). To achieve this we first set up the necessary definitions and lemmas. The following proofs are based
on [1] and [5].

Recall from the preliminaries that we can decompose self-adjoint compact operators as
∑∞
n=1 λn〈en, ·〉en.

Elements from Sp(H) we can decompose as well, but as they are not necessarily self-adjoint we instead
turn to the singular value decomposition, a somewhat similar decomposition.

Corollary 3.10. If T is a compact operator on H (not necessarily self-adjoint), then we can write it as

T =
∞∑
n=1

sn(T )〈·, en〉fn,

for (en)∞n=1, (fn)∞n=1 orthonormal sequences in H. We call this the singular value decomposition.

Proof. We start by considering the polar decomposition of T , i.e. T = U |T |. By Theorem 2.11 we can
write |T | =

∑∞
n=1 µn〈·, en〉en, where (µn)∞n=1 are the eigenvalues of |T |, µn → 0 as n → ∞ and (en)∞n=1

are the associated eigenvectors, which form an orthonormal basis. Furthermore, we know that the eigen-
values of |T | are the singular values of T , so we have that |T | =

∑∞
n=1 sn(T )〈·, en〉en.

Now for n ∈ N define fn := Uen. As we know that U preserves the inner product, (fn)∞n=1 forms an
orthonormal sequence. We now define |T |N :=

∑N
n=1 sn(T )〈·, en〉en and TN := U

∑N
n=1 sn(T )〈·, en〉en =∑N

n=1 sn(T )〈·, en〉fn. Lastly, we wish that TN → T , i.e. limN→∞‖T − TN‖ = 0. Indeed, we have:

‖T − TN‖ = sup
n≥N

sn(T )→ 0 as N →∞.

Lemma 3.11. Let T be a compact operator. Then for n ∈ N:
n∑
k=1

sk(T ) = max

∣∣∣∣∣
n∑
k=1
〈Tgk, hk〉

∣∣∣∣∣ = max
n∑
k=1
|〈Tgk, hk〉|,

where we take the maxima over all orthonomal sequences (gk)nk=1 and (hk)nk=1 in H.

Proof. We start with considering the supremum, and taking the svd of T , i.e. T =
∑∞
n=1 sn(T )〈·, en〉fn.

For the second sum we now take the orthonormal sequences (ek)nk=1 and (fk)nk=1 and fill in T to get:
n∑
k=1
〈Tnek, fk〉 =

n∑
k=1
〈
∞∑
j=1

sj(T )〈ej , ek〉fj , fk〉 =
n∑
k=1
〈sk(T )fk, fk〉 =

n∑
k=1

sk(T ).

If we now take the absolute value and the supremum over all orthonormal sequences as described, and
apply the triangle inequality on the sum we then obtain the following inequalities:

n∑
k=1

sk(T ) ≤ sup

∣∣∣∣∣
n∑
k=1
〈Tgk, hk〉

∣∣∣∣∣ ≤ sup
n∑
k=1
|〈Tgk, hk〉|. (3.1)
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We now wish to show that sup
∑n
k=1|〈Tgk, hk〉| ≤

∑n
k=1 sk(T ) holds as well. Substituting the svd of T

in
∑n
k=1|〈Tgk, hk〉| we obtain:

n∑
k=1
|〈Tgj , hk〉| =

n∑
k=1

∣∣∣∣∣∣
∞∑
j=1

sj(T )〈gj , ek〉〈fk, hj〉

∣∣∣∣∣∣ ≤
∞∑
k=1

sj(T )
n∑
j=1
|〈gj , ek〉〈fk, hj〉|. (3.2)

We first look at
∑n
j=1|〈gj , ek〉〈fk, hj〉|, which we note is non-negative. As the sums are (absolutely)

convergent this justifies the operations we perform. If we consider it the (standard) inner product of
(|〈g1, ek〉|, . . . , |〈gn, ek〉|) and (|〈fk, h1〉|, . . . , |〈fk, hn〉|), and we can use the Cauchy-Schwarz inequality to
obtain:

n∑
j=1
|〈gj , ek〉〈fk, hj〉|

C.S.
≤

 n∑
j=1
|〈gj , ek〉|2

1/2 n∑
j=1
|〈fk, hj〉|2

1/2

≤ ‖ek‖‖f‖ = 1.

Applying the same trick after switching the order of summation in
∑∞
k=1

∑n
j=1|〈ek, gj〉〈hj , fk〉| (as one

sum is finite), we then find
∞∑
k=1

n∑
j=1
|〈gj , ek〉〈fk, hj〉| =

n∑
j=1

∞∑
k=1
|〈gj , ek〉〈fk, hj〉|

C.S.
≤

n∑
j=1

( ∞∑
k=1
|〈gj , ek〉|2

)1/2( ∞∑
k=1
|〈fj , hj〉|2

)1/2


=
n∑
j=1
‖gj‖‖hj‖ =

n∑
j=1

1 = n.

For the sake of convenience we shall define ck :=
∑n
j=1|〈gj , ek〉〈fk, hj〉|. So far we have thus shown that

that 0 ≤ ck ≤ 1 and
∑∞
k=1 ck ≤ n. We now write:

∞∑
k=1

sk(T )ck =
∞∑
k=1

∞∑
j=k

(sj(T )− sj+1(T ))ck =
∞∑
j=1

j∑
k=1

(sj(T )− sj+1(T ))ck,

which we can do as sj(T ) → 0 as j → ∞. The second equality is a result of enumerating the sum
differently. Thus, we find that

∑∞
k=1 sk(T )ck =

∑∞
j=1(sj(T )−sj+1(T ))

∑j
k=1 ck. But since ck ≥ 0 we have

that
∑j
k=1 ck ≤

∑∞
k=1 ck ≤ n. Combined with the fact that ck ≤ 1 we find that

∑j
k=1 ck ≤

∑min{j,n}
k=1 1.

Now since sj(T ) − sj+1(T ) ≥ 0, once more enumerating the sum differently we find and using that
sj(T )→ 0 as j →∞ we obtain:

∞∑
k=1

sk(T )ck ≤
∞∑
j=1

(sj(T )− sj+1(T ))
min{j,n}∑
k=1

1 =
n∑
k=1

∞∑
j=k

(sj(T )− sj+1(T )) =
n∑
k=1

sk(T ).

Now taking the supremum over all orthonormal sequences, the above inequality combined with (3.1) and
(3.2) yields the desired inequality. Lastly, as taking (ek)nk=1 and (fk)nk=1 as the orthonormal sequences
gave us inequality (3.1), we proves that it is in fact a maximum.

Lemma 3.12. For compact operators T and S and n ∈ N the following holds:
n∑
k=1

sk(T + S) ≤
n∑
k=1

sk(T ) +
n∑
k=1

sk(S).

Proof. Using Lemma 3.11 and the triangle inequality for |·| we find:
n∑
k=1

sk(T + S) = max
n∑
j=1
|〈(T + S)gj , hj〉| ≤ max

n∑
j=1
|〈Tgj , hj〉|+ max

n∑
j=1
|〈Sgj , hj〉|.

Once more using Lemma 3.11 on the last two terms yields the desired inequality.
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Lemma 3.13. Let f : R→ R be a convex increasing function, n ∈ N and (ai)ni=1, (bi)ni=1 be two decreasing
sequences, and define the partials sums Ak :=

∑k
i=1 ai and Bk :=

∑k
i=1 bi. If for all k ∈ {1, . . . , n} we

have that Ak ≤ Bk1, then the following inequality holds:
n∑
i=1

f(ai) ≤
n∑
i=1

f(bi).

Proof. We wish to prove that
∑n
i=1(f(bi)−f(ai)) ≥ 0. In the case that ak = bk for some k, the inequality

resulting from the sequences with ak and bk removed is equivalent with the one we wish to prove. Thus,
without loss of generality we can assume that ai 6= bi for all i. But now we can define ci = f(bi)−f(ai)

bi−ai
,

and then we can write
n∑
i=1

(f(bi)− f(ai)) =
n∑
i=1

ci(bi − ai).

As f is increasing, if bi > ai then f(bi) ≥ f(ai) and thus ci ≥ 0. Likewise, if bi < ai then ci ≥ 0. We now
claim that (ci)ni=1 is a decreasing sequence as well. Defining R(x, y) := f(x)−f(y)

x−y for x 6= y, we have that
f is convex if and only if R is increasing in both variables . Note that ci = R(ai, bj), and in the case that
ai, ai+1, bi and bi+1 are all different we then find that ci = R(ai, bj) ≥ R(ai+1, bi) ≥ R(ai+1, bi+1) = ci+1.
In the case that two are equal, then it follows from a single step and the symmetry of R in its arguments.
Now using that ai = Ai −Ai−1 and bi = Bi −Bi−1, we obtain the following equality:

n∑
i=1

(f(bi)− f(ai)) =
n∑
i=1

cibi − ciai =
n∑
i=1

ci(Bi −Bi−1)−
n∑
i=1

ci(Ai −Ai−1)

=
n∑
i=1

ci(Bi −Ai)−
n∑
i=1

ci(Bi−1 −Ai−1) (3.3)

However, since A0 = B0 = 0, we have that
n∑
i=1

ci(Bi−1 −Ai−1) =
n−1∑
i=0

ci+1(Bi −Ai) =
n−1∑
i=1

ci+1(Bi −Ai).

Using this equality in (3.3) this yields:

n∑
i=1

(f(bi)− f(ai)) = cn(Bn −An) +
n−1∑
i=1

(ci − ci+1)(Bi −Ai).

Since (ci)ni=1 is decreasing, we have that ci− ci+1 ≥ 0, and we have already seen that ci ≥ 0 as well. But
by assumption we have that Bi − Ai ≥ 0 for any i, and thus we find that all terms are non-negative in
the last expression, and thus

∑n
i=1(f(bi)− f(ai)) ≥ 0 as desired.

We can now finally prove the triangle inequality for Schatten p-norm. Let T, S ∈ Sp(H). Firstly, we
apply lemma 3.12 to find that

∑n
k=1 sn(T + S) ≤

∑n
k=1(sn(T )) + sn(S)). We now consider the function

x 7→ x1/p, which we note is convex and increasing for any p ≥ 1. Now applying lemma 3.13 with
ak = sk(T + S) and bk = sk(T ) + sk(S) and the aforementioned x 7→ xp for any n ∈ N we find:

n∑
k=1

(sk(T + S))p ≤
n∑
k=1

(sk(T ) + sk(S))p. (3.4)

Since x 7→ x1/p is increasing, we can apply this to both sides and still maintain the inequality. After raising
it to the power 1

p , the right sum is simply the usual p-norm for the vector x = (s1(T )+s1(S), . . . , sn(T )+
sn(S)) in Cn, for which we know the triangle inequality to be true. That is, we find that(

n∑
k=1

(sk(T + S))p
)1/p

≤

(
n∑
k=1

(sk(T ) + sk(S))p
)1/p

≤

(
n∑
k=1

sk(T )p
)1/p

+
(

n∑
k=1

sk(S)p
)1/p

. (3.5)

1If we set a = (a1, . . . , an) and b = (b1, . . . , bn) then it is said that b weakly majorizes a.
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Lastly, by definition of Sp(H) we know that
∑n
k=1 sk(T )p < ∞ and

∑n
k=1 sk(S)p < ∞. Letting n → ∞

we find

‖T + S‖p =
( ∞∑
k=1

(sk(T + S))p
)1/p

≤

( ∞∑
k=1

sk(T )p
)1/p

+
( ∞∑
k=1

sk(S)p
)1/p

= ‖T‖p + ‖S‖p.

Thus, we have shown that ‖·‖p satisfies the triangle inequality, and thus Sp(H) is in fact a normed space.
As is proven in [5], Sp(H) is a Banach space as well. We will now define the Schur product for two
matrices, which is essentially the entrywise product. We first consider the finite-dimensional case.

Definition 3.14. Let A,B ∈Mn(C). We define the Schur product of A and B as an n×n matrix A ◦B
where

A ◦B := (ai,jbi,j)ni,j=1

That is, A ◦B is the entry-wise multiplication of A and B.

Due to the entry-wise nature of Schur multiplication, it is easy to see that it is associative, commutative,
and that it is distributive with regards to the usual addition of matrices. Furthermore, if Jn is the n
matrix filled entirely with ones, we note that for any matrix A ∈ Mn(C) : A ◦ Jn = A. That is, Jn
is identity element for Schur multiplication. Similarly, we can consider the Schur product for infinite
matrices, i.e. for A = (ai,j)∞i,j=1 and B = (bi,j)∞i,j=1 : A ◦B = (ai,jbi,j)∞i,j=1.

Example. Let A =
(

1 1
2 4

)
and B =

(
2 5
−3 8

)
. Then A ◦B =

(
1 · 2 1 · 5

2 · −3 4 · 8

)
=
(

2 5
−6 32

)
.

We now define a Schur multiplier:

Definition 3.15. Let H be a separable Hilbert space of dimension n (possibly infinite), and A = (ai,j)ni,j=1
a n× n-matrix, and let 1 ≤ p ≤ ∞. Now given a fixed orthonormal basis and an element Sp(H), we can
represent the element by a unique (possibly infinite) matrix, say B = (bi,j)ni,j=1. Subsequently, we can
consider A ◦ B as a map from H to H. Now let us define MA : Sp(H) → Sp(H) by MA(B) := A ◦ B,
or in other words MA((bi,j)ni.j=1) := (ai,jbi,j)ni,j=1. Should MA be well-defined, then we call MA a Schur
multiplier.

If MA is bounded, we can consider the operator norm, and to make clear that it is the operator norm
with respect to the Schatten p-norm, we shall denote it with ‖MA‖p.

Should H be finite-dimensional, we know that Sp(H) = B(H) ∼= Mn(C) by Remark 3.4, and conse-
quentlyMA is well defined for any A, and thus a Schur multiplier. Moreover, from Theorem 2.6 it follows
thatMA itself is a bounded map. One should be aware that if H is infinite-dimensional, MA will not be a
Schur multiplier for every A. However, should it be a Schur multiplier, then one can easily verify that the
entries of A must be bounded. Nevertheless, we claim that any Schur multiplier is bounded as a result
of the closed graph theorem. Before we show this, we must first define the graph of a linear operator:

Definition 3.16. Let X,Y be normed spaces and let T : X → Y be a linear map. We define the graph
of T as:

G(T ) := {(x, Tx) | x ∈ X}.

We note that G is a linear subspace ofX×Y . Moreover, we can equipX×Y with the norm ‖(x, y)‖X×Y :=
‖x‖X + ‖y‖Y , which then forms a Banach space. We are now ready to state the closed graph theorem:

Theorem 3.17. (Closed graph theorem) Let X,Y be Banach spaces, and let T : X → Y be a linear map.
Then T is continuous if and only if G(T ) is closed.

Proof. See Rynne [11].

Thus, to show that a linear operator between normed spaces is bounded, by 2.5 and the closed graph
theorem it suffices to show that its graph is closed. Recall that in a metric space a set is closed if it
contains the limit of convergent sequences within the set.
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Proposition 3.18. Let H be a separable Hilbert space and MA a Schur multiplier on Sp(H). Then MA

is bounded.

Proof. By the closed graph theorem it suffices to show that G(MA) is closed in Sp(H)× Sp(H).
Let (Bn,MA(Bn)) be a convergent sequence in G(MA) with limit (B, y). That is to say, limn→∞‖B−

Bn‖p = 0 and limn→∞‖MA(Bn) − y‖p = 0. We need to show that y = MA(B), i.e. (B, y) ∈ G(MA).
Since the entries of MA are bounded, and convergence in the Schatten p-norm implies convergence in
the operator norm, for any basis element ei we find that ‖(MA(B))(ei) − (MA(Bn))(ei)‖ = ‖(MA(B −
Bn))(ei)‖ → 0 as n → ∞. Although this in itself would not directly be enough to imply convergence
in Sp in general, as we have assumed that MA(Bn) converges to something, namely y, it follows that y
must be equal to MA(B).

3.2. Approximating a Schur multiplier
Given a Schur multiplier as in the previous section, we are interested in its norm. As we will see in Chapter
5, whenever the underlying Hilbert spaceH is finite-dimensional, we can numerically approximate ‖MA‖p.
In this section we will show that we can approximate ‖MA‖p whenever H is infinite-dimensional with
finite dimensional Schur multipliers, obtained using finite rank projections.

Throughout this section we shall assume H to be a separable infinite-dimensional Hilbert space, and
(ei)∞i=1 to be a fixed orthonormal basis of H. Any elements from Sp(H) we represent as a matrix with
respect to the aforementioned orthonormal basis.

Definition 3.19. For l ∈ N we define pl : H → H as the projection on Span{e1, . . . , el}.

As (ei)∞i=1 is an orthonormal basis, we have that for every x ∈ H : ‖x−plx‖ → 0 as l→∞, see [11]. Note
that we can also write x− plx = (I − pl)x, where I is the identity operator. Moreover, as pl ∈ B(H) as a
finite rank linear map it follows that I − pl ∈ B(H) A similar limit can be found for compact operators,
but before doing so we consider the following lemma for arbitrary finite rank projections. As before, by
Theorem 2.6 any finite rank projection is necessarily bounded, i.e. an element of B(H).

Lemma 3.20. Let q ∈ B(H) be a finite rank projection. Then

‖q − qpl‖ = ‖q(I − pl)‖ → 0 as l→∞.

Proof. We first consider the finite-dimensional subspace qH := {qx | x ∈ H}. Since the case q = 0 is
trivial, we will assume q 6= 0. We first prove it for a projection q of rank 1. Thus, we can take b ∈ qH such
that q is the projection on H, and ‖b‖ = 1. First of all we use our orthonormal basis (ei)∞i=1 and write
b =

∑∞
i=1〈b, ei〉ei, where 1 = ‖b‖2 =

∑∞
i=1|〈b, ei〉|2. Subsequently we have that (I − pl)b =

∑∞
i=l〈b, ei〉ei,

and we see that

lim
l→∞
‖(I − pl)b‖2 = lim

l→∞

∞∑
i=l+1

|〈b, ei〉|2 = 0,

and thus liml→∞‖(I − pl)b‖ = 0. Now let x ∈ H be such that ‖x‖ = 1, and write x =
∑∞
i=1〈x, ei〉ei.

Furthermore, we have that qx = 〈x, b〉b. Combining the two previous statements and using the Cauchy-
Schwarz inequality we find:

‖q(I − pl)x‖2 = |〈(I − pl)x, b〉|2 =

∣∣∣∣∣
∞∑

l+1=1
〈x, ei〉〈ei, b〉

∣∣∣∣∣
2

C.S.
≤

( ∞∑
i=l+1

|〈x, ei〉|2
)( ∞∑

i=l+1
|〈ei, b〉|2

)
≤ ‖x‖2‖(I − pl)b‖2 = ‖(I − pl)b‖2.

Since ‖(I − pl)b‖ → 0 as l→∞ independent of x, we find that

‖q(I − pl)‖ = sup
x∈H
‖x‖=1

‖q(I − pl)x‖ → 0 as l→∞.

Lastly, should the rank of q be larger than 1, we can take an orthonormal basis {b1, . . . , bn} for qH and
write q =

∑n
i=1〈·, bi〉bi. Then, taking the norm and applying the triangle inequality and using the above

result we arrive at the same conclusion.
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We are now ready to prove a similar statement, but for compact operators.

Proposition 3.21. Let T ∈ K(H) be a compact operator. Then

‖T − plTpl‖ → 0 as l→∞.

Proof. First we prove it for self-adjoint T . By Theorem 2.11 we can write T =
∑∞
i=1 λi〈·, fi〉fi, where

λi → 0 as i→∞. Now let F ⊂ N be finite and define

TF =
∑
i∈F

λi〈·, fi〉fi.

We note that ‖T −TF ‖ = supi∈N\F |λi| → 0 as F → N. We will now prove that ‖T −Tpl‖ → 0 as l→∞.

Let ε > 0. By the above we can choose a finite subset F ⊂ N such that ‖T − TF ‖ < ε. Now de-
fine the finite rank projection qF as the projection on Span{ei | i ∈ F} (and so TF qF = TF ). By Lemma
3.20 we can take l sufficiently large such that ‖qF − qF pl‖ < ε

‖T‖ . Now using that TF qF = TF and the
triangle inequality we obtain:

‖T − Tpl‖ = ‖T − TF + TF − TF pl + TF pl − Tpl‖
≤ ‖T − TF ‖+ ‖TF − TF pl‖+ ‖TF pl − Tpl‖
≤ ‖T − TF ‖+ ‖TF qF − TF qF pl‖+ ‖TF − T‖‖pl‖
≤ ‖T − TF ‖+ ‖TF ‖‖qF − qF pl‖+ ‖TF − T‖ · 1
< ε+ ε+ ε = 3ε.

Since the inequality holds for l′ ≥ l as well, we find that ‖T − Tpl‖ → 0 as l → ∞. Lastly, once again
using the triangle inequality we find:

‖T − plTpl‖ = ‖T − Tpl + Tpl − plTpl‖ ≤ ‖T − Tpl‖+ ‖Tpl − plTpl‖
= ‖T − Tpl‖+ ‖T − Tpl‖‖pl‖ = 2‖T − Tpl‖,

and so we find that plTpl → T in the operator norm.

For general (not necessarily self-adjoint) compact operators on T , we can write T = 1
2 (T+T ∗)+ 1

2 (T−T ∗).
Since T ∗ is compact it follows that 1

2 (T +T ∗) is compact, and we note that 1
2 (T +T ∗) is also self-adjoint.

As for the second part, here we instead have ( 1
2 (T − T ∗))∗ = − 1

2 (T − T ∗). However, if we define
S := i

2 (T − T ∗), we see that S∗ = S, i.e. S is self-adjoint as well as compact. Consequently, if we
have proven the proposition for self-adjoint compact operators, by the triangle inequality it follows for
non-self-adjoint operators as well.

Thus, we see that we can approximate compact operators in the operator norm using finite rank compact
operators, namely plTpl. If we consider T as an infinite matrix (indexed by N× N), we can view this as
the upper left l × l submatrix. However, for our purposes we wish to have convergence in the Schatten
norm, which we shall prove below. To this end, we first consider the following lemma:

Lemma 3.22. For all n ∈ N and T ∈ K(H) we have that sn(plTpl) ≤ sn(T ).

Proof. Let l ∈ N be fixed. Now for any n > l, since plTpl is at most of rank l, by definition of the singular
values sn(plTpl) = 0. Now, if n ≤ l, then we have:

sn(plTpl) = inf{‖plTpl − S‖ | dim R(S) < n}
= inf{‖plTpl − plSpl‖ | dim R(S) < n}
≤ inf{‖pl‖‖T − S‖‖pl‖ | dim R(S) < n}
= inf{‖T − S‖ | dim R(S) < n}
= sn(T ).

To see why the second inequality holds, consider the singular value decomposition of plTpl.
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Proposition 3.23. Let p ≥ 1 and T ∈ Sp(H), then ‖T − plTpl‖p → 0 as l→∞.
Proof. For clarity we define Tl := plTpl, which is still compact. First of all, by Lemma 3.23, we find that
Tl ∈ Sp(H) and ‖Tl‖p ≤ ‖T‖p. Now if p =∞, then ‖T −Tl‖p = ‖T −Tl‖ and we are done. Thus, assume
p <∞.

We start by approximating T using finite rank elements from Sp(H). Consider the singular value decom-
position of T , i.e. T =

∑∞
n=1 sn(T )〈·, fn〉gn, for (fn)∞n=1, (gn)∞n=1 orthonormal sequences in H, of which

we emphasise neither are necessarily equal to the fixed (en)∞n=1. Now, for N ∈ N, define:

SN :=
N∑
n=1

sn(T )〈·, fn〉gn.

As a finite sum, clearly SN is an element of Sp(H) for everyN . However, as T−SN =
∑∞
n=N+1 sn(T )〈·, fn〉gn

and
∑∞
n=1 sn(T )p <∞, we find that ‖T − SN‖p → 0 as N →∞.

Now let ε > 0, and take N sufficiently large such that ‖T − SN‖p < ε. By the triangle inequality
we obtain:

‖T − Tl‖p = ‖T − SN + SN − plSNpl + plSNpl − plTpl‖p
≤ ‖T − SN‖p + ‖SN − plSNpl‖p + ‖pl(SN − T )pl‖p
≤ ‖T − SN‖p + ‖SN − plSNpl‖p + ‖T − SN‖p
< 2ε+ ‖SN − plSNpl‖p.

Here ‖pl(SN − T )pl‖p ≤ ‖T − SN‖p by Lemma 3.22. We now turn our attention towards SN − plSNpl.
We note that SN − plSNpl has at most rank 2N , i.e. for n > 2N : sn(SN − plSNpl) = 0. Consequently:

‖pl(SN − plSNpl)pl‖pp =
∞∑
n=1

sn(SN − plSNpl)p =
2N∑
n=1

sn(SN − plSNpl)p.

Furthermore, by Proposition 3.21 we can take l large enough such that ‖SN − plSNpl‖ < ε
2N1/p (as well

as for l′ ≥ l). However, as s0(SN −plSNpl) = ‖SN −plSNpl‖, and s0(SN −plSNpl) is the largest singular
value, we find:

‖pl(SN − plSNpl)pl‖pp =
2N∑
n=1

sn(SN − plSNpl)p <
2N∑
n=1

εp

2N = εp.

That is, ‖SN−plSNpl‖p < ε, and combined with the earlier found inequality we then find that ‖T−Tl‖p <
3ε. As this holds for larger l as well, we thus find that liml→∞‖T − Tl‖p = liml→∞‖T − plTpl‖p = 0.

Thus, any element T from Sp(H), with H infinite-dimensional, we can approximate using the finite-rank
operators plTpl, where we let l→∞. Using this, we can now prove the following proposition:
Proposition 3.24. Let MA be a Schur multiplier on Sp(H), and define Al = (ai,j)li,j=1, i.e. the left
upper l × l submatrix of A. Considering MAl

as a Schur multiplier on Sp(plH), we have:

‖MA‖p = sup
l∈N
‖MAl

‖p.

Proof. Let us define M (l)
A : Sp(H) → Sp(H) by M (l)

A (T ) := MA(plTpl). Then ‖MAl
‖p = ‖M (l)

A ‖p and
‖M (l)

A ‖p ≤ ‖MA‖p, where the latter inequality can be obtained using the definition of the operator norm
and Lemma 3.22. Thus, ‖MAl

‖p ≤ ‖MA‖p. It remains to show that liml→∞‖MAl
‖p = ‖MA‖p.

Recall that ‖MA‖p = sup‖T‖p≤1‖MA(T )‖p. Now let ε > 0 arbitrarily and take T 6= 0 be such that
‖MA(T )‖p ≥ ‖MA‖p− ε. As MA and the norm are continuous, and Tl → T by Proposition 3.23, we find:

lim
l→∞
‖MAl

(Tl)‖p = lim
l→∞
‖M (l)

A (Tl)‖p = lim
l→∞
‖MA(Tl)‖p = ‖MA(T )‖p ≥ ‖MA‖p − ε,

where we used that M (l)
A (Tl) = MA(Tl) as projections are idempotent. Since this holds for all ε > 0, we

conclude that liml→∞‖MAl
‖p = ‖MA‖p.

We emphasize that for l ∈ N MAl
is a finite-dimensional Schur multiplier on Sp(plH) ∼= Ml(C).
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3.3. Amplifying Schur multipliers and Pisier’s conjecture
In this section we will introduce Pisier’s conjecture. We first consider the following definition:

Definition 3.25. Let m ∈ N and A ∈Mn(C). Now define the map Φ(m) : Mn(C)→Mnm(C) by

(Φ(m)(A))i,j = Ab i
m c,b

j
m c
.

That is, each entry gets replaced by an m×m block consisting of that element. We say that Φ(m)(A) is
the matrix A amplified m times. For shorthand we will also denote Φ(m)(A) with A(m) and the entries
with a(m)

i,j . Equivalently it is defined for infinite matrices.

Example 3.26. Let m = 2 and A =
(

1 1
2 4

)
. Then

Φ(n)(A) =


1 1 1 1
1 1 1 1
2 2 4 4
2 2 4 4


We use this to “amplify” a Schur multiplier, i.e. given a Schur multiplier MA we can consider MA(m)

for m ∈ N. However, what is the underlying (separable) Hilbert space in this case? If dimH = n < ∞,
we know that H ∼= Cn, and if dimH = ∞, then H ∼= `2 [11], and so without loss of generality we can
assume H to be of the latter forms. Consequently, when considering MA(m) the underlying Hilbert space
is respectively (Cn)m = Cnm and `2. To see that MA(m) is actually a Schur multiplier as well, by the
triangle inequality we have that ‖MA(m)‖ ≤ m2‖MA‖. We now consider the following definition:

Definition 3.27. Let p ≥ 1 and let MA be a bounded Schur multiplier on Sp(H). If supm∈N‖MA(m)‖ <
∞, then we define the completely bounded norm2 of MA as

‖MA‖cb := sup
m∈N
‖MA(m)‖.

At last, we now state the conjecture:

Conjecture 3.28. Let 1 ≤ p ≤ ∞ and H be a Hilbert space. We now consider the following statement:

All Schur multipliers on Sp(H) are completely bounded.

Pisier [10] conjectures that the above statement is false for 1 < p < ∞ and p 6= 2, i.e. there exists a
Schur multiplier on Sp(H) that is not completely bounded.

On the other hand, as Pisier proves, for p = 1, 2 and ∞ the statement actually holds. Moreover, the
completely bounded norm in this case is equal to the norm for any Schur multiplier. We will take a short
look at p = 2.

Theorem 3.29. For p = 2, and MA a Schur bounded multiplier, we have that Pisier’s statement holds,
and ‖MA‖cb = ‖MA‖2 = sup|ai,j |.

Proof. We first consider the finite-dimensional Schur multiplier MAl
as in Proposition 3.24. Now ‖·‖2 is

induced by the Frobenius inner product and the matrices ei,j with a 1 at position (i, j) and 0 elsewhere
form an orthonormal basis. Consequently, for an element of Sp(H) represented by the matrix B we have:

‖B‖2
2 =

n∑
i,j=1
‖bi,jei,j‖2 =

n∑
i,j=1
|bi,j |2‖ei,j‖2 =

n∑
i,j=1
|bi,j |2. (3.6)

Now set αl := sup1≤i,j≤l|a|i,j . Clearly, for any m ∈ N we still have that αl = sup1≤i,j≤lm|a
(m)
i,j |. However,

for any matrix B ∈Mnm(C), by definition of the Schur product we obtain:

‖M
A

(m)
l

(B)‖2
2

(3.6)=
n∑

i,j=1
|a(m)
i,j bi,j |

2 ≤
n∑

i,j=1
α2
l |bi,j |

(3.6)= α2
l ‖B‖2

2.

2Although not Pisier’s original definition of the completely bounded norm, he shows that this definition is equivalent.
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Taking the square root, we find that ‖M
A

(m)
l

(B)‖2 ≤ αl‖B‖2
2, and thus ‖M

A
(m)
l

‖2 ≤ αl. However, since

there exists an entry a(m)
i′,j′ such that αl = |a(m)

i′,j′ |, we find that ‖M
A

(m)
l

(ei′,j′)‖2 = |a(m)
i′,j′ | · 1 = αl‖ei′,j′‖2,

and thus ‖M
A

(m)
l

‖2 ≥ αl. That is, ‖M
A

(m)
l

‖2 = αl for all m ∈ N. Lastly, combining Proposition 3.24
with the fact that αl ≤ supi,j |ai,j | for any m ∈ N we obtain:

‖MA(m)‖2 = sup
l∈N
‖M

A
(m)
l

‖2 = sup
i,j∈N
|ai,j |.





4
Inequalities for ‖M

A(m)‖p.

In this chapter we will give some (in)equalities and reductions regarding the conjecture for 1 ≤ p ≤ ∞.
Throughout this chapter we will assume we work with finite-dimensional Hilbert spaces H, and can thus
assume H = Cn for some n ∈ N and Sp(H) = B(H) ∼= Mn(C). However, as we can approximate MA

and its amplifications using finite-dimensional Schur multipliers, the (in)equalities found will still hold
for infinite-dimensional H (but maxima turn into suprema). Furthermore, A will be an arbitrary matrix
in Mn(C), unless explicitly stated otherwise.

Recall from the previous chapter that ‖MA(m)‖p = α := maxi,j |ai,j | for any m if p = 2. However,
for a non-trivial p, such as p = 4, this need not be the case. Firstly, observe that ‖MA(m)‖p ≥ α, which
follows easily from considering B = ei′,j′ where α = |a(m)

i′,j′ |. To show this can also be a strict inequality,
we give the following example for p = 4 and n = 2:

Example 4.1. Let A =
(

1 1
1 1

2

)
and B =

(
−3 1
1 1

)
. Using Proposition 3.8 one can calculate easily

that ‖B‖4
4 = 112 and ‖MA(B)‖4

4 = 114 1
16 . That is, we find that ‖MA‖4 > 1, whereas 1 is the maximal

element of A in modulus.

The above example shows that p = 4 is indeed a non-trivial case. So far we have that the maximal
absolute entry of A is a lower bound for ‖MA(m)‖. However, we can give a stronger lower bound for
‖MA(m)‖, for which we consider the following proposition:

Proposition 4.2. For any m ∈ N and 1 ≤ p ≤ ∞ we have that ‖MA‖p ≤ ‖MA(m)‖p.

Proof. Recall that ‖MA‖p = sup‖B‖p=1‖MA(B)‖p, and recall from 2.4 that in this case the unit sphere
is compact, and thus we can take B ∈Mn(C) such that ‖MA(B)‖p = ‖MA‖p. We shall now construct a
B′ ∈Mnm(C) from B.

We partition B′ into m × m index by B′i,j , where 1 ≤ i, j ≤ n. Consider an entry bi,j of B and the
associated m×m block B′i,j in B′. Now set the entry at (1, 1) of B′i,j to bi,j , and the rest 0. For example,
for m = 2 and B as below we would have:

B =
(

1 2
3 1

)
, B′ =


1 0 2 0
0 0 0 0
3 0 1 0
0 0 0 0

 .

Claim: ‖B′‖p = 1 and ‖MA(B)‖p = ‖MA(m)(B′)‖p = ‖MA(B)‖p.
To show the first part, we once more turn to Proposition 3.8. Looking at the m ×m block of (B′)∗B′
at position (i, j), we have that this is equal to

∑n
k=1(B′)∗i,kB′k,j . But since all of the blocks are diagonal

matrices with only one non-zero entry at (1, 1), we see that the result is a block with
∑n
k=1 bk,ibk,j at

position (1, 1), and 0 elsewhere. However, these are also equal to the entries of B∗B at position (i, j). To
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illustrate this with the prior example, we would have:

B∗B =
(

10 5
5 5

)
and (B′)∗B′ =


10 0 5 0
0 0 0 0
5 0 5 0
0 0 0 0

 . (4.1)

If we diagonalize B′ for instance, then we would find that for any B ∈Mn(C), the non-zero singular values
of B and B′ are in fact equal. Consequently, ‖B′‖pp = ‖B‖pp = 1. Furthermore, if we were to construct
a matrix in Mnm(C) from MA(B) similarly as to how we constructed B′ from B, one observes that this
matrix is equal to MA(n)(B′). By the previous equality we then find that ‖MA(m)(B′)‖ = ‖MA(B)‖, and
thus ‖MA‖p ≤ ‖MA(m)‖p.

Corollary 4.3. For arbitrary m,m′ ∈ N such that m ≤ m′ we can similarly embed a (unit) B ∈Mnm(C)
into B′ ∈Mnm′((C)) and repeat the previous proof to find ‖MA(m)‖p ≤ ‖MA(m′)‖p as well.

Thus, we find that ‖MA(m)‖p can only increase with respect to m. Next we look at how we can use
unitary transformations to reduce the problem of finding ‖MA(m)‖p for m ≥ 2. Recall that a matrix
U ∈Mn(C) is unitary if and only if U∗U = UU∗ = I. This brings us to the following lemma:

Lemma 4.4. Let B,U ∈Mn(C), where U is a unitary matrix. Then ‖UB‖p = ‖BU‖p = ‖B‖p.

Proof. This is easily verified using the singular values. First of all, we have:

sn(UB) = inf{‖UB − S‖ | S ∈ K(H) and rank(S) < n}
= inf{‖UB − US‖ | S ∈ K(H) and rank(S) < n}
= inf{‖U(B − S)‖ | S ∈ K(H) and rank(S) < n}
= inf{‖B − S‖ | S ∈ K(H) and rank(S) < n}
= sn(B), (4.2)

where we use that U is unitary and {S ∈ K(H,H ′) | and rank(S) < n} = {US ∈ K(H,H ′) |
and rank(S) < n} as a result of U being bijective. Consequently, we find that ‖UB‖p = ‖B‖p. That
‖BU‖p = ‖B‖p holds as well follows similarly.

Remark 4.5. Since U∗ is a unitary matrix, the same holds for U∗.

However, the same will not be true in general when we consider ‖MA(m)(UB)‖pp. Instead, there is an
extra requirement for U :

Lemma 4.6. Let m ∈ N and B,U ∈ Mnm(C), where B 6= 0. If we partition U into m ×m blocks, and
the diagonal blocks of U are unitary, then we have

‖MA(m)(UB)‖p
‖UB‖p

= ‖MA(m)(BU)‖p
‖BU‖p

= ‖MA(m)(B)‖p
‖B‖p

.

Proof. Note that U is unitary, and thus from lemma 4.4 it directly follows that the denominators are
equal, and thus it only remains to show that ‖MA(m)(UB)‖p = ‖MA(m)(BU)‖p = ‖MA(m)(B)‖p. Claim:
we have that MA(m)(UB) = UMA(m)(B). We first partition all nm × nm matrices into m ×m blocks,
and look at MA(m)(UB) = A(m) ◦ (UB). We write U and B as

U =

U1
. . .

Un

 , B =

B1,1 . . . B1,n
...

. . .
...

Bn,1 . . . Bn,n

 ,

where the Ui are unitary. Subsequently, for the product UB we have:

UB =

U1B1,1 . . . U1B1,n
...

. . .
...

UnBn,1 . . . UnBn,n

 .
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We look at A(m) in more detail. By definition of A(m), the blocks are filled entirely with an entry of A.
That is, we have:

A(m) =


A

(m)
1,1 . . . A

(m)
1,n

...
. . .

...
A

(m)
n,1 . . . A

(m)
n,n

 , where A
(m)
i,j =

ai,j . . . ai,j
...

. . .
...

ai,j . . . ai,j

 = ai,jJm.

It is important to note the distinction that ai,j is a scalar here, whereas A(m)
i,j is in fact an m×m block.

Recall that Jm is the m×m matrix filled entirely with ones. We now look at the Schur product of A(m)

and UB. Since this now comes down to taking the Schur product of the blocks at the same position, we
finally obtain:

A(m) ◦ (UB) =


A

(m)
1,1 ◦ (U1B1,1) . . . A

(m)
1,n ◦ (U1B1,n)

...
. . .

...
A

(m)
n,1 ◦ (UnBn,1) . . . A

(m)
n,n ◦ (UnBn,n)

 (4.3)

=

U1(a1,1B1,1) . . . U1(a1,nB1,n)
...

. . .
...

Un(an,1Bn,1) . . . Un(an,nBn,n)

 = U(A(m) ◦B). (4.4)

Here A(m)
i,j ◦ (UiBi,j) = ai,jJm ◦ (UiBi,j) = ai,j(UiBi,j) = Ui(Ai,jBi,j), as ai,j is a scalar and Jm was the

identity element under Schur multiplication. Thus, we have found that A(m) ◦ (UB) = U(A(m) ◦ B) =
UMA(m)(B). As MA(m)(B) is simply another matrix, by Lemma 4.4 we have that ‖MA(m)(UB)‖p =
‖UMA(m)(B)‖p = ‖MA(m)(B)‖p. For ‖MA(m)(BU)‖p the result follows analogously.

Remark 4.7. In particular, if B is such that ‖MA(m)‖p = ‖M
A(m) (B)‖p

‖B‖p
, i.e. a maximum, then we can

multiply it with unitary matrices as above and still maintain a maximum.

We now combine Lemma 4.6 and Proposition 2.13 to prove the following theorem:

Theorem 4.8. Let m ∈ N and B ∈ Mnm(C). Then we can transform B into B′ ∈ Mnm(C) such that
‖M

A(m) (B)‖p

‖B‖p
= ‖M

A(m) (B′)‖p

‖B′‖p
, and if we partition B′ into m ×m blocks, then in each row and column at

least one block will be a diagonal matrix with real entries.

Proof. Throughout this proof we shall assume all nm×nm matrices to be partitioned into m×m blocks.
Now consider a block Bi,j of B at position (i, j). Using the polar decomposition we can write Bi,j = UiSi,
for Ui a unitary m×m matrix, and Si a self-adjoint m×m matrix. Now set

U =



Im
. . .

U∗i
Im

. . .
Im


∈ Mnm(C), (4.5)

where Im is the identity m×m block and U∗i is the i-th diagonal block. Now set B′ := UB. By Lemma
4.6 we have that ‖MA(m) (B)‖p

‖B‖p
= ‖M

A(m) (B′)‖p

‖B′‖p
. Furthermore, we have:

B′ =



B1,1 . . . . . . B1,n
...

...
U∗i Bi,1 . . . U∗i Bi,j . . . U∗i Bi,n

...
...

Bn,1 . . . . . . Bn,n

 =



B1,1 . . . . . . B1,n
...

...
U∗i Bi,1 . . . Si . . . U∗i Bi,n

...
...

Bn,1 . . . . . . Bn,n

 .



30 4. Inequalities for ‖MA(m)‖p.

That is, B′i,j has now become a self-adjoint m ×m matrix. Note that since we multiply the entire i-th
row with U∗i , the other blocks there change as well. We consider B′ and this block. By the spectral
theorem we can decompose B′i,j into U ′i,jDi,j(U ′i,j)∗, for U ′i,j a unitary m×m matrix and Di,j a diagonal
m ×m matrix. Similar as in (4.5) we construct U ′, i.e. where U ′i,j is the i-th diagonal element. Lastly
we set B′′ = U ′B′(U ′)∗. Then by Lemma 4.6 twice we see that ‖MA(m) (B)‖p

‖B‖p
= ‖M

A(m) (B′′)‖p

‖B′′‖p
, by writing

out multiplication we find that B′′i,j is now a diagonal block. Since we change the other blocks in row i
and column j we can’t do this for all blocks simultaneously, but doing it for exactly one block in each
column and row (e.g. the diagonal blocks), we can guarantee that in the resulting matrix B′′ in each row
and column at least one block is a diagonal matrix.

Remark 4.9. In particular, when looking for a B ∈Mnm(C) such that ‖MA(m) (B)‖p

‖B‖p
= ‖MA(m)‖p, we can

assume without loss of generality that the blocks on the diagonal of B are diagonal matrices themselves.

Lastly, we give a proposition that gives a relation between ‖MA(B)‖p and ‖MA(m)(B)‖p for particular
matrices B.

Proposition 4.10. Let m ∈ N and let B ∈ Mnm(C) with B 6= 0 have the property that every block is a
multiple of Im, i.e. Bi,j = βi,jIm for βi,j ∈ C. If we define C := (βi,j)ni,j=1 ∈Mn(C), then

‖MA(m)(B)‖p
‖B‖p

= ‖MA(C)‖p
‖C‖p

.

Proof. The reasoning is similar to that used in the proof of Proposition 4.2. If we now consider B∗B,
we have that (B∗B)i,j =

∑n
k=1 ck,ick,jIm, i.e. each block at position (i, j) of B∗B is the identity matrix

multiplied by the entry of C∗C at position (i, j). Consequently, we find that the singular values of B are
those of C, but now repeated m times. For 1 ≤ p <∞:

‖B‖pp =
∞∑
k=1

spk(B) = m

∞∑
k=1

spk(C) = ‖C‖pp.

Thus, ‖B‖p = m1/p‖C‖p. For p = ∞ we simply find ‖B‖p = ‖C‖p. Similarly, for 1 ≤ p < ∞ one finds
that ‖MA(m)(B)‖p = m1/p‖MA(C)‖p, and ‖MA(m)(B)‖p = ‖MA(C)‖p if p = ∞. Lastly, substitution
these equalities in ‖MA(m) (B)‖p

‖B‖p
we find the desired result.

We note that if we can find B ∈ Mnm(C) in the above form such that ‖MA(m)‖p = ‖MA(m)(B)‖p, then
by the prior proposition and Proposition 4.2 it would follow that ‖MA‖p = ‖MA(m)‖p. If we are able to
do this for all m, this would mean that ‖MA‖p = ‖MA‖cb and thus disprove Pisier’s conjecture.
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Computational results

5.1. Approximating the operator norm
In this chapter we will look at the method for numerically approximating the operator norm of a finite
dimensional Schur multiplier, given a matrix A ∈ Mn(C). Recall that in this case for Schur multiplier
MA we have ‖MA‖p = maxB 6=0

‖MA(B)‖p

‖B‖p
. Thus, we have arrived at an optimization problem, where we

wish to maximize the quotient ‖MA(B)‖p

‖B‖p
in the domain Mn(C) ∼= Cn2 .

A first concern is however, how do we calculate sn(B) for an arbitrary matrix B in order to calculate
‖B‖p? As we have seen in Chapter 3 as well, the singular values coincide with the square roots of the
eigenvalues of B∗B. Thus, one possibility is computing the eigenvalues of B∗B, for which many algo-
rithms such as the QR algorithm [8] exist. However, this is generally computationally expensive. If we
instead only consider even p, then by Proposition 3.8 we have an easy way of computing ‖B‖p, namely
‖B‖p = (tr((B∗B)p/2))1/p, where computing tr((B∗B)p/2) requires only elementary matrix operations,
and taking the p-th root is a fast operation as well. Thus, we will only consider even p, i.e. p = 2k ∈ N,
and we will mostly focus on p = 4 during the computations.

5.1.1. A function to maximize
Next we have to choose a method to maximize ‖MA(B)‖p

‖B‖p
on Mnm(C) for even p. Note that maximizing

‖MA(B)‖p

‖B‖p
is equivalent with maximizing ‖MA(B)‖p

p

‖B‖p
p

, as x 7→ xp is increasing, and we choose the latter to
save on computing the p-th root until the end. For a given A ∈Mn(C) and m ∈ N, for B ∈Mnm(C) we
now define:

fA(m)(B) :=
‖MA(B)‖pp
‖B‖pp

= tr((MA(B)∗MA(B))p/2)
tr((B∗B)p/2)

.

We now make a couple of observations. First of all, we know that fA(m) is bounded, since fA(m) ≥ 0 and
fA(m)(B) ≤ ‖MA(m)‖ <∞, where ‖MA(m)‖ <∞ as any Schur multiplier is bounded.
Secondly, we have that tr((MA(B)∗MA(B))p/2 and tr((B∗B)p/2) are polynomials with respect to the
entries of B. Since polynomials are smooth, and we know that ‖B‖p 6= 0 for B 6= 0, outside of a
neighborhood of 0, we have that fA(m) is smooth, and the denominator is non-zero.

5.1.2. Methods for maximization
We now choose a method for maximizing fA(m) . If we exclude a small neighborhood of 0 from our domain,
the gradient of f exists as f is then smooth. A common method for maximizing a differentiable function is
the iterative method gradient ascent, where given some initial vector B we move into the direction of the
gradient and obtain a higher value for fA(m) . However, since higher derivatives of fA(m) exist as well, we
may also employ more advanced algorithms, such as the Broyden–Fletcher–Goldfarb–Shanno algorithm
[8] (BFGS). The BFGS algorithm is a minimization algorithm that minimizes a (possibly) non-linear
function f on an unconstrained real domain, which performs well if f is at least twice differentiable. As
f takes complex arguments, we split each entry into its real and imaginary part, i.e. z = x + iy, which

31



32 5. Computational results

doubles the amount of variables. As it is a minimization algorithm, we shall instead apply it to −fA(m) .
Similar to gradient descent, the BFGS algorithm requires an initial guess, and hopefully converges to a
local minimum. In order to obtain a global minimum, we make a number of initial random guesses and
apply the BFGS algorithm to obtain a local minimum. Lastly, we take the minimum of all the local
minima produced.

5.1.3. Implementation
We now construct the pseudocode for the implementation. Here we assume A ∈ Mn(C), and p is even.
Furthermore, we assume that we have an implementation of the BFGS algorithm. The pseudocode will
now be as follows:

Algorithm 1 Operator norm approximation
1: procedure norm(B) . p-th power of the norm
2: Bstar ← conjugate(transpose(B))
3: C ← Bstar ·B
4: return trace(Cp/2)
5:
6: procedure schurproduct(B)
7: C ← zeros(n, n) . n× n matrix filled with zeros
8: for i, j = 1, . . . , n do
9: Ci,j ← Ai,j ·Bi,j
10: return C
11:
12: procedure f(B)
13: a← norm(schurproduct(B))
14: b← norm(B)
15: return a/b

16:
17: procedure operatornorm . Approximate the operator norm
18: result← 0 . n× n matrix filled with zeros
19: for i = 1, . . . , n2 do
20: B ← random(n, n) . Random complex n× n matrix
21: temp = −BFGS(−f, B)
22: if temp > result then
23: result← temp

24: return result(1/p)

We wish to approximate ‖MA(m)‖ as well for m ∈ N. To that extent, A(n) is easily constructed as follows:

Constructing A(m)

1: procedure amplify(m)
2: Anew = zeros(nm, nm)
3: for i, j = 1, . . . , nm do
4: (Anew)i,j ← Abi/mc,bj/mc

5: n← n ·m
6: A← Anew

After amplifying A we can approximate the norm of the Schur multiplier with Algorithm 1 as well. How-
ever, as this increases the number of variables we can expect to need more iterations to reach similar
results as in the case of smaller matrices. Hence, in algorithm 1 we perform the BFGS algortihm n2

times, as this scales with the number of variables.

To actually implement the program, we turn to the programming language Python 3. To work more
easily with matrices we use the package NumPy [9], and from the package SciPy [6] we employ the use
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of the BFGS algorithm. A full implementation in Python 3.6.3 can be found in the appendix.
However, up until now, we have not used the reductions we made in Chapter 4 when approximating
‖MA(m)‖p, and in particular Theorem 4.8. By Remark 4.9, we can at the least assume that the maximum
is assumed in a matrix where the diagonal blocks (with the size of these blocks depending on the amplifi-
cation) are diagonal blocks. Thus, instead of takingMnm(C) as the domain, we can instead only consider
the matrices in the aforementioned form. That is, if we again consider the matrix entries are variables
themselves, we need not consider those outside of the diagonal in the diagonal blocks (since these are
zero). This lowers the amount of variables by nm2 − nm = nm(m− 1), which presumably increases the
accuracy of the approximation, whereas the new variable count is thus n2m2−nm(m−1). To implement
this, we could for instance let fA(m) take a vector in Cn2m2−nm(m−1) and transform it into a matrix of
the previously mentioned form. As the pseudocode for this transformation would not be insightful we
have chosen to omit it.

5.1.4. Time Complexity
We take a quick look at the time complexity when computing ‖MA(n)‖p for A ∈Mn(C) and m ∈ N.
Firstly, we look at the time complexity of evaluating fA(m)(B), for some B ∈ Mnm(C). Whereas taking
the Schur product is O((nm)2), multiplying the matrices takes O((nm)3) time. Thus, we find that in
total computing fA(m)(B) takes O((nm)3) time. Secondly, when minimizing a function of k variables the
BFGS algorithm has a time complexity of O(k2). In both the initial and reduced amount of variables case
this is equal to O((nm)2). This does not take into account the time complexity of the function evaluation,
but as an iterative algorithm with a maximum amount of iterations this adds O((nm)3) by the previous
calculation. Thus, we find that executing the BFGS algorithm a single time altogether takes O((nm)3)
time as well. Lastly, since we perform the BFGS algorithm (nm)2 times, we find that the total time
complexity of the algorithm is O((nm)5). Thus, it would be infeasible to employ this implementation for
large n or m, whereas the most time is spent on computing fA(m)(B).

5.2. Results
In this section we present and interpret the results produced by the implementation from the previous
section.

5.2.1. A fixed matrix
We begin with the same 2× 2 matrix from Example 4.1, i.e.

A =
(

1 1
1 1

2

)
.

In the example we have already seen that the norm will at least be
( 114.25

112
)1/4 ≈ 1.0045, which the imple-

mentation will presumably confirm as well. Although we approximate the operator norm using complex
matrices, on top of this we can also try to approximate it with real matrices. Whereas the operator norm
can only be equal or less when we restrict the domain to real matrices, should it be equal in both cases
then the approximation using real matrices might be better due to there being half the variables. We
then of course take the largest value of both approximations. As A is a real matrix we speculate that
fA(m) assumes its maximum for a real matrix.

In the table below the results of running the algorithm can be seen for m = 1 . . . 4. In Proposition
4.2 and the subsequent remark we saw that ‖MA(m)‖4 can only increase with respect to m, and to that
end we consider the difference ‖MA(m)‖4 − ‖MA‖4 as well. Furthermore, since the amount of variables
is smallest for m = 1, we can expect this approximation to be the best. Lastly, the total run time was
approximately 4 minutes1, whereas the majority of the time is spent on the calculations for larger m.

1These computations were performed on a Intel Core i7-7700 @ 3.60GHz



34 5. Computational results

Table 5.1: Results for the default algorithm. Run time: 4 minutes.

m ‖MA(m)‖4 ‖MA(m)‖4 - ‖MA‖4
1 1.01311512 0
2 1.01311512 −1.9984 · 10−15

3 1.01311512 −7.3053 · 10−14

4 1.01311512 −2.1116 · 10−13

5 1.01311512 −1.3327 · 10−12

The first and foremost observation is that ‖MA(m)‖4 seems to be equal for m = 1 . . . 5. Whilst it is
important to remember that we have only approximated the operator norms (from below), with reasonable
certainty we can say the first nine digits are correct. Furthermore, as we will investigate later, it might
also only be the case for this particular matrix A.
From the second column we see that our approximations for the norms are in fact decreasing. As Remark
4.3 gives us that the operator norm cannot decrease, we can deduce that this is the results of numerical
errors or a (slightly) worse approximation. Here the latter is easily attributed due to working with more
variables, and the former due to the amount operations increasing. Lastly, although not presented in the
table, fA(m) achieves its maximum for real matrices, as well as for complex matrices.

We now do the same using the algorithm with the reduced variable count as discussed in Subsection
5.1.3, i.e. we only look at matrices where the m timesm diagonal blocks are diagonal matrices, reducing
the variable count and hopefully improving the algorithm. The results can be seen in the tables below.

Table 5.2: Results for the algorithm with the reduction in variables. Run time: 4 minutes.

m ‖MA(m)‖4 ‖MA(m)‖4 - ‖MA‖4
1 1.01311512 0
2 1.01311512 −6.6613 · 10−16

3 1.01311512 −7.3275 · 10−15

4 1.01311512 −7.9936 · 10−14

5 1.01311512 −2.8422 · 10−14

Although the approximations seem to be identical with those of table 5.1, the second column reveals this
not to be the case. On the other hand, as both algorithms are identical for m = 1 and only 4 variables
are involved, it is no surprise that the approximations for ‖MA‖4 are identical. However, in the second
column we see that the difference with ‖MA‖4 grows less as m increases. If we are once more willing to
accept for now that the operator norm does not change, then we see that the small errors grow slower
than in the previous case, which too can be attributed to the amount of variables present. As the run
times are similar, we prefer this algorithm over the first one.

Seeing the previous results, one may wonder if this is due to A being a self-adjoint matrix. To this
end, we consider the following (arbitrarily chosen) non-self-adjoint matrix:

A =

 1 2 2
−2 1 3
0 2 −2


This in turns yields the following results:

Table 5.3: Results for the algorithm with the reduction in variables. Run time: 20 minutes.

m ‖MA(m)‖4 ‖MA(m)‖4 - ‖MA‖4
1 3.04915498 0
2 3.04915498 −8.0028 · 10−11

3 3.04915498 −1.5293 · 10−10

4 3.04915498 −2.8443 · 10−10

5 3.04915498 −4.8709 · 10−10
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Here too we see that the approximations are equal in the first 9 digits, and worsen as we increase m.
That is, for this non-self-adjoint matrix we see that ‖MA(m)‖4 does not grow either with m. However,
compared to the results of Table 5.2 the errors are worse, which we can attribute to working with larger
matrices. Lastly, one may also note that the run time is 5 times as large, which is in line with what we
found in Subsection 5.1.4.

5.2.2. Random matrices
To gain some more insight as to whether ‖MA(m)‖4 does not grow when m increases, we repeat the
above procedure for a number of random complex matrices of varying sizes. As mentioned earlier, the
algorithm scales poorly in terms of n and m, and therefore we will only consider some smaller n and
m. For each n = 2, . . . , 4 we take N random complex matrices A and for each of these we approximate
‖MA(m)‖4 for some m. In the table below we list the averages of ‖MA(m)‖4 for these matrices and if for
any particular matrices ‖MA(m)‖4 is larger ‖MA(m′)‖4 for any m ≥ m′, i.e. it increases. As for some
combinations of n and m the run times become unreasonable, we skip these.

Table 5.4: Average of ‖MA(m)‖4 for random complex matrices. Run time: 3 hours.

n N ‖MA‖4 ‖MA(2)‖4 ‖MA(3)‖4
2 50 1.080694501430 1.080694501430 1.080694501423
3 50 1.148449704359 1.148449704313 -
4 10 0.255923647109 0.255923647073 -

In particular, we have that ‖MA(m)‖4 does not grow when m grows for any ‖MA‖ that we used, and
instead stay constant (up to a small numerical error). This strengthens our suspicions that for for any
Schur multiplier and p = 4 the operator norm does not grow when we amplify the Schur multiplier.
Lastly, we can do the same for other even p a well, for instance p = 6 and p = 8. The results can be seen
below:

Table 5.5: Average of ‖MA(m)‖6 and ‖MA(m)‖8 for random complex matrices. Run time: 2 hours.

n N ‖MA‖6 ‖MA(2)‖6 ‖MA(3)‖6 ‖MA‖8 ‖MA(2)‖8 ‖MA(3)‖8
2 20 1.04849944 1.04849944 1.04849944 1.05123843 1.05123843 1.05123843
3 20 1.13260095 1.13260095 - 1.13673182 1.13673049 -
4 5 1.28387169 1.28387169 - 1.29026375 1.29026375 -

For no combination of Schur multiplier and p did the norm increase when amplified.

5.2.3. Computations for arbitrary p

Before we chose to approximate ‖MA‖4 for even p ∈ N, as the elementary matrix operations involved
allowed somewhat reasonable run times. However, as mentioned in the beginning of the chapter, algo-
rithms exist that can directly approximate the singular values of a matrix. Moreover, NumPy contains an
implementation of such an algorithm. Although the time complexity involved for computing the singular
values is the same as for matrix multiplication, namely O(n3) (for square matrices), the computational
cost is generally higher and therefore we can expect the run times to be larger.
Now, for B ∈ Mn(C) we can compute ‖B‖p by definition for any 1 ≤ p ≤ ∞. As done earlier in this
chapter, we can use the BFGS algorithm in an attempt to approximate ‖MA(m)‖p, where we now instead
define fA(m)(B) := ‖MA(B)‖p

p

‖B‖p
p

. One problem that might arise is that fA(m) might not be twice differen-
tiable outside of zero for all p, which in turn could lead to a worse performance of the BFGS algorithm.
Nevertheless, we performed a small series of computations with the same matrices used in tables 5.2 and
5.3. The results can be seen in Table 5.6 and 5.7 respectively.
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Table 5.6: Results for the algorithm where the singular values where calculated. Run time: 20 minutes.

m ‖MA(m)‖3 ‖MA(m)‖3.5 ‖MA(m)‖4.5 ‖MA(m)‖5
1 1.00555816 1.00941559 1.01653545 1.01965451
2 1.00555816 1.00941559 1.01653545 1.01965451
3 1.00555816 1.00941559 1.01653545 1.01965451
4 1.00555816 1.00941559 1.01653545 1.01965450

Table 5.7: Results for the algorithm where the singular values where calculated. Run time: 40 minutes.

m ‖MA(m)‖3 ‖MA(m)‖3.5 ‖MA(m)‖4.5 ‖MA(m)‖5
1 3.00876850 3.02718405 3.07097511 3.09124261
2 3.00876849 3.02718405 3.07097511 3.09124260
3 3.00876849 3.02718405 3.07097511 3.09124260

To our surprise, here too we see that ‖MA(m)‖p does not seem to grow as m grows. In fact, much like
before, the approximations only worsen. What we do see, is that ‖MA(m)‖p grows with respect to p.
Furthermore, the run times are significantly longer as well, as was to be expected.
Similar to what we did in Subsection 5.2.2, we can also perform the above computations for a number of
random matrices. However, due to the added computational cost, we are more restricted in terms of the
sizes of matrices we work with. The results can be seen in Table 5.8.

Table 5.8: Average of ‖MA(m)‖p for random complex matrices with various p. Run time: 2.5 hours.

n N ‖MA‖3 ‖MA(2)‖3 ‖MA(3)‖3 ‖MA‖3.5 ‖MA(2)‖3.5 ‖MA(3)‖3.5
2 10 1.02609799 1.02609799 1.02609799 1.02748576 1.02748576 1.02748576
3 10 1.15783284 1.15783284 - 1.15800175 1.15800175 -

Table 5.8 continued

‖MA‖4.5 ‖MA(2)‖4.5 ‖MA(3)‖4.5 ‖MA‖5 ‖MA(2)‖5 ‖MA(3)‖5
1.03092012 1.03092012 1.03092012 1.03260235 1.03260235 1.03260235
1.15856526 1.15856526 - 1.15990010 1.15982128 -

Once more, for not a single Schur multiplier we have that ‖MA(m)‖p increases in m.

5.3. New conjecture and further studies
We look back to the results of the previous section. In none of the cases has the norm of a Schur multiplier
increased when amplified for small m, and instead stayed constant. Based on these results, extending n
and m to all natural numbers, we pose the following conjecture:

Conjecture 5.1. Given a Schur multiplier the Schatten p-norm for 1 ≤ p ≤ ∞ does not change when it
is amplified, i.e. ‖MA‖p = ‖MA‖cb.

That is to say, we conjecture that Pisier’s conjecture does not hold. We emphasize that Conjecture 5.1 is
more strongly supported for even p, as we have performed more computations for this case, and in partic-
ular p = 4. Although the results are only for finite-dimensional Schur multipliers, this directly extends to
infinite-dimensional Schur multipliers as well. By Proposition 3.24 we can approximate ‖MA(m)‖p using
finite-dimensional Schur multipliers, and if the latter do not depend on m, neither will the limit.

Firstly, to strengthen the conjecture, more computations like those in Section 5.2 should be performed,
preferably with larger matrices and amplifications. To achieve the latter in a reasonable amount of time
improvements to the algorithm might need to be made (or ran on a more powerful computer).
Secondly, to prove this conjecture it would suffice to find a map which sends a maximum of fA(m) to
a maximum of fA, as from this and Proposition 4.2 it would follow that the norms are actually equal.
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In fact, it would suffice to find a map which sends a maximum of B of fA(m) to a matrix B′ where the
m × m blocks are all multiples of Im, as we have seen in Proposition 4.10. Experimentally, using the
reduced variable count algorithm (i.e. we have a maximum of fA(m) in B with B having diagonal blocks
on the diagonal), and assuming the diagonal blocks are multiplies of the identity matrix, we have always
found a maximum in this form. Moreover, the remaining blocks of B we found to be either Hermitian
or anti-Hermitian, i.e. one could diagonalize such a block using unitary matrices. Now suppose such an
m×m block is diagonalized using U (an m×m matrix as well). If we then conjugate B with the matrix

U ′ =

U . . .
U

 ,

we would retain the maximum and gain one block in diagonal form. More so, the blocks that were already
a multiple of the identity matrix remain so as well. Should this new diagonal block also be a multiple
of the identity matrix, and should another non-diagonal (anti-) Hermitian block be found, the procedure
can be repeated, until hopefully B is in the desired form. However, the writer’s attempts in proving
the existence of matrices on which fA(m) attains a maximum and meet the aforementioned conditions
have not proven successful. Explicit derivatives can in theory be calculated, but these would form large
expressions.



6
Conclusion

In this thesis we have looked at a subspace of the compact operators on a separable Hilbert space,
namely the Schatten classes Sp(H), which consists of compact operators of which the singular values are
p-summable. On a Schatten class we can define a Schur multiplier which sends bounded linear maps from
Sp(H) to Sp(H), which "multiplies" elements from Sp(H) with with a matrix A. The latter is achieved
by considering the linear maps as matrices with respect to a basis. An important result is that we can
approximate Schatten class operators using projections on the first n elements of an orthonormal basis,
not only in the operator norm, but in the Schatten p-norm as well.

Following this, we introduced the concept of amplifying Schur multipliers by a natural number m. Fur-
thermore, should the norm of the amplified Schur multiplier be bounded for all m, then the Schur
multiplier was said to be completely bounded.
Subsequently, we were able to state a conjecture posed by Pisier [10], in which he conjectures that for
p 6∈ {1, 2,∞} there exist bounded Schur multipliers that are not completely bounded, i.e. there exists
Schur multipliers of which the norm grows when amplified.
From here on we proved some relations and reductions between a Schur multiplier an its amplified equiv-
alent for 1 ≤ p ≤ ∞, which focused around unitary matrices. Here for instance we found that the
operator norm can only increase when a Schur multiplier is amplified. Moreover, for finite-dimensional
Schur multipliers we can always find the maximum in a matrix a number of diagonal blocks, i.e. fewer
non-zero entries.

These results we were in turn able to use in numerically approximating both fixed and random Schur
multipliers using the Broyden–Fletcher–Goldfarb–Shanno algorithm. The majority of the computations
were performed for p = 4, 6, and 8, and we performed a smaller number of computations for several non-
odd p. Although the problematic scaling of the run-time prevented us from amplifying Schur multipliers
by larger numbers, surprisingly, the computations showed that for the random Schur multipliers we had
taken, the operator norm did not increase, and instead stayed equal. Based on these results we posed a
new conjecture that for even p bounded Schur multipliers are completely bounded as well, and moreover,
the completely bounded norm is equal to the operator norm. That is, we conjecture that for these p
Pisier’s conjecture does not hold. Lastly, we discussed a possible way to prove the aforementioned new
conjecture.
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A
A.1. Python code

1 import numpy as np
2 import s c ipy . opt imize
3 from datet ime import datet ime
4 from math import sq r t
5

6

7 c l a s s schur ( ) :
8 " " "A c l a s s f o r f i n i t e d imens iona l Schur Mu l t i p l i e r s " " "
9

10 de f __init__( s e l f , A, p=2, complex_valued=False ) :
11 " " " I n i t i a l i s e s a Schur Mu l t i p l i e r us ing A, where the p−norm i s used .
12 I f complex_valued = True then the operator norm i s approached us ing
13 complex matr ices , and otherwi s e only r e a l matr i ce s . " " "
14 s e l f . A_orig = A
15 s e l f .A = A
16 s e l f . n_orig = A. shape [ 0 ]
17 s e l f . n = A. shape [ 0 ]
18 s e l f . p = p
19 s e l f . k = 0
20 s e l f . r educ_inser t = [ ]
21 s e l f . i n i t_ba s i s ( )
22 s e l f . amp(1)
23 s e l f . c va l s = complex_valued
24

25 de f amp( s e l f , m) :
26 " " " Ampl i f i e s the matrix by a f a c t o r m. Resets the matrix with m = 1 and
27 i n i t i a l i z e s s e l f . ba s i s_vec to r s . " " "
28 s e l f .A = np . repeat ( s e l f . A_orig , m, ax i s=0)
29 s e l f .A = np . repeat ( s e l f .A, m, ax i s=1)
30 s e l f . n = m ∗ s e l f . n_orig
31 s e l f . i n i t_ba s i s ( )
32

33 s e l f . r educ_inser t = [ ]
34 s e l f . k = s e l f . n∗∗2 − s e l f . n∗∗2// s e l f . n_orig + s e l f . n
35 curr_idx = s e l f . k − 1
36 f o r block_row in range ( s e l f . n_orig − 1 , −1, −1) :
37 curr_l = m − 1
38 f o r row in range (m − 1 , −1, −1) :
39 s e l f . r educ_inser t . extend ( [ curr_idx + 1 ] ∗ (m−1−curr_l ) )
40 s e l f . r educ_inser t . extend ( [ curr_idx ] ∗ curr_l )
41 curr_l −= 1
42 curr_idx −= ( s e l f . n − (m − 1) )
43 curr_idx −= m
44 s e l f . r educ_inser t . r e v e r s e ( )
45

46 de f p_norm_power( s e l f , B) :
47 " Ca lu l a t e s the p−th power Schatten p−norm f o r even i n t e g e r p . "
48 i f type ( s e l f . p ) != in t :

40
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49 svs = np . l i n a l g . svd (B) [ 1 ]
50 i f s e l f . p == f l o a t ( " i n f " ) :
51 r e turn svs .max( )
52 e l s e :
53 svs = svs ∗∗ s e l f . p
54 r e turn svs . sum( )
55 B_adj = B. conjugate ( ) . t ranspose ( )
56 temp = B_adj . dot (B)
57 r e s = temp
58 f o r i in range (1 , s e l f . p//2) :
59 r e s = r e s . dot ( temp)
60 t r = r e s . t r a c e ( )
61 r e turn abs ( t r )
62

63 de f p_norm( s e l f , B) :
64 " Ca l cu l a t e s the Schatten−p−norm . "
65 i f s e l f . p == f l o a t ( " i n f " ) :
66 r e turn s e l f . p_norm_power(B)
67 r e turn s e l f . p_norm_power(B) ∗∗(1/ s e l f . p )
68

69 de f i n i t_ba s i s ( s e l f ) :
70 " Creates the standard ba s i s f o r M_n(C) "
71 s e l f . ba s i s_vec to r s = {}
72 n = s e l f . n
73 f o r i in range (n) :
74 s e l f . ba s i s_vec to r s [ i ] = {}
75 f o r j in range (n) :
76 E_ij = np . z e r o s ( ( n , n) , dtype=np . complex128 )
77 E_ij [ i , j ] = 1
78 s e l f . ba s i s_vec to r s [ i ] [ j ] = E_ij
79

80 de f g rad i en t ( s e l f , B, d e l t a =0.001) :
81 " Returns the ( numer i ca l ly c a l c u l a t ed ) g rad i en t o f schur . fun in B. "
82 grad = np . z e r o s ( ( s e l f . n , s e l f . n ) )
83 f o r i in range ( s e l f . n ) :
84 f o r j in range ( s e l f . n ) :
85 B1 = B − de l t a ∗ s e l f . ba s i s_vec to r s [ i ] [ j ]
86 B2 = B + de l t a ∗ s e l f . ba s i s_vec to r s [ i ] [ j ]
87 B1i = B − 1 j ∗ de l t a ∗ s e l f . ba s i s_vec to r s [ i ] [ j ]
88 B2i = B + 1 j ∗ de l t a ∗ s e l f . ba s i s_vec to r s [ i ] [ j ]
89 grad [ i ] [ j ] = ( s e l f . fun (B2) − s e l f . fun (B1) ) /(2∗ de l t a )
90 grad [ i ] [ j ] += ( s e l f . fun ( B2i ) − s e l f . fun ( B1i ) ) /(2∗ de l t a )
91 r e turn grad
92

93 de f fun ( s e l f , B) :
94 " Ca l cu l a t e s | |AB | | / | | B | | , i . e . a lower bound f o r the operator norm . "
95 r e turn s e l f . p_norm_power( s e l f .A∗B)/ s e l f . p_norm_power(B)
96

97 de f f_negat ive ( s e l f , B) :
98 " Returns −f and reshapes the argument i f nece s sa ry . "
99 i f l en (B. shape ) == 1 and s e l f . c v a l s :

100 x1 = B [ : l en (B) //2 ]
101 x2 = B[ l en (B) / / 2 : ]
102 B = x1 . reshape ( s e l f .A. shape ) + 1 j ∗x2 . reshape ( s e l f .A. shape )
103 e l i f l en (B. shape ) == 1 :
104 B = B. reshape ( s e l f .A. shape )
105 r e turn − s e l f . fun (B)
106

107 de f operator_norm ( s e l f ) :
108 " " " Approximates the operator norm o f the Schur mu l t i p l i e r ( from below ) .
109 Using the BFGS method from sc ipy . Returns the norm and the a s s o c i a t ed
110 element . " " "
111 norm = 0.0
112 f o r i in range ( s e l f . n∗∗2) :
113 i f s e l f . c va l s :
114 B = np . random . rand (2∗ s e l f . n∗∗2)
115 e l s e :
116 B = np . random . rand ( s e l f . n∗∗2)
117 t = sc ipy . opt imize . minimize ( s e l f . f_negat ive , B, t o l =10∗∗−15,
118 method=’BFGS ’ )
119 va l = −t . fun
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120 i f va l > norm :
121 norm = val
122 out = t . x
123 i f s e l f . c va l s :
124 x1 = out [ : l en ( out ) //2 ]
125 x2 = out [ l en ( out ) / / 2 : ]
126 out = x1 . reshape ( s e l f .A. shape ) + 1 j ∗x2 . reshape ( s e l f .A. shape )
127 e l s e :
128 out = np . reshape ( out , s e l f .A. shape )
129 r e turn norm∗∗(1/ s e l f . p ) , out/ s e l f . p_norm( out )
130

131 de f f_reduc ( s e l f , x ) :
132 i f s e l f . c va l s :
133 x1 = x [ : l en (x ) //2 ]
134 x2 = x [ l en (x ) / / 2 : ]
135 B = np . i n s e r t ( x1 , s e l f . reduc_insert , 0) \
136 + 1 j ∗np . i n s e r t ( x2 , s e l f . reduc_insert , 0)
137 e l s e :
138 B = np . i n s e r t (x , s e l f . reduc_insert , 0)
139 B = B. reshape ( s e l f .A. shape )
140 r e turn s e l f . fun (B)
141

142 de f f_neg_reduc ( s e l f , B) :
143 r e turn − s e l f . f_reduc (B)
144

145 de f operator_norm_reduced ( s e l f ) :
146 " " " Approximates the operator norm o f the Schur mu l t i p l i e r ( from below ) .
147 Using the BFGS method from sc ipy us ing some d igona l b locks . " " "
148 norm = 0.0
149 f o r i in range ( s e l f . k ) :
150 i f s e l f . c va l s :
151 B = np . random . rand (2∗ s e l f . k )
152 e l s e :
153 B = np . random . rand ( s e l f . k )
154 t = sc ipy . opt imize . minimize ( s e l f . f_neg_reduc , B, t o l =10∗∗−15,
155 method=’BFGS ’ )
156 va l = −t . fun
157 i f va l > norm :
158 norm = val
159 out = t . x
160 i f s e l f . c va l s :
161 x1 = np . i n s e r t ( out [ : l en ( out ) //2 ] , s e l f . reduc_insert , 0)
162 x2 = np . i n s e r t ( out [ l en ( out ) / / 2 : ] , s e l f . reduc_insert , 0)
163 out = x1 . reshape ( s e l f .A. shape ) + 1 j ∗x2 . reshape ( s e l f .A. shape )
164 e l s e :
165 out = np . i n s e r t ( out , s e l f . reduc_insert , 0)
166 out = np . reshape ( out , s e l f .A. shape )
167 r e turn norm∗∗(1/ s e l f . p ) , out/ s e l f . p_norm( out )
168

169 de f __str__( s e l f ) :
170 r e turn s t r ( s e l f .A)
171

172

173 i f __name__ == "__main__" :
174 np . warnings . f i l t e rw a r n i n g s ( ’ i gno r e ’ )
175 s t a r t = datet ime . now( )
176 A = [ [ 1 , 1 ] ,
177 [ 1 , 1 . 0 / 2 ] ]
178 A = np . array (A, dtype=np . f l o a t 6 4 ) #operator norm : 1.0131151203640094
179 A_mult = schur (A, p=4, complex_valued=False )
180 f o r k in range (1 , 4) :
181 A_mult . amp(k )
182 A_norm, out = A_mult . operator_norm_reduced ( )
183 pr in t ( "Matrix ampl f i ed by {} , norm : {} " . format (k , A_norm) )
184 pr in t ( " Elapsed time : " , datet ime . now( ) − s t a r t )
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