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If you need to know the best counter to the queen’s gambit,
you ask a chess grandmaster.

If you need to figure out the average number of steps it would take
before a randomly moving knight returns to its starting square,

you ask a mathematician.

— Kelsey Houston-Edwards





Abstract

Quantum computers can solve certain problems faster than classical computers, but they
require many qubits to solve valuable problems. Distributed quantum computing provides
a scalable approach to increasing the number of qubits by interconnecting small-capacity
quantum devices, or quantum nodes. Entangled states shared between nodes, so-called
entangled links, can serve as a resource for implementing nonlocal operations. A better
understanding of distributing links in a network of quantum nodes can guide the design of
hardware and protocols for distributed quantum computing systems. We used two metrics
to measure the performance of such entanglement distribution protocols considering the
network’s objectives. Specifically, the virtual node degree reflects the requirement for
many links to perform nonlocal operations, while the virtual neighbourhood size reflects
the need for links between remote nodes to increase the number of qubits available
for computation. Contrary to most prior research, these metrics explicitly consider
the time-dependent fidelity of entangled links. We used discrete-time simulations to
investigate the performance of a protocol that continuously distributes entanglement
in a quantum network with a regular topology. The number of entangled links in the
network evolves as quantum nodes create new links through entanglement generation and
entanglement swaps, and remove low-fidelity links. The nodes probabilistically attempt
swaps and can maximise the performance metrics by varying this probability.

We found that the performance metrics exhibit qualitatively similar behaviour for
various network parameters, such as coherence time and entanglement generation fidelity.
However, the network parameters shift the swap attempt probability that maximises the
virtual neighbourhood size differently. The effect of network boundaries on performance
metrics depends on the network topology.
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1
Introduction

Quantum entanglement between qubits is a uniquely quantum-mechanical phenomenon
resulting in strong correlations between them – stronger than classically possible [1].
Quantum computers can leverage entangled qubits to facilitate quantum algorithms that
offer an advantage over classical algorithms. For example, Shor’s quantum algorithm for
integer factorisation [2] enables an exponential speedup compared to classical algorithms.
Such algorithms require many qubits – for example, factoring a 2048-bit semiprime
requires an estimated 20 million qubits [3]. However, the number of qubits on a single
processing node has increased from 2 qubits with the first experimental demonstrations
of quantum algorithms in 1998 [4, 5] to more than 50 qubits in recent experiments [6–8].
Hence, the number of qubits has to increase significantly to solve valuable tasks.

Distributed quantum computing provides a scalable path for growing the number of qubits
by employing a quantum network of smaller-capacity quantum devices interconnected
over physical channels. The quantum devices cooperate by spreading the computations of
a complex quantum problem among themselves to lower the computational requirements
of single devices [9]. The remote quantum devices can use shared entangled states, which
we refer to as entangled links, to implement nonlocal operations [10–12]. Such operations
allow cooperating quantum devices to realise Shor’s algorithm [13]. However, imperfect
physical channels result in the generation of lower-quality entangled links. Fortunately,
the quality of the entangled links, which we characterise by their fidelity [14], can be
improved. For example, entanglement distillation may turn many low-fidelity entangled
links into fewer higher-fidelity states [15, 16], and quantum error correction methods can
utilise entangled links to make the network fault-tolerant [17–19]. Evidently, quantum
networks for distributed quantum computing require many entangled links.

To produce many entangled links, quantum networks can use a continuous distribution
(CD) of entanglement protocol [20]. This protocol contrasts with on-demand delivery
of entanglement, where quantum devices request entangled links [21–24]. Generally,
such an approach is more efficient regarding quantum resources. However, it requires
a scheduling policy to tell the devices what to do based on the demands elsewhere in
the network, which can become complex for large networks. Therefore, a distributed
quantum computing network will likely use a CD protocol to distribute entangled links.
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2 1. Introduction

In this thesis, we are specifically interested in quantum networks for distributed quan-
tum computing operating a CD protocol. We adopt the network model of Iñesta and
Wehner [20]: a quantum network consists of quantum nodes for generating, processing and
storing quantum information; and physical channels to distribute quantum information
between the nodes. The network’s objective is to distribute bipartite entangled links
between nodes. The virtual network consists of a set of quantum nodes and their shared
entangled links. Furthermore, nodes sharing entangled links are virtual neighbours.

We consider quantum networks with a regular topology and a physical node degree kp.
In such regular networks, each quantum node shares physical channels with kp nodes.
The nodes form a chain for kp = 2; a honeycomb lattice for kp = 3; a square lattice for
kp = 4; and a triangular lattice for kp = 6. The two-dimensional topologies tile the plane
regularly. We assume that all quantum nodes and physical channels are identical. The
network model refrains from implementing specific realisations of qubits but abstracts
away the details of physical platforms in model parameters. Furthermore, we assume
that each node has an infinite number of quantum memories.

We simulate the evolution of virtual networks by dividing time into discrete slots and
operating the CD protocol within each time slot, following Iñesta and Wehner [20]. Virtual
networks evolve as quantum nodes (1) create entangled links through entanglement
generation and (2) entanglement swaps, and (3) remove entangled links when their
fidelity has decreased too much due to decoherence and swaps.

Motivated by the need for many entangled links between remote quantum nodes to
implement nonlocal operations, we use the virtual node degree and virtual neighbourhood
size [20] to characterise the performance of the CD protocol. The virtual node degree
denotes the number of entangled links stored by a node at a particular time. The virtual
neighbourhood size denotes the number of virtual neighbours a node has at a specific
time. In contrast to most previous research, these figures of merit explicitly consider the
time dependence of the virtual network.

Overall, this thesis aims to characterise the performance of quantum networks with
a regular topology operating a CD protocol – performing entanglement generation,
entanglement swaps and removing low-fidelity entangled links – in terms of the virtual
node degree and the virtual neighbourhood size.

This thesis is organised as follows:

In Chapter 2, we motivate our research in more detail by discussing the concepts of
distributed quantum computing. Subsequently, we introduce the quantum network
model and performance metrics we use to characterise quantum networks running a
CD protocol. We then relate our research to state-of-the-art hardware for quantum
networks and discuss how to analyse, organise and manage such networks.

In Chapter 3, we introduce our simulation framework and present how we extract the
performance metrics from the simulations.

In Chapter 4, we present and discuss the results of our simulations and extract heuristics
for designing quantum networks with regular topologies running a CD protocol.

In Chapter 5, we summarise and reflect on our results and look beyond this work.



2
Background

We start this chapter by motivating our research in Section 2.1, introducing quantum
networks and their application in distributed quantum computing. Then, in Section 2.2,
we present the quantum network model that we employ in our investigation. In Section 2.3,
we introduce the metrics to quantify the performance of quantum networks and compare
them to other figures of merit. We finalise this chapter by putting our research in
perspective in Section 2.4, discussing state of the art in quantum network hardware and
how to analyse, organise and manage such quantum networks.
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4 2. Background

2.1 Quantum networks: towards distributed quantum computing
A Quantum network is a system of interconnected quantum devices that can leverage
quantum-mechanical effects such as superposition and entanglement [25–27] to facilitate
technologies such as

quantum communication, enabling provably secure communication utilising quantum
key distribution [28, 29],

quantum sensing, allowing interferometric telescopes with longer baselines [30], and

distributed quantum computing, where smaller capacity quantum computers work
together to achieve results usually reserved for large-scale quantum computers [9].

We continue this section by zooming in on the concepts of distributed quantum computing,
sometimes referred to as networked or modular quantum computing.

Distributed quantum computing
Interconnected quantum computers solve complex quantum computational tasks by
distributing the computations between them [9, 31, 32]. By growing the number of qubits
in the system with the number of quantum devices in the network, distributed quantum
computing allows ensembles of quantum computers with few qubits to cooperate and
perform tasks that normally require quantum computers with many qubits [9].

The small-capacity quantum computers can use short-range, high-precision interactions
for local control and entanglement for nonlocal coupling [16]. Entanglement shared
between quantum devices provides a physical resource to implement nonlocal operations,
allowing for universal quantum computation [10–12]. We refer to an entangled state
shared between two quantum nodes as an entangled link.

The quality of the shared entangled links, characterised by their fidelity [14], decreases
over time. At some point, they might be unsuitable for implementing nonlocal operations.
Fortunately, there exist techniques to supply high-fidelity entangled links. For example,
entanglement distillation can turn many low-fidelity entangled links into fewer higher-
fidelity states using local operations and classical communication [15, 16]. Furthermore,
quantum information can be encoded in multi-qubit states to correct errors resulting in
fault-tolerant quantum computing [17, 18]. For instance, nonlocal joint measurements of
multi-qubit Greenberger-Horne-Zeilinger (GHZ) states can correct errors [17–19]. The
GHZ states can be created by fusing entangled links. However, their fidelity decreases
with the number of entangled links resulting in the need for entanglement distillation [19].

Quantum networks for distributed quantum computing require many entangled links,
motivating us to investigate the distribution of entanglement in such networks. We now
continue with presenting our approach to this investigation.
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2.2 Quantum network model
In Section 2.2.1, we start by defining what constitutes a quantum network. Then, in
Section 2.2.2, we present the network dynamics we consider: entanglement generation,
entanglement swapping and discarding entangled links. In Section 2.2.3, we specify
the network topologies that we investigate. Finally, in Section 2.2.4, we introduce the
entanglement distribution protocol we use to measure the network’s performance.

2.2.1 Definitions
We define the elements of a quantum network (illustrated in Figure 2.1) in order to define
the network itself, adopting the definitions of the model of Iñesta and Wehner [20]:

Definition 1. A quantum node is a station that can generate, process and store quantum
information, and exchange quantum states with other nodes over physical channels.

Definition 2. A physical channel can transport quantum states between two quantum
nodes. Two nodes are physical neighbours if they are connected via a physical channel.

Definition 3. A quantum network is a set of quantum nodes, some of which are connected
via physical channels.

Quantum nodes can, for example, use nitrogen-vacancy centres in diamond [33, 34] or
trapped ions [35, 36] as qubits and be connected over optical fibres [37]. We further
discuss potential physical implementations in Section 2.4.1.

Physical channel

Quantum node

Entangled qubits

Qubit

Alice Bob

Claire

Figure 2.1: The elements of a quantum network. Quantum nodes can share any number of entangled
links, and use entanglement swapping to create links between nodes that are not physical neighbours.

2.2.2 Dynamics
Our quantum networks aim to distribute entangled links among remote network nodes.
The quantum nodes can use these entangled links to implement nonlocal operations
between them for distributed quantum computing [12, 13]. We now elaborate on
the network operations to produce entangled links suitable for nonlocal operations:
entanglement generation, entanglement swapping, and discarding entangled links.

Entanglement generation
Physical neighbours can attempt to generate a shared entangled link in a heralded fashion.
Detecting a photon, for example from the resonance fluorescence of a nitrogen-vacancy
defect centre in diamond [33], can herald the success of an entangling attempt [38–40].
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The entanglement generation attempt is successful with probability p, while the operation
fails with probability 1− p. No entangled link is generated in case of failure.

We model the entanglement generation process subject to quantum noise as a perfect
entanglement generation process producing a Bell state |ϕ+⟩ = (|00⟩+ |11⟩)/

√
2 followed

by the application of a depolarising channel. Depolarising noise is a worst-case noise
model where the initial |ϕ+⟩ state is unaffected with probability x. However, the initial
state depolarises with probability 1 − x; that is, the initial state is replaced by the
completely mixed state I4/4 [41], where I4 is the 4-dimensional identity. The resulting
Werner state [42] after the application of the depolarising channel on |ϕ+⟩ is

ρ =
4F − 1

3
|ϕ+⟩⟨ϕ+|+ 1− F

3
I4, (2.1)

where F = F (ρ, |ϕ+⟩) ≡ ⟨ϕ+|ρ|ϕ+⟩ = 3
4
x+ 1

4
is the fidelity [14] of the newly generated

Werner state relative to the Bell state |ϕ+⟩. We assume that all nodes in the network
generate entangled Werner states with the same fidelity Fgen.

Entanglement swapping
When two nodes do not share a physical channel, they can create a shared entangled
link via an intermediary node using entanglement swapping [43]. For example, suppose
Bob is a physical neighbour of Alice and Claire, while Alice and Claire do not share a
physical channel. When Bob has heralded entangled links with Alice and Claire, Bob
can perform a Bell-state measurement on his entangled qubits. Using local operations
and classical communication, the three can implement the swap, consuming the initial
links to generate a link shared between Alice and Claire, as demonstrated in Figure 2.2.

Alice Bob Claire

Swap

Figure 2.2: The principle of entanglement swapping. Bob can directly generate entangled links with
his physical neighbours, Alice and Claire. Even though they do not share a physical channel, Alice and
Claire can produce an entangled link using entanglement swapping via Bob.

We assume that nodes successfully swap entanglement with probability ps. If the swap
succeeds, both initial entangled links are consumed to create the new, longer link. Swaps
fail with a probability 1− ps to consume both initial states and yields no resulting state.

When quantum nodes swap two Werner states of the form (2.1) with fidelities F1 and F2,
the resulting state is also a Werner state with fidelity [24, 44]

F ′ = F1F2 +
(1− F1)(1− F2)

3
. (2.2)

Generally, the swap operation reduces the fidelity, F ′ ≤ F1,F2.
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Discarding entangled links
Quantum nodes can use entanglement generation and entanglement swaps to produce
entangled links between many remote nodes. They can use these entangled links for
nonlocal operations in distributed quantum computing. However, the entangled links
should be of sufficient quality for those operations. We now discuss two processes that
result in low-fidelity states and how nodes ensure that all links are of sufficient quality.

Firstly, entangled links can interact with their environment and decohere – their fidelity
decreases over time. The initial fidelity F (t) of a Werner state at time t evolves as

F (t+∆t) =
1

4
+

(
F (t)− 1

4

)
e−∆t/T2 , (2.3)

under the successive application of a depolarising channel during a time interval ∆t [24].
Here, T2 is an abstract coherence time expressing the exponential decay rate of fidelity [24].

The quantum nodes discard entangled links that exist as long as some cutoff time tcut
to guarantee that all entangled links have a fidelity larger than some threshold fidelity
Fmin [24, 45–47]. The quantum nodes keep track of the age of entangled links – the time
that has passed since the creation of the entangled links. When the age of the entangled
links is equal to the cutoff time, the quantum nodes discard the entangled links.

Secondly, we assume that an entangled link created in an entanglement swap adopts
the maximum age of the two initial entangled links, following Reference [24]. As the
fidelity of a newly generated state after swapping is generally smaller than the fidelities
of the initial entangled links (by Equation (2.2)), the entangled links can be involved in
a maximum number of M swaps before their fidelity is below the threshold fidelity Fmin.
We refer to M as the maximum swap distance.

When quantum nodes generate entangled links with fidelity Fgen, the relation

tcut ≤ −T2 ln

(
3

4Fgen − 1

(
4Fmin − 1

3

)1/(M+1)
)

(2.4)

must be satisfied to ensure that the fidelities of the entangled links between the nodes in
the network exceed the threshold fidelity Fmin [24].

We conclude this section on network dynamics by noting that quantum nodes can use
entanglement distillation to turn n low-fidelity entangled pairs into m ≤ n pairs of higher
fidelity using local operations and classical communication. For example, when nodes
share entangled links with a fidelity too low for implementing nonlocal operations, they can
distil entangled links until the fidelities of the new entangled links meet their requirements.
Many distillation schemes exist – for example, bipartite distillation protocols [48, 49]
may distil two initial entangled links of fidelity F > 1

2
to a state of fidelity F ′ > F .

Hence we set Fmin = 1
2

as higher-fidelity entangled links can then be generated from the
lower-fidelity initial states. However, implementing distillation protocols is outside the
scope of this thesis.
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2.2.3 Topology
We assume that we are free to choose the topology of quantum networks for distributed
quantum computing. To modularly scale the number of nodes in the network, it makes
sense to investigate network topologies that grow in a regular pattern.

Definition 4. In a quantum network with a regular topology and physical node degree
kp, each quantum node shares physical channels with kp quantum nodes.

The quantum nodes form a chain for kp = 2; a honeycomb lattice for kp = 3; a square grid
for kp = 4; and a triangular lattice for kp = 6 (illustrated in Figure 2.3). The honeycomb
(or hexagonal), square and triangular tilings are the three regular tilings of the plane.

kp = 2

kp = 3

kp = 4

kp = 6

Figure 2.3: The structures emerging for the various physical node degrees: a chain of nodes, a
honeycomb lattice, a square grid, and a triangular lattice. The qubits in the quantum nodes are oriented
in the directions of the physical channels.
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Chains of quantum nodes have been widely researched in the form of quantum repeater
chains where distant nodes can generate a shared entangled link by swapping entangled
links between intermediary nodes over shorter segments [44, 50]. The goal of quantum
repeaters is to create end-to-end entanglement, which contrasts with the goal of our
networks: distribute entangled links among all pairs of nodes in the network.

We assume that quantum nodes have an infinite number of memories – there is always
a free memory to store a new entangled link. Furthermore, when a node generates an
entangled link over a physical link, the entangled qubit is assigned the direction of the
physical channel. We refer to this direction as the orientation of the qubit. For example,
when a quantum node in a chain generates entanglement with a physical neighbour to its
left, the entanglement is stored in a left-oriented qubit. A qubit retains its orientation
over its lifetime – for example, the qubit orientation remains the same after being involved
in an entanglement swap.

Lastly, we assume that the quantum networks are homogeneous to conclude that:

all nodes generate entangled links with the same fidelity Fgen and with the same
probability of success p,

all nodes successfully attempt entanglement swaps with the same probability ps,

all nodes have an infinite number of memories,

all entangled links decohere according to the same coherence time T2, and

all nodes discard entangled links with an age equal to the cutoff time tcut or have been
involved in more than M swaps.
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2.2.4 Continuous distribution of entanglement protocol
The quantum networks aim to distribute many entangled links between many quantum
nodes such that the nodes can implement nonlocal operations in distributed quantum
computing. The quantum networks employ a continuous distribution (CD) of entangle-
ment protocol to continuously establish entanglement in the network, as proposed by
Iñesta and Wehner [20]. The network discretises time, and all quantum nodes implement
the CD protocol simultaneously during each time step, as prescribed by:

Continuous distribution of entanglement protocol
Cutoff time Discard entangled links with ages equal to the cutoff time tcut. Nodes first

apply cutoffs to ensure they do not use old links later in the protocol.
Entanglement generation

Attempt to generate shared Werner states (entangled links) with physical
neighbours and succeed with a probability p.

Entanglement swapping
Attempt to swap two entangled links with a probability q and succeed with
a probability ps. A quantum node randomly chooses the first entangled link
from its memory. The node chooses the second link randomly from the set
of links stored in a differently-oriented qubit. If the swap succeeds, the two
initial links transform into a new link; if it fails, the nodes discard the two
initial links. Nodes do not know what swaps the other nodes implement.

Maximum swap distance
Discard entangled links that have been involved in more than M entangle-
ment swaps. The quantum nodes communicate their results to conclude
which entangled links they have swapped.

The swap attempt probability q is a protocol parameter that nodes can vary to optimise
entanglement distribution. We assume that all quantum nodes attempt swaps simultane-
ously. Furthermore, nodes only swap entangled links with different qubit orientations.
For the chain, this means that nodes swap entangled links extending to the left and right
of the nodes, preventing swaps between the same two initial quantum nodes. There is
no time to communicate and coordinate desired entanglement swaps as nodes attempt
swaps simultaneously. We recall that qubit orientation is preserved during a swap. We
conclude this section by summarising the quantum network parameters in Table 2.1.

Table 2.1: Summary of quantum network parameters.

Parameter Explanation

kp Physical node degree
p Probability of successfully generating entanglement
q Probability of attempting an entanglement swap
ps Probability of successfully implementing an entanglement swap
T2 Abstract coherence time
tcut Cutoff time
Fgen Fidelity of generated entangled links
Fmin Minimum required entangled link fidelity
M Maximum swap distance
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2.3 Quantum network performance metrics
Now that we have a model to measure the performance of distributing entanglement, we
introduce two figures of merit to quantify the performance in Section 2.3.1. Then, in
Section 2.3.2, we discuss other figures of merit used to characterise quantum networks
and compare them to ours.

2.3.1 Virtual node degree and virtual neighbourhood size
It is convenient to define an auxiliary network for analysing the performance of quantum
networks: the virtual network. We assume that the quantum networks are static in
time. However, the number of entangled links in the network evolves as they can be
created and destroyed via entanglement generation, entanglement swaps and discarding
low-fidelity states. We analyse the performance of our networks in the framework of a
virtual network, defined by its constituents, as introduced by Iñesta and Wehner [20]:

Definition 5. An entangled link between two quantum nodes is a bipartite Werner state
between them. Two nodes sharing an entangled link are referred to as virtual neighbours.

Definition 6. A virtual network consists of a set of quantum nodes and the time-
dependent set of entangled links shared among them.

Subsequently, we define the performance metrics, which we often refer to as the virtual
metrics, to analyse the time-dependent connectivity of quantum networks, as introduced
by Iñesta and Wehner [20]. We can divide the goal of distributing entanglement between
the nodes into two parts. Firstly, quantum nodes want to share many entangled links
with other nodes such that they can implement many nonlocal operations. This motivates
us to define the first figure of merit:

Definition 7. The virtual node degree of node i at time t, ki(t), denotes the number of
entangled links stored by node i at time t.

Secondly, quantum nodes want to share entangled links with many remote nodes. If a
quantum node shares entangled links with many remote nodes, the virtual network they
constitute contains many qubits for quantum computations. This motivates us to define
the second figure of merit:

Definition 8. The virtual neighbourhood size of node i at time t, vi(t), denotes the
number of virtual neighbours of node i at time t.

A large virtual node degree ki(t) indicates that node i shares many entangled links with
other nodes at a time t. A large virtual neighbourhood size vi(t) indicates that node i
has many virtual neighbours at a time t. For example, in Figure 2.1, Alice stores five
entangled links, so her virtual node degree kAlice = 5. Furthermore, she has four virtual
neighbours, so her virtual neighbourhood size vAlice = 4. Claire stores three entangled
links shared with three virtual neighbours; therefore kClaire = 3 and vClaire = 3.

We can bound the virtual node degree and virtual neighbourhood size (Table 2.2) for
infinite quantum networks where all quantum nodes have a physical node degree kp and
an infinite number of quantum memories (see Appendix B for derivations).
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Table 2.2: Bounds on virtual node degree and virtual neighbourhood size.

ki(t ) vi(t )

kp = 2 2tcut 2 min(tcut,M + 1)
kp = 3 3tcut 3 min

(
tcut,

1
2 (M + 1)(M + 2)

)
kp = 4 4tcut 4 min

(
tcut,

1
2 (M + 1)(M + 2)

)
kp = 6 6tcut 6 min

(
tcut,

1
2 (M + 1)(M + 2)

)

Finally, we note that optimising either the virtual node degree ki(t) or the virtual
neighbourhood size vi(t) can result in contradicting strategies. For example, if nodes
optimise over the probability of implementing swaps q in the CD protocol, they maximise
ki(t) when they do not attempt swaps. Then, the nodes only lose entangled links when
they discard them for reaching the cutoff time, and not because they consumed them
in swaps or discarded them for being involved in too many swaps. Conversely, the
number of virtual neighbours can exceed the number of physical neighbours when nodes
apply swaps, resulting in higher vi(t). If nodes attempt too many swaps, they lose many
entangled links because they consume them and because they are involved in too many
swaps, decreasing vi(t). Hence, to maximise vi(t), quantum nodes must find a balance
between attempting too few and too many swaps, in contradiction with optimising ki(t).
In Chapter 4, we investigate the influence of the swap attempt probability on the optimal
virtual metrics in detail. We first discuss why the virtual node degree and the virtual
neighbourhood size are suitable figures of merit by comparing them to metrics used in
different investigations.

2.3.2 Other metrics
Classical approaches to analysing classical networks have been adapted to quantum
networks. For example, Reference [51] used connectivity metrics such as the node degree
distribution to analyse quantum networks. Also, classical percolation theory revealed,
for example, entanglement phase transitions in regular quantum networks [52]. However,
our quantum networks aim to distribute many entangled links between many (remote)
nodes. The classical approaches do not take dynamic phenomena like decoherence –
which decreases the number of entangled links – into account and are unsuitable for
analysing quantum networks.

Furthermore, one can study the time it takes to distribute end-to-end entanglement
over a quantum network – often referred to as the waiting time – or the end-to-end
entanglement generation rate [53]. For example, waiting times in quantum repeater
chains [24, 47, 54, 55], as well as the capacity of quantum repeaters [22] and quantum
network switches [23, 56, 57] have been studied. These metrics do not describe how
many entangled links nodes share with remote nodes, so they are unsuitable for analysing
quantum networks for distributed quantum computing.
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2.4 State of the art on quantum networks
We put our research in perspective by relating it to recent developments in the area of
quantum networks. In Section 2.4.1, we discuss state of the art on experimental quantum
networks and couple them to implementations for distributed quantum computing. Then,
in Section 2.4.2, we look beyond the hardware and discuss how to analyse, organise and
manage such quantum networks.

2.4.1 Hardware for quantum networks
Linking quantum nodes over photonic channels is a promising approach for implementing
quantum networks. These channels can be realised in optical fibres [37] and free space
via a ground- [58] or satellite-based connection [59]. Various physical platforms have
realised photon-mediated remote entanglement generation – for example, nitrogen-vacancy
(NV) defect centres in diamond [33, 34], trapped ions [35, 36], neutral atoms [60, 61],
quantum dots [62, 63] and rare-earth-ion doped crystals [64]. Hybrid setups, where
the optically-active communication qubits cooperate with memory qubits, have been
implemented to provide robust storage of quantum information, for example, by addressing
the carbon-13 nuclear spins near an NV centre in diamond [65–67] or by trapping
multiple species of ions [68, 69]. This combination of a photonic interface for heralded
entanglement generation and a robust quantum state storage platform in a single node
make NV centres in diamond and trapped ions well-suited for use in distributed quantum
computing networks [17, 18, 70]. Such networks have demonstrated key protocols. For
instance, experiments with NV centres have demonstrated the distillation of two low-
fidelity entangled states into a higher-fidelity state [71]. Also, a deterministic remote
entanglement generation protocol has been built [72] upon the intrinsically probabilistic
entangling procedures (for instance, p ≈ 4 · 10−5 in Reference [73]). A three-node
quantum network has demonstrated entanglement swapping through an intermediary
node, generating GHZ states between the three nodes and quantum teleportation of qubit
states between non-neighbouring remote nodes [73, 74]. Experimentally-achieved robust
memories (coherence time T2 on the order of a second) could enable fundamental network
primitives, such as the creation of entangled four-qubit GHZ states and deterministic
nonlocal two-qubit gates [67]. Nonlocal gates have been implemented in trapped-ion
systems [75]. Lastly, both platforms can implement deterministic entanglement swaps as
complete Bell-state measurements (that is, succeeding with 100% probability) have been
demonstrated using NV centres in diamond [73, 74, 76, 77] and trapped ions [78, 79].

Linear optics quantum computing offers a different but related approach to scalable
quantum computation [80]. For example, measurement-based quantum computation
implements quantum computations via projective single-qubit measurements on entangled
cluster states on a (regular) lattice [81]. Small photonic cluster states can be fused into
larger ones using Bell-state measurements [80, 82]. On a similar notion, fusion-based
quantum computing uses resource-state generators to produce (constant-sized) few-photon
entangled states and fusion devices to implement quantum computations via multi-qubit
projective entanglement measurements such as (two-qubit) Bell-state measurements [83].
Combining identical modules containing resource-state generators, fusion devices, and
fibres yields large-scale fault-tolerant quantum computers [84]. Although these concepts
differ from the matter-based systems we discussed, they also use entanglement generation
between lattice neighbours and Bell-state measurements to grow the computational space.
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Bell-state measurements based on linear optics can generally identify two out of four
Bell states: the entanglement swap succeeds with a probability ps =

1
2

[39, 85]. Adding
ancillary photons to the linear optics setup can increase the success probability [86, 87].
Recent experimental work has achieved a success probability of around 58% using a
pair of ancillary photons [88], and they foresee achieving a success rate of 75% with an
additional ancillary photon pair or using a Bell state as an auxiliary state.

2.4.2 Quantum networks: beyond hardware
Next to advancements in hardware performance, we need insight into the performance
of quantum network protocols, requirements on the underlying quantum hardware and
reliable control of the quantum devices to scale up complex physics experiments into
full-fledged quantum networks. We first present some analyses of quantum networks
using analytical and numerical methods, and then we discuss steps towards reducing the
complexity of quantum network design.

Quantum network performance
Analytical methods can be used to investigate the quantum network protocols and
hardware requirements for network architectures. For example, using Markov chains, one
can find the expected delivery time of end-to-end entanglement in a repeater chain [54]
or investigate the capacity and the performance of distribution policies in a star-shaped
quantum switch [56, 57]. The optimal entanglement distribution policy can be found using
Markov decision processes for quantum repeater chains with [24] and without cutoffs [55].
Furthermore, protocols that minimise the number of Bell states necessary to produce
high-fidelity GHZ states for distributed quantum computing have been investigated [19].

When the behaviour of a quantum network becomes too complex for mathematical
analysis, numerical simulations can be used [53]. Simulations can be purpose-built to
investigate a specific quantum network architecture or protocol – like in this thesis – or
can be used to simulate a variety of quantum network architectures. For example, the
software tool NetSquid – the NETwork Simulator for QUantum Information – can simulate
quantum networking and modular computing systems, and model time-dependent physical
non-idealities [89]. Using the NetSquid simulator, Reference [89] recovered the capacity of
the previously mentioned star-shaped quantum network switch [56], extended the model
to a larger range of parameters and subjected it to a more sophisticated noise model.

Quantum network stack
To reduce the complexity of quantum network design, a quantum network stack divides
the functionalities of a quantum network into vertical layers of abstraction [90–92]. With
these layers of abstraction, high-level layers – for instance, applications – do not have to
deal with the details of low-level protocols – such as generating entanglement [91]. For
example, a stack can contain [92]

a transport layer to transmit qubits on top of

a network layer to establish end-to-end entanglement on top of

a link layer providing a robust entanglement generation service on top of

a physical layer where the hardware attempts entanglement generation.
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Research can be realised separately on the layers of the stack – for instance, developing a
quantum data plane protocol that enables end-to-end quantum communication to fulfil
the role of a quantum network layer [93] or designing and experimentally implementing a
link layer protocol [92, 94].

Extending this idea to distributed quantum computing, a virtual quantum processor,
assembled on top of lower-level abstractions and unaware of the physical implementation,
implements the quantum algorithms using entangled qubits [9]. Exemplifying the ab-
straction, a physical architecture containing a one-dimensional array of resource-state
generators can serve as a two-dimensional configuration of fusion measurements in fusion-
based quantum computing [83]. Similarly, the physical implementations of the quantum
networks can be different from the regular topologies we investigate. Furthermore, we
can relate our CD protocol to the network layer – the protocol distributes entanglement
over the network, but it is not involved in the specifics of generating entanglement or the
details of hardware implementations.





3
Methods

In this chapter, we present the methods we use to investigate entanglement distribution
in quantum networks with regular topologies running a CD protocol. First, in Section 3.1,
we introduce the simulation framework. Then, in Section 3.2, we discuss how we extract
and analyse the virtual node degree and virtual neighbourhood size from the simulation,
noting that the virtual metrics are random variables.

3.1 Simulation
We simulate the evolution of virtual networks by discretising time into slots and operating
the CD protocol in each time slot1, following Iñesta and Wehner [20]. At the end of
each time slot, we record the virtual node degree and virtual neighbourhood size, and
increment the ages of the entangled links. We treat time as a dimensionless parameter
such that a round of the CD protocol takes one unit of time. Furthermore, we relate the
cutoff time such that a cutoff time tcut = 1 corresponds to discarding an entangled link
after one round of the CD protocol.

We simulate both finite and infinite quantum networks. Infinite networks with a regular
topology and a physical node degree kp are replicated by finite networks with periodic
boundary conditions such that all nodes share a physical channel with kp physical
neighbours. For example, in the infinite chain, the nodes on the chain’s boundaries
share a physical channel. The virtual metrics of nodes in a finite network with periodic
boundary conditions should converge to those in an infinite network as the number of
nodes in the finite system goes to infinity. However, we can not simulate an infinite
number of nodes. We, therefore, choose the number of quantum nodes in the network
that minimises the influence of the finite number of nodes. For example, in an infinite
chain where quantum nodes discard entangled links involved in more than M swaps, the
simulated chain contains 2(M + 1) + 1 nodes. We see this by noting that quantum nodes
store links involved in, at most, M swaps. Then, in a chain, nodes sharing a link involved
in M swaps are separated by M + 1 physical links. Furthermore, nodes can store links
in two directions, meaning that each node has 2(M + 1) potential virtual neighbours.

1The Python simulations for the regular-topology quantum networks running a CD protocol investigated
in this thesis can be found at https://github.com/lars-talsma/CD-regular-networks.
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Thus, including the node itself, the simulation requires at least 2(M + 1) + 1 to minimise
the influence of the finite number of nodes in the network. If the simulation uses fewer
quantum nodes, a node in the finite chain with periodic boundary conditions can grow
entangled links in both directions that end up being stored in the same node, resulting
in a miscount of the number of virtual neighbours vi(t). Using more quantum nodes
in the simulation does not change results significantly but increases the computational
requirements. In conclusion, to minimise the influence on the virtual metrics when a
finite number of quantum nodes replicates an infinite network and the computational
requirements, the simulation contains L = 2(M +1)+1 nodes for kp = 2; L2 for kp = 4, 6;
and 2L2 for kp = 3 (the extra factor 2 stems from implementation considerations).

Infinite networks provide a convenient platform for analysing the behaviour of virtual
metrics in regular networks as each node behaves the same (see Section 3.2). Experi-
mentally, infinite networks may be accomplished by connecting nearby boundary nodes
over physical channels. For example, Reference [84] suggests appropriately connecting
modules to achieve periodic boundary conditions in fusion-based quantum computing.
Furthermore, for a regular finite network with a physical node degree kp, the interior
quantum nodes have kp physical neighbours (the nodes on the network’s boundary share
fewer than kp physical links with neighbours). Then, quantum nodes far away from the
boundaries in finite networks perform similarly to nodes in infinite quantum networks (see
Section 4.3), allowing the performance of large-scale finite networks to be approximated
by infinite networks, resulting in lower computational requirements.

From the network parameters related by Equation (2.4), the simulation directly imple-
ments the cutoff time tcut and the maximum swap distance M . We vary the coherence
time T2 and entangled link generation fidelity Fgen by associating values of tcut and M
satisfying Equation (2.4). Specifically, motivated by the behaviour of Equation (2.4),
we associate the coherence time with the cutoff time and the entanglement generation
fidelity with the maximum swap distance. For example, if the entanglement generation
fidelity Fgen is too low, then consuming two entangled links produces a new link of fidelity
F 2
gen+(1−Fgen)

2/3 < Fmin (see Equation (2.2)). That is, the nodes should not implement
swaps if Fgen is too low. Furthermore, when the coherence time T2 is too short, quantum
nodes must discard entangled links very early (short cutoff time tcut) regardless of Fgen.

Lastly, we assume that each quantum node has an infinite number of memories. This
is equivalent to the quantum nodes having at least kptcut memories. According to our
CD protocol, quantum nodes in a regular network with physical node degree kp can
generate at most kp entangled links per time slot. Quantum nodes discard entangled
links when their ages are equal to the cutoff time, so they will never store more than
kptcut entangled links. Hence, in our simulations, quantum nodes have kptcut memories
to limit the computational requirements. We note that if quantum nodes had fewer than
kptcut memories, they would require a protocol to decide which entangled links to keep
in case they wanted to generate new links. Such a protocol is outside the scope of this
thesis, so we assume that nodes have an infinite number of memories.
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3.2 Virtual metrics
We can extract the virtual metrics from our simulation, but we note that the virtual node
degree ki(t) and virtual neighbourhood size vi(t) are time-dependent random variables.
However, Iñesta and Wehner [20] have shown that a unique steady-state value exists for
the expected virtual degree node degree and the expected virtual neighbourhood size in
quantum networks operating a CD protocol with probabilistic entanglement generation.
The existence of the steady-state values motivates us to analyse the virtual metrics by
averaging many samples.

Generally, we should run many simulations extracting samples of the virtual metrics
ki(t), vi(t) from a specific node i at a particular time t. However, to lessen the computa-
tional requirements, we assume that virtual metrics converge to the same steady-state
value when averaged over equivalent nodes and over time (after the virtual metrics have
attained their steady-state values). For infinite networks, the virtual metrics of all nodes
behave the same due to the network’s translational (and some rotational) symmetries.
Hence, we average over all nodes. For finite networks, the virtual metrics depend on
the nodes’ location in the network. For example, nodes close to a network boundary
can have lower virtual metrics because they have fewer physical neighbours and fewer
potential virtual neighbours. However, due to symmetries, some nodes in finite networks
will have the same virtual metrics. For example, the finite chain is symmetric around the
centre node, so we average over nodes with the same distance to the centre node. When
we analyse the performance of finite networks, we specify which nodes we average over.

For a quantum node in a quantum network with N equivalent quantum nodes simulated
over T time slots, we define the average values

⟨ki(t)⟩ = ⟨ki(t)⟩i,t ≡
1

N

1

T − tSS

N∑
i=1

T∑
t=tSS

ki(t), (3.1)

⟨vi(t)⟩ = ⟨vi(t)⟩i,t ≡
1

N

1

T − tSS

N∑
i=1

T∑
t=tSS

vi(t). (3.2)

We only average over time after the virtual metrics reach their steady state, which
we assume happens after the steady-state time tSS. The virtual metrics start at zero
and grow to their steady-state values during the initial time slots of the simulation.
The steady-state time depends on the network parameters, but for simplicity, we set a
relatively large value tSS = 10tcut to encompass all scenarios. For example, it generally
takes at least tcut time slots to reach the steady-state regime (see Figure A.2). However,
if the swap attempt probability q is large, it can take more time slots.

As discussed for infinite quantum networks, we relate the maximum swap distance to the
number of quantum nodes: the simulation contains L = 2(M + 1) + 1 nodes for kp = 2;
L2 for kp = 4, 6; and 2L2 for kp = 3. Generally, we average the performance metrics of
the infinite chain over 100 000 time slots and those of the two-dimensional lattices over
5000 time slots. With this combination of parameters, we ensure that we average the
virtual metrics over (approximately) the same number of samples (the product of the
number of nodes and time slots). In finite networks, we average over an increased number
of time slots (specified with the results) to account for the decrease in equivalent nodes.
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Finally, we note that the proof for the unique steady-state value for the expected number
of virtual neighbours and expected virtual degree of any quantum node in a quantum
network running the CD protocol provided by Iñesta and Wehner [20] is under the
assumption that entanglement generation is probabilistic (p < 1). However, they expect
a unique steady state for deterministic generation (p = 1), although they do not provide
formal proof. Furthermore, we have compared simulations using p = 0.999 and p = 1
and only found marginal differences in the average virtual metrics. Although we do not
conclusively show that there are steady state values for the expected virtual node degree
and expected virtual neighbourhood size when p = 1, we feel sufficiently motivated to
assume so. Deterministic entanglement generation proves to be a convenient assumption
for interpreting and explaining our results.



4
Results

In this chapter, we present and discuss the results of our simulations. In Section 4.1, we
start by presenting the baseline network parameters we use in our simulations. Then, in
Section 4.2, we analyse the performance of infinite regular networks as a function of the
swap attempt probability q and the other network parameters in terms of the virtual
node degree and virtual neighbourhood size. In Section 4.3, we compare the performance
in infinite networks to that in finite regular networks, focussing on the influence of the
network’s boundaries. Lastly, in Section 4.4, we summarise our findings as heuristics for
designing quantum networks with regular networks.
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4.1 Baseline network parameters
We investigate how quantum nodes in regular networks running a CD protocol can max-
imise their virtual node degree and virtual neighbourhood size for different combinations
of network parameters. In the CD protocol, the nodes vary the swap attempt probability
q to optimise the virtual metrics. Before presenting the results, we discuss how we
trivialise the network parameters when we are not varying them.

We assume that entanglement generation is deterministic (p = 1). Individual entan-
glement generation attempts are generally probabilistic. However, devised upon these
intrinsically probabilistic generation attempts, a deterministic entanglement distribution
protocol can guarantee the delivery of entangled states at specified intervals [72]. Such a
robust deterministic entanglement distribution service can be part of the link layer of
a quantum network stack. Recent experiments require many entanglement generation
attempts to successfully create an entangled link, corresponding to an entanglement
generation success probability p ≪ 1 (for instance, p ≈ 4 · 10−5 in Reference [73]).
Low entanglement generation success probabilities require many simulation steps per
successful generation attempt, resulting in demanding simulation requirements compared
to deterministic generation. Furthermore, deterministic entanglement generation offers a
convenient platform for exploring and interpreting the simulations, as all nodes in the
network generate the same number of entangled links.

We assume that entanglement swaps succeed deterministically (ps = 1). Platforms such
as NV centres in diamond and trapped ions can realise complete Bell-state measurements
to implement deterministic entanglement swaps [76, 78] (see Section 2.4.1). As we do not
need to consider failed swaps, deterministic swaps are convenient for analysing networks.

We assume that the quantum nodes have an infinite number of memories. This means
that nodes can store all entangled links until they discard them when they age to the
cutoff time when they do not attempt swaps. Hence, quantum nodes never store more
than kptcut entangled links (see Section 3.1 for more details). The number of required
memories remains limited with short cutoff times tcut, relatively close to experimentally
achieved numbers (for example, Reference [66] achieves a ten-qubit register in diamond).

We combine a coherence time T2 = 100, a cutoff time tcut = 7 (treating time as a
dimensionless parameter; see Section 3.1), an entanglement generation fidelity Fgen = 0.9,
a maximum swap distance M = 4 and a minimum required fidelity Fmin = 1

2
(quantum

nodes can distil entangled links with F > 1
2
; see Section 2.2.2). This combination of

network parameters satisfies Equation (2.4). The parameters are large enough for the
behaviour of the virtual metrics to be nontrivial but manageable in terms of computational
demands. For longer cutoff times, the number of occupied qubits per node grows, resulting
in increased computational requirements for storing and processing the increased number
of links. For the two-dimensional networks, the number of simulated nodes, and hence the
simulation time, grows quadratically with the maximum swap distance (see Section 3.2).
Although out of reach for recent experiments, Humphreys et al. [72] expect to achieve
Fgen = 0.9 with near-term improvements in the ratio of entangling and decoherence rates.
Furthermore, the Bell-state measurement implementation used by Pompili et al. [73]
takes about 1 ms while Bradley et al. [67] reach coherence times on the order of a second,
further motivating that these network parameters are obtainable in the future.
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4.2 Infinite regular networks
Infinite networks offer a practical platform for analysis as all quantum nodes behave
the same way due to the system’s translational (and some rotational) symmetries. This
allows us to average performance metrics over the quantum nodes in the network and the
number of simulation time slots (see Section 3.2), resulting in favourable simulation times.
We analyse the performance of the CD protocol as a function of the swap probability q
and the other network parameters using the average virtual node degree and average
virtual neighbourhood size of the quantum nodes in the network. In Section 4.2.1, we first
discuss the qualitatively similar behaviour of the average virtual metrics as a function of
the swap attempt probability q. Then, in Sections 4.2.2 and 4.2.3, we present the results
for varying coherence time T2 and entanglement generation fidelity Fgen. In Section 4.2.4,
we combine these results and investigate the maximum average virtual neighbourhood
size as a function of T2 and Fgen. Finally, in Sections 4.2.5 and 4.2.6, we investigate
what happens when swaps and entanglement generation are probabilistic instead of
deterministic. Let us start with investigating the general behaviour of the virtual metrics
in infinite regular networks.

4.2.1 Virtual metrics as a function of swap probability
The quantum nodes can vary the probability of attempting a swap q to trade between
having many entangled links between physical neighbours (not attempting swaps) or
trying to share entangled links with remote quantum nodes in the network (attempting
many swaps). Preferably, the quantum nodes have both a sizeable virtual node degree
and an extensive virtual neighbourhood size to enable many nonlocal operations in a
network containing many qubits.

We note that the behaviour of the virtual metrics is qualitatively similar for all network
parameter combinations we explored (see, for example, Figure 4.1). Firstly, the average
virtual node degree ⟨ki(t)⟩ is largest for q = 0, decreases for q > 0 and (almost) converges
to zero for q = 1. Secondly, the average virtual neighbourhood size ⟨vi(t)⟩ = kp for q = 0
and increases and peaks for q > 0 before it decreases again to (almost) zero for q = 1.

When nodes do not attempt swaps (q = 0), all entangled links are generated only to be
discarded when the entangled links reach the cutoff time; that is, all quantum nodes
store ki(t) = kptcut entangled links. The virtual node degree decreases for q > 0 as nodes
lose entangled links by consuming them during swaps and by discarding them if they are
involved in more than M swaps (we recall that swaps succeed deterministically). Then,
for q = 1, (almost) all entangled links are involved in more than M swaps. Quantum
nodes in networks with physical node degree kp = 2, 4, 6 generate an even number of
entangled links (deterministic entanglement generation). When the nodes always attempt
swaps (q = 1), all the initial links are consumed to create new, longer links. As all
nodes implement swaps, these links are involved in more than M swaps and subsequently
discarded, resulting in ki(t) = 0 for all nodes. In contrast, for kp = 3, quantum
nodes generate an odd number of entangled links during entanglement generation. As
entanglement swaps consume an even number of entangled links, some links might not
be used in more than M swaps when q = 1. Hence, for kp = 3, always swapping results
in nonzero (but still almost zero) average virtual node degree ⟨ki(t)⟩.
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The quantum nodes only share entangled links with their physical neighbours when they
do not attempt swaps (q = 0), resulting in vi(t) = kp. The virtual neighbourhood size
grows for q > 0 as the nodes can generate entangled links with nodes they do not share
physical channels with. Increasing the number of swaps keeps increasing the virtual
neighbourhood size initially. However, attempting more swaps also means that nodes
lose more entangled links, resulting in fewer virtual neighbours. There is a threshold
swap probability where losing virtual neighbours is balanced with generating new virtual
neighbours. The average virtual neighbourhood size attains its maximum value at this
swap probability – we say that this is the optimal swap probability that provides the
maximum ⟨vi(t)⟩. For larger swap probabilities, ⟨vi(t)⟩ decreases. The average virtual
neighbourhood size converges to (almost) zero for q = 1, as nodes discard all entangled
because they are involved in too many swaps (again, not all links are removed for kp = 3).

Lastly, we recall that the virtual node degree and virtual neighbourhood size are random
variables. We refer to Appendix C for a discussion of their probability distributions. The
protocol optimisation depends on the choice of network parameters. We now present the
average virtual metrics as a function of the swap probability q and network parameters.
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Figure 4.1: Longer coherence times increase the virtual metrics and decrease the optimal swap
probability. The average virtual node degree ⟨ki(t )⟩ increases for longer T2, as nodes hold links
longer before cutting them off. The maximum average virtual neighbourhood size ⟨vi(t )⟩ increases for
longer T2, as nodes can have more virtual neighbours when storing more links. The optimal swap
attempt probability q decreases with T2. We vary T2 = 14,40,92,170,275 (and associated cutoff
times tcut = 1,3,7,13,21; coloured from light to dark) and use the baseline parameters p = 1, ps = 1,
Fgen = 0.9, M = 4, and Fmin = 1

2 . The distributions of the virtual metrics are shown in Figure C.1.

4.2.2 Coherence time
For a growing coherence time T2 (and associated cutoff time tcut, see Section 3.1), the
maximum average virtual neighbourhood size ⟨vi(t)⟩ increases (Figure 4.1; the distribution
of the virtual metrics is shown in Figure C.1 for clarity). The optimal swap probability q
decreases for longer T2. As T2 increases, entangled links live longer, meaning that nodes
can store more links and have more virtual neighbours, resulting in an increased ⟨vi(t)⟩.
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The virtual neighbourhood size attains the maximum ⟨vi(t)⟩ for decreasing optimal q as
quantum nodes attempt swaps conservatively because there is more time to grow the
entangled links before cutting them off. Then, attempting fewer swaps means that nodes
lose fewer entangled links due to consuming links in swaps and discarding them for being
involved in too many swaps (we recall that swaps always succeed, ps = 1), resulting in
higher ⟨vi(t)⟩. We note that the maximum values of ⟨vi(t)⟩ scale relatively linearly with
increasing T2, but the returns slowly diminish. We note that (a function of) the maximum
swap distance M bounds the virtual neighbourhood size when T2 (and associated tcut) is
long relative to M (bounds in Table 2.2). For kp = 2, the virtual neighbourhood size
seems to approach the limit vi(t) ≤ 2(M + 1) = 10 as T2 increases. However, further
increasing T2 is left to future investigations due to computational constraints.

As the physical node degree kp increases, the maximum ⟨vi(t)⟩ also increases. Specifically,
for T2 = 14 (tcut = 1), ⟨vi(t)⟩ increases by a factor equal to the ratio of physical node
degrees: ⟨vi(t)⟩ increases due to an increase in physical neighbours but not due to swaps
(nodes immediately remove swapped links in the next time slot for being too old). Then,
for longer coherence times (and corresponding cutoff times), the entangled links can be
involved in swaps without nodes discarding them immediately. Comparing kp = 2 to
kp = 3 when T2 = 275 (tcut = 21), ⟨vi(t)⟩ increases by a factor of approximately 1.7,
which is more than the ratio of the physical node degrees. We explain this by noting
that the number of potential virtual nodes grows quicker for nodes in a kp = 3 network
than one with kp = 2 (see also Appendix B.2). For example, when entangled links are
involved in one or fewer swaps, the set of potential virtual neighbours is 4 for kp = 2, but
9 for kp = 3. Hence, with only entangled links involved in one swap, kp = 3 nodes can
already have a sizeable ⟨vi(t)⟩ compared to kp = 2 nodes. This means that kp = 3 nodes
can swap less frequently to grow their ⟨vi(t)⟩ compared to kp = 2 nodes. The optimal q
associated with the maximum ⟨vi(t)⟩ reflects this: q ≈ 0.09 for kp = 2, but q ≈ 0.07 for
kp = 3. That nodes attempt fewer swaps means that they lose fewer entangled links due
to consuming and discarding them for being involved in too many swaps. This increases
⟨ki(t)⟩ by a factor of approximately 1.7 at the optimal q comparing kp = 2 to kp = 3.

For kp = 4, the maximum ⟨vi(t)⟩ increases by a factor of approximately 2.1 compared to
kp = 2 when T2 = 275 (tcut = 21). The average virtual node degree ⟨vi(t)⟩ increases as
the set of potential virtual neighbours grows quicker than the physical node degree, but
its influence diminishes. We explain this by the lack of direction given by the swapping
routine. Specifically, entangled links are swapped randomly (as long as they are stored
in qubits oriented differently), resulting in some virtual neighbours sharing multiple
entangled states and some potential virtual neighbours sharing zero. The optimal swap
probability q is approximately equal for kp = 3 and kp = 4. Again, attempting fewer
swaps means that nodes lose fewer links increasing ⟨ki(t)⟩ by a factor of about 2.3 for
kp = 4 compared to kp = 2. The diminishing returns are clear for kp = 6, where the
maximum ⟨vi(t)⟩ increases by a factor of approximately 2.7 compared to kp = 2 when
T2 = 275 (tcut = 21). For kp = 6, the optimal swap probability q is approximately equal
to that of kp = 3, 4 and ⟨ki(t)⟩ increases by a factor of about 3.4 compared to kp = 2.

The average virtual node degree ⟨ki(t)⟩ increases with T2 as the quantum nodes can store
more links due to their infinite number of quantum memories. However, they always
converge qualitatively similarly to (almost) zero as q → 1.
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4.2.3 Entanglement generation fidelity
Increasing the fidelity of generated entangled links also increases the maximum ⟨vi(t)⟩
(Figure 4.2). However, better entanglement generation fidelity increases the optimal swap
probability q associated with the maximum ⟨vi(t)⟩. As Fgen grows, links can be involved
in more swaps before quantum nodes discard them for having a too-low fidelity. So if the
nodes do not swap at a sufficient rate, they discard links for living to the cutoff time.
However, increasing q too much means that nodes lose entangled links by attempting
swaps and discarding them for being involved in too many swaps, but there can be more
swaps before removal if Fgen is large. We see diminishing returns on the maximum values
of ⟨vi(t)⟩ by increasing Fgen. By the CD protocol, quantum nodes implement swaps by
choosing two entangled links randomly; hence the set of virtual neighbours also grow
randomly. If there is enough time (large T2) and vi(t) is only constrained by M , there is
a significant probability of connecting to each possible virtual neighbour. However, when
there is little time, there is a significant probability that some virtual neighbours share
multiple entangled links and others none. The maximum ⟨vi(t)⟩ increases for increasing
physical node degree with approximately the same ratios as for the results varying T2.

Lastly, the performance of ⟨ki(t)⟩ for various Fgen is similar: the same maximum at q = 0,
decrease for q > 0 and convergence to 0 for q = 1. However, we note that the curves of
⟨ki(t)⟩ are lower for decreasing Fgen because the quantum nodes discard more entangled
links for having a too-low fidelity after more than M swaps.

0

42

14

28

〈ki (t)〉
kp = 2 kp = 3 kp = 4 kp = 6

0 1
0

12

4

8

〈vi (t)〉

0 1 0 1 0 1

0.96
0.90
0.81

0.72

Fgen = 0.52

Swap probability q

Figure 4.2: A better entanglement generation fidelity increases both the maximum virtual
neighbourhood size and the optimal swap probability. The average virtual node degree ⟨ki(t )⟩
is slightly higher for better entanglement generation fidelities Fgen, as links can be involved in more
swaps before nodes discard them for being involved in too many swaps. The maximum average
virtual neighbourhood size ⟨vi(t )⟩ increases for higher Fgen, as links can be involved in more swaps
before nodes discard them, meaning that nodes have a larger set of potential virtual neighbours. The
optimal swap probability q increases for increasing Fgen. We vary Fgen = 0.52,0.72,0.81,0.90,0.96
(associated maximum swap distance M = 0,1,2,4,7; coloured from light to dark) while using the
baseline parameters p = 1, ps = 1, T2 = 100, tcut = 7, and Fmin = 1

2 . The distributions of the virtual
metrics are shown in Figure C.3.
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4.2.4 Optimising over coherence time and entanglement generation fidelity
Having seen how the maximum value of ⟨vi(t)⟩ depends on the coherence time T2 and the
fidelity of generated entangled links Fgen, we now optimise the CD protocol over varying
combinations of T2 and Fgen (Figure 4.3). Specifically, we set M = 4 and Fmin =

1
2

and
vary both T2 and Fgen by setting tcut to the maximum value satisfying Equation (2.4). For
example, tcut = 1 satisfies Equation (2.4) for M = 4, Fmin =

1
2
, T2 = 14 and Fgen = 0.9,

and tcut = 15 for M = 4, Fmin = 1
2
, T2 = 70 and Fgen = 1 (see Figure C.2 for details). We

then extract the maximum ⟨vi(t)⟩ over the range of swap probabilities q. The maximum
value of ⟨vi(t)⟩ grows (relatively) linear with both T2 and Fgen (more details in Figure
C.4). Probabilistic swaps (ps = 1

2
) do not meaningfully change the behaviour of the

maximum ⟨vi(t)⟩ compared to deterministic swaps, except for lower overall values.
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Figure 4.3: The maximum virtual neighbourhood size increases relatively linearly with coherence
time and entanglement generation fidelity in an infinite chain. We vary T2 = 14,28,42,56,70 and
Fgen = 0.90,0.925,0.95,0.975,1 and associate the maximum cutoff times tcut satisfying Equation (2.4)
while using the baseline parameters p = 1, ps = 1, M = 4 and Fmin = 1

2 . We average over 2500 time
slots. See Figure C.2 for details on tcut and Figure C.4 for details on linearity and probability distributions.
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4.2.5 Probabilistic swaps
Entanglement swaps that succeed probabilistically decrease the maximum value of
the virtual neighbourhood size ⟨vi(t)⟩ compared to deterministically succeeding swaps
(Figure 4.4). When swaps fail, nodes consume the initial entangled links but yield no
resulting state, meaning that nodes lose virtual neighbours (and entangled links). At the
same time, the optimal swap probability q decreases for lower swap success probabilities
ps. If a swap can fail, it would be beneficial not to swap too often, as there is a risk
of losing the initial links resulting in lower ⟨vi(t)⟩. The maximum ⟨vi(t)⟩ increases for
increasing physical node degree with (approximately) the same ratios as for the results
varying T2. The virtual node degree ⟨ki(t)⟩ behaves similarly for deterministic and
probabilistic swaps, just worse.
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Figure 4.4: Probabilistic swaps decrease the maximum virtual neighbourhood size and the
optimal swap probability. The average virtual node degree ⟨ki(t )⟩ decreases slightly faster as a
function of the swap attempt probability q for decreasing probabilities of successfully implementing a
swap ps. The maximum value of the average virtual neighbourhood size ⟨vi(t )⟩ and the associated
optimal q both decrease for lower ps: it is beneficial to attempt fewer swaps when swaps can fail,
destroying the initial links in case of failure. We vary ps = 1

2 ,
3
4 ,1 (coloured from light to dark) while using

the baseline parameters p = 1, T2 = 100, tcut = 7, Fgen = 0.9, M = 4, and Fmin = 1
2 . The probability

distributions of the virtual metrics are shown in Figure C.5.

4.2.6 Probabilistic entanglement generation
Compared to deterministic entanglement generation, probabilistic generation with p = 1

2

roughly halves the optimal swap probability q associated with the maximum average
virtual neighbourhood size ⟨vi(t)⟩ (Figure 4.5). When the entanglement generation
probability halves, it takes, on average, twice as long to generate an entangled link.
To replicate the behaviour for deterministic generation, we should halve the swap rate
accordingly; that is, halve the swap attempt probability. If we assume that the protocols
generating entanglement with probability p = 1

2
, 1 are devised on the same underlying

(intrinsically probabilistic) entanglement generation rate, we correspondingly double
the coherence time T2 (and the cutoff time tcut) when we decrease p = 1 to p = 1

2
.



4.2. Infinite regular networks 29

Subsequently, probabilistic entanglement generation only decreases the maximum value
of ⟨vi(t)⟩ slightly in both infinite chains and infinite square grids. Specifically, for the
infinite square grid, the optimal q decreases from approximately 0.14 (⟨vi(t)⟩ ≈ 7.6)
for deterministic entanglement generation to 0.08 (⟨vi(t)⟩ ≈ 7.3) when entanglement
is successfully generated with a probability p = 1

2
. Then, halving the entanglement

generation probability again results in another halving of the optimal swap probability:
q ≈ 0.04 and ⟨vi(t)⟩ ≈ 7.1 when p = 1

4
. The results are similar for the infinite chain

where the optimal swap probability q = 0.16 (⟨vi(t)⟩ = 3.8) for p = 1 decreases to q = 0.1
(⟨vi(t)⟩ = 3.6) for p = 1

2
and q = 0.05 (⟨vi(t)⟩ = 3.5) for p = 1

4
. Lastly, generating fewer

entangled links, on average, also results in a lower average virtual node degree ⟨ki(t)⟩.
We note that ⟨ki(t)⟩, ⟨vi(t)⟩ do not converge to zero if nodes always swap (q = 1) when
entanglement is generated probabilistically. The reasoning is similar to the nonzero
virtual metrics for the honeycomb lattice (kp = 3): if a node has an odd number of
entangled links, there is a probability that an entangled link will not be involved in too
many swaps even if nodes always swap. With probabilistic generation, it can happen
that nodes generate an odd number of entangled links, resulting in nonzero ki(t), vi(t).
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Figure 4.5: Halving the success probability of entanglement generation roughly halves the
optimal swap probability. The average virtual node degree ⟨ki(t )⟩ decreases faster as a function of the
swap probability q for decreasing probabilities of successfully generating entanglement p. Furthermore,
probabilistic generation results in non-zero virtual metrics as q = 1, as nodes do not always generate
an even number of entangled links. The maximum average virtual neighbourhood size ⟨vi(t )⟩ decreases
slightly for lower p. Furthermore, the optimal q associated with the maximum ⟨vi(t )⟩ decreases
proportionally to the decrease in p: when p halves, it takes, on average, twice as long to generate an
entangled link. We vary p = 1

4 ,
1
2 ,1 (coloured from light to dark) while correspondingly increasing the

T2 = 100,200,400 (tcut = 7,14,28) and using the baseline parameters ps = 1, Fgen = 0.9, M = 4, and
Fmin = 1

2 . The probability distributions of the virtual metrics are shown in Figure C.6.
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4.3 Finite regular networks
Infinite quantum networks offer a convenient platform to analyse protocol performance,
but such networks might not always be feasible. We now analyse the influence of
boundaries in finite networks on the performance of the CD protocol. As nodes closer to
the network’s boundary perform differently than nodes in the network’s centre, we can
not average the virtual metrics over all nodes. In Section 4.3.1, we discuss the virtual
metrics of nodes in a finite chain and, in Section 4.3.2, those in a finite square grid.

4.3.1 Finite chain
In a finite chain, the virtual metrics reflect that the edge nodes only have one physical
neighbour (Figure 4.6): they are half that of the other nodes when nodes do not attempt
swaps. Furthermore, by the design of the CD protocol, the edge nodes can not implement
swaps, so they do not consume links as q > 0. They only lose entangled links when they
are involved in too many swaps or if they are too old. Therefore, the average virtual
node degree ⟨ki(t)⟩ only decreases slowly as q increases. Initially, the average number of
virtual neighbours ⟨vi(t)⟩ increases as other nodes implement swaps but then flattens
for a wide range of q. Both ⟨ki(t)⟩ and ⟨vi(t)⟩ converge quickly to zero if nodes always
attempt swaps, as the nodes discard all the low-fidelity links.
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Figure 4.6: Virtual metrics depend strongly on a node’s location in a finite chain. Central nodes
have similar virtual metrics to nodes in an infinite chain. Edge nodes have qualitatively different virtual
metrics because they have a single physical neighbour. By the swap routine implementation, they can
not attempt swaps. Hence, the edge nodes only lose links when they cut off old links or discard them for
being involved in too many swaps. The virtual metrics of some off-centre nodes converge slower to zero
as q → 1. As nodes attempt swaps between two links stored in differently-oriented qubits, off-centre
nodes close to the edge will never store links that are swapped too many times in the direction of the
edge (as the edge nodes can not attempts swaps). They are, therefore, more likely to store entangled
links at the end of the CD protocol when nodes attempt many swaps. Additionally, nodes closer to
the edge have lower virtual metrics because they have fewer potential virtual neighbours. We use the
baseline parameters p = 1,ps = 1, T2 = 100, tcut = 7, Fgen = 0.9, M = 4, and Fmin = 1

2 . We average
over 500 000 time slots and equivalent nodes (that is, nodes with the same distance to the centre). The
probability distributions of the virtual metrics are shown in Figure C.7.
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The performance of nodes close to the centre is quite similar to the central node (and
the performance of nodes in an infinite chain), although the edges have an influence.
Specifically, for q larger than the optimal swap probability, some off-centre nodes converge
to ⟨ki(t)⟩, ⟨vi(t)⟩ = 0 slower than the central node. We explain this with an example:
suppose we look at the node to the left of the edge node. We recall that nodes attempt
swaps between two links stored in qubits with different orientations and that the orienta-
tions are preserved during a swap. When this node does not attempt to swap, it will
store a link in a left- and right-oriented qubit (recall that generation is deterministic). By
the swap implementation, these entangled links can only grow in the direction of their
qubit’s orientation. The right-oriented link is already connected to the edge node and
can not grow longer, so the node will not discard it for being involved in too many swaps.
The left-oriented link, however, can grow towards and beyond the centre and be involved
in more than M swaps. The node will then discard the link, leaving the node with a
single right-oriented link; that is, nonzero ⟨ki(t)⟩, ⟨vi(t)⟩. Such a scenario, where most
nodes attempt swaps but one does (or some do) not, is likely to happen for a large but
not deterministic swap attempt probability. This is reflected by the slower convergence of
the virtual metrics for off-centre nodes as q → 1. When q = 1, all nodes attempt swaps,
meaning that all links will be involved in too many swaps resulting in ⟨ki(t)⟩, ⟨vi(t)⟩ = 0.

Comparing different off-centre nodes, we see that the ⟨vi(t)⟩ behaviour of nodes close to
the edge is qualitatively similar to those closer to the centre but quantitatively worse.
Nodes close to the edge have fewer potential virtual neighbours in the direction of
the edge, and they, therefore, have fewer virtual neighbours; that is, a smaller ⟨vi(t)⟩.
Conversely, ⟨ki(t)⟩ of nodes close to the edge is quantitatively similar to nodes close to
the centre. Although the number of potential neighbours is smaller for nodes closer to
the edge, all nodes lose a similar number of entangled links due to swaps and discarding
them for being involved in too many swaps. In fact, the average virtual node degree
⟨ki(t)⟩ of nodes close to the edge can perform slightly better than that of nodes close to
the centre, as entangled links can only be involved in too many swaps in one direction
when the node is close to the edge.

In an 11-node chain with a maximum swap distance M = 4, the central node will never
store entangled links that are involved in more than M swaps. Therefore, it will not
discard links for being involved in too many swaps, so the virtual metrics are (slightly)
better than those of nodes in the infinite chain. Contrary to the off-centre nodes, the
central node is likely to have an equal number of entangled links oriented to either side
(recall that generation and swaps are deterministic). For a significant swap probability,
the central node is more likely to swap all the links in its memory than off-centre nodes.
This results in ⟨ki(t)⟩, ⟨vi(t)⟩ of the central node converging to zero faster as q → 1 than
off-centre nodes (and similar to the virtual metrics of nodes in the infinite chain).

For M = 2, 3 in an 11-node chain, the maximum ⟨vi(t)⟩ of the central node is approxi-
mately the same as that of nodes in an infinite chain. The two nodes next to the central
node perform the same as the central node when M = 2 (overlapped with the central
node in Figure 4.6). These nodes are unaware of the edges; they can store entangled links
involved in too many swaps (before they discard them). Hence they perform similarly
to the nodes in the infinite chain. Some off-centre nodes have a more sizeable ⟨vi(t)⟩
than nodes in an infinite chain. This happens because of a combination of circumstances.
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First, these nodes can only grow (too) long links in one direction as they are relatively
close to the edge, meaning that they discard fewer links for being involved in too many
swaps. Secondly, the set of potential virtual neighbours is not too limited if they are not
too close to the edge.

Finally, all nodes except the edge nodes have relatively similar optimal swap probabilities.
In particular, the optimal swap probability is between approximately q = 0.13 and
q = 0.15 for the 11-node chain with M = 2, between q = 0.14 and q = 0.17 when
M = 3, and between q = 0.14 and 0.18 when M = 4. The optimal swap probabilities
are higher when M is longer because the nodes can implement more swaps before they
discard entangled links for being involved in too many swaps, resulting in more virtual
neighbours. Generally, a larger maximum ⟨vi(t)⟩ corresponds to a higher optimal q as
more attempted swaps result in more virtual neighbours.

4.3.2 Finite square grid
For kp = 4, the virtual metrics of all nodes are qualitatively similar, and those of nodes
with equal physical node degrees are quantitatively similar (Figure 4.7). For instance, in
a finite square grid, quantum nodes close to the centre perform similarly as they all have
four physical neighbours. Precisely, the average virtual node degree ⟨ki(t)⟩ and virtual
neighbourhood size ⟨vi(t)⟩ overlap with those of nodes in an infinite grid. Closer to the
edge, nodes with four physical neighbours have the same ⟨ki(t)⟩ but slightly smaller
⟨vi(t)⟩, as they have fewer potential virtual neighbours.

When nodes do not attempt swaps, the corner nodes have ⟨ki(t)⟩, ⟨vi(t)⟩ half that of the
central nodes as they only have two physical neighbours. Converse to the edge nodes
in the finite chain that could not attempt swaps because they had only one physical
neighbour, the corner nodes can attempt entanglement swaps. Their performance is,
therefore, qualitatively similar to the other nodes for q > 0. Furthermore, the maximum
⟨vi(t)⟩ for nodes with two physical neighbours is roughly half the value of the maximum
⟨vi(t)⟩ for nodes with four physical neighbours.

The side nodes (those on the boundary but not in the corner) have three physical
neighbours and therefore have higher ⟨ki(t)⟩, ⟨vi(t)⟩ than the corner nodes. When nodes
do not attempt swaps, their ⟨ki(t)⟩, ⟨vi(t)⟩ is 3

4
that of the central node. Similarly, the

maximum ⟨vi(t)⟩ is also approximately 3
4

that of the central node. We note that when
nodes always swap, ⟨ki(t)⟩, ⟨vi(t)⟩ of these nodes converge to a nonzero value. Similar to
the explanation for nodes in an infinite honeycomb lattice (kp = 3), there is a probability
for nodes to be left with an entangled link after the CD protocol when always attempting
swaps. This is due to the swap implementation with an odd number of generated links
(generation is deterministic). The average virtual node degree ⟨ki(t)⟩ of the different side
nodes is approximately equal, but there is a (slight) difference in the average physical
neighbourhood sizes ⟨vi(t)⟩. Side nodes closer to a corner, e.g., the left-bottom corner,
only have potential virtual neighbours in one quadrant, the top-right quadrant. A central
side node has potential virtual neighbours in two quadrants. Hence they have more
potential neighbours resulting in a larger ⟨vi(t)⟩ than that of a node closer to the corner.
The virtual node degree ⟨ki(t)⟩ is not dependent on the number of potential virtual
neighbours; it decreases when swaps are involved in (too many) swaps.
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Lastly, we note that all nodes have similar optimal swap probabilities regardless of how
many physical neighbours they have, ranging from approximately q = 0.13 to q = 0.15.
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Figure 4.7: Virtual metrics of nodes in a finite square grid are qualitatively similar, with the phys-
ical node degrees driving quantitative differences. Quantum nodes with four physical neighbours
have the same average virtual node degree ⟨ki(t )⟩, and almost the same average virtual neighbourhood
size ⟨vi(t )⟩ – nodes close to the boundaries have fewer potential virtual neighbours resulting in smaller
⟨vi(t )⟩. The virtual metrics of side nodes (nodes on the boundary but not in the corner) have similar
behaviour but are smaller by roughly a factor 3

4 as they only have three physical neighbours. As the
corner nodes have two physical neighbours, their virtual metrics behave similarly but lower by roughly
a factor 2

4 . We use the baseline parameters p = 1,ps = 1, T2 = 100, tcut = 7, Fgen = 0.9, M = 4 and
Fmin = 1

2 . We average over 25 000 time slots and equivalent nodes (as indicated in the legend). The
probability distributions of the virtual metrics are shown in Figure C.8.
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4.4 Heuristics for designing regular-topology quantum networks
Having investigated various quantum networks with regular topologies, we now summarise
our findings with heuristics. For instance, if a quantum network engineer wants to design
a quantum network with regular topologies running a CD protocol, what are some general
guidelines for designing such networks?

Firstly, increasing the values of network parameters, such as the coherence time and
entanglement generation fidelity, shifts the optimal swap attempt probability q providing
the maximum average virtual neighbourhood size ⟨vi(t)⟩. The direction of the shift
depends on the network parameter. In particular, increasing the coherence time T2

decreases the optimal q. Conversely, increasing the entanglement generation probability
Fgen increases the optimal q.

Furthermore, in the regime we investigated, the maximum value of ⟨vi(t)⟩ increases
relatively linearly with an increase in the coherence time T2 and the entanglement
generation probability Fgen.

Also, the maximum value of ⟨vi(t)⟩ increases with the physical node degree of the quantum
network. Increasing the network from kp = 2 to kp = 3 increases the maximum value
more than the ratio of the physical node degrees. However, the returns on increasing
the physical node are diminishing. Specifically, increasing the physical node degree from
kp = 2 to kp = 4 roughly doubles the maximum ⟨vi(t)⟩, while increasing kp = 2 to kp = 6
results in less than tripling ⟨vi(t)⟩.
Compared to deterministic implementations, probabilistic entanglement generation and
probabilistic entanglement swaps influence the average virtual neighbourhood size dif-
ferently. In particular, probabilistic entanglement generation primarily influences the
optimal swap probability q: halving the entanglement generation probability p roughly
halves the optimal q. The associated maximum ⟨vi(t)⟩ only decreases marginally. In con-
trast, probabilistic swaps decrease the maximum ⟨vi(t)⟩ considerably while only slightly
decreasing the optimal q.

Lastly, the performance of quantum nodes in finite quantum networks depends on the
network topology. For example, the virtual metrics of quantum nodes in a finite chain
strongly depend on the combination of the node’s distance to the chain’s edge and
the maximum swap distance. Conversely, all nodes have qualitatively similar virtual
metrics in a finite square grid, with the physical node degree of a node primarily driving
quantitative differences.
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Conclusions

In this chapter, we summarise our investigation, reflect on its results and offer potential
steps for research beyond this thesis.

To summarise, we have investigated the performance of a protocol that continuously
distributes entanglement in quantum networks with regular topologies. Motivated by
the need for entangled links between nodes to implement nonlocal gates in distributed
quantum computing, we have used two figures of merit that encapsulate the goals of
such networks and the time-dependent nature of the fidelity of entangled links. Firstly,
the virtual node degree manifests the need for many entangled links to implement many
nonlocal operations. Secondly, the virtual neighbourhood size represents the need to
share entangled links with many remote quantum nodes to grow the number of qubits
that are available for computations.

Employing a protocol that continuously delivers entanglement, the distribution of entan-
gled links in the quantum network evolves due to the creation of links by entanglement
generation and entanglement swaps, and the removal of low-fidelity links. The quantum
nodes can optimise the virtual node degree and virtual neighbourhood size as a function
of the probability of attempting swaps. We have found that the network parameters, such
as the coherence time and entanglement generation fidelity, influence the optimal swap
attempt probability associated with the maximum average virtual neighbourhood size
differently. Furthermore, the network topology, characterised by the number of physical
neighbours per node in regular networks, and the presence or absence of boundaries in
the network strongly affect the network performance. For example, increasing the number
of physical neighbours per node from two to three increases the maximum average virtual
neighbourhood size by more than the ratio of physical neighbours. However, the returns
diminish when further increasing the number of physical neighbours.

Further research could implement a process to consume entangled links (for example, as
implemented by Iñesta and Wehner [20]). In quantum networks for distributed quantum
computing, quantum nodes consume entangled links to implement nonlocal operations in
quantum computations. A process consuming entangled links then emulates implementing
nonlocal operations. It would be interesting to see the effect of consuming entangled
links on the virtual metrics and the corresponding optimal swap attempt probability.

35
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Furthermore, nodes could implement a more elaborate entanglement swap routine to grow
the virtual neighbourhood size more efficiently than the current routine that randomly
pairs two entangled links. For example, a routine could guide specific combinations of
entangled links resulting in more virtual neighbours.

By increasing computational resources, we can investigate more extensive quantum
networks or nodes that generate entangled links with better fidelities and longer coherence
times. For example, it would be interesting to see how the relatively linear relationship
between coherence time, entanglement generation fidelity and the maximum virtual
neighbourhood size develops with longer coherence times. Moreover, for more accurate
analysis, the simulation could track the fidelities of the entangled links instead of setting
threshold values such as the cutoff time and maximum swap distance. Then, an elaborate
swap routine could match entangled links with certain fidelities in a way that optimises
the virtual metrics.

Lastly, analytical results – more precise than the bounds presented here – would be a
valuable addition to the heuristics derived from the numerical results in this work and
can allow for a deeper understanding of the dynamics of entanglement distribution in
quantum networks with regular topologies.
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A
Virtual metrics convergence

In this appendix, we motivate the assumption that the virtual node degree ki(t) and
virtual neighbourhood size vi(t) converge to a steady-state value when averaged over
samples, time or network nodes.

First, ks
i (t) and vsi (t) are the virtual metrics associated with a simulation sample s. Then,

the sample-averaged (S = 5000) virtual metrics of node any node i in an infinite chain,

⟨ki(t)⟩ =
S∑

s=1

ks
i (t)

S
, ⟨vi(t)⟩ =

S∑
s=1

vsi (t)

S
, (A.1)

converge to a steady state value (Figure A.1 shows the metrics for node i = 0).
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Figure A.1: The sample-averaged virtual metrics converge to a steady state. Time evolution
showing the virtual node degree ki(t ) and virtual neighbourhood size vi(t ) of a specific node i = 0 in
an infinite chain averaged over S = 5000 samples. The step-wise behaviour of the percentile bands is
due to the integer nature of the virtual metrics. We use a swap probability q = 0.2 and the baseline
parameters p = 1,ps = 1, T2 = 100, tcut = 7, Fgen = 0.9, M = 4, Fmin = 1

2 .
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Similarly, the node-averaged (N = 5000) virtual metrics in an infinite chain,

⟨ki(t)⟩i =
N∑
i=1

ki(t)

N
, ⟨vi(t)⟩i =

N∑
i=1

vi(t)

N
, (A.2)

converge to the same steady state value in an infinite network (Figure A.2).
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Figure A.2: The node-averaged virtual metrics converge to a steady state. Time evolution showing
the virtual node degree ki(t ) and virtual neighbourhood size vi(t ) averaged over a chain of 5000 nodes
with periodic boundary conditions. We use a swap probability q = 0.2 and the baseline parameters
p = 1,ps = 1, T2 = 100, tcut = 7, Fgen = 0.9, M = 4, Fmin = 1

2 .

Lastly, the probability distributions of the virtual node degree Pr[ki(t) = k] and the
virtual neighbourhood size Pr[vi(t) = v] are (almost) the same for all nodes after a
simulation containing 107 time slots for an infinite chain (Figure A.2).
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Figure A.3: All nodes in the infinite chain exhibit the same virtual metrics probability distributions.
Histogram with probability distributions of the virtual node degree ki(t ) and virtual neighbourhood size
vi(t ) in an 11-node chain with periodic boundary conditions (107 simulation steps). We use q = 0.2 and
the baseline parameters p = 1,ps = 1, T2 = 100, tcut = 7, Fgen = 0.9, M = 4, Fmin = 1

2 .



B
Bounds on the virtual metrics

In this appendix, we derive the bounds on the virtual node degree and the virtual
neighbourhood size for infinite networks with a regular topology (Table 2.2).

B.1 Bounds on the virtual node degree
A quantum node with an infinite number of quantum memories in a regular-topology
network with physical node degree kp and cutoff time tcut can store at most kptcut
entangled links. We note that quantum nodes generate at most kp entangled links per
time slot according to our CD protocol. Also, quantum nodes store most links when
they do not attempt swaps, as swaps consume the initial links. Then, nodes only discard
entangled links when their fidelity is too low due to living too long. At that point, the
quantum node stores kptcut entangled links.

Thus, by definition of the virtual node degree – the number of entangled links stored by
a node at a particular time – we conclude that ki(t) ≤ kptcut.

B.2 Bounds on the virtual neighbourhood size
Generally, a node can not have more virtual neighbours than it stores entangled links, so
the virtual node degree bounds the virtual neighbourhood size, vi(t) ≤ ki(t). Furthermore,
if nodes do not attempt swaps, they only share entangled links with their physical
neighbours. However, the number of virtual neighbours can increase when nodes attempt
swaps, as they can create entangled links with remote, non-neighbouring nodes. We show
that the number of virtual neighbours vi(t) increases in a similar pattern for increasing
swap distance M .

The proof is similar for different topologies: initially, for M = 0, a quantum node only
shares entanglement with its kp physical neighbours. Then, for an increase from arbitrary
M → M + 1, the virtual neighbourhood size vi(t) increases in a regular pattern as a
function of M (Figure B.1), concluding our proof by induction. Specifically:

For kp = 2, the maximum virtual neighbourhood size vi(t) grows by 2 as M → M + 1:
the central node can have an additional virtual neighbour both to the left and right.
Hence vi(t) ≤

∑M
k=0 2 = 2(M + 1).

45



46 B. Bounds on the virtual metrics

For kp = 3, the maximum vi(t) grows by 3(M + 1) as M → M + 1. For M ≥ 1, the
number of virtual neighbours visually grows in layers: alternately, a layer with six equal
sides of length M+1 (a hexagon), and a layer with three short sides of length M and three
long sides of length M +1 are added. Hence vi(t) ≤

∑M
k=0 3(k+1) = 3

2
(M +1)(M +2).

For kp = 4, the maximum vi(t) grows by 4(M + 1) as M → M + 1. Similar to
kp = 3, the number of virtual neighbours visually grows in layers: for each step
M → M + 1, a square layer (angled at π/4) with side length M + 1 is added. Hence
vi(t) ≤

∑M
k=0 4(k + 1) = 2(M + 1)(M + 2).

For kp = 6, the maximum vi(t) grows by 6(M + 1) as M → M + 1. Again, the number
of virtual neighbours grows in layers: for each step M → M +1, a hexagonal layer with
a base length of M + 1 is added. Hence vi(t) ≤

∑M
k=0 6(k + 1) = 3(M + 1)(M + 2).

Combining these bounds with vi(t) ≤ ki(t), we have derived the bounds from Table 2.2.

kp = 2

M = 2 1 0

kp = 3

kp = 4 kp = 6

Figure B.1: The maximum virtual neighbourhood size grows similarly for increasing M. The
maximum number of virtual neighbours, vi(t ), of a node (black) grows similarly for each increase
M → M + 1 (emerging structure illustrated by solid line): vi(t ) grows with 2 for kp = 2; with 3(M + 1) for
kp = 3; with 4(M + 1) for kp = 4; and with 6(M + 1) for kp = 6. Note the underlying physical structures:
chains, honeycombs, squares and triangles (dashed lines).



C
Virtual metrics distribution

In this appendix, we present the mean virtual metrics as a function of the swap probability
and varying simulation parameters including their distribution in the form of percentiles.

The virtual node degree ki(t) and virtual neighbourhood size vi(t) are time-dependent
random variables. We analyse their performance by averaging many samples to obtain
the average virtual node degree ⟨ki(t)⟩ and average virtual neighbourhood size ⟨vi(t)⟩
and their corresponding probability distributions (see Section 3.2 for more details). For
clarity, we have not shown the probability distributions in the main text, but we do so in
this appendix. Specifically, we analyse the 25–75th and 10–90th percentiles associated
with the samples that average to ⟨ki(t)⟩, ⟨vi(t)⟩. The percentiles offer a suitable approach
to analysing the probability distributions of ki(t) and vi(t) as their distributions are
often not symmetric due to upper and lower bounds on the virtual metrics. Histograms
exemplify the probability distributions of ki(t) and vi(t) more explicitly for a specific
combination of network parameters and swap probability (Figure A.3). Lastly, we note
the step-like behaviour of the percentiles due the integer nature of the virtual metrics.
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Figure C.1: Average virtual metrics and their underlying probability distribution as a function
of the swap attempt probability and coherence time of infinite regular networks. We vary the
coherence time T2 = 14,40,92,170,275 (and associated cutoff times tcut = 1,3,7,13,21) while using
the baseline parameters: entanglement generation success probability p = 1, swap success probability
ps = 1, entanglement generation fidelity Fgen = 0.9, maximum swap distance M = 4, and minimum
entangled link fidelity Fmin = 1

2 . The probability distributions are expressed as 25–75th and 10–90th
percentile bands.
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Figure C.2: Cutoff time as a function of the entanglement generation fidelity and coherence
time. We vary the coherence time T2 = 14,28,42,56,70 and entanglement generation fidelity Fgen =
0.90,0.925,0.95,0.975,1 and associate the maximum cutoff times tcut satisfying Equation (2.4) while
using the baseline parameters: entanglement generation success probability p = 1, swap success
probability ps = 1, maximum swap distance M = 4, and minimum entangled link fidelity Fmin = 1

2 .
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Figure C.3: Average virtual metrics and their underlying probability distribution as a function of
the swap attempt probability and entanglement generation fidelity of infinite regular networks.
We vary the entanglement generation fidelity Fgen = 0.52,0.72,0.81,0.90,0.96 (associated maximum
swap distance M = 0,1,2,4,7) while using the baseline parameters: entanglement generation success
probability p = 1, swap success probability ps = 1, coherence time T2 = 100, cutoff time tcut = 7, and
minimum entangled link fidelity Fmin = 1

2 . The probability distributions are expressed as 25–75th and
10–90th percentile bands.
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Figure C.4: Maximum average virtual neighbourhood size and the underlying probability distribu-
tion as a function of the coherence time and entanglement generation fidelity of infinite regular
networks. We vary the coherence time T2 = 14,28,42,56,70 and entanglement generation fidelity
Fgen = 0.90,0.925,0.95,0.975,1 and associate the maximum cutoff times tcut satisfying Equation (2.4)
while using the baseline parameters: entanglement generation success probability p = 1, swap success
probability ps = 1, maximum swap distance M = 4, and minimum entangled link fidelity Fmin = 1

2 . The
probability distributions are expressed as 10–90th percentiles.
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Figure C.5: Average virtual metrics and their underlying probability distribution as a function of
the swap attempt probability and swap success probability of infinite regular networks. We vary
the swap success probability ps = 1

2 ,
3
4 ,1 while using the baseline parameters: entanglement generation

success probability p = 1, coherence time T2 = 100, cutoff time tcut = 7, entanglement generation
fidelity Fgen = 0.9, maximum swap distance M = 4, and minimum entangled link fidelity Fmin = 1

2 . The
probability distributions are expressed as 25–75th and 10–90th percentile bands.
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Figure C.6: Average virtual metrics and their underlying probability distribution as a function of
the swap attempt probability and entanglement generation success probability of infinite regular
networks. We vary p = 1

4 ,
1
2 ,1 while correspondingly increasing the T2 = 100,200,400 (tcut = 7,14,28)

and using the baseline parameters: swap success probability ps = 1, entanglement generation fidelity
Fgen = 0.9, maximum swap distance M = 4, and minimum entangled link fidelity Fmin = 1

2 . The
probability distributions are expressed as 25–75th and 10–90th percentile bands.
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Figure C.7: Average virtual metrics and their underlying probability distribution as a function
of the swap attempt probability, maximum swap distance and location in an 11-node chain.
We vary the maximum swap distance M = 2,3,4 (associated entanglement generation fidelity Fgen =
0.81,0.87,0.90) while using the baseline parameters: p = 1, ps = 1, T2 = 100, tcut = 7, and Fmin = 1

2 .
The probability distributions are expressed as 25–75th and 10–90th percentile bands.



55

0

28

14

〈ki (t)〉

0

12

4

8

〈vi (t)〉

25–75%
10–90%

0

28

14

〈ki (t)〉

0

12

4

8

〈vi (t)〉

0

28

14

〈ki (t)〉

0 1
Swap probability q

0

12

4

8

〈vi (t)〉

0 1
Swap probability q

Figure C.8: Average virtual metrics and their underlying probability distribution as a function of
the swap attempt probability and location in 11 by 11 square grid of nodes. We use the baseline
parameters: entanglement generation success probability p = 1, swap success probability ps = 1,
coherence time T2 = 100, cutoff time tcut = 7, entanglement generation fidelity Fgen = 0.9, maximum
swap distance M = 4, and minimum entangled link fidelity Fmin = 1

2 . The probability distributions are
expressed as 25–75th and 10–90th percentile bands.
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